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Abstract. The interpretation of user facial expressions is a very useful method 
for emotional sensing and constitutes an indispensable part of affective HCI 
designs. This paper proposes an effective system for continuous facial affect 
recognition from videos. The system operates in a continuous 2D emotional 
space, characterized by evaluation and activation factors, enabling a wide range 
of intermediary affective states to be worked with. It makes use, for each video 
frame, of a classification method able to output the exact location (2D point 
coordinates) of the still facial image in that space. It also exploits the Kalman 
filtering technique to control the 2D point movement along the affective space 
over time and to improve the robustness of the method by predicting its future 
locations in cases of temporal facial occlusions or inaccurate tracking. The 
system has been tuned with an extensive universal database and preliminary 
evaluation results are very encouraging. 
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1   Introduction 

Facial expressions are the most powerful, natural and direct way used by humans to 
communicate affective states. Thus, the interpretation of facial expressions is the most 
common method used for emotional detection and forms an indispensable part of 
affective Human Computer Interface designs.  

Facial expressions are often evaluated by classifying still face images into one of 
the six universal “basic” emotions or categories proposed by Ekman [1] which 
include “happiness”, “sadness”, “fear”, “anger”, “disgust” and “surprise” [2-4]. There 
are a few tentative efforts to detect non-basic affective states, such as “fatigue”, 
“interested”, “thinking”, “confused” or “frustrated” [5, 6]. In any case, this categorical 
approach, where emotions are a mere list of labels, fails to describe the wide range of 
emotions that occur in daily communication settings and ignores the intensity of 
emotions.  

To overcome the problems cited above, some researchers such as Whissell [7] and 
Plutchik [8], prefer to view affective states not independent but rather related to one 
another in a systematic manner. They consider emotions as a continuous 2D space 
whose dimensions are evaluation and activation. The evaluation dimension measures 



how a human feels, from positive to negative. The activation dimension measures 
whether humans are more or less likely to take some action under the emotional state, 
from active to passive.  

For many years, a lot of effort was dedicated to recognize facial expressions in still 
images. Given that humans inherently display facial emotions following a continuous 
temporal pattern [9], more recently attention has been shifted towards sensing facial 
affect from video sequences. The study of facial expressions’ dynamics reinforces the 
limitations of categorical approach, since it represents a discrete list of emotions with 
no real link between them and has no algebra: every emotion must be studied and 
recognized independently. Dimensional approach is much more able to deal with 
variations in emotional states over time, since in such cases changing from one 
universal emotion label to another would not make much sense in real life scenarios.  

Continuous dimensional annotation is best suited if the annotated sample has more 
than one emotional apex or blended emotions [10] but this can be very time 
consuming, with a very poor inter-annotator agreement and can make difficult the 
posterior evaluation when working with long videos. An intermediate approach is to 
annotate only certain moments in time (key-frames). The key-frames, selected by the 
user which expressed the emotions, will usually correspond to the onset, apex and 
offset of an emotion and any other moment that the user may find interesting 
especially in case of blended emotions which don’t pass through the neutral state. 

This paper proposes a method for continuous facial affect recognition from video. 
The system operates in a 2D emotional space, characterized by evaluation and 
activation factors. It combines a classification method able to output, frame per frame, 
the exact location (2D point coordinates) of the shown facial image and a Kalman 
filtering technique that controls the 2D point movement over time through an 
“emotional kinematics” model. In that way, the system works with a wide range of 
intermediary affective states and is able to define a continuous emotional path that 
characterizes the affective video sequence. The system is capable of analyzing any 
subject, male or female of any age and ethnicity, and has been validated considering 
human assessment. 

The structure of the paper is the following: Section 2 describes the method for 
facial images classification in a continuous 2D affective space. In Section 3 the step 
from still images to video sequences through the “emotional kinematics” model is 
explained in detail and Section 4 comprises the conclusions and future work. 

2   A Novel Method for Facial Images Classification in a 
Continuous 2D Affective Space 

This section describes a novel method for sensing emotions from still facial images in 
a continuous 2D affective space. The facial images classification method starts with a 
classification mechanism in discrete emotional categories that intelligently combines 
different classifiers simultaneously to obtain a confidence value to each Ekman 
universal emotional category (Section 2.1). Then, this output is subsequently 
expanded in order to be able to work in a continuous emotional space and thus to 
consider intermediate emotional states (Section 2.2). 



 2.1   Classifiers Combination for Discrete Emotional Classification 

The starting point of the system is the method for facial emotional classification 
presented in authors’ previous work [4]. The inputs to this method are the variations 
with respect to the “neutral” face of the set of facial distances and angles shown in 
Fig.  1. In that way, the face is modeled in a computationally simple way without 
losing relevant information about the facial expression. The facial points that allow to 
calculate the facial distances and angles are obtained thanks to faceAPI [11], a 
commercial real-time facial feature tracking program. 

 

 

Fig.  1. System's facial inputs. 

This initial method combines through a majority voting strategy [4] the five most 
commonly used classifiers in the literature (Multilayer Perceptron, RIPPER, SVM, 
Naïve Bayes and C4.5) to finally assign at its output a confidence value CV(Ei) of the 
facial expression to each of Ekman’s six emotions plus “neutral”. It has been well-
tuned and tested with a total of 1500 static frames selected from the apex of the video 
sequences from the well-known FG-NET [12] and MMI [13] facial expression 
databases. Therefore, it has been validated with a large database of individuals of all 
races, ages and genders. 

