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Prologo

El propésito de este trabajo es estudiar los distintos tipos de convergencia en un espacio de medida y
analizar las relaciones entre éstos (capitulo 2), una vez hayamos definido los conceptos basicos de los
espacios L? de funciones integrables (capitulo 1). Los espacios L” son los espacios vectoriales norma-
dos mds importantes en el contexto de la teoria de la medida y de la integral de Lebesgue. Los distintos
tipos de convergencia ilustran la riqueza y diversidad de topologias que pueden darse en los espacios de
Lebesgue.

En 1901, Henri Lebesgue, a partir de trabajos de otros matematicos como Emile Borel y Camille

Jordan, realizé importantes contribuciones a la teoria de la medida. Al afio siguiente defini6 la integral
de Lebesgue, que generaliza la nocién de la integral de Riemann, extendiendo el concepto de drea bajo
una curva para incluir funciones discontinuas o funciones que presentan muchas oscilaciones.
El método de Lebesgue tiene en cuenta los valores de la funcién, dividiendo el rango en lugar de dividir
el intervalo dominio de la funcién, como hace la integral de Riemann. El método de Lebesgue necesita
calcular la longitud de conjuntos que no son intervalos, lo que acarrea la necesidad de construir la me-
dida de Lebesgue.

En 1906 Maurice Fréchet introduce las nociones de espacio métrico, compacidad, completitud y
separabilidad, discutiendo estas propiedades en algunos espacios especiales. En particular, considero el
espacio Cla,b] de las funciones reales continuas en el intervalo [a,b]. Al aplicar estas ideas a otro de
los grandes desarrollos de la época, la teoria de la integracion de Lebesgue, se originaron otros tipos de
espacios funcionales: los espacios L”[a, b], definidos como:

1
LPla,b] :={f : [a,b] = R; f es medible Lebesgue y | f||, := (f: | f1P d,u) " < oo}

Para p = 1 este espacio estaba implicito ya en los trabajos de Lebesgue; el caso p = 2 aparece explici-
tamente en 1907 cuando Frigyes Riesz y Ellis Fischer descubren el famoso Teorema de Riesz-Fischer,
segtin el cual el espacio métrico L%[a,b] es completo, separable e isomorfo al espacio de Hilbert de
sucesiones /2, definido como:

1
oo 2

hi={x={x};1 €C: x|, == <Z Ixn\z) <eo},
n=1

introducido por David Hilbert al estudiar la ecuacion integral f(x)+ [ K(x,y)f(y) dy = g(x), donde
f,& y K son funciones continuas. Una de las consecuencias inmediatas del teorema de Riesz-Fischer es
que todos los resultados de Hilbert se generalizan inmediatamente al caso en que f, gy K son funciones
de L? en lugar de continuas.

La distancia considerada en el espacio de sucesiones 1> es

- 2
d(x,y) = |lx=yly = [ X b=l
n=1

que es la generalizacién natural de la distancia euclidea para “ infinitas coordenadas".

il



v Capitulo 0. Prélogo

Los espacios L” y sus andlogos 7, para 1 < p < oo, fueron introducidos en 1910 por Riesz para la
resolucién de sistemas de ecuaciones lineales con infinitas incégnitas y para estudiar el problema general
de los momentos, es decir, caracterizar cuando existe una funcién f que cumple las condiciones:

12 F(x)gu(x) dx=cp, n=1,2,...

siendo (g,) una sucesion de funciones y (c,) una sucesién de escalares.

Aparecen aqui dos nociones importantes:
e La representacion del dual de L?[a,b] como L[a,b] (% + % =1).
e La convergencia débil de sucesiones.

Todos estas contribuciones preparan el camino para el desarrollo de una teoria abstracta de espacios
normados. Esto acontecid en la tesis doctoral de Stefan Banach en 1920, en la que se da la definicién
axiomatica de espacio vectorial real, normado y completo.

Después de haber estudiado los espacios L?, nuestro objetivo serd analizar la convergencia de suce-
siones de funciones medibles. Aparte de los conceptos de convergencia puntual y convergencia unifor-
me, podemos estudiar en el contexto de los espacios normados otros tipos de convergencia.

Cuando hablamos de funciones f;, en un espacio de medida, realmente nos referimos a la clase de
equivalencia [f,], por lo que nos limitamos a aquellos modos de convergencia que son insensibles al
cambio arbitrario de f;, en un conjunto de medida nula. Asi, reemplazamos la convergencia puntual
por la convergencia en casi todo punto y la convergencia uniforme por la convergencia casi uniforme.
A parte de estos tipos de convergencia, también estudiaremos la convergencia en L, 1 < p Loy la
convergencia en medida.

Asi, una vez definidos estos conceptos, analizaremos las relaciones (y daremos una serie de contra-
ejemplos) entre las diversas formas de convergencias en el caso general y también bajo condiciones
adicionales (medida finita del espacio o dominacién de la sucesién de partida).



Summary

Function spaces, in particular L” spaces, play a central role in many questions in analysis. The special
importance of L? spaces may be said to derive from the fact that they offer a partial but useful generali-
zation of the fundamental L? space of square integrable functions.

In order of logical simplicity, the space L' comes first since it occurs already in the description of fun-
ctions integrable in the Lebesgue sense. Connected to it via duality is the L™ space of bounded functions,
whose supremum norm carries over from the more familiar space of continuous functions.

The purpose of this paper is to examine the different modes of convergence in a measurable space
and to develop the relations between them. This development is based in some simple facts concerning
the L? spaces.

A brief sketch of the chapters follows:

1. The L? spaces.
Let (X, , 1) be a measure space. f : X — C a measurable function in X, 1 < p < co. We define:

LP(u):={f:X — C measurable ; [y | f|P du < oo}

1/p
= ([ 1rpaw) "

When p = 1 the space .2 () consists of all integrable functions on X and ||f||; is a seminorm,
since it satisfies:

and:

L Iflh = 0.Yf €2 (),
2. [lecflh =l e | || f]l1, Yo € C,Vf € £ (),

3. 1+l < Nflh+ gl Vr.g € £ (u).

The problem is that || ||, = O does not imply that f = 0, but merely f =0 p almost everywhere, it
means: there exists a susbset M € .o/ with u(M) = 0 such as f(x) = 0 for all x € X \ M. Therefore, the
precise definition of a normed space requires introducing the equivalence relation, in which f and g are
equivalentif f =g u a.e.

For this reason, we need to take the quotient space:

LetN = {fc 2" (n); f=0pu—ae.}.Itis easy to prove that N is a subspace of .Z’' (i). We denote:

L'(u) = £ (u)/N.

Then, the map:
IF+Nly =1y f+N €L (w)

\%



vi Capitulo 0. Summary

defined over every equivalence class is a norm. Then, %" (1) is a is a normed vector space and we will
use the notation L' (ut).

For 1 < p < oo the proof of the triangle inequality relies on a generalized version of the Cauchy-
Schwarz inequality: this is Holders inequality.

The Holder and Minkowski inequalities

If the two exponents p and ¢ satisfy 1 < p, g < oo, and the relation

1 1
42 =1
P 4q

holds, we say that p and g are conjugate or dual exponents. Here, we use the convention i = (0. Note
that p = 1, corresponds to g = oo, 1 respectively.

Holder’s inequality:

Let (X, .o/, 1) be a measure space. Suppose that 1 < p <eoand 1 < g < oo are conjugate exponents.
If f€ 2P(u)and g € £9(u), then fg € £ (u) and:

17gll < 1A pllgllq-

Using Holder’s inequality, we can prove the triangle inequality in the L? spaces:

Minkowski s inequality:

Let (X, .o/, 1) be a measure space. If f,g € £ (u), p > 1, then f+ g € £ (u) and:

1F+ell, < 171, + lell,-

Then, || || , 1s a seminorm and taking the quotient space in the same way as before, we get L” (u) as
a normed vector space, 1 < p < oo.

Completeness of L”

Let (X,.o/, 1) be a measure space.

e f, is a Cauchy sequence in LP(u) if, given € > 0, exists M(€) > 0 such as if m,n > M(¢g), then
Hfm _fl’al <é&.

e f, is a convergent sequence in L”(u) if, given € > 0, exists M(€) > 0 such as if n > M(¢€), then

1fn = f1l, <&

The basic analytic fact is that LP(u), 1 < p < oo, is complete in the sense that every Cauchy se-
quence in the norm || ||, converges to an element in L”(1). A complete normed linear space is ususally
called a Banach space.

The importance of the completeness is that we are often just given a sequence f,, and we still need to
establish that f,, converges to something. Proving that f, is a Cauchy sequence is one way to show that
the sequence converges, although we do not know in advance what it converges to.
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The case p =

Let (X, .o, 1) be a measure space, f : X — C a measurable function. The space £~ (1) will be defined
as all functions that are ‘“‘essentially bounded” in the following sense:

We take the space .2 (u) to consist of all (equivalence classes of) measurable functions on X, so that
there exists a number o > 0 such that |f(x)| < o L a.e,ie. u(x € X : |f(x)| > ) =0.

Then, we define ||f||.. to be the infimum of all possible values « satisfying the above inequality.
The quantity || f]|.. is called the essential-supremum of f.

We define:
ZL=(u) :={f: X — C measurable function ;|| f]|., < oo}.
It is easy to prove that £~ () is a vector space and || ||, is a seminorm. Taking the quotient space we
have L () as a normed vector space.
2. Modes of Convergence.
Let (X,.o/, 1) be a measure space. We consider the vector space:
L%(u) := {f: X — C; f measurable function},

and let (f,,), f € LO(u).

We will analize the following types of convergence:

e (fu) converges uniformly to f if lim sup|f,(x) — f(x)| =0.

n—= yeX

(fn) converges in L(u) to f if lgn lfu—fll. =0.

(fn) converges almost uniformly to f if for every € > O there is a set E; € o7, with u(E;) < €,
such as (f,) converges uniformly to f on X \ Ep.

(fn) converges almost everywhere (a.e) to f if there exists a set A € X, with (A) = 0, such as
lim f,(x) = f(x), for every x € X \ A.
n—oo

(fn) converges in L7 (i) to f, 1< p < oo, ifr}gxolo Ifu—fll,=0.

(fn) converges in measure to f if for every a > 0:

lim u({xeX: [ful0) —f(0)] > a}) = 0.

