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1. Introducción

La motivación de este Trabajo de Fin de Grado es profundizar en la teoría que sirve
de marco para los experimentos de Single-Molecule Force Spectroscopy muy comunes en
el campo de la física biológica y, en general, interesante para entender el comportamiento
del movimiento de partículas en la micro y nano escala. Esta teoría, que se inició con el
estudio de Kramers de la tasa de escape en problemas de activación térmica en estados
metaestables, es aplicable, no solo a los experimentos de Single-Molecule Force Spectros-
copy, sino también a otros campos tan amplios como la teoría de transporte eléctrico, la
difusión en sólidos o la cinética química.

Este tipo de experimentos buscan recuperar información sobre el perfil de energía libre
de la unión de complejos biomoleculares a partir de estiramientos mecánicos. El interés
de este tipo de experimentos es obtener información sobre los parámetros que regulan la
desnaturalización de complejos biológicos ya sea mediante procesos mecánicos, no muy
comunes en la naturaleza, o mediante otros procesos como pueden ser térmicos o quími-
cos. No obstante, recuperar información de procesos no mecánicos a partir de este tipo
de experimentos es algo que genera un debate que todavía no ha sido resuelto.

Primero repasaremos los detalles técnicos de este tipo de experimentos para después
poder tener un contexto en el que introducir la teoría. Después, nos centraremos en la
evolución que se ha producido en este ámbito en los últimos años, pasando desde la teoría
de escape de Kramers, quien desarrolló su actividad científica en la primera mitad del
siglo XX, hasta llegar a las últimas teorías que se han planteado en el última década.
Entender cada paso del proceso de modelización nos ayudará a comprender las diferen-
tes aproximaciones que se llevan a cabo para desarrollar dicho modelo teórico y estudiar
cuales de ellas introducen un mayor error o una mayor limitación a la hora de recuperar
información sobre el perfil de energía libre de nuestro sistema.

Por último, intentaremos comprobar la validez de la teoría cuando nos alejamos de
sus premisas para estudiar la generalidad del mismo y su aplicabilidad a sistemas reales
en los que desconocemos todo del perfil de energía de enlace.

2. Single Molecule Force Spectroscopy

En general, las técnicas que emplean una fuerza externa para caracterizar una mo-
lécula se llaman Single Molecule Force Spectroscopy. El objetivo último de este tipo de
experimentos es recuperar información sobre el paisaje de energía libre: (ver fig. 1) posi-
ción de la transición molecular, altura de la barrera y probabilidad de transición a fuerza
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nula a partir de los parámetros del sistema mecánico, como por ejemplo la velocidad con
la que varia la fuerza aplicada o, en caso de que tiremos con un muelle, la rigidez de este.

Figura 1: Esquema de un perfil de energía de un sistema biomolecular. Se observa la
transición, en términos del perfil de energía, entre el estado unido y el separado. [1]

Este tipo de experimentos se llevan a cabo de diferentes maneras, pero la idea básica
consiste en tirar de un extremo de la molécula mientras el otro se mantiene fijo para
producir en ella la transición de estado mientras a la vez controlamos los parámetros
mecánicos. Las principales técnicas para agarrar el extremo de la molécula y tirar son:
optical tweezers, magnetic tweezers y microscopio de fuerza atómica, AFM. Concretamen-
te, nosotros nos centraremos en experimentos llevados a cabo con el AFM con el que se
consiguen las siguientes resoluciones para los distintos parámetros del sistema:

Característica AFM
Resolución espacial (nm) 0,5− 1
Resolución temporal (s) 103

Rigidez (pN/nm) 10− 104

Rango de fuerzas (pN) 10− 104

Rango de desplazamiento (µm) 0,5− 104

Cuadro 1: Propiedades del AFM[1]

El modo de uso consiste en unir el extremo del microtúbulo con una molécula que se
une a la proteína que queremos estudiar y unir el otro extremo de esta a una superficie
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que, normalmente, puede moverse de forma controlada. Medir la fuerza aplicada sobre
la molécula con el AFM se puede hacer aplicando la ley de Hooke al cantilever, conside-
rando este un muelle. Así, moviendo la superficie, normalmente con sistemas de control
piezoeléctricos, podemos medir la evolución de la carga sobre la molécula mientras esta
se desnaturaliza. La siguiente imagen ilustra el método.

Figura 2: Funcionamiento del AFM en experimentos de Force Spectroscopy [1]

3. Marco teórico

En esta sección repasaremos la teoría que busca explicar este tipo de experimentos y
que es central a la hora de interpretar los resultados obtenidos de las simulaciones.

3.1. Teoría de Kramers

El problema de escape por activación térmica tiene gran importancia en diferentes
campos: desde la teoría de transporte eléctrico, hasta la difusión en sólidos o la cinética
de las reacciones químicas. En 1940, Kramers propuso una expresión que explicaba el
escape por activación térmica de una partícula en un pozo de potencial metastable [2] [3].