Table 1 shows the confusion matrix obtained when applying the initial discrete 
facial emotional classification method to the 1500 selected static frames. As can be 
observed, the success rates for the “neutral”, “joy”, “disgust”, “surprise”, “disgust” 
and “fear” are very high (81.48%-97.62%). The lowest result is for “sadness”, which 
is confused with the “neutral” emotion on 20% of occasions, due to the similarity of 
their facial expressions.  



Table 1.  Confusion matrix obtained after applying the discrete emotional classification method 
to the 1500 selected static frames. 

       Emotion --> 
is classified as

Disgust Joy Anger Fear Sadness Neutral Surprise

Disgust 94,12% 0,00% 2,94% 2,94% 0,00% 0,00% 0,00%

Joy 2,38% 97,62% 0,00% 0,00% 0,00% 0,00% 0,00%

Anger 7,41% 0,00% 81,48% 0,00% 7,41% 3,70% 0,00%

Fear 3,70% 0,00% 0,00% 85,19% 3,70% 0,00% 7,41%

Sadness 6,67% 0,00% 6,67% 0,00% 66,67% 20,00% 0,00%

Neutral 0,00% 0,00% 2,00% 2,00% 2,00% 94,00% 0,00%

Surprise 0,00% 0,00% 0,00% 2,22% 0,00% 2,22% 95,56%  
 

In his work, Plutchik [8] assigned “emotional orientation” values to a series of 
affect words. For example, two similar terms (like “joyful” and “cheerful”) have very 
close emotional orientation values while two antonymous words (like “joyful” and 
“sad”) have very distant values, in which case Plutchik speaks of “emotional 
incompatibility”. According to Plutchik’s findings, the obtained results can be 
considered positive as emotions with distant “emotional orientation” values (such as 
“disgust” and “joy” or “neutral” and “surprise”) are confused on less than 2.5% of 
occasions and incompatible emotions (such as “sadness” and “joy” or “fear” and 
“anger”) are never confused. 

2.2   Emotional Mapping to a 2D Continuous Affective Space 

To enrich the emotional output information from the system in terms of intermediate 
emotions, one of the most influential evaluation-activation 2D models has been used: 
that proposed by Whissell. In her study, Whissell assigns a pair of values <evaluation, 
activation> to each of the approximately 9000 selected affective words that make up 
her “Dictionary of Affect in Language” [7]. Figure 2 shows the position of some of 
these words in the evaluation-activation space. The next step is to build an emotional 
mapping so that an expressional face image can be represented as a point on this plane 
whose coordinates (x,y) characterize the emotion property of that face. 
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Fig.  2. Simplified Whissell's evaluation-activation space. 

It can be seen that the words corresponding to each of Ekman’s six emotions have 
a specific location (xi, yi) in the Whissell space (in bold in Fig.  2). Thanks to this, the 
output of the classifiers (confidence value of the facial expression to each emotional 
category) can be mapped onto the space. This emotional mapping is carried out 
considering each of Ekman’s six basic emotions plus “neutral” as weighted points in 
the evaluation-activation space. The weights are assigned depending on the 
confidence value CV(Ei) obtained for each emotion. The final coordinates (x,y) of a 
given image are calculated as the centre of mass of the seven weighted points 
following equation (1)  (see Fig.  3). In this way, the output of the system is enriched 
with a larger number of intermediate emotional states. 

 

(1) 



 

 

Fig.  3. Diagram for obtaining the location of a facial image in the 2D emotional space. A 
graphic illustration of the 2D emotional mapping process is included as an example. 

 
Fig.  4 shows several images of the database with their nearest label in the Whissell 
space after applying the proposed emotional mapping. 

 

 

Fig.  4. Example of images from the database with their nearest label in the Whissell space after 
applying the 2D emotional mapping. 



3   From Still Images to Video Sequences through 2D Emotional 
Kinematics Modeling 

As pointed out in the introduction, humans inherently display facial emotions 
following a continuous temporal pattern. With this starting postulate and thanks to the 
use of the 2-dimensional description of affect, which supports continuous emotional 
input, an emotional facial video sequence can be viewed as a point (corresponding to 
the location of a particular affective state in time t) moving through this space over 
time. In that way, the different positions taken by the point (one per frame) and its 
velocity over time can be related mathematically and modeled, finally obtaining an 
“emotional path” in the 2D space that reflects intuitively the emotional progress of the 
user throughout the video. In Section 3.1, a Kalman filtering technique is proposed to 
model the “emotional kinematics” of that point when moving along the Whissell 
space and thus enable to both smooth its trajectory and improve the robustness of the 
method by predicting its future locations (e.g. in cases of temporal facial occlusions or 
inaccurate tracking). Section 3.2 presents the results obtained when applying the 
emotional kinematics model to different complex video sequences. 

3.1   Modeling Emotional Kinematics with a Simple Kalman Filter 

For real-time “emotional kinematics” control, the well-known Kalman filter is 
exploited [14]. Kalman filters are widely used in the literature for estimation problems 
ranging from target tracking to function approximation. Their purpose is to estimate a 
system’s state by combining an inexact (noisy) forecast with an inexact measurement 
of that state, so that the most weight is given to the value with the least uncertainty at 
each time t. 

