

59

ANEXO A

Objetivos

En este anexo se presentan de forma completa los requisitos y objetivos

establecidos para el autor en el proyecto FCAT

A.1 – Propuesta de Prácticas

A.2 – Lista de Objetivos

60

Anexo A: Objetivos¡Error! No se encuentra el origen de la

referencia.

Propuesta de Prácticas

El documento que puede leerse en este apartado contiene de forma íntegra y sin

modificaciones la propuesta realizada por el IGN para el puesto de prácticas desempeñado

el autor durante la realización del presente proyecto final de carrera.

Diploma Thesis: Development of Signal Compatibility Tool

The aim of the thesis will be to write a small high-quality Matlab-based software application with uses
of best practices of sustainable software development. Within the framework of the work the student
will concentrate on the UML-described design securing modularity, well-defined internal structure and
interfaces that combine the specific scripts developed by team of specialists into the final application.
A GUI should be designed and implemented according to users' needs. The test plan should be
included and performed to secure quality of the final product.

Requirements:

 Studies of computer science or telecommunications.

 Basic experience with Matlab.

 Basic knowledge in physics of signals and electromagnetic waves.

 Very good knowledge of C++, Java, Matlab or other higher languages.

 Knowledge of software design and engineering.

 Fluent English knowledge in speech and writing.

 Team and communication skills.

 Individual initiative.

Detailed Contents:

The target of the thesis to develop a Matlab based software tool able to compute all the relevant

parameters which are necessary to perform the radio-frequency compatibility analysis between global

navigation satellite systems (GNSS) in all the current and potential future frequency bands. In

particular the compatibility metrics (CM) that the tool should analyze are:

 Link budget for the maximum and minimum received power levels

 Effective carrier-to-noise density ratio

 Carrier-to-noise density degradation

 Inter-system spreading codes cross-correlation characteristics

The first part will be the specification and analysis of the tool as well as the preliminary design of the

graphical user interface. The rules to be followed during the software development by all participants

of the project should be defined in details.

The second part will be implementation of the core of the tool and integration of the specific scripts

developed by other members of the project team. The code should be clearly structured in

independent modules connected through well-defined interfaces. In this way subsequent

modifications and updates of the code should be supported.

The module of user interface part should comprise all functionalities: graphical user interface, loading

and saving of input files and plotting and saving of results. A general template for the modules for the

compatibility metrics should be designed. The other members of the team will then implement each

http://ifen/index.htm

61

Anexo A: Objetivos

¡Error! No se encuentra el origen de la referencia.

metrics compliant to this template. These metrics modules should communicate with the user

interface module through a set of strictly defined functions implementing computation, plotting into

GUI and saving of the CM to an output file. Also the CM modules will communicate with each other

over given interface functions. A separated module will be formed by auxiliary functions available

without limitation in any part of the tool.

The GUI of the tool will be based on so called scenario projects. A project is one complete input

setting that can be created, saved and reopen for each simulated scenario. Several template projects

will be provided for typical cases according to needs of EC.

The GUI main window will clearly structured into input and output part and will avail direct comparison

of computed results with respective input. The input part will contain all input variables sorted into

panels according to context. The widget of individual variables will offer tooltips with short description

of the meaning, units and range of the variable.

The third part of the thesis will be the testing and verification of the developed software following the

best practices of high quality software development.

62

Anexo A: Objetivos¡Error! No se encuentra el origen de la

referencia.

Lista de Objetivos

Phase 1: Till 1st meeting in Brusel on 16th June

Target: Fullfilled
 GasipReduced Delivery: 31st July

 Target: Complete SW, .exe and Matlab, complete UserGuide

Phase2: Till end of August, delivery of SW and teleconference

Target:
Complete tool, Complete User Guide - Programmer and User
Part

Load and Save input data

 Loading and Saving of InputVars of EffDegCn0

 Loading and Saving of InputVars of PrnCodes

 Loading of Systems and Signals config files

 Varible checking

 Numerical variables

Files: exists, suffix

Special consistency checks and other checks: error info to user, inform M+D about usage

 Gui Design and Implementation

 Add Setting to Menu->Settings to set if panels in input panels system are exclusive

 Maybe other options to this menu

 First prototype for Automatic Creation in RunTime with save

 Preview of systems

Way for preview of systems

 Finalise preview of systems

Solution for lower resolution,

clean table in case of simple constellation

 Preview of signals

 Way for preview of signals, implementation

Name of signal as headline to the window

 Preview and Edit SSC

 Way for preview and editing of SSC values, implementation

ALT SYSTEM: popupmenu with all systems from vSystems, that have at least one signal in
vSignal, which refers to them. And the system of the DES signal is excluded

DES signal: popupmenu with all signals

Prototype for Automatic Creation using special program

Way to represent two apps in one in GUI

Decision for the RunTime/Speicial program design solution

Gui design of tab panels - vertical tabs

63

Anexo A: Objetivos

¡Error! No se encuentra el origen de la referencia.
check compatability for Matlab 2009

 Output panels

Output panel design and implementation

Options

Save FoM and Show FoM in Separate Window

Application structure design

 Structure of Modules: EffDegCn0 vs. PrnCodes

 Gui structure: data structures and functions

EffDegCn0, PrnCodes Gui structure: data structures and functions

Implementation of the directory structure

 Implementation of sInputVar full contents - with reading of files: antenna pattern etc.

 Documentation

Automatic generation of .m file documenting structInputVars and structFom1-N

Style for modeling of app's structure

Development procurement methodology for the project

Deployment of Scrum

 Write GuiFomInterfaceStructure file - documentation purposes

 Gasip limited version

generate GUI for limited version with the GUI framework

representation of substructures and respective change to parser

code for subpanels

 Deliver setting for the chosen signals of Galileo

Connect the computational functionality

synchronise Gasip full and reduced version (variable names: eg.VarNameFlag convention)

generate executable

 generate executable with complete runtime in .msi

64

Anexo A: Objetivos¡Error! No se encuentra el origen de la

referencia.

65

Anexo B: Manuales de FACIL

¡Error! No se encuentra el origen de la referencia.

ANEXO B

Manuales de FACIL

A continuación se presentan los manuales de uso del framework FACIL

B.1 – Manual de usuario

B.2 – Manual del programador

66

Anexo B: Manuales de FACIL

67

Anexo B: Manuales de FACIL

¡Error! No se encuentra el origen de la referencia.
Manual de usuario

FACIL

Forget About Complicated Interface Layouts

Manual de usuario

Autor: Eduard Porta Martín-Moreno

Versión: 1.0

Última Revisión: 30 de Agosto de 2011

68

Anexo B: Manuales de FACIL

69

ManAGE

*

Anexo B: Manuales de FACIL

¡Error! No se encuentra el origen de la referencia. Tabla de Contenido

1 Inicio de la Aplicación .. 70

2 Proyectos .. 71

3 El Panel de Entrada ... 72

4 Cálculo de Resultados ... 73

70

Anexo B: Manuales de FACIL

Inicio de la Aplicación

Al iniciar la aplicación se presenta al usuario con un dialogo de carga que informa del

progreso y la etapa en la que se encuentra (Figura 1).

Una vez finalizado el proceso de carga, se mostrará una interfaz, cuyo aspecto puede variar,

y que en general será muy similar a la Figura 2.

ADVERTENCIA Si se ejecuta la aplicación desde una sesión de MATLAB, es

indispensable no cambiar de directorio en ningún momento para

asegurar el correcto funcionamiento de la misma.

Figura 1 - Diálogo de Carga

Figura 2 - Interfaz Gráfica

71

ManAGE

*

Anexo B: Manuales de FACIL

¡Error! No se encuentra el origen de la referencia. Proyectos

La aplicación permite guardar y cargar datos en ficheros de proyectos. Puede accederse a

estas funciones a través del menú Archivo (Figura 3):

 Nuevo Proyecto: Configura el panel de entrada con

valores por defecto. En algunas versiones de la

aplicación
16

 puede permitir al usuario elegir entre una

lista de plantillas.

 Abrir proyecto: Carga el panel de entrada con datos

que el usuario haya guardado previamente.

 Guardar proyecto: Guarda en un nuevo archivo los datos del panel de entrada.

Los archivos de proyectos emplean un formato XML práctico y sencillo de editar con un editor

de texto común (Figura 4).

16

 Esto dependerá de las decisions tomadas por el desarrollador.

Figura 4 - Editando un Fichero de Proyecto

Figura 3 - Menú Archivo:

Opciones de Proyectos

72

Anexo B: Manuales de FACIL

El Panel de Entrada

El panel de entrada (Figura 5) de la aplicación

se compone de una serie de pestañas. Dichas

pestañas contienen controles que permiten

modificar los valores de las variables de

entrada. Es posible que cuando exista más de

una pestaña y dependiendo de la decisión del

desarrollador, la apertura de un panel

provoque el cierre de los restantes, de forma

que en todo momento quede abierto

únicamente el panel activo.

Algunos de los controles pueden tener

mecanismos de validación (Figura 6). Si los

datos de alguno de los controles no son

válidos, éste lo indicará mediante algún

mecanismo visual como un diálogo y/o un

cambio de color, y el botón de cálculo será deshabilitado hasta que el error sea subsanado.

Figura 5 - Ejemplo de Panel de Entrada

Figura 6 - Mecanismos de validación y notificación al usuario

Valor erróneo Botón deshabilitado

Valor erróneo

73

ManAGE

*

Anexo B: Manuales de FACIL

¡Error! No se encuentra el origen de la referencia. Cálculo de Resultados

Si todos los campos del panel de entrada presentan datos válidos, el botón y el menú de

cálculo estarán activos (nótese que su aplicación podría no presentar el menú en caso de

existir una única función de cálculo). Para seleccionar la función a calcular emplearemos la

lista o listas desplegables del panel de salida y pulsaremos el botón calcular, o bien

seleccionaremos la función deseada en el menú calcular (Figura 7).

Si el algoritmo de cálculo es costoso en tiempo es probable que aparezca una barra de

progreso como la de la Figura 8. Si pulsamos sobre el botón rojo con una cruz de dicho

diálogo se cancelará el proceso de cálculo.

Figura 7 - Menú Calcular y desplegable junto al Botón Calcular

Figura 8 – Diálogo de Progreso del

Cálculo con Botón de Cancelación

Cancelar

Seleccionar
Seleccionar y Pulsar

Botón Calcular

74

Anexo B: Manuales de FACIL

Una vez se complete el proceso de cálculo con éxito se mostrarán los resultados en el panel

de salida. Dependiendo del algoritmo ejecutado es posible que se muestre un panel con

opciones para controlar la visualización (Figura 9).

Existe también la opción de mostrar los resultados en una vista separada, para ello se

pulsará sobre el botón ‘Ver en ventana separada’, disponible en la esquina superior derecha

del panel de salida (Figura 10).

