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Prologo

Son muchos los campos en los que se desea conocer el comportamiento futuro de ciertos fendémenos con
el objetivo de adelantarse a los acontecimientos. Debido a esta necesidad aparece el estudio de series
temporales cuya principal finalidad es predecir lo que ocurrird con una variable en el futuro a partir del
comportamiento de esa variable en el pasado y de otros factores que puedan influir. La metodologia
actual para analizar series temporales es la concurrencia de varias lineas de trabajo desarrolladas en
distintos campos cientificos. Asi pues, quedan bien diferenciados cinco campos de trabajo principales
que han permitido la evolucién de dicho anélisis.

El primero aparece en la primera mitad del siglo XX y tiene sus origenes en los estudios de series
astronémicas y climdticas. Esto dio lugar a la teoria de procesos estocdsticos estacionarios desarrollada
por los matematicos Kolmogorov, Wiener y Cramer. El segundo campo es el desarrollo de los métodos
de alisado inventados con el fin de prever series de venta y produccién por investigadores operativos
en la década 1960-1970 e impulsado por la facilidades de calculo que les proporcionaban los primeros
ordenadores. El tercero, desarrollado en los afios 70, es la teoria de prediccién y control de sistemas
lineales estimulada por el desarrollo de la ingenieria aerondutica y espacial. El cuarto es desarrollado
por estadisticos y economistas en los dltimos veinte afios del siglo XX y es la teoria de procesos no
estacionarios y no lineales. Para terminar, el quinto campo se trata de los modelos multivariantes y los
métodos de reduccién de la dimensién en sistemas dindmicos.

Asi pues,los métodos empleados para el andlisis de series de tiempo actuales son deudores de las in-
vestigaciones de matemadticos, estadisticos, ingenieros, fisicos y economistas durante el siglo XX para
resolver el problema de prediccion y control de variables para sistemas dindmicos.

Cabe destacar el trabajo realizado en los afios 60 por los britdnicos George E. P. Box (1919-2013) y
Gwilym Jenkins (1932-1982) ya que fruto de sus investigaciones es su célebre libro [2] Box y Jenkins
1970 que marca un hito en el andlisis de series temporales al presentar una metodologia unificada para
estudiar series estacionarias y no estacionarias, estacionales o no y aplicar estos modelos en la practica.
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Summary

A time series {X; },cr is a set of variables indexed in time. In many fields knowing the future behavoir
of some phenomens is really useful to plan and prevent. The main utility for the time series is to predict
what will happen to a variable at the future knowing what has happened to this variable in the past and
all the other facts which can modify this variable. Therefore, the study of the analysis methods and the
prediction of the time series are a topic recently investigated in academic circles and it is in continuing
development.

This work introduces the analysis of the time series showing them the basic concepts and results. The
work is divided into two different parts. The first one (Chapters 1 and 2) talks about the theoretical part,
where the basic concepts are defined to analyse a time serie. The second one (Chapter 3) shows a simple
application of the analysis of a particular time serie through R, which is a frame and a program language
with an analysis statistical view.

At the first chapter some basic ideas of stochastic processes and the analysis of time series are explained.
It is really important the concept of stationary time series, due to the basic models of temporary series
are generally models for the stationary series. It is introduced the process of white noise as one of the
stationary processes more important because it is fundamental to define other concepts which are more
complex. We call white noise to every process {Z; };cz is a sequence of uncorrelated random variables,
each with zero mean and variance 6. This is indicated by the notation {Z } ~ WN(0, 6?).

Generally, in practice, it is unusual to count with this type of series, so being able to transform any serial
time to a stationary serie is really important to be able to proceed to the modelling of this. At this chapter
the method of differencing let us get this transformation done.

Concepts as the autocovariance function ¥(-) and autocorrelation function p(-) are basic for the study
of any temporal series, and so the estimation of this functions from some given data.

At the end of the chapter it is considered the problem to predict variables of any stationary series having
the goal to find a lineal combination of the past values which can predict with the minimum failure.

At the second chapter the lineal processes are presented, autoregressive process of order p, AR(p), and
moving-average process of order q, MA(q), all of them defined for stationary series.

At the first part, an important parametric family of models for temporary series, the autoregressive
moving-average, or ARMA(p,q), processes. It is said that {X; },cz is an ARMA(p,q) if it is stationary
and can be expressed as

Xt - ¢1X[71 T e T (PPXI*[) == ZI + 61Zt71 + + qutfq

where {Z} ~ WN(0,0?) and polynomials ¢(z) =1 — 12— ... — 92" y 0(z) = 1+ 612+ ... + 6,27
haven’t got common roots.

Secondly the autocovariance function and the autocorrelation of a process ARMA are calculated and
the concept of the autocorrelation parcial function is defined and also the algorithm to calculate the
autocorrelation partial function for an ARMA process.

At the third part of the chapter, the aim is to find the model ARMA(p,q) which represents those data the
best. The ARMA models are models of stationary processes therefore, we just have to adjust an ARMA if
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VI Capitulo 0. Summary

the serie is stationary. Once you have identified and adjusted the model, it is always necessary to prove
its validity, which is developed at the end of the third section.

Eventually, at the last section two important extensions of the models ARMA are introduced. Firstly, a
generalization of the ARMA processes which adds a wide range of non-stationary processes, the inte-
grated ARMA processes or ARIMA. And secondly, an extension of the ARIMA processes (and so the
ARMA processes) are the stationary processes ARIMA and the processes SARIMA.

At the forth chapter it is done an analysis of the level of the Ebro river in Tudela, Navarra. To do that
we have the daily data from 28th November 2004 to 9th April 2012, data from the Ebro hydrographical
confederation.

The goal is to predict the future values of the river level with the past values availables.

At the Anexo A you can find the code which has been used to program the practice part of the work.
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Capitulo 1

Introduccion a las series temporales y
conceptos basicos

1.1. Series temporales

En este capitulo se presentan algunas ideas bésicas de procesos estocdsticos y del anélisis de series de
tiempo. De particular importancia son los conceptos de estacionariedad, las funciones de autocovarianza
y autocorrelacién que se desarrollaran a lo largo del capitulo. Se describen algunas técnicas estdndar para
la eliminacién y estimacién de la tendencia y estacionalidad de una serie temporal observada.

1.1.1. Definiciones previas

Definicion 1.1. Se denomina proceso estocdstico a toda familia {X;, },cr de variables o vectores aleato-
rios definidos sobre el mismo espacio de probabilidad (Q, .7, @).

Definicion 1.2. Para p > 1 definimos el espacio .£7(Q, ., ) como el espacio de variables aleatorias
reales X : Q — R tal que E(|X]") < .

