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Abstract. The interpretation of user facial expressions @y useful method
for emotional sensing and constitutes an indisgdaspart of affective HCI
designs. This paper proposes an effective systencdiotinuous facial affect
recognition from videos. The system operates irom@tisuous 2D emotional
space, characterized by evaluation and activatiotofs, enabling a wide range
of intermediary affective states to be worked wittmakes use, for each video
frame, of a classification method able to outpw éxact location (2D point
coordinates) of the still facial image in that spalt also exploits the Kalman
filtering technique to control the 2D point moverhafong the affective space
over time and to improve the robustness of the aeethy predicting its future
locations in cases of temporal facial occlusionsinaccurate tracking. The
system has been tuned with an extensive univeestabedse and preliminary
evaluation results are very encouraging.

Keywords: Affective computing, facial expression analysis.

1 Introduction

Facial expressions are the most powerful, naturdl direct way used by humans to
communicate affective states. Thus, the intergoetaif facial expressions is the most
common method used for emotional detection and $oam indispensable part of
affective Human Computer Interface designs.

Facial expressions are often evaluated by clasgjfgtill face images into one of
the six universal “basic” emotions or categoriespmsed by Ekman [1] which
include “happiness”, “sadness”, “fear”, “anger”jisdust” and “surprise” [2-4]. There
are a few tentative efforts to detect non-basiedi¥e states, such as “fatigue”,
“interested”, “thinking”, “confused” or “frustratéd>s, 6]. In any case, this categorical
approach, where emotions are a mere list of lafels,to describe the wide range of
emotions that occur in daily communication settirggsl ignores the intensity of
emotions.

To overcome the problems cited above, some rese@rslich as Whissell [7] and
Plutchik [8], prefer to view affective states notdépendent but rather related to one
another in a systematic manner. They consider em®tas a continuous 2D space
whose dimensions are evaluation and activation. éMaduation dimension measures



how a human feels, from positive to negative. Thevation dimension measures
whether humans are more or less likely to take sactien under the emotional state,
from active to passive.

For many years, a lot of effort was dedicated tmgmize facial expressions in still
images. Given that humans inherently display fagmbtions following a continuous
temporal pattern [9], more recently attention hasrbshifted towards sensing facial
affect from video sequences. The study of facigiressions’ dynamics reinforces the
limitations of categorical approach, since it reygrgts a discrete list of emotions with
no real link between them and has no algebra: egergtion must be studied and
recognized independently. Dimensional approach ighmmore able to deal with
variations in emotional states over time, sincesiuth cases changing from one
universal emotion label to another would not makelmsense in real life scenarios.

Continuous dimensional annotation is best suitedafannotated sample has more
than one emotional apex or blended emotions [1Q] this can be very time
consuming, with a very poor inter-annotator agregnad can make difficult the
posterior evaluation when working with long videds intermediate approach is to
annotate only certain moments in time (key-framégg key-frames, selected by the
user which expressed the emotions, will usuallyrespond to the onset, apex and
offset of an emotion and any other moment that uker may find interesting
especially in case of blended emotions which dpads through the neutral state.

This paper proposes a method for continuous fadfatt recognition from video.
The system operates in a 2D emotional space, dkaim by evaluation and
activation factors. It combines a classificationtimoel able to output, frame per frame,
the exact location (2D point coordinates) of theveh facial image and a Kalman
filtering technique that controls the 2D point mment over time through an
“emotional kinematics” model. In that way, the gystworks with a wide range of
intermediary affective states and is able to defineontinuous emotional path that
characterizes the affective video sequence. Thiersys capable of analyzing any
subject, male or female of any age and ethnicitg, laas been validated considering
human assessment.

The structure of the paper is the following: Sett describes the method for
facial images classification in a continuous 2Deefifve space. In Section 3 the step
from still images to video sequences through thmd®onal kinematics” model is
explained in detail and Section 4 comprises thelesions and future work.

2 A Novel Method for Facial Images Classification in a
Continuous 2D Affective Space

This section describes a novel method for sensimgtiens from still facial images in

a continuous 2D affective space. The facial imagessification method starts with a
classification mechanism in discrete emotional gatties that intelligently combines
different classifiers simultaneously to obtain anfidence value to each Ekman
universal emotional category (Section 2.1). Thems toutput is subsequently
expanded in order to be able to work in a contisuemotional space and thus to
consider intermediate emotional states (Sectioh 2.2



2.1 Classifiers Combination for Discrete Emotional Classification

The starting point of the system is the method féaial emotional classification
presented in authors’ previous work [4]. The inpotshis method are the variations
with respect to the “neutral” face of the set afi&h distances and angles shown in
Fig. 1. In that way, the face is modeled in a cotaponally simple way without
losing relevant information about the facial exgres. The facial points that allow to
calculate the facial distances and angles are rddtathanks to faceAPI [11], a
commercial real-time facial feature tracking pragra

Fig. 1. System's facial inputs.

This initial method combines through a majorityingtstrategy [4] the five most
commonly used classifiers in the literature (Maliér Perceptron, RIPPER, SVM,
Naive Bayes and C4.5) to finally assign at its atigpconfidence value CV(Eof the
facial expression to each of Ekman’s six emotiolus Pneutral”. It has been well-
tuned and tested with a total of 1500 static frasedected from the apex of the video
sequences from the well-known FG-NET [12] and MMI3] facial expression
databases. Therefore, it has been validated wiginge database of individuals of all
races, ages and genders.