Figura 10 - Visualización de Resultados en Ventana Separada

Pulsar

Figura 9 - Panel de salida Mostrando el Resultado y Opciones de Visualización

Opciones

75

ManAGE

*

Anexo B: Manuales de FACIL

¡Error! No se encuentra el origen de la referencia.

Para guardar los resultados en un archivo emplearemos la opción disponible en el menú

archivo (Figura 11). Los formatos disponibles son:

 Fig: Almacena una copia del resultado en pantalla en formato figura, el cual puede ser

abierto desde MATLAB.

 Mat: Todos los valores calculados (y no su representación) se almacenan en un

fichero de datos en formato MAT, dichos valores pueden ser cargados de nuevo en

MATLAB para trabajar con ellos.

 Csv: Almacena todos los valores calculados en un fichero de valores separados por

comas que puede ser abierto con un editor de texto simple o con una aplicación de

hojas de cálculo.

 Imagen (tiff, png, jpg, bmp, ppm, eps): Guarda como imagen una captura de la

representación de los resultados mostrada.

Figura 11 - Menú y Diálogo para Guardar los Resultados

Seleccionar

Formato

76

Anexo B: Manuales de FACIL

77

ManAGE

*

Anexo B: Manuales de FACIL

¡Error! No se encuentra el origen de la referencia.
Manual del programador

FACIL

Forget About Complicated Interface Layouts

Manual del Programador

Autor: Eduard Porta Martín-Moreno

Versión: 1.0

Última Revisión: 30 de Agosto de 2011

78

Anexo B: Manuales de FACIL

79

Anexo B: Manuales de FACIL

Tabla de Contenido

1 Implementación de una Aplicación Básica .. 80

1.1 Definición de las Variables de Entrada .. 82

1.2 Descripción de las Funciones de Cálculo .. 83

1.3 Las Interfaces con las Funciones de Cálculo ... 84

2 Funcionalidad Avanzada ... 86

80

Anexo B: Manuales de FACIL

Implementación de una Aplicación

Básica

Con FACIL es posible implementar una aplicación completa con tan solo definir tres

elementos: las variables de entrada, la descripción de las funciones de cálculo y las

interfaces con las funciones de cálculo.

En primer lugar suponiendo que la aplicación vaya a

llamarse ‘MyApp’ crearemos una estructura de directorios

para nuestra nueva aplicación como muestra la Figura 1.

Otra opción es copiar el directorio AppSpecific y la función

startApp.m incluidas en los ficheros de ejemplo de

FACIL y modificar estos siguiendo esta guía.

Es necesaria una función que lance la aplicación, para ello crearemos un archivo llamado

startMyApp.m con el siguiente contenido:

1 function [] = startMyApp()

2 %clean the working space of Matlab

3 matlabrc; clear all; clc; close all;

4 %%%

5 %Change this value to the application specific directory

6 appSpecificDir='MyApp';

7 %%%

8 %add Facil to the path variable

9 addpath(strcat(cd, [filesep 'Facil']));

10 %start the graphical user interface

11 mainGui(appSpecificDir);

12 end

También es necesario crear un fichero con configuración específica de la aplicación llamado

configureApplication.m en el directorio AuxiliaryFunctions de la carpeta de la aplicación, con

el siguiente contenido:

Figura 1 - Directorios Base

81

Anexo B: Manuales de FACIL

1 function [sConfig] = configureApplication ()

2

3 % Extensión para proyectos de la aplicación

4 sConfig.chInputVarsFileExtension = '*.app';

5

6 % Descripción para proyectos de la aplicación

7 sConfig.chInputVarsFileDescription = 'Application Input File';

8

9 % Título de la ventana de la aplicación

10 sConfig.chApplicationTitle = 'My Application';

11

12 % Pestañas del panel de entrada funcionan de modo exclusivo (exclusive) o es

posible abrir más de uno a la vez (multiple)

13 sConfig.TypeOfInputTabs = 'multiple';

14

15 end

82

Anexo B: Manuales de FACIL

Definición de las Variables de Entrada

Las variables de entrada deben ser definidas en un fichero llamado

InputVarsDescription.txt dentro del directorio DefinitionFiles de la aplicación.

A continuación se descompone la sintaxis de dicho fichero:

1. La cabecera: Se compone de la etiqueta Input Parameters, el nombre de la aplicación,

una descripción de ésta, una línea de longitud arbitraria de asteriscos y la declaración

de la estructura base, la cual siempre debe aparecer:

16 Input Parameters: My Application [Descripcion de MyApp]

17 **

18 sInputVars: Estructura con las variables de entrada

19 {

2. Una o más declaraciones de estructuras conteniendo las variables de entrada. Se

declara entre corchetes el título que la pestaña o panel generado por la estructura

tendrá en la interfaz. La estructura a su vez puede albergar más estructuras y/o

definiciones de variables escalares.

20 sTest [Titulo para la Pestaña]: Descripción de lo que contiene

21 {

 <...>

22 }

3. Una o más definiciones de variables escalares, especificando entre corchetes las

unidades de la variable, el tipo, el rango o contenido válido, configuraciones

específicas del GUI y La etiqueta a mostrar en la interfaz gráfica. Además se usa el

comentario sobre la variable como comentario emergente o tooltip en la interfaz. Para

una especificación completa de las distintas posibilidades puede consultarse la

documentación de la función getWidgetDefinitions.

23 chVariable1 [unitless, string, any, , Variable Ejemplo]: Comentario Emergente

4. La llave de cierre de la estructura base y otra línea de asteriscos de longitud arbitraria.

83

Anexo B: Manuales de FACIL

Descripción de las Funciones de Cálculo

La descripción de las funciones de cálculo se realiza en un fichero muy similar al anterior

llamado FomsDescription.txt que debe crearse también entro del directorio

DefinitionFiles de la aplicación.

El fichero se descompone como sigue:

5. La cabecera: Se compone de la etiqueta ‘LIST OF FOMS’, el nombre de la aplicación,

una descripción de ésta y una línea de longitud arbitraria de asteriscos:

24 LIST OF FOMS: My Application [Descripcion de MyApp]

25 **

6. Una o más definiciones de funciones compuestas por los nombres corto y largo de la

misma, un entero especificando el número de opciones y, de ser distinto de cero,

declaraciones de parámetros con el mismo formato que las variables escalares del

fichero anterior.

26 Short Name of the Fom: 'TestFunction'

27 Complete Name: 'Test function for sample application'

28 Options: 0

7. Otra línea de asteriscos de longitud arbitraria.

84

Anexo B: Manuales de FACIL

Las Interfaces con las Funciones de Cálculo

Con FACIL la interacción con las funciones de cálculo se realiza en dos pasos, el cálculo

propiamente dicho y la representación. Si hemos generado los ficheros anteriores

correctamente, al ejecutar nuestro startMyApp deberíamos tener una interfaz gráfica

completa, con los widgets correspondientes a las variables que hemos definido en el panel

de entrada, y la lista de funciones de cálculo en el panel de salida y menú calcular.

Cálculo

Cuando tratemos de ejecutar una de las funciones de cálculo, FACIL esperará encontrar en

algún subdirectorio de la carpeta MyApp (preferiblemente en Foms), una función denominada

get<NombreCorto>, donde <NombreCorto> designa el nombre corto definido para la

función en el punto anterior. En caso de no encontrar la función se buscará una llamada

getFoms, que de existir, debería calcular todas las funciones de la aplicación.

Tanto la función específica como la general deberían aceptar como único argumento de

entrada una estructura que respondería a la descrita en el fichero de descripción de

variables de entrada. Como salida deben devolver un valor booleano indicando si la

operación ha sido cancelada por el usuario o abortada por un error y una estructura, que en

caso de las funciones específicas contendrá los datos calculados y en el caso de la función

general una estructura un nivel superior agrupando las anteriores.

Representación

La representación de una función de cálculo se realizará cuando dicha función esté

seleccionada en el panel de salida y haya datos disponibles para la misma. Esto puede

suceder porque acabemos de calcularla o porque ya lo hicimos en un momento anterior y la

hemos vuelto a seleccionar en la lista desplegable.

Para este paso FACIL buscará una función con el nombre plot<NombreCorto>, que debe

aceptar como argumentos tres handles, correspondientes respectivamente a los ejes, campo

de texto y tabla del panel de salida, una estructura con los datos calculados previamente y

tantos argumentos adicionales como opciones se hayan especificado para la función.

Esta función será la encargada de emplear estos handles para representar los datos,

teniendo en cuenta:

85

Anexo B: Manuales de FACIL

1. La función no debería tratar de controlar el tamaño y posición de los elementos.

2. Los elementos no usados deberían ocultarse con

set(hElemento,’Visible’,’off’).

3. El objeto axes tiene dos propiedades adicionales. La propiedad PlotType acepta los

valores ‘normal’ y ‘earth’. La propiedad AspRatio controla la relación de aspecto

de la gráfica, y, de no fijarse, será [1 1] para graficas normales y [2 1] cuando

PlotType sea ‘earth’.

4. El uso del objeto uitable correspondiente al elemento tabla puede ser consultado en la

documentación de MATLAB.

86

Anexo B: Manuales de FACIL

Funcionalidad Avanzada

Gran parte de la funcionalidad avanzada de FACIL reside en el hecho de que es posible

implementar complementos para algunos tipos de widget, y lo que es más importante, es

posible implementar nuestros propios widgets.

Para ello se empleará la herencia de objetos, partiendo habitualmente de las clases plugin y

widget o alguno de sus descendientes. Toda la documentación necesaria acerca de sus

propiedades, métodos y ejemplos de uso pueden ser consultados en el código fuente de

FACIL.

87

ANEXO C

Detalles de Implementación

Este anexo se compone de documentos que extienden o explican algunos detalles de

la implementación de FACIL y las aplicaciones que se han desarrollado con el mismo.

C.1 – Estudio sobre el Uso de Variables y Constantes Globales

C.2 – Estudio sobre los Diferentes Sistemas de OOP en Matlab

88

Anexo C: Detalles de Implementación

Estudio sobre el uso de constantes y variables globales

A lo largo de la experiencia del autor como alumno de ingeniería siempre se le ha

desaconsejado el uso de variables globales por ser esta una de las peores fuentes de

acoplamiento y deteriorar la modularidad de la aplicación.

Sin embargo para este proyecto resultó prácticamente imposible evitar el uso de globales en

los casos en los que la propia naturaleza del problema lo requería, como pueden ser las

constantes de cálculo científico o el bus de comunicación entre widgets. Para estos casos

se han evaluado las posibles alternativas e implementado aquellas menos perjudiciales o

más eficientes.

Constantes

Principalmente, las constantes globales se han utilizado para disponer de constantes

científicas usadas en los algoritmos de cálculo. En primer lugar se elaboró una lista de

posibilidades:

 La alternativa actual, un fichero que define una variable global de tipo estructura. Las

constantes se almacenan en sus campos y pueden ser obtenidas haciendo visible la

variable global y accediendo a dichos campos.

