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1. Introduccion

La motivacion de este Trabajo de Fin de Grado es profundizar en la teoria que sirve
de marco para los experimentos de Single-Molecule Force Spectroscopy muy comunes en
el campo de la fisica biologica y, en general, interesante para entender el comportamiento
del movimiento de particulas en la micro y nano escala. Esta teoria, que se inici6é con el
estudio de Kramers de la tasa de escape en problemas de activacion térmica en estados
metaestables, es aplicable, no solo a los experimentos de Single-Molecule Force Spectros-
copy, sino también a otros campos tan amplios como la teoria de transporte eléctrico, la

difusion en solidos o la cinética quimica.

Este tipo de experimentos buscan recuperar informacion sobre el perfil de energia libre
de la unién de complejos biomoleculares a partir de estiramientos mecanicos. El interés
de este tipo de experimentos es obtener informacién sobre los pardmetros que regulan la
desnaturalizacion de complejos bioldgicos ya sea mediante procesos mecanicos, no muy
comunes en la naturaleza, o mediante otros procesos como pueden ser térmicos o quimi-
cos. No obstante, recuperar informacién de procesos no mecanicos a partir de este tipo

de experimentos es algo que genera un debate que todavia no ha sido resuelto.

Primero repasaremos los detalles técnicos de este tipo de experimentos para después
poder tener un contexto en el que introducir la teoria. Después, nos centraremos en la
evolucion que se ha producido en este ambito en los ultimos anos, pasando desde la teoria
de escape de Kramers, quien desarrollé su actividad cientifica en la primera mitad del
siglo XX, hasta llegar a las tltimas teorias que se han planteado en el ultima década.
Entender cada paso del proceso de modelizacién nos ayudarda a comprender las diferen-
tes aproximaciones que se llevan a cabo para desarrollar dicho modelo tedrico y estudiar
cuales de ellas introducen un mayor error o una mayor limitacion a la hora de recuperar

informacion sobre el perfil de energia libre de nuestro sistema.

Por ultimo, intentaremos comprobar la validez de la teoria cuando nos alejamos de
sus premisas para estudiar la generalidad del mismo y su aplicabilidad a sistemas reales

en los que desconocemos todo del perfil de energia de enlace.

2. Single Molecule Force Spectroscopy

En general, las técnicas que emplean una fuerza externa para caracterizar una mo-
lécula se llaman Single Molecule Force Spectroscopy. El objetivo ultimo de este tipo de
experimentos es recuperar informacién sobre el paisaje de energia libre: (ver fig. [1)) posi-

cién de la transicion molecular, altura de la barrera y probabilidad de transicion a fuerza



nula a partir de los parametros del sistema mecéanico, como por ejemplo la velocidad con

la que varia la fuerza aplicada o, en caso de que tiremos con un muelle, la rigidez de este.
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Figura 1: Esquema de un perfil de energia de un sistema biomolecular. Se observa la

transicion, en términos del perfil de energia, entre el estado unido y el separado. [I]

Este tipo de experimentos se llevan a cabo de diferentes maneras, pero la idea béasica
consiste en tirar de un extremo de la molécula mientras el otro se mantiene fijo para
producir en ella la transicion de estado mientras a la vez controlamos los parametros
mecanicos. Las principales técnicas para agarrar el extremo de la molécula y tirar son:
optical tweezers, magnetic tweezers y microscopio de fuerza atomica, AFM. Concretamen-
te, nosotros nos centraremos en experimentos llevados a cabo con el AFM con el que se

consiguen las siguientes resoluciones para los distintos parametros del sistema:

Caracteristica AFM
Resolucion espacial (nm) 0,0—1
Resolucién temporal (s) 10°

Rigidez (pN/nm) 10 — 10*

Rango de fuerzas (pN) 10 — 10*
Rango de desplazamiento (um) | 0,5 — 10%

Cuadro 1: Propiedades del AFM[I]

El modo de uso consiste en unir el extremo del microtiibulo con una molécula que se

une a la proteina que queremos estudiar y unir el otro extremo de esta a una superficie



que, normalmente, puede moverse de forma controlada. Medir la fuerza aplicada sobre
la molécula con el AFM se puede hacer aplicando la ley de Hooke al cantilever, conside-
rando este un muelle. Asi, moviendo la superficie, normalmente con sistemas de control
piezoeléctricos, podemos medir la evolucién de la carga sobre la molécula mientras esta

se desnaturaliza. La siguiente imagen ilustra el método.
Atomic force microscopy
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Figura 2: Funcionamiento del AFM en experimentos de Force Spectroscopy [1]

3. Marco teodrico

En esta seccion repasaremos la teoria que busca explicar este tipo de experimentos y

que es central a la hora de interpretar los resultados obtenidos de las simulaciones.

3.1. Teoria de Kramers

El problema de escape por activacion térmica tiene gran importancia en diferentes
campos: desde la teoria de transporte eléctrico, hasta la difusion en sélidos o la cinética
de las reacciones quimicas. En 1940, Kramers propuso una expresion que explicaba el

escape por activacién térmica de una particula en un pozo de potencial metastable [2] [3].