Definicion 1.3. Llamamos proceso estocdstico de segundo orden a todo proceso estocdstico {X; }er
con valoresen Ry y X, € £%(Q,</, ), tal que su funcion de medias m(t) y su funcién de covarianzas
I"(s,t) son definidas V¢ € T como:

= m: T —R
t — m(t)=EX;)
» I T2—R
(s,6) — T'(s,1) = Cov(X,, X;) = E(X,X;) — E(X,)E(X,)

El proceso serd centrado si Vt € T se tiene que m(t) = 0, en este caso I'(s,t) = E(X;X;).
Definicion 1.4. Llamamos serie temporal a todo proceso estocastico de segundo orden indexado por N
0 Z. Sin pérdida de generalidad a partir de ahora se trabajard con {X; };cz .

De una serie temporal nos interesa describir el pasado y realizar predicciones para el futuro. Para conse-
guir estos objetivos es necesario establecer un modelo de probabilidad que represente el comportamiento
de las variables X; de la serie y permita realizar inferencia.

Las series temporales aparecen en muchos campos del conocimiento

» Economia Tasas de desempleo, producto interior bruto anual,rendimientos mensuales obtenidos
en la Bolsa de Madrid en el periodo 1988 a 2000,...
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2 Capitulo 1. Introduccion a las series temporales y conceptos bdsicos

» Demografia Poblacién Europea durante los afios 2000 y 2017, mortalidad y natalidad anual de
un pafs,...

» Climatolégica Precipitaciones diarias, temperaturas maximas, emisiones anuales de CO,, con-
centracién media de nitratos en el agua,...

= Medicina Casos de gripe durante los meses de invierno de los ltimos 10 afios, nimero de vacu-
naciones en un centro médico,...

1.1.2. Tipos de series tamporales

= Serie estacionaria
Una serie temporal {X; };c7z es estacionaria si la funcién medias m(¢) y la funcién covarianzas
I"(s,t) son invariantes por traslacién de tiempo. Esto es:

1. E(X?) <oo
2. m(t)=m Vt € Zy m constante
3. I'(s,t) = Cov(Xs,X;) = Cov(Xsi, Xy1n) =L (s+h,t+h) Vs;t,heZ

En particular eso implica que una serie temporal estacionaria es una serie estable con valores que
oscilan en torno a un nivel medio fijo con una variabilidad constante.

Ejemplo 1.1. Uno de los ejemplos mas importantes de proceso estacionario es el conocido co-
mo ruido blanco ya que presenta un papel fundamental en la definicién de otros procesos mas
complejos. Llamamos ruido blanco a todo proceso {Z, },c7, de variables aleatorias con la misma
varianza, centradas e incorreladas. Se denotan como {Z} ~ WN(0, 62).

= Serie con tendencia
Un modelo para series con tendencia es

Xi=m+Y;

donde m; es lacomponente de tendencia e Y; es una serie estacionaria de media nula, e.d, E(Y;) =0

= Serie estacional
Es una serie cuyo comportamiento se repite periddicamente. Un modelo para una serie estacional
es
Xi=s+Y,

donde s, es la componente estacional de periodo d, esto es s,_yg = §; = s;14, € Y; €s una serie
estacionaria de media nula. Se suele imponer que Y%, s; = 0.

= Serie con tendencia y componente estacional
Como su propio nombre indica, este es un tipo de serie que posee tanto componente de tendencia
como componente estacional. Un modelo para este tipo de series es

Xi=m+s5:+Y;
donde m; es la componente de tendencia, s; es la componente estacional e ¥; es una serie estacio-

naria de media nula.

1.1.3. Conversion a una serie estacionaria

Generalmente los modelos bdsicos de series temporales son modelos para series estacionarias pero
raramente, en la prictica, aparecen series estacionarias. Por lo que poder transformar cualquier serie a



una serie estacionaria cobra una gran importancia para poder proceder a la modelizacién de ésta. Una
serie puede no ser estacionaria en la varianza (cuando la variabilidad se modifica con el tiempo), en la
media (cuando el nivel de la serie no es estable en el tiempo, pudiendo en particular tener tendencia
creciente o decreciente), o en otras caracteristicas de la distribucidn de las variables.

Estabilizacion de la varianza

Para la estabilizacién de la varianza es necesario llevar a cabo algtn tipo de transformacién de los
datos. La transformacién mas comiin es trabajar con el logaritmo de los datos iniciales, pero ésta no
es siempre la mejor opcidn. Las transformaciones de Box y Cox son una familia de transformaciones
usadas en estadistica para corregir la heterocedasticidad. Para ver una explicacién mas detallada de la
familia de transformaciones de Box y Cox ver [12, pdg. 105-106].

Estabilizacion de la media

Hay dos tipos de enfoques para la conversion de la serie no estacionaria en media a una estacionaria.

— El primer enfoque consiste en estimar las componentes deterministas m;, y s; y una vez estimadas
restarlas a la serie original con la esperanza de que la componente residual (o ruido) ¥; obtenida
sea una serie temporal estacionaria.

— Otro enfoque ampliamente desarrollado por Box y Jenkins en [2] consiste en aplicar los opera-
dores de diferenciacion (tanto el operador diferencia V, como el operador diferencia estacional
de orden d ,V, ) hasta que las observaciones diferenciadas se parezcan a la realizacion de alguna
serie temporal estacionaria.

La seleccion de la mejor técnica para obtener una serie estacionaria dependera de diversos factores (si
se necesitan estimadores de las componentes o no, si la componente estacional varia con el tiempo,...).
En esta parte del capitulo se desarrollara el método de diferenciacion que serd el utilizado en la parte
préctica del trabajo, capitulo 3.

(a) Serie con tendencia X, = m, +Y;
Definimos el operador diferencia como:

VX, =X, —X;-1 = (1-B)X;
donde B es el operador desplazamiento hacia atrds para el cual se define la siguiente operacion:
B'X, =X,_; VjieN
Toda tendencia polinomial de orden k se reduce a una constante aplicando el operador
vk=(1-Bf=01-B)%(1-B).

Por lo tanto si a una serie X; = m; +Y; con una tendencia polinomial de orden k se le aplica el
operador V k veces obtenemos:
VX, = apk! + W,

donde g es el coeficiente de ¢ y W, es una serie estacionaria. Normalmente no sabemos el orden de
la tendencia asf pues aplicamos el operador V tantas veces como sea necesario para que VXX, sea
estacionaria.
Ejemplo 1.2. Sea m; = ap+ at una tendencia polinomial de orden 1. Aplicando el operador V se
obtiene

Vmy =my —my_1 =ap+ait—(ap+a(t—1)) =a
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(b) Serie estacional X; = s, + Y,

En este caso definimos el operador diferencia estacional de orden d como:
VX =X, —X;_q = (1-B)X,
Aplicando este operador a nuestra serie con componente estacional obtenemos
VX, = (1-BYX, =(1-BY)(s;+Y,) =5, —Bsi+ Y, —BY, =5, —s;_q+ Vi = Yi_a =Y, —Y,_4

que se trata de una serie estacionaria.
Observacién 1.1. Es importante destacar que vV, # V<.