The relationships between the various modes of convergence can be summarized in the diagram
below. A solid line means that convergence in the mode at the tail of the arrow implies convergence in
the mode at the head. A dashed line means that convergence in the mode at the tail of the arrow implies
the existence of a subsequence that converges in the mode at the head of the arrow.
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General measure spaces

The first diagram shows the general relationships between the different modes of convergence:

a.e

unif. — L*° — almost unif. <> U
A

P

Looking at the diagram, we realize that if (f,) is a sequence which converges to a function g [c],
where [c] denotes any type of convergence, and (f,) converges almost everywhere to a function f, then
we obtain that f = g a.e.
As a consequence, to study a limit we have to analize the limit almost everywhere, because if it exists it
must be that.
We will come now to one important theorem according to which convergence in measure implies L”
convergence under certain additional conditions.

VITALI'S CONVERGENCE THEOREM. Let (X, o7 ,1u) be a measure space and let (f,) be a
sequence in LP([), 1 < p < oo. Then, (f,) converges to f in LP (W) if and only if the following conditions
are satisfied:

1. (fy) converges in measure to f.

2. For each € > 0 there exists a set E; € of, with W(Eg) < oo, such that if F € o/ , and FNE; =0,
then:

/ |ful? du < €, for everyn € N.
F

3. For each € > 0 there exists §(€) > 0 such that if E € </ and W(E) < &(€), then:

/ |fulf du < €, for everyn € N.
E

This theorem is a generalization of the better-known dominated convergence theorem of Henri Le-
besgue and it is useful when a dominating function cannot be found for the sequence of functions in
question.

We will also give several counterexamples which show that the implications that do not appear in the
diagram are not satisfied.

Finite measure spaces

For finite measure spaces, almost everywhere and almost uniform convergence are equivalent. Con-
vergence in measure is the weakest form of convergence since it is implied by the other forms. The
following diagram summarizes the relationships between the different modes of convergence for finite
measure spaces:

unif. —— L® — almost unif. <= |
A

LP



X
One fundamental result in finite measure spaces is:

EGOROFF’S THEOREM. Let (X, o7, 1) be a measure space. We suppose that |1(X) < o and let
(fn) be a sequence of measurable functions which converges almost everywhere to a measurable fun-
ction f. Then, (f,) converges almost uniformly and in measure to f.

Dominated convergence

If the sequence f, is uniformly dominated by a function g € L?, then more relationships exist, as we
summarize in the diagram below:

unif —— L® —— almost unif. <= 11

£
m
a.e=< Lr

Note that the even though we do not require X to be a finite measure space, all the convergence rela-
tionships for finite measure spaces continue to hold.

In this setting, almost everywhere and almost uniform convergence are equivalent. Also, L” conver-
gence and convergence in measure are equivalent.
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Capitulo 1

Espacios L?

En este capitulo explicaremos diferentes conceptos y resultados necesarios para el estudio de los espa-
cios L?. La mayoria de estos resultados han sido tomados de [Rudin], [Bartle] y [Guzman, Rubio].

Definicién 1.0.1. Sea (X, o7, 1) un espacio de medida, f : X — C una funcién medible en X. Definimos:
L) :={f:X — C medible ; [y | f|du < oo}, espacio vectorial sobre C,

y sea:

7= [ 17 dn

Notar que || f||; es una semi-norma para f € £ (u), ya que satisface:

L Iflli > 0,¥f € 2" (w),

2. Iflh =0« f=0pu-ae,

3. |lafll =l ||| flh. Yo € C,Vf € L (1),
4\ f+elh < IFlh+ gl Vre € £ ().

Para conseguir una norma en lugar de una semi-norma, podemos pasar al espacio cociente. Si f = g
U- a.e, entonces [f] = [g], donde [f] denota la clase de equivalencia determinada por f y consiste en el
conjunto de todas las funciones que son L-equivalentes a f, es decir, las funciones que son iguales a f
u-a.e.

Para obtener esto necesitamos introducir algunos conceptos:

Proposicion 1.0.2. Sea E un espacio vectorial sobre C, y sea p : E — R una seminorma. Entonces
N ={x € E, p(x) =0} es un subespacio de E.

Demostracion. Veamos que se cumplen las dos propiedades para ser un subespacio:

1. Sea o € K, x € N. Utilizando la tercera propiedad de la semi-norma obtenemos que
plax) =| o | p(x) =0, conlo que ax € N.

2. Sean x,y € N. Utilizando la desigualdad triangular: 0 < p(x+y) < p(x) + p(y) = 0, con lo que
x+y€EN.

Por tanto N es un subespacio de E. 0

Asi pues, tiene sentido considerar el espacio cociente E /N, definido como:
Six€ E/N,entoncesx =x+N={y€E; x—yeN}

1



2 Capitulo 1. Espacios L

Proposicion 1.0.3. Sea E un espacio vectorial sobre Ky p : E — RY una seminorma. Entonces
p:E/N — R" definida por p(x) = p(x) es una norma en E /N.

Demostracion. Veamos primero que la aplicacion estd bien definida: sean x,y € X, es decir, x —y € N.
Tenemos que probar que p(x) = p(y):

p(x) =px—y+y) < px—y)+p(y) = p(y). yaque x—y € N. De la misma forma p(y) = p(y —x+x) <
p(y—x)+p(x) = p(x). Por tanto p(x) = p(y)-

Ahora veamos que se cumplen las diferentes propiedades de la norma. Sea x € E/N, o € K:

1. p(x) >0,
2. p(¥) =0<=px) =0<=xeN<=1=0,
3. plax) = p(ax) =[ & | p(x) =| a | p(%),

(

4. p(X+73) = p(x+y) < p(x)+p(y) = p() + p(7).
Asi pues, concluimos que p es una norma sobre E /N. O

Volviendo al estudio del espacio .2 (i), consideramos N = {f € £'(u); f=0 u-ae}y denota-
mos:

L'(u) = 2" (u)/N.
Entonces, si f € L (), utilizando la propisicién anterior, obtenemos que:
IFll=11A1l = Jx | f | du.

Por convenio y en lo que sigue utilizaremos como notacién f € L' (u) en lugar de f € L' (u).

Ejemplos de espacios L'

1. SeaX =[0,1], u =medida de Lebesgue:
L'(u) = {f:]0,1] — C medible ; [y | f(x) | dx < oo}.

Las tres primeras propiedades de la norma se cumplen trivialmente. Veamos que se verifica la
desigualdad triangular: sean f,g € L'(u):

[ 1+ s 1dvs [ 150 1 [ 100 a

2. Sea (X =N, = P(N), u =medida de contar) un espacio de medida:

oo

L'(p)=h={x={x}y CC: [lxll; = Y Il <oo}.
n=1

Veamos que se cumplen las propiedades de la norma:

(a) ||x||, =0 siy solo six = 0 se satisface trivialmente.

(®) [[Ax][; = [A]]lx

\» para cualquierx € [; , A € R:

1Axlly =), Axa[ =Y [Albal = ALY [l = [A] 2]l -
n=1 n=1 n=1



© Iyl < lxll, + 1yl - para cualesquiera x,y € I:

Iyl =Y, botyal <Y (bl +1yal) = Y el + Y lyal =[xl + l¥11 -
n=1 n=1 n=1 n=1

3. Sea (X ={1,2,...,n},o/ = P(X),u =medida de contar) un espacio de medida:

L'(p) =17 = {x={x}, €C": |lxll; = ) il <o} =C".
i=1

NOTA. La norma mads habitual en C" es:

1

n 2
x|l := (Z xi]2> ,conx = (x1,...,%,) € C".
i=1
Consideramos ahora (X, <7, i) espacio de medida y sea el conjunto:
1
{f:X — C medible; (fy | f|*du)? < oo}

1
Por analogfa a ||-||, es probable que ( [y | f |* dit)? sea una norma. Pasamos pues a una definicién mds
general:

Definicion 1.0.4. Sea (X, <7, 1) un espacio de medida, f : X — C una funcién medible en X, 1 < p < oo.
Definimos:

LP(u):={f:X — C medible ; [, | f|P du < e},

Il i= ([ 15 aw)”.

Proposicion 1.0.5. £7 (1) es un espacio vectorial.

y sea:

Demostracion. Veamos que se cumplen las dos propiedades:

e Sife ZP(u) yaeC esclaroque af € Z£P(u), yaque:
[ ot du=lap [ 1£1” au.
X Jx

o Sif,ge LP(u) entonces f+g€ L7 (u):
Consideramos los conjuntos A = {x € X : [f(x)| > |g(x)|} yB={xe X :|f(x)] <|gx)|}.
Entonces:

[1r+elrdu= [ 1rvelant [ r+erdu< [ pfirdu+ [ pepan <
X A B A B
S27(7 1+ 18P l) < e,
porloque f+g€.ZP(u).
Queda probado asi que .Z”(u) es un espacio vectorial. O

A continuacién, explicamos una serie de conceptos y resultados importantes que utilizaremos para

probar que ||f|l, = ([x | f |7 du)% s una seminorma:
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Definicién 1.0.6. En el intervalo [1, o] se define una relacién binaria simétrica de gran importancia:
que dos elementos p y g sean conjugados entre si significa que:

1 1
=1,
P 9

interpretando también como vélida esta relacidn en el caso p = 1, = o 0 viceversa.
Los elementos p y g reciben el nombre de exponentes conjugados.

Una propiedad importante asociada a esta conjugacion es la desigualdad de Holder que explicaremos
mads adelante y para la cudl necesitamos el siguiente resultado:

Lema 1.0.7. Sean A,B > 0 y p,q exponentes conjugados, con p > 1. Entonces se verifica:

AP B

_ _I_ —_—

4 q

Demostracion. Sea o un nimero real satisfaciendo 0 < o < 1 y consideramos la funcién ¢ definida
parat > 0 como:

AB <

o(t) = ot —t*.
Es facil de comprobar que ¢'(1) <0si0 <7 <1y ¢'(t) >0 parat > 1, por lo que t = 1 corresponde a
un minimo. Asi pues, @(¢) > @(1)y @(¢t) = ¢(1) si y solosiz = 1. Llegamos a que:
t* < ot+(1—a), parat > 0.

Tomamos ahora t = %, con a,b > 0, y multiplicamos por b, obteniendo asi la desigualdad:

a®p'~%* < aa+(1—a)b,

donde la igualdad se cumple si y solo si a = b.