Kramers definié el problema como una particula Browniana que se mueve en una
unica dimensién por un perfil de energia. La particula empieza estando confinada en el
pozo de energia metastable y tiene que atravesar una barrera para llegar a un pozo mas
estable. Aqui es donde la temperatura juega un papel crucial. Si la energia térmica de
la particula es menor que la altura de la barrera, la particula estara la mayor parte del
tiempo en el minimo del pozo metastable y le costard alcanzar la cima de la barrera,

donde podra volver al minimo o pasar al pozo estable. Sin embargo, si la energia térmica



es lo suficientemente grande la particula pasara al pozo estable con cierta facilidad. La

siguiente imagen describe el sistema:

U(x)

Figura 3: Sistema biestable que esquematiza el problema de escape de Kramers.
U(x) describe el potencial en el que se encuentra la particula. Los estados A y C son el
metastable y el estable respectivamente. B indica la posicién de la barrera. Las diferentes
wa,p,c hacen referencia a la frecuencia de oscilacién en los diferentes extremos relativos.
K ac,ca hace referencia a la notacién que se utiliza para referirse a la probabilidad de

pasar de un estado al otro.[1]

El modelo de Kramers hace algunas asunciones. Considera que el tiempo que le cuesta
al sistema alcanzar la distribucién de equilibrio de Maxwell-Boltzmann correspondiente a
una barrera infinita es mucho menor que el tiempo de escape caracteristico del sistema.
Ademaés debe cumplirse que:
KT << AU < AU

Donde AU es la altura de la barrera desde A y AUy la barrera desde C.

Las frecuencias de oscilacién se pueden calcular segun:

U:&o(l’)

wac =\ ——
m
U//

B [AE]
m

En el maximo, punto B, esta wp no debe entenderse como una frecuencia tipica de osci-
lacién sino como una escala de tiempo que nos da informacién de lo que le cuesta a una
particula con energia suficiente atravesar la barrera.

Otra escala de tiempo importante viene dada por el damping, v (unidades de inverso de
tiempo) y nos da informaciéon de la magnitud del acoplamiento de la particula al bafio
térmico. Si 7y, es mucho mayor que w4 estamos en la regién de alto damping y, en caso
contrario en la regién de bajo damping.

En el campo de la fisica bioldgica, en el que vamos a aplicar esta teoria, es de gran im-
portancia el régimen sobreamortiguado ya que, a pequenas escalas, la viscosidad del agua

da lugar a una dinamica de fluidos caracterizada por un alto nimero de Reynolds y, por
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tanto, sobreamortiguada. Precisamente para este limite del amortiguamiento, Kramers
prov6 que la tasa de escape desde A a C se puede escribir como [2]

wAaWp _
kAC — T@ AU/KT (1)
™
Esta teoria sirve de punto de partida para el analisis y explicacion de los experimentos de
Force Spectroscopy, ya que en estos casos, la molécula pasa de un estado a otro atravesando

cierta barrera de potencial de energia libre.

3.1.1. Tiempo de escape medio

Este concepto esta estrechamente relacionado con la teoria de Kramers y tiene una gran
importancia en los experimentos de activacién térmica. El tiempo de escape medio (MFPT
por las siglas en inglés de mean first passage time) busca responder a la pregunta de cuénto
tiempo le cuesta a un caminante aleatorio alcanzar cierto punto objetivo. Aplicando esta
idea de forma mas general, se puede entender también, como el tiempo necesario para
pasar de un sistema dindmico A, por ejemplo tener un complejo biomolecular unido, a
otro B, tener el complejo separado. En el limite sobreamortiguado y considerando que
el sistema estd sujeto a un potencial U(z), el MFPT se puede calcular de forma exacta
como [3]

B B
<t >= % /A dyeU(y)/kT /_OO dze~UR/KT (2)

Existe mucha literatura que intenta encontrar una correspondencia precisa entre la
tasa de escape de Kramers y MFPT. Normalmente se considera la siguiente relacién [3]
[4]:

k=—— (3)

3.1.2. Calculo de la Tasa de escape

A continuacion, calculamos la tasa de escape para un sistema de una particula atra-
pada en un pozo de potencial ctibico. De forma que podamos comprobar el rango de
temperaturas en el que la aproximacién de barrera infinita se cumple, ademés de asegu-

rarnos de que el cédigo desarrollado funciona correctamente.

En la simulacién utilizamos un Runge-Kutta de segundo orden para integrar la si-

guiente ecuacién diferencial estocéstica (SDE):

mi + myi = _SXT +&(t) (4)

Donde U(z) es el potencial ctibico caracteristico del sistema y £ es una variable aleatoria

de espectro gaussiano que tiene las siguientes propiedades:
< E()E() >= 29kgTo(t' —t)

>



<&(t)>=0

Para controlar mejor los parametros de la simulacién trabajaremos con la ecuacion

adimensionalizada que queda de la siguiente forma

'+ Y = —a(gz/vo) +E(1) (5)

Donde las nuevas magnitudes se han redefinido de la siguiente manera: el tiempo se ha
escalado utilizando una frecuencia caracteristica del sistema, wy:

T = wot

La posicion, en funciéon de a que es la distancia entre el primer minimo del potencial y la
barrera. Aunque anadimos este parametro por completitud, a partir de ahora considera-

remos que es 1 por simplicidad:

T
Yy=—
Qo
Una frecuencia caracteristica de la dindmica:
9 Vo
mao

El nuevo coeficiente de amortiguamiento, escalado a la frecuencia anterior:

_
/y_i
Wo

Nueva energia térmica, redefinida en funcion de la altura del potencial ctibico sin pertur-

bar.
Vo
Las nuevas caracteristicas del ruido gaussiano:

< E(T)E(r') >=23T5(t)

<&(1)>=0

Simulando el sistema descrito por la ecuacién |5 podriamos calcular el tiempo que le
cuesta a la particula ir de un punto de un lado de la barrera a otro del otro otro lado lo
suficientemente alejado de esta para asi, promediando sobre un gran nimero de particulas,
calcular < ¢t > y relacionarlo con la tasa de escape de Kramers segtn |3| para el potencial
concreto que estamos utilizando en la simulacién. Sin embargo, tiene mayor interés ir mo-
dificando el potencial ctibico para ver la evolucion de la tasa de escape conforme cambia

el potencial.