(c) Serie con tendencia y componente estacional X; = m, + s, +Y;

Para eliminar la tendencia y la componente estacional de nuestra serie vamos a proceder de la
siguiente manera:

(1) Aplicamos el operador V, a la serie X; = m, + s; + Y; con estacionalidad de periodo d y obtene-
mos
VaXe =my—my_g+Y, =Y, 4

serie sin componente estacional con tendencia m, — m,_, posiblemente distinta a la de la serie
inicial.

Puede suceder que al eliminar la componente estacional se anule la tendencia por lo que ya se
tendria la serie estacionaria deseada. En caso contrario:

(2) eliminamos la tendencia aplicando V a V4X; tantas veces como sea necesario para obtener una
serie estacionaria.

1.1.4. Funcién de autocovariancia y autocorrelacion

Anteriormente se ha definido la funcién de covarianza como la funcién de dos pardmetros definida por

I'(s,t) = Cov(X;,X;)

En el caso de series estacionarias se puede definir la funcién de autocovarianza de la serie de la siguiente
manera:

Definicion 1.5. Sea {X; },c7 una serie estacionaria. Definimos la funcion de autocovarianza (ACFV) de
{X; }+cz en el retardo h como

Y(h) = Cov(X; 5, X:) = E(X; 11 X;) VhelZ

Propiedades basicas de ()

(0)>0
Se trata simplemente de la afirmacién Var(X;) > 0. Se tiene que si Var(X;) = 0 entonces X; es una
variable degenerada, es decir, X; = cte.

[y(R)| < 7(0)
Se trata de una consecuencia inmediata del hecho de que las correlaciones son menores o iguales a 1
en valor absoluto (o la desigualdad de Cauchy-Schwarz).

y(h) = y(—h)

La ACFV es una funcion simétrica.

y(h) es una funcién no definida negativa
La demostracién de esta propiedad se puede encontrar en [6, pag 8].



Definicion 1.6. Sea {X, },c7 una serie estacionaria. Definimos la funcion de autocorrelacion (ACF) de
{X; }scz a partir de la ACFV como

p(h)zzllggg Vhe Z

1.1.5. Estimacion de la media y las funciones de autocovarianza y autocorrelacion

Un proceso estacionario {X; };c7 bajo la hipétesis de normalidad queda totalmente caracterizado por su
media ¢ y su funcién de autocovarianza y(-). Si se tiene un proceso estacionario pero no satisface las
hipétesis de normalidad no queda totalmente caracterizado por i y ¥(-) pero a veces es suficiente, como
en los procesos ARMA que se trabajardn en el capitulo 2.

Estimacion de u

Un estimador natural de la media ¢ de un proceso estacionario {X; };cz es la media muestral

- Xi+..+X
X, = %

Se trata de un estimador insesgado, es decir, E(X,) = i con varianza

Var(%) = ¥, CovixX)= Y (nli—ji-p=1Y ( 'h')y(m,

i.j=1 i—j=—n M n<n n
que cumple la siguiente propiedad.

Teorema 1.1. Si {X;},cz es una serie estacionaria con media [ y funcion de autocovarianza ¥(.), se
tiene que cuando n — oo

Var(X,) = E[(X, — 1)’] — 0 si. y(n) —0

y

nE[(X, — 1)°] — L5 _..v(h) sio L ly(h)| < e
Demostracion.

war) = ¥, (1-2) v < ¥ pron

|h|<n n h|<n

Si y(n) — 0 cuando n — oo entonces lfmnﬁw%Z‘hKn ly(n)| = 21im, e |7(n)| = 0 y por lo tanto

Var(X,) — 0
SiY; . |y(n)| <o entonces por el teorema de la convergencia dominada
. S e Al v
lim nVar(X,) = lim Z y(h) = Z y(h)

n—eo n%w\hkn n he oo
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Inferencia sobre u

Para hacer inferencia sobre (L es necesario conocer la distribucién de X,,. Sea una serie de tiempo {X; }
gaussiana se tiene que

%~ |n Z|h\<n (1 - |,h7|) Y(n)

n
Para muchas series de tiempo no gaussianas cuando el tamafio de la muestra se hace grande se puede

aproximar la distribucién de X,, por una normal de media y y varianza %Z‘ | <o y(h).Véase [3, pag 219].
De este resultado se deduce que un intervalo de confianza al 0,95 para U es

(Yn— 196v1/2 /\/n, X + 1’96v1/2/\/ﬁ)

donde v = ):| <o y(h). Por supuesto v generalmente no es conocido y por tanto debe ser estimado.

Estimacion de la funcion de autocovarianza y(-) y autocorrelacion p(-)

Definicién 1.7. Sea la serie temporal {X,},cz se define la funcion de autocovarianza muestral y la
funcion de autocorrelacion muestral como

o _ ]
Y(h) = " Z (X — Xn) (X; — Xi1)
t=1
y
~ 7(h)
h) =<
respectivamente.

Estos van a ser los estimadores de y(-) y p(-), #(-) y p(-). Ambos estimadores son asintéticamente
insesgados. Si solo se tienen los datos observados Xi, ..., X, es imposible dar estimaciones razonables
de y(h) y de p(h) para h > n. Incluso para h un poco por debajo de n las estimaciones 9(h) y p(h) no
son fiables ya que hay pocos pares (X;1,,X;) disponibles. En [2, pdg 33] Box y Jenkins sugieren que n
debe ser al menos 50 y i debe ser menor o igual que 7.

Inferencia sobre la funcién de autocorrelacion p(-)

Para hacer inferencia relativa a p (k) necesitamos la distribucién muestral de p(h). La distribucién de
P (h) puede ser bien aproximada por una distribucién normal cuando el tamafio de la muestra es grande.
Se tiene que pr = (P (1),..., p(k))’ estd distribuido para n grande de la siguiente manera

ﬁk ~ N(pkv nilw)

donde p; = (p(1),...,p(k))" y W es la matriz de covarianza cuyo elemento (i, j) viene dado por la
formula de Bartlett

Wi j = i {p(k+i)+p(k—i)=2p(D)p (k) {p(k+j)+pk—j)—2p(j)p(k)}
k=1

Se puede ver el desarrollo de este resultado en [3, pag 215].