Por tanto, si p y ¢ son exponentes conjugados y & = 1/p, podemos considerar a = A? y b = B?, con
A,B > 0, obteniendo entonces la desigualdad:

AP B4
AB < 4=,
V4 q

que es lo que queriamos probar. O

En los espacios .Z” la desigualdad triangular viene dada por la desigualdad de Minkowski que
probaremos en este apartado como consecuencia de la desigualdad de Holder:

Desigualdad de Holder

Sea (X, 4/, L) un espacio de medida. Sean f € LP(u)yge L9(u), donde p>1y
(1/p)+(1/q) = 1. Entonces fg € 2" (1) y || fell < [ £1l,lgllq-

Demostracion. El caso p = 1 se cumple trivialmente, por lo que consideramos p > 1. Supongamos que
feZl(u)yge L u).Sil||fl|, =0, entonces f =0 p-a.e, lo que implica que fg=0 u-aeyen
consecuencia || fg|/1 = 0. Andlogamente si ||g||, = 0.

Supongamos pues que || f|[, #0y ||g|l; # 0 . Notar que como f € £?(u)y g € £9(1) se verifica
que |f(x)] < o u-a.ey |g(x)| < o p-a.e. El producto fg es medible y si tomamos en la desigualdad

anterior A = flx yB= g ()]
[l 8llq

| f(x)g(x)| _ £ (x)]? 1200 _
17T ligle S pIAIE  glelg *™°

obtenemos que:




Los dos términos de la derecha son integrables, por lo que fg es integrable. Integrando la desigualdad
anterior:

17glly !
171, el P

obteniendo asf la desigualdad de Holder. O

+o =1

1
q

Desigualdad de Minkowski
Sea (X, o/, L) un espacio de medida. Si f,g € L (1), p > 1, entonces f+g € LP(u) y:

1F+ell, < A, + lell,-

Demostracion. El caso p =1 es trivial, asi que supongamos p > 1. La suma f + g es evidentemente
medible y como:

f+el” < @supf{lf], [¢IH)" < 2701717 + I},

obtenemos que f+ g € P (). Ademads:

f+gl? = |f+ellf+el”" < Ifllf+el”™" + lgllf+g” " (1.1)

Teniendo en cuenta que f4g € .Z7(u) , se tiene que |f +g|” € L' (u) .y como p = (p—1)g, llegamos
aque |f+g|”" € 29(u) . Por tanto podemos aplicar la desigualdad de Holder, obteniendo asi:

1/q
J sl aw < 1, (f reel” ™ aw) = 1l 1 sl

De la misma forma:
[ lel 1 +aP ™" d < llgl, 1F +gl/7.
X

Aplicando las dos tltimas desigualdades en la ecuacion (1.1) obtenemos que:

LF+gllh < N1, I +8157 + Nl 1+l = (11, + g, ) 17 +gll2/e.

SiA=|f+sgl » = 0, la desigualdad de Minkowski es trivial. Si A # 0, podemos dividir la dltima
desigualdad por AP/4, y como p — p /q = 1 deducimos que:

IF+ell, < I, + ligl,
como querfamos probar. O

Una vez verificada la desigualdad triangular tenemos que || ||, es una seminorma. Asi, solo queda
pasar al espacio cociente para poder conseguir una norma en los espacios .Z’” (). Utilizamos el mismo
procedimiento que antes:

SeaN={fe€L”(u); f=0 p-ae}ydenotamos:
LP(n) = LP(u)/N 1< p <o

LP () es un espacio vectorial normado cuya norma viene dada por:

Il =y | £ 17 dp)7.
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Ejemplos de espacios L7 ()
Sea (X = N, .« = P(N), u =medida de contar) un espacio de medida:

1
oo P

Ll ={x={x};_, CC: |x[|, = (Z |xn\p> <ool, 1< p<oo.
n=1

1
n p
2' l;:{xe(cn: H‘pr = (Zl ‘Xi‘p> <°°} :Cn,1<p<oo
1=

El siguiente resultado, tomado de [Bartle], p.59, muestra la completitud de los espacios L?:

Teorema 1.0.8. Sea (X, <7, ) un espacio de medida. Entonces LP (i), 1 < p < oo, es un espacio de
Banach.

Demostracion. Ya ha sido demostrado anteriormente que L” es un espacio vectorial normado. Pasamos
pues a probar su completitud. Sea (f,) una sucesién de Cauchy relativa a la norma || || » Y sea (fu)
representantes de (f,). Por tanto, dado € > 0, existe un M(€) tal que si m,n > M(€) se tiene que
[ fn = full, < &, es decir:

V=l d = U=l < e

Tomando € =27k € N, podemos encontrar una subsucesion (gi) de (f,) tal que ||gx+1 — gx|| » < 27k,
Definimos g como:

g@z@mn+§@ﬁm>&mu (1.2)
=1

por lo que g es medible. Aplicando el lema de Fatou (ver Anexo, Lema 0.13) obtenemos:

P
n
/ lgl” du < lfminf/ <|g1| + ) !gk+1—gk|> du.
X e JX k=1

Tomamos la raiz p-ésima y aplicamos la desigualdad de Minkowski:

1/p n
</X |gl? du) < liminf (Hngp + k; Ilgk+1—ngp> < llgill, + 1.

Asipues,si E = {x€X: g(x) < 4o}, entonces E € &/ y (X \ E) = 0. Por tanto, las series en (1.2)
convergen en casi todo punto y gxg pertenece a L”(11).

Asi podemos definir f como:

gi(x) + Y (grs1(x) —g(x)), si x€E,
7 = =
0, si x¢E.
Observar que f es medible y como la serie es telescdpica, se tiene que f(x) = 11’_r>n gn(x) ,Vx € E.
n—yoo

k—1
Por otro lado, tenemos que |gx| < [g1]| + Z lgi+1—8;| < . lo que implica que |gi|” < g”.
j=1
Aplicando el Teorema de la Convergencia Dominada (ver Anexo, Teorema 0.14):

/gp dp > lim /\gkl” duz/ lim [g|” du=/!f\” dp.
X k—oo JX X k—roo X



Ademds, g € L' (1) , es decir, [y g” dp < =, de lo que deducimos que f € L?.

Veamos ahora que (f,) converge a f en L”(u). Asi, si m > M(€) y k es suficientemente grande,
entonces:

/X\fm—gk]" du < &gP.

Por tanto, aplicando el Lema de Fatou, concluimos que:
J =17 dp < timin [ 1f,— i du < e,
X k—oo  JX

para cualquier m > M(€). Queda asi probado que la sucesion (f,,) converge a f en lanorma de L. [

Corolario 1.0.9. Si (f,) converge a f en LP(l), entonces existe una subsucesion (g,) tal que (g,)
converge a f U-a.e.

Demostracion. Se deduce inmediatamente del teorema anterior. O

1.1 Espacios .~

Definiciéon 1.1.1. Sea (X, .7, 1) un espacio de medida, f : X — C medible. Diremos que f es esencial-
mente acotada en X si existe o > 0 tal que |f(x)| < @ p-a. e., es decir, u(x € X :|f(x)| > ) =0.

El nimero « se llama cota superior esencial. Para estas funciones, el supremo esencial se define
como el infimo de las cotas esenciales y se denota también || f||.., es decir, denotando como S el conjunto
de las cotas esenciales:

1 £ ]l = inf S.
Como notacién escribiremos que || f||., = en el caso en que S = 0.

Proposicion 1.1.2. Sea (X, 1) un espacio de medida, f : X — C medible y S # 0. Entonces || f||.. € S
y por lo tanto | f(x)| < || f]|.. H-a.e.

Demostracion. Por la definicién de || f||,, sabemos que Vk € N se verifica que || f]|.. + % € S, es decir:
1
FEOI< Nl p-ae.

1
Por tanto, existe un conjunto Ny € <7 , con (Ny) =0, tal que |f(x)| < || f]|.. + o Vx € X \ M.

Tomando N = U N obtenemos que 0 < u(N) = ;,L(U Ny) < Z 1(Ny) =0, por lo que u(N) =0.
k=1 k=1 k=1

1
Asi pues, para x € X \ N tenemos que |f(x)| < || f||.. + a Vk € N. Tomando el limite cuando & tiende a
infinito, obtenemos que:

OISl » VX € XAN,

de lo que deducimos que ||f]|., € S. Asi, || f]|., es la minima cota esencial de f. O
Definicion 1.1.3. Definimos el espacio £ () como:
L7(u) :={f:X — C medible ;| fl. <eo}.

Proposicion 1.1.4. || ||, es una seminormay £~ (W) es un espacio vectorial.
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Demostracion. Vamos a comprobar primero que ||f||.. es una seminorma. Para ello utilizaremos la
proposicién anterior:

1. Sea f € £7(u) : Es claro que | f]|., =1infS > 0.
Por otro lado: ||f|l. =0 < |f(x)| <0 u-ae< f=0u-ae.

2. Sean f,g € Z7(u) : [f(x)+ ()| < [F0)]+ g < [Ifll+ i8]l p-ac. Esto quicre decir
que || .. + [ gll. es una cota esencial de | £(x) +g(x)]. por lo que [ f+gll.. < [Ifl.+llg]l.

Ademis, como f,g € Z~(u) es claro que ||f||. <o y |g|l.. < oo, de lo que se sigue que
|| f +gll. <o, esdecir, f+g€.L7(u).

3. Sea f € Z"(u), a € C\ {0} . Como |of(x)| = ||| f(x)| < |et|||f]l.. n-a.e., tenemos que
lafll. < o] || f]]o-

1 1 1

Por atra parte, |(x)| = 7 o/ ()] < or Nl meae. por fo que 71 < o fltfl

luego [[otf]., = [a] [[f]. Ast, llegamos a que [|ocf]|,, =[] [[f]l.. -

Ademds, como f € £”(u) es claro que || f]|.. < oo, lo que implica que ||af||., < e, es decir,
of € L7 (u).

Concluimos pues que .2 (t) es un espacio vectorial y || ||., es una seminorma. O

Una vez probado que || ||, es una seminorma, pasamos al espacio cociente para poder conseguir una
norma en los espacios . (). Utilizamos el mismo procedimiento que antes:
SeaN={feZ"(n); f=0 p-ae}y denotamos:
L>(u) =27 (u)/N.
L*=(u) es un espacio vectorial normado cuya norma viene dada por:
1£lleo = infS,

donde S es el conjunto de las cotas esenciales.

Ejemplos de espacios L~
Sea (X =N,.&# = P(N), u =medida de contar) un espacio de medida:
I"={xeC" : ||x||, = sup{|x,|: n € N} <oo}.
Teorema 1.1.5. Sea (X, <7, 1t) un espacio de medida. (L™, || |..) es un espacio de Banach.

