ANEXO A

Objetivos

En este anexo se presentan de forma completa los requisitos y objetivos

establecidos para el autor en el proyecto FCAT

A.l — Propuesta de Practicas

A.2 — Lista de Objetivos

Universidad
Zaragoza

El documento que puede leerse en este apartado contiene de forma integra y sin
modificaciones la propuesta realizada por el IGN para el puesto de practicas desempenado

el autor durante la realizacion del presente proyecto final de carrera.

Diploma Thesis: Development of Signal Compatibility Tool

The aim of the thesis will be to write a small high-quality Matlab-based software application with uses
of best practices of sustainable software development. Within the framework of the work the student
will concentrate on the UML-described design securing modularity, well-defined internal structure and
interfaces that combine the specific scripts developed by team of specialists into the final application.
A GUI should be designed and implemented according to users' needs. The test plan should be
included and performed to secure quality of the final product.

Requirements:

e Studies of computer science or telecommunications.

e Basic experience with Matlab.

e Basic knowledge in physics of signals and electromagnetic waves.
Very good knowledge of C++, Java, Matlab or other higher languages.
Knowledge of software design and engineering.

Fluent English knowledge in speech and writing.
Team and communication skills.
Individual initiative.

Detailed Contents:
The target of the thesis to develop a Matlab based software tool able to compute all the relevant

parameters which are necessary to perform the radio-frequency compatibility analysis between global
navigation satellite systems (GNSS) in all the current and potential future frequency bands. In
particular the compatibility metrics (CM) that the tool should analyze are:

Link budget for the maximum and minimum received power levels
Effective carrier-to-noise density ratio

Carrier-to-noise density degradation

Inter-system spreading codes cross-correlation characteristics

The first part will be the specification and analysis of the tool as well as the preliminary design of the
graphical user interface. The rules to be followed during the software development by all participants
of the project should be defined in details.

The second part will be implementation of the core of the tool and integration of the specific scripts
developed by other members of the project team. The code should be clearly structured in
independent modules connected through well-defined interfaces. In this way subsequent
modifications and updates of the code should be supported.

The module of user interface part should comprise all functionalities: graphical user interface, loading
and saving of input files and plotting and saving of results. A general template for the modules for the
compatibility metrics should be designed. The other members of the team will then implement each

http://ifen/index.htm

Universidad
Zaragoza

1542

metrics compliant to this template. These metrics modules should communicate with the user
interface module through a set of strictly defined functions implementing computation, plotting into
GUI and saving of the CM to an output file. Also the CM modules will communicate with each other
over given interface functions. A separated module will be formed by auxiliary functions available
without limitation in any part of the tool.

The GUI of the tool will be based on so called scenario projects. A project is one complete input
setting that can be created, saved and reopen for each simulated scenario. Several template projects
will be provided for typical cases according to needs of EC.

The GUI main window will clearly structured into input and output part and will avail direct comparison
of computed results with respective input. The input part will contain all input variables sorted into
panels according to context. The widget of individual variables will offer tooltips with short description
of the meaning, units and range of the variable.

The third part of the thesis will be the testing and verification of the developed software following the
best practices of high quality software development.

ane
.

a0l

Universidad
Zaragoza

—
1542

Phase 1: Till 1st meeting in Brusel on 16th June

Target: Fullfilled

GasipReduced Delivery: 31st July

Target: Complete SW, .exe and Matlab, complete UserGuide
Phase2: Till end of August, delivery of SW and teleconference

Complete tool, Complete User Guide - Programmer and User
Target: Part

Load and Save input data
Loading and Saving of InputVars of EffDegCn0
Loading and Saving of InputVars of PrnCodes
Loading of Systems and Signals config files

Varible checking
Numerical variables
Files: exists, suffix

Special consistency checks and other checks: error info to user, inform M+D about usage
Gui Design and Implementation

Add Setting to Menu->Settings to set if panels in input panels system are exclusive
Maybe other options to this menu

First prototype for Automatic Creation in RunTime with save
Preview of systems

Way for preview of systems

Finalise preview of systems

Solution for lower resolution,

clean table in case of simple constellation

Preview of signals

Way for preview of signals, implementation

Name of signal as headline to the window

Preview and Edit SSC

Way for preview and editing of SSC values, implementation

ALT SYSTEM: popupmenu with all systems from vSystems, that have at least one signal in
vSignal, which refers to them. And the system of the DES signal is excluded

DES signal: popupmenu with all signals

Prototype for Automatic Creation using special program
Way to represent two apps in one in GUI

Decision for the RunTime/Speicial program design solution
Gui design of tab panels - vertical tabs

ane
.

Universidad
Zaragoza

—
1542

check compatability for Matlab 2009
Output panels
Output panel design and implementation
Options
Save FoM and Show FoM in Separate Window
Application structure design
Structure of Modules: EffDegCn0 vs. PrnCodes
Gui structure: data structures and functions
EffDegCn0, PrnCodes Gui structure: data structures and functions
Implementation of the directory structure

Implementation of sinputVar full contents - with reading of files: antenna pattern etc.

Documentation

Automatic generation of .m file documenting structinputVars and structFom1-N
Style for modeling of app's structure

Development procurement methodology for the project

Deployment of Scrum

Write GuiFomInterfaceStructure file - documentation purposes

Gasip limited version
generate GUI for limited version with the GUI framework
representation of substructures and respective change to parser
code for subpanels
Deliver setting for the chosen signals of Galileo
Connect the computational functionality

synchronise Gasip full and reduced version (variable names: eg.VarNameFlag convention)

generate executable
generate executable with complete runtime in .msi

ige

An

Universidad
Zaragoza

Anexo A: ObjetivosjError! No se encuentra el origen de la

1542

"y

%as Universidad
E Zaragoza
ANEXO B
Manuales de FACIL
A continuacion se presentan los manuales de uso del framework FACIL
B.1 — Manual de usuario

B.2 — Manual del programador

ige

An

Universidad
Zaragoza

Anexo B: Manuales de FACIL

1542

“ay

Anexo B: Manuales de FACIL

ias Universidad
ila Zaragoza
7

Manual de usuario

=’ T e]
Institute of ‘ESeodesy and Navigation s U n IverSIdad
A0l Zaragoza

Institut fir Erdmessung und Navigation

1542

FACIL

Forget About Complicated Interface Layouts

Manual de usuario

Autor: Eduard Porta Martin-Moreno

Version: 1.0

Ultima Revision: 30 de Agosto de 2011

ige

An

Universidad
Zaragoza

Anexo B: Manuales de FACIL

1542

“ay

niversidad
Y ers Anexo B: Manuales de FACIL

Zaragoza

"
b

Tabla de Contenido

1 Inicio de la Aplicacion.........coiiieiiiiiiiiiis s s e e e e e e e 70
b2 o (0= oL 71
3 El Panel de Entradac.ccomiimiiimiiiiiir i s e nmnas 72
4 Calculo de ReSUItadoscccrrermeirmsrmnsrmsirernesrnsrrernss s snsssmssnnssnsssmssnnssnnss 73

a

ia: Universidad
ifi Zaragoza

Al
(1Y
w

Inicio de la Aplicacion

Al iniciar la aplicacién se presenta al usuario con un dialogo de carga que informa del

progreso y la etapa en la que se encuentra (Figura 1).

»

1«

(I
<
X

Drawing interface widgets

Figura 1 - Dialogo de Carga

Una vez finalizado el proceso de carga, se mostrara una interfaz, cuyo aspecto puede variar,

y que en general serd muy similar a la Figura 2.

File Compute Help o
Signal
= Foll
Channel
Receiver Frontbnd ———————
Receiver Signal Processing
i ion Settings
gs
Project Description:
|~ user
WVelocity 100| mis
Acceleration 10] mis*2
Jerk 20| mis*3
I Sateliite Elevation 45 deg
— si i s
15-Jun-2009 01:02:10
(GPS Week: 1536/ GPS Second: 80145)
Period to simulate 3800 s
Step Size 120 s
User Grid Resolution 5| deg
Masking Angle 5| deg

Figura 2 - Interfaz Grafica

ADVERTENCIA Si se ejecuta la aplicacion desde una sesion de MATLAB, es
indispensable no cambiar de directorio en ningin momento para

asegurar el correcto funcionamiento de la misma.

ia: Universidad
idi Zaragoza

Proyectos

La aplicacion permite guardar y cargar datos en ficheros de proyectos. Puede accederse a

estas funciones a través del mena Archivo (Figura 3):
nlij Compute Help

. aario De
» Nuevo Proyecto: Configura el panel de entrada con New Project Ctrl+N

Open Project Ctrl+O

Save Project Ctrl+S &5
aplicacién16 puede permitir al usuario elegir entre una T —

valores por defecto. En algunas versiones de la

lista de plantillas. Exit Ctrl+E

> i :
Abrir proyecto: Carga el panel de entrada con datos Figura 3 - Men Archivo:

que el usuario haya guardado previamente. Opciones de Proyectos
» Guardar proyecto: Guarda en un nuevo archivo los datos del panel de entrada.

Los archivos de proyectos emplean un formato XML practico y sencillo de editar con un editor

de texto coman (Figura 4).

e & @ foo.fck - Kate o & X

File Edit View gookr@rks Sessions Tools Settings Help

Q@ Mew 1'—]:!' Open QI Back Q Forward H Save M Save As 6 Close Undo »

1 ~
2w =sScenario>]
3 <chProjectDescription>Test preoject with default values.</chProjectC
4 <chSystemsFile>. ./TestScenarios/EffDegCnd/SystemsTestFile.m</chSyst
5 =chSignalsFile>. . /TestScenarios/EffDegCn@/signalsTestFile.m</chSigr
6w <sInterferenceOptions>

7 <chDesSignal>1</chDesSignal>

8 <chAltSystem>1</chAltSystem>

9 </sInterferenceOptions>

10 =/sScenario>

11 = <sReceiverParameters>

12 <dRxFilterBw>1</dRxFilterBw>

13 =zchRxAntennaGainFile>. . /TestScenarios/EffDegCn@/Data/AntennaPattern
14 <dImplementationLoss>1l</dImplementationLoss>

15 </sReceiverParameters=

16 w <55s5C>

17 <chSscNormalization>TX Bandwidth</chSscNormalization>

18 <dNumSignificantDigits>1</dNumSignificantDigits>

19 <chSscFile>../TestScenarios/EffDegCnd/Data/SscValues/ssctest.mat</¢
20 </555¢c>

21 ¥ =sNoiseAndExtInterference>

22 <bThermalNoiseDensityFlag>1</bThermalNoiseDensityFlag> :
23 cdTharmalMaicalancitusne ZdTharmal Maicahancitu=

<[] 1< >
Line: 38 Col: 1 INS LINE UTF-8 foo.fct

Figura 4 - Editando un Fichero de Proyecto

¢ Esto dependera de las decisions tomadas por el desarrollador.

was Universidad
Zaragoza Anexo B: Manuales de FACIL

El Panel de Entrada

El panel de entrada (Figura 5) de la aplicacién Scamaic Desipion

se compone de una serie de pestanas. Dichas Erolact Description:
Test project with default values. -

pestanas contienen controles que permiten

modificar los valores de las variables de .

entrada. Es posible que cuando exista mas de File with Systems Description:
|.\TestScenarios\EffDegCnO\SystemsTestFile.m]

una pestana y dependiendo de la decision del

[Load | [Preview |aPs v L v
desarrollador, la apertura de un panel R S
provoque el cierre de los restantes, de forma | \TestScenariosiEfDegCn0lsignalsTestFie.m |
. [Load | [Preview] |alieo £1-8C -
que en todo momento quede abierto
Interference Computation Opti
Unicamente el panel activo. DES signal | Gatleo £1-5C =
ALT system]GPS v}
Algunos de los controles pueden tener
mecanismos de validacién (Figura 6). Si los B pcierParamed
~————————— Spectral Separation Coefficients
datos de alguno de los controles no son T Nobt it Bt bk Femsca
Simulation Settings

validos, éste Ilo indicara mediante algin
mecanismo visual como un didlogo y/o un Figura 5 - Ejemplo de Panel de Entrada

cambio de color, y el botén de calculo sera deshabilitado hasta que el error sea subsanado.