Table 1 shows the confusion matrix obtained wheplyampg the initial discrete
facial emotional classification method to the 15@0ected static frames. As can be
observed, the success rates for the “neutral”,”jégisgust”, “surprise”, “disgust”
and “fear” are very high (81.48%-97.62%). The lotwesult is for “sadness”, which
is confused with the “neutral” emotion on 20% otasions, due to the similarity of
their facial expressions.



Table 1. Confusion matrix obtained after applying the déseremotional classification method
to the 1500 selected static frames.

is clins?ftifg;; Disgust| Joy Anger | Fear |Sadness| Neutral [ Surprise
Disgust 94,12%| 0,00%| 2,94%| 2,94%| 0,00%| 0,00%| 0,00%
Joy 2,38%)| 97,62%| 0,00%| 0,00%| 0,00%| 0,00%| 0,00%
Anger 7,41%| 0,00%|81,48%] 0,00%| 7,41%| 3,70%| 0,00%
Fear 3,70%| 0,00%| 0,00%|85,19%| 3,70%| 0,00%| 7,41%
Sadness 6,67%| 0,00%| 6,67%| 0,00%| 66,67%| 20,00%| 0,00%
Neutral 0,00%] 0,00%| 2,00%] 2,00%| 2,00%]| 94,00%| 0,00%
Surprise 0,00%| 0,00%| 0,00%| 2,22%| 0,00%| 2,22%| 95,56%)

In his work, Plutchik [8] assigned “emotional oriation” values to a series of
affect words. For example, two similar terms (lff@yful” and “cheerful”) have very
close emotional orientation values while two antonys words (like “joyful” and
“sad”) have very distant values, in which case d¢bikt speaks of “emotional
incompatibility”. According to Plutchik’s findingsthe obtained results can be
considered positive as emotions with distant “eorl orientation” values (such as
“disgust” and “joy” or “neutral” and “surprise”) arconfused on less than 2.5% of
occasions and incompatible emotions (such as “sadrend “joy” or “fear” and
“anger”) are never confused.

2.2 Emotional Mapping to a 2D Continuous Affective Space

To enrich the emotional output information from gystem in terms of intermediate

emotions, one of the most influential evaluatiotivation 2D models has been used:
that proposed by Whissell. In her study, Whisssdiigns a pair of values <evaluation,

activation> to each of the approximately 9000 gselk@ffective words that make up

her “Dictionary of Affect in Language” [7]. Figur2 shows the position of some of

these words in the evaluation-activation space. fighé step is to build an emotional

mapping so that an expressional face image caegresented as a point on this plane
whose coordinates (x,y) characterize the emotiopgnty of that face.
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Fig. 2. Simplified Whissell's evaluation-activation space.

It can be seen that the words corresponding to eaEfkman’s six emotions have
a specific location (xy;) in the Whissell space (in bold in Fig. 2). Than& this, the
output of the classifiers (confidence value of theial expression to each emotional
category) can be mapped onto the space. This emabtimapping is carried out
considering each of Ekman’s six basic emotions frhesitral” as weighted points in
the evaluation-activation space. The weights arsigasd depending on the
confidence value CV(Eobtained for each emotion. The final coordingtey) of a
given image are calculated as the centre of masthefseven weighted points
following equation (1) (see Fig. 3). In this walye output of the system is enriched
with a larger number of intermediate emotionalestat
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Fig. 3. Diagram for obtaining the location of a facial ineatp the 2D emotional space. A
graphic illustration of the 2D emotional mappinggess is included as an example.

Fig. 4 shows several images of the database tin bearest label in the Whissell
space after applying the proposed emotional mapping

Sorrowful

Panicky Disagreeable Confused Worried Discouraged

Fig. 4. Example of images from the database with theirestdabel in the Whissell space after
applying the 2D emotional mapping.



3 From Still Images to Video Sequences through 2D Emotional
Kinematics Modeling

As pointed out in the introduction, humans inhdserdisplay facial emotions
following a continuous temporal pattern. With thiarting postulate and thanks to the
use of the 2-dimensional description of affect, shhsupports continuous emotional
input, an emotional facial video sequence can be@i as a point (corresponding to
the location of a particular affective state indith moving through this space over
time. In that way, the different positions takenthg point (one per frame) and its
velocity over time can be related mathematicallg amodeled, finally obtaining an
“emotional path” in the 2D space that reflects ititely the emotional progress of the
user throughout the video. In Section 3.1, a Kalffilggring technique is proposed to
model the “emotional kinematics” of that point wheroving along the Whissell
space and thus enable to both smooth its trajeetoayimprove the robustness of the
method by predicting its future locations (e.gcases of temporal facial occlusions or
inaccurate tracking). Section 3.2 presents theltseesbtained when applying the
emotional kinematics model to different complexedadsequences.

3.1 Modeling Emotional Kinematics with a Simple Kalman Filter

For real-time “emotional kinematics” control, theelwknown Kalman filter is
exploited [14]. Kalman filters are widely used hetliterature for estimation problems
ranging from target tracking to function approxirmoat Their purpose is to estimate a
system'’s state by combining an inexact (noisy)dast with an inexact measurement
of that state, so that the most weight is givethtovalue with the least uncertainty at
each timd.