1.2. Prediccion lineal de series temporales

Se considera el problema de predecir valores X, 5, # > 0 de una serie estacionaria con media (¢t y funcién
de autocovarianza y conocidas, a partir de los valores X1, ..., X,,. El objetivo es encontrar la combinacién
lineal de {X,,...,X;,1} que prediga X,;, con el minimo error cuadritico medio. Dicho estimador se
denotard por P, X, 0o )?,,Jrh y serd de la forma P, X, 1, = ap+ a1X,, + ... + a,X1 donde los coeficientes
ap, -..,a, se obtienen como los valores que minimizan

S(a07 ann} = E[(Xﬂ-‘rh - Pan+h)2] = E[(Xn-‘rh - (00 + aan +... +anxl))2}

Puesto que S es una funcién cuadréatica de ay,...,a, y mayor o igual que cero, estd claro que hay al
menos un valor (ao,...,a,) que minimiza S y dicho valor satisface

8S(a0, ...,an)

=0 V j=0,..,n (1.1)
aaj

Al evaluar las derivadas 1.1 se obtienen las ecuaciones
n
EXyh—ao— ) aiX,i1-]=0 (1.2)

i=1

n
E[(Xytn—ao— ) aiXni1-i)Xnr1-j] =0 (1.3)
i=1

donde j € {1,...,n}. Estas ecuaciones se conocen como las ecuaciones de prediccién y sirven para
obtener los valores de ag, ..., a,. Se pueden escribir con notacién vectorial de la siguiente manera

ap = u(1 —iai)

i=1
1—‘nan =Y (h) (1 4)

» a,=(ay,..a,)
= Ty = [v(i— )] o
= Yu(h) = (v(h),y(h+1),....y(h+n—1))

En consecuencia
n

PXpin =1+ Y ai(Xpp1-i— ) (1.5)

i=1
donde a, satisface 1.4. A partir de 1.5 el valor esperado del error de prediccién es cero y el error de
prediccidon en media cuadratica es

n n

E[(Xysn — PiXpsn)?] = 7(0) —2 fa#(th i—1)+ Y Y ayli— jla; =y(0) — a,m(h)
i=1 i=1j=1

Ejemplo 1.3. Se han observado valores X; y X, de una serie de tiempo centrada con y(0) = ﬁy( 1)=

i yy(2) = %. Se quiere predecir el valor de X3 dados X y X». Se tiene por 1.4y 1.5 que

(=07
G Jo) () = (G6)
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o> (1 ¢\ [a1\_ ©* (¢
e le D)7 ()

(a1,a2)" = (¢,0)" es solucién y por lo tanto se tiene que la mejor prediccion lineal de X3 es P2 X3 = ¢ Xo.
Proposicion 1.1. Las ecuaciones 1.2 y 1.3 determinan P,X,,.; de manera tnica.

Demostracion. Sean{aj,j=1,...,n}y{b;,j=1,...,n} dos solunciones y se define Z como la diferen-
cia entre los predictores correspondientes, es decir

n
Z= bo—ao+ Y, (bj—a;)X, (i1
j=1

Entonces

n
Z2 :Z(bo —a0+ Z (bj —aj)Xn+]_j)
j=1
Pero a partirde 1.2y 1.3 se tiene que E(Z) =0y E(ZX,41—j) =0Vj=1,...,n.

En consecuencia E(Z?) =0y Z =0. O

Si {X; };ez es una serie de tiempo estacionaria, las ecuaciones 1.4 y 1.5 resuelven completamente el pro-
blema de determinar el mejor predictor lineal P,X,,,; de X, a partir de {X, ..., X, }. Sin embargo, este
enfoque directo requiere resolver un sistema de n ecuaciones lineales, que puede resultar computacio-
nalmente costoso para n grande. Para simplificar este problema, utilizamos el predictor de un solo paso
P, X,+1 (basado en n observaciones previas) para simplificar el cdlculo de P, X+, es decir, utilizar un
algoritmo recursivo. Dos de los ejemplos mas importantes de algoritmos recursivos son el algoritmo de
Durbin-Levinson y el algoritmo de innovaciones. Ambos algoritmos quedan ampliamente desarrollados
en [4, pag. 63-75].



Capitulo 2

Procesos ARMA y extensiones

En este tema introducimos una importante familia de modelos para series temporales estacionarias, los
procesos de media mévil auto-regresivo o ARMA. Los procesos ARMA desempefian un papel clave en
el modelado de series de tiempo.

2.1. Procesos basicos

2.1.1. Procesos lineales

Definicion 2.1. Se dice que una serie de tiempo {X; },c7 es un proceso lineal si se puede expresar como
X = Z arZ;—
k=—o0

donde Y5 a2 <o ,a; € Ry {Z} ~WN(0,02). Al ser combinacién lineal de {Z} se trata de un
proceso estacionario.

2.1.2. Procesos auto-regresivos

Definicion 2.2. Se dice que una serie de tiempo {X; };cz es un proceso auto-regresivo de orden p, AR(p),
si es estacionario y se puede expresar como

Xi=01 X 1+ 0Xio+...+0,Xp+ 2 vVt € Z
donde {Z,} ~ WN(0,0?).

Un AR(p) tiene solucion estacionaria y ésta es causal (concepto que serd explicado mas adelante ) si el
polinomio auto-regresivo ¢(z) =1 — Zle ¢z~ tiene todas sus raices fuera del disco unidad cerrado, es
decir, ¢(z) #0 Vze C 1tq |z] <1.La funcién de autocovarianza de un AR(p) no posee una forma
explicita excepto en el caso AR(1).

Ejemplo 2.1. Sea {X; };c7z un proceso AR(1), X, puede expresarse como

Xi=0X,—1+2 2.1

La solucién serd estacionaria siempre que |¢| < l yaque 1 —¢z=0<z= é ylzl > 1< ¢ < 1.
De 2.1 se obtiene de manera recursiva la siguiente relacion:

Xt = (P((I)thz ‘|‘sz1) +Zz = ¢2Xz72 + (])thl +Zt = ¢2(¢Xt73 +Zt72) +¢Zt71 +Zz = .= Z (Pth—k
k=0

9
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Por lo tanto sea i > 0

oo

Y(h) = Cov(X, 14, X:) = Cov(Y. 0'Zy 1y 1, Y. 0°Z ) = Y. Y 0" "0 Cov(Z 11,21
1=0 k=0 1=0k=0

Obsévese que si (t+h) — 1 #t —k, es decir, [ # k+ h por la incorrelacion de las variables {Z,} Vr € Z
se tiene que Cov(Z,p)—1,Z—) = 0y por tanto
62¢h

alpers:

yh) = 0> Y 6+ 6k = 52" Y (67)"
k=0 k=0

Por la paridad de la funcién de autocovarianza se tiene que Vh € Z

62¢|h|
= T— (PZ

2.1.3. Procesos de media movil

Definicion 2.3. Se dice que una serie de tiempo {X; },cz es un proceso de media movil de orden q,
MA(q), si es estacionario y V¢ € Z puede expresarse como

Xt - Zt + elzt_l + + Gth_q

con 6y =1y {Z} ~WN(0,0?).

