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Prólogo

El propósito de este trabajo es estudiar los distintos tipos de convergencia en un espacio de medida y
analizar las relaciones entre éstos (capítulo 2), una vez hayamos definido los conceptos básicos de los
espacios Lp de funciones integrables (capítulo 1). Los espacios Lp son los espacios vectoriales norma-
dos más importantes en el contexto de la teoría de la medida y de la integral de Lebesgue. Los distintos
tipos de convergencia ilustran la riqueza y diversidad de topologías que pueden darse en los espacios de
Lebesgue.

En 1901, Henri Lebesgue, a partir de trabajos de otros matemáticos como Émile Borel y Camille
Jordan, realizó importantes contribuciones a la teoría de la medida. Al año siguiente definió la integral
de Lebesgue, que generaliza la noción de la integral de Riemann, extendiendo el concepto de área bajo
una curva para incluir funciones discontinuas o funciones que presentan muchas oscilaciones.
El método de Lebesgue tiene en cuenta los valores de la función, dividiendo el rango en lugar de dividir
el intervalo dominio de la función, como hace la integral de Riemann. El método de Lebesgue necesita
calcular la longitud de conjuntos que no son intervalos, lo que acarrea la necesidad de construir la me-
dida de Lebesgue.

En 1906 Maurice Fréchet introduce las nociones de espacio métrico, compacidad, completitud y
separabilidad, discutiendo estas propiedades en algunos espacios especiales. En particular, consideró el
espacio C[a,b] de las funciones reales continuas en el intervalo [a,b]. Al aplicar estas ideas a otro de
los grandes desarrollos de la época, la teoría de la integración de Lebesgue, se originaron otros tipos de
espacios funcionales: los espacios Lp[a,b], definidos como:

Lp[a,b] := { f : [a,b]→ R; f es medible Lebesgue y ‖ f‖p :=
(∫ b

a | f |p dµ

) 1
p
< ∞}.

Para p = 1 este espacio estaba implícito ya en los trabajos de Lebesgue; el caso p = 2 aparece explíci-
tamente en 1907 cuando Frigyes Riesz y Ellis Fischer descubren el famoso Teorema de Riesz-Fischer,
según el cual el espacio métrico L2[a,b] es completo, separable e isomorfo al espacio de Hilbert de
sucesiones l2, definido como:

l2 := {x = {xn}∞
n=1 ⊆ C : ‖x‖2 :=

(
∞

∑
n=1
|xn|2

) 1
2

< ∞},

introducido por David Hilbert al estudiar la ecuación integral f (x)+
∫ b

a K(x,y) f (y) dy = g(x), donde
f ,g y K son funciones continuas. Una de las consecuencias inmediatas del teorema de Riesz-Fischer es
que todos los resultados de Hilbert se generalizan inmediatamente al caso en que f ,g y K son funciones
de L2 en lugar de continuas.
La distancia considerada en el espacio de sucesiones l2 es

d(x,y) := ‖x− y‖2 :=

√
∞

∑
n=1
|xn− yn|2,

que es la generalización natural de la distancia euclídea para “ infinitas coordenadas".
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Los espacios Lp y sus análogos lp, para 1 < p < ∞, fueron introducidos en 1910 por Riesz para la
resolución de sistemas de ecuaciones lineales con infinitas incógnitas y para estudiar el problema general
de los momentos, es decir, caracterizar cuando existe una función f que cumple las condiciones:∫ b

a f (x)gn(x) dx = cn, n = 1,2, . . .

siendo (gn) una sucesión de funciones y (cn) una sucesión de escalares.

Aparecen aquí dos nociones importantes:

• La representación del dual de Lp[a,b] como Lq[a,b] ( 1
p +

1
q = 1).

• La convergencia débil de sucesiones.

Todos estas contribuciones preparan el camino para el desarrollo de una teoría abstracta de espacios
normados. Esto aconteció en la tesis doctoral de Stefan Banach en 1920, en la que se da la definición
axiomática de espacio vectorial real, normado y completo.

Después de haber estudiado los espacios Lp, nuestro objetivo será analizar la convergencia de suce-
siones de funciones medibles. Aparte de los conceptos de convergencia puntual y convergencia unifor-
me, podemos estudiar en el contexto de los espacios normados otros tipos de convergencia.

Cuando hablamos de funciones fn en un espacio de medida, realmente nos referimos a la clase de
equivalencia [ fn], por lo que nos limitamos a aquellos modos de convergencia que son insensibles al
cambio arbitrario de fn en un conjunto de medida nula. Así, reemplazamos la convergencia puntual
por la convergencia en casi todo punto y la convergencia uniforme por la convergencia casi uniforme.
A parte de estos tipos de convergencia, también estudiaremos la convergencia en Lp, 1 6 p 6 ∞ y la
convergencia en medida.
Así, una vez definidos estos conceptos, analizaremos las relaciones (y daremos una serie de contra-
ejemplos) entre las diversas formas de convergencias en el caso general y también bajo condiciones
adicionales (medida finita del espacio o dominación de la sucesión de partida).



Summary

Function spaces, in particular Lp spaces, play a central role in many questions in analysis. The special
importance of Lp spaces may be said to derive from the fact that they offer a partial but useful generali-
zation of the fundamental L2 space of square integrable functions.
In order of logical simplicity, the space L1 comes first since it occurs already in the description of fun-
ctions integrable in the Lebesgue sense. Connected to it via duality is the L∞ space of bounded functions,
whose supremum norm carries over from the more familiar space of continuous functions.

The purpose of this paper is to examine the different modes of convergence in a measurable space
and to develop the relations between them. This development is based in some simple facts concerning
the Lp spaces.
A brief sketch of the chapters follows:

1. The Lp spaces.

Let (X ,A ,µ) be a measure space. f : X → C a measurable function in X , 1 6 p < ∞. We define:

L p(µ) := { f : X −→ C measurable ;
∫

X | f |p dµ < ∞}

and:

‖ f‖p :=
(∫

X
| f |p dµ

)1/p

.

When p = 1 the space L 1(µ) consists of all integrable functions on X and ‖ f‖1 is a seminorm,
since it satisfies:

1. ‖ f‖1 ≥ 0, ∀ f ∈L 1(µ),

2. ‖α f‖1 =| α | ‖ f‖1, ∀α ∈ C, ∀ f ∈L 1(µ),

3. ‖ f +g‖1 6 ‖ f‖1 +‖g‖1, ∀ f ,g ∈L 1(µ).

The problem is that ‖ f‖1 = 0 does not imply that f = 0, but merely f = 0 µ almost everywhere, it
means: there exists a susbset M ∈A with µ(M) = 0 such as f (x) = 0 for all x ∈ X \M. Therefore, the
precise definition of a normed space requires introducing the equivalence relation, in which f and g are
equivalent if f = g µ a.e.

For this reason, we need to take the quotient space:

Let N = { f ∈L 1(µ); f = 0 µ−a.e.}. It is easy to prove that N is a subspace of L 1(µ). We denote:

L1(µ) = L 1(µ)/N.

Then, the map:

‖ f +N‖1 = ‖ f‖1 , f +N ∈ L1(µ)

v
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defined over every equivalence class is a norm. Then, L 1(µ) is a is a normed vector space and we will
use the notation L1(µ).

For 1 6 p < ∞ the proof of the triangle inequality relies on a generalized version of the Cauchy-
Schwarz inequality: this is Hölders inequality.

The Hölder and Minkowski inequalities

If the two exponents p and q satisfy 1 6 p,q 6 ∞, and the relation

1
p
+

1
q
= 1

holds, we say that p and q are conjugate or dual exponents. Here, we use the convention 1
∞
= 0. Note

that p = 1,∞ corresponds to q = ∞,1 respectively.

Hölder´s inequality:

Let (X ,A ,µ) be a measure space. Suppose that 1 6 p < ∞ and 1 6 q < ∞ are conjugate exponents.
If f ∈L p(µ) and g ∈L q(µ), then f g ∈L 1(µ) and:

‖ f g‖1 ≤ ‖ f‖p‖g‖q.

Using Hölder´s inequality, we can prove the triangle inequality in the Lp spaces:

Minkowski´s inequality:

Let (X ,A ,µ) be a measure space. If f ,g ∈L p(µ), p > 1, then f +g ∈L p(µ) and:

‖ f +g‖p 6 ‖ f‖p + ‖g‖p .

Then, ‖ ‖p is a seminorm and taking the quotient space in the same way as before, we get Lp(µ) as
a normed vector space, 1 6 p < ∞.

Completeness of Lp

Let (X ,A ,µ) be a measure space.

• fn is a Cauchy sequence in Lp(µ) if, given ε > 0, exists M(ε) > 0 such as if m,n > M(ε), then
‖ fm− fn‖p < ε .

• fn is a convergent sequence in Lp(µ) if, given ε > 0, exists M(ε) > 0 such as if n > M(ε), then
‖ fn− f‖p < ε .

The basic analytic fact is that Lp(µ), 1 6 p < ∞, is complete in the sense that every Cauchy se-
quence in the norm ‖ ‖p converges to an element in Lp(µ). A complete normed linear space is ususally
called a Banach space.
The importance of the completeness is that we are often just given a sequence fn, and we still need to
establish that fn converges to something. Proving that fn is a Cauchy sequence is one way to show that
the sequence converges, although we do not know in advance what it converges to.
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The case p = ∞

Let (X ,A ,µ) be a measure space, f : X → C a measurable function. The space L ∞(µ) will be defined
as all functions that are “essentially bounded” in the following sense:
We take the space L ∞(µ) to consist of all (equivalence classes of) measurable functions on X, so that
there exists a number α > 0 such that | f (x)|6 α µ a.e, i.e. µ(x ∈ X : | f (x)|> α) = 0.

Then, we define ‖ f‖
∞

to be the infimum of all possible values α satisfying the above inequality.
The quantity ‖ f‖

∞
is called the essential-supremum of f .

We define:

L ∞(µ) := { f : X −→ C measurable function ;‖ f‖
∞
< ∞}.

It is easy to prove that L ∞(µ) is a vector space and ‖ ‖
∞

is a seminorm. Taking the quotient space we
have L∞(µ) as a normed vector space.

2. Modes of Convergence.

Let (X ,A ,µ) be a measure space. We consider the vector space:

L0(µ) := { f : X → C; f measurable function},

and let ( fn), f ∈ L0(µ).

We will analize the following types of convergence:

• ( fn) converges uniformly to f if lim
n→∞

sup
x∈X
| fn(x)− f (x)|= 0.

• ( fn) converges in L∞(µ) to f if lim
n→∞
‖ fn− f‖

∞
= 0.

• ( fn) converges almost uniformly to f if for every ε > 0 there is a set Eε ∈A , with µ(Eε)6 ε ,
such as ( fn) converges uniformly to f on X \Eε .

• ( fn) converges almost everywhere (a.e) to f if there exists a set A ∈ X , with µ(A) = 0, such as
lim
n→∞

fn(x) = f (x), for every x ∈ X \A.

• ( fn) converges in Lp(µ) to f , 1 6 p < ∞, if lim
n→∞
‖ fn− f‖p = 0.

• ( fn) converges in measure to f if for every α > 0:

lim
n→∞

µ({x ∈ X : | fn(x)− f (x)| > α}) = 0.

The relationships between the various modes of convergence can be summarized in the diagram
below. A solid line means that convergence in the mode at the tail of the arrow implies convergence in
the mode at the head. A dashed line means that convergence in the mode at the tail of the arrow implies
the existence of a subsequence that converges in the mode at the head of the arrow.
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General measure spaces

The first diagram shows the general relationships between the different modes of convergence:

a.e

uni f . // L∞ // almost uni f . ++

OO

µoo

ff

Lp

99OO

Looking at the diagram, we realize that if ( fn) is a sequence which converges to a function g [c],
where [c] denotes any type of convergence, and ( fn) converges almost everywhere to a function f , then
we obtain that f = g a.e.
As a consequence, to study a limit we have to analize the limit almost everywhere, because if it exists it
must be that.
We will come now to one important theorem according to which convergence in measure implies Lp

convergence under certain additional conditions.

VITALI´S CONVERGENCE THEOREM. Let (X ,A ,µ) be a measure space and let ( fn) be a
sequence in Lp(µ) , 16 p<∞. Then, ( fn) converges to f in Lp(µ) if and only if the following conditions
are satisfied:

1. ( fn) converges in measure to f .

2. For each ε > 0 there exists a set Eε ∈A , with µ(Eε)< ∞, such that if F ∈A , and F ∩Eε = /0,
then: ∫

F
| fn|p dµ < ε

p , for every n ∈ N.