Kramers definió el problema como una partícula Browniana que se mueve en una
única dimensión por un perfil de energía. La partícula empieza estando confinada en el
pozo de energía metastable y tiene que atravesar una barrera para llegar a un pozo más
estable. Aquí es donde la temperatura juega un papel crucial. Si la energía térmica de
la partícula es menor que la altura de la barrera, la partícula estará la mayor parte del
tiempo en el mínimo del pozo metastable y le costará alcanzar la cima de la barrera,
donde podrá volver al mínimo o pasar al pozo estable. Sin embargo, si la energía térmica
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es lo suficientemente grande la partícula pasará al pozo estable con cierta facilidad. La
siguiente imagen describe el sistema:

Figura 3: Sistema biestable que esquematiza el problema de escape de Kramers.
U(x) describe el potencial en el que se encuentra la partícula. Los estados A y C son el
metastable y el estable respectivamente. B indica la posición de la barrera. Las diferentes
ωA,B,C hacen referencia a la frecuencia de oscilación en los diferentes extremos relativos.
KAC,CA hace referencia a la notación que se utiliza para referirse a la probabilidad de
pasar de un estado al otro.[1]

El modelo de Kramers hace algunas asunciones. Considera que el tiempo que le cuesta
al sistema alcanzar la distribución de equilibrio de Maxwell-Boltzmann correspondiente a
una barrera infinita es mucho menor que el tiempo de escape característico del sistema.
Además debe cumplirse que:

KT << ∆U < ∆U0

Donde ∆U es la altura de la barrera desde A y ∆U0 la barrera desde C.
Las frecuencias de oscilación se pueden calcular según:

ωA,C =
√
U
′′
A,C(x)
m

ωB =
√
|U ′′B(x)|
m

En el máximo, punto B, esta ωB no debe entenderse como una frecuencia típica de osci-
lación sino como una escala de tiempo que nos da información de lo que le cuesta a una
partícula con energía suficiente atravesar la barrera.
Otra escala de tiempo importante viene dada por el damping, γ (unidades de inverso de
tiempo) y nos da información de la magnitud del acoplamiento de la partícula al baño
térmico. Si γ, es mucho mayor que ωA estamos en la región de alto damping y, en caso
contrario en la región de bajo damping.
En el campo de la física biológica, en el que vamos a aplicar esta teoría, es de gran im-
portancia el régimen sobreamortiguado ya que, a pequeñas escalas, la viscosidad del agua
da lugar a una dinámica de fluidos caracterizada por un alto número de Reynolds y, por
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tanto, sobreamortiguada. Precisamente para este límite del amortiguamiento, Kramers
provó que la tasa de escape desde A a C se puede escribir como [2]

kAC = ωAωB
2πγ e−∆U/kT (1)

Esta teoría sirve de punto de partida para el análisis y explicación de los experimentos de
Force Spectroscopy, ya que en estos casos, la molécula pasa de un estado a otro atravesando
cierta barrera de potencial de energía libre.

3.1.1. Tiempo de escape medio

Este concepto está estrechamente relacionado con la teoría de Kramers y tiene una gran
importancia en los experimentos de activación térmica. El tiempo de escape medio (MFPT
por las siglas en inglés demean first passage time) busca responder a la pregunta de cuánto
tiempo le cuesta a un caminante aleatorio alcanzar cierto punto objetivo. Aplicando esta
idea de forma más general, se puede entender también, como el tiempo necesario para
pasar de un sistema dinámico A, por ejemplo tener un complejo biomolecular unido, a
otro B, tener el complejo separado. En el límite sobreamortiguado y considerando que
el sistema está sujeto a un potencial U(x), el MFPT se puede calcular de forma exacta
como [3]

< t >= mγ

kT

∫ B

A
dyeU(y)/kT

∫ B

−∞
dze−U(z)/kT (2)

Existe mucha literatura que intenta encontrar una correspondencia precisa entre la
tasa de escape de Kramers y MFPT. Normalmente se considera la siguiente relación [3]
[4]:

k = 1
< t >

(3)

3.1.2. Cálculo de la Tasa de escape

A continuación, calculamos la tasa de escape para un sistema de una partícula atra-
pada en un pozo de potencial cúbico. De forma que podamos comprobar el rango de
temperaturas en el que la aproximación de barrera infinita se cumple, además de asegu-
rarnos de que el código desarrollado funciona correctamente.

En la simulación utilizamos un Runge-Kutta de segundo orden para integrar la si-
guiente ecuación diferencial estocástica (SDE):

mẍ+mγẋ = −∂VT
∂x

+ ξ(t) (4)

Donde U(x) es el potencial cúbico característico del sistema y ξ es una variable aleatoria
de espectro gaussiano que tiene las siguientes propiedades:

< ξ(t)ξ(t′) >= 2γkBTδ(t′ − t)
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< ξ(t) >= 0

Para controlar mejor los parámetros de la simulación trabajaremos con la ecuación
adimensionalizada que queda de la siguiente forma

y′′ + γ̄y′ = −∂(VT/V0)
∂y

+ ξ̃(t) (5)

Donde las nuevas magnitudes se han redefinido de la siguiente manera: el tiempo se ha
escalado utilizando una frecuencia característica del sistema, ω0:

τ = ω0t

La posición, en función de α que es la distancia entre el primer mínimo del potencial y la
barrera. Aunque añadimos este parámetro por completitud, a partir de ahora considera-
remos que es 1 por simplicidad:

y = x

α

Una frecuencia característica de la dinámica:

ω2
0 = V0

mα2

El nuevo coeficiente de amortiguamiento, escalado a la frecuencia anterior:

γ̄ = γ

ω0

Nueva energía térmica, redefinida en función de la altura del potencial cúbico sin pertur-
bar.