Notar que un MA(g) es un caso particular de un proceso lineal.

Funcion de autocovarianza de un proceso MA(q)

La funcion de autocovarianza de un proceso MA(q) viene dada por la siguiente expresion

(1467 +...462)c> si h=0
Y(h) =13 (O + 61611+ +6, 400> si |h|=1,...q
0 si |h| > g

Es importante destacar que para retardos mayores que ¢ la funcién de autocovarianza de un proceso
MA(q) se anula y por lo tanto sucederd lo mismo con la funcién de autocorrelacién dada la definicién
de ésta. Este hecho es importante para identificar el rango de valores en el que se mueve ¢ a la hora de
modelizar una serie de datos a través de un proceso de media movil.

Ejemplo 2.2. Sea {X; },cz un proceso MA(1), X; puede expresarse como

Xi=07Z_1+7

Por lo tanto
Y(h) = Cov(Xp4+,X;) = Cov(Xp,Xo) = Cov[0Zy—1 + Zy,,0Z_1 + Zy]

puesto que {Z;} ~ WN(0,62) se tiene que
Y(h) = E(0°Zi1\Z\ + 0Z1Zo+ 0Z,Z 1+ 7 Z)

(0*+1)0% i h=0
y(t)=<{ 00? si |h| =1

0 en cualquier otro caso
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2.2. Procesos ARMA

Definicion 2.4. Se dice que una serie de tiempo {X; };cz es un proceso ARMA(p,q) si es estacionario y
si puede expresarse como:

Xt — ¢)1X[_1 T e ¢pXt—p = Z[ + GIZ[_I + + qu[_q

siendo {Z;} ~ WN(0,02) y los polinomios ¢(z) =1 —¢1z—...— ¢,z y 0(z) = 1 + 612+ ... + 6,27 no
poseen raices comunes.

Conviene expresar la definicion en términos del operador retardo, B, visto en el capitulo anterior.

¢(B)X; = 6(B)Z; (2.2)

donde ¢(B) =1—¢;B—...— $,B” y O(B) = 1+ 6B+ ...+ 6,B".
Los procesos AR(p) y MA(g) no son sino casos particulares de los procesos ARMA(p,q), que se obtie-
nen con 0(z) = 1y ¢(z) = 1, respectivamente.

Condicion para la existencia y unicidad de una solucion estacionaria de un proceso ARMA

La condici6n para que un proceso ARMA(p,q) posea una solucién estacionaria y que ésta a su vez sea
Unica, es que
0(z)=1—¢1z—...— 92" #0 VzeC tq |z]=1

En efecto, si ¢(z) #0 Vzen el circulo unidad entonces 36 > 0 t.q. se puede escribir el desarrollo en

series de potencias de ﬁ de la siguiente manera

1 > . (o]
— =) i 1-6<[z] <146 y ) |xjl<e
¢(Z) j:—oo j:*oo
Por lo tanto se define el operador ) (B) = ﬁ =Y X ij y aplicdndolo a la ecuacién 2.2 se obtiene
X, =x(B)0(B)Z; =w(B)Zi = Y WiZ_; (2.3)
J=—o0

Dénde los coeficientes {y/;} no tienen una forma explicita, en general, vienen dados por

v = iw;zf — %(2)0(2) = Zg @4

Un caso sencillo en el que si se puede encontrar la expresion explicita de los coeficientes es en el caso
que se tenga un proceso ARMA(1,1), ejemplo que se muestra a continuacion.
Ejemplo 2.3. Sea {X, },cz un proceso ARMA(1,1) que satisface la siguiente relacion

Xl - ¢)Xt_] = Zl + OZI_] con ’¢| < 1 (25)
de 2.3 y 2.4 se tiene que
(1—02)(Wo+ viz+ v’ +...) =1+ 62
Vo Viz Wl — Oz — oyt — ... =146z

Identificando coeficientes se tiene que

v =1
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Vi—0ywp=0=y;=0+¢
V—0y1=0=y,=0(0+9)

En resumen

Yo =1
{'W=w¢+emfl j>1 (2-6)

Es decir N
Xl == Z[ + (¢ + 9) Z ¢j71Z[_j
j=1

Causalidad e invertibilidad

Definicién 2.5. Un proceso {X; };cz ARMA(p,q) se dice causal si 3 constantes {y;} con Y77 |y;| < oo
de manera que

X = Z ViZ
j=0

La causalidad es equivalente a la condicién
0(z) #0 VzeC 1tq |7/<1

La demostracién se puede encontrar en [3, pag 85].

La causalidad permite que el proceso {X;} pueda ser expresado en términos de los valores pasados del
proceso ruido blanco {Z, }.

Definicién 2.6. Un proceso {X; },cz ARMA(p,q) se dice invertible si 3 constantes {7;} con Y7 [7;| <
oo de manera que

Zt — Z TCJXI_]
j=0

La invertibilidad es equivalente a la condicién
0(z) #0 VezC tqg |7]<1

La demostracién se puede encontrar en [3, pag 87].
La invertibilidad permite que Z; se exprese en términos de X con s < t. Observar que la causalidad y la
invertibilidad no son propiedades de X; sino mas bien de la relacion entre los procesos {X;} y {Z}
Proposicion 2.1. Si {X;},cz es un proceso ARMA(p,q) definido por 2.2 donde 6(z) # 0 si |z| =1
entonces siempre es posible encontrar polinomios ¢(z) y (z) y una secuencia de ruidos blancos {W, }
de manera que

¢ (B)X, = 6(B)W,
donde ¢(z),0(z) son distintos de 0 Vz € C tq |z| < 1. Véase [3, pag 127]

Esta es una proposicién importante ya que permite, sin pérdida de generalidad, representar cualquier
proceso ARMA que no sea causal y/o invertible mediante un modelo equivalente que si lo sea. Por ello
se puede centrar la atencién en los modelos ARMA causales e invertibles.

2.2.1. Funcién de autocovarianza, de autocorrelacion y de autocorrelacion parcial de
un proceso ARMA

El objetivo de esta seccidn es el cdlculo de la ACVF y la ACF de un proceso ARMA, asi como la
presentacién y el cdlculo de la funcién de autocorrelacion parcial, PACFE.
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Funcién de autocovarianza de un proceso ARMA

Sea {X; };cz un proceso ARMA(p,q) con solucién

X = Z YiZ—j
j=0

y sea h > 0 se tiene que

Y(h) = Cov(X; 1, X:) = Cov( Z ViZt4h)—1s Z ViZ—j) Z Z viy;Cov(Z (t-+h)—15Zi— i)
; P

Obsérvese que si (t+h) —1 #t — j, es decir, | = h+ j se tiene que Cov(Z;4)—;,Z;—j) = 0y por lo tanto

y(h)=0>Y vy
j=0
Debido a la paridad de la funcion de autocovarianza se tiene que

Y(h) =G> Y Wil 2.7)
j=0

Notese que la ACVF no posee una expresion explicita general en términos de los coeficientes ¢ y 6
(ya que los coeficientes {y;} no la tienen) y requiere la solucién de sistemas de ecuaciones no lineales
que deben resolverse mediante algoritmos numéricos. Un caso particular sencillo que si posee expresion
explicita es para un ARMA(1,1).