Analogously to classical mechanics, the “emotidia¢matics” of the point in the
Whissell space (x-position, y-position, x-velocdgd y-velocity) are modeled as the
system’s state in the Kalman framework at tim&he output of the 2D classification
system described in Section 2 is modeled as thsunement of the system’s state. In
this way, the Kalman iterative estimation proceiwat- follows the well-known
recursive equations detailed in Kalman’s work [1ddn be applied to the recorded
user’'s emotional video sequence, so that eachtidaraorresponds to a new video
frame (i.e. to a new sample of the computed ematigath). For the algorithm
initialization at ¢, the predicted initial condition is set equal be tmeasured initial
state and the 2D point is assumed to have nulkitglo

One of the main advantages of using Kalman filtar the 2D point emotional
trajectory modeling is that it can be used to tiersmall occlusions or inaccurate
tracking. As pointed out in Section 2.1, the ingdatial feature points of the
classification method are obtained thanks to themercial facial tracker faceAPI
[11]. In general, existing facial trackers do nadrfprm the detection with high
accuracy: most of them are limited in terms of ositins, fast movements, large head
rotations, lighting, beards, glasses, etc. AlthotagieAPI deals with these problems
quiet robustly, on some occasions its performas@mor, especially when working in
real-time. For that reason, its measurements irectudonfidence weighting, from 0 to
1, allowing the acceptability of the tracking qtyvlio be determined. Thanks to it,



when a low level of confidence is detected (lovamt 0.5), the measurement will not
be used and only the filter prediction will be takaes the 2D point position.

3.2 Experimental Results

In order to demonstrate the potential of the pregdgmotional kinematics” model, it
has been tested with a set of emotionally compleros sequences, recorded in a
natural (unsupervised) setting. These videos argEx owing to three main factors:

» An average user’'s home setup was used. A VGA résalwebcam placed
above the screen is used, with no special illunonacausing shadows to
appear in some cases. In addition, the user platemet covering the
entire scene, reduces the actual resolution ofsitial image.

« Different emotions are displayed contiguously, eéast of the usual
neutral-emotional-apex>neutral pattern exhibited in the databases, so
emotions such as surprise and joy can be expres#hdut neutral
periods between them.

» Some facial occlusions occur due to the user cogédris/her face or looking
away during a short period of time, causing thekireg program to lose
the facial features. In these cases, only the piiedi from the Kalman
filter is used, demonstrating the potential of teenotional kinematics”
filtering technique.

15 videos from three different users were testadging from 20 to 70 seconds
from which a total of 127 key-frames were extradieeévaluate different key-points
of the emotional path. The key-frames were selebtedhe user who recorded the
video, looking for each of the emotional apex aadtral points.

These key-points were annotated in the Whisseltesphanks to 18 volunteers.
The collected evaluation data have been used tnedafregion where each image is
considered to be correctly located. The algoritrsaduto compute the shape of the
region is based on Minimum Volume Ellipsoids (MV&Nd follows the algorithm
described by Kumar and Yildrim [15]. MVE looks ftite ellipsoid with the smallest
volume that covers a set of data points. The obthMVEs are used for evaluating
results at four different levels:

1. Ellipse criteria. If the point detected by the system is inside ¢lipse, it is
considered a success; otherwise it is a failure.

2. Quadrant criteria. The output is considered to be correctly locatatif in the
same quadrant of the Whissell space as the eliipste.

3. Evaluation axis criteria. The system output is a success if situated irstimee
semi-axis (positive or negative) of the evaluatexis as the ellipse centre. This
information is especially useful for extracting thesitive or negative polarity of the
shown facial expression.

4. Activation axis criteria. The same criteria projected to the activation .aktds
information is relevant for measuring whether tkerus more or less likely to take an
action under the emotional state.



The results obtained following the different evdilora strategies are presented in
Table 2. As can be seen, the success rate is 61ir9@8€ most restrictive case, i.e.

with ellipse criteria. It rises to 84.92% when cidesing the activation axis criteria.

Table 2. Results obtained in an uncontrolled environment.

Ellipse Quadrant Evaluation axis| Activation axis
criteria criteria criteria criteria
| Success Rate 61.90% 74.60% 79.37% 84.92%

disappointed
disg

annoyed ;

an

terrified

furipus,
ger
panicl

dighGreeable

astogfhed amazed

pleased

cheerful
enthusiastic

ecstatic

amused

hopeful

Activation
o

despairing

serene

 satisfied

delighted

sadn :

»»»»»»»»

Evaluation

Fig. 5. “Emotional kinematics” model response during th#edént affective phases of the
video and the occlusion period. In dashed red, iemat trajectory without Kalman filtering; In
solid blue, reconstructed emotional trajectory gsf@lman filter.

4 Conclusionsand Future Work

This paper describes an effective system for canotis facial affect recognition from
videos. The inputs are a set of facial parametanglés and distances between facial
points) that enable the face to be modeled in apcdationally simple way without
losing relevant information about the facial expies. The system makes use, frame
per frame, of a classification method able to outine exact location (2D point
coordinates) of a still facial image in the Whissmlaluation-activation space. The
temporal consistency and robustness (to occlustwnmaccurate tracking) of the
recognized affective sequence is ensured by a Kalfiteering technique that,
through an “emotional kinematics” model, controfe t2D point trajectory when
moving along the Whissell space.