T̄ = kBT

V0

Las nuevas características del ruido gaussiano:

< ξ̃(τ)ξ̃(τ ′) >= 2γ̄T̄ δ(t)

< ξ̃(τ) >= 0

Simulando el sistema descrito por la ecuación 5 podríamos calcular el tiempo que le
cuesta a la partícula ir de un punto de un lado de la barrera a otro del otro otro lado lo
suficientemente alejado de esta para así, promediando sobre un gran número de partículas,
calcular < t > y relacionarlo con la tasa de escape de Kramers según 3 para el potencial
concreto que estamos utilizando en la simulación. Sin embargo, tiene mayor interés ir mo-
dificando el potencial cúbico para ver la evolución de la tasa de escape conforme cambia
el potencial.
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Por simplicidad y relación con el tipo de experimentos que vamos a estudiar, merece la
pena modificar el potencial con una fuerza constante. Así la expresión adimensionalizada
de este queda:

V̄T = VT
V0

= Fc

[
y − 4

3y
3
]
− F̄ y (6)

Donde Fc es la fuerza crítica en la que el máximo y el mínimo desaparecen, en nuestro
caso Fc = 1,5.Ahora que conocemos el potencial exacto de trabajo, podemos intentar
obtener una expresión analítica para la tasa de escape de Kramers (1). Como vemos, esta
depende de la altura de la barrera ∆V . Se puede calcular a partir de los puntos en los
que la primera derivada de potencial se anula:

V̄ ′ = 0→ y2 = Fc − F̄
4Fc

→ y± = ±1
2 [1− f ]

1
2

Donde f = F̄
Fc
. Así, se ve que:

∆V̄ = 2
3Fc [1− f ]

3
2 (7)

Por otro lado, si nos fijamos en la expresión de la tasa de escape de Kramers (1),
vemos que no está escrita en función de los parámetros adimensionalizados. Por tanto
debemos dividir toda la expresión entre ω0. Además, por las características del potencial
la curvatura en el mínimo y en el máximo es la misma, entonces:

V̄ ′′ = −4Fc(1− f) 1
2 (8)

Finalmente, sustituyendo las expresiones de la barrera (7) y de ω2 = |V̄ ′′| (8) y adimen-
sionalizando la tasa de escape (1) tenemos:

k̄ = k

ω0
= 2
πγ̄
Fc(1−

F̄

Fc
) 1

2 e
2
3Fc(1−

F̄
Fc

)
3
2

T̄ (9)

Ahora ya sí, tenemos una expresión para comprar directamente los resultados de la simu-
lación.

3.1.3. Resultados del cálculo de la tasa de escape

Con el programa (anexo I) simulamos el movimiento de un caminante aleatorio sujeto
a dicho potencial para temperaturas 0.1 y 0.3, lo que equivale a alturas de la barrera
de entre 10 y 3 veces la energía térmica. Este intervalo nos permitirá evaluar los efectos
de trabajar en temperaturas para las cuales la aproximación de barrera infinita puede
dejar de ser buena. Una vez que hemos conseguido que un número suficiente de partículas
escapen, normalmente con 100, es suficiente para que al hacer estadística los resultados
no sufran fluctuaciones importantes. Variamos el valor de F̄ y repetimos el proceso hasta
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barrer las fuerzas que van desde F̄ � Fc a F̄ ∼ Fc. A continuación adjuntamos los
resultados:

Figura 4: Resultados cálculo tasa de escape. Se muestran los resultados de la simu-
lación, puntos, sobre la curva teórica para distintas temperaturas.

Se observa cómo para temperaturas iguales a 0.1, el ajuste a la teoría es muy bueno
desde fuerzas externas muy pequeñas hasta fuerzas externas cercanas a la fuerza crítica,
en nuestro caso 1.5, para las cuales vemos cómo (9) tiende bruscamente a 0. En este rango
cercano a Fc, cuesta más definir el problema de activación ya que máximo y mínimo se
van difuminando. Por eso observamos que, al mismo tiempo que el ajuste empieza a fallar,
la tasa de escape alcanza un valor constante. Esto implica que, de ahora en adelante, para
poder comparar bien los resultados de los experimentos FS con la teoría será necesario
trabajar con temperaturas menores o iguales que 0.1. No obstante, por completitud, pre-
sentaremos también los resultados que obtenemos para T=0.3, como muestra de cuanto
se aleja la teoría de la simulación cuando no estamos trabajando a temperaturas bajas, ya
que, aunque no parece ajustarse mal, no lo hace tan bien como para T=0.1 y nos podemos
permitir bajar algo la temperatura hasta un orden de magnitud.

3.2. Experimento FS.

A continuación, y de ahora en adelante, nos centramos en los experimentos de Force
Spectroscopy. Para ello, es necesario repasar las distintas teorías que buscan explicar este
tipo de experimentos. En la práctica, al tirar de la molécula, lo que estamos haciendo es
incluir una fuerza de estiramiento que modifica el perfil de energía libre que caracteriza
el cambio entre los dos estados (complejo molecular unido o desunido, molécula abierta
o cerrada), favoreciendo la transición. Uno de los objetivos de entender bien este proceso
es recuperar información sobre el potencial sin perturbar a partir de los resultados del
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experimento.

La formulación del problema es similar a la de Kramers. Modelizamos la transición
molecular o del enlace como un problema de activación térmica de una partícula movién-
dose por un perfil de energía libre con una barrera, perturbado por una fuerza externa.
Cuando la partícula pase la barrera se producirá la transición molecular

Consideramos que la dirección en la que tiramos de la molécula es aquella en la que
se mueve la partícula que modeliza la transición, x, por tanto, se mueve por un perfil que
es combinación del original U0(x) y la influencia de una fuerza externa F . En función de
cómo sea esta fuerza externa el tratamiento matemático es diferente. Si la fuerza externa
es constante entonces su aportación al perfil total es estática y el resultado es, como hemos
visto en la sección anterior (3.1.3). Sin embargo, si tiramos con un dispositivo a velocidad
constante, la fuerza varía con el tiempo de forma también constante dF/dt = Ḟ . Ahora,
podremos calcular el tiempo en el que se produce la transición, t∗, y relacionarlo con
la fuerza obteniendo la fuerza de ruptura, f ∗. Pero, ¿Cómo podemos obtener la barrera
de energía libre a fuerza cero a partir del tiempo en el que se produce la ruptura o
de las distribuciones de probabilidad de la fuerza? En la siguiente imagen se ilustra la
perturbación del potencial con una fuerza externa.