Ejemplo 2.4. Sea {X; };c7 un proceso ARMA(1, 1) satisfaciendo 2.5. Se tiene por 2.7 que

y(O)zcziu/}:GZ(lJriwf): i (0+6)20 "2 =0?[1+(¢+6)* i +((fir22)
j=0 j=1 j=1 =
o o o 2
YD) =0>Y vivini =0 (vovi+ Y wjyis1) =6>[(9+6)+ (¢ +6) Z U =0%[(0+0)+ ¢(1¢_+¢2)]
Jj=0 j=1 =1

y finalmente para h € Z tq |h| > 1 se tiene

y(h) = o (vowi + f’, Yivin) = o2[(0+0)9" " + (9 +6)7¢" 2 i (0% = 9" 1y(1)
j=1 J=1

Funcion de autocorrelacion de un proceso ARMA

Recuérdese que la ACF es la funcién p(-) que se define a partir de la ACVF como
y(h)
ph)y=—= VheZ
¥(0)
calculada ya en el apartado anterior.

Ejemplo 2.5. Sea {X, },c7z un proceso ARMA(1,1) satisfaciendo 2.5. Una vez calculada su funcién de
autocovarianza se obtiene de manera inmediata

p(0)=1

0% +6090°+0+¢
P = g7 25011

p(h)=¢""p(1)

donde h € Z tq |h| > 1.

]
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Funcién de autocorrelacion parcial de un proceso ARMA

La funcién de autocorrelacién parcial PACF en el retardo & de una serie estacionaria es la funcién de
correlacién entre X; y X, una vez eliminada la dependencia lineal debida a las variables intermedias.
Para su célculo se procede de la siguiente manera:

1. Seelimina de X; el efecto de X;_1,...,X;_;+1 mediante la regresion:
Xe=PiXe1+ .+ B Xenp1 +U;

donde la variable U, recoge la parte de X; no comuin con X;_1,...,X;—p11

2. Seelimina de X;_j, el efecto de X;_1,...,X;_;,1 mediante la regresion:
X—n=nXi-1+ ...+ V-1 X—np1 + Vi

donde, de nuevo, V; contiene la parte de X;_; no comun con las observaciones intermedias.

3. El coeficiente de correlacion simple entre U; y V; es el coeficiente de correlacion parcial entre X; y
X, que se denotard por o (h).

Algoritmo de calculo de la funcion de autocorrelacion parcial de un proceso ARMA

La PACF de un proceso ARMA es la funcioén «(-) definida de la siguiente manera:
o(0)=1
a(h)=¢m  h=>1
donde ¢y, es la tltima componente del vector ¢, = F;l Y. en el cual
Iy = [Y(i_j)]zh,jzl
= (r(1),.... v(h))

Vedse [3, pdg. 171] para el desarrollo de este resultado.

2.3. Modelizacion con procesos ARMA

Dada una serie de datos, el objetivo es buscar el modelo ARMA(p,q) que mejor represente esos da-
tos. Esto incluye: la eleccién de p y g, la estimacion de la media, de los coeficientes {¢; i=1,...,p}
{6; i=1,...,q} de ambos polinomios y de 6. Los modelos ARMA son modelos de procesos estacio-
narios por lo tanto, s6lo debe ajustarse un ARMA si la serie es estacionaria.

Una vez identificado y ajustado el modelo, siempre es necesario comprobar su validez. Esta parte es la
de validacion del modelo y es fundamental en todo andlisis de datos.

2.3.1. Estimacion de los parametros

Existen varios métodos de estimacién pero el mds frecuente es el método de maxima verosimilitud
debido a la buenas propiedades que poseen los estimadores miximo verosimiles. Bajo condiciones
bastante generales, los estimadores maximo verosimiles, son insesgados y asintéticamente normales con
varianzas al menos tan pequefas como las de cualquier otro estimador lineal e insesgado que resultan
ser los mas eficientes.

Otros métodos para la estimacion de los pardmetros son el método de minimos cuadrados, el método
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de Yule Walker, el de las innovaciones,... Estos métodos y otros quedan ampliamente desarollados en el
capitulo 5 de [4].

Estimacion maximo verosimil

Si la serie es gaussiana, la muestra X,,' = {X1,...,X,} se puede interpretar como una observacién de
una variable aleatoria normal multivariante de dimensién n con matriz de varianzas I',, desconocida.
Supondremos, sin pérdida de generalidad, que u = 0 ya que si {X; },cz es una serie estacionaria con
media u siempre se puede definir la serie centrada {Y, },c7 definida de la siguiente manera ¥,, = X, — u.
La funcién de verosimilitud se obtiene a partir de la funcién de densidad

L) = (27) "2 (detT’) Pexp(—5X,T, 'X,)

En un ARMA los elementos de I',, se pueden expresar en términos del vector de pardmetros 3 =
(d1,..,0p,61,..., 6,4, 62). Los estimadores maximo verosimiles de dichos pardmetros,

B = (¢31, ey qS,,, él, s éq, 62), serdn aquellos que maximicen la funcién de verosimilitud. Para encon-
trarlos se deben recurrir a algoritmos numéricos.

Los estimadores maximo verosimiles se desarrollan suponiendo que la distribucién conjunta de la mues-
tra es normal multivariante. Sin embargo, se ha probado que incluso aunque la serie {X, };cz no sea
gaussiana, sélo exigiendo que {Z;} ~ WN(0,6?), la funcién de verosimilitud considerada se puede ver
como una medida de bondad de ajuste del modelo y que los estimadores obtenidos maximizandola, si
la muestra es grande tienen las mismas propiedades que los estimadores maximo verosimiles por lo que

se les sigue denotando de la misma manera aunque estrictamente no lo son. Véase [4, pdg. 158-164].

2.3.2. Seleccion del orden py g

Existen diversos tipos de criterios para seleccionar el orden del modelo.

- Algunos se utilizan de forma preliminar ya que no requieren la estimacién del modelo (criterios basa-
dos en la ACF y la PACF) que se explicardn en la parte practica del trabajo.

- Otros son de cardcter confirmatorio y s6lo se pueden calcular tras haber estimado los modelos que se
requieren comparar (criterios basados en la comparacion de la bondad de ajuste de los modelos).