Analogously to classical mechanics, the “emotional kinematics” of the point in the 
Whissell space (x-position, y-position, x-velocity and y-velocity) are modeled as the 
system’s state in the Kalman framework at time tk. The output of the 2D classification 
system described in Section 2 is modeled as the measurement of the system’s state. In 
this way, the Kalman iterative estimation process -that follows the well-known 
recursive equations detailed in Kalman’s work [14]- can be applied to the recorded 
user’s emotional video sequence, so that each iteration corresponds to a new video 
frame (i.e. to a new sample of the computed emotional path). For the algorithm 
initialization at t0, the predicted initial condition is set equal to the measured initial 
state and the 2D point is assumed to have null velocity.  

One of the main advantages of using Kalman filter for the 2D point emotional 
trajectory modeling is that it can be used to tolerate small occlusions or inaccurate 
tracking. As pointed out in Section 2.1, the input facial feature points of the 
classification method are obtained thanks to the commercial facial tracker faceAPI 
[11]. In general, existing facial trackers do not perform the detection with high 
accuracy: most of them are limited in terms of occlusions, fast movements, large head 
rotations, lighting, beards, glasses, etc. Although faceAPI deals with these problems 
quiet robustly, on some occasions its performance is poor, especially when working in 
real-time. For that reason, its measurements include a confidence weighting, from 0 to 
1, allowing the acceptability of the tracking quality to be determined. Thanks to it, 



when a low level of confidence is detected (lower than 0.5), the measurement will not 
be used and only the filter prediction will be taken as the 2D point position. 

3.2   Experimental Results 

In order to demonstrate the potential of the proposed “emotional kinematics” model, it 
has been tested with a set of emotionally complex video sequences, recorded in a 
natural (unsupervised) setting. These videos are complex owing to three main factors: 

• An average user’s home setup was used. A VGA resolution webcam placed 
above the screen is used, with no special illumination, causing shadows to 
appear in some cases. In addition, the user placement, not covering the 
entire scene, reduces the actual resolution of the facial image. 

• Different emotions are displayed contiguously, instead of the usual 
neutral→emotional-apex→neutral pattern exhibited in the databases, so 
emotions such as surprise and joy can be expressed without neutral 
periods between them. 

• Some facial occlusions occur due to the user covering his/her face or looking 
away during a short period of time, causing the tracking program to lose 
the facial features. In these cases, only the prediction from the Kalman 
filter is used, demonstrating the potential of the “emotional kinematics” 
filtering technique. 

15 videos from three different users were tested, ranging from 20 to 70 seconds 
from which a total of 127 key-frames were extracted to evaluate different key-points 
of the emotional path. The key-frames were selected by the user who recorded the 
video, looking for each of the emotional apex and neutral points. 

These key-points were annotated in the Whissell space thanks to 18 volunteers. 
The collected evaluation data have been used to define a region where each image is 
considered to be correctly located. The algorithm used to compute the shape of the 
region is based on Minimum Volume Ellipsoids (MVE) and follows the algorithm 
described by Kumar and Yildrim [15]. MVE looks for the ellipsoid with the smallest 
volume that covers a set of data points. The obtained MVEs are used for evaluating 
results at four different levels: 

1. Ellipse criteria. If the point detected by the system is inside the ellipse, it is 
considered a success; otherwise it is a failure.  

2. Quadrant criteria. The output is considered to be correctly located if it is in the 
same quadrant of the Whissell space as the ellipse centre. 

3. Evaluation axis criteria. The system output is a success if situated in the same 
semi-axis (positive or negative) of the evaluation axis as the ellipse centre. This 
information is especially useful for extracting the positive or negative polarity of the 
shown facial expression. 

4. Activation axis criteria. The same criteria projected to the activation axis. This 
information is relevant for measuring whether the user is more or less likely to take an 
action under the emotional state. 

 



The results obtained following the different evaluation strategies are presented in 
Table 2. As can be seen, the success rate is 61.90% in the most restrictive case, i.e. 
with ellipse criteria. It rises to 84.92% when considering the activation axis criteria. 

Table 2.  Results obtained in an uncontrolled environment. 

 Ellipse 
criteria 

Quadrant 
criteria 

Evaluation axis 
criteria 

Activation axis 
criteria 

Success Rate 61.90% 74.60% 79.37% 84.92% 
 

 

Fig.  5. “Emotional kinematics” model response during the different affective phases of the 
video and the occlusion period. In dashed red, emotional trajectory without Kalman filtering; In 
solid blue, reconstructed emotional trajectory using Kalman filter. 

4   Conclusions and Future Work 

This paper describes an effective system for continuous facial affect recognition from 
videos. The inputs are a set of facial parameters (angles and distances between facial 
points) that enable the face to be modeled in a computationally simple way without 
losing relevant information about the facial expression. The system makes use, frame 
per frame, of a classification method able to output the exact location (2D point 
coordinates) of a still facial image in the Whissell evaluation-activation space. The 
temporal consistency and robustness (to occlusions or inaccurate tracking) of the 
recognized affective sequence is ensured by a Kalman filtering technique that, 
through an “emotional kinematics” model, controls the 2D point trajectory when 
moving along the Whissell space. 