Figura 5:Representación esquemática del perfil de potencial en un experimento
de FS. En la imagen de la izquierda, la fuerza externa es cero y nos encontramos ante
el problema de escape de Kramers para un potencial de barrera ∆G† que tiene como
resultado una tasa de escape k0. En la imagen de la derecha, tiramos con una fuerza que
favorece la transición. Esto se traduce en una disminución de la barrera, y por tanto una
tasa de escape mayor que en caso de F = 0 [1]

Teoría fenomenológica de Bell-Evans

Uno de los primeros intentos de abordar los problemas de los experimentos de force
spectroscopy vino con los trabajos de Bell [5] y el desarollo posterior de Evans [6]. En
primera aproximación, se considera que la barrera disminuye linealmente con la fuerza y
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que la posición de la transición no varía con la fuerza, obteniéndose la siguiente relación:

∆U = ∆U0 − Fx† → k(F ) = k0e
Fx†
kBT (10)

Donde k0 = k(F = 0). Teniendo en cuenta esta expresión y relacionando la proba-
bilidades de supervivencia, probabilidad de que la partícula no haya escapado a cierto
tiempo t, y la probabilidad de ruptura, probabilidad de que la partícula haya escapado a
cierto tiempo t, podemos obtener la distribución de probabilidad de la fuerza y, a partir
de ella, la fuerza de ruptura media. Mostramos directamente el resultado. En el anexo II
se encuentra el desarrollo completo.

< F >= kBT

x†
log

x†Ḟ

k0eγ
(11)

donde < F > es la fuerza de ruptura más probable, Ḟ = df/dt es la tasa de carga del
experimento y γ es la constante de Euler-Mascheroni. Esta constante aparece porque, a
la hora de calcular la fuerza de ruptura media, resulta más fácil calcular el máximo de la
distribución de probabilidad de las fuerzas y después corregir el resultado, introduciendo
dicha constante, para obtener la fuerza de ruptura media.

Estas ecuaciones forman el modelo que se conoce como modelo fenomenológico de Bell-
Evans. Es ampliamente utilizado para extraer la tasa de escape intrínseca del sistema k0

y la posición de la transición de estado x†.

Teoría Dudko-Hummer-Szabo

Hummer y Szabo [7] y Dudko [8] de forma casi simultánea propusieron una expresión
que relacionaba la velocidad del dispositivo que estira y la fuerza de ruptura media, per-
mitiendo recuperar no solo k0 y x†, sino también la barrera de energía libre, ∆G†.

Aunque en un primer momento propusieron dependencias diferentes con la velocidad
con la que se tira, Ḟ : Hummer y Szabo propusieron que < F >∝ (logḞ ) 1

2 mientras que
Dudko predijo que < F >∝ (logḞ ) 2

3 . Estos resultados se diferenciaban en los resultados
y en el análisis físico del problema. Años después, en un trabajo conjunto, establecieron
un marco común de trabajo y un formalismo unificado que les permitió encontrar una
dependencia general: < F >∝ (logḞ )ν . Donde ν es un coeficiente que depende del tipo
de potencial de trabajo, teniendo ν = 2

3 para un potencial combinación de un término
lineal y cúbico, como el que hemos utilizado en la sección 3.1.2, y ν = 1

2 para potenciales
del tipo parabolic-cusp. Además, valores de ν = 1 o ∆G† → ∞∀ν recuperan el modelo
fenomenológico de Bell-Evans.
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En particular, para el modo que más nos interesa que es el de tirar a velocidad cons-
tante se obtiene la siguiente expresión [9].

< F >= Fc − Fc
[
kT̄

∆G† log
(
Ḟ0

Ḟ

)]ν
(12)

Donde ν = 2
3 ya que estamos en un potencial combinación de un térmico lineal y otro

cúbico y por las características de este Fc = 1,5 y ∆G† = 1. La temperatura, T̄ , como
hemos visto en la sección 3.1.3, debe ser menor que 0.1 para estar en la región en la que
se cumple la aproximación de barrera infinita. El resto de elementos que aparecen en la
ecuación 12 son los siguientes:

Ḟ0 = k0e
γ

x†
kT

y k0 es el prefactor de 1:
k0 = ω2

0
2πγ̄ e

−∆U
T̄ = 3

πγ̄
e−

1
T (13)

Donde γ̄ es el coeficiente de amortiguamiento del sistema adimensionalizado, x† es 1 según
nuestro modelo (recuérdese la adimensionalización del sistema (5)) y γ es la constante de
Euler-Mascheroni que tiene el valor γ = 0,577... y, por tanto, eγ = 1,78.

Ahora ya tenemos una expresión teórica para ajustar los resultados de las simulaciones
de FS en el modo de tirar con una fuerza que varía de forma constante con el tiempo. De
forma que podemos estudiar el efecto de tirar más o menos rápido en la fuerza de ruptura
media.

3.2.1. Resultado de la simulación FS en constant rate mode

Modificando el código que hemos utilizado para calcular la tasa de escape en función
de la fuerza externa constante con la que tiramos 3.1.3 podemos hacer que sirva para
describir el problema actual. Simplemente cambiando la fuerza externa constante por
otra que varía de forma constante con el tiempo y guardando el valor de la fuerza a la
salida el pozo, ya tenemos un código que nos sirve para la simulación del experimento FS
en constant rate mode. La nueva fuerza que se aplica sobre la partícula es:

∂V̄T
∂x

= ∂V̄

∂x
− Ḟ t (14)

Presentamos los resultados obtenidos en la simulación en la figura siguiente:
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Figura 6: Resultados de la simulación FS en constant rate mode para diferentes tempe-
raturas y valores de Ḟ . Se observa cómo para temperaturas inferiores o iguales a T=0.1
el ajuste es bueno para valores de Ḟ intermedios. Se ve también cómo según bajamos la
temperatura el ajuste va mejorando.