Demostracion. Ya ha sido demostrado que L=(pt) es un espacio vectorial normado. Pasamos pues a
probar su completitud. Sea ( f,,) una sucesion de Cauchy relativa a la norma || ||, y sea (f,) representan-
tes de (f,). Por tanto, dado € > 0, existe un ny € N tal que si n,m > ng se tiene que || f, — finll.. < €.

Por otro lado, | f,(x) — fin(x)| <||fa— finlle H-a.e, luego existe un conjunto Ay, con f(A,,,) =0
tal que |f,(x) — fin(x)] < ||fu— finlle VX € X\ Apm , por lo que tomando A = UA,W, es claro que

m,n
u(A)=0.
Notar que si x ¢ A se verifica que | f,,(x) — fin(X)| < ||fn — finllo < €, Vr,m = ng , lo que implica que
fn(x) es una sucesion de Cauchy en C. Asi, como C es un espacio completo sabemos que f,(x) también
es una sucesion convergente en C, por lo que EI,}E& fa(x) = f(x).

Definimos por tanto f : X — C medible dada por:



lim f,(x), si x€X\A,

n—yoo

0, si x€A.

Por tanto, six ¢ A y n > np obtenemos:

@)~ 501 = [1m 00— £,0)] = 1 [fnx) — Fu0)] < 1 (| o) — fu(0)]. < e

m—yoo

Por tanto € es cota esencial de f — f, Vn > ng , de modo que ||f — fu|l.. < €.
Asi pues, f— f, € L”(u), lo que implica que f € L*(u) y f, converge a f en L=(u), probando asi que
L=(u) es espacio de Banach. O

Proposicion 1.1.6. Si f,, — f en L=(u), entonces f, — f U-a.e.

Demostracion. Supongamos que (f;,) converge a f en L*(u), es decir, lim || f,, — f]|., = 0.
n—roo

Utilizando la proposicién 1.2.2 se tiene que:

[fn () = f@] < [Ifa = fllo p-ace,

por lo que f, converge a f u-a.e. O
Proposicion 1.1.7. Sea Q un abierto de R" y f: Q — C una funcion continua. Entonces:
feL*(u) & f acotada.

flle = sup{|f(x)] ,x € Q}.

Demostracion. Supongamos que f estd acotada. Entonces M = sup{| f(x)|,x € Q} < e, lo que implica
que ||f|l.. <M < oo, esdecir, f € L*(u).

Ademds,

Por otro lado, supongamos que f no estd acotada y veamos que f ¢ L. Como f no estd acotada
existe N € N, xo € Q tal que |f(x0)| > N. Ademas, f es continua, luego existe B(xo, €) entorno de xo
tal que |f(x)| > N, Vx € B(xo, €). Teniendo en cuenta que m(B(xp, €)) > 0 llegamos a que N no es cota
esencial de f. Por tanto f ¢ L.

Para terminar, supongamos que || f||, S M = sup{|f(x)|,x € Q}. Por la definicién de supremo
existe xp € Q tal que || f]|.. < |f(x0)|. Por continuidad sabemos que existe § > 0 tal que || f].. < [f(x)],
Vx € B(xo, 8), por lo que || f||., no es cota esencial, llegando a una contradiccién. Asi pues, concluimos

que [|f]l.. = sup{|f(x)| ,x € Q}. O

1.2 Relaciones entre espacios L”

En esta seccién analizaremos las relaciones de contenido que se dan entre los diferentes espacios estu-
diados a lo largo del capitulo:

Proposicion 1.2.1. Sea (X, .o, 1) un espacio de medida. Si 1(X) < oo, 1 < r < p < oo, entonces:
L=(u) CLP(u) S L (1) C LY ().
Demostracion. Sea f € L*(u). Como || f]|., es la minima cota esencial de f, resulta que:

Jxlf1P du < Jx IF11S du = pX) [ £]1E <o,
por lo que f € LP(u) y queda probado el primer contenido.

Supongamos ahora que f € LP(u) y sea r tal que 1 < r < p. Consideramos los conjuntos:



10 Capitulo 1. Espacios L

A={xeX:|f(x)| <1}, B={xeX |f(x)] > 1}.
Obtenemos asi:

Jousran= [ aw+ (i dw < [ vaw+ [ 117 ap<p)+ g <o

lo que prueba que f € L"(u).

Por dltimo, supongamos que r < p. Entonces es claro que p/r > 1 y aplicando la desigualdad de
Holder:

p—r

[ rer aw < ([ 1oy du>; ([ 1) "
(/ o 'd”> </ @I dﬂ) wx)5% = I, m0).

Cuando p = o se tiene, andlogamente:

9= [ e an < [ 1L du =001

Notar que en el caso p(X) =1 se tiene que || f[|, < [|f]|,,- O

Por tanto,

Ejemplos

Consideramos el espacio de medida (X = [0, 1], = B([0,1]),dx). Veamos algunos ejemplos en los
que el contenido es estricto entre los espacios L”:

o |7 g L?P:
Sea f(x) =logx. Es claro que f € LP(u) y f ¢ L=(u).

o LPGL, 1<r<p:
Sea f(x) = % Es claro que f € L"(it) y que f ¢ LP(u) ya que:

/ O dy = / —dr<e, /Ol\f(x)]”d,u—/olidx—oo.

Proposicion 1.2.2. Sea (X,.o7, 1) un espacio de medida. Si 1 < r < p < oo, entonces:
crcrcr

Demostracion. Seax = {x,}>_, € [P. Entonces se verifica Z |x,|P < o, 10 que implica:
n=1

lim |x,[” =0 = lim |x,| =0
n—soo n—soo

Por tanto , como ||x||., = sup{|x,|,n € N} es claro que x = {x,}>_, € [, es decir, [? C [*”.
Ademas, observar que para todo n € N se tiene que:

1
el = (beal”)7 < (Z \xm\p> = |lxll,,
lo que implica que |[x||., = sup{|x,|,n € N} < ]| ,.
Por otro lado, si 1 <7< p:
Ixlly = 2 bl = X bl bl <Y bl lIET = (el el 2 <l Il = 11l
n=1 n=1 n=1

porloquel” C [P. O
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1.3 Mas propiedades de los espacios L”

En esta seccién demostraremos una serie de resultados importantes de los espacios L?, que seran ttiles
para el estudio de los tipos de convergencia en el siguiente capitulo.

Proposicion 1.3.1. Sea (X,.o7, 1) un espacio de medida, f : X — C medible. Si f € LP (1), 1 < p < oo,
entonces el conjunto E ={x € X : f(x) #0} es o- finito.

Demostracion. Paracadan € N, sea el conjunto E, = {x € X : |f(x)| > 1}. Entonces tenemos que:

(reX: f0)£0} = {reX: |[f®)|>0} = |J En

neN
1
Ahora, para cadan € N, n—pu(En) / IfI? du < / If17 du < eo.
Por tanto, i(E,) < y{xeX: f(x) 750} es o- finito. O

Proposicion 1.3.2. Sea (X,o7, 1) un espacio de medida, f € LP (i), 1 < p < ooy sea
f(x)| = n}. Entonces se verifica:

lim u(E,) =0.

n—yoo

Demostracion. Paral < p <eo,sea f € LP(u). Notar que:
J@ran > [ 1pwrde > [ adw = p(en).

1
Por tanto, obtenemos que 0 < u(E,) < —p/ |f(x)Pdu —2 0.
n? Jx n—oo
Por otro lado, para p = o, sea f € L™(), es decir, || f]|.. < eo. Como f es esencialmente acotada se
verifica que u(E,) =0, Vn > no. O

Proposicion 1.3.3. Sea (X,.o7, L) un espacio de medida, f € LP, 1 < p < oy sea
f(x)| = n}. Entonces se verifica:

lim u(E,)n” =0.

n—soo

Demostracion. Sea f € LP, 1 < p < oo. Igual que antes:
[1f@rdn > [ (r@Prdn > [ wrdp = n p(En).
X En En

Sea ahora v(E / |f(x)]Pdu ,VE € & . Como f € LP, es claro que D(E) tiene medida finita.

Ademds, ﬂ E,= ﬂ{x €X; |f(x)] = n} ={x€X; f=-co}. Teniendo en cuenta que f < e u-a.e. por

n=1 n=1

estar en L” (), obtenemos que (ﬂ En> = 0. Asi pues, utilizando la Proposicién 0.9 del Anexo:

n=1

n—e Jp n—eo

lim [ [f(x)|” du = lim v(E mE / |f(x)|[P du =0.
m;ol n

Utilizando la primera desigualdad de la demostracion obtenemos que lim u(E,)n” = 0, como queria-
n—soo

mos demostrar. O]

A continuacién demostramos un resultado importante que establece la conexidn entre la norma p de
una funcién f € L” y su respectiva funcién de distribucion:
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Proposicion 1.3.4. Sea (X, o/, L) un espacio de medida c-finitoy f € LP (i), 1 < p < 0. Se define la
funcion de distribucion de f como: we(t) = u{x € X : |f(x)| >t} , donde t > 0 . Entonces se verifica

que:
e du= [ et te) ae
X 0 ’

Demostracion. Paral < p < e yx € X, aplicando el teorema de Fubini (ver Anexo, teorema 0.16), se
tiene que:

/0 pt?lwi(r) dt = /0 pt?™! { /X Xl )=} (%) du} dt = (Fubini) =

oo o £ ()]
= o P~V dt| d :/ [/ (e tp_ldt] d :/ {/ tl"ldt] du =
/X [/0 Xix) fx)>0 (%) P } m= 1), Xou i p =) i

= [1rer du,
b'¢
obteniendo asf la igualdad del enunciado. O

Pasamos a demostrar dos resultados que serdn utilizados para demostrar el teorema de Vitali en el
siguiente capitulo.

Proposicion 1.3.5. Sea (X, ,1t) un espacio de medida y sea f € L (). Para cada € > 0 existe un
conjunto E¢ € of con U(Eg) < oo tal que si F € o7 , y F NEg = 0, entonces:

/ FI? du < €.
F

Demostracién. Como f € LP(u), es claro que |f|” € L' (i), por lo que podemos definir la siguiente
medida (ver Anexo, proposicién 0.12):

()= [ 117 du, Eco.

Consideramos los conjuntos: X; = {x € X; |[f(x)|” > } ke N\ {0} ,Xo={xeX; f(x)=0}.