The main distinguishing feature of our work compared to others is that the output 
does not simply provide a classification in terms of a set of emotionally discrete 



labels, but goes further by extending the emotional information over an infinite range 
of intermediate emotions and by allowing a continuous dynamic emotional trajectory 
to be detected from complex affective video sequences. Another noteworthy feature 
of the work is that it has been tuned with an extensive database of 1500 images 
showing individuals of different races and gender, giving universal results with very 
promising levels of correctness. 
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Abstract—The success of affective interfaces lies in the fusion
of emotional information coming from different modalities. This
paper proposes a scalable methodology for fusing multiple
affect sensing modules, allowing the subsequent addition of new
modules without having to retrain the existing ones. It relies on a
2-dimensional affective model and is able to output a continuous
emotional path characterizing the user’s affective progress over
time.

Index Terms—Affective Computing, facial expression analysis,
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I. INTRODUCTION

Emotions are a fundamental component of human expe-
rience, cognition, perception, learning and communication.
For this reason, affect sensing is becoming an increasingly
popular research field for the enhancement of human-computer
interaction (HCI).

Natural human-human affective interaction is inherently
multimodal: people communicate emotions through multiple
channels such as facial expressions, gestures, dialogues, etc.
Although several studies prove that multisensory fusion (e.g.
audio, visual, physiological responses...) improves the robust-
ness and accuracy of machine analysis of human emotion [1]–
[3], most emotional recognition works still focus on increasing
the success rates in sensing emotions from a single channel
rather than merging complementary information across chan-
nels [1]. Multimodal fusion of different affective channels is
still in its initial stage and far from being solved [4]. There
are several problems that make it an especially difficult task.

One of these problems is the definition of a reliable strat-
egy to fuse the affective information coming from different
sources with very different time scales, metric levels and
temporal structures. Existing fusion strategies follow three
main streams: feature-level fusion, decision-level fusion and
hybrid fusion. Feature-level fusion combines the data (fea-
tures) extracted from each channel in a joint vector before
classification. Although several works have reported good
performances when fusing different modalities at a feature-
level [3], [5], [6] this strategy becomes more challenging
as the number of input features increases and they are of
very different natures (different timing, metrics, etc.). Adding
new modalities implies a big effort to synchronize the dif-
ferent inputs and retrain the whole classification system. To

overcome these difficulties, most researchers choose decision-
level fusion, in which the inputs coming from each modality
are modeled and classified independently, and these unimodal
recognition results are integrated at the end of the process by
the use of suitable criteria (expert rules, simple operators such
as majority vote, sum, product, adaptation of weights, etc.).

Many studies have demonstrated the advantage of decision-
level fusion over feature-level fusion, due to the uncorrelated
errors from different classifiers [7] and the fact that time and
feature dependence are abstracted. Various -mainly bimodal-
decision-level fusion methods have been proposed in the liter-
ature [8]–[10], but optimal fusion designs are still undefined.
Most available multimodal recognizers have designed ad-
hoc solutions for fusing information coming from a set of
given modalities but cannot accept new modalities without
re-defining and/or re-training the whole system. Moreover, in
general they are not adaptive to the input quality and therefore
do not consider eventual changes in the reliability of the
different information channels. Decision-level methods allow
the integration of different algorithms without knowing their
inner workings, which can be common when one or more of
them are based on commercial software.

The hybrid methods try to combine the flexibility of the
decision-level methods, by maintaining different classifiers for
each modality, while using part of the information from every
sensor in each modality, and taking advantage, when there is a
statistical dependence between modalities, as in feature-level
methods. For example in [11] a Multidimensional Dynamic
Time Warping algorithm is used to improve speech recognition
by fusing the audio channel with mouth gestures from a
video channel. The common drawbacks of these methods with
feature-level ones is the need to retrain the whole system when
adding a new channel.

Another key factor that directly affects multimodal fusion
is related to the chosen output description level of affect.
Affect is often classified into one of the six universal “basic”
emotions or categories proposed by Ekman [12] which include
“happiness”, “sadness”, “fear”, “anger”, “disgust” and “sur-
prise”. There have been a few tentative efforts to detect non-
basic affective states, such as “fatigue”, “anxiety”, “confused”
or “frustrated” [3], [13]. In any case, this categorical approach,
where emotions are a mere list of labels, fails to describe the



wide range and intensities of emotions that occur in daily
communication settings. Especially in the case of emotion
transitions that do not go through “neutral” state, for example
a transition from “surprise” to “angry” can not be represented
with only two labels. To overcome these problems, some
researchers such as Whissell [14] and Plutchik [15] prefer to
view affective states not independently but rather related to
one another in a systematic manner. They consider emotions
as a continuous 2D space whose dimensions are evaluation and
activation. The evaluation dimension measures how a human
feels, from positive to negative. The activation dimension
measures whether humans are more or less likely to take some
action under the emotional state, from active to passive. Unlike
the categorical approach, the dimensional approach describes
an infinite number of affective states and intensities.

The multimodal fusion problem reinforces the limitations
of categorical descriptions of affect. Discrete emotional labels
have no real link between them and, at the fusion stage,
every studied emotion must be recognized independently. The
dimensional approach is best suited to deal with variations
in emotional states over time. It provides an algebra and
allows the emotional inputs coming from different modalities
to be related mathematically. This is especially useful when
integrating modules with different time-scales.