 Elaborar un script que crea e inicializa todas las constantes, ejecutar dicho script al

inicio de cualquier función que use estas constantes. Este sistema se consideró

inseguro por la posibilidad de introducir código arbitrario en este archivo que pudiese

alterar la estabilidad de la aplicación.

 Escribir una función para cada constante, de este modo son de solo lectura y, al ser

funciones, la introducción de código defectuoso solo afecta a la ejecución de la

misma y el valor devuelto. Esta alternativa es usada por MATLAB, pero se descartó

por el excesivo coste debido al elevado número de constantes.

Tras el estudio se concluyo que era mejor no modificar el tratamiento de constantes

globales, pues el coste invertido sería mayor que el beneficio obtenido, debido a que no se

eliminaría ninguna dependencia o acoplamiento.

89

Anexo C: Detalles de Implementación

Variables

La introducción de FACIL hizo que se plantease esta cuestión que no había surgido

anteriormente. Según la documentación de MATLAB un programa con variables globales

puede presentar problemas para generar un ejecutable o que dicho ejecutable funcione

correctamente.

El principal problema en este caso fue encontrar un modo de almacenar información

persistente (para el bus, los resultados de los cálculos, algunos widgets), que no precisara

del uso de una variable global real. La solución al problema consistió en usar los datos de

aplicación. Los datos de aplicación consisten en un mecanismo de MATLAB que permite

acceder a una única variable relacionada con la figura (ventana) actual, desde cualquiera de

sus objetos hijo. Dado que esta funcionalidad era necesaria para los widgets, siempre se

disponía de un handle apropiado, con lo que únicamente fue necesario emplear dicha

variable como una estructura, almacenando cada dato en un campo diferente.

90

Anexo C: Detalles de Implementación

Estudio sobre los diferentes sistemas de OOP en Matlab

MATLAB, a diferencia de otros lenguajes de programación no dispone de un framework

unificado para la programación orientada a objetos. En la versión del cliente, MATLAB 2007a

se documenta la implementación de clases mediante funciones que utilizan en su cuerpo

una sentencia especial ‚class‛. Sin embargo esta funcionalidad resulta insuficiente pues las

posibilidades de herencia y abstracción son altamente limitadas.

En principio en dicha versión del software no existe forma alguna de heredar a partir de

elementos uicontrol o uipanel. Tampoco es posible usar la sentencia classdef como en

versiones más modernas en lugar de usar una función constructor. En resumen, MATLAB

dispone, a lo largo de sus versiones, de una colección de métodos de implementar

programación orientada a objetos, pero todavía en las últimas versiones no parece haber un

estándar consensuado sobre la forma de hacerlo.

91

ANEXO D

Optimización del Cálculo de la

Correlación Cruzada de Códigos PRN

Este anexo recopila las diferentes versiones del bucle trabajado así como los

resultados experimentales obtenidos

D.1 – Código del Bucle Original

D.2 – Código Vectorizado

D.3 – Código Paralelizado

D.4 – Registro Detallado de Pruebas

92

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Código del Bucle Original

1 % Initialization of variables

2 vCorrelationMagnitudeLog = [-100 (-80:0.5:1)];

3 vCorrelationMagnitudeNat = 0:1:dTotLength;

4 sCorrelationHistogramLog.mOdd = ...
zeros(dNumDesCodes*dNumIntCodes, ...

length(vCorrelationMagnitudeLog),dTotNumCombinations);

5 sCorrelationHistogramNat.vOdd =
zeros(dTotNumCombinations,length(vCorrelationMagnitudeNat));

6 count = 0;

7 % Cycle computing the cross-correlation histogram

8 for i=1:dNumDesCodes

9 vFftDesCode = fft(mDesiredCodeExt(i,:));

10 for j=1:dNumIntCodes

11 count = count + 1;

12 for n = 1:dTotNumCombinations

13 vOddCorrelation = ...
 real(ifft(vFftDesCode .* ...

 conj(fft(squeeze(mInterferingCodeExt(j,:,n)) .* ...

 vDoppler))));

14 sCorrelationHistogramLog.mOdd(count,:,n) = ...
hist(20*log10(abs(vOddCorrelation) / ...

length(vOddCorrelation)),vCorrelationMagnitudeLog)...

./ length(vOddCorrelation);

15 sCorrelationHistogramNat.vOdd(n,:) = ...
 sCorrelationHistogramNat.vOdd(n,:) + ...

 hist(abs(vOddCorrelation),vCorrelationMagnitudeNat);

16 end

17 end

18 end

93

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Código Vectorizado

1 % Clear unused variables

2 clear sInputVars mDesiredCode mInterferingCode dNumBits dNumComb ...

3 mBitCombinations dNumRows vTempBitComb ...

4 vTempShiftedBitComb dIndex vIndex mTempFlips mTempInterferingCode

5 % This packs variables in contiguous space

6 save('fjklq4fji4qof4jqiofpqf9q40fuq9fquf9q4uf90qFRDSGREGER54');

7 clear;

8 load('fjklq4fji4qof4jqiofpqf9q40fuq9fquf9q4uf90qFRDSGREGER54');

9 delete('fjklq4fji4qof4jqiofpqf9q40fuq9fquf9q4uf90qFRDSGREGER54.mat');

10 % Compute the cross-correlation histogram (vectorized version)

11 mOddCorrelation = reshape(shiftdim(real(ifft(bsxfun(@times, ...
shiftdim(fft(mDesiredCodeExt,[],2),-1), ...
reshape(conj(fft(bsxfun(@times, ...
mInterferingCodeExt,vDoppler),[],2)), ...
dNumIntCodes,1,dTotLength,dTotNumCombinations)),[],3)),2), ...

dTotLength,[]);

12 sCorrelationHistogramLog.mOdd = ...
shiftdim(reshape(hist(...

20*log10(abs(mOddCorrelation)./dTotLength), ...
vCorrelationMagnitudeLog), ...

[],dTotNumCombinations,dNumIntCodes*dNumDesCodes),2) ...
./ dTotLength;

13 sCorrelationHistogramNat.vOdd = sum(reshape(...
hist(abs(mOddCorrelation),vCorrelationMagnitudeNat),...
[],dTotNumCombinations,dNumIntCodes*dNumDesCodes),3)';

94

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Código Paralelizado

1 % Clear unused variables

2 clear sInputVars mDesiredCode mInterferingCode dNumBits dNumComb ...

3 mBitCombinations dNumRows vTempBitComb ...

4 vTempShiftedBitComb dIndex vIndex mTempFlips mTempInterferingCode

5 % This packs variables in contiguous space

6 save('fjklq4fji4qof4jqiofpqf9q40fuq9fquf9q4uf90qFRDSGREGER54');

7 clear;

8 load('fjklq4fji4qof4jqiofpqf9q40fuq9fquf9q4uf90qFRDSGREGER54');

9 delete('fjklq4fji4qof4jqiofpqf9q40fuq9fquf9q4uf90qFRDSGREGER54.mat');

10 % Get biggest array size and Max amount of data that fits into memory

11 dBiggestArray = dNumDesCodes* dNumIntCodes* dTotNumCombinations* dTotLength;

12 cTemp = 1 + 1i; dSize = whos('cTemp'); sMemory = memory; %#ok<NASGU>

13 dMaxSize = sMemory.MaxPossibleArrayBytes / (4 * dSize.bytes); %Enough

14 % Calculate number of chunks to partition the computation into from

15 % the maximum size an array can be

16 if dBiggestArray > dMaxSize
 dNumChunks = floor(dBiggestArray / dMaxSize);

17 else
 dNumChunks = 1;

18 end

19 % if PCT is active make sure we have at least one chunk per worker

20 dNumWorkers = matlabpool('size');

21 if dNumChunks < dNumWorkers
 dNumChunks = dNumWorkers;

22 end

23 % Try to avoid remainder computation because it slows overall process,

24 % This will work properly unless dNumDescodes is a product of big primes

25 while mod(dNumDesCodes,dNumChunks)
 dNumChunks = dNumChunks + 1;

26 end

27 % Final chunk size and remainder size

28 dChunkSize = floor(dNumDesCodes / dNumChunks);

29 % Memory allocation

30 mOdd = zeros(dNumIntCodes*dChunkSize,dNumChunks, ...
 length(vCorrelationMagnitudeLog),dTotNumCombinations);

31 vOdd = zeros(dTotNumCombinations,length(vCorrelationMagnitudeNat));

32 % Reshape for the parfor

33 mDesiredCodeExtTemp = reshape(mDesiredCodeExt(1:dNumDesCodes,:), ...
 dChunkSize,dNumChunks,dTotLength);

34 % Compute the cross-correlation histogram (vectorized version)

35 mInterferingCodeExtDoppler = reshape(conj(fft(bsxfun(@times, ...
 mInterferingCodeExt,vDoppler),[],2)), ...
 dNumIntCodes,1,dTotLength,dTotNumCombinations);

95

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

36 % Loop though all chunks, in parallel if possible

37 parfor i1 = 1:dNumChunks

38 mOddCorrelation = reshape(shiftdim(real(ifft(bsxfun(@times, ...
 reshape(fft(mDesiredCodeExtTemp(:,i1,:),[],3),1,dChunkSize, ...

dTotLength), mInterferingCodeExtDoppler),[],3)),2),dTotLength,[]);

39 mOdd(:,i1,:,:) = shiftdim(reshape(...
 hist(20.*log10(abs(mOddCorrelation)./dTotLength), ...

vCorrelationMagnitudeLog), [],dTotNumCombinations, ...

dNumIntCodes*dChunkSize),2) ...
./ dTotLength;

40 vOdd = vOdd + sum(reshape(...
hist(abs(mOddCorrelation),vCorrelationMagnitudeNat),...
[],dTotNumCombinations,dNumIntCodes*dChunkSize),3)';

41 end

42 % Save computed histograms to output structures

43 sCorrelationHistogramLog.mOdd = reshape(mOdd,dNumIntCodes * ...
 (dNumDesCodes), length(vCorrelationMagnitudeLog),dTotNumCombinations);

44 sCorrelationHistogramNat.vOdd = vOdd;

96

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Registro Detallado de Pruebas