Se ve inmediatamente que X \ Xp = U X y que X C Xi41, para todo k € N. Ademas:

k=1
ux) = [ tdu < k/ O di <k [ 170N du = KIFIf <
k
Por otro lado, utilizando la Proposicion 0.9 del Anexo: B(X) = B(X\Xo) = U Xi) = hm B(Xk)
k=1
Tenemos que probar que f(F / |fIP du < eP:

e Si B(X)=0esobvio que B(F) =0 paratodo F C X.

e Si B(X) # 0, tiene que ser B(X) > 0. Como B(X) = I}im B (Xk) sabemos que existe ko tal que
—»00

B(Xe,) > B(X) — €7, es decir, B(X) — B(Xy,) < €.

Por tanto, hemos demostrado que dado € > 0 existe Xy, € .7, con l(Xj,) < oo, tal que
B(X \ Xy,) < €P. Asi pues, si F € &/ es tal que F NX;, =0, se tiene que F C X \ Xy, y, en
consecuencia, B(F) < B(X\X,) < €”, como queriamos probar.

O]

Proposicién 1.3.6. Sea (X,.o7, 1) un espacio de medida y sea f € L'(u). Para cada € > 0 existe
0(€) >0, tal que siE € o/ y u(E) < 0(€), entonces:
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'/Efdu‘é/Elfldu<8-

Demostracion. Vamos a probarlo para diferentes tipos de funciones:

1. Sea A € o7 y supongamos que f = x4. Entonces:
|17 du=n(Ena) <p(E) <.

Tomando § = € se tiene el resultado.

n
2. SeanA; € &7, i=1,...,n,y supongamos que f = Za,- Xa;, ai = 0. Entonces:

i=1

n

/E fldu=Y awENA) <Y a u(E) <8 a
i=1

i=1 i=1

n
Tomando 6 = €/ Z a; se tiene el resultado.
i=1

3. Sea f una funcidén integrable no negativa. Entonces, por el Teorema 0.11 del Anexo, existe una
sucesion de funciones simples medibles no negativas s, tal que para cada x € X se tiene que:

0<s1(x) <sa(x) < ..o <sp(x) < f(x) y lim s, (x) = f(x).

n—yoo

Como f € L'(u), podemos aplicar el teorema de la convergencia dominada para obtener que

€
lim / (f —sn) du = 0. Por tanto, para todo € > 0 existe ny € N tal que lim / (f—sn) du < =,
n—eoo Jx n—eo Jx 2
para todo n > ny.

Ademids, por el apartado 2 sabemos que para s,, existe 6 > 0 tal que si u(E) < 8, con E € <7,
£
entonces / Sny AU :/ Isno| dpt < =. Asi pues:
E E 2

/\f!duszduz/f—snodu+/snodu <28_¢
E E E E 2

4. Sea f € L'(u). Entonces es claro que | f| € L' (u). Por el apartado 3 sabemos que para todo € > 0
existe § > 0 tal que si u(E) < 8, para E € 7, entonces / |f] du < e.
E

Queda probado entonces que para cualquier funcién perteneciente a L' (1) se satisface la desigualdad
del enunciado. O
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Capitulo 2

Tipos de convergencia

En este capitulo mencionaremos los tipos de convergencia de una sucesién de funciones medibles en un
espacio de medida (X, .7, ), y estudiaremos las relaciones entre los distintos modos de convergencia.
La mayor parte de los resultados que aparecen en este capitulo han sido tomados de [Bartle], [Munroe],
[Wheeden, Zygmund] y [Guzmén, Rubio].

2.1 Nociones basicas
Sea (X, , ) un espacio de medida. Consideramos el espacio vectorial:
Lo(u) = {f:X — C; f medible},

y sean (fu) y f € LO(u).

Definicién 2.1.1. La sucesion (f,) converge uniformemente a f si para todo € > 0 existe ng(€) € N
tal que sin > ng y x € X, entonces |f,(x) — f(x)| < €.
Equivalentemente, (f,) converge uniformemente a f si se verifica:

lim sup|f,(x) = £(x)] =0.

= xeX

Definicion 2.1.2. Sean (f,) y f tal que f,, — f € L”(u). Diremos que (f;,) converge en L*(1) a f si se
verifica que:

lim ||f, — f]l.. =0.
n—oo

Por ejemplo, si consideramos f,(x) =xy f(x) = x en el espacio (R,dx), es obvio que (f,) converge
afenlL”™.

Proposicion 2.1.3. Sean f,,f : X — C funciones medibles. Entonces, lg‘n | fn— fll.. =0 si'y solo si
Nn—oo
existe A € X, con u(A) = 0 tal que (f,) converge a f uniformemente en X \ A.

Demostracion. Supongamos que lim || f, — f]|.. = 0. Por definicién de || ||., sabemos que existe A, € X,
n—oo
con t(A,) =0, tal que | f,(x) — f(x)| < [Ifu(x) = f(¥)]|cr con x € X\ A,

Consideramos A = U A, y es obvio que u(A) =0 . Por tanto, para todo n € N se cumple que
n=1

sup /() ~ FO] < [1fu®) ~ F(3)r y como lim |y~ £]. = O concluimos que (f;) converge
x e X\A e

uniformemente a f en X \ A.

15
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Por otro lado, supongamos que existe A € X, con t(A) = 0 tal que (f,,) converge a f uniformemente
en X \A, esdecir, lim sup |f,(x) — f(x)|=0. Ademas, |f,(x) — f(x)| < sup |fu(x)— f(x)| u-a.e, lue-
n—oo

xeX\A xeX\A
go sup |fu(x) — f(x)| es una cota esencial de | f,(x) — f(x)|. Por tanto, || f,, — fl|.. < sup |fu(x) — f(x)],
xeX\A xeX\A
de lo que deducimos que ’}gn Il fn— fll. =0. ]

Definicion 2.1.4. La sucesion (f,,) converge casi uniformemente a f si para cada € > 0 existe un con-
junto E; € o7, con U (E;) < €, tal que (f,,) converge uniformemente a f en X \ Eg.

La sucesion (f,,) se dice que es una secuencia de Cauchy casi uniforme si para cada € > 0 existe
un conjunto E, € o7, con u(E;) < €, tal que (f,,) es una sucesién de Cauchy uniforme en X \ E.

Definicion 2.1.5. La sucesién (f,,) converge en casi todo punto (a.e) a f si existe un conjunto A € X,
con ((A) =0, tal que lim f,(x) = f(x), para todo x € X \ A.
n—o0

Es obvio que la convergencia uniforme implica la convergencia a.e.

Definicion 2.1.6. Sean f,, f € LP(u):
La sucesion (f,) converge en L”(u) a f, 1 < p < oo, si se verifica que:

lim || £, — f|, = 0.
En este caso, también podemos decir que la secuencia (f,) converge a f en media (de orden p).

La sucesion (f;) se dice de Cauchy en L” (), si para todo € > 0 existe ny € N tal que si m,n > ny,
entonces:

[fin = full, <&

Se prueba facilmente que si (f,,) converge a f en LP(u), entonces (f,) es una sucesion de Cauchy
en LP(u).

Por dltimo vamos a definir otro tipo de convergencia que es a menudo de interés:

Definicion 2.1.7. La sucesion (f;) se dice que converge en medida a f si para cada o > 0 se verifica:
Jim p(fxe X [fu(x) = f(¥)] = a}) = 0.

La sucesion (f,,) se dice de Cauchy en medida si para cada a > 0 existe ny € N tal que si m,n > ng
se verifica:

p({xeX: [fulx) - filx)| = a}) <e.

Cabe destacar que si (f,) converge uniformemente a f, el conjunto {x € X : |f,(x) — f(x)| > o}
es vacio para n suficientemente grande. Por tanto la convergencia uniforme implica la convergencia en
medida.

2.2 Relacion entre los distintos modos de convergencia

Caso general

Pasamos a analizar las relaciones entre los tipos de convergencia:
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Teorema 2.2.1. Sea (X, , 1) un espacio de medida. Entonces se cumple:

a.e

unif. — L — casi unif. < |
A

LP
donde UL representa la convergencia en medida y --+ indica la convergencia de una subsucesion.

Demostracion. Sean f,, f : X — C funciones medibles. Veamos que se cumplen las distintas implica-
ciones:

o unif. —— L” —— casi unif.
Se siguen inmediatamente de la proposicién 2.1.3.

o casi unif. —
Supongamos que (f,) converge casi uniformemente a f, y sean a,€ > 0. Entonces existe un
conjunto E¢ € o7, con l(Eg) < € tal que (f,) converge a f uniformemente en X \ E¢. Por tanto, si
n es suficientemente grande, el conjunto {x € X : |f,(x) — f(x)| > o} tiene que estar contenido
en E¢. Asi pues:

HxeX:[fi(x) = f()] = a}) < u(Ee) <e,

o lo que es lo mismo, (f,) converge a f en medida.

o U — —>casi unif.
Supongamos ahora que (f,) converge en medida a f. Entonces (f,,) es una sucesion de Cauchy
en medida y, por tanto, dado € > 0, Vk € N, existe (f;,) tal que:

1 €

fnk+1('x) _fnk(x)} = 7} < ?

u{xeX; 5

1
fnk+l (x) _fnk(x)‘ = ?}

Consideramos el conjunto Ay = {x € X;
k-1

Puesto que f,, = fu, + Z Jnji1 — Jnj» se tiene que (fn,) converge a.e. si y solo sf Z Jnj — I
=1 =1

J J
converge a.c.

oo

Por otro lado, notar que: U <UAk> < Z U(Ar) < Z % = % — 0.
k=n

k=n k=n e

Definimos ahora A = m U Ag. Como {U Ay} es decreciente y 1 (U Ak> < oo, tenemos que:

n=1k=n k=n k=1

u(A) = lim p (Om) =0.

k=n

Ademds, si x ¢ A existe np € N tal que x ¢ U Ay, por lo que x ¢ Ay, para todo k > ny.

k=ng

1
Asi pues, si x ¢ A tenemos que ‘ Sy (X) = S (x)‘ < 2 para todo k > ng, lo que implica que
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Z ‘ S )! converge absolutamente para todo x € X \ A y, por tanto, Z Jrjor (X) = fn,; (x)

j=1
converge u—a.e.

Podemos definir entonces:

fn1 ‘|‘an,+1 fn( )—]}f_{l;lofnk(X), Si xGX\A’

0, si  x€A.
Asi tenemos que ]}fm S (x) = g(x) u—ae.
—»00

Veamos ahora que (f,, ) converge casi uniformemente a g, es decir, que Z S (X) = f,; (x) con-
J=1

oo

verge casi uniformemente. Definimos para ello el conjunto B = U Ay. Entonces:
k=1

B)<;u( i%:

=12
1
Ademds, si x ¢ B tenemos que x ¢ Ay para todo k > 1, por lo que |fnk+l — [ (x )‘ < &> bara

todo k > 1y para todo x ¢ B.