§ Compute

Valor erréneo Boton deshabilitado

. Warning Dialog _‘.’1 ‘ =t

Number of Significant Digits

Spectral Separation Coefficients Input: | & Na valid spstems description found for the signals listed

Valor erréneo

Figura 6 - Mecanismos de validacion y notificacion al usuario

ias Universidad
ifi Zaragoza Anexo B: Manuales de FACIL

ITT}

T \ ./
'.-!
‘!-'A

Calculo de Resultados

Si todos los campos del panel de entrada presentan datos validos, el botén y el mena de
célculo estaran activos (nétese que su aplicacién podria no presentar el mend en caso de
existir una Unica funcién de calculo). Para seleccionar la funcién a calcular emplearemos la
lista o listas desplegables del panel de salida y pulsaremos el botén calcular, o bien

seleccionaremos la funcién deseada en el menu calcular (Figura 7).

C/NO Degradation 1
C/NO Degradation 2

Aggregate Gain Factor Power Spectral Densty
Received Power Autocorrelation Function

Power Spectral Density | Mutipath error

Postion Dillution of Precision
Horizontal Dillution of Precisk
i ion of Precisio

Seleccionar
Seleccionar y Pulsar

Botén Calcular

Figura 7 - Menii Calcular y desplegable junto al Boton Calcular

Si el algoritmo de calculo es costoso en tiempo es probable que aparezca una barra de

progreso como la de la Figura 8. Si pulsamos sobre el botén rojo con una cruz de dicho

dialogo se cancelara el proceso de calculo.

. ==

Multipath Error Envelope Computation... Cancelar
I 0 o
Figura 8 — Dialogo de Progreso del
Calculo con Boton de Cancelacion

Anexo B: Manuales de FACIL

ias Universidad

idi Zaragoza

B Ioi itl
A/

1542

Una vez se complete el proceso de calculo con éxito se mostraran los resultados en el panel

de salida. Dependiendo del algoritmo ejecutado es posible que se muestre un panel con

opciones para controlar la visualizacién (Figura 9).

M

Opciones 0 30 20 40 0 1 20 30 40
Carrier Frequency of the Desired Signal:1575.45 MHz
FoM Settings

Signal Galileo E1-BC
Galileo E1-BC

Figura 9 - Panel de salida Mostrando el Resultado y Opciones de Visualizacion

Existe también la opcion de mostrar los resultados en una vista separada, para ello se

pulsara sobre el botén ‘Ver en ventana separada’, disponible en la esquina superior derecha

del panel de salida (Figura 10).

Min: 1.19 98] Max: 1.06 [d8]

Uner rarsuten

Figura 10 - Visualizacion de Resultados en Ventana Separada

)

Universidad
Zaragoza

—
1542

Para guardar los resultados en un archivo emplearemos la opcién disponible en el mena

archivo (Figura 11). Los formatos disponibles son:

» Fig: Almacena una copia del resultado en pantalla en formato figura, el cual puede ser

abierto desde MATLAB.

» Mat: Todos los valores calculados (y no su representacion) se almacenan en un
fichero de datos en formato MAT, dichos valores pueden ser cargados de nuevo en

MATLAB para trabajar con ellos.

» Csv: Almacena todos los valores calculados en un fichero de valores separados por
comas que puede ser abierto con un editor de texto simple o con una aplicacién de

hojas de calculo.

> Imagen (tiff, png, jpg, bmp, ppm, eps): Guarda como imagen una captura de la

representacion de los resultados mostrada.

-) EONEIREINES select File to Write SR)
Save In: |[':J SourceCode v| @
3 swn
3 AppSpecific

3 EffDegCnoSpecific
3 FullGasipSpecific
3 CuiFramework
Save Fom Ctrl+F £3 Prospecific

3 ReducedGasipSpecific

File Mame: |

Files of Type: |Portable Network Graphics (*.png) v|

Matlab Figure File (*.fig) -
Matlab Data File (*.mat)
Tiff Files (*.tif)
IPEC Image (*.jpa)
Formato Windows Bitmap (*.bmp)

W] 0
Extencecd Postscript (*.eps)
Fortable Pixmap (*.ppm) -

Seleccionar

Figura 11 - Meni y Dialogo para Guardar los Resultados

ige

An

Universidad
Zaragoza

Anexo B: Manuales de FACIL

1542

“ay

Anexo B: Manuales de FACIL

%as Universidad
ila Zaragoza
7

Manual del programador

=’ T e]
Institute of ‘ESeodesy and Navigation s U n IverSIdad
A0l Zaragoza

Institut fir Erdmessung und Navigation

1542

FACIL

Forget About Complicated Interface Layouts

Manual del Programador

Autor: Eduard Porta Martin-Moreno

Version: 1.0

Ultima Revision: 30 de Agosto de 2011

ige

An

Universidad
Zaragoza

Anexo B: Manuales de FACIL

1542

“ay

Universidad

ane

idi Zaragoza
Tabla de Contenido

1 Implementacion de una Aplicacion Basica.........ccccoriieiimiiiiiiiiinnnennesnesnenen 80

1.1 Definicion de las Variables de Entradacc.ccieimimiimimiieieimsimiessesessnssssnssssnsnssnsasnssnsnns 82

1.2 Descripcion de las Funciones de Calculoccciimiimiiiiniimesimn e ss s s ssssmssnnas 83

1.3 Las Interfaces con las Funciones de CaAlCUlo.........ccceveveieieirereireresesrernsresessssnssnrasnssnnnns 84

86

2 Funcionalidad AVaANZada......eeeeeereerresemsmmsmmsmmsmnsmssmssssssassassssssnsssssnssnnsnnsnnnnnnnnnns

Universidad
Zaragoza

Implementacion de una Aplicacion
Basica

Con FACIL es posible implementar una aplicacion completa con tan solo definir tres
elementos: las variables de entrada, la descripcion de las funciones de calculo y las

interfaces con las funciones de calculo.

. . L v - MATLAB
En primer lugar suponiendo que la aplicacibn vaya a D .
> 7 Facil
llamarse ‘MyApp’ crearemos una estructura de directorios v MyApp
. L . = i :
para nuestra nueva aplicacion como muestra la Figura 1. > 7 AuxiliaryFunctions
. _ _ _ . » > 7 DefinitionFiles
Otra opcion es copiar el directorio AppSpecific y la funcién > £ Foms

startApp.m incluidas en los ficheros de ejemplo de

- . . Figura 1 - Directorios Base
FACIL y modificar estos siguiendo esta guia.

Es necesaria una funcién que lance la aplicacion, para ello crearemos un archivo llamado

startMyApp.m con el siguiente contenido:

1 function [] = startMyApp()
2 $clean the working space of Matlab
3 matlabrc; clear all; clc; close all;
4 %5%5%%%%%5%5%5%5%5%5%%%%5%5%5%5%%5%5%%%5%555%5%5%5%5%%%5%555%5%55%%%5%5%5%5%5%53%%%55%5%5%5%55%%%5%5%55%5%5%55%%%5%
5 $Change this value to the application specific directory
6 appSpecificDir="MyApp"';
7 6/066666666666666666666666666666666666%6666666666666666666666666666666666666
8 %add Facil to the path variable
9 addpath (strcat (cd, [filesep 'Facil'l)):;
10 $start the graphical user interface

11 mainGui (appSpecificDir) ;

12 end

También es necesario crear un fichero con configuracion especifica de la aplicacién llamado
configureApplication.m en el directorio AuxiliaryFunctions de la carpeta de la aplicacién, con

el siguiente contenido:

Universidad

'anY
Y

Zaragoza Anexo B: Manuales de FACIL
1 function [sConfig] = configureApplication ()
2
3 % Extensién para proyectos de la aplicacién
4 sConfig.chInputVarsFileExtension = '*.app';
5
6 2 Descripcién para proyectos de la aplicacién
7 sConfig.chInputVarsFileDescription = 'Application Input File';
8
9 ¢ Titulo de la ventana de la aplicacién
10 sConfig.chApplicationTitle = 'My Application';
11
12 % pestanas del panel de entrada funcionan de modo exclusivo (exclusive) o efd
posible abrir mads de uno a la vez (multiple)
13 scConfig.TypeOfInputTabs = 'multiple’;
14
15 end

ias Universidad

Zaragoza

Las

variables de entrada deben ser definidas en un fichero Illamado

InputVarsDescription.txt dentro del directorio DefinitionFiles de la aplicacion.

A continuacion se descompone la sintaxis de dicho fichero:

1.

La cabecera: Se compone de la etiqueta Input Parameters, el nombre de la aplicacion,
una descripcién de ésta, una linea de longitud arbitraria de asteriscos y la declaracion

de la estructura base, la cual siempre debe aparecer:

16
17
18
19

Input Parameters: My Application [Descripcion de MyAppl

KA AR A AR AR A A A A AR AR A A A A A A AR A A A A A A AR AR A A A A AR AR A A A A AR AR AR AR A A AR AR AR A A AR AR Ak kK

sInputVars: Estructura con las variables de entrada

{

Una o mas declaraciones de estructuras conteniendo las variables de entrada. Se
declara entre corchetes el titulo que la pestana o panel generado por la estructura
tendrd en la interfaz. La estructura a su vez puede albergar mas estructuras y/o

definiciones de variables escalares.

20
21

22

sTest [Titulo para la Pestana]: Descripcidén de lo que contiene

{

Una o mas definiciones de variables escalares, especificando entre corchetes las
unidades de la variable, el tipo, el rango o contenido valido, configuraciones
especificas del GUl y La etiqueta a mostrar en la interfaz grafica. Ademas se usa el
comentario sobre la variable como comentario emergente o tooltip en la interfaz. Para
una especificacion completa de las distintas posibilidades puede consultarse la

documentacion de la funcién getiWidgetDefinitions.

23

chVariablel [unitless, string, any, , Variable Ejemplo]: Comentario Emergente

4.

La llave de cierre de la estructura base y otra linea de asteriscos de longitud arbitraria.

Universidad
Zaragoza

—
1542

La descripcion de las funciones de calculo se realiza en un fichero muy similar al anterior
lamado FomsDescription.txt que debe crearse también entro del directorio

DefinitionFiles de la aplicacion.
El fichero se descompone como sigue:

5. La cabecera: Se compone de la etiqueta ‘LIST OF FOMS’, el nombre de la aplicacion,

una descripcion de ésta y una linea de longitud arbitraria de asteriscos:

24 LIST OF FOMS: My Application [Descripcion de MyApp]

25 KA AR A AR AR A A A A AR AR A A A A A A AR A A A A A A AR AR A A A A AR AR A A A A AR AR AR AR A A AR AR AR A A AR AR Ak kK

6. Una o mas definiciones de funciones compuestas por los nombres corto y largo de la
misma, un entero especificando el nimero de opciones y, de ser distinto de cero,
declaraciones de parametros con el mismo formato que las variables escalares del

fichero anterior.

26 short Name of the Fom: 'TestFunction'
27 Complete Name: 'Test function for sample application'

28 options: 0

7. Otra linea de asteriscos de longitud arbitraria.

ane
.

Universidad
Zaragoza

—
1542

Con FACIL la interaccion con las funciones de calculo se realiza en dos pasos, el calculo
propiamente dicho y la representacion. Si hemos generado los ficheros anteriores
correctamente, al ejecutar nuestro startMyApp deberiamos tener una interfaz grafica
completa, con los widgets correspondientes a las variables que hemos definido en el panel

de entrada, y la lista de funciones de calculo en el panel de salida y menu calcular.

