Anexo |I. Cédigo

En este anexo, vamos a mostrar parte del codigo desarrollado y comentar alguno de sus aspectos
destacados. El lenguaje de programacion escogido ha sido Python por su sencillez a la hora de escribir
codigo pero también con un objetivo formativo para aprender un lenguaje que hoy en dia es ampliamente
utilizado en una gran variedad de &mbitos desde el analisis de datos hasta la simulacion numérica. En
cuanto a los detalles técnicos, la mayor parte de los programas fueron simulados en el Cluster de
ordenadores del Departamento de Fisica de la Materia Condensada en la Universidad de Zaragoza.

A continuacién, presentamos el cadigo de calculo de la tasa de escape Kramers integro, ya que,
el resto de programas se consiguen variando segmentos de este.

import numpy as np ##importamos la libreria matemdtica

## parametros del sistema adimesional

gamma=10.  ##Viscosidad. Sistema sobreamortiguado
T=0.05 ##Temperatura

Fc=1.5 ##Fuerza critica, desaparecen maximo y minimo

#Parametros para ir avanzando por la fuerza
N_pasos=20

Fmax=1.5

d_paso=Fmax/N_pasos

#Paso de tiempo y numero de particulas
dt=0.01
N_particulas=100

##Posicion y velocidad inicial
X0=-0.5
vO=np.sqrt(T) ## La correspondiente al bafio térmico

##parametros para la introduccioén del ruido

D=2*gamma*T ##Coeficiente de difusion

eps=(dt*D)**0.5 ##Para el Runge-Kutta

##definimos listas para guardar resultados

time=[]

##definimos el nombre del archivo para guardar resultados
rl=str(T)

r2=str(N_pasos)

resultados=str("TE_"+rl+" "+r2+".txt")

##Abrimos el fichero de reslultados
f=open(resultados, 'w")

f.close()

f=open(resultados, 'a')

## definimos G(energia libre)
AG=1

##GO cubico lineal:
def dGe(xp,Fp):
return AG*(3/2-(6*xp**2))-Fp



Definimos ahora las funciones del R-K considerando

dx/dt=f1(x,v) --> fl(x,v)=v

dv/dt=f2(x,v)+num_aleatorio

f2(x,v)= -gamma*v-dG(x)

para nuestro caso de un potencial de energia libre G y una fuerza F
del muelle lineal

#Estas funciones son las que determinan la dindmica simulada con el
Runge-Kutta de segundo orden.

def f1(xp,vp):
return vp

def f2(xp,vp,Fp):
return (-gamma*vp-dGe(xp,Fp))

## programa principal

#comenzamos el R-K
XNW=X0O
vNw=ve
p=0
F=0
##Bucle en fuerzas
for t in range(©,N_pasos):
F=d_paso+F
print(t,F)
#Bucle en particulas
for n in range(@,N_particulas):
p=0 ##Contador de pasos que realiza cada particula para salir
Xnw=x0
vhw=v0
#Bucle en tiempo para cada particula
while xnw < 2:
num_rand=np.random.randn()
g11=Ff1(xnw,vnw+eps*num_rand)
gl2=Ff2(xnw, vhw+eps*num_rand,F)
g21=Ff1(xnw+dt*gll,vnw+dt*gl2)
g22=Ff2(xnw+gll*dt,vnw+gl2*dt,F)
xnw+=dt/2*(gll+g21l)
vhw+=dt/2*(gl2+g22)+eps*num_rand
p=p+1
time.append(dt*p)
##Calculamos la media y aifiadimos a lista
mean_t=0
for k in range(t*N_particulas,N_particulas*(t+1)-1):
mean_t+=time[k]

mean_t=mean_t/N_particulas



tescp=1./mean_t
##Calculamos la desviaciodn
dev_t=0
for k in range(©,N_particulas):
dev_t=(time[k]-mean_t)**2
dev_t=np.sqrt(dev_t/N_particulas)
desv=dev_t/mean_t**(2)
sl=str(F)
s2=str(tescp)
s3=str(desv)
s=str(sl +"\t"+s2+"\t"+s3+"\n")
f.write(s)
##tcerramos fichero
f.close()

Las secciones mas importantes del codigo estan marcadas en negrita y son, la definicion del
potencial, el bucle en el que se desarrolla el R-K y la forma de guardar los resultados. Asi pues, vamos
a repasar estos puntos para los diferentes programas utilizados.

Programa para el calculo de la fuerza de ruptura media en funcién de T en el consta trate mode.

En este caso, el potencial es el mismo asi que no merece la pena repetirlo. EI segmento del bucle,
asi como el cddigo utilizado para recoger los datos lo presento a continuacion.