Galileo E1OS vs Código de prueba

Size of Desired Code: 100 * 4092 = 409200

Size of Interfering Code: 10 * 4092 = 40920

Number of operations: 16368000

Original function test: iteration 1

Test took 7.204349e+000 seconds

Original function test: iteration 2

Test took 7.116012e+000 seconds

Original function test: iteration 3

Test took 7.113576e+000 seconds

Original function test: iteration 4

Test took 7.120285e+000 seconds

Original function test: iteration 5

Test took 7.113468e+000 seconds

Original function test: iteration 6

Test took 7.104463e+000 seconds

Original function test: iteration 7

Test took 7.101905e+000 seconds

Original function test: iteration 8

Test took 7.112294e+000 seconds

Original function test: iteration 9

Test took 7.106759e+000 seconds

Original function test: iteration 10

Test took 7.113659e+000 seconds

Mean time for original function: 7.120677e+000

seconds

Vectorization test: iteration 1

Test took 6.074601e+000 seconds

Vectorization test: iteration 2

Test took 6.032805e+000 seconds

Vectorization test: iteration 3

Test took 6.018464e+000 seconds

Vectorization test: iteration 4

Test took 6.038645e+000 seconds

Vectorization test: iteration 5

Test took 6.061127e+000 seconds

Vectorization test: iteration 6

Test took 6.046472e+000 seconds

Vectorization test: iteration 7

Test took 6.021827e+000 seconds

Vectorization test: iteration 8

Test took 6.039734e+000 seconds

Vectorization test: iteration 9

Test took 6.023767e+000 seconds

Vectorization test: iteration 10

Test took 6.053223e+000 seconds

Mean time for vectorized function: 6.041067e+000

seconds

Paralelization test (1 workers): iteration 1

Test took 8.350339e+000 seconds

Paralelization test (1 workers): iteration 2

Test took 8.024923e+000 seconds

Paralelization test (1 workers): iteration 3

Test took 8.041908e+000 seconds

Paralelization test (1 workers): iteration 4

Test took 8.042631e+000 seconds

Paralelization test (1 workers): iteration 5

Test took 8.056062e+000 seconds

Paralelization test (1 workers): iteration 6

97

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Test took 8.037763e+000 seconds

Paralelization test (1 workers): iteration 7

Test took 8.061843e+000 seconds

Paralelization test (1 workers): iteration 8

Test took 8.050014e+000 seconds

Paralelization test (1 workers): iteration 9

Test took 8.053528e+000 seconds

Paralelization test (1 workers): iteration 10

Test took 8.044153e+000 seconds

Mean time for paralelized function (1 workers):

8.076316e+000 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 5.188011e+000 seconds

Paralelization test (2 workers): iteration 2

Test took 4.859721e+000 seconds

Paralelization test (2 workers): iteration 3

Test took 4.834535e+000 seconds

Paralelization test (2 workers): iteration 4

Test took 4.951344e+000 seconds

Paralelization test (2 workers): iteration 5

Test took 4.880815e+000 seconds

Paralelization test (2 workers): iteration 6

Test took 4.913995e+000 seconds

Paralelization test (2 workers): iteration 7

Test took 4.909172e+000 seconds

Paralelization test (2 workers): iteration 8

Test took 4.906089e+000 seconds

Paralelization test (2 workers): iteration 9

Test took 4.901155e+000 seconds

Paralelization test (2 workers): iteration 10

Test took 4.891437e+000 seconds

Mean time for paralelized function (2 workers):

4.923628e+000 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 5.115134e+000 seconds

Paralelization test (3 workers): iteration 2

Test took 4.727467e+000 seconds

Paralelization test (3 workers): iteration 3

Test took 4.753545e+000 seconds

Paralelization test (3 workers): iteration 4

Test took 4.616276e+000 seconds

Paralelization test (3 workers): iteration 5

Test took 4.875292e+000 seconds

Paralelization test (3 workers): iteration 6

Test took 4.580108e+000 seconds

Paralelization test (3 workers): iteration 7

Test took 4.899534e+000 seconds

Paralelization test (3 workers): iteration 8

Test took 4.681787e+000 seconds

Paralelization test (3 workers): iteration 9

Test took 4.560740e+000 seconds

Paralelization test (3 workers): iteration 10

Test took 4.598574e+000 seconds

Mean time for paralelized function (3 workers):

4.740846e+000 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 4.014569e+000 seconds

Paralelization test (4 workers): iteration 2

Test took 3.534832e+000 seconds

98

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Paralelization test (4 workers): iteration 3

Test took 3.543032e+000 seconds

Paralelization test (4 workers): iteration 4

Test took 3.555466e+000 seconds

Paralelization test (4 workers): iteration 5

Test took 3.571426e+000 seconds

Paralelization test (4 workers): iteration 6

Test took 3.546217e+000 seconds

Paralelization test (4 workers): iteration 7

Test took 3.572331e+000 seconds

Paralelization test (4 workers): iteration 8

Test took 3.565209e+000 seconds

Paralelization test (4 workers): iteration 9

Test took 3.649263e+000 seconds

Paralelization test (4 workers): iteration 10

Test took 3.600512e+000 seconds

Mean time for paralelized function (4 workers):

3.615286e+000 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.

Paralelization test (6 workers): iteration 1

Test took 4.149970e+000 seconds

Paralelization test (6 workers): iteration 2

Test took 3.702282e+000 seconds

Paralelization test (6 workers): iteration 3

Test took 3.778356e+000 seconds

Paralelization test (6 workers): iteration 4

Test took 3.901571e+000 seconds

Paralelization test (6 workers): iteration 5

Test took 3.782397e+000 seconds

Paralelization test (6 workers): iteration 6

Test took 3.730523e+000 seconds

Paralelization test (6 workers): iteration 7

Test took 3.828897e+000 seconds

Paralelization test (6 workers): iteration 8

Test took 3.539646e+000 seconds

Paralelization test (6 workers): iteration 9

Test took 3.735222e+000 seconds

Paralelization test (6 workers): iteration 10

Test took 3.842354e+000 seconds

Mean time for paralelized function (6 workers):

3.799122e+000 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 4.587747e+000 seconds

Paralelization test (8 workers): iteration 2

Test took 3.799349e+000 seconds

Paralelization test (8 workers): iteration 3

Test took 3.922482e+000 seconds

Paralelization test (8 workers): iteration 4

Test took 3.644648e+000 seconds

Paralelization test (8 workers): iteration 5

Test took 3.804318e+000 seconds

Paralelization test (8 workers): iteration 6

Test took 3.913598e+000 seconds

Paralelization test (8 workers): iteration 7

Test took 3.638799e+000 seconds

Paralelization test (8 workers): iteration 8

Test took 3.679321e+000 seconds

Paralelization test (8 workers): iteration 9

Test took 3.789654e+000 seconds

Paralelization test (8 workers): iteration 10

Test took 3.926501e+000 seconds

Mean time for paralelized function (8 workers):

3.870642e+000 seconds

99

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Galileo E1OS vs Galileo E1OS

Size of Desired Code: 100 * 4092 = 409200

Size of Interfering Code: 100 * 4092 = 409200

Number of operations: 163680000

Original function test: iteration 1

Test took 7.337345e+001 seconds

Original function test: iteration 2

Test took 7.317807e+001 seconds

Original function test: iteration 3

Test took 7.361047e+001 seconds

Original function test: iteration 4

Test took 7.337703e+001 seconds

Original function test: iteration 5

Test took 7.314042e+001 seconds

Original function test: iteration 6

Test took 7.359485e+001 seconds

Original function test: iteration 7

Test took 7.336724e+001 seconds

Original function test: iteration 8

Test took 7.313567e+001 seconds

Original function test: iteration 9

Test took 7.359770e+001 seconds

Original function test: iteration 10

Test took 7.338579e+001 seconds

Mean time for original function: 7.337607e+001

seconds

Vectorization test: iteration 1

Test took 5.824876e+001 seconds

Vectorization test: iteration 2

Test took 5.822643e+001 seconds

Vectorization test: iteration 3

Test took 5.836071e+001 seconds

Vectorization test: iteration 4

Test took 5.832150e+001 seconds

Vectorization test: iteration 5

Test took 5.829883e+001 seconds

Vectorization test: iteration 6

Test took 5.827940e+001 seconds

Vectorization test: iteration 7

Test took 5.836256e+001 seconds

Vectorization test: iteration 8

Test took 5.835939e+001 seconds

Vectorization test: iteration 9

Test took 5.827665e+001 seconds

Vectorization test: iteration 10

Test took 5.834078e+001 seconds

Mean time for vectorized function: 5.830750e+001

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 7.788909e+001 seconds

Paralelization test (1 workers): iteration 2

Test took 7.739555e+001 seconds

Paralelization test (1 workers): iteration 3

Test took 7.750922e+001 seconds

Paralelization test (1 workers): iteration 4

Test took 7.755277e+001 seconds

Paralelization test (1 workers): iteration 5

Test took 7.749703e+001 seconds

Paralelization test (1 workers): iteration 6

Test took 7.751428e+001 seconds

Paralelization test (1 workers): iteration 7

Test took 7.752486e+001 seconds

100

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Paralelization test (1 workers): iteration 8

Test took 7.752803e+001 seconds

Paralelization test (1 workers): iteration 9

Test took 7.758727e+001 seconds

Paralelization test (1 workers): iteration 10

Test took 7.757774e+001 seconds

Mean time for paralelized function (1 workers):

7.755758e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 4.501418e+001 seconds

Paralelization test (2 workers): iteration 2

Test took 4.473560e+001 seconds

Paralelization test (2 workers): iteration 3

Test took 4.544476e+001 seconds

Paralelization test (2 workers): iteration 4

Test took 4.558927e+001 seconds

Paralelization test (2 workers): iteration 5

Test took 4.459673e+001 seconds

Paralelization test (2 workers): iteration 6

Test took 4.447794e+001 seconds

Paralelization test (2 workers): iteration 7

Test took 4.579807e+001 seconds

Paralelization test (2 workers): iteration 8

Test took 4.533772e+001 seconds

Paralelization test (2 workers): iteration 9

Test took 4.630345e+001 seconds

Paralelization test (2 workers): iteration 10

Test took 4.593055e+001 seconds

Mean time for paralelized function (2 workers):

4.532283e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 3.680194e+001 seconds

Paralelization test (3 workers): iteration 2

Test took 3.490535e+001 seconds

Paralelization test (3 workers): iteration 3

Test took 3.452238e+001 seconds

Paralelization test (3 workers): iteration 4

Test took 3.502171e+001 seconds

Paralelization test (3 workers): iteration 5

Test took 3.670276e+001 seconds

Paralelization test (3 workers): iteration 6

Test took 3.521943e+001 seconds

Paralelization test (3 workers): iteration 7

Test took 3.736271e+001 seconds

Paralelization test (3 workers): iteration 8

Test took 3.474632e+001 seconds

Paralelization test (3 workers): iteration 9

Test took 3.478934e+001 seconds

Paralelization test (3 workers): iteration 10

Test took 3.591892e+001 seconds

Mean time for paralelized function (3 workers):

3.559909e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 3.329196e+001 seconds

Paralelization test (4 workers): iteration 2

Test took 3.324737e+001 seconds

Paralelization test (4 workers): iteration 3

Test took 3.330796e+001 seconds

Paralelization test (4 workers): iteration 4

101

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Test took 3.288827e+001 seconds

Paralelization test (4 workers): iteration 5

Test took 3.414778e+001 seconds

Paralelization test (4 workers): iteration 6

Test took 3.347865e+001 seconds

Paralelization test (4 workers): iteration 7

Test took 3.401685e+001 seconds

Paralelization test (4 workers): iteration 8

Test took 3.307125e+001 seconds

Paralelization test (4 workers): iteration 9

Test took 3.278782e+001 seconds

Paralelization test (4 workers): iteration 10

Test took 3.269050e+001 seconds

Mean time for paralelized function (4 workers):

3.329284e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.