1
Por otro lado, como kZ’l % < o podemos aplicar el criterio M de Weierstrass (ver [Conway], p.29)

para deducir que Z Sy (x) = fu,(x) converge uniformemente en X \ B.
k=1

Por tanto, hemos demostrado que si (f;,) es una sucesion de Cauchy en medida entonces existe una
subsucesion (f, ) C (f») y una funcién medible g tal que (f,, ) converge a g casi uniformemente.
Asi pues, tenemos que:

- (fu) converge a f en medida, lo que implica que (f,,) converge a f en medida.

- (fy,) converge a g casi uniformemente, lo que implica que (f;,) converge a g en medida.

Asi, para concluir solo tenemos que probar que f = g U a.e.
Como (fy,) converge a f'y a g en medida se tiene que para todo € > 0:

Jim p({x€X: (@)~ f0)] Ze}) = 0y lim R({xeX: |fi(0)—g()] >e}) = 0.

Por otro lado, | (x) — g(x)| < |/ (x) = S (X) [+ /o (%) — g(x) |, luego si | f(x) — g(x)| > €, entonces

tiene que ser |f(x) — f (x)| = €/2 o |fy,(x) —g(x)[ > €/2.
Por tanto:

preX: |f(x) —g()| > €} € {xeXs )~ > 5} U reXs 1@ —e@)] > 3},
de lo que deducimos:
P e X 11() —8()| =€) S H({x € X [£,() = ()] = 51 +R(xeX: |foy () —00)| > 5

Es claro que los dos términos de la derecha tienden a O puesto que (f,) converge a f y a g en
medida. Asi pues, para todo € > 0 tenemos:

ufreX: [f(x)—gx)| 2e}) =0,
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porloque f =g u a.e.

o [P —— u, 1 g p < oo
Supongamos que (f,,) converge a f en L” () y consideramos el conjunto
E,={xeX:|fu(x) - f(x)| > o}, a> 0.Entonces:

/ |fu = fIP dp > / \fo—fIP du > af u(E,).
X E,

n

Como o > 0, se sigue que si lim || f,, — f|| , =0, entonces lim u(E,) =0, por lo que (f,) converge
n—oo n—yoo
a f en medida.
e casiunif. —a.e

Supongamos que (f;,) converge a f casi uniformemente en X. Entonces, si para todo k € N toma-
mos € = %, es claro que existe Ag, con U (Ag) < %, tal que:

lim sup |fu() — £(x)] = 0.

N0 v e X\ Ay

Tomando A = ﬂ Ay obtenemos que t(A) < u(Ag) < %, VY k, lo que implica que p(A) = 0.
k=1
Ademds, si consideramos x ¢ A, tiene que ser x ¢ A, para algtn k, y por lo tanto:

lim f,(x) = f(x),

n—yoo
por lo que (f,) converge a f a.e.

A partir de estas implicaciones podemos deducir el resto:

e Como LP ——u y u——>casi unif. esclaroque LP — — > casi unif.
e Como U — —>casi unif. y casiunif. —— a.e esclaroque [ — — >a.e..
e Como L? — — > casi unif. y casiunif. — a.e esclaroque L — — >a.e.
O
NOTA

Supongamos que (f,) converge a g [c|, donde [c] indica cualquier tipo de convergencia de las definidas
anteriormente, y que (f,) converge a f a.e. Entonces obtenemos que f = g a.e.

En efecto, si (f,) converge a g [c], observando el diagrama de flechas vemos que existe una subsucesion
(fn.) € (fn) tal que (fy,) converge a g a.e. Como (f,,) converge a f a.e. es claro que (f,, ) converge a f
a.e, de lo que deducimos que f = g a.e.

Como consecuencia, para estudiar un limite hay que mirar el limite en casi todo punto, porque de existir
tiene que ser ese.

Contraejemplos

A continuacién vamos a estudiar diferentes contragjemplos que muestran que las implicaciones que no
aparecen en el diagrama no se dan:

1. unif. /= L?
Consideramos la sucesion f, = n~/P Xjo,,) definida en el espacio de medida (R,dx). Entonces
fn converge uniformemente a la funcién f = 0, pero no converge en L” ().
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Demostracion. Es claro que f, converge uniformemente a f, ya que se verifica:

h;m sup | f,(x) — £(x)| = lim sup |n~!/? X0, (%) —O’ = lim n~ /P = 0.

x€R = yeR i—reo

Veamos ahora que f;, no converge en L () a f:

1/p 1/p n 1/p
{/’fn_f’pd.u} :{/’nl/pX[O,n] ’pd“} :{/0 nd.u} =140

Deducimos de esto que tampoco existe ninguna subsucesion (f,, ) C (f,) tal que f,, converge a0
en L?, por lo que unif. /-+ LP. O

. casi unif. /= L*

Consideramos la sucesién f, = x" definida en el espacio de medida ([0, 1),dx). Entonces f,
converge casi uniformemente a f = 0, pero no converge en L.

Demostracion. Es obvio que six € [0,1), lim f,(x) = 0. Ademds, sabemos que si f, converge a
n—yoo

f en L™, entonces f, converge a f U-a.e. Asi pues, si f, converge en L™ a alguna f, esta f tie-
ne que ser 0 u-a.e, luego || f, — fll. =1y lim || f, — fll.. = 1 #0, por lo que f, no converge en L.
n—soo

Veamos que hay convergencia casi uniforme: sea € >0y Ec = (1 —¢,1) . Entonces u(E;) =€y
se verifica que:

sup  |fu(x)=0l=  sup x| = (1—¢)"—0,
x € [0,1)\Ee x € [0,1—¢) n—ree

por lo que f,, converge casi uniformemente a 0 en [0, 1) y queda probado que la convergencia casi
uniforme no implica la convergencia en L™. O

Ademads, como || f, — f||.. = 1, es evidente que tampoco existe ninguna subsucesion (f, ) C (fn)
tal que f;,, converge a 0 en L™, de lo que deducimos que casi unif./~+ L.

. a.e. /L~

Consideramos la sucesion f, = X[, 1] definida en el espacio de medida (R,dx). Entonces f,
converge en casi todo punto a f = 0 pero no converge en L= ().

Demostracion. Es claro que f,, converge en casi todo punto a f =0, ya que, por la propia defini-
cién de la funcion caracteristica, f,, vale 0 en casi todo punto salvo en los x € [n,n+ 1] . Por otro
lado, || fo = flle = ||Xpuns1]||l. =1 # 0, por lo que f, no converge a 0 en L™ (1) y tampoco hay
ninguna subsucesion (f,,) C (f,) que converja a 0 en L™, es decir, a.e. 7/-» L.

Con esta misma sucesion también se prueba que a.e. /— casi unif. O

.U AL

Consideramos la sucesion f, = ny|, 1) definida en el espacio de medida ([0, 1],dx). Entonces f;
converge en medida a f = 0 pero no converge en L”.

Demostracion. Es claro que f, converge en medida a f, ya que, para cada ¢ > 0 :

s . 1
1im u{x € [0, 1]; ‘nx[()’%](x)’ > a} = limpu((0,]) = 0.

n—yoo n—yeo
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Veamos ahora que f;, no converge a f en L? :

1

1
1 » ; b 1
Vo= fllp = ( | 1m0 |de) - ( [ dx> —

y lim n'r =0, por lo que f, no converge a f en L”. O
n—yoo
5. ae. /U

Consideramos la sucesion f, = |, ) definida en el espacio de medida (R,dx). Entonces f, con-
verge a f = 0 a.e. pero no converge en medida.

Demostracion. Es claro que f, converge a f a.e, yaque lim ¥, ) =0.
n—roo ’
Por otro lado, es inmediato ver que f, no converge a f en medida, ya que para 0 < o < 1:

lim p{x € R; |Zpneo)(¥)] > o} = lim p([n,00)) = oo

n—yeo

Ademds, tampoco existe ninguna subsucesion (f,, ) C (f,) tal que f,, converge a 0 en medida, de
lo que deducimos que a.e. /- L. O

6. casi unif. /— L
Consideramos la sucesion f, = ny|, 1) definida en el espacio de medida ([0, 1],dx). Entonces f;
converge a f = 0 casi uniformemente pero no converge en L”.

Demostracion. Ya ha sido probado en el contraejemplo 4 que f;, no converge a f en LP. Veamos
que hay convergencia casi uniforme: sea € >0y E¢ = [0, €] , es decir, u(E,) = €. Notar que para

. 1 . .
€ > 0 existe ng € N tal que — < €. Por tanto, es inmediato que:

no
sup  |fu(x)—0] = sup ‘”X[o y|— 0,
x € [0,1]\Ee x € (1] il neree
por lo que f, converge casi uniformemente a f. O
7. LP /—~ a.e.
Sea el espacio de medida ([0, 1],dx). La sucesion:
hi= X, fa= 2L = X4 fa= (L2 fs= 2,3 fe {ERIE fa =X, -+, converge

en L” a f = 0 pero no converge a.e.

Demostracion. La convergencia en LP se deduce inmediatamente.

Por otro lado, f, es una sucesién de funciones que va tomando los valores 0 y 1 dependiendo del

intervalo en el que estemos, por lo que para todo x € [0, 1] es obvio que no existe lim f,(x) y, en
n—soo

consecuencia, f; no converge a f a.e. [

Consecuencias:

o [P/ >ae, UA—>ae, LPA4—casiunif. y p -/ casiunif.
Se deducen inmediatamente del contraejemplo 7. En efecto, f,, converge en L” a 0, lo que implica

que hay convergencia en medida. Por otro lado, como f, no converge a 0 a.e. tampoco converge
casi uniformemente.
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e ae. /—casiunif. y a.e./-» L7
Se deduce de lo visto anteriormente.

Vamos a explicar un teorema a continuacién segun el cual, a partir de ciertas condiciones adiciona-
les, podemos probar que la convergencia en medida implica la convergencia en L? (ver [Bartle], p.76).

Teorema 2.2.2 (Teorema de la convergencia de Vitali). Sea (X, <7, l) un espacio de medida y sea
(fn) una sucesion en LP (i), 1 < p < eo. Entonces (f,) converge a f en LP (1) si'y solo si se satisfacen
las siguientes condiciones:

1. (fy) converge en medida a f.