Calculo

Cuando tratemos de ejecutar una de las funciones de calculo, FACIL esperara encontrar en
algin subdirectorio de la carpeta MyApp (preferiblemente en Foms), una funcién denominada
get<NombreCorto>, donde <NombreCorto> designa el nombre corto definido para la
funcién en el punto anterior. En caso de no encontrar la funcién se buscara una llamada

getFoms, que de existir, deberia calcular todas las funciones de la aplicacion.

Tanto la funcién especifica como la general deberian aceptar como Gnico argumento de
entrada una estructura que responderia a la descrita en el fichero de descripcion de
variables de entrada. Como salida deben devolver un valor booleano indicando si la
operacion ha sido cancelada por el usuario o abortada por un error y una estructura, que en
caso de las funciones especificas contendra los datos calculados y en el caso de la funcién

general una estructura un nivel superior agrupando las anteriores.

Representacion

La representacion de una funcion de calculo se realizard cuando dicha funcién esté
seleccionada en el panel de salida y haya datos disponibles para la misma. Esto puede
suceder porque acabemos de calcularla o porque ya lo hicimos en un momento anterior y la

hemos vuelto a seleccionar en la lista desplegable.

Para este paso FACIL buscara una funcion con el nombre plot<NombreCorto>, que debe
aceptar como argumentos tres handles, correspondientes respectivamente a los ejes, campo
de texto y tabla del panel de salida, una estructura con los datos calculados previamente y

tantos argumentos adicionales como opciones se hayan especificado para la funcion.

Esta funcion sera la encargada de emplear estos handles para representar los datos,

teniendo en cuenta:

Universidad
Zaragoza

1. La funcién no deberia tratar de controlar el tamano y posicién de los elementos.

2. Los elementos no usados deberian ocultarse con
set (hElemento,’Visible’,’off’).

3. El objeto axes tiene dos propiedades adicionales. La propiedad PlotType acepta los
valores ‘normal’ y ‘earth’. La propiedad AspRatio controla la relacién de aspecto
de la grafica, y, de no fijarse, sera [1 1] para graficas normalesy [2 1] cuando
PlotType sea ‘earth’.

4. El uso del objeto uitable correspondiente al elemento tabla puede ser consultado en la

documentacion de MATLAB.

lllllll

Universidad
Zaragoza

Funcionalidad Avanzada

Gran parte de la funcionalidad avanzada de FACIL reside en el hecho de que es posible
implementar complementos para algunos tipos de widget, y lo que es mas importante, es

posible implementar nuestros propios widgets.

Para ello se empleara la herencia de objetos, partiendo habitualmente de las clases plugin y
widget o alguno de sus descendientes. Toda la documentacidon necesaria acerca de sus

propiedades, métodos y ejemplos de uso pueden ser consultados en el cédigo fuente de

FACIL.

ANEXO C

Detalles de Implementacion

Este anexo se compone de documentos que extienden o explican algunos detalles de

la implementacion de FACIL y las aplicaciones que se han desarrollado con el mismo.

C.1 — Estudio sobre el Uso de Variables y Constantes Globales

C.2 — Estudio sobre los Diferentes Sistemas de OOP en Matlab

Universidad
Zaragoza

A lo largo de la experiencia del autor como alumno de ingenieria siempre se le ha
desaconsejado el uso de variables globales por ser esta una de las peores fuentes de

acoplamiento y deteriorar la modularidad de la aplicacion.

Sin embargo para este proyecto resulté practicamente imposible evitar el uso de globales en
los casos en los que la propia naturaleza del problema lo requeria, como pueden ser las
constantes de calculo cientifico o el bus de comunicacion entre widgets. Para estos casos
se han evaluado las posibles alternativas e implementado aquellas menos perjudiciales o

mas eficientes.

Constantes

Principalmente, las constantes globales se han utilizado para disponer de constantes
cientificas usadas en los algoritmos de calculo. En primer lugar se elaboré una lista de

posibilidades:

> La alternativa actual, un fichero que define una variable global de tipo estructura. Las
constantes se almacenan en sus campos y pueden ser obtenidas haciendo visible la

variable global y accediendo a dichos campos.

» Elaborar un script que crea e inicializa todas las constantes, ejecutar dicho script al
inicio de cualquier funciébn que use estas constantes. Este sistema se consideré
inseguro por la posibilidad de introducir cédigo arbitrario en este archivo que pudiese

alterar la estabilidad de la aplicacion.

» Escribir una funcién para cada constante, de este modo son de solo lectura y, al ser
funciones, la introduccion de cédigo defectuoso solo afecta a la ejecucion de la
misma y el valor devuelto. Esta alternativa es usada por MATLAB, pero se descartd

por el excesivo coste debido al elevado nimero de constantes.

Tras el estudio se concluyo que era mejor no modificar el tratamiento de constantes
globales, pues el coste invertido seria mayor que el beneficio obtenido, debido a que no se

eliminaria ninguna dependencia o acoplamiento.

Universidad
Zaragoza

1542

Variables

La introduccion de FACIL hizo que se plantease esta cuestion que no habia surgido
anteriormente. Segln la documentacion de MATLAB un programa con variables globales
puede presentar problemas para generar un ejecutable o que dicho ejecutable funcione

correctamente.

El principal problema en este caso fue encontrar un modo de almacenar informacién
persistente (para el bus, los resultados de los calculos, algunos widgets), que no precisara
del uso de una variable global real. La solucién al problema consistié en usar los datos de
aplicacion. Los datos de aplicacion consisten en un mecanismo de MATLAB que permite
acceder a una Unica variable relacionada con la figura (ventana) actual, desde cualquiera de
sus objetos hijo. Dado que esta funcionalidad era necesaria para los widgets, siempre se
disponia de un handle apropiado, con lo que Unicamente fue necesario emplear dicha

variable como una estructura, almacenando cada dato en un campo diferente.

ane
.

Universidad
Zaragoza

—
1542

MATLAB, a diferencia de otros lenguajes de programacion no dispone de un framework
unificado para la programacion orientada a objetos. En la version del cliente, MATLAB 2007a
se documenta la implementacion de clases mediante funciones que utilizan en su cuerpo
una sentencia especial “class”. Sin embargo esta funcionalidad resulta insuficiente pues las

posibilidades de herencia y abstracciéon son altamente limitadas.

En principio en dicha versién del software no existe forma alguna de heredar a partir de
elementos uicontrol o uipanel. Tampoco es posible usar la sentencia classdef como en
versiones mas modernas en lugar de usar una funcién constructor. En resumen, MATLAB
dispone, a lo largo de sus versiones, de una coleccion de métodos de implementar
programacion orientada a objetos, pero todavia en las Ultimas versiones no parece haber un

estandar consensuado sobre la forma de hacerlo.

ANEXO D

Optimizacion del Calculo de la
Correlacion Cruzada de Codigos PRN

Este anexo recopila las diferentes versiones del bucle trabajado asi como los

D.1

D.2

D.3

D.4

resultados experimentales obtenidos

— Codigo del Bucle Original

— Cdbdigo Vectorizado

— Cobdigo Paralelizado

— Registro Detallado de Pruebas

a1s Universidad o) - -
il Zaragoza Anexo D: Optimizacion del Calculo de la Correlacion Cruzada de Codigos PRN

Codigo del Bucle Original

o

% Initialization of wvariables
vCorrelationMagnitudelLog = [-100 (-80:0.5:1)1];
vCorrelationMagnitudeNat = 0:1:dTotLength;
sCorrelationHistogramLog.mOdd =

zeros (dNumDesCodes*dNumIntCodes,

length (vCorrelationMagnitudeLog) , dTotNumCombinations) ;
sCorrelationHistogramNat.vOdd =

zeros (dTotNumCombinations, length (vCorrelationMagnitudeNat)) ;
count = 0;

o whRr

o U

[

7 % Cycle computing the cross-correlation histogram
8 for i=1:dNumDesCodes

9 vFftDesCode = fft (mDesiredCodeExt (i,:));

10 for j=1:dNumIntCodes

11 count = count + 1;

12 for n = 1l:dTotNumCombinations

13 vOddCorrelation = .
real (ifft (vFftDesCode .*
conj (fft (squeeze (mInterferingCodeExt (j, :,n)) .*
vDoppler))));

14 sCorrelationHistogramLog.mOdd (count, :,n) =

hist (20*1ogl0 (abs (vOddCorrelation) /
length (vOddCorrelation)),vCorrelationMagnitudelogq) ...
./ length (vOddCorrelation);

15 sCorrelationHistogramNat.vOdd (n, :)
sCorrelationHistogramNat.vOdd (n,:) +
hist (abs (vOddCorrelation),vCorrelationMagnitudeNat) ;

16 end
17 end
18 end

a1s Universidad
iaa Zaragoza

1542

Codigo Vectorizado

w»WwWh R

©OWooJdJoyWU

10

11

12

13

)

% Clear unused variables

clear sInputVars mDesiredCode mInterferingCode dNumBits dNumComb
mBitCombinations dNumRows vTempBitComb

vTempShiftedBitComb dIndex vIndex mTempFlips mTempInterferingCode
% This packs variables in contiguous space

save ('fjklgdfjidgofdjgqiofpgf9g40fug9fquf9gd4uf 90gFRDSGREGERS4") ;
clear;
load('fjklgd4fjidgofdjgiofpgqfo9qd40fugq9fqufogqduf90gFRDSGREGERS4 ") ;

delete('fjklg4fjidgqofdjqiofpgfo9q40fug9fquf9gqduf90gFRDSGREGERS4 .mat"') ;

)

% Compute the cross-correlation histogram (vectorized version)

mOddCorrelation = reshape (shiftdim(real (ifft (bsxfun (Qtimes,
shiftdim(fft (mDesiredCodeExt, [],2),-1),
reshape (conj (fft (bsxfun (Gtimes,
mInterferingCodeExt, vDoppler), []1,2)), .
dNumIntCodes,1l,dTotLength,dTotNumCombinations)), [1,3)),2),
dTotLength, [1);

sCorrelationHistogramLog.mOdd =
shiftdim(reshape(hist(.
20*10gl0 (abs (mOddCorrelation) ./dTotLength),
vCorrelationMagnitudelog),
[1,dTotNumCombinations, dNumIntCodes*dNumDesCodes), 2)
./ dTotLength;

sCorrelationHistogramNat.vOdd = sum(reshape (
hist (abs (mOddCorrelation),vCorrelationMagnitudeNat), ...
[],dTotNumCombinations,dNumIntCodes*dNumDesCodes),3)';

Anexo D: Optimizacion del Calculo de la Correlacion Cruzada de Codigos PRN

"y
%

At

i

Universidad

Zaragoza

Anexo D: Optimizacion del Calculo de la Correlacion Cruzada de Codigos PRN

1542

Codigo Paralelizado

w»WwWh R

©OWooJdJoyWU

14
15
16

17
18

19
20
21

22

23
24
25

26

27
28

29
30

31

32
33

34
35

)

% Clear unused variables

clear sInputVars mDesiredCode mInterferingCode dNumBits dNumComb
mBitCombinations dNumRows vTempBitComb

vTempShiftedBitComb dIndex vIndex mTempFlips mTempInterferingCode

% This packs variables in contiguous space

save ('fjklgdfjidgofdjgiofpgf9g40fug9fquf9g4uf 90gFRDSGREGERS4") ;
clear;
load('fjklgd4fjidgofdjgiofpgqfo9gd40fugq9fqufogduf90gFRDSGREGERS4 ") ;
delete('fjklg4fjidgqofdjqiofpgfo9q40fug9fquf9gqduf90gFRDSGREGERS4 .mat"') ;
% Get biggest array size and Max amount of data that fits into memory
dBiggestArray = dNumDesCodes* dNumIntCodes* dTotNumCombinations* dTotLength;
cTemp = 1 + 1i; dSize = whos('cTemp'); sMemory = memory; %#ok<NASGU>
dMaxSize = sMemory.MaxPossibleArrayBytes / (4 * dSize.bytes); %Enough