The main distinguishing feature of our work complate others is that the output
does not simply provide a classification in ternfsaoset of emotionally discrete



labels, but goes further by extending the emotiamfakmation over an infinite range

of intermediate emotions and by allowing a contiumidynamic emotional trajectory

to be detected from complex affective video segesnénother noteworthy feature
of the work is that it has been tuned with an esiten database of 1500 images
showing individuals of different races and gendgving universal results with very

promising levels of correctness.
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Abstract—The success of affective interfaces lies in the fusion
of emotional information coming from different modalities. This
paper proposes a scalable methodology for fusing multiple
affect sensing modules, allowing the subsequent addition of new
modules without having to retrain the existing ones. It relies on a
2-dimensional affective model and is able to output a continuous
emotional path characterizing the user’s affective progress over
time.

Index Terms—Affective Computing, facial expression analysis,
multimodal recognition, sentiment analysis.

I. INTRODUCTION

Emotions are a fundamental component of human expe-
rience, cognition, perception, learning and communication.
For this reason, affect sensing is becoming an increasingly
popular research field for the enhancement of human-computer
interaction (HCI).

Natural human-human affective interaction is inherently
multimodal: people communicate emotions through multiple
channels such as facial expressions, gestures, dialogues, etc.
Although several studies prove that multisensory fusion (e.g.
audio, visual, physiological responses...) improves the robust-
ness and accuracy of machine analysis of human emotion [1]-
[3], most emotional recognition works still focus on increasing
the success rates in sensing emotions from a single channel
rather than merging complementary information across chan-
nels [1]. Multimodal fusion of different affective channels is
still in its initial stage and far from being solved [4]. There
are several problems that make it an especially difficult task.

One of these problems is the definition of a reliable strat-
egy to fuse the affective information coming from different
sources with very different time scales, metric levels and
temporal structures. Existing fusion strategies follow three
main streams: feature-level fusion, decision-level fusion and
hybrid fusion. Feature-level fusion combines the data (fea-
tures) extracted from each channel in a joint vector before
classification. Although several works have reported good
performances when fusing different modalities at a feature-
level [3], [5], [6] this strategy becomes more challenging
as the number of input features increases and they are of
very different natures (different timing, metrics, etc.). Adding
new modalities implies a big effort to synchronize the dif-
ferent inputs and retrain the whole classification system. To
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overcome these difficulties, most researchers choose decision-
level fusion, in which the inputs coming from each modality
are modeled and classified independently, and these unimodal
recognition results are integrated at the end of the process by
the use of suitable criteria (expert rules, simple operators such
as majority vote, sum, product, adaptation of weights, etc.).

Many studies have demonstrated the advantage of decision-
level fusion over feature-level fusion, due to the uncorrelated
errors from different classifiers [7] and the fact that time and
feature dependence are abstracted. Various -mainly bimodal-
decision-level fusion methods have been proposed in the liter-
ature [8]-[10], but optimal fusion designs are still undefined.
Most available multimodal recognizers have designed ad-
hoc solutions for fusing information coming from a set of
given modalities but cannot accept new modalities without
re-defining and/or re-training the whole system. Moreover, in
general they are not adaptive to the input quality and therefore
do not consider eventual changes in the reliability of the
different information channels. Decision-level methods allow
the integration of different algorithms without knowing their
inner workings, which can be common when one or more of
them are based on commercial software.

The hybrid methods try to combine the flexibility of the
decision-level methods, by maintaining different classifiers for
each modality, while using part of the information from every
sensor in each modality, and taking advantage, when there is a
statistical dependence between modalities, as in feature-level
methods. For example in [11] a Multidimensional Dynamic
Time Warping algorithm is used to improve speech recognition
by fusing the audio channel with mouth gestures from a
video channel. The common drawbacks of these methods with
feature-level ones is the need to retrain the whole system when
adding a new channel.

Another key factor that directly affects multimodal fusion
is related to the chosen output description level of affect.
Affect is often classified into one of the six universal “basic”
emotions or categories proposed by Ekman [12] which include
“happiness”, “sadness”, “fear”, “anger”, “disgust” and “sur-
prise”. There have been a few tentative efforts to detect non-
basic affective states, such as “fatigue”, “anxiety”, “confused”
or “frustrated” [3], [13]. In any case, this categorical approach,
where emotions are a mere list of labels, fails to describe the



wide range and intensities of emotions that occur in daily
communication settings. Especially in the case of emotion
transitions that do not go through “neutral” state, for example
a transition from “surprise” to “angry” can not be represented
with only two labels. To overcome these problems, some
researchers such as Whissell [14] and Plutchik [15] prefer to
view affective states not independently but rather related to
one another in a systematic manner. They consider emotions
as a continuous 2D space whose dimensions are evaluation and
activation. The evaluation dimension measures how a human
feels, from positive to negative. The activation dimension
measures whether humans are more or less likely to take some
action under the emotional state, from active to passive. Unlike
the categorical approach, the dimensional approach describes
an infinite number of affective states and intensities.

The multimodal fusion problem reinforces the limitations
of categorical descriptions of affect. Discrete emotional labels
have no real link between them and, at the fusion stage,
every studied emotion must be recognized independently. The
dimensional approach is best suited to deal with variations
in emotional states over time. It provides an algebra and
allows the emotional inputs coming from different modalities
to be related mathematically. This is especially useful when
integrating modules with different time-scales.