2. Para cada € > 0 existe un conjunto E; € o/ con U(Eg) < oo tal que si F € o/ , y FNE; =0,
entonces:

/ |fu? du < €, para todo n € N.
F
3. Para cada € > 0 existe §(€) > 0, tal que si E € o/ 'y u(E) < 8(€), entonces:
/ |ful? du < €, para todon € N.
E

Demostracion. =) Supongamos que (f,) converge a f en L”(u). Veamos que se cumplen las tres
propiedades:

1. Ya ha sido probado anteriormente que la convergencia en L” implica la convergencia en medida.

2. Sea E € of. Consideramos las medidas:

E)= [1f1" du. Bu(E) = [ Al du, neN.

Teniendo en cuenta que ‘Hf,,Hp— Hpr‘ < || fu = fll > st (fa) converge a f en L?, es claro que

tim (£, = 1], 1o que implica que lim B, (X) = B(X).

Lo mismo ocurre para cualquier conjunto E € <7 : 1im 3,(E) = B(E), ya que si (f,,) converge a
n—yoo

fen LP, también se satisface que f,, xg converge a fyg en L.

Por la Proposicién 1.3.5. del capitulo 1, sabemos que dado € > 0, existe un conjunto A; € <7,
con U(Ag) < oo tal que B(X \Ae) < (€/2)P. Aplicando este razonamiento, para n = 1,2,...,no,
sabemos que existe By, ¢, con U(B,¢) < oo, tal que B,(X \ B,¢) < SP

no

710
Definimos entonces B, = U B, ¢,y obtenemos que [1(Bg) = U Bg) Z (Bn,e) < oo. Ade-
n=1

mis, Ba(X \ Be) < Ba(X \ Boe) < €7,

Tomamos ahora E; = A¢ UB¢ y es obvio que 1 (Eg) < U(Ag) + U(Be) < co. Ademas:

e Paran=1,2,...,ngp:

BuX\E) = [ Il du= [ A7 du< [ UL du=Bax\Be) <.
X\E, (X\Ae) N (X\Be) X\Be



23

e Paran > ng:

Ba(X \ E¢) </X\A Ll? du.

Por otro lado, como (f,) converge a f en L, existe ng € N tal que || f, — f||, < 3, para todo
n > ng. Asi pues:

 a)’ pran)’ o\
() (s ) ([ )

1 S &
< ||fn_f||p+(ﬁ(X\Ag))p < §+§ —¢.
Por tanto, B,(X \ E¢) < €7, paran > ny.

Deducimos entonces que f3,(X \ E¢) < €” para todo n € N. Asi, si F € o es tal que FNE, =0,
tiene que ser F C X \ Eg, por lo que 3,(F) < B.(X \ E¢) < €, como queriamos demostrar.

3. Como (f,) converge a f en L”, existe ng € N tal que || f, — f|, < 5, para todo n > ny.

Por la Proposicién 1.3.6. del capitulo 1, sabemos que dado € > 0 existe dy tal que si u(E) < 0y,
con E € o/, se verifica que / |fIP du < (&/2)” . De la misma forma, paran = 1,...,no, existe
E

0, tal que si u(E) < 9, con E € 7, severiﬁcaque/ |ful” du < €P.
E

Consideramos 8 = min{ &, 01,..., 6, } y tenemos que:

e SiE € o estal que u(E) < 8, entonces es obvio que i(E) < &, para todon = 1,...,n.
Por tanto:

/Elfnl” du<el, n=1,...,np.

e Sin > ng se verifica que:

1/p 1/p e
p _r|p P € E_
</E|f”’ d“) <</E|fn fl du) +</E|f| du> <3t5=6

por lo que/ |fu|? du < &P, para todo n > ny.
E

Concluimos entonces que / |fu|" du < € para todo n € N, como querfamos probar.
E

<) Supongamos ahora que se satisfacen las tres propiedades. Vamos a ver que (f,,) converge a f en

LP(p):
Sea € > 0. Por el apartado (2) sabemos que existe Eg, con i(Eg) < oo, talque si F € o7 , y FNEe =0,
entonces:

/ |ful? du < €P, paratodon € N.
F

Consideramos pues F = X \ E, y aplicamos la Desigualdad de Minkowski a f, — fin = (fu — fum) XE. +
faXr — fmXr , obteniendo que:

1/p
= fully < [ = tol i} o+ 2 @

para n,m € N . Sea ahora & = €[u(E¢)]™"/? y Huyp = {x € Ee : |fu(x) — fu(x)] > &} . En vista de la
tercera condicién sabemos que para cada € > 0 existe 0(€) > 0, tal que si Hy, € &y UW(Hpm) < 8(€),
entonces:
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/ |fu]? du < €, paratodon € N.
Hnm

Ademds, como (f,) converge en medida a f sabemos que (f,,) es una sucesiéon de Cauchy en medida,
luego existe K(€) tal que sin,m > K(€) , entonces i (Hyy,) < 6(€). Aplicando otra vez la Desigualdad
de Minkowski junto con la condicién (3), obtenemos:

1/p 1/p 1/p 1/p
{/ fn—fml”du} <{/ Ifn—fm”du} +{/ !fn”du} +{/ Ifml"du} <
ES EE\Hn”T Hnln Hnm

< a[u(Ee)]P + & + & = 3¢,

cuando n,m > K(€) . Combinando esto con la ecuacién (2.1) deducimos que (f,) es una sucesion de
Cauchy y por tanto es convergente en L”. Como (f,) converge en medida a f , se sigue por unicidad
que (f,) converge a f en LP. O

Caso finito

Antes de analizar las relaciones entre los distintos modos de convergencia, vamos a explicar un resultado
relevante en el caso finito, tomado de [Bartle], p.74.

Teorema 2.2.3 (Teorema de Egoroff). Sea (X, .o/, L) un espacio de medida. Supongamos que
U(X) < ooy que (f,) es una sucesion de funciones medibles que converge en casi todo punto a una
funcion f medible. Entonces (f,) converge casi uniformemente y en medida a f.

Demostracion. Supongamos sin pérdida de generalidad que (f,) converge a f en todo punto de X y
consideramos el conjunto:

oo

Eim) = U {xex: 15 -] > |

k=n m

conn,m € N. Es claro que E,(m) € &/ y que E,, 1.1 (m) C E,(m). Como 1f_r>n fn(x) = f(x) paratodox € X,
n—yo0
se sigue que:

(=)

{xeX,; gggofk(x):f(x)} c |J(X\E,(m X\ﬂE

n=1

por lo que ﬂ E,(m)=0.
n=1
Por otro lado, como pu(X) < oo, obtenemos que lim w(E,(m)) = 0. Si € > 0, tomamos k,, de forma que
n—yoo

WU(Ek, (m)) <€e/2"yEe = U Ey, (m). Asi pues, es claro que E; € o/ 'y U(E¢) < €. Ademas, six ¢ Eg,

entonces x ¢ E; (m), por lo que
1
b0~ /00 <

para todo k > k;,. Deducimos pues que (f;) es uniformemente convergente en X \ Eg, lo que implica
que (f,) converge casi uniformemente a f y, por tanto, también converge en medida. 0

Teorema 2.2.4. Sea (X,.o/, 1) un espacio de medida y supongamos que [L(X) < oo. Entonces se cumple:

unif. — L — casi unif. <

\/
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Demostracion. Sean f;, f : X — C funciones medibles. L.a mayoria de las implicaciones han sido estu-
diadas en el caso general. Como ahora tenemos que (X ) < oo, aparecen tres nuevos casos que pasamos
a demostrar:

® a.e——casiunif. y,porlotanto, a.e — U
Se siguen del teorema de Egoroff.

o [7— =[P 1<p<e
Se sigue inmediatamente de la desigualdad || f{|, < u(X) || f||... vista en el capitulo 1.

Contraejemplos

1. a.e 4/ unif.

Consideramos la sucesion f,(x) = x" definida en el espacio de medida ([0, 1],dx). f, converge
a.e. a f = 0 pero no converge uniformemente.

Demostracion. La convergencia a.e. es evidente, ya que 1im x" = 0 para todo x € [0, 1).
n—soo

Por otro lado, lim sup |f,(x) — f(x)| = lim sup |x"| = lim 1 = 1, por lo que f, no converge
7% xe0,1] n=re xefo,1] e
uniformemente a f = 0. ]

2. U #— unif.
Consideramos la sucesion f,(x) = x" definida en el espacio de medida ([0, 1],dx). f, converge en

medida a f = 0 pero no converge uniformemente.

Demostracion. La convergencia en medida es evidente, ya que para ¢ > 0 se tiene que
Jim g1 (Ux € [0.1]: () ~ ()] > o) = lim pu ({r€ 0.1: '] > o)) =0,
Que f, no converge uniformemente a f ya ha sido probado en el anterior apartado.

Caso dominado

Vamos a estudiar la relacion entre los distintos tipos de convergencia cuando la sucesion en cuestion
estd dominada por una funcién del espacio L?.

Teorema 2.2.5. Sea (X,.<7, ) un espacio de medida y supongamos que la sucesion (f,) estd dominada
por una funcion g en LP, 1 < p < oo, Entonces se verifica:

unif — L™ —— casi unif. j\f_u

.
a.e=< Lr

Demostracion. Sean f,, f : X — C funciones medibles. Veamos que se cumplen las distintas implica-
ciones:



26

Capitulo 2. Tipos de convergencia

e a.e——casiunif. vy,porlotanto, a.e — U

Para probar este resultado utilizaremos las mismas ideas de la demostracién del teorema de Ego-
roff. Supongamos que (f,) converge a f en casi todo punto, verificando que |f,| < g, con g una
funcién integrable. Consideramos el conjunto:

oo

Bim) = U {rex: it -l > .
k=n
Solo tenemos que probar que 1im u(E,(m)) = 0. Como (f,) converge a f a.e, se sigue que para
n—oo

cada m:

(=

(reXs Jim i) = £} © U OO\ E(m) =X\ () Exlm).
n=1 n=1

oo

Por tanto, u( ﬂ E,(m)) =0. Como E, | (m) C E,(m), solo necesitamos probar que

n=1
U(E,(m)) < oo para algin n, ya que en ese caso H_r}n U(E,(m)) = u( m E,(m))=0.
e n=l1

Por la hipétesis del enunciado es claro que | f| < g a.e, por lo que para cada k se verifica que
|fi — fI < 2g a.e. Asi pues:

oo

Eim) = U {xex: 1a-so0l > 1 < {rexi o = 2 bUa

k=n
donde p(A) = 0. Como g es integrable se sigue que (E,(m)) < ooy asi podemos concluir que
(fn) converge casi uniformemente y en medida a f.

ae——L7°
Se sigue del Teorema 0.15 del Anexo.