Calculate number of chunks to partition the computation into from

o° oo

the maximum size an array can be
if dBiggestArray > dMaxSize
dNumChunks = floor (dBiggestArray / dMaxSize) ;
else
dNumChunks = 1;
end
% if PCT is active make sure we have at least one chunk per worker
dNumWorkers = matlabpool ('size');
if dNumChunks < dNumWorkers
dNumChunks = dNumWorkers;
end

% Try to avoid remainder computation because it slows overall process,
% This will work properly unless dNumDescodes is a product of big primes
while mod (dNumDesCodes, dNumChunks)

dNumChunks = dNumChunks + 1;

end

)

% Final chunk size and remainder size
dChunkSize = floor (dNumDesCodes / dNumChunks) ;

)

% Memory allocation
mOdd = zeros (dNumIntCodes*dChunkSize, dNumChunks,
length (vCorrelationMagnitudelog) ,dTotNumCombinations) ;
vOdd = zeros (dTotNumCombinations, length (vCorrelationMagnitudeNat)) ;

)

% Reshape for the parfor

mDesiredCodeExtTemp = reshape (mDesiredCodeExt (1:dNumDesCodes,),
dChunkSize, dNumChunks, dTotLength) ;

Q

% Compute the cross-correlation histogram (vectorized version)
mInterferingCodeExtDoppler = reshape (conj (fft (bsxfun(@times,
mInterferingCodeExt, vDoppler), []1,2)),
dNumIntCodes,1l,dTotLength, dTotNumCombinations) ;

A/

Universidad
Zaragoza

36 $ Loop though all chunks, in parallel if possible
37 parfor il = 1:dNumChunks

38 mOddCorrelation = reshape (shiftdim(real (ifft (bsxfun (@times,
reshape (fft (mDesiredCodeExtTemp (:,1il,:),[],3),1,dChunkSize,
dTotLength), mInterferingCodeExtDoppler),[],3)),2),dTotLength, []);

39 modd (:,il,:,:) = shiftdim(reshape (
hist(20.*10gl0 (abs (mOddCorrelation) ./dTotLength),
vCorrelationMagnitudeLog), [],dTotNumCombinations,
dNumIntCodes*dChunkSize),2)
./ dTotLength;

40 vOodd = vOdd + sum(reshape (
hist (abs (mOddCorrelation),vCorrelationMagnitudeNat), ...
[1,dTotNumCombinations, dNumIntCodes*dChunkSize),3)"';

41 end

42 $ Save computed histograms to output structures

43 sCorrelationHistogramLog.mOdd = reshape (mOdd, dNumIntCodes *
(dNumDesCodes), length (vCorrelationMagnitudeLog),dTotNumCombinations) ;

44 sCorrelationHistogramNat.vodd = vodd;

sas Universidad
il Zaragoza

1542

Galileo E10S vs Codigo de prueba

Size of Desired Code: 100 * 4092 = 409200
Size of Interfering Code: 10 * 4092 = 40920
Number of operations: 16368000

Original function test: iteration 1
Test took 7.204349e+000 seconds

Original function test: iteration 2
Test took 7.116012e+000 seconds

Original function test: iteration 3
Test took 7.113576e+000 seconds

Original function test: iteration 4
Test took 7.120285e+000 seconds

Original function test: iteration 5
Test took 7.113468e+000 seconds

Original function test: iteration 6
Test took 7.104463e+000 seconds

Original function test: iteration 7
Test took 7.101905e+000 seconds

Original function test: iteration 8
Test took 7.112294e+000 seconds

Original function test: iteration 9
Test took 7.106759e+000 seconds

Original function test: iteration 10
Test took 7.113659e+000 seconds

Mean time for original function: 7.120677e+000
seconds

Vectorization test: iteration 1
Test took 6.074601e+000 seconds

Vectorization test: iteration 2
Test took 6.032805e+000 seconds

Vectorization test: iteration 3
Test took 6.018464e+000 seconds

Vectorization test: iteration 4
Test took 6.038645e+000 seconds

Vectorization test: iteration 5
Test took 6.061127e+000 seconds

Vectorization test: iteration 6
Test took 6.046472e+000 seconds

Vectorization test: iteration 7
Test took 6.021827e+000 seconds

Vectorization test: iteration 8
Test took 6.039734e+000 seconds

Vectorization test: iteration 9
Test took 6.023767e+000 seconds

Vectorization test: iteration 10
Test took 6.053223e+000 seconds

Mean time for vectorized function: 6.041067e+000

seconds

Paralelization test (1 workers): iteration 1
Test took 8.350339e+000 seconds

Paralelization test (1 workers): iteration 2
Test took 8.024923e+000 seconds

Paralelization test (1 workers): iteration 3
Test took 8.041908e+000 seconds

Paralelization test (1 workers): iteration 4
Test took 8.042631e+000 seconds

Paralelization test (1 workers): iteration 5
Test took 8.056062e+000 seconds

Paralelization test (1 workers): iteration 6

o

Universidad
Zaragoza

1542

Test took 8.037763e+000 seconds

Paralelization test (1 workers): iteration 7
Test took 8.061843e+000 seconds

Paralelization test (1 workers): iteration 8
Test took 8.050014e+000 seconds

Paralelization test (1 workers): iteration 9
Test took 8.053528e+000 seconds

Paralelization test (1 workers): iteration 10
Test took 8.044153e+000 seconds

Mean time for paralelized function (1 workers):
8.076316e+000 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 5.188011e+000 seconds

Paralelization test (2 workers): iteration 2
Test took 4.859721e+000 seconds

Paralelization test (2 workers): iteration 3
Test took 4.834535e+000 seconds

Paralelization test (2 workers): iteration 4
Test took 4.951344e+000 seconds

Paralelization test (2 workers): iteration 5
Test took 4.880815e+000 seconds

Paralelization test (2 workers): iteration 6
Test took 4.913995e+000 seconds

Paralelization test (2 workers): iteration 7
Test took 4.909172e+000 seconds

Paralelization test (2 workers): iteration 8
Test took 4.906089e+000 seconds

Paralelization test (2 workers): iteration 9
Test took 4.901155e+000 seconds

Paralelization test (2 workers): iteration 10
Test took 4.891437e+000 seconds

Mean time for paralelized function (2 workers):
4.923628e+000 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 5.115134e+000 seconds

Paralelization test (3 workers): iteration 2
Test took 4.727467e+000 seconds

Paralelization test (3 workers): iteration 3
Test took 4.753545e+000 seconds

Paralelization test (3 workers): iteration 4
Test took 4.616276e+000 seconds

Paralelization test (3 workers): iteration 5
Test took 4.875292e+000 seconds

Paralelization test (3 workers): iteration 6
Test took 4.580108e+000 seconds

Paralelization test (3 workers): iteration 7
Test took 4.899534e+000 seconds

Paralelization test (3 workers): iteration 8
Test took 4.681787e+000 seconds

Paralelization test (3 workers): iteration 9
Test took 4.560740e+000 seconds

Paralelization test (3 workers): iteration 10
Test took 4.598574e+000 seconds

Mean time for paralelized function (3 workers):
4.740846e+000 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local’ configuration ...
connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 4.014569e+000 seconds

Paralelization test (4 workers): iteration 2
Test took 3.534832e+000 seconds

o

Universidad
Zaragoza

1542

Paralelization test (4 workers): iteration 3
Test took 3.543032e+000 seconds

Paralelization test (4 workers): iteration 4
Test took 3.555466e+000 seconds

Paralelization test (4 workers): iteration 5
Test took 3.571426e+000 seconds

Paralelization test (4 workers): iteration 6
Test took 3.546217e+000 seconds

Paralelization test (4 workers): iteration 7
Test took 3.572331e+000 seconds

Paralelization test (4 workers): iteration 8
Test took 3.565209e+000 seconds

Paralelization test (4 workers): iteration 9
Test took 3.649263e+000 seconds

Paralelization test (4 workers): iteration 10
Test took 3.600512e+000 seconds

Mean time for paralelized function (4 workers):

3.615286e+000 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.
Paralelization test (6 workers): iteration 1
Test took 4.149970e+000 seconds

Paralelization test (6 workers): iteration 2
Test took 3.702282e+000 seconds

Paralelization test (6 workers): iteration 3
Test took 3.778356e+000 seconds

Paralelization test (6 workers): iteration 4
Test took 3.901571e+000 seconds

Paralelization test (6 workers): iteration 5
Test took 3.782397e+000 seconds

Paralelization test (6 workers): iteration 6
Test took 3.730523e+000 seconds

Paralelization test (6 workers): iteration 7

Test took 3.828897e+000 seconds

Paralelization test (6 workers): iteration 8
Test took 3.539646e+000 seconds

Paralelization test (6 workers): iteration 9
Test took 3.735222e+000 seconds

Paralelization test (6 workers): iteration 10
Test took 3.842354e+000 seconds

Mean time for paralelized function (6 workers):

3.799122e+000 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.
Paralelization test (8 workers): iteration 1
Test took 4.587747e+000 seconds

Paralelization test (8 workers): iteration 2
Test took 3.799349e+000 seconds

Paralelization test (8 workers): iteration 3
Test took 3.922482e+000 seconds

Paralelization test (8 workers): iteration 4
Test took 3.644648e+000 seconds

Paralelization test (8 workers): iteration 5
Test took 3.804318e+000 seconds

Paralelization test (8 workers): iteration 6
Test took 3.913598e+000 seconds

Paralelization test (8 workers): iteration 7
Test took 3.638799e+000 seconds

Paralelization test (8 workers): iteration 8
Test took 3.679321e+000 seconds

Paralelization test (8 workers): iteration 9
Test took 3.789654e+000 seconds

Paralelization test (8 workers): iteration 10
Test took 3.926501e+000 seconds

Mean time for paralelized function (8 workers):

3.870642e+000 seconds

Universidad
Zaragoza

1542

Galileo E10S vs Galileo E10S

Size of Desired Code: 100 * 4092 = 409200
Size of Interfering Code: 100 * 4092 = 409200
Number of operations: 163680000

Original function test: iteration 1
Test took 7.337345e+001 seconds

Original function test: iteration 2
Test took 7.317807e+001 seconds

Original function test: iteration 3
Test took 7.361047e+001 seconds

Original function test: iteration 4
Test took 7.337703e+001 seconds

Original function test: iteration 5
Test took 7.314042e+001 seconds

Original function test: iteration 6
Test took 7.359485e+001 seconds

Original function test: iteration 7
Test took 7.336724e+001 seconds

Original function test: iteration 8
Test took 7.313567e+001 seconds

Original function test: iteration 9
Test took 7.359770e+001 seconds

Original function test: iteration 10
Test took 7.338579e+001 seconds

Mean time for original function: 7.337607e+001
seconds

Vectorization test: iteration 1
Test took 5.824876e+001 seconds

Vectorization test: iteration 2
Test took 5.822643e+001 seconds

Vectorization test: iteration 3
Test took 5.836071e+001 seconds

Vectorization test: iteration 4
Test took 5.832150e+001 seconds

Vectorization test: iteration 5
Test took 5.829883e+001 seconds

Vectorization test: iteration 6
Test took 5.827940e+001 seconds

Vectorization test: iteration 7
Test took 5.836256e+001 seconds

Vectorization test: iteration 8
Test took 5.835939e+001 seconds

Vectorization test: iteration 9
Test took 5.827665e+001 seconds

Vectorization test: iteration 10
Test took 5.834078e+001 seconds

Mean time for vectorized function: 5.830750e+001

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.
Paralelization test (1 workers): iteration 1
Test took 7.788909e+001 seconds