However, very few works have chosen a dimensional de-
scription level, and the few that do are more related to
the design of synthetic faces [16], affective video content
annotation [17] or psychological studies [18] than to recog-
nition of emotions. This is mainly due to the current lack
of (both unimodal and multimodal) databases annotated in
terms of evaluation-activation dimensions. Some interesting
dimensional databases are publically available [19], [20], but,
in comparison to categorical ones, they are limited in terms of
number of modalities (in general, they explore audio and/or
video channels exclusively), annotators, subjects, samples, etc.
Moreover, manual dimensional annotation of ground truth is
very time consuming and unreliable, since a large labeling
variation between different human raters is reported when
working with the dimensional approach [21]. For these rea-
sons, although working at the dimensional level would be
more appropriate to face the problem of multimodal fusion, for
training and validation of the individual modules to be fused
using databases with categorical annotations is more reliable.
In this way the introduction of noise into the training (due to
scarce or poor data) and consequently the building of systems
that are not very robust can be avoided.

Furthermore, it can not be forgotten that human emotions
are usually continous and smooth over time. For a person
is rare to go from “angry” to “happy” without slowly pass-
ing trough a number of intermediate states over time. This
behaviour is modelled thanks to the “emotional kinematics”
concept and the use of kalman filter. This way, the presented
method will have a continous emotional output not only in the
2D space but also in time.

This paper proposes an original and scalable methodology
for fusing multiple affect recognition modules. In order to let

the modules be defined in a robust and reliable way by means
of existing categorical databases, each module is assumed to
classify in terms of its own list of emotional labels. Whatever
these labels are, the method is able to map each module’s
output to a continuous evaluation-activation space, fuse the
different sources of affective information over time through
mathematical formulation and obtain a 2D dynamic emotional
path representing the user’s affective progress as final output.
To show the potential of the proposed methodology, we
applied it to an Instant Messaging tool able to feed 3 different
affect recognition modules that sense emotions by analyzing
user’s facial expressions, typed-in text and “emoticons”, re-
spectively. Thanks to the scalability of the method, the IM
tool would be easily improved by adding new modules, such
as voice emotion recognition, without having to retrain the
whole system each time a new module is added. This article
aims to be a first step towards bringing a new perspective to
the open issue of emotional multimodal fusion and to open
the door to further discussion.

The structure of the paper is the following. Section II
details the proposed multimodal affective fusion methodology.
In section III this methodology is put into practice using
the Instant Messaging tool. Finally, Section IV sets out our
conclusions and a description of future work.

II. A SCALABLE MULTIMODAL FUSION METHODOLOGY
FOR CONTINUOUS AFFECT SENSING

This section details a general methodology for fusing
multiple affective recognition modules and obtaining, as an
output, a global 2D dynamic emotional path in the evaluation-
activation space. It is assumed that every module 7 to be
fused outputs a list -of one or more- discrete emotional labels
characterizing the affective stimulus recognized at a given
time to;. The possible output labels can be different for each
module ¢. In this way, the modules’ performances are maxi-
mized since unimodal databases annotated in categorical terms
are -to date- more complete and reliable than dimensional
and/or multimodal ones, allowing the individual modules to
be better trained and validated. The proposed methodology is
sufficiently scalable to add new modules coming from new
channels without having to retrain the whole system. Fig. 1
shows the general fusion scheme that will be explained step
by step in sections II-A, II-C and II-C.

A. Emotional Mapping to a Continuous 2D Affective Space

The first step of the methodology is to build an emotional
mapping so that the output of each module ¢ at a given time
to; can be represented as a two-dimensional coordinates vector
pi(toi) = [zi(to:); yi(toi)] on the evaluation-activation space
that characterizes the affective properties extracted from that
module.

To achieve this mapping, one of the most influen-
tial evaluation-activation 2D models is used: the Whissell
space. In her study, Whissell assigns a pair of values
(evaluation; activation) to each of the approximately 9000
affective words that make up her “Dictionary of Affect in
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Fig. 1. Continuous multimodal affective fusion methodology.

Language” [14]. Fig. 2 shows the position of some of these
words in the evaluation-activation space. The majority of
categorical modules described in the literature provide as
output at the time tp; (corresponding to the detection of
the affective stimulus) a list of emotional labels with some
associated weights. Whatever the labels used, each one has a
specific location, i.e. an associated 2D point, in the Whissell
space. The components (x;(to;); yi(to;)) of the coordinates
vector p;(to;) are then calculated as the barycenter of those
weighted points.

B. Temporal Fusion of Individual Modules: Obtaining a Con-
tinuous 2D Emotional Path

Humans inherently display emotions following a continuous
temporal pattern [22]. With this starting postulate, and thanks
to the use of evaluation-activation space, the user’s emotional
progress can be viewed as a point (corresponding to the loca-
tion of a particular affective state in time ¢) moving through
this space over time. The second step of the methodology aims
to compute this emotional path by fusing the different p;(¢o;)
vectors obtained from each modality over time.

The main difficulty to achieve multimodal fusion is related
to the fact that t(; affective stimulus arrival times may be
known a-priori or not, and may be very different for each
module. To overcome this problem, the following equation is
proposed to calculate the overall affective response p(t) =
[(t); y(t)] at any arbitrary time ¢:
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Fig. 2. Simplified Whissell’s evaluation-activation space.

Z a;(t)pi(tos)

p(t) = —
Z Q5 (t)

where N is the number of fused modalities, %y; is the arrival
time of the last affective stimulus detected by module 7 and
a;(t) are the 0 to 1 weights (or confidences) that can be
assigned to each modality ¢ at a given arbitrary time ¢.