A continuacién se explica una medida bondad del ajuste utilizada con frecuencia en el anélisis confir-
matorio, el criterio AIC.

Criterio de informacion de Akaike (AIC)

El criterio AIC es una medida de la calidad relativa de un modelo estadistico para un conjunto de datos
dado. El AIC maneja un trade-off entre la bondad de ajuste del modelo y la complejidad de éste.
Dicho criterio mide la bondad de ajuste en términos de su verosimilitud.

AIC(B) = —2in(L(B)) +2(p+q+1)

Otro criterio similar es el AIC corregido (AICC)

oy ¢ 2o Eat
AICC = =2In(L(B))+ = = =%

Ambos métodos son asintéticamente equivalentes.
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2.3.3. Diagnéstico del modelo

Las técnicas de validacion se basan en los residuos que comparan los valores observados con los valores
predichos por el modelo ajustado. Para validar un modelo es necesario saber como es el comportamiento
de los residuos cuando el modelo es adecuado, por lo tanto, si los residuos no presentan ese comporta-
miento se concluird que el modelo no es adecuado.

Los residuos de un modelo ARMA vienen dados por

ﬁ\/z _ X; _Xz((bl,---,(bp,el,.. ’Qq)

\/I‘t_l(é],...,(ﬁp,él,..., Gq)

= S N2 . . . S o
donde r; = E[(X;+1 — X;+1) | es un estimador del error cuadrético medio de X;. Si el modelo planteado

~

es adecuado, W, debe tener propiedades similares a las de una serie WN(0,62). Si es conveniente se
puede trabajar también con los residuos reescalados

~

R[:

Q>‘§>

con 6 =/ ):7%“/’2 Cuando el modelo es adecuado los residuos reescalados deben presentar esperanza
nula, varianza constante e igual a 1 e incorrelacién; la incorrelacién es la condicion central para validar
el modelo. Otra propiedad que se suele validar es la normalidad de los residuos pero un resultado de
[3, Seccién 10.8] hace que esta condicidn no sea imprescindible para estimar y hacer inferencia sobre
los parametros del modelo, pero es una propiedad deseable. Si la serie es normal, la incorrelacién es
equivalente a la independencia y por lo tanto podemos asegurar que no queda informacién por modelizar.

Herramientas estadisticas para las comprobaciones sobre los residuos reescalados

o Esperanza nula y varianza constante e igual a 1
Principalmente se comprueban estudiando el grafico de los residuos a lo largo del tiempo. Otras
técnicas mas tedricas vienen ampliamente desarrolladas en [8, pag. 326-327]

e Incorrelacion
Se dispone de diferentes técnicas para la comprobacidn de la incorrelacién de los residuos. La primera
es representar el correlograma de la ACF de los residuos. Otra técnica es el test de Ljung-Box el cual
permite contrastar si los h primeros retardos de la funcién de autocorrelacion de los residuos son nulos
simultdneamente. El test de Ljung-Box contrasta la hipétesis p(1) = p(2) = ... = p(h) = 0 (hipétesis
nula) contra a la hipétesis p (i) # 0 para algin i € {1,...,h} (hipétesis alternativa). El estadistico que
se utiliza para contrastar las hipétesis es

p?
n—k

T=n(n+2) i
k=1

donde Py es la autocorrelacion de la muestra en el retardo &, n el tamafio de 1a muestra y /4 es el niimero
de retardos para el que se quiere probar la hipétesis. Bajo la hipétesis nula el estadistico T sigue una
distribucién x}% Para un nivel de significacién «, la region critica para el rechazo de la hipétesis nula
esT > X]z_ o donde X]z_ o €8 €l - cuantil de la distribucion chi cuadrado con & grados de libertad.
Si se aplica el test a los residuos de un modelo los grados de libertad deben ser ajustados para reflejar
la estimacion de parametros. Por ejemplo, para un modelo ARMA(p,q) los grados de libertad serdn

h—p—gq.



17

2.4. Extension de los procesos ARMA

Los procesos no estacionarios mas importantes son los procesos integrados que tienen la propiedad
fundamental que al diferenciarlos se obtienen procesos estacionarios.

Definicion 2.7. Un proceso es integrado de orden h > 0 cuando al diferenciarlo h veces se obtiene un
proceso estacionario.

2.4.1. Procesos ARIMA

Ya se ha visto la importancia de los modelos ARMA para representar series estacionarias. Una genera-
lizacién de esta clase de procesos que incorpora una amplia gama de series no estacionarias es propor-
cionada por los procesos integrados ARIMA, es decir, los procesos que se reducen a los ARMA cuando
se diferencian un nimero finito de veces.

Definicion 2.8. Sea d un entero no negativo, entonces una serie de tiempo {X;};cz es un proceso
ARIMA(p,d,q) si ¥, := (1 —B)dXt Vt € Z es un proceso ARMA(p,q). Esta definicion significa que
X; satisface una ecuacion de la forma

¢"(B)X, := ¢(B)(1 - B)'X, = 0(B)Z, (2.8)

donde
{Z,} ~WN(0,0?)
¢ (z) y 0(z) son dos polinomios de grado p y q respectivamente
0(z) #0 VzeZ tqlz/ <1
El polinomio ¢*(B) := ¢(B)(1 — B)“ tiene una raiz de orden d en z = 1

El proceso ARIMA(p,d,q) {X; }:cz es estacionario < d = 0. En el caso d = 0 se trata de un proceso
ARMA(p,q)

2.4.2. Procesos SARIMA: Procesos estacionales ARIMA

Los procesos ARIMA(p,d,q) permiten representar series con tendencia. Los procesos SARIMA permi-
ten representar series que ademds tienen un comportamiento estacional. Los més sencillos representan
series que aplicando el operador V; se convierten en estacionarias.
Definicion 2.9. Sid y D son enteros no negativos, la serie de tiempo {X; },c7 sigue un proceso SARIMA(p,d, q) x
(P,D,Q), con periodo s si la serie diferenciada ¥; = (1 —B)*(1—B*)PX, es un proceso ARMA causal
definido por

0 (B)D(B")Y, = 0(B)O(B")Z,

donde {Z} ~WN(0,02) y
) =1~ iz gy
®(2)=1-P1z—...—Dpz’
0(z) =1+61z+...+ 6,27
O(z) =1+01z+...+ Oyz?
Notese que el proceso {Y; };cz es causal < ¢(z) Z0y @(z) #0Vze Ctqlz] < 1.