Paralelization test (1 workers): iteration 2
Test took 7.739555e+001 seconds

Paralelization test (1 workers): iteration 3
Test took 7.750922e+001 seconds

Paralelization test (1 workers): iteration 4
Test took 7.755277e+001 seconds

Paralelization test (1 workers): iteration 5
Test took 7.749703e+001 seconds

Paralelization test (1 workers): iteration 6
Test took 7.751428e+001 seconds

Paralelization test (1 workers): iteration 7
Test took 7.752486e+001 seconds

Universidad
Zaragoza

Paralelization test (1 workers): iteration 8
Test took 7.752803e+001 seconds

Paralelization test (1 workers): iteration 9
Test took 7.758727e+001 seconds

Paralelization test (1 workers): iteration 10
Test took 7.757774e+001 seconds

Mean time for paralelized function (1 workers):

7.755758e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.
Paralelization test (2 workers): iteration 1
Test took 4.501418e+001 seconds

Paralelization test (2 workers): iteration 2
Test took 4.473560e+001 seconds

Paralelization test (2 workers): iteration 3
Test took 4.544476e+001 seconds

Paralelization test (2 workers): iteration 4
Test took 4.558927e+001 seconds

Paralelization test (2 workers): iteration 5
Test took 4.459673e+001 seconds

Paralelization test (2 workers): iteration 6
Test took 4.447794e+001 seconds

Paralelization test (2 workers): iteration 7
Test took 4.579807e+001 seconds

Paralelization test (2 workers): iteration 8
Test took 4.533772e+001 seconds

Paralelization test (2 workers): iteration 9
Test took 4.630345e+001 seconds

Paralelization test (2 workers): iteration 10
Test took 4.593055e+001 seconds

Mean time for paralelized function (2 workers):

4.532283e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 3.680194e+001 seconds

Paralelization test (3 workers): iteration 2
Test took 3.490535e+001 seconds

Paralelization test (3 workers): iteration 3
Test took 3.452238e+001 seconds

Paralelization test (3 workers): iteration 4
Test took 3.502171e+001 seconds

Paralelization test (3 workers): iteration 5
Test took 3.670276e+001 seconds

Paralelization test (3 workers): iteration 6
Test took 3.521943e+001 seconds

Paralelization test (3 workers): iteration 7
Test took 3.736271e+001 seconds

Paralelization test (3 workers): iteration 8
Test took 3.474632e+001 seconds

Paralelization test (3 workers): iteration 9
Test took 3.478934e+001 seconds

Paralelization test (3 workers): iteration 10
Test took 3.591892e+001 seconds

Mean time for paralelized function (3 workers):
3.559909e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 3.329196e+001 seconds

Paralelization test (4 workers): iteration 2
Test took 3.324737e+001 seconds

Paralelization test (4 workers): iteration 3
Test took 3.330796e+001 seconds

Paralelization test (4 workers): iteration 4

aas Universidad
Zaragoza

Test took 3.288827e+001 seconds

Paralelization test (4 workers): iteration 5
Test took 3.414778e+001 seconds

Paralelization test (4 workers): iteration 6
Test took 3.347865e+001 seconds

Paralelization test (4 workers): iteration 7
Test took 3.401685e+001 seconds

Paralelization test (4 workers): iteration 8
Test took 3.307125e+001 seconds

Paralelization test (4 workers): iteration 9
Test took 3.278782e+001 seconds

Paralelization test (4 workers): iteration 10
Test took 3.269050e+001 seconds

Mean time for paralelized function (4 workers):

3.329284e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.
Paralelization test (6 workers): iteration 1
Test took 3.321327e+001 seconds

Paralelization test (6 workers): iteration 2
Test took 3.307876e+001 seconds

Paralelization test (6 workers): iteration 3
Test took 3.263791e+001 seconds

Paralelization test (6 workers): iteration 4
Test took 3.320412e+001 seconds

Paralelization test (6 workers): iteration 5
Test took 3.380434e+001 seconds

Paralelization test (6 workers): iteration 6
Test took 3.318892e+001 seconds

Paralelization test (6 workers): iteration 7
Test took 3.244019e+001 seconds

Paralelization test (6 workers): iteration 8

Test took 3.356368e+001 seconds

Paralelization test (6 workers): iteration 9
Test took 3.346966e+001 seconds

Paralelization test (6 workers): iteration 10
Test took 3.354680e+001 seconds

Mean time for paralelized function (6 workers):
3.321477e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local’ configuration ...
connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 5.629993e+001 seconds

Paralelization test (8 workers): iteration 2
Test took 4.066622e+001 seconds

Paralelization test (8 workers): iteration 3
Test took 3.433007e+001 seconds

Paralelization test (8 workers): iteration 4
Test took 3.600077e+001 seconds

Paralelization test (8 workers): iteration 5
Test took 3.479797e+001 seconds

Paralelization test (8 workers): iteration 6
Test took 3.446430e+001 seconds

Paralelization test (8 workers): iteration 7
Test took 3.440415e+001 seconds

Paralelization test (8 workers): iteration 8
Test took 3.570771e+001 seconds

Paralelization test (8 workers): iteration 9
Test took 3.343650e+001 seconds

Paralelization test (8 workers): iteration 10
Test took 3.378412e+001 seconds

Mean time for paralelized function (8 workers):
3.738917e+001 seconds

sas Universidad
il Zaragoza

1542

Galileo E10S vs Galileo E5a |

>> Size of Desired Code: 100 * 4092 = 409200
Size of Interfering Code: 50 * 10232 = 511600
Number of operations: 204640000

Original function test: iteration 1
Test took 9.945295e+001 seconds

Original function test: iteration 2
Test took 1.000775e+002 seconds

Original function test: iteration 3
Test took 9.937495e+001 seconds

Original function test: iteration 4
Test took 9.936818e+001 seconds

Original function test: iteration 5
Test took 9.927409e+001 seconds

Original function test: iteration 6
Test took 1.000828e+002 seconds

Original function test: iteration 7
Test took 9.941552e+001 seconds

Original function test: iteration 8
Test took 9.939544e+001 seconds

Original function test: iteration 9
Test took 9.931905e+001 seconds

Original function test: iteration 10
Test took 1.000842e+002 seconds

Mean time for original function: 9.958446e+001
seconds

Vectorization test: iteration 1
Test took 9.192417e+001 seconds

Vectorization test: iteration 2
Test took 9.174146e+001 seconds

Vectorization test: iteration 3
Test took 9.195457e+001 seconds

Vectorization test: iteration 4
Test took 9.191531e+001 seconds

Vectorization test: iteration 5
Test took 9.181038e+001 seconds

Vectorization test: iteration 6
Test took 9.194220e+001 seconds

Vectorization test: iteration 7
Test took 9.184585e+001 seconds

Vectorization test: iteration 8
Test took 9.189747e+001 seconds

Vectorization test: iteration 9
Test took 9.173335e+001 seconds

Vectorization test: iteration 10
Test took 9.183731e+001 seconds

Mean time for vectorized function: 9.186020e+001

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.
Paralelization test (1 workers): iteration 1
Test took 1.103470e+002 seconds

Paralelization test (1 workers): iteration 2
Test took 1.101855e+002 seconds

Paralelization test (1 workers): iteration 3
Test took 1.101071e+002 seconds

Paralelization test (1 workers): iteration 4
Test took 1.101545e+002 seconds

Paralelization test (1 workers): iteration 5
Test took 1.102035e+002 seconds

Paralelization test (1 workers): iteration 6
Test took 1.102073e+002 seconds

Paralelization test (1 workers): iteration 7
Test took 1.101820e+002 seconds

aas Universidad
Zaragoza

Paralelization test (1 workers): iteration 8
Test took 1.102654e+002 seconds

Paralelization test (1 workers): iteration 9
Test took 1.102012e+002 seconds

Paralelization test (1 workers): iteration 10
Test took 1.102005e+002 seconds

Mean time for paralelized function (1 workers):

1.102054e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.
Paralelization test (2 workers): iteration 1
Test took 6.444053e+001 seconds

Paralelization test (2 workers): iteration 2
Test took 6.435601e+001 seconds

Paralelization test (2 workers): iteration 3
Test took 6.317444e+001 seconds

Paralelization test (2 workers): iteration 4
Test took 6.375847e+001 seconds

Paralelization test (2 workers): iteration 5
Test took 6.341425e+001 seconds

Paralelization test (2 workers): iteration 6
Test took 6.422422e+001 seconds

Paralelization test (2 workers): iteration 7
Test took 6.300108e+001 seconds

Paralelization test (2 workers): iteration 8
Test took 6.285403e+001 seconds

Paralelization test (2 workers): iteration 9
Test took 6.287318e+001 seconds

Paralelization test (2 workers): iteration 10
Test took 6.337323e+001 seconds

Mean time for paralelized function (2 workers):

6.354694e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 5.062535e+001 seconds

Paralelization test (3 workers): iteration 2
Test took 5.198562e+001 seconds

Paralelization test (3 workers): iteration 3
Test took 5.068817e+001 seconds

Paralelization test (3 workers): iteration 4
Test took 5.088636e+001 seconds

Paralelization test (3 workers): iteration 5
Test took 5.120127e+001 seconds

Paralelization test (3 workers): iteration 6
Test took 5.079045e+001 seconds

Paralelization test (3 workers): iteration 7
Test took 4.889649e+001 seconds

Paralelization test (3 workers): iteration 8
Test took 4.867341e+001 seconds

Paralelization test (3 workers): iteration 9
Test took 5.159129e+001 seconds

Paralelization test (3 workers): iteration 10
Test took 5.162893e+001 seconds

Mean time for paralelized function (3 workers):
5.069673e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 4.783033e+001 seconds

Paralelization test (4 workers): iteration 2
Test took 4.779371e+001 seconds

Paralelization test (4 workers): iteration 3
Test took 4.773536e+001 seconds

Paralelization test (4 workers): iteration 4

Universidad
Zaragoza

Test took 4.709349e+001 seconds

Paralelization test (4 workers): iteration 5
Test took 4.690194e+001 seconds

Paralelization test (4 workers): iteration 6
Test took 4.715136e+001 seconds

Paralelization test (4 workers): iteration 7
Test took 4.725443e+001 seconds

Paralelization test (4 workers): iteration 8
Test took 4.745618e+001 seconds

Paralelization test (4 workers): iteration 9
Test took 4.611957e+001 seconds

Paralelization test (4 workers): iteration 10
Test took 4.610300e+001 seconds

Mean time for paralelized function (4 workers):

4.714394e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.
Paralelization test (6 workers): iteration 1
Test took 4.708668e+001 seconds

Paralelization test (6 workers): iteration 2
Test took 4.645192e+001 seconds

Paralelization test (6 workers): iteration 3
Test took 5.027155e+001 seconds

Paralelization test (6 workers): iteration 4
Test took 4.640104e+001 seconds

Paralelization test (6 workers): iteration 5
Test took 4.926839e+001 seconds

Paralelization test (6 workers): iteration 6
Test took 4.723789e+001 seconds

Paralelization test (6 workers): iteration 7
Test took 4.631054e+001 seconds

Paralelization test (6 workers): iteration 8
Test took 4.634271e+001 seconds

Paralelization test (6 workers): iteration 9
Test took 4.572396e+001 seconds

Paralelization test (6 workers): iteration 10
Test took 4.680543e+001 seconds

Mean time for paralelized function (6 workers):

4.719001e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.
Paralelization test (8 workers): iteration 1
Test took 8.949727e+001 seconds

Paralelization test (8 workers): iteration 2
Test took 5.240460e+001 seconds

Paralelization test (8 workers): iteration 3
Test took 4.770685e+001 seconds

Paralelization test (8 workers): iteration 4
Test took 7.082699e+001 seconds

Paralelization test (8 workers): iteration 5
Test took 5.840942e+001 seconds

Paralelization test (8 workers): iteration 6
Test took 4.702396e+001 seconds

Paralelization test (8 workers): iteration 7
Test took 4.943002e+001 seconds

Paralelization test (8 workers): iteration 8
Test took 4.728819e+001 seconds

Paralelization test (8 workers): iteration 9
Test took 8.109415e+001 seconds

Paralelization test (8 workers): iteration 10
Test took 6.297037e+001 seconds

Mean time for paralelized function (8 workers):