Si nos fijamos en la gráfica para T=0.01, vemos que todos los puntos experimentales
caen sobre la curva teórica de forma casi exacta. También, fijándonos en la curva para
T=0.05 vemos que los puntos de la simulación con Ḟ < 10−3 caen de forma muy exacta
sobre la curva teórica lo que nos indica que para esta temperatura y en este rango de tra-
bajo la teoría funciona bien. Podemos observar además, que hay algún punto exerimental
para estas dos gráficas que quedan fuera del rango de aplicación de la teoría. Estos puntos
son < F >> Fc y a partir de esta fuerza el potencial esta lo suficientemente distorsionado
como para no poder definir una barrera a la que aplicar la teoría.

Por otro lado, para T=0.1 vemos como los puntos también empiezan a caer sobre la
curva teórica para valores de Ḟ < 10−3, pero que para valores de Ḟ < 5 · 10−6 la curva
teórica va por debajo de los puntos de la simulación y dejan de coincidir correctamente. Al
estar en el régimen sobreamortiguado, una vez la partícula alcanza el máximo o incluso lo
supera un poco, sigue teniendo una probabilidad de ≈ 0,5 de volver en dirección al pozo.
Además para valores pequeños de Ḟ y a esa temperatura la velocidad a la que se mueve
la partícula debido a su energía térmica domina a la velocidad con la que es tirada por
la fuerza y se producen retrocesos con bastante frecuencia, algo que la teoría considera
que no ocurre. Al producirse uno o más retrocesos la partícula pasa la barrera pero luego
retrocede, esto supone un paso mayor de tiempo antes de pasar el punto que marcamos
como escape de la barrera, normalmente x = 2 para asegurarnos de que, precisamente, ya
no va a haber más retrocesos, y por tanto una fuerza de ruptura también mayor (recordar
que F = Ḟ t). Para ilustrar este efecto, hemos recuperado la trayectoria de algunas de las
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partículas para T=0.1 y valores de Ḟ del rango de interés. Adjuntamos a continuación los
resultados:

Figura 7: Trayectorias de la partícula para T=0.1 y diferentes valores de Ḟ en la región
de interés.

Se puede observar en la figura 7 tres trayectorias de una partícula para los 3 valores
más pequeños de Ḟ . En los dos primeros se observan retrocesos, puntos en los que cruza
la barrera y luego sigue en dirección al pozo. Si por ejemplo, nos fijamos en la trayectoria
con Ḟ = 2,5 · 10−6 vemos que se produce un retroceso al principio y que después le cuesta
30 segundos más volver a salir. Este es un claro ejemplo de como un retroceso aumenta
el tiempo que le cuesta escapar y por tanto la fuerza de ruptura.

Por otro lado, como cabía esperar, para T=0.3 la teoría falla completamente en la
descripción del experimento ya que a esta temperatura las condiciones de las premisas
dejan de cumplirse. Pensando ya en secciones posteriores, en las que tiraremos con un
muelle o incluso cambiaremos el potencial de forma que el marco teórico dejará de ser tan
claro, estos resultados nos servirán como referencia con la que comparar lo que vayamos
obteniendo.

Otro tipo de gráficos que presentan interés son los de la distribución de probabili-
dad de la fuerza. Estos gráficos nos muestran como se distribuyen las fuerzas de ruptura
y muestran, por un lado, la dependencia que tienen con Ḟ e ilustran el motivo por el
que es necesaria la rectificación que da lugar a la introducción de la constante de Euler-
Mascheroni. A continuación adjuntamos uno de estos gráficos:
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Figura 8: Distribuciones de probabilidad para distintos valores de Ḟ para T=0.1. Se
observa como, según aumentamos Ḟ aumenta < F >. Se observa, además que el valor
máximo de la distribución no coincide con el valor medio al no ser la distribución simétrica.

En la figura 8 se observa como al aumentar Ḟ el máximo de la distribución se desplaza
hacia valores más altos de F. Como las distribuciones no son simétricas, el máximo y
el valor medio no coinciden y es por esto que en las ecuaciones(11) y (12) es necesario
introducir la constante de Euler-Mascheroni. Se puede observar cómo la cola izquierda es
más alargada que la derecha y cómo según aumentamos Ḟ el máximo de las distribuciones
disminuye y el rango de fuerzas en las que se produce la transición aumenta. Es decir,
cuanto menor es la velocidad con la que tiramos, más estrecho es el rango de fuerzas en
los que la partícula escapará.

3.3. Efectos de tirar con un muelle

Hasta ahora, no habíamos discutido sobre el efecto que causa en el potencial el dispo-
sitivo que utilizamos para tirar de la molécula. Sin embargo, esto es importante ya que
en los experimentos de Force Spectroscopy se suele considerar que el dispositivo con el
que se tira es un muelle. De hecho, como normalmente se utilizan moléculas o complejos
moleculares cuya rigidez depende de la fuerza, se suelen considerar muelles no lineales.
No obstante, no nos va a dar tiempo a evaluar los efectos de tirar con un dispositivo de
este tipo, así que nos vamos a centrar en la teoría que modeliza el hecho de estirar con
un muelle lineal.