In this way, the overall fused affective response is the
sum of each modality’s contribution p;(tp;) modulated by
the «;(t) coefficents over time. Therefore, the definition of
a;(t) is especially important given that it governs the temporal
behaviour of the fusion. As suggested by Picard [23], human
affective responses are analogous to systems with additive
responses with decay where, in the absence of input, the
response decays back to a baseline. Following this analogy,
the «v;(t) weights are defined as:

ey

bici(t()i)eidi(tito) t>e¢

0 t<e @

aq(t) =
where:
« b, is the general confidence that can be given to module ¢
(e.g. the general recognition success rate of the module).
e ¢;(to;) is the temporal confidence that can be assigned to
the last output of module ¢ due to external factors (i.e.
not classification issues themselves). For instance, due to
sensor errors if dealing with physiological signals, or due
to facial tracking problems if studying facial expressions
(such as occlusions, lighting conditions, etc.).
o d; is the rate of decay (in s~!) that indicates how quickly
an emotional stimulus decreases over time for module .
¢ ¢ is the threshold below which the contribution of a mod-
ule is assumed to disappear. Since exponential functions
tend to zero at infinity but never completely disappear, €



indicates the «;(t) value below which the contribution of
a module is small enough to be considered non-existent.

By defining the aforementioned parameters for each module
¢ and applying (1) and (2), the emotional path that character-
izes the user’s affective progress over time can be computed
by calculating successive p(t) values with any desired time
between samples At. In other words, the emotional path is
progressively built by adding p(tx) samples to its trajectory,
where t; = kAt (with k integer).

C. “Emotional Kinematics” Path Filtering

Two main problems threaten the emotional path calculation
process:

1) If the contribution of every fused module is null at a
given sample time, i.e. every «;(t) is null at that time,
the denominator in (1) is zero and the emotional path
sample cannot be computed. Examples of cases in which
the contribution of a module is null could be the failure
of the connection of a sensor of physiological signals,
the appearance of an occlusion in the facial/postural
tracking system, or simply when the module is not
reactivated before its response decays completely.

2) Large “emotional jumps” in the Whissell space can
appear if emotional conflicts arise (e.g. if the distance
between two close coordinates vectors p;(to;) is long).

To solve both problems, a Kalman filtering technique is
applied to the computed emotional path. By definition, Kalman
filters estimate a system’s state by combining an inexact
(noisy) forecast with an inexact measurement of that state,
so that the biggest weight is given to the value with the least
uncertainty at each time £. In this way, on the one hand, the
Kalman filter serves to smooth the emotional path’s trajectory
and thus prevent large “emotional jumps”. On the other hand,
situations in which the sum of «;(t) is null are prevented by
letting the filter prediction output be taken as the 2D point
position for those samples.

In an analogy to classical mechanics, the “emotional kine-
matics” of the 2D point moving through the Whissell space
(position and velocity) are modelled as the system’s state
X} in the Kalman framework, ie. X; = [z,y, v, v}
representing x-position, y-position, x-velocity and y-velocity
at time ¢;. The successive emotional path samples p(t)) are
modelled as the measurement of the system’s state. The two
well-known main equations involved in the Kalman filtering
technique are defined in the following way:

1) Process equation:

Xit1 = Frp160:Xp + wy

T 1 01 0 x

Y 10 1 01 y

Va “lo o1 0w | T
Uy | 00 0 1 vy |,

where Fj41; is the transition matrix taking the state Xj
from time k£ to time k£ + 1 (i.e. from one emotional path

sample to the next). The process noise wy, is assumed to be
additive, white, Gaussian and with zero mean. As suggested
in the literature [24], its covariance matrix @y is defined as:

Qr =0’

ONI- O wl=
V= O wli= O
O = O
— O O

where o2 is the intensity of a white continuous-time Gaus-
sian noise process modeling the 2D point acceleration (which
has not been considered as an element in the system’s state).
2) Measurement equation:

Y = Hp X}, + 2

x
em] [1 0 0 0 "
[ymh_[OloO]k Va e
vy |,

where Y. is the measurable at time k£ and Hj is the
measurement matrix. The measurement noise zj, i1s assumed to
be additive, white, Gaussian, with zero mean and uncorrelated
with the process noise wy. Its covariance matrix Ry is the
identity matrix:
A0
55

so that it is assumed that the x and y measurements contain
independent errors with A units? variance.

Once the process and measurement equations are defined,
the Kalman iterative estimation process can be applied to the
emotional path, so that each iteration corresponds to a new
sample.

|

III. MULTIMODAL FUSION APPLICATION TO INSTANT
MESSAGING

Instant Messaging (IM) is a widely used form of real-time
text-based communication between people using computers
or other devices. Advanced IM software clients also include
enhanced modes of communication, such as live voice or
video calling. As users typically experience problems in accu-
rately expressing their emotions in IM text conversations (e.g.
statements intended to be ironic may be taken seriously, or
humorous remarks may not be interpreted exactly as intended),
popular IM programs have resorted to providing mechanisms
referred to as “smileys” or “emoticons” seeking to overcome
the IM systems’ lack of expressiveness.