Por simplicidad y relacion con el tipo de experimentos que vamos a estudiar, merece la
pena modificar el potencial con una fuerza constante. Asi la expresién adimensionalizada
de este queda:

VT:g:Fc[y_in]_Fy (6)

Donde F, es la fuerza critica en la que el maximo y el minimo desaparecen, en nuestro
caso F. = 1,5.Ahora que conocemos el potencial exacto de trabajo, podemos intentar
obtener una expresion analitica para la tasa de escape de Kramers . Como vemos, esta
depende de la altura de la barrera AV. Se puede calcular a partir de los puntos en los

que la primera derivada de potencial se anula:

Donde f = FE Asi, se ve que:
2

_ 3
AV =R~ f} (7
Por otro lado, si nos fijamos en la expresiéon de la tasa de escape de Kramers ,
vemos que no esta escrita en funciéon de los parametros adimensionalizados. Por tanto
debemos dividir toda la expresion entre wy. Ademas, por las caracteristicas del potencial

la curvatura en el minimo y en el maximo es la misma, entonces:
— 1
V"= —4F.(1-[) (8)

Finalmente, sustituyendo las expresiones de la barrera @ y de w? = |V y adimen-

sionalizando la tasa de escape (|1|) tenemos:

Nlw

L Erea-£)
Jre T (9)
Ahora ya si, tenemos una expresion para comprar directamente los resultados de la simu-

lacién.

3.1.3. Resultados del calculo de la tasa de escape

Con el programa (anexo I) simulamos el movimiento de un caminante aleatorio sujeto
a dicho potencial para temperaturas 0.1 y 0.3, lo que equivale a alturas de la barrera
de entre 10 y 3 veces la energia térmica. Este intervalo nos permitira evaluar los efectos
de trabajar en temperaturas para las cuales la aproximacién de barrera infinita puede
dejar de ser buena. Una vez que hemos conseguido que un niimero suficiente de particulas
escapen, normalmente con 100, es suficiente para que al hacer estadistica los resultados

no sufran fluctuaciones importantes. Variamos el valor de F' y repetimos el proceso hasta



barrer las fuerzas que van desde F <« F. a F ~ F.. A continuacién adjuntamos los

resultados:
Célculo de la tasa de escape de Kramers
10'1 = .I . . . . . . . . . . . . . . . .I B B B .I —
. b4 5 b o
*
e e MR F +
% 10 o _'_,_}z'__'_x_;—g—_' TR TR e e e B e
= —x = e
- L . : . P . : : _
T 103 L e -
it} R o
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W —F
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Figura 4: Resultados calculo tasa de escape. Se muestran los resultados de la simu-

lacién, puntos, sobre la curva teodrica para distintas temperaturas.

Se observa cémo para temperaturas iguales a 0.1, el ajuste a la teoria es muy bueno
desde fuerzas externas muy pequenas hasta fuerzas externas cercanas a la fuerza critica,
en nuestro caso 1.5, para las cuales vemos coémo @D tiende bruscamente a 0. En este rango
cercano a F,, cuesta mas definir el problema de activacion ya que maximo y minimo se
van difuminando. Por eso observamos que, al mismo tiempo que el ajuste empieza a fallar,
la tasa de escape alcanza un valor constante. Esto implica que, de ahora en adelante, para
poder comparar bien los resultados de los experimentos FS con la teoria serd necesario
trabajar con temperaturas menores o iguales que 0.1. No obstante, por completitud, pre-
sentaremos también los resultados que obtenemos para T=0.3, como muestra de cuanto
se aleja la teoria de la simulacion cuando no estamos trabajando a temperaturas bajas, ya
que, aunque no parece ajustarse mal, no lo hace tan bien como para T=0.1 y nos podemos

permitir bajar algo la temperatura hasta un orden de magnitud.

3.2. Experimento FS.

A continuacion, y de ahora en adelante, nos centramos en los experimentos de Force
Spectroscopy. Para ello, es necesario repasar las distintas teorias que buscan explicar este
tipo de experimentos. En la practica, al tirar de la molécula, lo que estamos haciendo es
incluir una fuerza de estiramiento que modifica el perfil de energia libre que caracteriza
el cambio entre los dos estados (complejo molecular unido o desunido, molécula abierta,
o cerrada), favoreciendo la transicién. Uno de los objetivos de entender bien este proceso

es recuperar informacion sobre el potencial sin perturbar a partir de los resultados del



experimento.

La formulacién del problema es similar a la de Kramers. Modelizamos la transicién
molecular o del enlace como un problema de activaciéon térmica de una particula movién-
dose por un perfil de energia libre con una barrera, perturbado por una fuerza externa.

Cuando la particula pase la barrera se producira la transicion molecular

Consideramos que la direccion en la que tiramos de la molécula es aquella en la que
se mueve la particula que modeliza la transicién, x, por tanto, se mueve por un perfil que
es combinacién del original Uy(z) y la influencia de una fuerza externa F. En funcién de
cémo sea esta fuerza externa el tratamiento matematico es diferente. Si la fuerza externa
es constante entonces su aportacion al perfil total es estatica y el resultado es, como hemos
visto en la seccién anterior . Sin embargo, si tiramos con un dispositivo a velocidad
constante, la fuerza varfa con el tiempo de forma también constante dF/dt = F. Ahora,
podremos calcular el tiempo en el que se produce la transicion, t*, y relacionarlo con
la fuerza obteniendo la fuerza de ruptura, f*. Pero, ;Cémo podemos obtener la barrera
de energia libre a fuerza cero a partir del tiempo en el que se produce la ruptura o
de las distribuciones de probabilidad de la fuerza? En la siguiente imagen se ilustra la

perturbacién del potencial con una fuerza externa.