Maitra desarrolló en [10] una teoría que describe de forma analítica los efectos de tirar
con un muelle en la fuerza media de ruptura. Nos vamos a centrar en el constant rate
mode, ahora tiraremos de un muelle a velocidad V. Considerando la aproximación de
muelle blando, podemos escribir la fuerza ejercida por el muelle como < F (t) >= κV t.
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Si ahora nos enfrentamos a un muelle con una rigidez arbitraria, tenemos la siguiente
expresión:

< F (t) >= κV t

χ
:= F (t)

Donde, χ = 1 +KU/κ, es un parámetro que relaciona, por un lado, la rigidez efectiva del
perfil de energía libre en el pozo de potencial, KU , que se puede calcular aproximadamente
como U0 ≈ KUx

2/2, y, por otro, la rigidez del muelle con el que tiramos, k. Así, χ cuantifica
lo que nos alejamos de la aproximación de muelle blando, recuperando la teoría de Dudko-
Hummer-Szabo cuando κ << KU , es decir, χ = 1. Si nos fijamos, en este caso recuperamos
las condiciones de 3.2 considerando que Ḟ = κV .
Tal como se desarrolla en [10], se llega a la siguiente expresión para la fuerza media de
ruptura cuando tiramos con un muelle de rigidez arbitraria:

< F >≈ ∆G†
νx†

1−
[
1− T̄

∆G†χ3 log(1 + e−γ

qX
)
] 2

3
 (15)

Donde γ es la constante de Euler-Masscheroni, q ≈ e
−κ(x†)2

2T̄ , X = k0T̄
κV x†

, x† es la posición
de la transición de estados y k0 ya la hemos visto en [13]. Esta expresión introduce el
parámetro χ. Aunque κ es conocida, KU es difícil de estimar en potenciales reales, así que
χ es otro parámetro a ajustar que además puede servir para saber si la aproximacón de
muelle blando es lo suficientemente buena no.

3.3.1. Resultados de la simulación FS tirando con un muelle

A continuación mostramos los resultados que hemos obtenido al tirar con un muelle
que vamos separando a velocidad constante. La nueva perturbación al sistema es:

∂V̄T
∂x

= ∂V̄

∂x
+ κ(x− V t) (16)

Para implementar la simulación, seguimos barriendo en Ḟ ya que la fijamos como nuestra
unidad de variación en fuerza. No obstante, podemos relacionarla con los parámetros del
muelle según: Ḟ = κV . Ya que si desarrollamos la aportación de muelle lo que acompaña
al tiempo es lo que consideramos Ḟ . Así pues, simplemente tenemos que modificar el pro-
grama de la simulación FS en constant rate mode para que, por un lado, calcule el nuevo
potencial y que, para un valor de κ fijo siga barriendo para los diferentes valores de Ḟ que
barríamos en el experimento anterior.

Además, calcular ahora la fuerza de salida es mucho más sutil ya que, como esta es
proporcional a la distancia entre la partícula y el extremo del muelle, una vez la partícula
pase el máximo la fuerza disminuirá muy rápido al no encontrar el muelle la oposición del
pozo del potencial. Por tanto, para evitar resultados subestimados, la forma de calcular la
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fuerza de salida es calcular el tiempo de salida, t∗ en el que la partícula pasa la barrera y
después calcular la fuerza como F ∗ = Ḟ = keffV t

∗+F0 donde keff = (k−1
pozo + k−1

muelle)−1 y
F0 es la fuerza que ejerce el muelle sobre la partícula en el tiempo inicial, en nuestro caso:
F0 = k

2 . Comprobar experimentalmente que la fuerza se ajusta a este comportamiento
temporal es sencillo. A continuación, adjuntamos una gráfica en la que se muestra:

Figura 9: Comportamiento experimental y teórico de la fuerza en función del tiempo
cuando tiramos de una partícula en un pozo de potencial de curvatura en el mínimo
de KU = 6 con un muelle de k = 0,1. Vemos cómo los datos experimentales siguen, en
promedio, el comportamiento predicho por la teoría dejando de manifiesto que la atracción
al pozo de potencial y la acción del muelle se combinan como dos muelles en serie.

Ahora, presentamos los resultados obtenidos en el experimento para diferentes valores
de T y κ.
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Figura 10: Fuerza de ruptura media en función de la velocidad con la que tiramos para
T=0.1 y diferentes valores de la rigidez κ. Se representa también el ajuste teórico para
tres valores pequeños de κ, al igual que los datos experimentales y ajuste teórico del
experimento FS sin muelle.

Figura 11: Fuerza de ruptura media en función de la velocidad con la que tiramos para
T=0.05 y diferentes valores de la rigidez κ. Se representa también el ajuste teórico para
tres valores pequeños de κ, al igual que los datos experimentales y ajuste teórico del
experimento FS sin muelle.
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Figura 12: Fuerza de ruptura media en función de la velocidad con la que tiramos para
T=0.01 y diferentes valores de la rigidez κ. Se representa también el ajuste teórico para
tres valores pequeños de κ, al igual que los datos experimentales y ajuste teórico del
experimento FS sin muelle.

Como se puede observar fácilmente, un aumento de la rigidez del muelle produce tam-
bién un aumento en la fuerza de ruptura media independientemente de la temperatura en
la que nos encontremos. Ademas observamos cómo para valores pequeños de κ < 0,1 en
los que χ ≈ 1, recuperamos los resultados de la teoría de Dudko, (12), a partir de (15) y
las curvas son casi coincidentes. También se ve como para valores de κ > 0,1, que corres-
ponden a factores κ

KU
> 0,0167 el comportamiento de la fuerza de ruptura media se aleja

mucho del muelle blando. De esta forma podríamos establecer el criterio de, que para que
se cumpla de forma más o menos buena la aproximación de muelle blando, deberíamos
trabajar con κ

KU
menores a este valor.

Por otro lado, hemos intentado ajustar estos resultados a la teoría desarrollada por
Maitra en [10] y vemos como para muelles de κ = 0,5 deja de ajustarse bien para nin-
guna temperatura y como según bajamos la rigidez y la temperatura el ajuste mejora
hasta llegar a κ = 0,1 y T = 0,01 cuando el ajuste es bastante bueno. Se ve como para
temperaturas lo suficientemente bajas, hay un rango de κ entre 0,1 y 0,5 en el que, para
temperaturas suficientemente bajas, el ajuste es relativamente bueno.