However, very few works have chosen a dimensional de-
scription level, and the few that do are more related to
the design of synthetic faces [16], affective video content
annotation [17] or psychological studies [18] than to recog-
nition of emotions. This is mainly due to the current lack
of (both unimodal and multimodal) databases annotated in
terms of evaluation-activation dimensions. Some interesting
dimensional databases are publically available [19], [20], but,
in comparison to categorical ones, they are limited in terms of
number of modalities (in general, they explore audio and/or
video channels exclusively), annotators, subjects, samples, etc.
Moreover, manual dimensional annotation of ground truth is
very time consuming and unreliable, since a large labeling
variation between different human raters is reported when
working with the dimensional approach [21]. For these rea-
sons, although working at the dimensional level would be
more appropriate to face the problem of multimodal fusion, for
training and validation of the individual modules to be fused
using databases with categorical annotations is more reliable.
In this way the introduction of noise into the training (due to
scarce or poor data) and consequently the building of systems
that are not very robust can be avoided.

Furthermore, it can not be forgotten that human emotions
are usually continous and smooth over time. For a person
is rare to go from “angry” to “happy” without slowly pass-
ing trough a number of intermediate states over time. This
behaviour is modelled thanks to the “emotional kinematics”
concept and the use of kalman filter. This way, the presented
method will have a continous emotional output not only in the
2D space but also in time.

This paper proposes an original and scalable methodology
for fusing multiple affect recognition modules. In order to let

the modules be defined in a robust and reliable way by means
of existing categorical databases, each module is assumed to
classify in terms of its own list of emotional labels. Whatever
these labels are, the method is able to map each module’s
output to a continuous evaluation-activation space, fuse the
different sources of affective information over time through
mathematical formulation and obtain a 2D dynamic emotional
path representing the user’s affective progress as final output.
To show the potential of the proposed methodology, we
applied it to an Instant Messaging tool able to feed 3 different
affect recognition modules that sense emotions by analyzing
user’s facial expressions, typed-in text and “emoticons”, re-
spectively. Thanks to the scalability of the method, the IM
tool would be easily improved by adding new modules, such
as voice emotion recognition, without having to retrain the
whole system each time a new module is added. This article
aims to be a first step towards bringing a new perspective to
the open issue of emotional multimodal fusion and to open
the door to further discussion.

The structure of the paper is the following. Section II
details the proposed multimodal affective fusion methodology.
In section III this methodology is put into practice using
the Instant Messaging tool. Finally, Section IV sets out our
conclusions and a description of future work.

II. A SCALABLE MULTIMODAL FUSION METHODOLOGY
FOR CONTINUOUS AFFECT SENSING

This section details a general methodology for fusing
multiple affective recognition modules and obtaining, as an
output, a global 2D dynamic emotional path in the evaluation-
activation space. It is assumed that every module i to be
fused outputs a list -of one or more- discrete emotional labels
characterizing the affective stimulus recognized at a given
time t0i. The possible output labels can be different for each
module i. In this way, the modules’ performances are maxi-
mized since unimodal databases annotated in categorical terms
are -to date- more complete and reliable than dimensional
and/or multimodal ones, allowing the individual modules to
be better trained and validated. The proposed methodology is
sufficiently scalable to add new modules coming from new
channels without having to retrain the whole system. Fig. 1
shows the general fusion scheme that will be explained step
by step in sections II-A, II-C and II-C.

A. Emotional Mapping to a Continuous 2D Affective Space

The first step of the methodology is to build an emotional
mapping so that the output of each module i at a given time
t0i can be represented as a two-dimensional coordinates vector
pi(t0i) = [xi(t0i); yi(t0i)] on the evaluation-activation space
that characterizes the affective properties extracted from that
module.

To achieve this mapping, one of the most influen-
tial evaluation-activation 2D models is used: the Whissell
space. In her study, Whissell assigns a pair of values
〈evaluation; activation〉 to each of the approximately 9000
affective words that make up her “Dictionary of Affect in



Fig. 1. Continuous multimodal affective fusion methodology.

Language” [14]. Fig. 2 shows the position of some of these
words in the evaluation-activation space. The majority of
categorical modules described in the literature provide as
output at the time t0i (corresponding to the detection of
the affective stimulus) a list of emotional labels with some
associated weights. Whatever the labels used, each one has a
specific location, i.e. an associated 2D point, in the Whissell
space. The components 〈xi(t0i); yi(t0i)〉 of the coordinates
vector pi(t0i) are then calculated as the barycenter of those
weighted points.

B. Temporal Fusion of Individual Modules: Obtaining a Con-
tinuous 2D Emotional Path

Humans inherently display emotions following a continuous
temporal pattern [22]. With this starting postulate, and thanks
to the use of evaluation-activation space, the user’s emotional
progress can be viewed as a point (corresponding to the loca-
tion of a particular affective state in time t) moving through
this space over time. The second step of the methodology aims
to compute this emotional path by fusing the different pi(t0i)
vectors obtained from each modality over time.

The main difficulty to achieve multimodal fusion is related
to the fact that t0i affective stimulus arrival times may be
known a-priori or not, and may be very different for each
module. To overcome this problem, the following equation is
proposed to calculate the overall affective response p(t) =
[x(t); y(t)] at any arbitrary time t:

Fig. 2. Simplified Whissell’s evaluation-activation space.

p(t) =

N∑

i=1

αi(t)pi(t0i)

N∑

i=1

αi(t)

(1)

where N is the number of fused modalities, t0i is the arrival
time of the last affective stimulus detected by module i and
αi(t) are the 0 to 1 weights (or confidences) that can be
assigned to each modality i at a given arbitrary time t.