3. For each ε > 0 there exists δ (ε)> 0 such that if E ∈A and µ(E)< δ (ε), then:∫
E
| fn|p dµ < ε

p , for every n ∈ N.

This theorem is a generalization of the better-known dominated convergence theorem of Henri Le-
besgue and it is useful when a dominating function cannot be found for the sequence of functions in
question.

We will also give several counterexamples which show that the implications that do not appear in the
diagram are not satisfied.

Finite measure spaces

For finite measure spaces, almost everywhere and almost uniform convergence are equivalent. Con-
vergence in measure is the weakest form of convergence since it is implied by the other forms. The
following diagram summarizes the relationships between the different modes of convergence for finite
measure spaces:

a.e

��   
uni f . // L∞ //

&&

almost uni f . ++

OO

µoo

ff

Lp

99OO
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One fundamental result in finite measure spaces is:

EGOROFF´S THEOREM. Let (X ,A ,µ) be a measure space. We suppose that µ(X) < ∞ and let
( fn) be a sequence of measurable functions which converges almost everywhere to a measurable fun-
ction f . Then, ( fn) converges almost uniformly and in measure to f .

Dominated convergence

If the sequence fn is uniformly dominated by a function g ∈ Lp, then more relationships exist, as we
summarize in the diagram below:

uni f // L∞ // almost uni f . ,,

��



µ

��

oo

{{
a.e

KK

,,

77

Lpoo

cc KK

Note that the even though we do not require X to be a finite measure space, all the convergence rela-
tionships for finite measure spaces continue to hold.

In this setting, almost everywhere and almost uniform convergence are equivalent. Also, Lp conver-
gence and convergence in measure are equivalent.
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Capítulo 1

Espacios Lp

En este capítulo explicaremos diferentes conceptos y resultados necesarios para el estudio de los espa-
cios Lp. La mayoría de estos resultados han sido tomados de [Rudin], [Bartle] y [Guzmán, Rubio].

Definición 1.0.1. Sea (X ,A ,µ) un espacio de medida, f : X→C una función medible en X . Definimos:

L 1(µ) := { f : X −→ C medible ;
∫

X | f | dµ < ∞}, espacio vectorial sobre C,

y sea:

‖ f‖1 :=
∫

X
| f | dµ.

Notar que ‖ f‖1 es una semi-norma para f ∈L 1(µ), ya que satisface:

1. ‖ f‖1 ≥ 0, ∀ f ∈L 1(µ),

2. ‖ f‖1 = 0⇐⇒ f = 0 µ-a.e,

3. ‖α f‖1 =| α | ‖ f‖1, ∀α ∈ C, ∀ f ∈L 1(µ),

4. ‖ f +g‖1 6 ‖ f‖1 +‖g‖1, ∀ f ,g ∈L 1(µ).

Para conseguir una norma en lugar de una semi-norma, podemos pasar al espacio cociente. Si f = g
µ- a.e, entonces [ f ] = [g], donde [ f ] denota la clase de equivalencia determinada por f y consiste en el
conjunto de todas las funciones que son µ-equivalentes a f , es decir, las funciones que son iguales a f
µ-a.e.

Para obtener esto necesitamos introducir algunos conceptos:

Proposición 1.0.2. Sea E un espacio vectorial sobre C, y sea p : E −→ R+ una seminorma. Entonces
N = {x ∈ E, p(x) = 0} es un subespacio de E.

Demostración. Veamos que se cumplen las dos propiedades para ser un subespacio:

1. Sea α ∈K, x ∈ N. Utilizando la tercera propiedad de la semi-norma obtenemos que
p(αx) =| α | p(x) = 0, con lo que αx ∈ N.

2. Sean x,y ∈ N. Utilizando la desigualdad triangular: 0 ≤ p(x+ y) ≤ p(x)+ p(y) = 0, con lo que
x+ y ∈ N.

Por tanto N es un subespacio de E.

Así pues, tiene sentido considerar el espacio cociente E/N, definido como:
Si x̄ ∈ E/N, entonces x̄ = x+N = {y ∈ E; x− y ∈ N}.

1



2 Capítulo 1. Espacios Lp

Proposición 1.0.3. Sea E un espacio vectorial sobre K y p : E −→ R+ una seminorma. Entonces
p̄ : E/N −→ R+ definida por p̄(x̄) = p(x) es una norma en E/N.

Demostración. Veamos primero que la aplicación está bien definida: sean x,y ∈ x̄, es decir, x− y ∈ N.
Tenemos que probar que p(x) = p(y):
p(x) = p(x−y+y)6 p(x−y)+ p(y) = p(y), ya que x−y∈N. De la misma forma p(y) = p(y−x+x)≤
p(y− x)+ p(x) = p(x). Por tanto p(x) = p(y).

Ahora veamos que se cumplen las diferentes propiedades de la norma. Sea x̄ ∈ E/N, α ∈K:

1. p̄(x̄)≥ 0,

2. p̄(x̄) = 0⇐⇒ p(x) = 0⇐⇒ x ∈ N⇐⇒ x̄ = 0,

3. p̄(α x̄) = p(αx) =| α | p(x) =| α | p̄(x̄),

4. p̄(x̄+ ȳ) = p(x+ y)≤ p(x)+ p(y) = p̄(x̄)+ p̄(ȳ).

Así pues, concluímos que p̄ es una norma sobre E/N.

Volviendo al estudio del espacio L 1(µ), consideramos N = { f ∈L 1(µ); f = 0 µ-a.e} y denota-
mos:

L1(µ) = L 1(µ)/N.

Entonces, si f̄ ∈ L1(µ), utilizando la propisición anterior, obtenemos que:

‖ f̄‖1 = ‖ f‖1 =
∫

X | f | dµ .

Por convenio y en lo que sigue utilizaremos como notación f ∈ L1(µ) en lugar de f̄ ∈ L1(µ).

Ejemplos de espacios L1

1. Sea X = [0,1] , µ =medida de Lebesgue:

L1(µ) = { f : [0,1]−→ C medible ;
∫ 1

0 | f (x) | dx < ∞}.

Las tres primeras propiedades de la norma se cumplen trivialmente. Veamos que se verifica la
desigualdad triangular: sean f ,g ∈ L1(µ):∫ 1

0
| f (x)+g(x) | dx≤

∫ 1

0
| f (x) | dx+

∫ 1

0
| g(x) | dx.

2. Sea (X = N,A = P(N),µ =medida de contar) un espacio de medida:

L1(µ) = l1 := {x = {xn}∞
n=1 ⊆ C : ‖x‖1 :=

∞

∑
n=1
|xn|< ∞}.

Veamos que se cumplen las propiedades de la norma:

(a) ‖x‖1 = 0 sí y solo sí x = 0 se satisface trivialmente.

(b) ‖λx‖1 = |λ |‖x‖1, para cualquier x ∈ l1 , λ ∈ R:

‖λx‖1 =
∞

∑
n=1
|λxn|=

∞

∑
n=1
|λ | |xn|= |λ |

∞

∑
n=1
|xn|= |λ |‖x‖1 .
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(c) ‖x+ y‖1 ≤ ‖x‖1 +‖y‖1 , para cualesquiera x,y ∈ l1:

‖x+ y‖1 =
∞

∑
n=1
|xn + yn| ≤

∞

∑
n=1

( |xn|+ |yn|) =
∞

∑
n=1
|xn|+

∞

∑
n=1
|yn|= ‖x‖1 +‖y‖1 .

3. Sea (X = {1,2, . . . ,n},A = P(X),µ =medida de contar) un espacio de medida:

L1(µ) = ln
1 := {x = {xi}n

i=1 ∈ Cn : ‖x‖1 :=
n

∑
i=1
|xi|< ∞}= Cn.

NOTA. La norma más habitual en Cn es:

‖x‖2 :=

(
n

∑
i=1
|xi|2

) 1
2

, con x = (x1, . . . ,xn) ∈ Cn.

Consideramos ahora (X ,A ,µ) espacio de medida y sea el conjunto:

{ f : X → C medible;
(∫

X | f |2 dµ
) 1

2 < ∞}.

Por analogía a ‖·‖2 es probable que
(∫

X | f |2 dµ
) 1

2 sea una norma. Pasamos pues a una definición más
general:

Definición 1.0.4. Sea (X ,A ,µ) un espacio de medida, f : X→C una función medible en X , 16 p<∞.
Definimos:

L p(µ) := { f : X −→ C medible ;
∫

X | f |p dµ < ∞},

y sea:

‖ f‖p :=
(∫

X
| f |p dµ

) 1
p

.

Proposición 1.0.5. L p(µ) es un espacio vectorial.

Demostración. Veamos que se cumplen las dos propiedades:

• Si f ∈L p(µ) y α ∈ C es claro que α f ∈L p(µ) , ya que:∫
X
|α f |p dµ = |α|p

∫
X
| f |p dµ.

• Si f ,g ∈L p(µ) entonces f +g ∈L p(µ):
Consideramos los conjuntos A = {x ∈ X : | f (x)|> |g(x)|} y B = {x ∈ X : | f (x)|< |g(x)|}.
Entonces:∫

X
| f +g|p dµ =

∫
A
| f +g|p dµ +

∫
B
| f +g|p dµ 6

∫
A
|2 f |p dµ +

∫
B
|2g|p dµ 6

6 2p (‖ f p‖1 +‖g
p‖1)< ∞,

por lo que f +g ∈L p(µ).

Queda probado así que L p(µ) es un espacio vectorial.

A continuación, explicamos una serie de conceptos y resultados importantes que utilizaremos para
probar que ‖ f‖p = (

∫
X | f |p dµ)

1
p es una seminorma:
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Definición 1.0.6. En el intervalo [1,∞] se define una relación binaria simétrica de gran importancia:
que dos elementos p y q sean conjugados entre sí significa que:

1
p
+

1
q
= 1,

interpretando también como válida esta relación en el caso p = 1,q = ∞ o viceversa.
Los elementos p y q reciben el nombre de exponentes conjugados.

Una propiedad importante asociada a esta conjugación es la desigualdad de Hölder que explicaremos
más adelante y para la cuál necesitamos el siguiente resultado:

Lema 1.0.7. Sean A,B > 0 y p,q exponentes conjugados, con p > 1. Entonces se verifica:

AB 6
Ap

p
+

Bq

q
.

Demostración. Sea α un número real satisfaciendo 0 < α < 1 y consideramos la función ϕ definida
para t > 0 como:

ϕ(t) = αt− tα .

Es fácil de comprobar que ϕ ′(t)< 0 si 0 < t < 1 y ϕ ′(t)> 0 para t > 1, por lo que t = 1 corresponde a
un mínimo. Así pues, ϕ(t)≥ ϕ(1) y ϕ(t) = ϕ(1) sí y solo sí t = 1. Llegamos a que:

tα 6 αt +(1−α), para t > 0.

Tomamos ahora t =
a
b

, con a,b > 0, y multiplicamos por b, obteniendo así la desigualdad:

aαb1−α 6 αa+(1−α)b,

donde la igualdad se cumple sí y solo sí a = b.

Por tanto, si p y q son exponentes conjugados y α = 1/p, podemos considerar a = Ap y b = Bq, con
A,B > 0 , obteniendo entonces la desigualdad:

AB 6
Ap

p
+

Bq

q
,

que es lo que queríamos probar.

En los espacios L p la desigualdad triangular viene dada por la desigualdad de Minkowski que
probaremos en este apartado como consecuencia de la desigualdad de Hölder:

Desigualdad de Hölder

Sea (X ,A ,µ) un espacio de medida. Sean f ∈L p(µ) y g ∈L q(µ) , donde p > 1 y
(1/p)+(1/q) = 1. Entonces f g ∈L 1(µ) y ‖ f g‖1 ≤ ‖ f‖p‖g‖q.

Demostración. El caso p = 1 se cumple trivialmente, por lo que consideramos p > 1. Supongamos que
f ∈L p(µ) y g ∈L q(µ) . Si ‖ f‖p = 0 , entonces f = 0 µ-a.e, lo que implica que f g = 0 µ-a.e y en
consecuencia ‖ f g‖1 = 0. Análogamente si ‖g‖q = 0.