F=0 F>0

K(F)>k,

Figura 5: Representacion esquematica del perfil de potencial en un experimento
de F'S. En la imagen de la izquierda, la fuerza externa es cero y nos encontramos ante
el problema de escape de Kramers para un potencial de barrera AG' que tiene como
resultado una tasa de escape ky. En la imagen de la derecha, tiramos con una fuerza que
favorece la transicion. Esto se traduce en una disminucion de la barrera, y por tanto una

tasa de escape mayor que en caso de F' = 0 [I]

Teoria fenomenolégica de Bell-Evans

Uno de los primeros intentos de abordar los problemas de los experimentos de force
spectroscopy vino con los trabajos de Bell [5] y el desarollo posterior de Evans [6]. En

primera aproximacion, se considera que la barrera disminuye linealmente con la fuerza y



que la posicion de la transicién no varia con la fuerza, obteniéndose la siguiente relacion:

Fat

AU = AUy — Fa' — k(F) = koe*sT (10)

Donde ky = k(F = 0). Teniendo en cuenta esta expresion y relacionando la proba-
bilidades de supervivencia, probabilidad de que la particula no haya escapado a cierto
tiempo t, y la probabilidad de ruptura, probabilidad de que la particula haya escapado a
cierto tiempo t, podemos obtener la distribuciéon de probabilidad de la fuerza y, a partir
de ella, la fuerza de ruptura media. Mostramos directamente el resultado. En el anexo 11

se encuentra el desarrollo completo.

]CBT .%‘TF
< F >= ——log—— 11

donde < F > es la fuerza de ruptura més probable, F' = df /dt es la tasa de carga del
experimento y 7y es la constante de Euler-Mascheroni. Esta constante aparece porque, a
la hora de calcular la fuerza de ruptura media, resulta méas facil calcular el maximo de la
distribuciéon de probabilidad de las fuerzas y después corregir el resultado, introduciendo

dicha constante, para obtener la fuerza de ruptura media.

Estas ecuaciones forman el modelo que se conoce como modelo fenomenolégico de Bell-
Evans. Es ampliamente utilizado para extraer la tasa de escape intrinseca del sistema kg

y la posicién de la transicién de estado .

Teoria Dudko-Hummer-Szabo

Hummer y Szabo [7] y Dudko [§] de forma casi simultdanea propusieron una expresién
que relacionaba la velocidad del dispositivo que estira y la fuerza de ruptura media, per-

mitiendo recuperar no solo kg y ', sino también la barrera de energia libre, AGH.

Aunque en un primer momento propusieron dependencias diferentes con la velocidad
con la que se tira, F: Hummer y Szabo propusieron que < F' > (logF )% mientras que
Dudko predijo que < F > (logF )% Estos resultados se diferenciaban en los resultados
y en el andlisis fisico del problema. Anos después, en un trabajo conjunto, establecieron
un marco comun de trabajo y un formalismo unificado que les permitié6 encontrar una
dependencia general: < F' > (logF )”. Donde v es un coeficiente que depende del tipo
de potencial de trabajo, teniendo v = % para un potencial combinaciéon de un término
lineal y cubico, como el que hemos utilizado en la seccién m, yv= % para potenciales
del tipo parabolic-cusp. Ademas, valores de v = 1 o0 AGT — ooVv recuperan el modelo

fenomenolégico de Bell-Evans.

10



En particular, para el modo que mas nos interesa que es el de tirar a velocidad cons-

tante se obtiene la siguiente expresién [9].

kT R\]"

Donde v = % ya que estamos en un potencial combinacién de un térmico lineal y otro
ctibico y por las caracteristicas de este F, = 1,5 y AG' = 1. La temperatura, 7', como
hemos visto en la seccién debe ser menor que 0.1 para estar en la regiéon en la que
se cumple la aproximacién de barrera infinita. El resto de elementos que aparecen en la

ecuacion [12] son los siguientes:

kae?

Ey = LekT

ol
y ko es el prefactor de
2
- 3
ko= —0 o7 = 2ot (13)
27y Ty

Donde 7 es el coeficiente de amortiguamiento del sistema adimensionalizado, ' es 1 segiin
nuestro modelo (recuérdese la adimensionalizacién del sistema ) y v es la constante de

Euler-Mascheroni que tiene el valor v = 0,577... y, por tanto, 7 = 1,78.

Ahora ya tenemos una expresion tedrica para ajustar los resultados de las simulaciones
de FS en el modo de tirar con una fuerza que varia de forma constante con el tiempo. De
forma que podemos estudiar el efecto de tirar mas o menos rapido en la fuerza de ruptura

media.

3.2.1. Resultado de la simulacién FS en constant rate mode

Modificando el c6édigo que hemos utilizado para calcular la tasa de escape en funciéon
de la fuerza externa constante con la que tiramos podemos hacer que sirva para
describir el problema actual. Simplemente cambiando la fuerza externa constante por
otra que varia de forma constante con el tiempo y guardando el valor de la fuerza a la
salida el pozo, ya tenemos un c6digo que nos sirve para la simulacion del experimento F'S
en constant rate mode. La nueva fuerza que se aplica sobre la particula es:

%‘;T = aax; — Ft (14)

Presentamos los resultados obtenidos en la simulacién en la figura siguiente:

11



Force Spectroscopy experiment en constant rate mode

. — . — . — . — . — .
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Figura 6: Resultados de la simulaciéon F'S en constant rate mode para diferentes tempe-
raturas y valores de F. Se observa cémo para temperaturas inferiores o iguales a T=0.1
el ajuste es bueno para valores de F' intermedios. Se ve también cémo segiin bajamos la

temperatura el ajuste va mejorando.

Si nos fijamos en la grafica para T=0.01, vemos que todos los puntos experimentales
caen sobre la curva teodrica de forma casi exacta. También, fijAndonos en la curva para
T=0.05 vemos que los puntos de la simulacién con F' < 103 caen de forma muy exacta
sobre la curva tedrica lo que nos indica que para esta temperatura y en este rango de tra-
bajo la teoria funciona bien. Podemos observar ademas, que hay algin punto exerimental
para estas dos graficas que quedan fuera del rango de aplicacién de la teoria. Estos puntos
son < F' >> F_ y a partir de esta fuerza el potencial esta lo suficientemente distorsionado

como para no poder definir una barrera a la que aplicar la teoria.