Paralelization test (6 workers): iteration 1

Test took 3.321327e+001 seconds

Paralelization test (6 workers): iteration 2

Test took 3.307876e+001 seconds

Paralelization test (6 workers): iteration 3

Test took 3.263791e+001 seconds

Paralelization test (6 workers): iteration 4

Test took 3.320412e+001 seconds

Paralelization test (6 workers): iteration 5

Test took 3.380434e+001 seconds

Paralelization test (6 workers): iteration 6

Test took 3.318892e+001 seconds

Paralelization test (6 workers): iteration 7

Test took 3.244019e+001 seconds

Paralelization test (6 workers): iteration 8

Test took 3.356368e+001 seconds

Paralelization test (6 workers): iteration 9

Test took 3.346966e+001 seconds

Paralelization test (6 workers): iteration 10

Test took 3.354680e+001 seconds

Mean time for paralelized function (6 workers):

3.321477e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 5.629993e+001 seconds

Paralelization test (8 workers): iteration 2

Test took 4.066622e+001 seconds

Paralelization test (8 workers): iteration 3

Test took 3.433007e+001 seconds

Paralelization test (8 workers): iteration 4

Test took 3.600077e+001 seconds

Paralelization test (8 workers): iteration 5

Test took 3.479797e+001 seconds

Paralelization test (8 workers): iteration 6

Test took 3.446430e+001 seconds

Paralelization test (8 workers): iteration 7

Test took 3.440415e+001 seconds

Paralelization test (8 workers): iteration 8

Test took 3.570771e+001 seconds

Paralelization test (8 workers): iteration 9

Test took 3.343650e+001 seconds

Paralelization test (8 workers): iteration 10

Test took 3.378412e+001 seconds

Mean time for paralelized function (8 workers):

3.738917e+001 seconds

102

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Galileo E1OS vs Galileo E5a I

>> Size of Desired Code: 100 * 4092 = 409200

Size of Interfering Code: 50 * 10232 = 511600

Number of operations: 204640000

Original function test: iteration 1

Test took 9.945295e+001 seconds

Original function test: iteration 2

Test took 1.000775e+002 seconds

Original function test: iteration 3

Test took 9.937495e+001 seconds

Original function test: iteration 4

Test took 9.936818e+001 seconds

Original function test: iteration 5

Test took 9.927409e+001 seconds

Original function test: iteration 6

Test took 1.000828e+002 seconds

Original function test: iteration 7

Test took 9.941552e+001 seconds

Original function test: iteration 8

Test took 9.939544e+001 seconds

Original function test: iteration 9

Test took 9.931905e+001 seconds

Original function test: iteration 10

Test took 1.000842e+002 seconds

Mean time for original function: 9.958446e+001

seconds

Vectorization test: iteration 1

Test took 9.192417e+001 seconds

Vectorization test: iteration 2

Test took 9.174146e+001 seconds

Vectorization test: iteration 3

Test took 9.195457e+001 seconds

Vectorization test: iteration 4

Test took 9.191531e+001 seconds

Vectorization test: iteration 5

Test took 9.181038e+001 seconds

Vectorization test: iteration 6

Test took 9.194220e+001 seconds

Vectorization test: iteration 7

Test took 9.184585e+001 seconds

Vectorization test: iteration 8

Test took 9.189747e+001 seconds

Vectorization test: iteration 9

Test took 9.173335e+001 seconds

Vectorization test: iteration 10

Test took 9.183731e+001 seconds

Mean time for vectorized function: 9.186020e+001

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 1.103470e+002 seconds

Paralelization test (1 workers): iteration 2

Test took 1.101855e+002 seconds

Paralelization test (1 workers): iteration 3

Test took 1.101071e+002 seconds

Paralelization test (1 workers): iteration 4

Test took 1.101545e+002 seconds

Paralelization test (1 workers): iteration 5

Test took 1.102035e+002 seconds

Paralelization test (1 workers): iteration 6

Test took 1.102073e+002 seconds

Paralelization test (1 workers): iteration 7

Test took 1.101820e+002 seconds

103

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Paralelization test (1 workers): iteration 8

Test took 1.102654e+002 seconds

Paralelization test (1 workers): iteration 9

Test took 1.102012e+002 seconds

Paralelization test (1 workers): iteration 10

Test took 1.102005e+002 seconds

Mean time for paralelized function (1 workers):

1.102054e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 6.444053e+001 seconds

Paralelization test (2 workers): iteration 2

Test took 6.435601e+001 seconds

Paralelization test (2 workers): iteration 3

Test took 6.317444e+001 seconds

Paralelization test (2 workers): iteration 4

Test took 6.375847e+001 seconds

Paralelization test (2 workers): iteration 5

Test took 6.341425e+001 seconds

Paralelization test (2 workers): iteration 6

Test took 6.422422e+001 seconds

Paralelization test (2 workers): iteration 7

Test took 6.300108e+001 seconds

Paralelization test (2 workers): iteration 8

Test took 6.285403e+001 seconds

Paralelization test (2 workers): iteration 9

Test took 6.287318e+001 seconds

Paralelization test (2 workers): iteration 10

Test took 6.337323e+001 seconds

Mean time for paralelized function (2 workers):

6.354694e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 5.062535e+001 seconds

Paralelization test (3 workers): iteration 2

Test took 5.198562e+001 seconds

Paralelization test (3 workers): iteration 3

Test took 5.068817e+001 seconds

Paralelization test (3 workers): iteration 4

Test took 5.088636e+001 seconds

Paralelization test (3 workers): iteration 5

Test took 5.120127e+001 seconds

Paralelization test (3 workers): iteration 6

Test took 5.079045e+001 seconds

Paralelization test (3 workers): iteration 7

Test took 4.889649e+001 seconds

Paralelization test (3 workers): iteration 8

Test took 4.867341e+001 seconds

Paralelization test (3 workers): iteration 9

Test took 5.159129e+001 seconds

Paralelization test (3 workers): iteration 10

Test took 5.162893e+001 seconds

Mean time for paralelized function (3 workers):

5.069673e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 4.783033e+001 seconds

Paralelization test (4 workers): iteration 2

Test took 4.779371e+001 seconds

Paralelization test (4 workers): iteration 3

Test took 4.773536e+001 seconds

Paralelization test (4 workers): iteration 4

104

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Test took 4.709349e+001 seconds

Paralelization test (4 workers): iteration 5

Test took 4.690194e+001 seconds

Paralelization test (4 workers): iteration 6

Test took 4.715136e+001 seconds

Paralelization test (4 workers): iteration 7

Test took 4.725443e+001 seconds

Paralelization test (4 workers): iteration 8

Test took 4.745618e+001 seconds

Paralelization test (4 workers): iteration 9

Test took 4.611957e+001 seconds

Paralelization test (4 workers): iteration 10

Test took 4.610300e+001 seconds

Mean time for paralelized function (4 workers):

4.714394e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.

Paralelization test (6 workers): iteration 1

Test took 4.708668e+001 seconds

Paralelization test (6 workers): iteration 2

Test took 4.645192e+001 seconds

Paralelization test (6 workers): iteration 3

Test took 5.027155e+001 seconds

Paralelization test (6 workers): iteration 4

Test took 4.640104e+001 seconds

Paralelization test (6 workers): iteration 5

Test took 4.926839e+001 seconds

Paralelization test (6 workers): iteration 6

Test took 4.723789e+001 seconds

Paralelization test (6 workers): iteration 7

Test took 4.631054e+001 seconds

Paralelization test (6 workers): iteration 8

Test took 4.634271e+001 seconds

Paralelization test (6 workers): iteration 9

Test took 4.572396e+001 seconds

Paralelization test (6 workers): iteration 10

Test took 4.680543e+001 seconds

Mean time for paralelized function (6 workers):

4.719001e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 8.949727e+001 seconds

Paralelization test (8 workers): iteration 2

Test took 5.240460e+001 seconds

Paralelization test (8 workers): iteration 3

Test took 4.770685e+001 seconds

Paralelization test (8 workers): iteration 4

Test took 7.082699e+001 seconds

Paralelization test (8 workers): iteration 5

Test took 5.840942e+001 seconds

Paralelization test (8 workers): iteration 6

Test took 4.702396e+001 seconds

Paralelization test (8 workers): iteration 7

Test took 4.943002e+001 seconds

Paralelization test (8 workers): iteration 8

Test took 4.728819e+001 seconds

Paralelization test (8 workers): iteration 9

Test took 8.109415e+001 seconds

Paralelization test (8 workers): iteration 10

Test took 6.297037e+001 seconds

Mean time for paralelized function (8 workers):

6.066518e+001 seconds

105

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Galileo E1OS vs GPS L1C

Size of Desired Code: 100 * 4092 = 409200

Size of Interfering Code: 126 * 10230 = 1288980

Number of operations: 515592000

Original function test: iteration 1

Test took 2.287853e+002 seconds

Original function test: iteration 2

Test took 2.280156e+002 seconds

Original function test: iteration 3

Test took 2.299133e+002 seconds

Original function test: iteration 4

Test took 2.275880e+002 seconds

Original function test: iteration 5

Test took 2.278776e+002 seconds

Original function test: iteration 6

Test took 2.299542e+002 seconds

Original function test: iteration 7

Test took 2.264995e+002 seconds

Original function test: iteration 8

Test took 2.285086e+002 seconds

Original function test: iteration 9

Test took 2.278742e+002 seconds

Original function test: iteration 10

Test took 2.265526e+002 seconds

Mean time for original function: 2.281569e+002

seconds

Vectorization test: iteration 1

Test took 2.213902e+002 seconds

Vectorization test: iteration 2

Test took 2.224804e+002 seconds

Vectorization test: iteration 3

Test took 2.219157e+002 seconds

Vectorization test: iteration 4

Test took 2.215253e+002 seconds

Vectorization test: iteration 5

Test took 2.216899e+002 seconds

Vectorization test: iteration 6

Test took 2.217287e+002 seconds

Vectorization test: iteration 7

Test took 2.217840e+002 seconds

Vectorization test: iteration 8

Test took 2.215695e+002 seconds

Vectorization test: iteration 9

Test took 2.218146e+002 seconds

Vectorization test: iteration 10

Test took 2.215394e+002 seconds

Mean time for vectorized function: 2.217438e+002

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 2.675471e+002 seconds

Paralelization test (1 workers): iteration 2

Test took 2.672191e+002 seconds

Paralelization test (1 workers): iteration 3

Test took 2.668871e+002 seconds

Paralelization test (1 workers): iteration 4

Test took 2.670801e+002 seconds

Paralelization test (1 workers): iteration 5

Test took 2.668658e+002 seconds

Paralelization test (1 workers): iteration 6

Test took 2.671958e+002 seconds

Paralelization test (1 workers): iteration 7

Test took 2.670605e+002 seconds

106

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Paralelization test (1 workers): iteration 8