TR

Supongamos que (f,,) converge en medida a f. Entonces existe una subsucesion (f,, ) C (f,) tal
que (f,,) converge a f a.e. Como |f,| < ga.e,esclaroque |f,| < ga.e.y,portanto, |f| < g
a.e. Asi pues, obtenemos que |f, — f| < 2ga.e.y, como g € L”, deducimos que f,, — f € LP.

En el capitulo 1 habifamos demostrado que , si f € L?:

Irp= | T o e X |f()] > 1} dr.

Por tanto: -
lim Lo — £ = Jim [~ pr? M a{x € X (@) = £0)| > 1} .
n—soo n—eo J
Veamos si podemos meter el limite dentro:
alt) = P dx € X2 [ fu() — £()] > 1} < prr - p{x € X 2g(x) > 1} = h(t) .1 € (0,0).

oo

Notar que / h(t)dt = ||2g||} < o, es decir, h € L'(0,0). Por tanto, podemos aplicar el teorema

de la convergencia dominada:
lim [| f,, — fII}, = / prP U im p{x € X ¢ |fu(x) — f(x)| >t} dt.
n—soo 0 n—soo

Como (f,) converge a f en medida es claro que lim u{x € X : |f,(x) — f(x)| >t} = 0, luego
n—soo

’}gl; [ fo = fII}, = 0, es decir, (f,) converge a f en LP.

casi unif. —LP

Como casi unif. —a.e. y a.e.—— LP esclaro que casi unif. — L .



Anexo

Aqui explicamos algunos de los conceptos que han sido utilizados a lo largo del trabajo y que son de
vital importancia a la hora de comprender la materia. La mayoria de ellos han sido tomados de [Royden].

Definiciéon 0.1. Decimos que un conjunto no vacio V es un espacio vectorial sobre un cuerpo K, o
K-espacio vectorial, si en €l se han definido dos operaciones, una interna y otra externa, llamadas res-
pectivamente suma y producto por un escalar que pasamos a describir.

La suma de dos elementos (o vectores) u,v € V da lugar a otro elemento de V, que denotamos u + v,
cuyas propiedades(ya conocidas) son:

e Asociativa: u+ (v+w) = (u+v)+w, Yu,v,w €V,

e Conmutativa: u+v=v+u, Vu,v €V,

e Elemento neutro: existe e € Vtalquee+v=v+e=v,VweV,;

e Elemento opuesto: paracadav € V existe wtalque v+w =w+v =e.

El producto de un escalar, o elemento del cuerpo K, por un vector da lugar a otro elementode V, y
tiene las propiedades:

e a(ut+v)=au+av,VYaeK,Yu,veV,

e (a+Db)u=au+bu,Va,bc K,YuecV,

o a(bu) = (ab)u,Va,b c K,Yu eV,

e lu=u,VucV,donde 1 es la unidad para el producto en K.

Definicion 0.2. Un espacio vectorial normado es un espacio vectorial V sobre un cuerpo K junto con

una norma || - || : V. — R que satisface las siguientes propiedades:

L. |v[|>0,¥veV,

2. |[v||=0siysolosiv=0,

3. lav]| =] o] |v|,VWwveVyaek,

4. lu+v|| < ul|+||v|, Yu,v € V.

Diremos que || - || es una semi-norma para V cuando se cumplen todas las propiedades salvo la
segunda.

Definicion 0.3. Sea (V,|-||) un espacio vectorial normado. La aplicacién d : V x V — R dada por
d(u,v) = |lu—v|| se conoce como funcién distancia o métrica asociada a la norma || - || , y de las
propiedades de ésta se verifica que Vu,v,w € V:

1. d(u,v) >0,
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2. d(u,v)=0 siysolosiu=v,
3. Essimétrica: d(u,v) = lu—v||=|(=D)(v—u)||=|=1||v—u| =|v—ul| =d(v,u),

4. Satisface la desigualdad triangular: d(u,v) = |lu—v|| = lu—wH+w—v| <|lu—w| +|lw—v| =
d(u,w)+d(w,v).

Cualquier conjunto con una funcién distancia d satisfaciendo las cuatro propiedades recibe el nombre
de espacio métrico con métrica d.

Una vez mencionada la funcién distancia, y para poder hablar de espacios de Banach, definimos los
siguientes conceptos:

Definicién 0.4. Sea (E,d) un espacio métrico. Una sucesion (a,) C E es de Cauchy si dado € > 0 existe
no € N tal que d(an,an) < €, Vn,m> ny.
Una sucesion (a,) C E es convergente si dado € > 0 existe ngp € N tal que d(a,a,) < €,Vn>ng

Definicién 0.5. Un conjunto E se dice espacio de Banach sobre los niimeros complejos si se cumplen
las siguientes propiedades:

e F es un espacio vectorial,
e FE es un espacio normado,

e E es completo con respecto a su norma, es decir, toda sucesion de Cauchy es convergente.

Ejemplos

Algunos ejemplos de espacios de Banach son:
L (R, [-]),
2. (C,])),
3. (R",||-|l;) , donde ||x||; = |x1| + ...+ |xu| , conx = (x1,...,x,) € R,

4. (R"|||l,) > donde ||x||l, = (x} 4...+x2)/%, con x = (x1,...,x,) € R",

Definicion 0.6. Un espacio de medida es una terna (X,.o/, ) donde X es un conjunto, .2/ es una
o-algebra sobre X, es decir:

1. X e o,
k=o0

2. SiEy € of parak=1,2,..., entonces U E e,
k=1

3. SiP e o, entonces P°=X\P <€ .
y U : &/ — [0,0] es una aplicacion (llamada medida) que tiene las propiedades:
1. u(0)=0,

2. u es completamente aditiva, es decir, para cada sucesioén {Ey} de elementos de <7 tal que
E;NE;=0sii# j,se verifica:

8

1 (Ek).
k=1

k=co
u( U Ey) =
k=1

Los elementos de 2/ se denominan conjuntos medibles.

Definicion 0.7. Sea (X,.<7, ) un espacio de medida. Diremos que X es un conjunto o- finito si es la
unién contable de conjuntos medibles de medida finita.
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Propiedad pi-a.e

Dado un espacio de medida (X,.o7, 1), diremos que una cierta propiedad referida a los puntos de X es
cierta (-en casi todo punto (i-a.e) si existe un subconjunto N € o7 , con u(N) = 0 tal que la propiedad
es ciertaen X \ N.

Por ejemplo, para dos funciones f,g, si f = g U-a.e significa que existe un subconjunto N € &/ con
1(N) =0 tal que f(x) = g(x) al menos para todo x € X \ N.

Definicion 0.8. Sea (X,.o, i) un espacio de medida, f : X — C. Diremos que f es una funcién medible
si f~!(G) es un conjunto medible para cada abierto G de X.

Pasamos ahora a probar una serie de resultados utilizados a lo largo del trabajo:

Proposicion 0.9. Sea (X,.7, 1) un espacio de medida. Se verifican las siguientes propiedades:

o SiE,Ey,...,Ey es una sucesion finita de conjuntos medibles disjuntos entre si:
N N
w(UE) = Y u(E).
n=1 n=1

e Si E, € 9/ es una sucesion no decreciente de conjuntos medibles, de modo que E, C E, | para
todon € N, se tiene:

n=1

e Si E, € of es una sucesion no creciente de conjuntos medibles, de modo que E, | C E, para todo
n €N, siempre que L(E}) < oo, se tiene:

Definicion 0.10. Una funcién simple es una funcién s : X — C que toma solamente un niimero finito
de valores.
La forma candnica de s es:

n
§ = Z CjXA;
J=1
donde cy,...,c, son los distintos valores que toma la funcién s y A; = s~ (c;) = {x € X : s(x) =¢;},
I<j<n
El siguiente teorema es fundamental para muchos resultados en teoria de la medida:

Teorema 0.11 (Teorema de aproximacién). Sea (X,.<7, L) un espacio de medida y sea f : X — [0,

una funcion medible. Entonces existe una sucesion (s,);,_, de funciones simples medibles tal que:

1. 0<s1(x) < ... <sp(x) < f(x), para todo x € X,

2. lim s,(x) = f(x).

n—soo

Pasamos a enunciar un resultado importante en la integracién de funciones medibles no negativas:

Proposicion 0.12. Sea (X,.o7, L) un espacio de medida. Dada una funcién medible f : X — [0,00], la
aplicacion:

A:EEM%A(E):/EfdME[O,“’]

es una medida.
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A continuacién enunciamos un lema muy relevante en teoria de la medida:

Lema 0.13 (Lema de Fatou). Sea (X,.o,1) un espacio de medida, E € </ y sean f, : E — [0,00]
funciones medibles, con n € N. Entonces se verifica:

/ liminf f,, dpu < liminf/ fadu.
E n—yoo n—soo E

El siguiente teorema es importante a la hora de estudiar la convergencia de sucesiones que estan
dominadas por una funcién:

Teorema 0.14 (Teorema de la Convergencia Dominada de Lebesgue). Sea (X, <, 1) un espacio de
medida. Consideramos (f,) una sucesion de funciones medibles tal que lg‘n fo = f v tal que existe
n—oo

una funcion integrable g verificando: |f,| < g en casi todo punto. Entonces f, y f son integrables y se
cumple que:

tim [ 1~ fldu =0,
n—e Jx

A partir de este teorema se deduce el siguiente resultado:

Teorema 0.15. Sea (X,.o/, 1) un espacio de medida y sea (f,) una sucesion en LP (1) que converge en
casi todo punto a una funcion medible f. Si existe g € LP (1) tal que:

[fa()] < g(x), xeX, neN,
entonces f pertenece a LP (W) y (f,) converge en LP (1) a f.

Enunciamos a continuacién un teorema muy importante para el cdlculo de integrales respecto de
una medida producto:

Teorema 0.16 (Teorema de Fubini para funciones no negativas). Sean (X, <, )y (Y, %,0) espacios
de medida 6— finitos y sea f : X x Y — [0, +o0| una funcion medible. Entonces:

e La funcion @ con valores en [0, 40| definida en X por:

0= [ fedv= [ fixy) aviy)

e La funcion y con valores en |0, 40| definida en Y por:

es &/ -medible.

vo) = [ £ du= [ fixy) du)
es B-medible.

e Severifica que:/ fdu®v)= / (pd,u:/llldv. Es decir:
XxY Jx Y

[ feo s = [ | [ ) avo| aueo = [ | [ s auta| avi.
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