In this way, the overall fused affective response is the
sum of each modality’s contribution pi(t0i) modulated by
the αi(t) coefficents over time. Therefore, the definition of
αi(t) is especially important given that it governs the temporal
behaviour of the fusion. As suggested by Picard [23], human
affective responses are analogous to systems with additive
responses with decay where, in the absence of input, the
response decays back to a baseline. Following this analogy,
the αi(t) weights are defined as:

αi(t) =

{
bici(t0i)e

−di(t−t0) t > ε

0 t ≤ ε (2)

where:
• bi is the general confidence that can be given to module i

(e.g. the general recognition success rate of the module).
• ci(t0i) is the temporal confidence that can be assigned to

the last output of module i due to external factors (i.e.
not classification issues themselves). For instance, due to
sensor errors if dealing with physiological signals, or due
to facial tracking problems if studying facial expressions
(such as occlusions, lighting conditions, etc.).

• di is the rate of decay (in s−1) that indicates how quickly
an emotional stimulus decreases over time for module i.

• ε is the threshold below which the contribution of a mod-
ule is assumed to disappear. Since exponential functions
tend to zero at infinity but never completely disappear, ε



indicates the αi(t) value below which the contribution of
a module is small enough to be considered non-existent.

By defining the aforementioned parameters for each module
i and applying (1) and (2), the emotional path that character-
izes the user’s affective progress over time can be computed
by calculating successive p(t) values with any desired time
between samples ∆t. In other words, the emotional path is
progressively built by adding p(tk) samples to its trajectory,
where tk = k∆t (with k integer).

C. “Emotional Kinematics” Path Filtering

Two main problems threaten the emotional path calculation
process:

1) If the contribution of every fused module is null at a
given sample time, i.e. every αi(t) is null at that time,
the denominator in (1) is zero and the emotional path
sample cannot be computed. Examples of cases in which
the contribution of a module is null could be the failure
of the connection of a sensor of physiological signals,
the appearance of an occlusion in the facial/postural
tracking system, or simply when the module is not
reactivated before its response decays completely.

2) Large “emotional jumps” in the Whissell space can
appear if emotional conflicts arise (e.g. if the distance
between two close coordinates vectors pi(t0i) is long).

To solve both problems, a Kalman filtering technique is
applied to the computed emotional path. By definition, Kalman
filters estimate a system’s state by combining an inexact
(noisy) forecast with an inexact measurement of that state,
so that the biggest weight is given to the value with the least
uncertainty at each time t. In this way, on the one hand, the
Kalman filter serves to smooth the emotional path’s trajectory
and thus prevent large “emotional jumps”. On the other hand,
situations in which the sum of αi(t) is null are prevented by
letting the filter prediction output be taken as the 2D point
position for those samples.

In an analogy to classical mechanics, the “emotional kine-
matics” of the 2D point moving through the Whissell space
(position and velocity) are modelled as the system’s state
Xk in the Kalman framework, i.e. Xk = [x, y, vx, vy]Tk
representing x-position, y-position, x-velocity and y-velocity
at time tk. The successive emotional path samples p(tk) are
modelled as the measurement of the system’s state. The two
well-known main equations involved in the Kalman filtering
technique are defined in the following way:

1) Process equation:

Xk+1 = Fk+1;kXk + wk




x
y
vx
vy



k+1

=




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1







x
y
vx
vy



k

+ wk

where Fk+1;k is the transition matrix taking the state Xk

from time k to time k + 1 (i.e. from one emotional path

sample to the next). The process noise wk is assumed to be
additive, white, Gaussian and with zero mean. As suggested
in the literature [24], its covariance matrix Qk is defined as:

Qk = σ2




1
3 0 1

2 0
0 1

3 0 1
2

1
2 0 1 0
0 1

2 0 1




where σ2 is the intensity of a white continuous-time Gaus-
sian noise process modeling the 2D point acceleration (which
has not been considered as an element in the system’s state).

2) Measurement equation:

Yk = HkXk + zk

[
xm
ym

]

k

=

[
1 0 0 0
0 1 0 0

]

k




x
y
vx
vy



k

+ zk

where Yk is the measurable at time k and Hk is the
measurement matrix. The measurement noise zk is assumed to
be additive, white, Gaussian, with zero mean and uncorrelated
with the process noise wk. Its covariance matrix Rk is the
identity matrix:

Rk =

[
λ 0
0 λ

]

so that it is assumed that the x and y measurements contain
independent errors with λ units2 variance.

Once the process and measurement equations are defined,
the Kalman iterative estimation process can be applied to the
emotional path, so that each iteration corresponds to a new
sample.

III. MULTIMODAL FUSION APPLICATION TO INSTANT
MESSAGING

Instant Messaging (IM) is a widely used form of real-time
text-based communication between people using computers
or other devices. Advanced IM software clients also include
enhanced modes of communication, such as live voice or
video calling. As users typically experience problems in accu-
rately expressing their emotions in IM text conversations (e.g.
statements intended to be ironic may be taken seriously, or
humorous remarks may not be interpreted exactly as intended),
popular IM programs have resorted to providing mechanisms
referred to as “smileys” or “emoticons” seeking to overcome
the IM systems’ lack of expressiveness.