4. Experimento FS en un potencial de Morse

Vamos a sustituir el potencial cúbico lineal en el que hemos estado trabajando y sobre
el que se desarrolla toda la teoría de escape de Kramers y derivadas por un potencial de
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Morse, ejemplo clásico del enlace molecular. Este potencial por su aplicación a sistemas
reales y relativa facilidad de implementar nos será de gran utilidad a la hora de comparar
cómo afecta la introducción de un potencial distinto a los resultados. El potencial que
vamos a utilizar, ya con el término del constant rate mode, es:

V̄ = 3(1− e−(x+0,5))2 − F (t)x (17)

El motivo por el que hemos escogido este potencial de Morse en concreto es porque tiene
el pozo en potencial en la misma posición que nuestro potencial cúbico lineal anterior,
xmin = −0,5, y porque tiene, también, la misma fuerza crítica, Fc = 1,5. Aunque el
potencial de Morse sin perturbar solamente tiene un extremo relativo, que es un mínimo,
al ir pasando el tiempo y, por tanto, el valor de la perturbación aparece un mínimo
que al principio no es muy marcado pero que se va acentuando. En la imagen siguiente,
mostramos el potencial sin perturbar y como va cambiando con el paso del tiempo:

Figura 13: Potencial de morse en función de la perturbación F(t). Podemos ver cómo, en
el estado inicial, no existe máximo de la barrera. Este se hace más claro según pasa el
tiempo. Además, se ve cómo para F = 1,5 tanto el máximo como el mínimo desparecen
dejando en evidencia que esta es la fuerza crítica.

El hecho de que no haya una barrera claramente definida para valores de F (t) pe-
queños hace que nos resulte más complicado determinar la posición a partir de la cual
consideramos que la partícula ha escapado. Para clarificar esto y encontrar criterios razo-
nables para la salida del pozo vamos a estudiar el potencial.

Podemos calcular la posición del máximo en función de la perturbación y obtenemos
la siguiente expresión analítica:

x† = ln
2

1−
√

1− 2
3F
− 0,5 (18)
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Cuando tiramos con velocidades pequeñas, gran parte de la simulación transcurre con una
perturbación es menor que 0.1, cuya posición del máximo es x†(F = 0,1) = 3,58. Así pues,
una condición de salida razonable para valores menores de la perturbación, que indicaría
que la partícula ha salido ya del pozo, sería que esta alcanzara una posición x = 6. Por
otro lado, para valores de la perturbación lo suficientemente grandes que provocaran que
x† < 5, se podría, simplemente utilizar xout = x† + 1 como condición de salida.

4.1. Marco teórico de experimentos FS en el potencial de Morse

Dudko et al trabajaron en la modelización de la fuerza de ruptura media en estos
potenciales en [11]. Parten de un potencial de Morse y tiran de la partícula con un melle.
No obstante, nuestro experimento se ha llevado a cabo en constant rate mode así que el
paso de sus expresiones a unas válidas a nuestra situación lo hacemos suponiendo que
k → 0 pero que a su vez Ḟ = kV → C con C 6= 0. Entonces, para un potencial de Morse
de la forma:

U(x) = U0((1− e−2b(x−Rc)/Rc)2) (19)

Donde los parámetros característicos del potencial, fuerza crítica, altura de la barrera y
frecuencia de oscilación son, respectivamente:

Fc = bU0

Rc

Uc = U0

Ωc = 2b
√
U0

Rc

Se obtiene una fuerza de ruptura media

< F >= Fc

1−
(
T̄

Uc

) 2
3
[
ln

(
T̄Ω2

cFc

Ucγ̄Ḟ

)] 2
3
 (20)

En nuestro modelo los valores que definen el potencial son: U0 = 3, b = −0,25, Rc = −0,5
y, por tanto Fc = 1,5, Uc = 3 y Ωc = 1,732. Así pues, con estos parámetros podremos
comprobar como de bueno es el ajuste a nuestros resultados.

4.2. Resultado experimento FS en Potencial de Morse

A continuación, adjuntamos los resultados del experimento junto con el ajuste teórico.
A nivel de código solo ha sido necesario modificar el ya utilizado en la simulación de FS
en constant rate mode:
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Figura 14: Fuerza de ruptura media en función de la velocidad con la que se estira para
distintas T.

Se puede observar cómo para todas las temperaturas el ajuste es muy bueno siempre y
cuando las velocidades no sean demasiado elevadas. La teoría no puede ajustar los puntos
que se encuentran más allá de la fuerza crítica y, conforme disminuimos la temperatura,
se ajusta mejor a los puntos con velocidades más altas.

4.3. Deducción de los parámetros del potencial

Hasta ahora nos hemos limitado a ajustar la teoría utilizando los parámetros que ya
conocíamos del potencial. Sin embargo, en un experimento real, son precisamente estos
parámetros los que queremos recuperar a partir del ajuste de los resultados del experi-
mento. Para ver cómo de efectiva es la teoría a la hora de conseguir este objetivo, vamos
a ajustar los resultados obtenidos del experimento con el potencial de Morse a la teoría
de Dudko [9] (12) del potencial cúbico en la aproximación de muelle blando, que es la
que se suele utilizar en la práctica, y ver si los parámetros que recuperamos son válidos
realmente a la hora te caracterizar el potencial de partida.

A continuación, adjuntamos las curvas ajustadas. Solamente hemos buscado ajustar los
puntos que hemos visto que la teoría es capaz de describir correctamente ya que intentar
ajustarlos todos daría lugar a resultados que no se corresponderían con la realidad.
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Figura 15: Curvas del ajuste de los puntos experimentales a la teoría de Dudko.