This section aims to show the potential of the multimodal
affective fusion methodology presented in section II through
the use of an Instant Messaging tool that combines different
communication modalities (text, video and “emoticons”), each
one with very different time scales. Section III-A describes the
IM tool. In Section III-B the modules that extract emotional
information from each modality are presented. Section III-C
explains how the methodology has been tuned to achieve



multimodal affective fusion. Finally, section III-D presents
the experimental results obtained when applying the fusion
methodology to an IM emotional conversation.

A. Instant Messaging Tool Description

Although any publicly available IM tool could be used (e.g.
Skype [25] or Yahoo! Messenger [26]), a simple ad-hoc IM
tool has been designed. It allows two persons to communicate
via text, live video and “emoticons”. Fig. 3 shows a snapshot
of the tool during a conversation. The tool enables access in
real-time to the following:

1) The introduced text contents, when the user presses
the “enter” key (i.e. sends the text contents to his/her
interlocutor).

2) The inserted “emoticons”, when the user presses the
“enter” key.

3) Each recorded remote user video frame (with a video
rate f=25fps).

This information will serve as input to the three different

affect recognition modules presented in section III-B.

B. Fusion Modalities

Three different modules are used to extract emotional in-
formation from the IM tool. Each one explores a different IM
tool modality (text, “emoticons” or video) and makes use of
a different set of output emotional categories:

1) Module 1: text analysis module. To extract affective
cues from user’s typed-in text, the “Sentic Computing”
sentiment analysis paradigm presented in the authors’
previous work [27], [28] is exploited. By using Artificial
Intelligence and Semantic Web techniques, this module
is able to process natural language texts to extract a
“sentic vector” containing a list of up to 24 emotional
labels. “Sentic Computing” enables the analysis of doc-
uments not only on the page or paragraph-level but even
on the sentence level (i.e. IM dialogues level), obtaining
a very high precision (73%) and significantly good recall
and F-measure rates (65% and 68% respectively) at the
output.

2) Module 2: “emoticon’ module. “Emoticons” are direct
affective information from the user. For this reason,
this module simply outputs the list of emotional labels
associated to the inserted “emoticons”. Fig. 4 shows the
16 available “emoticons” and their corresponding labels,
designed to be a good representation of each affective
state [29]. Although the use of emoticons could be seen
as a form of self-report and therefore making irrelevant
the rest of modules, not all people use emoticons in
the same way nor with the same frequency. There are
differences in use, for example, depending on the user’s
gender [30], [31] and the cultural differences impose
the level of contextual information required for commu-
nication [32]. Even more, a user could not be willing
to directly express his/her emotional state. For these
reasons emoticons can not be the only emotional sensor,
but when used, they provide a reliable information,

helping to solve complex emotional misunderstandings
for example when sarcasm is present.

3) Module 3: facial expression analysis module. This
module, also presented elsewhere by the authors [33],
studies each frame of the recorded video sequence to au-
tomatically classify the user’s facial expression in terms
of Ekman’s six universal emotions (plus the neutral one),
giving a membership confidence value to each output
emotional category. The classification mechanism inputs
are a set of facial distances and angles between feature
points of the face (eyebrows, mouth and eyes) extracted
thanks to a real-time facial feature tracking program.
The module is capable of analysing any subject, male or
female, of any age and ethnicity with an average success
rate of 87%.
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Fig. 4. “Emoticons” designed for the Instant Messaging tool and their

corresponding emotional labels.

C. Multimodal Fusion Methodology Tuning

This section describes, step by step, how the multimodal
fusion methodology is tuned to fuse the 3 different affect
recognition modules in an optimal way.

1) Step 1: Emotional Mapping to the Whissell space:
Every output label extracted by the text analysis module, the
“emoticon” module and the facial expression analyzer has a
specific location in the Whissell space. Thanks to this, the first
step of the fusion methodology (section II-A) can be applied
and vectors p;(t,;) can be obtained each time a given module
1 outputs affective information at time ¢,; (with ¢ comprised
between 1 and 3).

2) Step 2: Temporal Fusion of Individual Modalities: 1t is
interesting to notice that vectors p;(to;) coming from the text
analysis and “emoticons” modules can arrive at any time to;,
unknown a-priori. However, the facial expression module out-
puts its p3(t03) vectors with a known frequency, determined
by the video frame rate f. For this reason, and given that the
facial expression module is the fastest acquisition module, the
emotional path’s time between samples is assigned to At = %
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Affective Instant Messaging - Conversation with James
on Options Help
James says (19:53):

Hi Sue!
Sue says (19:53):

Hi James!
James says (19:54):

Guess what? I bought a new car last week. @
James says (19:54):

It's a gorgeous new sports car!
Sue says (19:55):

Really? That's so great! @
James says (19:56):

But I also have some bad news...
James says (19:56):

I had a little accident and the car has a dent. @
Sue says (19:57):

Oh God... are you ok?
James says(19:57):

Yes, yes, don’t worry. I wasn't hurt, everything is okay. @
Sue says (19:58):

Gesgepe®

Fig. 3.

The next step towards achieving the temporal fusion of the
different modules (section II-B) is assigning a value to the
parameters that define the «i(t) weights, namely b;, ¢;(to;),
d and e. Table 1 summarizes the values assigned to each
parameter for each modality and the reasons for their choice.
It should be noted that it is especially difficult to determine
the value of the different di given that there are no works
in the literature providing data for this parameter. Therefore
it has been decided to establish the values empirically. Once
the parameters are assigned, the emotional path calculation
process can be started following (1) and (2).