Por otro lado, para T=0.1 vemos como los puntos también empiezan a caer sobre la
curva teérica para valores de F' < 1073, pero que para valores de F' < 5-107° la curva
tedrica va por debajo de los puntos de la simulacién y dejan de coincidir correctamente. Al
estar en el régimen sobreamortiguado, una vez la particula alcanza el maximo o incluso lo
supera un poco, sigue teniendo una probabilidad de ~ 0,5 de volver en direccién al pozo.
Ademés para valores pequefios de F' v a esa temperatura la velocidad a la que se mueve
la particula debido a su energia térmica domina a la velocidad con la que es tirada por
la fuerza y se producen retrocesos con bastante frecuencia, algo que la teoria considera
que no ocurre. Al producirse uno o mas retrocesos la particula pasa la barrera pero luego
retrocede, esto supone un paso mayor de tiempo antes de pasar el punto que marcamos
como escape de la barrera, normalmente z = 2 para asegurarnos de que, precisamente, ya
no va a haber més retrocesos, y por tanto una fuerza de ruptura también mayor (recordar

que F = F t). Para ilustrar este efecto, hemos recuperado la trayectoria de algunas de las
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particulas para T=0.1 y valores de F' del rango de interés. Adjuntamos a continuacién los

resultados:

Trayectorias para diferentes Fpunto

T
barrera
1.5 - Fpunto=3.9e-6 *
Fpunto=2.5e-6  *
- Fpunto=1.5e-6

Figura 7: Trayectorias de la particula para T=0.1 y diferentes valores de I en la regién

de interés.

Se puede observar en la figura [7] tres trayectorias de una particula para los 3 valores
més pequetios de F. En los dos primeros se observan retrocesos, puntos en los que cruza
la barrera y luego sigue en direccion al pozo. Si por ejemplo, nos fijamos en la trayectoria
con F' = 2,5-107% vemos que se produce un retroceso al principio y que después le cuesta
30 segundos mas volver a salir. Este es un claro ejemplo de como un retroceso aumenta

el tiempo que le cuesta escapar y por tanto la fuerza de ruptura.

Por otro lado, como cabia esperar, para T=0.3 la teoria falla completamente en la
descripcion del experimento ya que a esta temperatura las condiciones de las premisas
dejan de cumplirse. Pensando ya en secciones posteriores, en las que tiraremos con un
muelle o incluso cambiaremos el potencial de forma que el marco tedrico dejara de ser tan
claro, estos resultados nos serviran como referencia con la que comparar lo que vayamos

obteniendo.

Otro tipo de graficos que presentan interés son los de la distribucién de probabili-
dad de la fuerza. Estos graficos nos muestran como se distribuyen las fuerzas de ruptura
y muestran, por un lado, la dependencia que tienen con F' e ilustran el motivo por el
que es necesaria la rectificacion que da lugar a la introduccion de la constante de Euler-

Mascheroni. A continuaciéon adjuntamos uno de estos graficos:
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Distribuciones de probabilidad de F para diferentes dF/dt

3.0

. OF/dt=46-10"-4

. Ffdt=2.6-10"-3

25 1 N OF/dt=15-10"-2
20
LR
10
05 -

0.0 -
oo 025 050 075 100 125 150 175 200

F

Figura 8: Distribuciones de probabilidad para distintos valores de F para T=0.1. Se
observa como, segin aumentamos F aumenta < F >. Se observa, ademds que el valor

méximo de la distribucién no coincide con el valor medio al no ser la distribucion simétrica.

En la ﬁgura se observa como al aumentar F' el maximo de la distribucién se desplaza
hacia valores mas altos de F. Como las distribuciones no son simétricas, el maximo y
el valor medio no coinciden y es por esto que en las ecuaciones y es necesario
introducir la constante de Euler-Mascheroni. Se puede observar cémo la cola izquierda es
més alargada que la derecha y c6mo segtin aumentamos E el méximo de las distribuciones
disminuye y el rango de fuerzas en las que se produce la transicion aumenta. Es decir,
cuanto menor es la velocidad con la que tiramos, més estrecho es el rango de fuerzas en

los que la particula escapara.

3.3. Efectos de tirar con un muelle

Hasta ahora, no habiamos discutido sobre el efecto que causa en el potencial el dispo-
sitivo que utilizamos para tirar de la molécula. Sin embargo, esto es importante ya que
en los experimentos de Force Spectroscopy se suele considerar que el dispositivo con el
que se tira es un muelle. De hecho, como normalmente se utilizan moléculas o complejos
moleculares cuya rigidez depende de la fuerza, se suelen considerar muelles no lineales.
No obstante, no nos va a dar tiempo a evaluar los efectos de tirar con un dispositivo de
este tipo, asi que nos vamos a centrar en la teoria que modeliza el hecho de estirar con

un muelle lineal.

Maitra desarroll6 en [10] una teoria que describe de forma analitica los efectos de tirar
con un muelle en la fuerza media de ruptura. Nos vamos a centrar en el constant rate
mode, ahora tiraremos de un muelle a velocidad V. Considerando la aproximacion de

muelle blando, podemos escribir la fuerza ejercida por el muelle como < F(t) >= kV't.
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Si ahora nos enfrentamos a un muelle con una rigidez arbitraria, tenemos la siguiente

expresion:

KVt
O
Donde, y = 1+ Ky /k, es un parametro que relaciona, por un lado, la rigidez efectiva del

< F(t) >= = F(t)

perfil de energia libre en el pozo de potencial, K7, que se puede calcular aproximadamente
como Uy = Kyz?/2,y, por otro, la rigidez del muelle con el que tiramos, k. Asi, y cuantifica
lo que nos alejamos de la aproximacioén de muelle blando, recuperando la teoria de Dudko-
Hummer-Szabo cuando k << Ky, es decir, y = 1. Si nos fijamos, en este caso recuperamos
las condiciones de considerando que F = KV .