Supongamos pues que ‖ f‖p 6= 0 y ‖g‖q 6= 0 . Notar que como f ∈L p(µ) y g ∈L q(µ) se verifica
que | f (x)| < ∞ µ-a.e y |g(x)| < ∞ µ-a.e. El producto f g es medible y si tomamos en la desigualdad

anterior A =
| f (x)|
‖ f‖p

y B =
|g(x)|
‖g‖q

obtenemos que:

| f (x)g(x)|
‖ f‖p ‖g‖q

6
| f (x)|p

p ‖ f‖p
p
+
|g(x)|q

q ‖g‖q
q

µ-a.e.
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Los dos términos de la derecha son integrables, por lo que f g es integrable. Integrando la desigualdad
anterior:

‖ f g‖1
‖ f‖p ‖g‖q

6
1
p
+

1
q

= 1,

obteniendo así la desigualdad de Hölder.

Desigualdad de Minkowski

Sea (X ,A ,µ) un espacio de medida. Si f ,g ∈L p(µ), p > 1, entonces f +g ∈L p(µ) y:

‖ f +g‖p 6 ‖ f‖p + ‖g‖p .

Demostración. El caso p = 1 es trivial, así que supongamos p > 1. La suma f + g es evidentemente
medible y como:

| f +g|p 6 (2sup{| f | , |g|})p 6 2p{| f |p + |g|p},

obtenemos que f +g ∈L p(µ). Además:

| f +g|p = | f +g| | f +g|p−1 6 | f | | f +g|p−1 + |g| | f +g|p−1 . (1.1)

Teniendo en cuenta que f +g∈L p(µ) , se tiene que | f +g|p ∈L 1(µ) , y como p= (p−1)q, llegamos
a que | f +g|p−1 ∈L q(µ) . Por tanto podemos aplicar la desigualdad de Hölder, obteniendo así:

∫
X
| f | | f +g|p−1 dµ 6 ‖ f‖p

(∫
X
| f +g|(p−1)q dµ

)1/q

= ‖ f‖p ‖ f +g‖p/q
p .

De la misma forma: ∫
X
|g| | f +g|p−1 dµ 6 ‖g‖p ‖ f +g‖p/q

p .

Aplicando las dos últimas desigualdades en la ecuación (1.1) obtenemos que:

‖ f +g‖p
p 6 ‖ f‖p ‖ f +g‖p/q

p + ‖g‖p ‖ f +g‖p/q
p =

(
‖ f‖p +‖g‖p

)
‖ f +g‖p/q

p .

Si A = ‖ f +g‖p = 0, la desigualdad de Minkowski es trivial. Si A 6= 0, podemos dividir la última
desigualdad por Ap/q, y como p− p/q = 1 deducimos que:

‖ f +g‖p 6 ‖ f‖p + ‖g‖p

como queríamos probar.

Una vez verificada la desigualdad triangular tenemos que ‖ f‖p es una seminorma. Así, solo queda
pasar al espacio cociente para poder conseguir una norma en los espacios L p(µ). Utilizamos el mismo
procedimiento que antes:

Sea N = { f ∈L p(µ); f = 0 µ-a.e} y denotamos:

Lp(µ) = L p(µ)/N , 1 < p < ∞.

Lp(µ) es un espacio vectorial normado cuya norma viene dada por:

‖ f‖p = (
∫

X | f |p dµ)
1
p .
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Ejemplos de espacios Lp(µ)

Sea (X = N,A = P(N),µ =medida de contar) un espacio de medida:

1. lp = {x = {xn}∞
n=1 ⊆ C : ‖x‖p =

(
∞

∑
n=1
|xn|p

) 1
p

< ∞} , 1 6 p < ∞.

2. ln
p = {x ∈ Cn : ‖x‖p =

(
n

∑
i=1
|xi|p

) 1
p

< ∞} = Cn, 1 6 p < ∞.

El siguiente resultado, tomado de [Bartle], p.59, muestra la completitud de los espacios Lp:

Teorema 1.0.8. Sea (X ,A ,µ) un espacio de medida. Entonces Lp(µ), 1 6 p < ∞, es un espacio de
Banach.

Demostración. Ya ha sido demostrado anteriormente que Lp es un espacio vectorial normado. Pasamos
pues a probar su completitud. Sea ( f̄n) una sucesión de Cauchy relativa a la norma ‖ ‖p y sea ( fn)

representantes de ( f̄n). Por tanto, dado ε > 0, existe un M(ε) tal que si m,n > M(ε) se tiene que
‖ fm− fn‖p < ε , es decir: ∫

X
| fm− fn|p dµ = ‖ fm− fn‖p

p < ε
p.

Tomando ε = 2−k ,k∈N , podemos encontrar una subsucesión (gk) de ( fn) tal que ‖gk+1−gk‖p < 2−k.
Definimos g como:

g(x) = |g1(x)| +
∞

∑
k=1
|gk+1(x)−gk(x)| , (1.2)

por lo que g es medible. Aplicando el lema de Fatou (ver Anexo, Lema 0.13) obtenemos:

∫
X
|g|p dµ 6 lı́minf

n→∞

∫
X

(
|g1| +

n

∑
k=1
|gk+1−gk|

)p

dµ.

Tomamos la raíz p-ésima y aplicamos la desigualdad de Minkowski:(∫
X
|g|p dµ

)1/p

6 lı́minf
n→∞

(
‖g1‖p +

n

∑
k=1
‖gk+1−gk‖p

)
6 ‖g1‖p + 1.

Así pues, si E = {x ∈ X : g(x)<+∞}, entonces E ∈A y µ(X \E) = 0. Por tanto, las series en (1.2)
convergen en casi todo punto y gχE pertenece a Lp(µ).

Así podemos definir f como:

f (x) =


g1(x) +

∞

∑
k=1

(gk+1(x)−gk(x)) , si x ∈ E,

0, si x /∈ E.
Observar que f es medible y como la serie es telescópica, se tiene que f (x) = lı́m

n→∞
gn(x) , ∀x ∈ E.

Por otro lado, tenemos que |gk| 6 |g1|+
k−1

∑
j=1

∣∣g j+1−g j
∣∣ 6 g, lo que implica que |gk|p 6 gp.

Aplicando el Teorema de la Convergencia Dominada (ver Anexo, Teorema 0.14):∫
X

gp dµ > lı́m
k→∞

∫
X
|gk|p dµ =

∫
X

lı́m
k→∞

|gk|p dµ =
∫

X
| f |p dµ.
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Además, gp ∈ L1(µ) , es decir,
∫

X gp dµ < ∞ , de lo que deducimos que f ∈ Lp.

Veamos ahora que ( fn) converge a f en Lp(µ). Así, si m > M(ε) y k es suficientemente grande,
entonces: ∫

X
| fm−gk|p dµ < ε

p.

Por tanto, aplicando el Lema de Fatou, concluímos que:∫
X
| fm− f |p dµ 6 lı́minf

k→∞

∫
X
| fm−gk|p dµ 6 ε

p,

para cualquier m > M(ε). Queda así probado que la sucesión ( fn) converge a f en la norma de Lp.

Corolario 1.0.9. Si ( fn) converge a f en Lp(µ), entonces existe una subsucesión (gn) tal que (gn)
converge a f µ-a.e.

Demostración. Se deduce inmediatamente del teorema anterior.

1.1 Espacios L ∞

Definición 1.1.1. Sea (X ,A ,µ) un espacio de medida, f : X →C medible. Diremos que f es esencial-
mente acotada en X si existe α > 0 tal que | f (x)|6 α µ-a. e., es decir, µ(x ∈ X : | f (x)|> α) = 0.

El número α se llama cota superior esencial. Para estas funciones, el supremo esencial se define
como el ínfimo de las cotas esenciales y se denota también ‖ f‖

∞
, es decir, denotando como S el conjunto

de las cotas esenciales:

‖ f‖
∞

:= ı́nf S.

Como notación escribiremos que ‖ f‖
∞
= ∞ en el caso en que S = /0.

Proposición 1.1.2. Sea (X ,A ,µ) un espacio de medida, f : X→Cmedible y S 6= /0 . Entonces ‖ f‖
∞
∈ S

y por lo tanto | f (x)|6 ‖ f‖
∞

µ-a.e.

Demostración. Por la definición de ‖ f‖
∞

sabemos que ∀k ∈ N se verifica que ‖ f‖
∞
+ 1

k ∈ S, es decir:

| f (x)|6 ‖ f‖
∞
+

1
k

µ-a.e.

Por tanto, existe un conjunto Nk ∈A , con µ(Nk) = 0 , tal que | f (x)|6 ‖ f‖
∞
+

1
k

, ∀x ∈ X \Nk.

Tomando N =
∞⋃

k=1

Nk obtenemos que 0 6 µ(N) = µ(
∞⋃

k=1

Nk)6
∞

∑
k=1

µ(Nk) = 0, por lo que µ(N) = 0.

Así pues, para x ∈ X \N tenemos que | f (x)|6 ‖ f‖
∞
+

1
k

, ∀k ∈N. Tomando el límite cuando k tiende a
infinito, obtenemos que:

| f (x)|6 ‖ f‖
∞

, ∀x ∈ X \N,

de lo que deducimos que ‖ f‖
∞
∈ S. Así, ‖ f‖

∞
es la mínima cota esencial de f .

Definición 1.1.3. Definimos el espacio L ∞(µ) como:

L ∞(µ) := { f : X −→ C medible ; ‖ f‖
∞
< ∞}.

Proposición 1.1.4. ‖ ‖
∞

es una seminorma y L ∞(µ) es un espacio vectorial.
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Demostración. Vamos a comprobar primero que ‖ f‖
∞

es una seminorma. Para ello utilizaremos la
proposición anterior:

1. Sea f ∈L ∞(µ) : Es claro que ‖ f‖
∞
= ı́nfS > 0.

Por otro lado: ‖ f‖
∞
= 0 ⇔ | f (x)|6 0 µ-a.e⇔ f = 0 µ-a.e.

2. Sean f ,g ∈L ∞(µ) : | f (x)+g(x)| 6 | f (x)|+ |g(x)| 6 ‖ f‖
∞
+ ‖g‖

∞
µ-a.e. Esto quiere decir

que ‖ f‖
∞
+‖g‖

∞
es una cota esencial de | f (x)+g(x)|, por lo que ‖ f +g‖

∞
6 ‖ f‖

∞
+‖g‖

∞
.

Además, como f ,g ∈ L ∞(µ) es claro que ‖ f‖
∞
< ∞ y ‖g‖

∞
< ∞, de lo que se sigue que

‖ f +g‖
∞
< ∞, es decir, f +g ∈L ∞(µ).

3. Sea f ∈ L ∞(µ), α ∈ C \ {0} . Como |α f (x)| = |α| | f (x)| 6 |α|‖ f‖
∞

µ-a.e., tenemos que
‖α f‖

∞
6 |α| ‖ f‖

∞
.

Por otra parte, | f (x)| = 1
|α|
|α f (x)| 6 1

|α|
‖α f‖

∞
µ-a.e., por lo que ‖ f‖

∞
6

1
|α|
‖α f‖

∞
,

luego ‖α f‖
∞
> |α| ‖ f‖

∞
. Así, llegamos a que ‖α f‖

∞
= |α| ‖ f‖

∞
.

Además, como f ∈L ∞(µ) es claro que ‖ f‖
∞
< ∞ , lo que implica que ‖α f‖

∞
< ∞ , es decir,

α f ∈L ∞(µ).

Concluímos pues que L ∞(µ) es un espacio vectorial y ‖ ‖
∞

es una seminorma.

Una vez probado que ‖ ‖
∞

es una seminorma, pasamos al espacio cociente para poder conseguir una
norma en los espacios L ∞(µ). Utilizamos el mismo procedimiento que antes:

Sea N = { f ∈L ∞(µ); f = 0 µ-a.e} y denotamos:

L∞(µ) = L ∞(µ)/N.

L∞(µ) es un espacio vectorial normado cuya norma viene dada por:

‖ f‖∞ = ı́nfS,

donde S es el conjunto de las cotas esenciales.

Ejemplos de espacios L∞

Sea (X = N,A = P(N),µ =medida de contar) un espacio de medida:

l∞ = {x ∈ Cn : ‖x‖
∞

= sup{|xn| : n ∈ N}< ∞}.

Teorema 1.1.5. Sea (X ,A ,µ) un espacio de medida. (L∞,‖ ‖
∞
) es un espacio de Banach.

Demostración. Ya ha sido demostrado que L∞(µ) es un espacio vectorial normado. Pasamos pues a
probar su completitud. Sea ( f̄n) una sucesión de Cauchy relativa a la norma ‖ ‖

∞
y sea ( fn) representan-

tes de ( f̄n). Por tanto, dado ε > 0, existe un n0 ∈ N tal que si n,m > n0 se tiene que ‖ fn− fm‖∞
< ε .