3) Step 3: “Emotional Kinematics” Filtering: Finally, the
“emotional kinematics” filtering technique (section II-C) is
iteratively applied in real-time each time a new sample is
added to the computed emotional path. As in most of the
works that make use of Kalman filtering, parameters ¢ and
A are established empirically. An optimal response has been
achieved for o = 0.5 units/s? and A = 0.5 units?.

D. Experimental Results

In order to demonstrate the potential of the presented fusion
methodology, it has been applied to the Instant Messaging
conversation shown in Fig. 3 (James’ side). This conversation
is emotionally complex owing to the fact that contrasting
emotions are displayed contiguously (at first, James is excited
and happy about having bought a wonderful new car and

Snapshot of the Instant Messaging tool during a conversation.
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number of 24 weighted . “ l,’,
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by = 0.65 The maximum bz = 0.87
The general general condicence The general
General . . . .
confidence is value is assigned conficence is
confidence . . . .
b assigned the value of since emoticons are assigned the value of
i the module’s recall the direct expression the module’s general
rate. of user’s affective success rate
state.
c3(to3) is assigned
to the tracking
_ _ quality confidence
Temporal ei(tor) = ca(toz2) = 1 weighting, from 0 to
The temporal confidence is assigned ;
confidence . 1, provided by the
constant value 1 since the modules do not .
c;i(toi) facial feature
depend on external factors. .
tracking program for
each analyzed video
frame.
Decay value di = dz = 0.0355~" Irrelevant since the
d; Value established empirically. emotional path
Threshold sample rate is equal
value = 0.1 - to the video frame
A Value established empirically. rate.

shortly afterwards becomes sad when telling Sue he has dented

it).

Fig. 5 shows the emotional paths obtained when applying
the methodology to each individual module separately (i.e. the

TABLE I

TEMPORAL FUSION PARAMETERS
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Emotional paths obtained when applying the methodology to each individual module separately without “emotional kinematics” filtering. Square

markers inidicate the arrival time of an emotional stimulus (not shown for facial expression module for figure clarity reasons).
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Fig. 6. Continuous emotional path obtained when applying the multimodal fusion methodology to James’ Instant Messaging conversation shown in Fig. 3,
without using “emotional kinematics” filtering (a), and using “emotional kinematics” filtering (b).

modules are not fused, only the contribution of one module
is considered) without using “emotional kinematics” filtering.
At first sight, the timing differences between modalities are
striking: the facial expressions module’s input stimuli are
much more numerous than those of the text and “emoticons”,
making the latter’s emotional paths look more linear. Another
noteworthy aspect is that the facial expression module’s emo-
tional path calculation is interrupted during several seconds
(14s approximately) due to the appearance of a short facial
occlusion during the user’s emotional display, causing the
tracking program to temporarily lose the facial features.

Fig. 6 presents the continuous emotional path obtained
when applying the methodology to fuse the 3 modules, both
without (a) and with (b) the “emotional kinematics” filtering
step. As can be seen, the complexity of the user’s affective
progress is shown in a simple and efficient way. Different
modalities complement each other to obtain a more reliable
result. Although the interruption period of the emotional path
calculation is considerably reduced with respect to the facial
expressions module’s individual case (from 14s to 6s approx-
imately), it still exists since both the text and “emoticons”
modules’ decay process reaches the threshold € before the
end of the facial occlusion, causing the «;(t) and ao(t)

weights to be null. Thanks to the use of the “emotional
kinematics” filtering technique, the path is smoothed and the
aforementioned temporal input information absence is solved
by letting the filter prediction output be taken as the 2D point
position for those samples.

IV. CONCLUSIONS AND FUTURE WORK

This paper describes an original and scalable methodol-
ogy for fusing multiple affective recognition modules. This
methodology is able to fuse any number of unimodal cate-
gorical modules, with very different time-scales and output
labels. This is possible thanks to the use of a 2-dimensional
evaluation-activation description of affect that provides the
system with mathematical capabilities to deal with temporal
emotional issues. The key step from a discrete perspective of
affect to a continuous emotional space is achieved by using the
Whissell dictionary, that allows the mapping of any emotional
label to a 2D point in the activation-evaluation space. The
decision-level fusion allows the use of different recognition
modules which could be integrated in our application as
plugins, developed independently from different researchers
and easily tuned together to maximize the recognition rate.
The proposed methodology outputs a 2D emotional path that



represents in a novel and efficient way the user’s detected
emotional progress over time. A Kalman filtering technique
controls the emotional path in real-time through an ‘“emo-
tional kinematics” model to ensure temporal consistency and
robustness. The methodology has been put into practice in
the context of Instant Messaging by fusing 3 different affect
sensing modalities (text, facial expressions and “emoticons”).
The first experimental results are promising and the potential
of the proposed methodology has been demonstrated. This
work brings a new perspective and invites further discussion
on the still open issue of multimodal affective fusion.

In general, evaluation issues are largely solved for cate-
gorical affect recognition approaches. Unimodal categorical
modules can be exhaustively evaluated thanks to the use
of large well-annotated databases and well-known measures
and methodologies (such as percentage of correctly classi-
fied instances, cross-validation, etc.). The evaluation of the
performance of dimensional approaches is, however, an open
and difficult issue to be solved. In the future, our work is
expected to focus in depth on evaluation issues applicable
to dimensional approaches and multimodality. The proposed
fusion methodology will be explored in different application
contexts, with different numbers and natures of modalities to
be fused.
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