Test took 2.670635e+002 seconds

Paralelization test (1 workers): iteration 9

Test took 2.673304e+002 seconds

Paralelization test (1 workers): iteration 10

Test took 2.673593e+002 seconds

Mean time for paralelized function (1 workers):

2.671609e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 1.573133e+002 seconds

Paralelization test (2 workers): iteration 2

Test took 1.559092e+002 seconds

Paralelization test (2 workers): iteration 3

Test took 1.540356e+002 seconds

Paralelization test (2 workers): iteration 4

Test took 1.527646e+002 seconds

Paralelization test (2 workers): iteration 5

Test took 1.535915e+002 seconds

Paralelization test (2 workers): iteration 6

Test took 1.534741e+002 seconds

Paralelization test (2 workers): iteration 7

Test took 1.625441e+002 seconds

Paralelization test (2 workers): iteration 8

Test took 1.562429e+002 seconds

Paralelization test (2 workers): iteration 9

Test took 1.559047e+002 seconds

Paralelization test (2 workers): iteration 10

Test took 1.545841e+002 seconds

Mean time for paralelized function (2 workers):

1.556364e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 1.233047e+002 seconds

Paralelization test (3 workers): iteration 2

Test took 1.233821e+002 seconds

Paralelization test (3 workers): iteration 3

Test took 1.228636e+002 seconds

Paralelization test (3 workers): iteration 4

Test took 1.203328e+002 seconds

Paralelization test (3 workers): iteration 5

Test took 1.203512e+002 seconds

Paralelization test (3 workers): iteration 6

Test took 1.207012e+002 seconds

Paralelization test (3 workers): iteration 7

Test took 1.212253e+002 seconds

Paralelization test (3 workers): iteration 8

Test took 1.210576e+002 seconds

Paralelization test (3 workers): iteration 9

Test took 1.209943e+002 seconds

Paralelization test (3 workers): iteration 10

Test took 1.208156e+002 seconds

Mean time for paralelized function (3 workers):

1.215028e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 1.183733e+002 seconds

Paralelization test (4 workers): iteration 2

Test took 1.163429e+002 seconds

Paralelization test (4 workers): iteration 3

Test took 1.152734e+002 seconds

Paralelization test (4 workers): iteration 4

107

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Test took 1.146903e+002 seconds

Paralelization test (4 workers): iteration 5

Test took 1.198839e+002 seconds

Paralelization test (4 workers): iteration 6

Test took 1.170180e+002 seconds

Paralelization test (4 workers): iteration 7

Test took 1.162003e+002 seconds

Paralelization test (4 workers): iteration 8

Test took 1.171831e+002 seconds

Paralelization test (4 workers): iteration 9

Test took 1.156322e+002 seconds

Paralelization test (4 workers): iteration 10

Test took 1.161668e+002 seconds

Mean time for paralelized function (4 workers):

1.166764e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.

Paralelization test (6 workers): iteration 1

Test took 1.390532e+002 seconds

Paralelization test (6 workers): iteration 2

Test took 1.283608e+002 seconds

Paralelization test (6 workers): iteration 3

Test took 1.188729e+002 seconds

Paralelization test (6 workers): iteration 4

Test took 1.183490e+002 seconds

Paralelization test (6 workers): iteration 5

Test took 1.196858e+002 seconds

Paralelization test (6 workers): iteration 6

Test took 1.197489e+002 seconds

Paralelization test (6 workers): iteration 7

Test took 1.180056e+002 seconds

Paralelization test (6 workers): iteration 8

Test took 1.185418e+002 seconds

Paralelization test (6 workers): iteration 9

Test took 1.172187e+002 seconds

Paralelization test (6 workers): iteration 10

Test took 1.189358e+002 seconds

Mean time for paralelized function (6 workers):

1.216772e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 1.774428e+002 seconds

Paralelization test (8 workers): iteration 2

Test took 2.689427e+002 seconds

Paralelization test (8 workers): iteration 3

Test took 1.739691e+002 seconds

Paralelization test (8 workers): iteration 4

Test took 2.794010e+002 seconds

Paralelization test (8 workers): iteration 5

Test took 2.403673e+002 seconds

Paralelization test (8 workers): iteration 6

Test took 1.349971e+002 seconds

Paralelization test (8 workers): iteration 7

Test took 2.210490e+002 seconds

Paralelization test (8 workers): iteration 8

Test took 3.013925e+002 seconds

Paralelization test (8 workers): iteration 9

Test took 2.500660e+002 seconds

Paralelization test (8 workers): iteration 10

Test took 1.736543e+002 seconds

Mean time for paralelized function (8 workers):

2.221282e+002 secondsSending a stop signal to

all the labs ... stopped.

108

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Galileo E5a I vs Galileo E5a I

Size of Desired Code: 50 * 10232 = 511600

Size of Interfering Code: 50 * 10232 = 511600

Number of operations: 102320000

Original function test: iteration 1

Test took 5.181407e+001 seconds

Original function test: iteration 2

Test took 5.033496e+001 seconds

Original function test: iteration 3

Test took 5.028617e+001 seconds

Original function test: iteration 4

Test took 5.029432e+001 seconds

Original function test: iteration 5

Test took 5.028732e+001 seconds

Original function test: iteration 6

Test took 5.028755e+001 seconds

Original function test: iteration 7

Test took 5.049856e+001 seconds

Original function test: iteration 8

Test took 5.038577e+001 seconds

Original function test: iteration 9

Test took 5.036845e+001 seconds

Original function test: iteration 10

Test took 5.036897e+001 seconds

Mean time for original function: 5.049261e+001

seconds

Vectorization test: iteration 1

Test took 4.641750e+001 seconds

Vectorization test: iteration 2

Test took 4.654186e+001 seconds

Vectorization test: iteration 3

Test took 4.644476e+001 seconds

Vectorization test: iteration 4

Test took 4.646189e+001 seconds

Vectorization test: iteration 5

Test took 4.663313e+001 seconds

Vectorization test: iteration 6

Test took 4.650950e+001 seconds

Vectorization test: iteration 7

Test took 4.657960e+001 seconds

Vectorization test: iteration 8

Test took 4.652975e+001 seconds

Vectorization test: iteration 9

Test took 4.642395e+001 seconds

Vectorization test: iteration 10

Test took 4.659548e+001 seconds

Mean time for vectorized function: 4.651374e+001

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 5.642238e+001 seconds

Paralelization test (1 workers): iteration 2

Test took 5.606958e+001 seconds

Paralelization test (1 workers): iteration 3

Test took 5.606929e+001 seconds

Paralelization test (1 workers): iteration 4

Test took 5.610106e+001 seconds

Paralelization test (1 workers): iteration 5

Test took 5.611729e+001 seconds

Paralelization test (1 workers): iteration 6

Test took 5.611052e+001 seconds

Paralelization test (1 workers): iteration 7

Test took 5.609363e+001 seconds

109

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Paralelization test (1 workers): iteration 8

Test took 5.609663e+001 seconds

Paralelization test (1 workers): iteration 9

Test took 5.612877e+001 seconds

Paralelization test (1 workers): iteration 10

Test took 5.613337e+001 seconds

Mean time for paralelized function (1 workers):

5.613425e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 3.439288e+001 seconds

Paralelization test (2 workers): iteration 2

Test took 3.391733e+001 seconds

Paralelization test (2 workers): iteration 3

Test took 3.332480e+001 seconds

Paralelization test (2 workers): iteration 4

Test took 3.377591e+001 seconds

Paralelization test (2 workers): iteration 5

Test took 3.363847e+001 seconds

Paralelization test (2 workers): iteration 6

Test took 3.407207e+001 seconds

Paralelization test (2 workers): iteration 7

Test took 3.383244e+001 seconds

Paralelization test (2 workers): iteration 8

Test took 3.310050e+001 seconds

Paralelization test (2 workers): iteration 9

Test took 3.362828e+001 seconds

Paralelization test (2 workers): iteration 10

Test took 3.392414e+001 seconds

Mean time for paralelized function (2 workers):

3.376068e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 2.880869e+001 seconds

Paralelization test (3 workers): iteration 2

Test took 2.843752e+001 seconds

Paralelization test (3 workers): iteration 3

Test took 2.814015e+001 seconds

Paralelization test (3 workers): iteration 4

Test took 2.823386e+001 seconds

Paralelization test (3 workers): iteration 5

Test took 2.875909e+001 seconds

Paralelization test (3 workers): iteration 6

Test took 2.874833e+001 seconds

Paralelization test (3 workers): iteration 7

Test took 2.844465e+001 seconds

Paralelization test (3 workers): iteration 8

Test took 2.800746e+001 seconds

Paralelization test (3 workers): iteration 9

Test took 2.830076e+001 seconds

Paralelization test (3 workers): iteration 10

Test took 2.835741e+001 seconds

Mean time for paralelized function (3 workers):

2.842379e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 2.553546e+001 seconds

Paralelization test (4 workers): iteration 2

Test took 2.558699e+001 seconds

Paralelization test (4 workers): iteration 3

Test took 2.686825e+001 seconds

Paralelization test (4 workers): iteration 4

110

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Test took 2.616707e+001 seconds

Paralelization test (4 workers): iteration 5

Test took 2.737150e+001 seconds

Paralelization test (4 workers): iteration 6

Test took 2.707540e+001 seconds

Paralelization test (4 workers): iteration 7

Test took 2.551317e+001 seconds

Paralelization test (4 workers): iteration 8

Test took 2.749703e+001 seconds

Paralelization test (4 workers): iteration 9

Test took 2.626759e+001 seconds

Paralelization test (4 workers): iteration 10

Test took 2.543616e+001 seconds

Mean time for paralelized function (4 workers):

2.633186e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.