This section aims to show the potential of the multimodal
affective fusion methodology presented in section II through
the use of an Instant Messaging tool that combines different
communication modalities (text, video and “emoticons”), each
one with very different time scales. Section III-A describes the
IM tool. In Section III-B the modules that extract emotional
information from each modality are presented. Section III-C
explains how the methodology has been tuned to achieve



multimodal affective fusion. Finally, section III-D presents
the experimental results obtained when applying the fusion
methodology to an IM emotional conversation.

A. Instant Messaging Tool Description

Although any publicly available IM tool could be used (e.g.
Skype [25] or Yahoo! Messenger [26]), a simple ad-hoc IM
tool has been designed. It allows two persons to communicate
via text, live video and “emoticons”. Fig. 3 shows a snapshot
of the tool during a conversation. The tool enables access in
real-time to the following:

1) The introduced text contents, when the user presses
the “enter” key (i.e. sends the text contents to his/her
interlocutor).

2) The inserted “emoticons”, when the user presses the
“enter” key.

3) Each recorded remote user video frame (with a video
rate f=25fps).

This information will serve as input to the three different
affect recognition modules presented in section III-B.

B. Fusion Modalities

Three different modules are used to extract emotional in-
formation from the IM tool. Each one explores a different IM
tool modality (text, “emoticons” or video) and makes use of
a different set of output emotional categories:

1) Module 1: text analysis module. To extract affective
cues from user’s typed-in text, the “Sentic Computing”
sentiment analysis paradigm presented in the authors’
previous work [27], [28] is exploited. By using Artificial
Intelligence and Semantic Web techniques, this module
is able to process natural language texts to extract a
“sentic vector” containing a list of up to 24 emotional
labels. “Sentic Computing” enables the analysis of doc-
uments not only on the page or paragraph-level but even
on the sentence level (i.e. IM dialogues level), obtaining
a very high precision (73%) and significantly good recall
and F-measure rates (65% and 68% respectively) at the
output.

2) Module 2: “emoticon” module. “Emoticons” are direct
affective information from the user. For this reason,
this module simply outputs the list of emotional labels
associated to the inserted “emoticons”. Fig. 4 shows the
16 available “emoticons” and their corresponding labels,
designed to be a good representation of each affective
state [29]. Although the use of emoticons could be seen
as a form of self-report and therefore making irrelevant
the rest of modules, not all people use emoticons in
the same way nor with the same frequency. There are
differences in use, for example, depending on the user’s
gender [30], [31] and the cultural differences impose
the level of contextual information required for commu-
nication [32]. Even more, a user could not be willing
to directly express his/her emotional state. For these
reasons emoticons can not be the only emotional sensor,
but when used, they provide a reliable information,

helping to solve complex emotional misunderstandings
for example when sarcasm is present.

3) Module 3: facial expression analysis module. This
module, also presented elsewhere by the authors [33],
studies each frame of the recorded video sequence to au-
tomatically classify the user’s facial expression in terms
of Ekman’s six universal emotions (plus the neutral one),
giving a membership confidence value to each output
emotional category. The classification mechanism inputs
are a set of facial distances and angles between feature
points of the face (eyebrows, mouth and eyes) extracted
thanks to a real-time facial feature tracking program.
The module is capable of analysing any subject, male or
female, of any age and ethnicity with an average success
rate of 87%.

Fig. 4. “Emoticons” designed for the Instant Messaging tool and their
corresponding emotional labels.

C. Multimodal Fusion Methodology Tuning

This section describes, step by step, how the multimodal
fusion methodology is tuned to fuse the 3 different affect
recognition modules in an optimal way.

1) Step 1: Emotional Mapping to the Whissell space:
Every output label extracted by the text analysis module, the
“emoticon” module and the facial expression analyzer has a
specific location in the Whissell space. Thanks to this, the first
step of the fusion methodology (section II-A) can be applied
and vectors pi(toi) can be obtained each time a given module
i outputs affective information at time toi (with i comprised
between 1 and 3).

2) Step 2: Temporal Fusion of Individual Modalities: It is
interesting to notice that vectors pi(t0i) coming from the text
analysis and “emoticons” modules can arrive at any time t0i,
unknown a-priori. However, the facial expression module out-
puts its p3(t03) vectors with a known frequency, determined
by the video frame rate f . For this reason, and given that the
facial expression module is the fastest acquisition module, the
emotional path’s time between samples is assigned to ∆t = 1

f .



Fig. 3. Snapshot of the Instant Messaging tool during a conversation.

The next step towards achieving the temporal fusion of the
different modules (section II-B) is assigning a value to the
parameters that define the αi(t) weights, namely bi, ci(t0i),
d and ε. Table 1 summarizes the values assigned to each
parameter for each modality and the reasons for their choice.
It should be noted that it is especially difficult to determine
the value of the different di given that there are no works
in the literature providing data for this parameter. Therefore
it has been decided to establish the values empirically. Once
the parameters are assigned, the emotional path calculation
process can be started following (1) and (2).

3) Step 3: “Emotional Kinematics” Filtering: Finally, the
“emotional kinematics” filtering technique (section II-C) is
iteratively applied in real-time each time a new sample is
added to the computed emotional path. As in most of the
works that make use of Kalman filtering, parameters σ and
λ are established empirically. An optimal response has been
achieved for σ = 0.5 units/s2 and λ = 0.5 units2.