Por otro lado, | fn(x)− fm(x)| 6 ‖ fn− fm‖∞
µ-a.e, luego existe un conjunto An,m con µ(An,m) = 0

tal que | fn(x)− fm(x)| 6 ‖ fn− fm‖∞
∀x ∈ X \An,m , por lo que tomando A =

⋃
m,n

Am,n es claro que

µ(A) = 0.
Notar que si x /∈ A se verifica que | fn(x)− fm(x)| 6 ‖ fn− fm‖∞

< ε, ∀n,m > n0 , lo que implica que
fn(x) es una sucesión de Cauchy en C. Así, como C es un espacio completo sabemos que fn(x) también
es una sucesión convergente en C, por lo que ∃ lı́m

n→∞
fn(x) = f (x).

Definimos por tanto f : X → C medible dada por:
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f (x) =


lı́m
n→∞

fn(x), si x ∈ X \A,

0, si x ∈ A.

Por tanto, si x /∈ A y n > n0 obtenemos:

| f (x)− fn(x)|=
∣∣∣ lı́m
m→∞

fm(x)− fn(x)
∣∣∣= lı́m

m→∞
| fm(x)− fn(x)| 6 lı́m

m→∞
‖ fm(x)− fn(x)‖∞

< ε.

Por tanto ε es cota esencial de f − fn ∀n > n0 , de modo que ‖ f − fn‖∞
< ε .

Así pues, f − fn ∈ L∞(µ), lo que implica que f ∈ L∞(µ) y fn converge a f en L∞(µ), probando así que
L∞(µ) es espacio de Banach.

Proposición 1.1.6. Si fn→ f en L∞(µ), entonces fn→ f µ-a.e.

Demostración. Supongamos que ( fn) converge a f en L∞(µ), es decir, lı́m
n→∞
‖ fn− f‖

∞
= 0.

Utilizando la proposición 1.2.2 se tiene que:

| fn(x)− f (x)|6 ‖ fn− f‖
∞

µ-a.e,

por lo que fn converge a f µ-a.e.

Proposición 1.1.7. Sea Ω un abierto de Rn y f : Ω→ C una función continua. Entonces:

f ∈ L∞(µ) ⇔ f acotada.

Además, ‖ f‖
∞
= sup{| f (x)| ,x ∈Ω}.

Demostración. Supongamos que f está acotada. Entonces M = sup{| f (x)| ,x ∈Ω}< ∞, lo que implica
que ‖ f‖

∞
6 M < ∞ , es decir, f ∈ L∞(µ).

Por otro lado, supongamos que f no está acotada y veamos que f /∈ L∞. Como f no está acotada
existe N ∈ N, x0 ∈ Ω tal que | f (x0)|> N. Además, f es continua, luego existe B(x0,ε) entorno de x0
tal que | f (x)|> N, ∀x ∈ B(x0,ε). Teniendo en cuenta que m(B(x0,ε))> 0 llegamos a que N no es cota
esencial de f . Por tanto f /∈ L∞.

Para terminar, supongamos que ‖ f‖
∞
� M = sup{| f (x)| ,x ∈ Ω}. Por la definición de supremo

existe x0 ∈Ω tal que ‖ f‖
∞
< | f (x0)|. Por continuidad sabemos que existe δ > 0 tal que ‖ f‖

∞
< | f (x)|,

∀x ∈ B(x0,δ ), por lo que ‖ f‖
∞

no es cota esencial, llegando a una contradicción. Así pues, concluímos
que ‖ f‖

∞
= sup{| f (x)| ,x ∈Ω}.

1.2 Relaciones entre espacios Lp

En esta sección analizaremos las relaciones de contenido que se dan entre los diferentes espacios estu-
diados a lo largo del capítulo:

Proposición 1.2.1. Sea (X ,A ,µ) un espacio de medida. Si µ(X)< ∞, 1 6 r 6 p 6 ∞, entonces:

L∞(µ)⊆ Lp(µ)⊆ Lr(µ)⊆ L1(µ).

Demostración. Sea f ∈ L∞(µ). Como ‖ f‖
∞

es la mínima cota esencial de f , resulta que:∫
X | f |

p dµ 6
∫

X ‖ f‖p
∞

dµ = µ(X)‖ f‖p
∞
< ∞,

por lo que f ∈ Lp(µ) y queda probado el primer contenido.

Supongamos ahora que f ∈ Lp(µ) y sea r tal que 1 6 r 6 p. Consideramos los conjuntos:
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A = {x ∈ X : | f (x)|6 1}, B = {x ∈ X : | f (x)|> 1}.

Obtenemos así:∫
X
| f |r dµ =

∫
A
| f |r dµ +

∫
B
| f |r dµ 6

∫
A

1 dµ +
∫

B
| f |p dµ 6 µ(A)+‖ f‖p

p < ∞,

lo que prueba que f ∈ Lr(µ).

Por último, supongamos que r < p. Entonces es claro que p/r > 1 y aplicando la desigualdad de
Hölder: ∫

X
| f (x)|r dµ 6

(∫
X
| f (x)|r

p
r dµ

) r
p
(∫

X
1

p
p−r dµ

) p−r
p

.

Por tanto, ‖ f‖r =

(∫
X
| f (x)|r dµ

) 1
r

6

(∫
X
| f (x)|p dµ

) 1
p

µ(X)
p−r
rp = ‖ f‖p µ(X)

p−r
rp .

Cuando p = ∞ se tiene, análogamente:

‖ f‖r
r =

∫
X
| f (x)|r dµ 6

∫
X
‖ f‖r

∞
dµ = µ(X)‖ f‖r

∞
.

Notar que en el caso µ(X) = 1 se tiene que ‖ f‖r 6 ‖ f‖p.

Ejemplos

Consideramos el espacio de medida (X = [0,1] ,A = B([0,1]),dx). Veamos algunos ejemplos en los
que el contenido es estricto entre los espacios Lp:

• L∞ & Lp:
Sea f (x) = logx. Es claro que f ∈ Lp(µ) y f /∈ L∞(µ).

• Lp & Lr, 1 6 r < p:
Sea f (x) = 1

x1/p . Es claro que f ∈ Lr(µ) y que f /∈ Lp(µ) ya que:∫ 1

0
| f (x)|r dµ =

∫ 1

0

1
xr/p dx < ∞,

∫ 1

0
| f (x)|p dµ =

∫ 1

0

1
x

dx = ∞.

Proposición 1.2.2. Sea (X ,A ,µ) un espacio de medida. Si 1 6 r 6 p 6 ∞, entonces:

l1 ⊆ lr ⊆ lp ⊆ l∞.

Demostración. Sea x = {xn}∞
n=1 ∈ lp. Entonces se verifica

∞

∑
n=1
|xn|p < ∞, lo que implica:

lı́m
n→∞
|xn|p = 0 ⇒ lı́m

n→∞
|xn|= 0.

Por tanto , como ‖x‖
∞
= sup{|xn| ,n ∈ N} es claro que x = {xn}∞

n=1 ∈ l∞ , es decir, lp ⊆ l∞.
Además, observar que para todo n ∈ N se tiene que:

|xn|= (|xn|p)
1
p 6

(
∞

∑
m=1
|xm|p

) 1
p

= ‖x‖p ,

lo que implica que ‖x‖
∞
= sup{|xn| ,n ∈ N}6 ‖x‖p.

Por otro lado, si 1 6 r 6 p:

‖x‖p
p =

∞

∑
n=1
|xn|p =

∞

∑
n=1
|xn|r |xn|p−r 6

∞

∑
n=1
|xn|r ‖x‖p−r

∞
= ‖x‖r

r ‖x‖
p−r
∞

6 ‖x‖r
r ‖x‖

p−r
r = ‖x‖p

r ,

por lo que lr ⊆ lp.
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1.3 Más propiedades de los espacios Lp

En esta sección demostraremos una serie de resultados importantes de los espacios Lp, que serán útiles
para el estudio de los tipos de convergencia en el siguiente capítulo.

Proposición 1.3.1. Sea (X ,A ,µ) un espacio de medida, f : X →C medible. Si f ∈ Lp(µ), 1 < p < ∞,
entonces el conjunto E = {x ∈ X : f (x) 6= 0} es σ - finito.

Demostración. Para cada n ∈ N , sea el conjunto En = {x ∈ X : | f (x)|> 1
n}. Entonces tenemos que:

{x ∈ X : f (x) 6= 0} = {x ∈ X : | f (x)|> 0} =
⋃

n∈N
En.

Ahora, para cada n ∈ N,
1
np µ(En) 6

∫
En

| f |p dµ 6
∫

X
| f |p dµ < ∞.

Por tanto, µ(En)< ∞ y {x ∈ X : f (x) 6= 0} es σ - finito.

Proposición 1.3.2. Sea (X ,A ,µ) un espacio de medida, f ∈ Lp(µ), 1 6 p 6 ∞ y sea
En = {x ∈ X ; | f (x)|> n}. Entonces se verifica:

lı́m
n→∞

µ(En) = 0.

Demostración. Para 1 6 p < ∞ , sea f ∈ Lp(µ). Notar que:∫
X
| f (x)|p dµ >

∫
En
| f (x)|p dµ >

∫
En

npdµ = np
µ(En).

Por tanto, obtenemos que 0 ≤ µ(En) ≤
1
np

∫
X
| f (x)|p dµ −−−→

n→∞
0.

Por otro lado, para p = ∞, sea f ∈ L∞(µ), es decir, ‖ f‖
∞
< ∞. Como f es esencialmente acotada se

verifica que µ(En) = 0, ∀n > n0.

Proposición 1.3.3. Sea (X ,A ,µ) un espacio de medida, f ∈ Lp, 1 6 p 6 ∞ y sea
En = {x ∈ X ; | f (x)|> n}. Entonces se verifica:

lı́m
n→∞

µ(En)np = 0.

Demostración. Sea f ∈ Lp, 1 6 p 6 ∞. Igual que antes:∫
X
| f (x)|p dµ >

∫
En
| f (x)|p dµ >

∫
En

npdµ = np
µ(En).

Sea ahora υ(E) =
∫

E
| f (x)|p dµ , ∀E ∈A . Como f ∈ Lp, es claro que υ(E) tiene medida finita.

Además,
∞⋂

n=1

En =
∞⋂

n=1

{x ∈ X ; | f (x)|> n}= {x ∈ X ; f = ∞}. Teniendo en cuenta que f < ∞ µ-a.e. por

estar en Lp(µ), obtenemos que µ

(
∞⋂

n=1

En

)
= 0. Así pues, utilizando la Proposición 0.9 del Anexo:

lı́m
n→∞

∫
En

| f (x)|p dµ = lı́m
n→∞

υ(En) = υ(
∞⋂

n=1

En) =
∫
⋂

∞
n=1 En

| f (x)|p dµ = 0.

Utilizando la primera desigualdad de la demostración obtenemos que lı́m
n→∞

µ(En)np = 0, como quería-
mos demostrar.

A continuación demostramos un resultado importante que establece la conexión entre la norma p de
una función f ∈ Lp y su respectiva función de distribución:
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Proposición 1.3.4. Sea (X ,A ,µ) un espacio de medida σ -finito y f ∈ Lp(µ) , 1 6 p < ∞ . Se define la
función de distribución de f como: w f (t) = µ{x ∈ X : | f (x)| > t} , donde t > 0 . Entonces se verifica
que: ∫

X
| f |p dµ =

∫
∞

0
pt p−1w f (t) dt.

Demostración. Para 1 6 p < ∞ y x ∈ X , aplicando el teorema de Fubini (ver Anexo, teorema 0.16), se
tiene que: ∫

∞

0
pt p−1w f (t) dt =

∫
∞

0
pt p−1

[∫
X

χ{x;| f (x)|>t}(x) dµ

]
dt = (Fubini) =

=
∫

X

[∫
∞

0
χ{x;| f (x)|>t}(x) pt p−1 dt

]
dµ =

∫
X

[∫
∞

0
χ[0,| f (x)|](t)pt p−1dt

]
dµ =

∫
X

[∫ | f (x)|
0

pt p−1dt
]

dµ =

=
∫

X
| f (x)|p dµ,

obteniendo así la igualdad del enunciado.

Pasamos a demostrar dos resultados que serán utilizados para demostrar el teorema de Vitali en el
siguiente capítulo.

Proposición 1.3.5. Sea (X ,A ,µ) un espacio de medida y sea f ∈ Lp(µ). Para cada ε > 0 existe un
conjunto Eε ∈A con µ(Eε)< ∞ tal que si F ∈A , y F ∩Eε = /0, entonces:∫

F
| f |p dµ < ε

p.