Paralelization test (6 workers): iteration 1

Test took 2.689319e+001 seconds

Paralelization test (6 workers): iteration 2

Test took 2.633820e+001 seconds

Paralelization test (6 workers): iteration 3

Test took 2.739175e+001 seconds

Paralelization test (6 workers): iteration 4

Test took 2.643628e+001 seconds

Paralelization test (6 workers): iteration 5

Test took 2.730447e+001 seconds

Paralelization test (6 workers): iteration 6

Test took 2.723840e+001 seconds

Paralelization test (6 workers): iteration 7

Test took 2.582240e+001 seconds

Paralelization test (6 workers): iteration 8

Test took 2.677658e+001 seconds

Paralelization test (6 workers): iteration 9

Test took 2.700600e+001 seconds

Paralelization test (6 workers): iteration 10

Test took 2.512888e+001 seconds

Mean time for paralelized function (6 workers):

2.663361e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 8.331908e+001 seconds

Paralelization test (8 workers): iteration 2

Test took 3.430029e+001 seconds

Paralelization test (8 workers): iteration 3

Test took 3.000163e+001 seconds

Paralelization test (8 workers): iteration 4

Test took 3.057931e+001 seconds

Paralelization test (8 workers): iteration 5

Test took 2.996362e+001 seconds

Paralelization test (8 workers): iteration 6

Test took 2.863304e+001 seconds

Paralelization test (8 workers): iteration 7

Test took 2.643518e+001 seconds

Paralelization test (8 workers): iteration 8

Test took 2.878104e+001 seconds

Paralelization test (8 workers): iteration 9

Test took 2.937917e+001 seconds

Paralelization test (8 workers): iteration 10

Test took 2.645141e+001 seconds

Mean time for paralelized function (8 workers):

3.478438e+001 secondsSending a stop signal to

all the labs ... stopped.

111

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Galileo E5a I vs GPS L1C

Size of Desired Code: 50 * 10232 = 511600

Size of Interfering Code: 126 * 10230 = 1288980

Number of operations: 386694000

Original function test: iteration 1

Test took 1.743246e+002 seconds

Original function test: iteration 2

Test took 1.720125e+002 seconds

Original function test: iteration 3

Test took 1.716207e+002 seconds

Original function test: iteration 4

Test took 1.714756e+002 seconds

Original function test: iteration 5

Test took 1.716048e+002 seconds

Original function test: iteration 6

Test took 1.717638e+002 seconds

Original function test: iteration 7

Test took 1.717011e+002 seconds

Original function test: iteration 8

Test took 1.716649e+002 seconds

Original function test: iteration 9

Test took 1.724741e+002 seconds

Original function test: iteration 10

Test took 1.718331e+002 seconds

Mean time for original function: 1.720475e+002

seconds

Vectorization test: iteration 1

Test took 1.699758e+002 seconds

Vectorization test: iteration 2

Test took 1.698246e+002 seconds

Vectorization test: iteration 3

Test took 1.709799e+002 seconds

Vectorization test: iteration 4

Test took 1.721551e+002 seconds

Vectorization test: iteration 5

Test took 1.702890e+002 seconds

Vectorization test: iteration 6

Test took 1.707572e+002 seconds

Vectorization test: iteration 7

Test took 1.702272e+002 seconds

Vectorization test: iteration 8

Test took 1.704596e+002 seconds

Vectorization test: iteration 9

Test took 1.705003e+002 seconds

Vectorization test: iteration 10

Test took 1.704313e+002 seconds

Mean time for vectorized function: 1.705600e+002

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 2.051717e+002 seconds

Paralelization test (1 workers): iteration 2

Test took 2.069255e+002 seconds

Paralelization test (1 workers): iteration 3

Test took 2.068237e+002 seconds

Paralelization test (1 workers): iteration 4

Test took 2.065896e+002 seconds

Paralelization test (1 workers): iteration 5

Test took 2.071652e+002 seconds

Paralelization test (1 workers): iteration 6

Test took 2.068305e+002 seconds

Paralelization test (1 workers): iteration 7

Test took 2.070528e+002 seconds

112

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Paralelization test (1 workers): iteration 8

Test took 2.069012e+002 seconds

Paralelization test (1 workers): iteration 9

Test took 2.067473e+002 seconds

Paralelization test (1 workers): iteration 10

Test took 2.068076e+002 seconds

Mean time for paralelized function (1 workers):

2.067015e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 1.209077e+002 seconds

Paralelization test (2 workers): iteration 2

Test took 1.205673e+002 seconds

Paralelization test (2 workers): iteration 3

Test took 1.187218e+002 seconds

Paralelization test (2 workers): iteration 4

Test took 1.224316e+002 seconds

Paralelization test (2 workers): iteration 5

Test took 1.216477e+002 seconds

Paralelization test (2 workers): iteration 6

Test took 1.166889e+002 seconds

Paralelization test (2 workers): iteration 7

Test took 1.172392e+002 seconds

Paralelization test (2 workers): iteration 8

Test took 1.163622e+002 seconds

Paralelization test (2 workers): iteration 9

Test took 1.178131e+002 seconds

Paralelization test (2 workers): iteration 10

Test took 1.176245e+002 seconds

Mean time for paralelized function (2 workers):

1.190004e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 9.529279e+001 seconds

Paralelization test (3 workers): iteration 2

Test took 9.675169e+001 seconds

Paralelization test (3 workers): iteration 3

Test took 9.530056e+001 seconds

Paralelization test (3 workers): iteration 4

Test took 9.716705e+001 seconds

Paralelization test (3 workers): iteration 5

Test took 9.776782e+001 seconds

Paralelization test (3 workers): iteration 6

Test took 9.534260e+001 seconds

Paralelization test (3 workers): iteration 7

Test took 9.533364e+001 seconds

Paralelization test (3 workers): iteration 8

Test took 9.590262e+001 seconds

Paralelization test (3 workers): iteration 9

Test took 9.483588e+001 seconds

Paralelization test (3 workers): iteration 10

Test took 9.652747e+001 seconds

Mean time for paralelized function (3 workers):

9.602221e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 9.178305e+001 seconds

Paralelization test (4 workers): iteration 2

Test took 9.230038e+001 seconds

Paralelization test (4 workers): iteration 3

Test took 9.290222e+001 seconds

Paralelization test (4 workers): iteration 4

113

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Test took 8.885372e+001 seconds

Paralelization test (4 workers): iteration 5

Test took 9.019942e+001 seconds

Paralelization test (4 workers): iteration 6

Test took 9.186076e+001 seconds

Paralelization test (4 workers): iteration 7

Test took 9.077629e+001 seconds

Paralelization test (4 workers): iteration 8

Test took 9.153314e+001 seconds

Paralelization test (4 workers): iteration 9

Test took 9.027877e+001 seconds

Paralelization test (4 workers): iteration 10

Test took 9.210942e+001 seconds

Mean time for paralelized function (4 workers):

9.125972e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.

Paralelization test (6 workers): iteration 1

Test took 9.650475e+001 seconds

Paralelization test (6 workers): iteration 2

Test took 1.308240e+002 seconds

Paralelization test (6 workers): iteration 3

Test took 9.437661e+001 seconds

Paralelization test (6 workers): iteration 4

Test took 9.143342e+001 seconds

Paralelization test (6 workers): iteration 5

Test took 9.214043e+001 seconds

Paralelization test (6 workers): iteration 6

Test took 9.049071e+001 seconds

Paralelization test (6 workers): iteration 7

Test took 9.147385e+001 seconds

Paralelization test (6 workers): iteration 8

Test took 9.066120e+001 seconds

Paralelization test (6 workers): iteration 9

Test took 9.141388e+001 seconds

Paralelization test (6 workers): iteration 10

Test took 8.976024e+001 seconds

Mean time for paralelized function (6 workers):

9.590791e+001 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 1.461562e+002 seconds

Paralelization test (8 workers): iteration 2

Test took 1.491652e+002 seconds

Paralelization test (8 workers): iteration 3

Test took 1.767950e+002 seconds

Paralelization test (8 workers): iteration 4

Test took 1.142838e+002 seconds

Paralelization test (8 workers): iteration 5

Test took 1.681327e+002 seconds

Paralelization test (8 workers): iteration 6

Test took 1.479509e+002 seconds

Paralelization test (8 workers): iteration 7

Test took 1.147910e+002 seconds

Paralelization test (8 workers): iteration 8

Test took 1.750491e+002 seconds

Paralelization test (8 workers): iteration 9

Test took 2.422198e+002 seconds

Paralelization test (8 workers): iteration 10

Test took 1.733375e+002 seconds

Mean time for paralelized function (8 workers):

1.607881e+002 seconds

>> Sending a stop signal to all the labs ... stopped.

114

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

GPS L1C vs GPS L1C

Size of Desired Code: 126 * 10230 = 1288980

Size of Interfering Code: 126 * 10230 = 1288980

Number of operations: 649645920

Original function test: iteration 1

Test took 2.875912e+002 seconds

Original function test: iteration 2

Test took 2.873912e+002 seconds

Original function test: iteration 3

Test took 2.888755e+002 seconds

Original function test: iteration 4

Test took 2.870722e+002 seconds

Original function test: iteration 5

Test took 2.874815e+002 seconds

Original function test: iteration 6

Test took 2.876207e+002 seconds

Original function test: iteration 7

Test took 2.865208e+002 seconds

Original function test: iteration 8

Test took 2.874344e+002 seconds

Original function test: iteration 9

Test took 2.888326e+002 seconds

Original function test: iteration 10

Test took 2.872084e+002 seconds

Mean time for original function: 2.876028e+002

seconds

Vectorization test: iteration 1

Test took 2.794826e+002 seconds

Vectorization test: iteration 2

Test took 2.793366e+002 seconds

Vectorization test: iteration 3

Test took 2.793242e+002 seconds

Vectorization test: iteration 4

Test took 2.792545e+002 seconds

Vectorization test: iteration 5

Test took 2.797900e+002 seconds

Vectorization test: iteration 6

Test took 2.799262e+002 seconds

Vectorization test: iteration 7

Test took 2.796397e+002 seconds

Vectorization test: iteration 8

Test took 2.795021e+002 seconds

Vectorization test: iteration 9

Test took 2.793599e+002 seconds

Vectorization test: iteration 10

Test took 2.792613e+002 seconds

Mean time for vectorized function: 2.794877e+002

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 3.361030e+002 seconds

Paralelization test (1 workers): iteration 2

Test took 3.367494e+002 seconds

Paralelization test (1 workers): iteration 3

Test took 3.367094e+002 seconds

Paralelization test (1 workers): iteration 4

Test took 3.366485e+002 seconds

Paralelization test (1 workers): iteration 5

Test took 3.369333e+002 seconds

Paralelization test (1 workers): iteration 6

Test took 3.366385e+002 seconds

Paralelization test (1 workers): iteration 7

Test took 3.366464e+002 seconds

115

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Paralelization test (1 workers): iteration 8

Test took 3.364871e+002 seconds

Paralelization test (1 workers): iteration 9

Test took 3.364841e+002 seconds

Paralelization test (1 workers): iteration 10

Test took 3.365270e+002 seconds

Mean time for paralelized function (1 workers):

3.365927e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 1.965989e+002 seconds

Paralelization test (2 workers): iteration 2

Test took 1.978874e+002 seconds

Paralelization test (2 workers): iteration 3

Test took 1.969736e+002 seconds

Paralelization test (2 workers): iteration 4

Test took 1.941810e+002 seconds

Paralelization test (2 workers): iteration 5

Test took 2.034588e+002 seconds

Paralelization test (2 workers): iteration 6

Test took 1.964041e+002 seconds

Paralelization test (2 workers): iteration 7

Test took 1.942174e+002 seconds

Paralelization test (2 workers): iteration 8

Test took 1.940118e+002 seconds

Paralelization test (2 workers): iteration 9

Test took 1.959643e+002 seconds

Paralelization test (2 workers): iteration 10

Test took 1.948945e+002 seconds

Mean time for paralelized function (2 workers):