#Bucle en a, a=dF/dt
for ia in range(@,N_a):
a=af*(af/a0)**(ia/N_a) #taf es la dF/dt final y a@ la inicial
Fmed=0
#Bucle en particulas
for n in range(@,N_particulas):
p=0 ##Contador de pasos que realiza cada particula para salir
XNw=X0O
vhw=vo
#Bucle en tiempo para cada particula

while xnw < 2: #Consideramos que para x=2 la particula ya
ha salido

F=a*p*dt
num_rand=np.random.randn()
gll=f1(xnw,vnw+eps*num_rand)
g12=f2(xnw, vnw+eps*num_rand, F)
g21=Ff1(xnw+dt*gll, vnw+dt*gl2)

g22=F2(xnw+gll*dt, vnw+gl2*dt,F)



xnw+=dt/2*(gll+g21)
vnw+=dt/2*(gl2+g22)+eps*num_rand
p=p+1

F=a*p*dt #multiplicamos el numero de pasos, p, por el tiempo
en cada paso dt

Fmed+=F #almacenamos el dato

Fmedio=Fmed/N_particulas #calculamos la media

Programa para el calculo de la fuerza de ruptura media en funcién de T en el constant rate mode
cuando el dispositivo con el que tiramos es un muelle.

En este caso, la Unica parte que cambia del codigo es la de la definicién del potencial. Ademas,
el bucle de la seccion anterior se incluye dentro de otro bucle que recorre diferentes valores de k pero
no merece la pena repetir todo el cddigo para un cambio tan pequefio.

##GO cubico:
def dGe(xp,kp,ap,t):
return AG*(3/2-(6*xp**2))+kp*(xp-ap/kp*t)

Ademas, calculamos la fuerza de salida como en el caso del constant rate mode y después lo
corregimos dividiendo la fuerza media obtenida por  recuperandose la fuerza de ruptura media correcta
descrita en la memoria.

Programa para el calculo de la fuerza de ruptura media en funcién de T en el potencial de Morse.

Para este problema, utilizamos el mismo c6digo que en el constat rate mode pero modificando
el potencial de la siguiente forma:

##GO morse: 3(1-e”(-x-0.5))"2 D=k=1:
def dGe(xp,F):

return 6*np.exp(-xp-0.5)*(1-np.exp(-xp-0.5))-F

Tanto el bucle, como la forma de calcular la fuerza de ruptura no varian.

Asi, quedan comentados los segmentos mas importantes del cédigo. Aunque también se
desarroll6 el codigo para el caso en el que el dispositivo con el que se estira es un muelle no lineal que
sigue el modelo de WLC, al haber un error en la parte de recuperar los resultados y ser estos erroneos
no merece ser presentado. Si que cabe destacar que este codigo era algo mas complicado ya que es
necesario resolver una ecuacion implicita para resolver los parametros dinamicos del sistema. Por otro
lado, se ve como, en general, el cédigo no plantea mayores complicaciones que la resolucion de una
ecuacion diferencial estocéstica.



Anexo II. Desarrollo de la teoria de Bell-Evans

En este anexo vamos a profundizar en la teoria fenomenolédgica de Bell-Evans y probar cémo
se pasa de la ecuacién de Bell [I] para la tasa de ruptura en funcién de la fuerza externa aplicada.

F(t)al

k(t) = k‘oew (1)

Hasta la expresion para la fuerza de ruptura media. En , ko es la tasa de ruptura caracteristica
del sistema sin perturbar, z' es la posicién de la transicién (distancia entre el minimo y el
méximo). Consideramos S(t) la probabilidad de supervivencia, es decir, la probabilidad de que
para cierto tiempo t la ruptura no haya ocurrido y asumimos que satisface:

ds(t)
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y, por tanto: .
S(t) = exp [— /O k(t’)dt’} (3)

donde k(t) viene dado por la expresion de Bell (1]). La distribucién de probabilidad de los tiempos

de vida t* es —S(t*)dt* lo que significa que el tiempo de vida medio tiene la forma:

= — /Ooo tS(t)dt = /OOO S(t)dt (4)

La forma en la que se relaciona la distribucién de probabilidad de las fuerzas de ruptura con la
distribucién de probabilidad de los tiempos de vida es:

p(FYAF = —$(t*)dt* (5)

Las limitaciones principales a la expresion de Bell son, que solo es valida para fuerzas pequenas
y que no considera la fluctuacion de la coordenada molecular bajo la influencia de los potenciales
moleculares y de la perturbacién combinados. En este sentido, aunque se utiliza mucho, su rango
de aplicacién es bastante reducido.

Para el modo constan rate en el que la fuerza aplicada F'(t) aumenta linealmente con el
tiempo F'(t) = kV't, siendo k la constante del muelle del dispositivo con el que se estira y V la
velocidad con la que se estira. Entonces:
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Asi segtn (b)) tenemos:
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Donde E; = [ e~'t~1dt. Para velocidades altas, esta integral se puede aproximar quedando,

finalmente, la expresién del modelo de Bell-Evans:

kgT kVate™
F >= l 9
< P >x Llog(" ) )

donde v = 0,5772... es la constante de Euler-Mascheroni de la que ya hemos hablado en el
trabajo. Asi queda vista la relacién entre las dos expresiones.
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