Demostración. Como f ∈ Lp(µ), es claro que | f |p ∈ L1(µ), por lo que podemos definir la siguiente
medida (ver Anexo, proposición 0.12):

β (E) =
∫

E
| f |p dµ, E ∈A .

Consideramos los conjuntos: Xk = {x ∈ X ; | f (x)|p >
1
k
}, k ∈ N\{0} ,X0 = {x ∈ X ; f (x) = 0}.

Se ve inmediatamente que X \X0 =
∞⋃

k=1

Xk y que Xk ⊆ Xk+1, para todo k ∈ N. Además:

µ(Xk) =
∫

Xk

1 dµ 6 k
∫

Xk

| f (x)|p dµ 6 k
∫

X
| f (x)|p dµ = k‖ f‖p

p < ∞.

Por otro lado, utilizando la Proposición 0.9 del Anexo: β (X) = β (X \X0) = β (
∞⋃

k=1

Xk) = lı́m
k→∞

β (Xk).

Tenemos que probar que β (F) =
∫

F
| f |p dµ < ε

p:

• Si β (X) = 0 es obvio que β (F) = 0 para todo F ⊆ X .

• Si β (X) 6= 0, tiene que ser β (X) > 0. Como β (X) = lı́m
k→∞

β (Xk) sabemos que existe k0 tal que

β (Xk0)> β (X)− ε p, es decir, β (X)−β (Xk0)< ε p.
Por tanto, hemos demostrado que dado ε > 0 existe Xk0 ∈A , con µ(Xk0)< ∞, tal que
β (X \ Xk0) < ε p. Así pues, si F ∈ A es tal que F ∩Xk0 = /0, se tiene que F ⊂ X \ Xk0 y, en
consecuencia, β (F)< β (X \Xk0)< ε p, como queríamos probar.

Proposición 1.3.6. Sea (X ,A ,µ) un espacio de medida y sea f ∈ L1(µ). Para cada ε > 0 existe
δ (ε)> 0, tal que si E ∈A y µ(E)< δ (ε), entonces:
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f dµ

∣∣∣∣ 6 ∫
E
| f | dµ < ε .

Demostración. Vamos a probarlo para diferentes tipos de funciones:

1. Sea A ∈A y supongamos que f = χA. Entonces:∫
E
| f | dµ = µ(E ∩A)6 µ(E)< δ .

Tomando δ = ε se tiene el resultado.

2. Sean Ai ∈A , i = 1, . . . ,n, y supongamos que f =
n

∑
i=1

ai χAi , ai > 0. Entonces:

∫
E
| f | dµ =

n

∑
i=1

ai µ(E ∩Ai)6
n

∑
i=1

ai µ(E)< δ

n

∑
i=1

ai.

Tomando δ = ε/
n

∑
i=1

ai se tiene el resultado.

3. Sea f una función integrable no negativa. Entonces, por el Teorema 0.11 del Anexo, existe una
sucesión de funciones simples medibles no negativas sn tal que para cada x ∈ X se tiene que:

0 6 s1(x)6 s2(x)6 . . .6 sn(x)6 f (x) y lı́m
n→∞

sn(x) = f (x).

Como f ∈ L1(µ), podemos aplicar el teorema de la convergencia dominada para obtener que

lı́m
n→∞

∫
X
( f − sn) dµ = 0. Por tanto, para todo ε > 0 existe n0 ∈ N tal que lı́m

n→∞

∫
X
( f − sn) dµ <

ε

2
,

para todo n > n0.
Además, por el apartado 2 sabemos que para sn0 existe δ > 0 tal que si µ(E) < δ , con E ∈ A ,

entonces
∫

E
sn0 dµ =

∫
E
|sn0 | dµ <

ε

2
. Así pues:

∫
E
| f | dµ =

∫
E

f dµ =
∫

E
f − sn0 dµ +

∫
E

sn0 dµ < 2
ε

2
= ε.

4. Sea f ∈ L1(µ). Entonces es claro que | f | ∈ L1(µ). Por el apartado 3 sabemos que para todo ε > 0

existe δ > 0 tal que si µ(E)< δ , para E ∈A , entonces
∫

E
| f | dµ < ε .

Queda probado entonces que para cualquier función perteneciente a L1(µ) se satisface la desigualdad
del enunciado.
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Capítulo 2

Tipos de convergencia

En este capítulo mencionaremos los tipos de convergencia de una sucesión de funciones medibles en un
espacio de medida (X ,A ,µ), y estudiaremos las relaciones entre los distintos modos de convergencia.
La mayor parte de los resultados que aparecen en este capítulo han sido tomados de [Bartle], [Munroe],
[Wheeden, Zygmund] y [Guzmán, Rubio].

2.1 Nociones básicas

Sea (X ,A ,µ) un espacio de medida. Consideramos el espacio vectorial:

L0(µ) = { f : X → C; f medible},

y sean ( fn) y f ∈ L0(µ).

Definición 2.1.1. La sucesión ( fn) converge uniformemente a f si para todo ε > 0 existe n0(ε) ∈ N
tal que si n > n0 y x ∈ X , entonces | fn(x)− f (x)| < ε .
Equivalentemente, ( fn) converge uniformemente a f si se verifica:

lı́m
n→∞

sup
x∈X
| fn(x)− f (x)|= 0.

Definición 2.1.2. Sean ( fn) y f tal que fn− f ∈ L∞(µ). Diremos que ( fn) converge en L∞(µ) a f si se
verifica que:

lı́m
n→∞
‖ fn− f‖

∞
= 0.

Por ejemplo, si consideramos fn(x) = x y f (x) = x en el espacio (R,dx), es obvio que ( fn) converge
a f en L∞.

Proposición 2.1.3. Sean fn, f : X → C funciones medibles. Entonces, lı́m
n→∞
‖ fn− f‖

∞
= 0 sí y solo sí

existe A ∈ X, con µ(A) = 0 tal que ( fn) converge a f uniformemente en X \A.

Demostración. Supongamos que lı́m
n→∞
‖ fn− f‖

∞
= 0. Por definición de ‖ ‖

∞
sabemos que existe An ∈X ,

con µ(An) = 0 , tal que | fn(x)− f (x)|6 ‖ fn(x)− f (x)‖
∞

, con x ∈ X \An.

Consideramos A =
∞⋃

n=1

An y es obvio que µ(A) = 0 . Por tanto, para todo n ∈ N se cumple que

sup
x ∈ X\A

| fn(x)− f (x)| 6 ‖ fn(x)− f (x)‖
∞

, y como lı́m
n→∞
‖ fn− f‖

∞
= 0 concluimos que ( fn) converge

uniformemente a f en X \A.

15
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Por otro lado, supongamos que existe A∈ X , con µ(A) = 0 tal que ( fn) converge a f uniformemente
en X \A, es decir, lı́m

n→∞
sup

x∈X\A
| fn(x)− f (x)|= 0. Además, | fn(x)− f (x)|6 sup

x∈X\A
| fn(x)− f (x)| µ-a.e, lue-

go sup
x∈X\A

| fn(x)− f (x)| es una cota esencial de | fn(x)− f (x)|. Por tanto, ‖ fn− f‖
∞
6 sup

x∈X\A
| fn(x)− f (x)|,

de lo que deducimos que lı́m
n→∞
‖ fn− f‖

∞
= 0.

Definición 2.1.4. La sucesión ( fn) converge casi uniformemente a f si para cada ε > 0 existe un con-
junto Eε ∈A , con µ(Eε)6 ε , tal que ( fn) converge uniformemente a f en X \Eε .

La sucesión ( fn) se dice que es una secuencia de Cauchy casi uniforme si para cada ε > 0 existe
un conjunto Eε ∈A , con µ(Eε)6 ε , tal que ( fn) es una sucesión de Cauchy uniforme en X \Eε .

Definición 2.1.5. La sucesión ( fn) converge en casi todo punto (a.e) a f si existe un conjunto A ∈ X ,
con µ(A) = 0, tal que lı́m

n→∞
fn(x) = f (x), para todo x ∈ X \A.

Es obvio que la convergencia uniforme implica la convergencia a.e.

Definición 2.1.6. Sean fn, f ∈ Lp(µ):
La sucesión ( fn) converge en Lp(µ) a f , 1 6 p < ∞, si se verifica que:

lı́m
n→∞
‖ fn− f‖p = 0.

En este caso, también podemos decir que la secuencia ( fn) converge a f en media (de orden p).

La sucesión ( fn) se dice de Cauchy en Lp(µ), si para todo ε > 0 existe n0 ∈ N tal que si m,n > n0,
entonces:

‖ fm− fn‖p < ε.

Se prueba fácilmente que si ( fn) converge a f en Lp(µ), entonces ( fn) es una sucesión de Cauchy
en Lp(µ).

Por último vamos a definir otro tipo de convergencia que es a menudo de interés:

Definición 2.1.7. La sucesión ( fn) se dice que converge en medida a f si para cada α > 0 se verifica:

lı́m
n→∞

µ({x ∈ X : | fn(x)− f (x)| > α}) = 0.

La sucesión ( fn) se dice de Cauchy en medida si para cada α > 0 existe n0 ∈N tal que si m,n > n0
se verifica:

µ({x ∈ X : | fm(x)− fn(x)| > α})< ε.

Cabe destacar que si ( fn) converge uniformemente a f , el conjunto {x ∈ X : | fn(x)− f (x)| > α}
es vacío para n suficientemente grande. Por tanto la convergencia uniforme implica la convergencia en
medida.

2.2 Relación entre los distintos modos de convergencia

Caso general

Pasamos a analizar las relaciones entre los tipos de convergencia:
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Teorema 2.2.1. Sea (X ,A ,µ) un espacio de medida. Entonces se cumple:

a.e

uni f . // L∞ // casi uni f . **

OO

µoo

ee

Lp

::OO

donde µ representa la convergencia en medida y 99K indica la convergencia de una subsucesión.

Demostración. Sean fn, f : X → C funciones medibles. Veamos que se cumplen las distintas implica-
ciones:

• uni f . // L∞ // casi uni f .
Se siguen inmediatamente de la proposición 2.1.3.

• casi uni f . // µ

Supongamos que ( fn) converge casi uniformemente a f , y sean α,ε > 0. Entonces existe un
conjunto Eε ∈A , con µ(Eε)< ε tal que ( fn) converge a f uniformemente en X \Eε . Por tanto, si
n es suficientemente grande, el conjunto {x ∈ X : | fn(x)− f (x)| > α} tiene que estar contenido
en Eε . Así pues:

µ({x ∈ X : | fn(x)− f (x)| > α}) 6 µ(Eε)< ε,

o lo que es lo mismo, ( fn) converge a f en medida.

• µ // casi uni f .
Supongamos ahora que ( fn) converge en medida a f . Entonces ( fn) es una sucesión de Cauchy
en medida y, por tanto, dado ε > 0, ∀k ∈ N, existe ( fnk) tal que:

µ{x ∈ X ;
∣∣ fnk+1(x)− fnk(x)

∣∣> 1
2k }<

ε

2k .

Consideramos el conjunto Ak = {x ∈ X ;
∣∣ fnk+1(x)− fnk(x)

∣∣> 1
2k }.

Puesto que fnk = fn1 +
k−1

∑
j=1

fn j+1 − fn j , se tiene que ( fnk) converge a.e. sí y solo sí
∞

∑
j=1

fn j+1 − fn j

converge a.e.

Por otro lado, notar que: µ

(
∞⋃

k=n

Ak

)
6

∞

∑
k=n

µ(Ak) 6
∞

∑
k=n

ε

2k =
ε

2n−1 −−−→n→∞
0.

Definimos ahora A =
∞⋂

n=1

∞⋃
k=n

Ak. Como {
∞⋃

k=n

Ak} es decreciente y µ

(
∞⋃

k=1

Ak

)
< ∞, tenemos que:

µ(A) = lı́m
n→∞

µ

(
∞⋃

k=n

Ak

)
= 0.

Además, si x /∈ A existe n0 ∈ N tal que x /∈
∞⋃

k=n0

Ak, por lo que x /∈ Ak para todo k > n0.

Así pues, si x /∈ A tenemos que
∣∣ fnk+1(x)− fnk(x)

∣∣ < 1
2k , para todo k > n0, lo que implica que
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∞

∑
j=1

∣∣ fn j+1(x)− fn j(x)
∣∣ converge absolutamente para todo x∈X \A y, por tanto,

∞

∑
j=1

fn j+1(x)− fn j(x)

converge µ−a.e.
Podemos definir entonces:

g(x) =


fn1(x)+

∞

∑
j=1

fn j+1(x)− fn j(x) = lı́m
k→∞

fnk(x), si x ∈ X \A,

0, si x ∈ A.