Tal como se desarrolla en [I0], se llega a la siguiente expresién para la fuerza media de

ruptura cuando tiramos con un muelle de rigidez arbitraria:

AGT T e ]°
<F >~ — {1 - ll — Wlog(l - qX)] } (15)

—r(xl)2

Donde v es la constante de Euler-Masscheroni, ¢ =< e 27 |, X = kT

KVt
de la transiciéon de estados y k¢ ya la hemos visto en . Esta expresion introduce el

x' es la posicién

parametro x. Aunque s es conocida, Ky es dificil de estimar en potenciales reales, asi que
X es otro parametro a ajustar que ademas puede servir para saber si la aproximacon de

muelle blando es lo suficientemente buena no.

3.3.1. Resultados de la simulacién FS tirando con un muelle

A continuacién mostramos los resultados que hemos obtenido al tirar con un muelle

que vamos separando a velocidad constante. La nueva perturbacion al sistema es:

oVp OV

—— =——+r@z-Vt 16

o =~ g Tl ) (16)
Para implementar la simulacién, seguimos barriendo en F ya que la fijamos como nuestra
unidad de variacién en fuerza. No obstante, podemos relacionarla con los parametros del
muelle segin: F = kV. Ya que si desarrollamos la aportacién de muelle lo que acompaiia
al tiempo es lo que consideramos F. Asi pues, simplemente tenemos que modificar el pro-
grama de la simulacién F'S en constant rate mode para que, por un lado, calcule el nuevo
potencial y que, para un valor de x fijo siga barriendo para los diferentes valores de F' que

barriamos en el experimento anterior.

Ademas, calcular ahora la fuerza de salida es mucho més sutil ya que, como esta es
proporcional a la distancia entre la particula y el extremo del muelle, una vez la particula
pase el maximo la fuerza disminuird muy rapido al no encontrar el muelle la oposicién del

pozo del potencial. Por tanto, para evitar resultados subestimados, la forma de calcular la
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fuerza de salida es calcular el tiempo de salida, t* en el que la particula pasa la barrera y

después calcular la fuerza como F* = F = ke Vi + Fy donde kepr = (kpoho 4 Krene) ™" Y
Fy es la fuerza que ejerce el muelle sobre la particula en el tiempo inicial, en nuestro caso:
Fy = g Comprobar experimentalmente que la fuerza se ajusta a este comportamiento

temporal es sencillo. A continuacién, adjuntamos una grafica en la que se muestra:

Comportamiento temporal de la fuerza
0.9 T T T T T T

i i i L i i i i

0 1000 2000 3000 4000 2000 6000 7000 8000 o000

Fexp(t) + Fleo(t) e

Figura 9: Comportamiento experimental y teérico de la fuerza en funciéon del tiempo
cuando tiramos de una particula en un pozo de potencial de curvatura en el minimo
de Ky = 6 con un muelle de £ = 0,1. Vemos como los datos experimentales siguen, en
promedio, el comportamiento predicho por la teoria dejando de manifiesto que la atraccion

al pozo de potencial y la accién del muelle se combinan como dos muelles en serie.

Ahora, presentamos los resultados obtenidos en el experimento para diferentes valores
de Ty k.
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FS experiment con muelle

Fuerza media de ruptura <F>

dF/dt
T=0.1 sin muelle k=05 = k=1.0 & k=20

k=0.1 =% k=0.75 k=15 w k=25 ¢
Figura 10: Fuerza de ruptura media en funciéon de la velocidad con la que tiramos para
T=0.1 y diferentes valores de la rigidez k. Se representa también el ajuste tedérico para
tres valores pequenos de k, al igual que los datos experimentales y ajuste tedrico del

experimento FS sin muelle.

FS experiment con muelle
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dF/dt
T=0.05 sin muelle k=0.5 = k=1.0 & k=2
k=0.1 # k=0.75 k=15 w k=2.5

Figura 11: Fuerza de ruptura media en funcion de la velocidad con la que tiramos para
T=0.05 y diferentes valores de la rigidez . Se representa también el ajuste tedrico para
tres valores pequenos de k, al igual que los datos experimentales y ajuste tedrico del

experimento F'S sin muelle.
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FS experiment con muelle

1.50 . — . . —

Fuerza media de ruptura <F>
—
(%)
(%]
|
[ ]
i
§
"

!
1

1.20 . L . . L . . L

10% 1079 1074 1073

dF/dt
T=0.01 sin muelle k=0.5 = k=1.0 &
k=0.1 =* k=0.75
Figura 12: Fuerza de ruptura media en funcion de la velocidad con la que tiramos para
T=0.01 y diferentes valores de la rigidez . Se representa también el ajuste teérico para
tres valores pequenos de k, al igual que los datos experimentales y ajuste tedrico del

experimento FS sin muelle.

Como se puede observar facilmente, un aumento de la rigidez del muelle produce tam-
bién un aumento en la fuerza de ruptura media independientemente de la temperatura en
la que nos encontremos. Ademas observamos como para valores pequenos de k£ < 0,1 en
los que y & 1, recuperamos los resultados de la teoria de Dudko, , a partir de (15]) y
las curvas son casi coincidentes. También se ve como para valores de k > 0,1, que corres-
ponden a factores KLU > 0,0167 el comportamiento de la fuerza de ruptura media se aleja
mucho del muelle blando. De esta forma podriamos establecer el criterio de, que para que
se cumpla de forma mas o menos buena la aproximacién de muelle blando, deberiamos
trabajar con KLU menores a este valor.