1.964592e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 1.535526e+002 seconds

Paralelization test (3 workers): iteration 2

Test took 1.532379e+002 seconds

Paralelization test (3 workers): iteration 3

Test took 1.527538e+002 seconds

Paralelization test (3 workers): iteration 4

Test took 1.544432e+002 seconds

Paralelization test (3 workers): iteration 5

Test took 1.521218e+002 seconds

Paralelization test (3 workers): iteration 6

Test took 1.535084e+002 seconds

Paralelization test (3 workers): iteration 7

Test took 1.539611e+002 seconds

Paralelization test (3 workers): iteration 8

Test took 1.523736e+002 seconds

Paralelization test (3 workers): iteration 9

Test took 1.532851e+002 seconds

Paralelization test (3 workers): iteration 10

Test took 1.580339e+002 seconds

Mean time for paralelized function (3 workers):

1.537271e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 1.444728e+002 seconds

Paralelization test (4 workers): iteration 2

Test took 1.471491e+002 seconds

Paralelization test (4 workers): iteration 3

Test took 1.442544e+002 seconds

Paralelization test (4 workers): iteration 4

116

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

Test took 1.438231e+002 seconds

Paralelization test (4 workers): iteration 5

Test took 1.448373e+002 seconds

Paralelization test (4 workers): iteration 6

Test took 1.443854e+002 seconds

Paralelization test (4 workers): iteration 7

Test took 1.440917e+002 seconds

Paralelization test (4 workers): iteration 8

Test took 1.462611e+002 seconds

Paralelization test (4 workers): iteration 9

Test took 1.442672e+002 seconds

Paralelization test (4 workers): iteration 10

Test took 1.439537e+002 seconds

Mean time for paralelized function (4 workers):

1.447496e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.

Paralelization test (6 workers): iteration 1

Test took 1.486149e+002 seconds

Paralelization test (6 workers): iteration 2

Test took 1.548810e+002 seconds

Paralelization test (6 workers): iteration 3

Test took 1.478249e+002 seconds

Paralelization test (6 workers): iteration 4

Test took 1.442996e+002 seconds

Paralelization test (6 workers): iteration 5

Test took 1.463060e+002 seconds

Paralelization test (6 workers): iteration 6

Test took 1.443569e+002 seconds

Paralelization test (6 workers): iteration 7

Test took 1.437713e+002 seconds

Paralelization test (6 workers): iteration 8

Test took 1.442409e+002 seconds

Paralelization test (6 workers): iteration 9

Test took 1.470929e+002 seconds

Paralelization test (6 workers): iteration 10

Test took 1.444710e+002 seconds

Mean time for paralelized function (6 workers):

1.465859e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 1.936859e+002 seconds

Paralelization test (8 workers): iteration 2

Test took 2.675851e+002 seconds

Paralelization test (8 workers): iteration 3

Test took 2.699862e+002 seconds

Paralelization test (8 workers): iteration 4

Test took 3.678074e+002 seconds

Paralelization test (8 workers): iteration 5

Test took 2.543949e+002 seconds

Paralelization test (8 workers): iteration 6

Test took 2.659066e+002 seconds

Paralelization test (8 workers): iteration 7

Test took 2.379135e+002 seconds

Paralelization test (8 workers): iteration 8

Test took 2.636676e+002 seconds

Paralelization test (8 workers): iteration 9

Test took 2.913445e+002 seconds

Paralelization test (8 workers): iteration 10

Test took 2.359072e+002 seconds

Mean time for paralelized function (8 workers):

2.648199e+002 seconds

117

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

GPS L1C vs Galileo E1OS

Size of Desired Code: 126 * 10230 = 1288980

Size of Interfering Code: 100 * 4092 = 409200

Number of operations: 824947200

Original function test: iteration 1

Test took 3.670512e+002 seconds

Vectorization test: iteration 1

Test took 3.429448e+002 seconds

Mean time for vectorized function: 3.429448e+002

seconds

Starting matlabpool using the 'local' configuration ...

connected to 1 labs.

Paralelization test (1 workers): iteration 1

Test took 4.152047e+002 seconds

Mean time for paralelized function (1 workers):

4.152047e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 2 labs.

Paralelization test (2 workers): iteration 1

Test took 2.386202e+002 seconds

Mean time for paralelized function (2 workers):

2.386202e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 3 labs.

Paralelization test (3 workers): iteration 1

Test took 1.886200e+002 seconds

Mean time for paralelized function (3 workers):

1.886200e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 4 labs.

Paralelization test (4 workers): iteration 1

Test took 1.755502e+002 seconds

Mean time for paralelized function (4 workers):

1.755502e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 6 labs.

Paralelization test (6 workers): iteration 1

Test took 1.768018e+002 seconds

Mean time for paralelized function (6 workers):

1.768018e+002 seconds

Sending a stop signal to all the labs ... stopped.

Starting matlabpool using the 'local' configuration ...

connected to 8 labs.

Paralelization test (8 workers): iteration 1

Test took 3.252544e+002 seconds

Mean time for paralelized function (8 workers):

3.252544e+002 seconds

>>

118

Anexo D: Optimización del Cálculo de la Correlación Cruzada de Códigos PRN

119

ANEXO E

Glosario

A continuación se definen y explican algunos términos con los que el lector puede no

estar familiarizado con el objetivo de facilitar la comprensión de esta memoria

CAJA BLANCA

Elemento estudiado desde el punto de vista de su mecánica interna, al contrario que la

perspectiva de caja negra, esta se centra en observar cómo el modelo hace las cosas en

lugar de qué es lo que hace.

CAJA NEGRA

Elemento estudiado desde el punto de vista de las entradas que recibe y las salidas o

respuestas que produce, sin la obligación de conocer su funcionamiento interno. Lo

importante de una caja negra es lo bien definidas que estén sus entradas y salidas, es decir,

su interfaz, no el cómo funciona.

CONTROL

Un control es un objeto que reside en un panel accesible para el usuario y que permite

visualizar información

Los controles en este proyecto, son aquellos generados mediante las sentencias

uicontrol o javacomponent e integrados en el propio MATLAB o la biblioteca Swing de

Java.

120

Anexo E: Glosario

EXPRESIÓN REGULAR

Expresión que describe un conjunto de cadenas sin enumerar sus elementos. Una expresión

regular es una forma de representar a los lenguajes regulares (finitos o infinitos) y se

construye utilizando caracteres del alfabeto sobre el cual se define el lenguaje. Sirven para

buscar un texto dentro de otro de una forma sofisticada.

EXTREME PROGRAMMING

Es un enfoque de la ingeniería de software formulado por Kent Beck, autor del primer libro

sobre la materia, Extreme Programming Explained: Embrace Change (1999).

La programación extrema se diferencia de las metodologías tradicionales principalmente en

que pone más énfasis en la adaptabilidad que en la previsibilidad considerarandose como la

adopción de las mejores metodologías de desarrollo de acuerdo a lo que se pretende llevar a

cabo con el proyecto, y aplicarlo de manera dinámica durante el ciclo de vida del software.

La simplicidad y la comunicación son extraordinariamente complementarias. Con más

comunicación resulta más fácil identificar qué se debe y qué no se debe hacer. Cuanto más

simple es el sistema, menos tendrá que comunicar sobre éste, lo que lleva a una

comunicación más completa, especialmente si se puede reducir el equipo de

programadores.

FIGURA DE MÉRITO

Cantidad utilizada para caracterizar el desempeño de un dispositivo, sistema o método, en

comparación con sus alternativas. En ingeniería, figuras de mérito se definen a

menudo para determinados materiales o dispositivos con el fin de determinar su utilidad

relativa para una aplicación.

FRAMEWORK

Estructura conceptual y tecnológica de soporte que permite que otro proyecto

de software pueda ser organizado y desarrollado. Puede incluir soporte

de programas, bibliotecas y un lenguaje interpretado entre otros programas para ayudar a

desarrollar y unir los diferentes componentes de un proyecto.

121

Anexo E: Glosario

HANDLE

Un tipo particular de punteros "inteligentes". Los handles son utilizados cuando

un programa hace referencia a bloques de memoria u objetos controlados por otros

sistemas, tales como una base de datos o un sistema operativo.

LEY DE AMDAHL

Indica la mejora de rendimiento que se puede esperar incrementando los elementos de

procesamiento. La ley de Amdahl acota de una forma muy sencilla el incremento de

prestaciones sostenido en un sistema como consecuencia de la mejora de una o varias

partes del mismo.

Esta mejora representada como una mejora del rendimiento, va a depender tanto de la

calidad de las mejoras efectuadas como del tiempo que éstas utilicen. De forma abreviada

podemos decir que este incremento de prestaciones dará la medida de cómo un equipo

rinde en relación con un rendimiento previo después de efectuar en él una o varias mejoras.

PSEUDO-RANDOM NOISE

Es una señal similar al ruido que satisface una o más de las pruebas estándar de

aleatoriedad estadística. A pesar de no presentar un patrón definido a priori, el pseudo-

random noise consiste en una secuencia determinada de pulsos, repetida durante n

periodos.

SCRUM

Scrum es un modelo de referencia, un marco de trabajo para la gestión y desarrollo de

software basada en un proceso iterativo e incremental, que puede tomarse como punto de

partida para definir el proceso de desarrollo que se ejecutará durante un proyecto,

comúnmente en entornos basados en el desarrollo ágil de software.

Scrum permite la creación de equipos autoorganizados impulsando la co-localización de

todos los miembros del equipo, y la comunicación verbal entre todos los miembros y

disciplinas involucrados en el proyecto.

Adopta una aproximación pragmática, aceptando que el problema no puede ser

completamente entendido o definido, y centrándose en maximizar la capacidad del equipo de

entregar rápidamente y responder a requisitos emergentes.

122

Anexo E: Glosario

SIGNALS Y SLOTS

Es parte del lenguaje de programación introducido en Qt, lo que facilita su implementación

con el patrón Observer, evitando así el código repetitivo.

El concepto fundamental es que los widgets tienen la capacidad de enviar señales que

contengan información sobre el evento, la cual es recibida por otros controles de uso de

funciones especiales denominados slots.

El sistema signal/slot encaja perfectamente con el diseño de las interfaces gráficas para

usuarios, así como para su aplicación en E/S asíncronas.

No es necesario generar códigos de registros ya que MetaQt es un objeto perteneciente al

compilador MOC, quien genera automáticamente la infraestructura necesaria.

VECTORIZACIÓN

En programación, se trata de una técnica mediante la cual se transforman bucles iterativos

en operaciones matriciales.