Así tenemos que lı́m
k→∞

fnk(x) = g(x) µ−a.e.

Veamos ahora que ( fnk) converge casi uniformemente a g, es decir, que
∞

∑
j=1

fn j+1(x)− fn j(x) con-

verge casi uniformemente. Definimos para ello el conjunto B =
∞⋃

k=1

Ak. Entonces:

µ(B) 6
∞

∑
k=1

µ(Ak) 6
∞

∑
k=1

ε

2k = ε.

Además, si x /∈ B tenemos que x /∈ Ak para todo k > 1, por lo que
∣∣ fnk+1(x)− fnk(x)

∣∣ 6 1
2k , para

todo k > 1 y para todo x /∈ B.

Por otro lado, como
∞

∑
k=1

1
2k <∞ podemos aplicar el criterio M de Weierstrass (ver [Conway], p.29)

para deducir que
∞

∑
k=1

fnk+1(x)− fnk(x) converge uniformemente en X \B.

Por tanto, hemos demostrado que si ( fn) es una sucesión de Cauchy en medida entonces existe una
subsucesión ( fnk)⊆ ( fn) y una función medible g tal que ( fnk) converge a g casi uniformemente.
Así pues, tenemos que:

– ( fn) converge a f en medida, lo que implica que ( fnk) converge a f en medida.

– ( fnk) converge a g casi uniformemente, lo que implica que ( fnk) converge a g en medida.

Así, para concluir solo tenemos que probar que f = g µ a.e.
Como ( fnk) converge a f y a g en medida se tiene que para todo ε > 0:

lı́m
k→∞

µ({x ∈ X : | fnk(x)− f (x)| > ε}) = 0 y lı́m
k→∞

µ({x ∈ X : | fnk(x)−g(x)| > ε}) = 0.

Por otro lado, | f (x)−g(x)|6 | f (x)− fnk(x)|+ | fnk(x)−g(x)|, luego si | f (x)−g(x)|> ε , entonces
tiene que ser | f (x)− fnk(x)|> ε/2 o | fnk(x)−g(x)|> ε/2 .
Por tanto:

{x ∈ X ; | f (x)−g(x)|> ε} ⊆ {x ∈ X ; | fnk(x)− f (x)|> ε

2
}
⋃
{x ∈ X ; | fnk(x)−g(x)|> ε

2
},

de lo que deducimos:

µ({x∈X ; | f (x)−g(x)|> ε})⊆ µ({x∈X ; | fnk(x)− f (x)|> ε

2
}) +µ({x∈X ; | fnk(x)−g(x)|> ε

2
}).

Es claro que los dos términos de la derecha tienden a 0 puesto que ( fnk) converge a f y a g en
medida. Así pues, para todo ε > 0 tenemos:

µ({x ∈ X : | f (x)−g(x)| > ε}) = 0,
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por lo que f = g µ a.e.

• Lp // µ , 1 6 p < ∞

Supongamos que ( fn) converge a f en Lp(µ) y consideramos el conjunto
En = {x ∈ X : | fn(x)− f (x)|> α}, α > 0. Entonces:∫

X
| fn− f |p dµ >

∫
En

| fn− f |p dµ > α
p

µ(En).

Como α > 0, se sigue que si lı́m
n→∞
‖ fn− f‖p = 0 , entonces lı́m

n→∞
µ(En)= 0, por lo que ( fn) converge

a f en medida.

• casi uni f . // a.e
Supongamos que ( fn) converge a f casi uniformemente en X . Entonces, si para todo k ∈N toma-
mos ε = 1

k , es claro que existe Ak, con µ(Ak)6
1
k , tal que:

lı́m
n→∞

sup
x ∈ X\ Ak

| fn(x)− f (x)|= 0.

Tomando A =
∞⋂

k=1

Ak obtenemos que µ(A)6 µ(Ak)6
1
k , ∀ k, lo que implica que µ(A) = 0.

Además, si consideramos x /∈ A, tiene que ser x /∈ Ak para algún k, y por lo tanto:

lı́m
n→∞

fn(x) = f (x),

por lo que ( fn) converge a f a.e.

A partir de estas implicaciones podemos deducir el resto:

• Como Lp // µ y µ // casi uni f . es claro que Lp // casi uni f .

• Como µ // casi uni f . y casi uni f . // a.e es claro que µ // a.e. .

• Como Lp // casi uni f . y casi uni f . // a.e es claro que Lp // a.e.

NOTA
Supongamos que ( fn) converge a g [c], donde [c] indica cualquier tipo de convergencia de las definidas
anteriormente, y que ( fn) converge a f a.e. Entonces obtenemos que f = g a.e.
En efecto, si ( fn) converge a g [c] , observando el diagrama de flechas vemos que existe una subsucesión
( fnk)⊆ ( fn) tal que ( fnk) converge a g a.e. Como ( fn) converge a f a.e. es claro que ( fnk) converge a f
a.e, de lo que deducimos que f = g a.e.
Como consecuencia, para estudiar un límite hay que mirar el límite en casi todo punto, porque de existir
tiene que ser ese.

Contraejemplos

A continuación vamos a estudiar diferentes contraejemplos que muestran que las implicaciones que no
aparecen en el diagrama no se dan:

1. uni f . 6−→ Lp

Consideramos la sucesión fn = n−1/p χ[0,n] definida en el espacio de medida (R,dx). Entonces
fn converge uniformemente a la función f = 0 , pero no converge en Lp(µ).
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Demostración. Es claro que fn converge uniformemente a f , ya que se verifica:

lı́m
n→∞

sup
x∈R
| fn(x)− f (x)|= lı́m

n→∞
sup
x∈R

∣∣∣n−1/p
χ[0,n](x)−0

∣∣∣= lı́m
n→∞

n−1/p = 0.

Veamos ahora que fn no converge en Lp(µ) a f :{∫
| fn− f |p dµ

}1/p

=

{∫
| n−1/p

χ[0,n] |p dµ

}1/p

=

{∫ n

0

1
n

dµ

}1/p

= 1 6→ 0.

Deducimos de esto que tampoco existe ninguna subsucesión ( fnk)⊆ ( fn) tal que fnk converge a 0
en Lp, por lo que uni f . 699K Lp.

2. casi unif. 6−→ L∞

Consideramos la sucesión fn = xn definida en el espacio de medida ([0,1),dx). Entonces fn

converge casi uniformemente a f = 0 , pero no converge en L∞.

Demostración. Es obvio que si x ∈ [0,1), lı́m
n→∞

fn(x) = 0. Además, sabemos que si fn converge a
f en L∞, entonces fn converge a f µ-a.e. Así pues, si fn converge en L∞ a alguna f , esta f tie-
ne que ser 0 µ-a.e, luego ‖ fn− f‖

∞
= 1 y lı́m

n→∞
‖ fn− f‖

∞
= 1 6= 0, por lo que fn no converge en L∞.

Veamos que hay convergencia casi uniforme: sea ε > 0 y Eε = (1− ε,1) . Entonces µ(Eε) = ε y
se verifica que:

sup
x ∈ [0,1)\Eε

| fn(x)−0|= sup
x ∈ [0,1−ε)

|xn| = (1− ε)n −−−→
n→∞

0,

por lo que fn converge casi uniformemente a 0 en [0,1) y queda probado que la convergencia casi
uniforme no implica la convergencia en L∞.

Además, como ‖ fn− f‖
∞
= 1, es evidente que tampoco existe ninguna subsucesión ( fnk)⊆ ( fn)

tal que fnk converge a 0 en L∞, de lo que deducimos que casi unif.699K L∞.

3. a.e. 6−→ L∞

Consideramos la sucesión fn = χ[n,n+1] definida en el espacio de medida (R,dx). Entonces fn

converge en casi todo punto a f = 0 pero no converge en L∞(µ).

Demostración. Es claro que fn converge en casi todo punto a f = 0 , ya que, por la propia defini-
ción de la función característica, fn vale 0 en casi todo punto salvo en los x ∈ [n,n+1] . Por otro
lado, ‖ fn− f‖

∞
=
∥∥χ[n,n+1]

∥∥
∞
= 1 6→ 0 , por lo que fn no converge a 0 en L∞(µ) y tampoco hay

ninguna subsucesión ( fnk)⊆ ( fn) que converja a 0 en L∞, es decir, a.e. 699K L∞.

Con esta misma sucesión también se prueba que a.e. 6−→ casi uni f .

4. µ 6−→ Lp

Consideramos la sucesión fn = nχ[0, 1
n ]

definida en el espacio de medida ([0,1],dx). Entonces fn

converge en medida a f = 0 pero no converge en Lp.

Demostración. Es claro que fn converge en medida a f , ya que, para cada α > 0 :

lı́m
n→∞

µ{x ∈ [0,1];
∣∣∣nχ[0, 1

n ]
(x)
∣∣∣ > α}= lı́m

n→∞
µ([0,

1
n
]) = 0.
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Veamos ahora que fn no converge a f en Lp :

‖ fn− f‖p =

(∫ 1

0
| nχ[0, 1

n ]
(x) |p dx

) 1
p

=

(∫ 1
n

0
np dx

) 1
p

= n1− 1
p

y lı́m
n→∞

n1− 1
p 6= 0, por lo que fn no converge a f en Lp.

5. a.e. 6−→ µ

Consideramos la sucesión fn = χ[n,∞) definida en el espacio de medida (R,dx). Entonces fn con-
verge a f = 0 a.e. pero no converge en medida.

Demostración. Es claro que fn converge a f a.e, ya que lı́m
n→∞

χ[n,∞) = 0.
Por otro lado, es inmediato ver que fn no converge a f en medida, ya que para 0 < α 6 1:

lı́m
n→∞

µ{x ∈ R;
∣∣χ[n,∞)(x)

∣∣ > α} = lı́m
n→∞

µ([n,∞)) = ∞.

Además, tampoco existe ninguna subsucesión ( fnk)⊆ ( fn) tal que fnk converge a 0 en medida, de
lo que deducimos que a.e. 699K µ .

6. casi uni f . 6−→ Lp

Consideramos la sucesión fn = nχ[0, 1
n ]

definida en el espacio de medida ([0,1],dx). Entonces fn

converge a f = 0 casi uniformemente pero no converge en Lp.

Demostración. Ya ha sido probado en el contraejemplo 4 que fn no converge a f en Lp. Veamos
que hay convergencia casi uniforme: sea ε > 0 y Eε = [0,ε] , es decir, µ(Eε) = ε . Notar que para

ε > 0 existe n0 ∈ N tal que
1
n0

< ε . Por tanto, es inmediato que:

sup
x ∈ [0,1]\Eε

| fn(x)−0|= sup
x ∈ (ε,1]

∣∣∣nχ[0, 1
n ]

∣∣∣−−−→
n→∞

0,

por lo que fn converge casi uniformemente a f .

7. Lp 6−→ a.e.
Sea el espacio de medida ([0,1],dx). La sucesión:
f1 = χ[0, 1

2 ]
, f2 = χ[ 1

2 ,1]
, f3 = χ[0, 1

4 ]
, f4 = χ[ 1

4 ,
2
4 ]
, f5 = χ[ 2

4 ,
3
4 ]
, f6 = χ[ 3

4 ,1]
, f7 = χ[0, 1

8 ]
, . . . , converge

en Lp a f = 0 pero no converge a.e.

Demostración. La convergencia en Lp se deduce inmediatamente.
Por otro lado, fn es una sucesión de funciones que va tomando los valores 0 y 1 dependiendo del
intervalo en el que estemos, por lo que para todo x ∈ [0,1] es obvio que no existe lı́m

n→∞
fn(x) y, en

consecuencia, fn no converge a f a.e.

Consecuencias:

• Lp 6−→ a.e, µ 6−→ a.e, Lp 6−→ casi unif. y µ 6−→ casi unif.
Se deducen inmediatamente del contraejemplo 7. En efecto, fn converge en Lp a 0, lo que implica
que hay convergencia en medida. Por otro lado, como fn no converge a 0 a.e. tampoco converge
casi uniformemente.
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• a.e. 6−→ casi unif. y a.e. 699K Lp

Se deduce de lo visto anteriormente.

Vamos a explicar un teorema a continuación según el cual, a partir de ciertas condiciones adiciona-
les, podemos probar que la convergencia en medida implica la convergencia en Lp (ver [Bartle], p.76).