Por otro lado, hemos intentado ajustar estos resultados a la teoria desarrollada por
Maitra en [10] y vemos como para muelles de k = 0,5 deja de ajustarse bien para nin-
guna temperatura y como segin bajamos la rigidez y la temperatura el ajuste mejora
hasta llegar a k = 0,1 y T = 0,01 cuando el ajuste es bastante bueno. Se ve como para
temperaturas lo suficientemente bajas, hay un rango de s entre 0,1 y 0,5 en el que, para

temperaturas suficientemente bajas, el ajuste es relativamente bueno.

4. Experimento FS en un potencial de Morse

Vamos a sustituir el potencial ctibico lineal en el que hemos estado trabajando y sobre

el que se desarrolla toda la teoria de escape de Kramers y derivadas por un potencial de
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Morse, ejemplo clasico del enlace molecular. Este potencial por su aplicacién a sistemas
reales y relativa facilidad de implementar nos seré de gran utilidad a la hora de comparar
cémo afecta la introduccién de un potencial distinto a los resultados. El potencial que

vamos a utilizar, ya con el término del constant rate mode, es:
V =3(1—e @02 _ p(t)z (17)

El motivo por el que hemos escogido este potencial de Morse en concreto es porque tiene
el pozo en potencial en la misma posicion que nuestro potencial cuibico lineal anterior,
Tmin = —0,5, y porque tiene, también, la misma fuerza critica, F. = 1,5. Aunque el
potencial de Morse sin perturbar solamente tiene un extremo relativo, que es un minimo,
al ir pasando el tiempo y, por tanto, el valor de la perturbacion aparece un minimo
que al principio no es muy marcado pero que se va acentuando. En la imagen siguiente,

mostramos el potencial sin perturbar y como va cambiando con el paso del tiempo:

Estudio del potencial de morse

F=0 —— F=0.1 —— F=0.5 F=1 F=1.2 F=1.5 ——

Figura 13: Potencial de morse en funcién de la perturbacién F(t). Podemos ver cémo, en
el estado inicial, no existe maximo de la barrera. Este se hace mas claro segin pasa el
tiempo. Ademas, se ve como para F' = 1,5 tanto el maximo como el minimo desparecen

dejando en evidencia que esta es la fuerza critica.

El hecho de que no haya una barrera claramente definida para valores de F'(t) pe-
quenos hace que nos resulte mas complicado determinar la posicién a partir de la cual
consideramos que la particula ha escapado. Para clarificar esto y encontrar criterios razo-

nables para la salida del pozo vamos a estudiar el potencial.

Podemos calcular la posicién del maximo en funcién de la perturbacién y obtenemos

la siguiente expresion analitica:

dl=ln— = _0p5 (18)



Cuando tiramos con velocidades pequenas, gran parte de la simulaciéon transcurre con una
perturbacién es menor que 0.1, cuya posiciéon del maximo es zf(F = 0,1) = 3,58. Asf pues,
una condicion de salida razonable para valores menores de la perturbacion, que indicaria
que la particula ha salido ya del pozo, seria que esta alcanzara una posiciéon x = 6. Por
otro lado, para valores de la perturbacion lo suficientemente grandes que provocaran que

z' < 5, se podria, simplemente utilizar z,,; = 27 + 1 como condicién de salida.

4.1. Marco tedrico de experimentos FS en el potencial de Morse

Dudko et al trabajaron en la modelizacién de la fuerza de ruptura media en estos
potenciales en [II]. Parten de un potencial de Morse y tiran de la particula con un melle.
No obstante, nuestro experimento se ha llevado a cabo en constant rate mode asi que el
paso de sus expresiones a unas validas a nuestra situacion lo hacemos suponiendo que
k — 0 pero que a su vez F' = kV — C con C' # 0. Entonces, para un potencial de Morse

de la forma:
U(x) = Up((1 — e 2 Fel/fey2) (19)

Donde los parametros caracteristicos del potencial, fuerza critica, altura de la barrera y

frecuencia de oscilaciéon son, respectivamente:

bUy
F, =
R
Uc == Uo
q _ 2V
c — Rc

Se obtiene una fuerza de ruptura media

T
<F>=F.¢1—
i (a)

wIin

Dee))

En nuestro modelo los valores que definen el potencial son: Uy = 3, b = —0,25, R, = —0,5
y, por tanto F, = 1,5, U. = 3 y Q. = 1,732. Asi pues, con estos parametros podremos

comprobar como de bueno es el ajuste a nuestros resultados.

4.2. Resultado experimento FS en Potencial de Morse

A continuacion, adjuntamos los resultados del experimento junto con el ajuste tedrico.
A nivel de codigo solo ha sido necesario modificar el ya utilizado en la simulacién de FS

en constant rate mode:
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Figura 14: Fuerza de ruptura media en funcién de la velocidad con la que se estira para
distintas T.

Se puede observar cémo para todas las temperaturas el ajuste es muy bueno siempre y

cuando las velocidades no sean demasiado elevadas. La teoria no puede ajustar los puntos

que se encuentran mas alla de la fuerza critica y, conforme disminuimos la temperatura,

se ajusta mejor a los puntos con velocidades mas altas.

4.3.

Deduccién de los parametros del potencial

Hasta ahora nos hemos limitado a ajustar la teoria utilizando los parametros que ya

conociamos del potencial. Sin embargo, en un experimento real, son precisamente estos

parametros los que queremos recuperar a partir del ajuste de los resultados del experi-

mento. Para ver como de efectiva es la teoria a la hora de conseguir este objetivo, vamos

a ajustar los resultados obtenidos del experimento con el potencial de Morse a la teoria

de Dudko [9] del potencial cubico en la aproximacién de muelle blando, que es la

que se suele utilizar en la préactica, y ver si los parametros que recuperamos son validos

realmente a la hora te caracterizar el potencial de partida.

A continuacién, adjuntamos las curvas ajustadas. Solamente hemos buscado ajustar los

puntos que hemos visto que la teoria es capaz de describir correctamente ya que intentar

ajustarlos todos daria lugar a resultados que no se corresponderian con la realidad.
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Caracterizacion del potencial
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dF/dt

Figura 15: Curvas del ajuste de los puntos experimentales a la teoria de Dudko.