D. Experimental Results

In order to demonstrate the potential of the presented fusion
methodology, it has been applied to the Instant Messaging
conversation shown in Fig. 3 (James’ side). This conversation
is emotionally complex owing to the fact that contrasting
emotions are displayed contiguously (at first, James is excited
and happy about having bought a wonderful new car and

# Module 1 2 3

Modality text “emoticons” video

Total
number of

possible
output labels

24 weighted
emotional labels 16 emotional labels

6 Ekman’s universal
labels (plus
“neutral”) +

confidence valude to
each output label

General
confidence

bi

b1 = 0.65
The general

confidence is
assigned the value of
the module’s recall

rate.

b2 = 1
The maximum

general condicence
value is assigned

since emoticons are
the direct expression

of user’s affective
state.

b3 = 0.87
The general
conficence is

assigned the value of
the module’s general

success rate

Temporal
confidence
ci(t0i)

c1(t01) = c2(t02) = 1
The temporal confidence is assigned

constant value 1 since the modules do not
depend on external factors.

c3(t03) is assigned
to the tracking

quality confidence
weighting, from 0 to
1, provided by the

facial feature
tracking program for
each analyzed video

frame.

Decay value
di

d1 = d2 = 0.035s−1

Value established empirically.
Irrelevant since the

emotional path
sample rate is equal
to the video frame

rate.

Threshold
value
ε

ε = 0.1
Value established empirically.

TABLE I
TEMPORAL FUSION PARAMETERS

shortly afterwards becomes sad when telling Sue he has dented
it).

Fig. 5 shows the emotional paths obtained when applying
the methodology to each individual module separately (i.e. the



Fig. 5. Emotional paths obtained when applying the methodology to each individual module separately without “emotional kinematics” filtering. Square
markers inidicate the arrival time of an emotional stimulus (not shown for facial expression module for figure clarity reasons).

(a) (b)

Fig. 6. Continuous emotional path obtained when applying the multimodal fusion methodology to James’ Instant Messaging conversation shown in Fig. 3,
without using “emotional kinematics” filtering (a), and using “emotional kinematics” filtering (b).

modules are not fused, only the contribution of one module
is considered) without using “emotional kinematics” filtering.
At first sight, the timing differences between modalities are
striking: the facial expressions module’s input stimuli are
much more numerous than those of the text and “emoticons”,
making the latter’s emotional paths look more linear. Another
noteworthy aspect is that the facial expression module’s emo-
tional path calculation is interrupted during several seconds
(14s approximately) due to the appearance of a short facial
occlusion during the user’s emotional display, causing the
tracking program to temporarily lose the facial features.

Fig. 6 presents the continuous emotional path obtained
when applying the methodology to fuse the 3 modules, both
without (a) and with (b) the “emotional kinematics” filtering
step. As can be seen, the complexity of the user’s affective
progress is shown in a simple and efficient way. Different
modalities complement each other to obtain a more reliable
result. Although the interruption period of the emotional path
calculation is considerably reduced with respect to the facial
expressions module’s individual case (from 14s to 6s approx-
imately), it still exists since both the text and “emoticons”
modules’ decay process reaches the threshold ε before the
end of the facial occlusion, causing the α1(t) and α2(t)

weights to be null. Thanks to the use of the “emotional
kinematics” filtering technique, the path is smoothed and the
aforementioned temporal input information absence is solved
by letting the filter prediction output be taken as the 2D point
position for those samples.

IV. CONCLUSIONS AND FUTURE WORK

This paper describes an original and scalable methodol-
ogy for fusing multiple affective recognition modules. This
methodology is able to fuse any number of unimodal cate-
gorical modules, with very different time-scales and output
labels. This is possible thanks to the use of a 2-dimensional
evaluation-activation description of affect that provides the
system with mathematical capabilities to deal with temporal
emotional issues. The key step from a discrete perspective of
affect to a continuous emotional space is achieved by using the
Whissell dictionary, that allows the mapping of any emotional
label to a 2D point in the activation-evaluation space. The
decision-level fusion allows the use of different recognition
modules which could be integrated in our application as
plugins, developed independently from different researchers
and easily tuned together to maximize the recognition rate.
The proposed methodology outputs a 2D emotional path that



represents in a novel and efficient way the user’s detected
emotional progress over time. A Kalman filtering technique
controls the emotional path in real-time through an “emo-
tional kinematics” model to ensure temporal consistency and
robustness. The methodology has been put into practice in
the context of Instant Messaging by fusing 3 different affect
sensing modalities (text, facial expressions and “emoticons”).
The first experimental results are promising and the potential
of the proposed methodology has been demonstrated. This
work brings a new perspective and invites further discussion
on the still open issue of multimodal affective fusion.

In general, evaluation issues are largely solved for cate-
gorical affect recognition approaches. Unimodal categorical
modules can be exhaustively evaluated thanks to the use
of large well-annotated databases and well-known measures
and methodologies (such as percentage of correctly classi-
fied instances, cross-validation, etc.). The evaluation of the
performance of dimensional approaches is, however, an open
and difficult issue to be solved. In the future, our work is
expected to focus in depth on evaluation issues applicable
to dimensional approaches and multimodality. The proposed
fusion methodology will be explored in different application
contexts, with different numbers and natures of modalities to
be fused.
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