6.066518e+001 seconds

Universidad
Zaragoza

1542

Galileo E10S vs GPS L1C

Size of Desired Code: 100 * 4092 = 409200
Size of Interfering Code: 126 * 10230 = 1288980
Number of operations: 515592000

Original function test: iteration 1
Test took 2.287853e+002 seconds

Original function test: iteration 2
Test took 2.280156e+002 seconds

Original function test: iteration 3
Test took 2.299133e+002 seconds

Original function test: iteration 4
Test took 2.275880e+002 seconds

Original function test: iteration 5
Test took 2.278776e+002 seconds

Original function test: iteration 6
Test took 2.299542e+002 seconds

Original function test: iteration 7
Test took 2.264995e+002 seconds

Original function test: iteration 8
Test took 2.285086e+002 seconds

Original function test: iteration 9
Test took 2.278742e+002 seconds

Original function test: iteration 10
Test took 2.265526e+002 seconds

Mean time for original function: 2.281569e+002
seconds

Vectorization test: iteration 1
Test took 2.213902e+002 seconds

Vectorization test: iteration 2
Test took 2.224804e+002 seconds

Vectorization test: iteration 3
Test took 2.219157e+002 seconds

Vectorization test: iteration 4
Test took 2.215253e+002 seconds

Vectorization test: iteration 5
Test took 2.216899e+002 seconds

Vectorization test: iteration 6
Test took 2.217287e+002 seconds

Vectorization test: iteration 7
Test took 2.217840e+002 seconds

Vectorization test: iteration 8
Test took 2.215695e+002 seconds

Vectorization test: iteration 9
Test took 2.218146e+002 seconds

Vectorization test: iteration 10
Test took 2.215394e+002 seconds

Mean time for vectorized function: 2.217438e+002

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.
Paralelization test (1 workers): iteration 1
Test took 2.675471e+002 seconds

Paralelization test (1 workers): iteration 2
Test took 2.672191e+002 seconds

Paralelization test (1 workers): iteration 3
Test took 2.668871e+002 seconds

Paralelization test (1 workers): iteration 4
Test took 2.670801e+002 seconds

Paralelization test (1 workers): iteration 5
Test took 2.668658e+002 seconds

Paralelization test (1 workers): iteration 6
Test took 2.671958e+002 seconds

Paralelization test (1 workers): iteration 7
Test took 2.670605e+002 seconds

Universidad
Zaragoza

Paralelization test (1 workers): iteration 8
Test took 2.670635e+002 seconds

Paralelization test (1 workers): iteration 9
Test took 2.673304e+002 seconds

Paralelization test (1 workers): iteration 10
Test took 2.673593e+002 seconds

Mean time for paralelized function (1 workers):

2.671609e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local’ configuration ...

connected to 2 labs.
Paralelization test (2 workers): iteration 1
Test took 1.573133e+002 seconds

Paralelization test (2 workers): iteration 2
Test took 1.559092e+002 seconds

Paralelization test (2 workers): iteration 3
Test took 1.540356e+002 seconds

Paralelization test (2 workers): iteration 4
Test took 1.527646e+002 seconds

Paralelization test (2 workers): iteration 5
Test took 1.535915e+002 seconds

Paralelization test (2 workers): iteration 6
Test took 1.534741e+002 seconds

Paralelization test (2 workers): iteration 7
Test took 1.625441e+002 seconds

Paralelization test (2 workers): iteration 8
Test took 1.562429e+002 seconds

Paralelization test (2 workers): iteration 9
Test took 1.559047e+002 seconds

Paralelization test (2 workers): iteration 10
Test took 1.545841e+002 seconds

Mean time for paralelized function (2 workers):

1.556364e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 1.233047e+002 seconds

Paralelization test (3 workers): iteration 2
Test took 1.233821e+002 seconds

Paralelization test (3 workers): iteration 3
Test took 1.228636e+002 seconds

Paralelization test (3 workers): iteration 4
Test took 1.203328e+002 seconds

Paralelization test (3 workers): iteration 5
Test took 1.203512e+002 seconds

Paralelization test (3 workers): iteration 6
Test took 1.207012e+002 seconds

Paralelization test (3 workers): iteration 7
Test took 1.212253e+002 seconds

Paralelization test (3 workers): iteration 8
Test took 1.210576e+002 seconds

Paralelization test (3 workers): iteration 9
Test took 1.209943e+002 seconds

Paralelization test (3 workers): iteration 10
Test took 1.208156e+002 seconds

Mean time for paralelized function (3 workers):
1.215028e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 1.183733e+002 seconds

Paralelization test (4 workers): iteration 2
Test took 1.163429e+002 seconds

Paralelization test (4 workers): iteration 3
Test took 1.152734e+002 seconds

Paralelization test (4 workers): iteration 4

aas Universidad
Zaragoza

Test took 1.146903e+002 seconds

Paralelization test (4 workers): iteration 5
Test took 1.198839e+002 seconds

Paralelization test (4 workers): iteration 6
Test took 1.170180e+002 seconds

Paralelization test (4 workers): iteration 7
Test took 1.162003e+002 seconds

Paralelization test (4 workers): iteration 8
Test took 1.171831e+002 seconds

Paralelization test (4 workers): iteration 9
Test took 1.156322e+002 seconds

Paralelization test (4 workers): iteration 10
Test took 1.161668e+002 seconds

Mean time for paralelized function (4 workers):

1.166764e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.
Paralelization test (6 workers): iteration 1
Test took 1.390532e+002 seconds

Paralelization test (6 workers): iteration 2
Test took 1.283608e+002 seconds

Paralelization test (6 workers): iteration 3
Test took 1.188729e+002 seconds

Paralelization test (6 workers): iteration 4
Test took 1.183490e+002 seconds

Paralelization test (6 workers): iteration 5
Test took 1.196858e+002 seconds

Paralelization test (6 workers): iteration 6
Test took 1.197489e+002 seconds

Paralelization test (6 workers): iteration 7
Test took 1.180056e+002 seconds

Paralelization test (6 workers): iteration 8
Test took 1.185418e+002 seconds

Paralelization test (6 workers): iteration 9
Test took 1.172187e+002 seconds

Paralelization test (6 workers): iteration 10
Test took 1.189358e+002 seconds

Mean time for paralelized function (6 workers):
1.216772e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 1.774428e+002 seconds

Paralelization test (8 workers): iteration 2
Test took 2.689427e+002 seconds

Paralelization test (8 workers): iteration 3
Test took 1.739691e+002 seconds

Paralelization test (8 workers): iteration 4
Test took 2.794010e+002 seconds

Paralelization test (8 workers): iteration 5
Test took 2.403673e+002 seconds

Paralelization test (8 workers): iteration 6
Test took 1.349971e+002 seconds

Paralelization test (8 workers): iteration 7
Test took 2.210490e+002 seconds

Paralelization test (8 workers): iteration 8
Test took 3.013925e+002 seconds

Paralelization test (8 workers): iteration 9
Test took 2.500660e+002 seconds

Paralelization test (8 workers): iteration 10
Test took 1.736543e+002 seconds

Mean time for paralelized function (8 workers):
2.221282e+002 secondsSending a stop signal to
all the labs ... stopped.

sas Universidad
il Zaragoza

1542

Galileo E5a | vs Galileo E5a |

Size of Desired Code: 50 * 10232 = 511600
Size of Interfering Code: 50 * 10232 = 511600
Number of operations: 102320000

Original function test: iteration 1
Test took 5.181407e+001 seconds

Original function test: iteration 2
Test took 5.033496e+001 seconds

Original function test: iteration 3
Test took 5.028617e+001 seconds

Original function test: iteration 4
Test took 5.029432e+001 seconds

Original function test: iteration 5
Test took 5.028732e+001 seconds

Original function test: iteration 6
Test took 5.028755e+001 seconds

Original function test: iteration 7
Test took 5.049856e+001 seconds

Original function test: iteration 8
Test took 5.038577e+001 seconds

Original function test: iteration 9
Test took 5.036845e+001 seconds

Original function test: iteration 10
Test took 5.036897e+001 seconds

Mean time for original function: 5.049261e+001
seconds

Vectorization test: iteration 1
Test took 4.641750e+001 seconds

Vectorization test: iteration 2
Test took 4.654186e+001 seconds

Vectorization test: iteration 3
Test took 4.644476e+001 seconds

Vectorization test: iteration 4
Test took 4.646189e+001 seconds

Vectorization test: iteration 5
Test took 4.663313e+001 seconds

Vectorization test: iteration 6
Test took 4.650950e+001 seconds

Vectorization test: iteration 7
Test took 4.657960e+001 seconds

Vectorization test: iteration 8
Test took 4.652975e+001 seconds

Vectorization test: iteration 9
Test took 4.642395e+001 seconds

Vectorization test: iteration 10
Test took 4.659548e+001 seconds

Mean time for vectorized function: 4.651374e+001
seconds

Starting matlabpool using the 'local' configuration ...
connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 5.642238e+001 seconds

Paralelization test (1 workers): iteration 2
Test took 5.606958e+001 seconds

Paralelization test (1 workers): iteration 3
Test took 5.606929e+001 seconds

Paralelization test (1 workers): iteration 4
Test took 5.610106e+001 seconds

Paralelization test (1 workers): iteration 5
Test took 5.611729e+001 seconds

Paralelization test (1 workers): iteration 6
Test took 5.611052e+001 seconds

Paralelization test (1 workers): iteration 7
Test took 5.609363e+001 seconds

aas Universidad
Zaragoza

Paralelization test (1 workers): iteration 8
Test took 5.609663e+001 seconds

Paralelization test (1 workers): iteration 9
Test took 5.612877e+001 seconds

Paralelization test (1 workers): iteration 10
Test took 5.613337e+001 seconds

Mean time for paralelized function (1 workers):

5.613425e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.
Paralelization test (2 workers): iteration 1
Test took 3.439288e+001 seconds

Paralelization test (2 workers): iteration 2
Test took 3.391733e+001 seconds

Paralelization test (2 workers): iteration 3
Test took 3.332480e+001 seconds

Paralelization test (2 workers): iteration 4
Test took 3.377591e+001 seconds

Paralelization test (2 workers): iteration 5
Test took 3.363847e+001 seconds

Paralelization test (2 workers): iteration 6
Test took 3.407207e+001 seconds

Paralelization test (2 workers): iteration 7
Test took 3.383244e+001 seconds

Paralelization test (2 workers): iteration 8
Test took 3.310050e+001 seconds

Paralelization test (2 workers): iteration 9
Test took 3.362828e+001 seconds

Paralelization test (2 workers): iteration 10
Test took 3.392414e+001 seconds

Mean time for paralelized function (2 workers):

3.376068e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 2.880869e+001 seconds

Paralelization test (3 workers): iteration 2
Test took 2.843752e+001 seconds

Paralelization test (3 workers): iteration 3
Test took 2.814015e+001 seconds

Paralelization test (3 workers): iteration 4
Test took 2.823386e+001 seconds

Paralelization test (3 workers): iteration 5
Test took 2.875909e+001 seconds

Paralelization test (3 workers): iteration 6
Test took 2.874833e+001 seconds

Paralelization test (3 workers): iteration 7
Test took 2.844465e+001 seconds

Paralelization test (3 workers): iteration 8
Test took 2.800746e+001 seconds

Paralelization test (3 workers): iteration 9
Test took 2.830076e+001 seconds

Paralelization test (3 workers): iteration 10
Test took 2.835741e+001 seconds

Mean time for paralelized function (3 workers):
2.842379e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 2.553546e+001 seconds