Y los parametros del ajuste son:

T AG ot ko
0,01 | 1,9647 | 1,9697 | 0,0002
0,05 | 2,4118 | 2,6355 | 0,0005
0,1 |2,4149 | 2,8444 | 0,0006

Cuadro 2: Parametros del ajuste a la teoria de Dudko.

Desde el punto de vista de un potencial de Morse, vemos céomo el ajuste no predice

la altura de la barrera, AGy = 3, correctamente para ninguna temperatura aunque si
AG

que se acerca mas para temperaturas mayores. Por otro lado, la fuerza critica, F. = <%,

es aproximadamente 1 y va disminuyendo conforme bajamos la temperatura. Por tanto,
tampoco es muy precisa al intentar recuperar el parametro original, F,y = 1,5. Como
vemos, la informacién que recuperamos del experimento a temperaturas mayores parece

ajustarse mas a la realidad.

Hemos visto la eficacia de la teoria de Dudko para recuperar informacién de perfiles de
energia libre desconocidos. También podemos intentar interpretar los resultados de otra
manera. Nuestro problema es que tenemos un potencial de Morse, lo que podemos hacer
es desarrollarlo en serie de potencias en torno al 0, quedarnos solo hasta el término de
orden cubico y ver si los parametros que hemos obtenido se ajustan a dicho potencial. A

continuacion, adjuntamos una gréafica en la que comparamos dichos potenciales.

22



Recuperacidn potencial de Morse
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Figura 16: Potenciales que se obtienen al aplicar la teoria de Dudko. Se observa como
conforme aumentamos la temperatura el potencial que recuperamos se parece menos a la

expansion en series hasta el término ctbico del potencial de Morse.

En primer lugar, cabe destacar como el potencial ctibico se parece bastante al de Morse

en el pozo mientras que mas alla de la barrera falla.

Por otro lado, recordando que para el potencial ciibico lineal la fuerza critica tiene la
forma F, = 1,5% [9], vemos como para T' = 0,01 recuperamos la recuperamos de forma
correcta mientras que conforme aumentamos la temperatura el valor difiere méas. Aunque
se puede observar como ninguno de los potenciales se ajusta perfectamente, si que es
cierto que el de menor temperatura, con una fuerza critica tan correcta y una altura de
la barrera similar se parece bastante.

Aunque el ajuste consigue recuperar informacion de la expansiéon en serie de la barrera,
no resulta exitoso a la hora de describir el potencial de Morse como tal. En la préctica,
al no saber qué tipo de potencial describe nuestro sistema fisico, utilizar esta teoria como
método de ajuste solo nos permite recuperar informacion certera de potenciales que se

parezcan mucho al cibico lineal.

5. Conclusiones y futuro trabajo

A lo largo del trabajo hemos visto como el marco tedrico desarrollado en las fuerzas
de escape es capaz de describir sistemas en los que la separaciéon de complejos moleculares
ha sido modelizada como un sistema de dos estados. Estos modelos han demostrado su
validez en las simulaciones para un amplio rango de situaciones variando la temperatura y
la rigidez del muelle con el que estiramos y son de aplicacién directa a los datos obtenidos

de los experimentos en el laboratorio.

23



Asi mismo, hemos comprobado como afecta a la eficacia del modelo la introduccion
de un potencial distinto al ctibico lineal. El resultado nos ha ensenado lo importante que
son las caracteristicas del potencial a la hora de hacer este tipo de simulaciones y lo poco
efectivo que es el modelo a la hora de recuperar informacion de un potencial no ciibico
lineal. El hecho de que no tengamos acceso al potencial real y que no podamos relacionar
todos con uno cubico lineal nos hace pensar que esta puede ser la mayor fuente de error

a la hora de recuperar informacién del potencial.

Al igual que hemos cambiado el sistema en el caso del potencial de Morse, podriamos
cambiarlo, manteniendo el potencial ciibico lineal, cambiando el dispositivo con el que
estiramos. En vez de con un muelle lineal podriamos estirar con uno no lineal, que por
ejemplo siga la ecuacién de un worm-like chain, modelo que se utiliza normalmente para
describir polimeros y ver como afecta a la recuperacion de la informacion del perfil de
energia libre. Ademas, normalmente en la practica, se estira de la particula con uno de

estos polimeros y por tanto este muelle es mucho mas realista que el lineal.

Aunque si que desarrollamos un programa que simulaba la dinamica de este sistema,
que es algo més complicada que las anteriores, un pequeno error a la hora de calcular la
fuerza de ruptura hace que los resultados obtenidos sean erréoneos y que no merezcan ser
presentados. Por tanto, una buena forma de continuar este trabajo seria investigar qué

dependencia tiene la fuerza de ruptura cuando estiramos con otros dispositivos.

Otra forma de continuar el trabajo seria llevar a cabo simulaciones de dindmica mole-
cular, que cada vez son mas accesibles en los ordenadores actuales, esto nos daria infor-
macién real de qué zonas se separan primero y como afecta esto a la forma en la que se

separan los complejos moleculares y, por tanto, al modelo.

Por otro lado, podriamos también ajustar datos experimentales medidos en el labora-
torio con el interés de recuperar informacion de los perfiles de energia libre de las uniones

y comprobar la validez de los modelos en sistemas fisicos reales.

Para finalizar, otra gran pregunta es si el potencial que se recupera al hacer experi-
mentos de estiramiento mecanico tiene mas o menos relaciéon con los procesos de desnatu-
ralizacién por temperatura, pH u otros. Extrapolar estos resultados al resto de procesos
no es algo que se pueda hacer hoy en dia con una base tedrica. Relacionarlos seria un gran

avance en el estudio de enlaces de complejos moleculares y plegamiento de proteinas.
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