
Anexo I. Código 

 En este anexo, vamos a mostrar parte del código desarrollado y comentar alguno de sus aspectos 

destacados. El lenguaje de programación escogido ha sido Python por su sencillez a la hora de escribir 

código pero también con un objetivo formativo para aprender un lenguaje que hoy en día es ampliamente 

utilizado en una gran variedad de ámbitos desde el análisis de datos hasta la simulación numérica. En 

cuanto a los detalles técnicos, la mayor parte de los programas fueron simulados en el Cluster de 

ordenadores del Departamento de Física de la Materia Condensada en la Universidad de Zaragoza. 

 A continuación, presentamos el código de cálculo de la tasa de escape Kramers íntegro, ya que, 

el resto de programas se consiguen variando segmentos de este. 

 
import numpy as np ##importamos la librería matemática 
 
## parámetros del sistema adimesional 
gamma=10. ##Viscosidad. Sistema sobreamortiguado 
T=0.05  ##Temperatura 
Fc=1.5  ##Fuerza crítica, desaparecen máximo y mínimo 
 
#Parámetros para ir avanzando por la fuerza 
N_pasos=20 
Fmax=1.5 
d_paso=Fmax/N_pasos 
 
#Paso de tiempo y número de partículas 
dt=0.01 
N_particulas=100 
 
##Posicion y velocidad inicial 
x0=-0.5 
v0=np.sqrt(T) ## La correspondiente al baño térmico 
 
##parámetros para la introducción del ruido 
D=2*gamma*T ##Coeficiente de difusión 
eps=(dt*D)**0.5 ##Para el Runge-Kutta 
##definimos listas para guardar resultados 
time=[] 
##definimos el nombre del archivo para guardar resultados 
r1=str(T) 
r2=str(N_pasos) 
resultados=str("TE_"+r1+"_"+r2+".txt") 
 
##Abrimos el fichero de reslultados 
f=open(resultados,'w') 
f.close() 
f=open(resultados,'a') 
 
## definimos G(energia libre) 
AG=1 
 
##G0 cúbico lineal: 
def dG0(xp,Fp): 
    return AG*(3/2-(6*xp**2))-Fp 



 
""" 
Definimos ahora las funciones del R-K considerando 
dx/dt=f1(x,v) --> f1(x,v)=v 
dv/dt=f2(x,v)+num_aleatorio  
f2(x,v)= -gamma*v-dG(x) 
para nuestro caso de un potencial de energía libre G y una fuerza F 
del muelle lineal 
""" 
#Estas funciones son las que determinan la dinámica simulada con el 
Runge-Kutta de segundo orden. 
 
def f1(xp,vp):     
    return vp 
 
def f2(xp,vp,Fp):     
    return (-gamma*vp-dG0(xp,Fp)) 
     
## programa principal 
 
#comenzamos el R-K 
xnw=x0 
vnw=v0 
p=0 
F=0 
##Bucle en fuerzas 
for t in range(0,N_pasos): 
    F=d_paso+F 
    print(t,F) 
    #Bucle en partículas 
    for n in range(0,N_particulas): 
        p=0 ##Contador de pasos que realiza cada partícula para salir 
        xnw=x0 
        vnw=v0 
        #Bucle en tiempo para cada partícula 
        while xnw < 2: 
            num_rand=np.random.randn() 
            g11=f1(xnw,vnw+eps*num_rand) 
            g12=f2(xnw,vnw+eps*num_rand,F) 
            g21=f1(xnw+dt*g11,vnw+dt*g12) 
            g22=f2(xnw+g11*dt,vnw+g12*dt,F) 
            xnw+=dt/2*(g11+g21) 
            vnw+=dt/2*(g12+g22)+eps*num_rand 
            p=p+1 
             
        time.append(dt*p) 
         
    ##Calculamos la media y añadimos a lista 
    mean_t=0 
    for k in range(t*N_particulas,N_particulas*(t+1)-1): 
        mean_t+=time[k] 
         
    mean_t=mean_t/N_particulas 
     



    tescp=1./mean_t 
        ##Calculamos la desviación 
    dev_t=0 
    for k in range(0,N_particulas): 
        dev_t=(time[k]-mean_t)**2 
    dev_t=np.sqrt(dev_t/N_particulas) 
    desv=dev_t/mean_t**(2) 
    s1=str(F) 
    s2=str(tescp) 
    s3=str(desv) 
    s=str(s1 +"\t"+s2+"\t"+s3+"\n") 
    f.write(s) 
##cerramos fichero 
f.close() 

 
Las secciones más importantes del código están marcadas en negrita y son, la definición del 

potencial, el bucle en el que se desarrolla el R-K y la forma de guardar los resultados. Así pues, vamos 

a repasar estos puntos para los diferentes programas utilizados. 

 

Programa para el cálculo de la fuerza de ruptura media en función de T en el consta trate mode. 

En este caso, el potencial es el mismo así que no merece la pena repetirlo. El segmento del bucle, 

así como el código utilizado para recoger los datos lo presento a continuación. 