Paralelization test (4 workers): iteration 2
Test took 2.558699e+001 seconds

Paralelization test (4 workers): iteration 3
Test took 2.686825e+001 seconds

Paralelization test (4 workers): iteration 4

o

Universidad
Zaragoza

1542

Test took 2.616707e+001 seconds

Paralelization test (4 workers): iteration 5
Test took 2.737150e+001 seconds

Paralelization test (4 workers): iteration 6
Test took 2.707540e+001 seconds

Paralelization test (4 workers): iteration 7
Test took 2.551317e+001 seconds

Paralelization test (4 workers): iteration 8
Test took 2.749703e+001 seconds

Paralelization test (4 workers): iteration 9
Test took 2.626759e+001 seconds

Paralelization test (4 workers): iteration 10
Test took 2.543616e+001 seconds

Mean time for paralelized function (4 workers):

2.633186e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.
Paralelization test (6 workers): iteration 1
Test took 2.689319e+001 seconds

Paralelization test (6 workers): iteration 2
Test took 2.633820e+001 seconds

Paralelization test (6 workers): iteration 3
Test took 2.739175e+001 seconds

Paralelization test (6 workers): iteration 4
Test took 2.643628e+001 seconds

Paralelization test (6 workers): iteration 5
Test took 2.730447e+001 seconds

Paralelization test (6 workers): iteration 6
Test took 2.723840e+001 seconds

Paralelization test (6 workers): iteration 7
Test took 2.582240e+001 seconds

Paralelization test (6 workers): iteration 8
Test took 2.677658e+001 seconds

Paralelization test (6 workers): iteration 9
Test took 2.700600e+001 seconds

Paralelization test (6 workers): iteration 10
Test took 2.512888e+001 seconds

Mean time for paralelized function (6 workers):
2.663361e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 8.331908e+001 seconds

Paralelization test (8 workers): iteration 2
Test took 3.430029e+001 seconds

Paralelization test (8 workers): iteration 3
Test took 3.000163e+001 seconds

Paralelization test (8 workers): iteration 4
Test took 3.057931e+001 seconds

Paralelization test (8 workers): iteration 5
Test took 2.996362e+001 seconds

Paralelization test (8 workers): iteration 6
Test took 2.863304e+001 seconds

Paralelization test (8 workers): iteration 7
Test took 2.643518e+001 seconds

Paralelization test (8 workers): iteration 8
Test took 2.878104e+001 seconds

Paralelization test (8 workers): iteration 9
Test took 2.937917e+001 seconds

Paralelization test (8 workers): iteration 10
Test took 2.645141e+001 seconds

Mean time for paralelized function (8 workers):
3.478438e+001 secondsSending a stop signal to
all the labs ... stopped.

Universidad
Zaragoza

1542

Galileo E5a | vs GPS L1C

Size of Desired Code: 50 * 10232 = 511600
Size of Interfering Code: 126 * 10230 = 1288980
Number of operations: 386694000

Original function test: iteration 1
Test took 1.743246e+002 seconds

Original function test: iteration 2
Test took 1.720125e+002 seconds

Original function test: iteration 3
Test took 1.716207e+002 seconds

Original function test: iteration 4
Test took 1.714756e+002 seconds

Original function test: iteration 5
Test took 1.716048e+002 seconds

Original function test: iteration 6
Test took 1.717638e+002 seconds

Original function test: iteration 7
Test took 1.717011e+002 seconds

Original function test: iteration 8
Test took 1.716649e+002 seconds

Original function test: iteration 9
Test took 1.724741e+002 seconds

Original function test: iteration 10
Test took 1.718331e+002 seconds

Mean time for original function: 1.720475e+002
seconds

Vectorization test: iteration 1
Test took 1.699758e+002 seconds

Vectorization test: iteration 2
Test took 1.698246e+002 seconds

Vectorization test: iteration 3
Test took 1.709799e+002 seconds

Vectorization test: iteration 4
Test took 1.721551e+002 seconds

Vectorization test: iteration 5
Test took 1.702890e+002 seconds

Vectorization test: iteration 6
Test took 1.707572e+002 seconds

Vectorization test: iteration 7
Test took 1.702272e+002 seconds

Vectorization test: iteration 8
Test took 1.704596e+002 seconds

Vectorization test: iteration 9
Test took 1.705003e+002 seconds

Vectorization test: iteration 10
Test took 1.704313e+002 seconds

Mean time for vectorized function: 1.705600e+002

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.
Paralelization test (1 workers): iteration 1
Test took 2.051717e+002 seconds

Paralelization test (1 workers): iteration 2
Test took 2.069255e+002 seconds

Paralelization test (1 workers): iteration 3
Test took 2.068237e+002 seconds

Paralelization test (1 workers): iteration 4
Test took 2.065896e+002 seconds

Paralelization test (1 workers): iteration 5
Test took 2.071652e+002 seconds

Paralelization test (1 workers): iteration 6
Test took 2.068305e+002 seconds

Paralelization test (1 workers): iteration 7
Test took 2.070528e+002 seconds

Universidad
Zaragoza

Paralelization test (1 workers): iteration 8
Test took 2.069012e+002 seconds

Paralelization test (1 workers): iteration 9
Test took 2.067473e+002 seconds

Paralelization test (1 workers): iteration 10
Test took 2.068076e+002 seconds

Mean time for paralelized function (1 workers):

2.067015e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local’ configuration ...

connected to 2 labs.
Paralelization test (2 workers): iteration 1
Test took 1.209077e+002 seconds

Paralelization test (2 workers): iteration 2
Test took 1.205673e+002 seconds

Paralelization test (2 workers): iteration 3
Test took 1.187218e+002 seconds

Paralelization test (2 workers): iteration 4
Test took 1.224316e+002 seconds

Paralelization test (2 workers): iteration 5
Test took 1.216477e+002 seconds

Paralelization test (2 workers): iteration 6
Test took 1.166889e+002 seconds

Paralelization test (2 workers): iteration 7
Test took 1.172392e+002 seconds

Paralelization test (2 workers): iteration 8
Test took 1.163622e+002 seconds

Paralelization test (2 workers): iteration 9
Test took 1.178131e+002 seconds

Paralelization test (2 workers): iteration 10
Test took 1.176245e+002 seconds

Mean time for paralelized function (2 workers):

1.190004e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 9.529279e+001 seconds

Paralelization test (3 workers): iteration 2
Test took 9.675169e+001 seconds

Paralelization test (3 workers): iteration 3
Test took 9.530056e+001 seconds

Paralelization test (3 workers): iteration 4
Test took 9.716705e+001 seconds

Paralelization test (3 workers): iteration 5
Test took 9.776782e+001 seconds

Paralelization test (3 workers): iteration 6
Test took 9.534260e+001 seconds

Paralelization test (3 workers): iteration 7
Test took 9.533364e+001 seconds

Paralelization test (3 workers): iteration 8
Test took 9.590262e+001 seconds

Paralelization test (3 workers): iteration 9
Test took 9.483588e+001 seconds

Paralelization test (3 workers): iteration 10
Test took 9.652747e+001 seconds

Mean time for paralelized function (3 workers):
9.602221e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 9.178305e+001 seconds

Paralelization test (4 workers): iteration 2
Test took 9.230038e+001 seconds

Paralelization test (4 workers): iteration 3
Test took 9.290222e+001 seconds

Paralelization test (4 workers): iteration 4

aas Universidad
Zaragoza

Test took 8.885372e+001 seconds

Paralelization test (4 workers): iteration 5
Test took 9.019942e+001 seconds

Paralelization test (4 workers): iteration 6
Test took 9.186076e+001 seconds

Paralelization test (4 workers): iteration 7
Test took 9.077629e+001 seconds

Paralelization test (4 workers): iteration 8
Test took 9.153314e+001 seconds

Paralelization test (4 workers): iteration 9
Test took 9.027877e+001 seconds

Paralelization test (4 workers): iteration 10
Test took 9.210942e+001 seconds

Mean time for paralelized function (4 workers):

9.125972e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.
Paralelization test (6 workers): iteration 1
Test took 9.650475e+001 seconds

Paralelization test (6 workers): iteration 2
Test took 1.308240e+002 seconds

Paralelization test (6 workers): iteration 3
Test took 9.437661e+001 seconds

Paralelization test (6 workers): iteration 4
Test took 9.143342e+001 seconds

Paralelization test (6 workers): iteration 5
Test took 9.214043e+001 seconds

Paralelization test (6 workers): iteration 6
Test took 9.049071e+001 seconds

Paralelization test (6 workers): iteration 7
Test took 9.147385e+001 seconds

Paralelization test (6 workers): iteration 8
Test took 9.066120e+001 seconds

Paralelization test (6 workers): iteration 9
Test took 9.141388e+001 seconds

Paralelization test (6 workers): iteration 10
Test took 8.976024e+001 seconds

Mean time for paralelized function (6 workers):
9.590791e+001 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 1.461562e+002 seconds

Paralelization test (8 workers): iteration 2
Test took 1.491652e+002 seconds

Paralelization test (8 workers): iteration 3
Test took 1.767950e+002 seconds

Paralelization test (8 workers): iteration 4
Test took 1.142838e+002 seconds

Paralelization test (8 workers): iteration 5
Test took 1.681327e+002 seconds

Paralelization test (8 workers): iteration 6
Test took 1.479509e+002 seconds

Paralelization test (8 workers): iteration 7
Test took 1.147910e+002 seconds

Paralelization test (8 workers): iteration 8
Test took 1.750491e+002 seconds

Paralelization test (8 workers): iteration 9
Test took 2.422198e+002 seconds

Paralelization test (8 workers): iteration 10
Test took 1.733375e+002 seconds

Mean time for paralelized function (8 workers):
1.607881e+002 seconds

>> Sending a stop signal to all the labs ... stopped.

Universidad
Zaragoza

1542

GPS L1C vs GPS L1C

Size of Desired Code: 126 * 10230 = 1288980
Size of Interfering Code: 126 * 10230 = 1288980
Number of operations: 649645920

Original function test: iteration 1
Test took 2.875912e+002 seconds

Original function test: iteration 2
Test took 2.873912e+002 seconds

Original function test: iteration 3
Test took 2.888755e+002 seconds

Original function test: iteration 4
Test took 2.870722e+002 seconds

Original function test: iteration 5
Test took 2.874815e+002 seconds

Original function test: iteration 6
Test took 2.876207e+002 seconds

Original function test: iteration 7
Test took 2.865208e+002 seconds

Original function test: iteration 8
Test took 2.874344e+002 seconds

Original function test: iteration 9
Test took 2.888326e+002 seconds

Original function test: iteration 10
Test took 2.872084e+002 seconds

Mean time for original function: 2.876028e+002
seconds

Vectorization test: iteration 1
Test took 2.794826e+002 seconds

Vectorization test: iteration 2
Test took 2.793366e+002 seconds

Vectorization test: iteration 3
Test took 2.793242e+002 seconds

Vectorization test: iteration 4
Test took 2.792545e+002 seconds

Vectorization test: iteration 5
Test took 2.797900e+002 seconds

Vectorization test: iteration 6
Test took 2.799262e+002 seconds

Vectorization test: iteration 7
Test took 2.796397e+002 seconds

Vectorization test: iteration 8
Test took 2.795021e+002 seconds

Vectorization test: iteration 9
Test took 2.793599e+002 seconds

Vectorization test: iteration 10
Test took 2.792613e+002 seconds

Mean time for vectorized function: 2.794877e+002
seconds

Starting matlabpool using the 'local' configuration ...
connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 3.361030e+002 seconds