Teorema 2.2.2 (Teorema de la convergencia de Vitali). Sea (X ,A ,µ) un espacio de medida y sea
( fn) una sucesión en Lp(µ) , 1 6 p < ∞. Entonces ( fn) converge a f en Lp(µ) sí y solo sí se satisfacen
las siguientes condiciones:

1. ( fn) converge en medida a f .

2. Para cada ε > 0 existe un conjunto Eε ∈ A con µ(Eε) < ∞ tal que si F ∈ A , y F ∩Eε = /0,
entonces:

∫
F
| fn|p dµ < ε

p , para todo n ∈ N.

3. Para cada ε > 0 existe δ (ε)> 0, tal que si E ∈A y µ(E)< δ (ε), entonces:

∫
E
| fn|p dµ < ε

p , para todo n ∈ N.

Demostración. ⇒) Supongamos que ( fn) converge a f en Lp(µ). Veamos que se cumplen las tres
propiedades:

1. Ya ha sido probado anteriormente que la convergencia en Lp implica la convergencia en medida.

2. Sea E ∈A . Consideramos las medidas:

β (E) =
∫

E
| f |p dµ, βn(E) =

∫
E
| fn|p dµ, n ∈ N.

Teniendo en cuenta que
∣∣∣‖ fn‖p−‖ f‖p

∣∣∣ 6 ‖ fn− f‖p, si ( fn) converge a f en Lp, es claro que
lı́m
n→∞
‖ fn‖p = ‖ f‖p, lo que implica que lı́m

n→∞
βn(X) = β (X).

Lo mismo ocurre para cualquier conjunto E ∈A : lı́m
n→∞

βn(E) = β (E), ya que si ( fn) converge a
f en Lp, también se satisface que fnχE converge a f χE en Lp.

Por la Proposición 1.3.5. del capítulo 1, sabemos que dado ε > 0, existe un conjunto Aε ∈ A ,
con µ(Aε) < ∞ tal que β (X \Aε) < (ε/2)p. Aplicando este razonamiento, para n = 1,2, . . . ,n0,
sabemos que existe Bn,ε , con µ(Bn,ε)< ∞, tal que βn(X \Bn,ε)< ε p.

Definimos entonces Bε =
n0⋃

n=1

Bn,ε , y obtenemos que µ(Bε) = µ(
n0⋃

n=1

Bn,ε)6
n0

∑
n=1

µ(Bn,ε)<∞. Ade-

más, βn(X \Bε)6 βn(X \Bn,ε)< ε p.

Tomamos ahora Eε = Aε ∪Bε y es obvio que µ(Eε)6 µ(Aε)+µ(Bε)< ∞. Además:

• Para n = 1,2, . . . ,n0:

βn(X \Eε)=
∫

X\Eε

| fn|p dµ =
∫
(X\Aε ) ∩ (X\Bε )

| fn|p dµ 6
∫

X\Bε

| fn|p dµ = βn(X \Bε)< ε
p.
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• Para n > n0:
βn(X \Eε)6

∫
X\Aε

| fn|p dµ.

Por otro lado, como ( fn) converge a f en Lp, existe n0 ∈N tal que ‖ fn− f‖p <
ε

2 , para todo
n > n0. Así pues:(∫

X\Aε

| fn|p dµ

) 1
p

6

(∫
X\Aε

| fn− f |p dµ

) 1
p

+

(∫
X\Aε

| f |p dµ

) 1
p

6

6 ‖ fn− f‖p +(β (X \Aε))
1
p <

ε

2
+

ε

2
= ε.

Por tanto, βn(X \Eε)< ε p, para n > n0.

Deducimos entonces que βn(X \Eε)< ε p para todo n ∈ N. Así, si F ∈A es tal que F ∩Eε = /0,
tiene que ser F ⊆ X \Eε , por lo que βn(F)6 βn(X \Eε)< ε p, como queríamos demostrar.

3. Como ( fn) converge a f en Lp, existe n0 ∈ N tal que ‖ fn− f‖p <
ε

2 , para todo n > n0.

Por la Proposición 1.3.6. del capítulo 1, sabemos que dado ε > 0 existe δ0 tal que si µ(E) < δ0,

con E ∈A , se verifica que
∫

E
| f |p dµ < (ε/2)p . De la misma forma, para n = 1, . . . ,n0, existe

δn tal que si µ(E)< δn, con E ∈A , se verifica que
∫

E
| fn|p dµ < ε

p.

Consideramos δ = mı́n{δ0,δ1, . . . ,δn0} y tenemos que:

• Si E ∈ A es tal que µ(E) < δ , entonces es obvio que µ(E) < δn, para todo n = 1, . . . ,n0.
Por tanto: ∫

E
| fn|p dµ < ε

p, n = 1, . . . ,n0.

• Si n > n0 se verifica que:(∫
E
| fn|p dµ

)1/p

6

(∫
E
| fn− f |p dµ

)1/p

+

(∫
E
| f |p dµ

)1/p

6
ε

2
+

ε

2
= ε,

por lo que
∫

E
| fn|p dµ < ε

p, para todo n > n0.

Concluímos entonces que
∫

E
| fn|p dµ < ε

p para todo n ∈ N, como queríamos probar.

⇐) Supongamos ahora que se satisfacen las tres propiedades. Vamos a ver que ( fn) converge a f en
Lp(µ):
Sea ε > 0. Por el apartado (2) sabemos que existe Eε , con µ(Eε)< ∞, tal que si F ∈A , y F ∩Eε = /0,
entonces: ∫

F
| fn|p dµ < ε

p , para todo n ∈ N.

Consideramos pues F = X \Eε y aplicamos la Desigualdad de Minkowski a fn− fm = ( fn− fm)χEε
+

fnχF − fmχF , obteniendo que:

‖ fn− fm‖p 6

{∫
Eε

| fn− fm|p dµ

}1/p

+ 2ε, (2.1)

para n,m ∈ N . Sea ahora α = ε[µ(Eε)]
−1/p y Hnm = {x ∈ Eε : | fn(x)− fm(x)| > α} . En vista de la

tercera condición sabemos que para cada ε > 0 existe δ (ε)> 0, tal que si Hnm ∈A y µ(Hnm)< δ (ε),
entonces:
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∫
Hnm

| fn|p dµ < ε
p , para todo n ∈ N.

Además, como ( fn) converge en medida a f sabemos que ( fn) es una sucesión de Cauchy en medida,
luego existe K(ε) tal que si n,m > K(ε) , entonces µ(Hnm)< δ (ε). Aplicando otra vez la Desigualdad
de Minkowski junto con la condición (3), obtenemos:{∫

Eε

| fn− fm|p dµ

}1/p

6

{∫
Eε\Hnm

| fn− fm|p dµ

}1/p

+

{∫
Hnm

| fn|p dµ

}1/p

+

{∫
Hnm

| fm|p dµ

}1/p

6

6 α[µ(Eε)]
1/p + ε + ε = 3ε,

cuando n,m > K(ε) . Combinando esto con la ecuación (2.1) deducimos que ( fn) es una sucesión de
Cauchy y por tanto es convergente en Lp. Como ( fn) converge en medida a f , se sigue por unicidad
que ( fn) converge a f en Lp.

Caso finito

Antes de analizar las relaciones entre los distintos modos de convergencia, vamos a explicar un resultado
relevante en el caso finito, tomado de [Bartle], p.74.

Teorema 2.2.3 (Teorema de Egoroff). Sea (X ,A ,µ) un espacio de medida. Supongamos que
µ(X) < ∞ y que ( fn) es una sucesión de funciones medibles que converge en casi todo punto a una
función f medible. Entonces ( fn) converge casi uniformemente y en medida a f .

Demostración. Supongamos sin pérdida de generalidad que ( fn) converge a f en todo punto de X y
consideramos el conjunto:

En(m) =
∞⋃

k=n

{
x ∈ X : | fk(x)− f (x)| > 1

m

}
,

con n,m∈N. Es claro que En(m)∈A y que En+1(m)⊆En(m). Como lı́m
n→∞

fn(x) = f (x) para todo x∈X ,
se sigue que:

{x ∈ X ; lı́m
k→∞

fk(x) = f (x)} ⊂
∞⋃

n=1

(X \En(m)) = X \
∞⋂

n=1

En(m),

por lo que
∞⋂

n=1

En(m) = /0.

Por otro lado, como µ(X)< ∞, obtenemos que lı́m
n→∞

µ(En(m)) = 0. Si ε > 0, tomamos km de forma que

µ(Ekm(m))< ε/2m y Eε =
∞⋃

m=1

Ekm(m). Así pues, es claro que Eε ∈A y µ(Eε)< ε . Además, si x /∈ Eε ,

entonces x /∈ Ekm(m), por lo que:

| fk(x)− f (x)| < 1
m
,

para todo k > km. Deducimos pues que ( fk) es uniformemente convergente en X \Eε , lo que implica
que ( fn) converge casi uniformemente a f y, por tanto, también converge en medida.

Teorema 2.2.4. Sea (X ,A ,µ) un espacio de medida y supongamos que µ(X)<∞. Entonces se cumple:

a.e

�� ��
uni f . // L∞ //

%%

casi uni f . **

OO

µoo

ee

Lp

::OO
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Demostración. Sean fn, f : X → C funciones medibles. La mayoría de las implicaciones han sido estu-
diadas en el caso general. Como ahora tenemos que µ(X)< ∞, aparecen tres nuevos casos que pasamos
a demostrar:

• a.e // casi uni f . y, por lo tanto, a.e // µ

Se siguen del teorema de Egoroff.

• L∞ // Lp , 1 6 p < ∞

Se sigue inmediatamente de la desigualdad ‖ f‖p 6 µ(X)‖ f‖
∞

, vista en el capítulo 1.

Contraejemplos

1. a.e 6−→ unif.
Consideramos la sucesión fn(x) = xn definida en el espacio de medida ([0,1],dx). fn converge
a.e. a f = 0 pero no converge uniformemente.

Demostración. La convergencia a.e. es evidente, ya que lı́m
n→∞

xn = 0 para todo x ∈ [0,1).

Por otro lado, lı́m
n→∞

sup
x∈[0,1]

| fn(x)− f (x)| = lı́m
n→∞

sup
x∈[0,1]

|xn| = lı́m
n→∞

1 = 1, por lo que fn no converge

uniformemente a f = 0.

2. µ 6−→ unif.
Consideramos la sucesión fn(x) = xn definida en el espacio de medida ([0,1],dx). fn converge en
medida a f = 0 pero no converge uniformemente.

Demostración. La convergencia en medida es evidente, ya que para α > 0 se tiene que
lı́m
n→∞

µ ({x ∈ [0,1]; | fn(x)− f (x)|> α}) = lı́m
n→∞

µ ({x ∈ [0,1]; |xn|> α}) = 0.
Que fn no converge uniformemente a f ya ha sido probado en el anterior apartado.

Caso dominado

Vamos a estudiar la relación entre los distintos tipos de convergencia cuando la sucesión en cuestión
está dominada por una función del espacio Lp.

Teorema 2.2.5. Sea (X ,A ,µ) un espacio de medida y supongamos que la sucesión ( fn) está dominada
por una función g en Lp, 1 6 p < ∞. Entonces se verifica:

uni f // L∞ // casi uni f . ++

��



µ

��

oo

||
a.e

KK

++

77

Lpoo

bb KK

Demostración. Sean fn, f : X → C funciones medibles. Veamos que se cumplen las distintas implica-
ciones:
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• a.e // casi uni f . y, por lo tanto, a.e // µ

Para probar este resultado utilizaremos las mismas ideas de la demostración del teorema de Ego-
roff. Supongamos que ( fn) converge a f en casi todo punto, verificando que | fn| 6 g, con g una
función integrable. Consideramos el conjunto:

En(m) =
∞⋃

k=n

{
x ∈ X : | fk(x)− f (x)| > 1

m

}
.

Solo tenemos que probar que lı́m
n→∞

µ(En(m)) = 0. Como ( fn) converge a f a.e, se sigue que para
cada m:

{x ∈ X ; lı́m
k→∞

fk(x) = f (x)} ⊂
∞⋃

n=1

(X \En(m)) = X \
∞⋂

n=1

En(m).

Por tanto, µ(
∞⋂

n=1

En(m)) = 0. Como En+1(m)⊂ En(m), solo necesitamos probar que

µ(En(m))< ∞ para algún n, ya que en ese caso lı́m
n→∞

µ(En(m)) = µ(
∞⋂

n=1

En(m)) = 0.