 

#Bucle en a, a=dF/dt 

for ia in range(0,N_a): 

    a=a0*(af/a0)**(ia/N_a)    #af es la dF/dt final y a0 la inicial 

    Fmed=0 

    #Bucle en partículas 

    for n in range(0,N_particulas):         

        p=0 ##Contador de pasos que realiza cada partícula para salir 

        xnw=x0 

        vnw=v0 

        #Bucle en tiempo para cada partícula 

while xnw < 2: #Consideramos que para x=2 la partícula ya                  

ha salido 

            F=a*p*dt 

            num_rand=np.random.randn() 

            g11=f1(xnw,vnw+eps*num_rand) 

            g12=f2(xnw,vnw+eps*num_rand,F) 

            g21=f1(xnw+dt*g11,vnw+dt*g12)             

            g22=f2(xnw+g11*dt,vnw+g12*dt,F) 



            xnw+=dt/2*(g11+g21) 

            vnw+=dt/2*(g12+g22)+eps*num_rand 

            p=p+1 

        F=a*p*dt  #multiplicamos el número de pasos, p, por el tiempo 

en cada paso dt   

        Fmed+=F #almacenamos el dato 

         

    Fmedio=Fmed/N_particulas #calculamos la media     

Programa para el cálculo de la fuerza de ruptura media en función de T en el constant rate mode 

cuando el dispositivo con el que tiramos es un muelle. 

En este caso, la única parte que cambia del código es la de la definición del potencial. Además, 

el bucle de la sección anterior se incluye dentro de otro bucle que recorre diferentes valores de k pero 

no merece la pena repetir todo el código para un cambio tan pequeño. 

##G0 cubico:  

def dG0(xp,kp,ap,t): 

    return AG*(3/2-(6*xp**2))+kp*(xp-ap/kp*t) 

 Además, calculamos la fuerza de salida como en el caso del constant rate mode y después lo 

corregimos dividiendo la fuerza media obtenida por χ recuperándose la fuerza de ruptura media correcta 

descrita en la memoria. 

Programa para el cálculo de la fuerza de ruptura media en función de T en el potencial de Morse. 

 Para este problema, utilizamos el mismo código que en el constat rate mode pero modificando 

el potencial de la siguiente forma: 

##G0 morse: 3(1-e^(-x-0.5))^2 D=k=1: 

def dG0(xp,F): 

    return 6*np.exp(-xp-0.5)*(1-np.exp(-xp-0.5))-F 

 

Tanto el bucle, como la forma de calcular la fuerza de ruptura no varían. 

 

 Así, quedan comentados los segmentos más importantes del código. Aunque también se 

desarrolló el código para el caso en el que el dispositivo con el que se estira es un muelle no lineal que 

sigue el modelo de WLC, al haber un error en la parte de recuperar los resultados y ser estos erróneos 

no merece ser presentado. Sí que cabe destacar que este código era algo más complicado ya que es 

necesario resolver una ecuación implícita para resolver los parámetros dinámicos del sistema. Por otro 

lado, se ve como, en general, el código no plantea mayores complicaciones que la resolución de una 

ecuación diferencial estocástica.        

     

     



Anexo II. Desarrollo de la teoría de Bell-Evans

En este anexo vamos a profundizar en la teoría fenomenológica de Bell-Evans y probar cómo
se pasa de la ecuación de Bell [1] para la tasa de ruptura en función de la fuerza externa aplicada.

k(t) = k0e
F (t)x†
kBT (1)

Hasta la expresión para la fuerza de ruptura media. En (1), k0 es la tasa de ruptura característica
del sistema sin perturbar, x† es la posición de la transición (distancia entre el mínimo y el
máximo). Consideramos S(t) la probabilidad de supervivencia, es decir, la probabilidad de que
para cierto tiempo t la ruptura no haya ocurrido y asumimos que satisface:

dS(t)
dt

= Ṡ(t) = −k(t)S(t) (2)

y, por tanto:
S(t) = exp

[
−
∫ t

0
k(t′)dt′

]
(3)

donde k(t) viene dado por la expresión de Bell (1). La distribución de probabilidad de los tiempos
de vida t∗ es −Ṡ(t∗)dt∗ lo que significa que el tiempo de vida medio tiene la forma:

t̄∗ = −
∫ ∞

0
tṠ(t)dt =

∫ ∞
0

S(t)dt (4)

La forma en la que se relaciona la distribución de probabilidad de las fuerzas de ruptura con la
distribución de probabilidad de los tiempos de vida es:

p(F )dF = −Ṡ(t∗)dt∗ (5)

Las limitaciones principales a la expresión de Bell son, que solo es válida para fuerzas pequeñas
y que no considera la fluctuación de la coordenada molecular bajo la influencia de los potenciales
moleculares y de la perturbación combinados. En este sentido, aunque se utiliza mucho, su rango
de aplicación es bastante reducido.

Para el modo constan rate en el que la fuerza aplicada F (t) aumenta linealmente con el
tiempo F (t) = κV t, siendo κ la constante del muelle del dispositivo con el que se estira y V la
velocidad con la que se estira. Entonces:

S(t) = exp

[
−
∫ t

0
k0e

κtx†
kBT

]
= exp

[
− k0
κV x†

(e
κV x†t
kBT − 1)

]
(6)

Así según (5) tenemos:

p(F ) = k0
κV kBT

exp

[
Fx†

kBT
− k0
κV x†

(e
Fx†
kBT − 1)

]
(7)

y la fuerza de ruptura queda:

< F >= κV kBT

∫ ∞
0

S(t)dt = kBT

x†
e

k0
κV x†E1

(
k0

κV x†

)
(8)

1



Donde E1 =
∫∞
x e−tt−1dt. Para velocidades altas, esta integral se puede aproximar quedando,

finalmente, la expresión del modelo de Bell-Evans:

< F >≈ kBT

x†
log(κV x

†e−γ

k0
) (9)

donde γ = 0,5772... es la constante de Euler-Mascheroni de la que ya hemos hablado en el
trabajo. Así queda vista la relación entre las dos expresiones.

Referencias
[1] G. I. Bell. Models for the specific adhesion of cells to cells. In: Science 200, 618 (1978).

2