Y los parámetros del ajuste son:

T ∆G x‡ k0

0,01 1,9647 1,9697 0,0002
0,05 2,4118 2,6355 0,0005
0,1 2,4149 2,8444 0,0006

Cuadro 2: Parámetros del ajuste a la teoría de Dudko.

Desde el punto de vista de un potencial de Morse, vemos cómo el ajuste no predice
la altura de la barrera, ∆G0 = 3, correctamente para ninguna temperatura aunque sí
que se acerca más para temperaturas mayores. Por otro lado, la fuerza crítica, Fc = ∆G

x‡
,

es aproximadamente 1 y va disminuyendo conforme bajamos la temperatura. Por tanto,
tampoco es muy precisa al intentar recuperar el parámetro original, Fc0 = 1,5. Como
vemos, la información que recuperamos del experimento a temperaturas mayores parece
ajustarse más a la realidad.

Hemos visto la eficacia de la teoría de Dudko para recuperar información de perfiles de
energía libre desconocidos. También podemos intentar interpretar los resultados de otra
manera. Nuestro problema es que tenemos un potencial de Morse, lo que podemos hacer
es desarrollarlo en serie de potencias en torno al 0, quedarnos solo hasta el término de
orden cúbico y ver si los parámetros que hemos obtenido se ajustan a dicho potencial. A
continuación, adjuntamos una gráfica en la que comparamos dichos potenciales.
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Figura 16: Potenciales que se obtienen al aplicar la teoría de Dudko. Se observa como
conforme aumentamos la temperatura el potencial que recuperamos se parece menos a la
expansión en series hasta el término cúbico del potencial de Morse.

En primer lugar, cabe destacar como el potencial cúbico se parece bastante al de Morse
en el pozo mientras que más allá de la barrera falla.

Por otro lado, recordando que para el potencial cúbico lineal la fuerza crítica tiene la
forma Fc = 1,5∆G

x‡
[9], vemos como para T = 0,01 recuperamos la recuperamos de forma

correcta mientras que conforme aumentamos la temperatura el valor difiere más. Aunque
se puede observar cómo ninguno de los potenciales se ajusta perfectamente, si que es
cierto que el de menor temperatura, con una fuerza crítica tan correcta y una altura de
la barrera similar se parece bastante.

Aunque el ajuste consigue recuperar información de la expansión en serie de la barrera,
no resulta exitoso a la hora de describir el potencial de Morse como tal. En la práctica,
al no saber qué tipo de potencial describe nuestro sistema físico, utilizar esta teoría como
método de ajuste solo nos permite recuperar información certera de potenciales que se
parezcan mucho al cúbico lineal.

5. Conclusiones y futuro trabajo

A lo largo del trabajo hemos visto cómo el marco teórico desarrollado en las fuerzas
de escape es capaz de describir sistemas en los que la separación de complejos moleculares
ha sido modelizada como un sistema de dos estados. Estos modelos han demostrado su
validez en las simulaciones para un amplio rango de situaciones variando la temperatura y
la rigidez del muelle con el que estiramos y son de aplicación directa a los datos obtenidos
de los experimentos en el laboratorio.
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Así mismo, hemos comprobado cómo afecta a la eficacia del modelo la introducción
de un potencial distinto al cúbico lineal. El resultado nos ha enseñado lo importante que
son las características del potencial a la hora de hacer este tipo de simulaciones y lo poco
efectivo que es el modelo a la hora de recuperar información de un potencial no cúbico
lineal. El hecho de que no tengamos acceso al potencial real y que no podamos relacionar
todos con uno cúbico lineal nos hace pensar que esta puede ser la mayor fuente de error
a la hora de recuperar información del potencial.

Al igual que hemos cambiado el sistema en el caso del potencial de Morse, podríamos
cambiarlo, manteniendo el potencial cúbico lineal, cambiando el dispositivo con el que
estiramos. En vez de con un muelle lineal podríamos estirar con uno no lineal, que por
ejemplo siga la ecuación de un worm-like chain, modelo que se utiliza normalmente para
describir polímeros y ver cómo afecta a la recuperación de la información del perfil de
energía libre. Además, normalmente en la práctica, se estira de la partícula con uno de
estos polímeros y por tanto este muelle es mucho más realista que el lineal.

Aunque si que desarrollamos un programa que simulaba la dinámica de este sistema,
que es algo más complicada que las anteriores, un pequeño error a la hora de calcular la
fuerza de ruptura hace que los resultados obtenidos sean erróneos y que no merezcan ser
presentados. Por tanto, una buena forma de continuar este trabajo sería investigar qué
dependencia tiene la fuerza de ruptura cuando estiramos con otros dispositivos.

Otra forma de continuar el trabajo sería llevar a cabo simulaciones de dinámica mole-
cular, que cada vez son más accesibles en los ordenadores actuales, esto nos daría infor-
mación real de qué zonas se separan primero y cómo afecta esto a la forma en la que se
separan los complejos moleculares y, por tanto, al modelo.

Por otro lado, podríamos también ajustar datos experimentales medidos en el labora-
torio con el interés de recuperar información de los perfiles de energía libre de las uniones
y comprobar la validez de los modelos en sistemas físicos reales.

Para finalizar, otra gran pregunta es si el potencial que se recupera al hacer experi-
mentos de estiramiento mecánico tiene más o menos relación con los procesos de desnatu-
ralización por temperatura, pH u otros. Extrapolar estos resultados al resto de procesos
no es algo que se pueda hacer hoy en día con una base teórica. Relacionarlos sería un gran
avance en el estudio de enlaces de complejos moleculares y plegamiento de proteínas.
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