Paralelization test (1 workers): iteration 2
Test took 3.367494e+002 seconds

Paralelization test (1 workers): iteration 3
Test took 3.367094e+002 seconds

Paralelization test (1 workers): iteration 4
Test took 3.366485e+002 seconds

Paralelization test (1 workers): iteration 5
Test took 3.369333e+002 seconds

Paralelization test (1 workers): iteration 6
Test took 3.366385e+002 seconds

Paralelization test (1 workers): iteration 7
Test took 3.366464e+002 seconds

aas Universidad
Zaragoza

Paralelization test (1 workers): iteration 8
Test took 3.364871e+002 seconds

Paralelization test (1 workers): iteration 9
Test took 3.364841e+002 seconds

Paralelization test (1 workers): iteration 10
Test took 3.365270e+002 seconds

Mean time for paralelized function (1 workers):

3.365927e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.
Paralelization test (2 workers): iteration 1
Test took 1.965989e+002 seconds

Paralelization test (2 workers): iteration 2
Test took 1.978874e+002 seconds

Paralelization test (2 workers): iteration 3
Test took 1.969736e+002 seconds

Paralelization test (2 workers): iteration 4
Test took 1.941810e+002 seconds

Paralelization test (2 workers): iteration 5
Test took 2.034588e+002 seconds

Paralelization test (2 workers): iteration 6
Test took 1.964041e+002 seconds

Paralelization test (2 workers): iteration 7
Test took 1.942174e+002 seconds

Paralelization test (2 workers): iteration 8
Test took 1.940118e+002 seconds

Paralelization test (2 workers): iteration 9
Test took 1.959643e+002 seconds

Paralelization test (2 workers): iteration 10
Test took 1.948945e+002 seconds

Mean time for paralelized function (2 workers):

1.964592e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 1.535526e+002 seconds

Paralelization test (3 workers): iteration 2
Test took 1.532379e+002 seconds

Paralelization test (3 workers): iteration 3
Test took 1.527538e+002 seconds

Paralelization test (3 workers): iteration 4
Test took 1.544432e+002 seconds

Paralelization test (3 workers): iteration 5
Test took 1.521218e+002 seconds

Paralelization test (3 workers): iteration 6
Test took 1.535084e+002 seconds

Paralelization test (3 workers): iteration 7
Test took 1.539611e+002 seconds

Paralelization test (3 workers): iteration 8
Test took 1.523736e+002 seconds

Paralelization test (3 workers): iteration 9
Test took 1.532851e+002 seconds

Paralelization test (3 workers): iteration 10
Test took 1.580339e+002 seconds

Mean time for paralelized function (3 workers):
1.537271e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 1.444728e+002 seconds

Paralelization test (4 workers): iteration 2
Test took 1.471491e+002 seconds

Paralelization test (4 workers): iteration 3
Test took 1.442544e+002 seconds

Paralelization test (4 workers): iteration 4

Universidad
Zaragoza

Test took 1.438231e+002 seconds

Paralelization test (4 workers): iteration 5
Test took 1.448373e+002 seconds

Paralelization test (4 workers): iteration 6
Test took 1.443854e+002 seconds

Paralelization test (4 workers): iteration 7
Test took 1.440917e+002 seconds

Paralelization test (4 workers): iteration 8
Test took 1.462611e+002 seconds

Paralelization test (4 workers): iteration 9
Test took 1.442672e+002 seconds

Paralelization test (4 workers): iteration 10
Test took 1.439537e+002 seconds

Mean time for paralelized function (4 workers):

1.447496e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.
Paralelization test (6 workers): iteration 1
Test took 1.486149e+002 seconds

Paralelization test (6 workers): iteration 2
Test took 1.548810e+002 seconds

Paralelization test (6 workers): iteration 3
Test took 1.478249e+002 seconds

Paralelization test (6 workers): iteration 4
Test took 1.442996e+002 seconds

Paralelization test (6 workers): iteration 5
Test took 1.463060e+002 seconds

Paralelization test (6 workers): iteration 6
Test took 1.443569e+002 seconds

Paralelization test (6 workers): iteration 7
Test took 1.437713e+002 seconds

Paralelization test (6 workers): iteration 8
Test took 1.442409e+002 seconds

Paralelization test (6 workers): iteration 9
Test took 1.470929e+002 seconds

Paralelization test (6 workers): iteration 10
Test took 1.444710e+002 seconds

Mean time for paralelized function (6 workers):

1.465859e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.
Paralelization test (8 workers): iteration 1
Test took 1.936859e+002 seconds

Paralelization test (8 workers): iteration 2
Test took 2.675851e+002 seconds

Paralelization test (8 workers): iteration 3
Test took 2.699862e+002 seconds

Paralelization test (8 workers): iteration 4
Test took 3.678074e+002 seconds

Paralelization test (8 workers): iteration 5
Test took 2.543949e+002 seconds

Paralelization test (8 workers): iteration 6
Test took 2.659066e+002 seconds

Paralelization test (8 workers): iteration 7
Test took 2.379135e+002 seconds

Paralelization test (8 workers): iteration 8
Test took 2.636676e+002 seconds

Paralelization test (8 workers): iteration 9
Test took 2.913445e+002 seconds

Paralelization test (8 workers): iteration 10
Test took 2.359072e+002 seconds

Mean time for paralelized function (8 workers):

2.648199e+002 seconds

Universidad
Zaragoza

1542

GPS L1C vs Galileo E10S

Size of Desired Code: 126 * 10230 = 1288980
Size of Interfering Code: 100 * 4092 = 409200
Number of operations: 824947200

Original function test: iteration 1
Test took 3.670512e+002 seconds

Vectorization test: iteration 1
Test took 3.429448e+002 seconds

Mean time for vectorized function: 3.429448e+002
seconds

Starting matlabpool using the 'local' configuration ...
connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 4.152047e+002 seconds

Mean time for paralelized function (1 workers):
4.152047e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 2.386202e+002 seconds

Mean time for paralelized function (2 workers):
2.386202e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 1.886200e+002 seconds

Mean time for paralelized function (3 workers):
1.886200e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 1.755502e+002 seconds

Mean time for paralelized function (4 workers):
1.755502e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 6 labs.

Paralelization test (6 workers): iteration 1

Test took 1.768018e+002 seconds

Mean time for paralelized function (6 workers):
1.768018e+002 seconds

Sending a stop signal to all the labs ... stopped.
Starting matlabpool using the 'local' configuration ...
connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 3.252544e+002 seconds

Mean time for paralelized function (8 workers):
3.252544e+002 seconds

>>

ige

An

Universidad
Zaragoza

Anexo D: Optimizacion del Calculo de la Correlacion Cruzada de Codigos PRN

1542

"y

ANEXO E

Glosario

A continuacién se definen y explican algunos términos con los que el lector puede no

estar familiarizado con el objetivo de facilitar la comprension de esta memoria

CAJA BLANCA

Elemento estudiado desde el punto de vista de su mecanica interna, al contrario que la
perspectiva de caja negra, esta se centra en observar como el modelo hace las cosas en

lugar de qué es lo que hace.

CAJA NEGRA

Elemento estudiado desde el punto de vista de las entradas que recibe y las salidas o
respuestas que produce, sin la obligacion de conocer su funcionamiento interno. Lo
importante de una caja negra es lo bien definidas que estén sus entradas y salidas, es decir,

su interfaz, no el cémo funciona.

CONTROL

Un control es un objeto que reside en un panel accesible para el usuario y que permite

visualizar informacioén

Los controles en este proyecto, son aquellos generados mediante las sentencias
uicontrol 0 javacomponent € integrados en el propio MATLAB o la biblioteca Swing de

Java.

YU

Universidad
Zaragoza

—
1542

EXPRESION REGULAR

Expresion que describe un conjunto de cadenas sin enumerar sus elementos. Una expresion
regular es una forma de representar a los lenguajes regulares (finitos o infinitos) y se
construye utilizando caracteres del alfabeto sobre el cual se define el lenguaje. Sirven para

buscar un texto dentro de otro de una forma sofisticada.

EXTREME PROGRAMMING

Es un enfoque de la ingenieria de software formulado por Kent Beck, autor del primer libro

sobre la materia, Extreme Programming Explained: Embrace Change (1999).

La programacion extrema se diferencia de las metodologias tradicionales principalmente en
que pone mas énfasis en la adaptabilidad que en la previsibilidad considerarandose como la
adopcion de las mejores metodologias de desarrollo de acuerdo a lo que se pretende llevar a

cabo con el proyecto, y aplicarlo de manera dindmica durante el ciclo de vida del software.

La simplicidad y la comunicacién son extraordinariamente complementarias. Con mas
comunicacion resulta mas facil identificar qué se debe y qué no se debe hacer. Cuanto mas
simple es el sistema, menos tendrd que comunicar sobre éste, lo que lleva a una
comunicaciobn mas completa, especialmente si se puede reducir el equipo de

programadores.

FIGURA DE MERITO

Cantidad utilizada para caracterizar el desempeno de un dispositivo, sistema o método, en
comparacion con sus alternativas. En ingenieria, figuras de mérito se definen a
menudo para determinados materiales o dispositivos con el fin de determinar su utilidad

relativa para una aplicacion.

FRAMEWORK

Estructura conceptual y tecnolégica de soporte que permite que otro proyecto
de software pueda ser organizado y desarrollado. Puede incluir ~ soporte
de programas, bibliotecas y un lenguaje interpretado entre otros programas para ayudar a

desarrollar y unir los diferentes componentes de un proyecto.

sas Universidad
il Zaragoza

1542

HANDLE

Un tipo particular de punteros "inteligentes". Los handles son utilizados cuando
un programa hace referencia a bloques de memoria u objetos controlados por otros

sistemas, tales como una base de datos o un sistema operativo.

LEY DE AMDAHL

Indica la mejora de rendimiento que se puede esperar incrementando los elementos de
procesamiento. La ley de Amdahl acota de una forma muy sencilla el incremento de
prestaciones sostenido en un sistema como consecuencia de la mejora de una o varias

partes del mismo.

Esta mejora representada como una mejora del rendimiento, va a depender tanto de la
calidad de las mejoras efectuadas como del tiempo que éstas utilicen. De forma abreviada
podemos decir que este incremento de prestaciones dara la medida de cémo un equipo

rinde en relacién con un rendimiento previo después de efectuar en él una o varias mejoras.

PSEUDO-RANDOM NOISE

Es una senal similar al ruido que satisface una o mas de las pruebas estandar de
aleatoriedad estadistica. A pesar de no presentar un patréon definido a priori, el pseudo-
random noise consiste en una secuencia determinada de pulsos, repetida durante n

periodos.

SCRUM

Scrum es un modelo de referencia, un marco de trabajo para la gestion y desarrollo de
software basada en un proceso iterativo e incremental, que puede tomarse como punto de
partida para definir el proceso de desarrollo que se ejecutara durante un proyecto,

comidnmente en entornos basados en el desarrollo agil de software.

Scrum permite la creaciéon de equipos autoorganizados impulsando la co-localizacién de
todos los miembros del equipo, y la comunicacion verbal entre todos los miembros y

disciplinas involucrados en el proyecto.

Adopta una aproximacién pragmatica, aceptando que el problema no puede ser
completamente entendido o definido, y centrandose en maximizar la capacidad del equipo de

entregar rapidamente y responder a requisitos emergentes.

sas Universidad
il Zaragoza

1542

SIGNALS Y SLOTS

Es parte del lenguaje de programacion introducido en Qt, lo que facilita su implementacién

con el patrén Observer, evitando asi el codigo repetitivo.

El concepto fundamental es que los widgets tienen la capacidad de enviar senales que
contengan informacion sobre el evento, la cual es recibida por otros controles de uso de

funciones especiales denominados slots.

El sistema signal/slot encaja perfectamente con el diseno de las interfaces graficas para

usuarios, asf como para su aplicaciéon en E/S asincronas.

No es necesario generar codigos de registros ya que MetaQt es un objeto perteneciente al

compilador MOC, quien genera automaticamente la infraestructura necesaria.

VECTORIZACION

En programacion, se trata de una técnica mediante la cual se transforman bucles iterativos

en operaciones matriciales.