Por la hipótesis del enunciado es claro que | f |6 g a.e, por lo que para cada k se verifica que
| fk− f |6 2g a.e. Así pues:

En(m) =
∞⋃

k=n

{
x ∈ X : | fk(x)− f (x)| > 1

m

}
⊂
{

x ∈ X : g(x) >
1

2m

}⋃
A,

donde µ(A) = 0. Como g es integrable se sigue que µ(En(m)) < ∞ y así podemos concluir que
( fn) converge casi uniformemente y en medida a f .

• a.e // Lp

Se sigue del Teorema 0.15 del Anexo.

• µ // Lp

Supongamos que ( fn) converge en medida a f . Entonces existe una subsucesión ( fnk) ⊆ ( fn) tal
que ( fnk) converge a f a.e. Como | fn| 6 g a.e , es claro que | fnk | 6 g a.e. y, por tanto, | f | 6 g
a.e. Así pues, obtenemos que | fn− f | 6 2g a.e. y, como g ∈ Lp, deducimos que fn− f ∈ Lp.
En el capítulo 1 habíamos demostrado que , si f ∈ Lp:

‖ f‖p
p =

∫
∞

0
pt p−1

µ{x ∈ X : | f (x)|> t} dt.

Por tanto:
lı́m
n→∞
‖ fn− f‖p

p = lı́m
n→∞

∫
∞

0
pt p−1

µ{x ∈ X : | fn(x)− f (x)|> t} dt.

Veamos si podemos meter el límite dentro:

hn(t) = pt p−1µ{x ∈ X : | fn(x)− f (x)|> t} 6 pt p−1µ{x ∈ X : 2g(x)> t} = h(t) , t ∈ (0,∞).

Notar que
∫

∞

0
h(t)dt = ‖2g‖p

p < ∞, es decir, h ∈ L1(0,∞). Por tanto, podemos aplicar el teorema

de la convergencia dominada:

lı́m
n→∞
‖ fn− f‖p

p =
∫

∞

0
pt p−1 lı́m

n→∞
µ{x ∈ X : | fn(x)− f (x)|> t} dt.

Como ( fn) converge a f en medida es claro que lı́m
n→∞

µ{x ∈ X : | fn(x)− f (x)| > t} = 0, luego

lı́m
n→∞
‖ fn− f‖p

p = 0, es decir, ( fn) converge a f en Lp.

• casi uni f . // Lp

Como casi uni f . // a.e. y a.e. // Lp es claro que casi uni f . // Lp .



Anexo

Aquí explicamos algunos de los conceptos que han sido utilizados a lo largo del trabajo y que son de
vital importancia a la hora de comprender la materia. La mayoría de ellos han sido tomados de [Royden].

Definición 0.1. Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o
K-espacio vectorial, si en él se han definido dos operaciones, una interna y otra externa, llamadas res-
pectivamente suma y producto por un escalar que pasamos a describir.

La suma de dos elementos (o vectores) u,v ∈V da lugar a otro elemento de V , que denotamos u+v,
cuyas propiedades(ya conocidas) son:

• Asociativa: u+(v+w) = (u+ v)+w , ∀u,v,w ∈V ;

• Conmutativa: u+ v = v+u , ∀u,v ∈V ;

• Elemento neutro: existe e ∈V tal que e+ v = v+ e = v , ∀v ∈V ;

• Elemento opuesto: para cada v ∈V existe w tal que v+w = w+ v = e.

El producto de un escalar, o elemento del cuerpo K, por un vector da lugar a otro elemento de V , y
tiene las propiedades:

• a(u+ v) = au+av, ∀a ∈K, ∀u,v ∈V ,

• (a+b)u = au+bu, ∀a,b ∈K, ∀u ∈V ,

• a(bu) = (ab)u, ∀a,b ∈K, ∀u ∈V ,

• 1u = u, ∀u ∈V , donde 1 es la unidad para el producto en K.

Definición 0.2. Un espacio vectorial normado es un espacio vectorial V sobre un cuerpo K junto con
una norma ‖ · ‖ : V → R que satisface las siguientes propiedades:

1. ‖v‖ ≥ 0, ∀v ∈V ,

2. ‖v‖= 0 sí y solo sí v = 0,

3. ‖αv‖=| α | ‖v‖, ∀v ∈V y α ∈K,

4. ‖u+ v‖ ≤ ‖u‖+‖v‖, ∀u,v ∈V .

Diremos que ‖ · ‖ es una semi-norma para V cuando se cumplen todas las propiedades salvo la
segunda.

Definición 0.3. Sea (V,‖ · ‖) un espacio vectorial normado. La aplicación d : V x V → R dada por
d(u,v) = ‖u− v‖ se conoce como función distancia o métrica asociada a la norma ‖ · ‖ , y de las
propiedades de ésta se verifica que ∀u,v,w ∈V :

1. d(u,v)≥ 0,
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2. d(u,v) = 0 sí y solo sí u = v,

3. Es simétrica: d(u,v) = ‖u− v‖= ‖(−1)(v−u)‖= |−1|‖v−u‖= ‖v−u‖= d(v,u) ,

4. Satisface la desigualdad triangular: d(u,v) = ‖u− v‖= ‖u−w+w− v‖ ≤ ‖u−w‖+‖w− v‖=
d(u,w)+d(w,v).

Cualquier conjunto con una función distancia d satisfaciendo las cuatro propiedades recibe el nombre
de espacio métrico con métrica d.

Una vez mencionada la función distancia, y para poder hablar de espacios de Banach, definimos los
siguientes conceptos:

Definición 0.4. Sea (E,d) un espacio métrico. Una sucesión (an)⊂ E es de Cauchy si dado ε > 0 existe
n0 ∈ N tal que d(an,am)< ε , ∀n,m≥ n0.
Una sucesión (an)⊂ E es convergente si dado ε > 0 existe n0 ∈ N tal que d(a,an)< ε , ∀n≥ n0

Definición 0.5. Un conjunto E se dice espacio de Banach sobre los números complejos si se cumplen
las siguientes propiedades:

• E es un espacio vectorial,

• E es un espacio normado,

• E es completo con respecto a su norma, es decir, toda sucesión de Cauchy es convergente.

Ejemplos

Algunos ejemplos de espacios de Banach son:

1. (R, |·|),

2. (C, |·|),

3. (Rn,‖·‖1) , donde ‖x‖1 = |x1|+ . . .+ |xn| , con x = (x1, . . . ,xn) ∈ Rn,

4. (Rn,‖·‖2) , donde ‖x‖2 = (x2
1 + . . .+ x2

n)
1/2 , con x = (x1, . . . ,xn) ∈ Rn.

Definición 0.6. Un espacio de medida es una terna (X ,A ,µ) donde X es un conjunto, A es una
σ -álgebra sobre X , es decir:

1. X ∈A ,

2. Si Ek ∈A para k = 1,2, . . ., entonces
k=∞⋃
k=1

Ek ∈A ,

3. Si P ∈A , entonces Pc = X \P ∈A .

y µ : A −→ [0,∞] es una aplicación (llamada medida) que tiene las propiedades:

1. µ( /0) = 0,

2. µ es completamente aditiva, es decir, para cada sucesión {Ek} de elementos de A tal que
Ei
⋂

E j = /0 si i 6= j, se verifica:

µ(
k=∞⋃
k=1

Ek) =
∞

∑
k=1

µ(Ek).

Los elementos de A se denominan conjuntos medibles.

Definición 0.7. Sea (X ,A ,µ) un espacio de medida. Diremos que X es un conjunto σ - finito si es la
unión contable de conjuntos medibles de medida finita.
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Propiedad µ-a.e

Dado un espacio de medida (X ,A ,µ), diremos que una cierta propiedad referida a los puntos de X es
cierta µ-en casi todo punto (µ-a.e) si existe un subconjunto N ∈A , con µ(N) = 0 tal que la propiedad
es cierta en X \N.
Por ejemplo, para dos funciones f ,g, si f = g µ-a.e significa que existe un subconjunto N ∈ A con
µ(N) = 0 tal que f (x) = g(x) al menos para todo x ∈ X \N.

Definición 0.8. Sea (X ,A ,µ) un espacio de medida, f : X→C. Diremos que f es una función medible
si f−1(G) es un conjunto medible para cada abierto G de X .

Pasamos ahora a probar una serie de resultados utilizados a lo largo del trabajo:

Proposición 0.9. Sea (X ,A ,µ) un espacio de medida. Se verifican las siguientes propiedades:

• Si E1,E2, . . . ,EN es una sucesión finita de conjuntos medibles disjuntos entre sí:

µ(
N⋃

n=1

En) =
N

∑
n=1

µ(En).

• Si En ∈ A es una sucesión no decreciente de conjuntos medibles, de modo que En ⊆ En+1 para
todo n ∈ N, se tiene:

µ

(
∞⋃

n=1

En

)
= lı́m

n→∞
µ(En).

• Si En ∈A es una sucesión no creciente de conjuntos medibles, de modo que En+1 ⊆ En para todo
n ∈ N, siempre que µ(E1)< ∞, se tiene:

µ

(
∞⋂

n=1

En

)
= lı́m

n→∞
µ(En).

Definición 0.10. Una función simple es una función s : X → C que toma solamente un número finito
de valores.
La forma canónica de s es:

s =
n

∑
j=1

c jχA j

donde c1, . . . ,cn son los distintos valores que toma la función s y A j = s−1(c j) = {x ∈ X : s(x) = c j},
1 6 j 6 n.

El siguiente teorema es fundamental para muchos resultados en teoría de la medida:

Teorema 0.11 (Teorema de aproximación). Sea (X ,A ,µ) un espacio de medida y sea f : X → [0,∞]
una función medible. Entonces existe una sucesión (sn)

∞
n=1 de funciones simples medibles tal que:

1. 0 6 s1(x)6 . . .6 sn(x)6 f (x), para todo x ∈ X,

2. lı́m
n→∞

sn(x) = f (x).

Pasamos a enunciar un resultado importante en la integración de funciones medibles no negativas:

Proposición 0.12. Sea (X ,A ,µ) un espacio de medida. Dada una función medible f : X → [0,∞], la
aplicación:

λ : E ∈A → λ (E) =
∫

E
f dµ ∈ [0,∞]

es una medida.
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A continuación enunciamos un lema muy relevante en teoría de la medida:

Lema 0.13 (Lema de Fatou). Sea (X ,A ,µ) un espacio de medida, E ∈ A y sean fn : E → [0,∞]
funciones medibles, con n ∈ N. Entonces se verifica:∫

E
lı́minf

n→∞
fn dµ 6 lı́minf

n→∞

∫
E

fn dµ.

El siguiente teorema es importante a la hora de estudiar la convergencia de sucesiones que están
dominadas por una función:

Teorema 0.14 (Teorema de la Convergencia Dominada de Lebesgue). Sea (X ,A ,µ) un espacio de
medida. Consideramos ( fn) una sucesión de funciones medibles tal que lı́m

n→∞
fn = f y tal que existe

una función integrable g verificando: | fn| 6 g en casi todo punto. Entonces fn y f son integrables y se
cumple que:

lı́m
n→∞

∫
X
| fn− f |dµ = 0.

A partir de este teorema se deduce el siguiente resultado:

Teorema 0.15. Sea (X ,A ,µ) un espacio de medida y sea ( fn) una sucesión en Lp(µ) que converge en
casi todo punto a una función medible f . Si existe g ∈ Lp(µ) tal que:

| fn(x)| 6 g(x) , x ∈ X , n ∈ N,

entonces f pertenece a Lp(µ) y ( fn) converge en Lp(µ) a f .

Enunciamos a continuación un teorema muy importante para el cálculo de integrales respecto de
una medida producto:

Teorema 0.16 (Teorema de Fubini para funciones no negativas). Sean (X ,A ,µ) y (Y,B,υ) espacios
de medida σ− finitos y sea f : X×Y → [0,+∞] una función medible. Entonces:

• La función ϕ con valores en [0,+∞] definida en X por:

ϕ(x) =
∫

Y
fx dυ =

∫
Y

f (x,y) dυ(y)

es A -medible.

• La función ψ con valores en [0,+∞] definida en Y por:

ψ(y) =
∫

X
f y dµ =

∫
X

f (x,y) dµ(x)

es B-medible.

• Se verifica que:
∫

X×Y
f d(µ⊗υ) =

∫
X

ϕ dµ =
∫

Y
ψ dυ . Es decir:

∫
X×Y

f (x,y) d(µ⊗υ)(x,y) =
∫

X

[∫
Y

f (x,y) dυ(y)
]

dµ(x) =
∫

Y

[∫
X

f (x,y) dµ(x)
]

dυ(y).
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