Capitulo 3
Aplicacion

3.1. Analisis de la serie

3.1.1. Introduccion

Se desea realizar un andlisis del nivel del rio Ebro en el municipio de Tudela, Navarra. Para ello se
cuenta con datos diarios desde el dia 28 de noviembre de 2004 al 9 de abril de 2012!. Se va a trabajar
con un fichero que tiene tres columnas: el afio (de 2004 a 2012), el dia (de 1 a 365) y el nivel diario del
rio Ebro en Tudela (medido en metros). Definimos los valores de la variable del nivel del rio, *NivelT’,
como un objeto de R de tipo serie de tiempo con comienzo en el dia 332 del afio 2004 Y fin el dia 99
del afio 2012. La frecuencia serd 365 ya que los datos de los que se disponen son diarios.

3.1.2. Analisis inicial

Una vez definida la serie se representa graficamente para hacer un andlisis previo de la misma.

Nivel de rio Ebro en Tudela

Nivel en m del rio

2006 2008 2010 2012

Afios

En primer lugar se observa en el grafico que la serie no es estacionaria. Presenta cierto comportamiento
periddico anual. Esta periodicidad se podia intuir por la fisica de los datos ya que el nivel de un rio se
ve afectado principalmente por factores climatolégicos los cuales varfan segtin la estaciéon del afio. A
simple vista el grafico no presenta una tendencia claramente definida.

Datos proporcionados por la Confederacién Hidrogréfica del Ebro, CHE
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Se observa heterocedasticidad por lo tanto es necesario transformar la variable para salvar problemas
de heterogeneidad en la varianza. Sea {X;} la serie original se tiene que la mejor transformacién para
estabilizar la varianza es %, dicha transformacion se ha obtenido de la familia de transformaciones de
Box-Cox con la funcién "boxCox” del paquete [5] de R. La siguiente grafica muestra la serie transfor-
mada

Serie transformada

20

Nivel en m del rio
1.0

0.0

Se observa una mejora notable en la heterocedasticidad de los datos.

3.2. Transformacion de la serie a estacionaria: Diferenciacion de la serie

Se observa que la serie transformada se trata de una serie con tendencia y componente estacional. Como
se ha explicado en la seccion 1.1.3, con el fin de convertir la serie a una estacionaria, primero se aplica
el operador V4 con d = 365, quedando asi una serie sin componente estacional pero posiblemente con
tendencia, y a continuacién se aplica el operador V las veces necesarias para eliminar la tendencia, en
este caso se ha aplicado el operador V una sola vez. La serie resultante posee la siguiente gréfica

1.0

niveldifdif
00

-1.0

I I I I I I I
2006 2007 2008 2009 2010 2011 2012

Time

A continuacién se desea comprobar si la serie obtenida es estacionaria o no. Para ello se utiliza el
“kpss.test’ en el cual la hipétesis nula es la estacionariedad de la serie.

KPSS Test for Level Stationarity

data: niveldifdif

KPSS Level = 0.0011972, Truncation lag parameter = 11, p-value = 0.1
Warning message:

In kpss.test(niveldifdif) : p-value greater than printed p-value
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El test devuelve un p-valor mayor que 0,1, por lo que no se rechaza que la serie sea estacionaria (hip6-
tesis nula) a un nivel de significacién o = 0,5.

3.3. Seleccion del modelo

Para la seleccién preliminar del mejor modelo ARMA para modelizar la serie estacionaria, se utilizard el
correlograma de la ACF y la PACF, y el criterio AIC. Los correlogramas resultan utiles ya que la ACF
de un proceso MA(q) se anula para los retardos mayores que ¢, y la PACF de un proceso AR(p) se anula
para los retardos mayores que p. Véase [8, pag. 163-165]

Series serie

Partial ACF
006 -002 002

L1

J:_

0.00 0.02 0.04 0.06 0.08
Lag
Series serie
o _|
[e]
" _
< I
[ s e bt ettt tetetetrietele ettt et deleteletelteteletelrdetete
O F-———2 I_J_L_|__|_J___I___1___l___'________________l___L____l_ ________
I I I I I
0.00 0.02 0.04 0.06 0.08
Lag

Se comprueba que en el caso del correlograma de la PACF para retardos mayores que 14, éste se anula
y en el caso de la ACF es para retardos mayores que 6. Por lo tanto se va a seleccionar el modelo
ARMA(p,q) con menor valor AIC entre todos los modelos ARMA con p € [0,14] y con ¢ € [0,6]. El
minimo AIC se alcanza en el modelo ARMA(6,5).

3.3.1. Modelo seleccionado

El modelo seleccionado cuenta con la siguiente informacién:

Series: serie
ARIMA(6,0,5) with non-zero mean
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Coefficients:
arl ar?2 ar3 ar4d arb ar6 mal ma2 ma3
0.4559 -0.1119 0.2555 -0.5776 0.7507 -0.0745 -0.4402 0.0381 -0.2798
s.e. 0.0737 0.0474 0.0344 0.0705 0.0422 0.0218 0.0735 0.0470 0.0350
mad mab mean
0.5376 -0.8013 2e-04
s.e. 0.0735 0.0407 8e-04

sigma”2 estimated as 0.03574: 1log likelihood=555.54
AIC=-1085.08 AICc=-1084.92 BIC=-1010.27

3.4. Validacion del modelo

En primer lugar se calculan los residuos del modelo seleccionado ARMA(2,2) y se transforman ya que
se busca que tengan varianza igual a 1 con el fin de trabajar con los residuos reescalados.

> residuos<-ARMA65$resid[is.na(ARMA65$resid)==F]

> var(residuos)

[1] 0.0360381

> resstan<-residuos/(sum(residuos**2)/length(residuos))**0.5

> var(resstan) #varianza de los residuos estandarizados; sale muy préxima a 1
[1] 1.000429

A continuacién se debe comprobar que los residuos tienen media nula y varianza constante. Si se hace un
estudio grafico se observa que la serie se mueve en torno al cero aunque el andlisis grafico no permite
asegurar la hipdtesis de homocedasticidad. De acuerdo al resultado de [1], incluso en presencia de
heterocedasticidad, los estimadores de un modelo ARMA son consistentes.

Ty SR s
ik W”WW

500 1000 1500 2000

2 0 2 4 8
I

as ts(resstan)

-6
1

(=]

Time

Ahora, se debe comprobar la incorrelacion de los residuos. Se disponen de diferentes técnicas:

Grafico ACF de la serie de los residuos

Si los residuos son incorrelados, aproximadamente el 95 % de los retardos (excepto el de orden 0) debe
estar dentro de las bandas de confianza. En el correlagrama de la ACF se observa que solo dos retardos,el
retardo 16 y el 19, que se salen fuera de la banda, y ademads lo hacen minimamente, por lo que no se
rechaza la incorrelacion.



23

Series resstan
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Test de Ljung-Box

El test de Ljung-Box permite contrastar si los /# primeros retardos de la funcién de autocorrelacion de los
residuos son nulos simultineamente. Mediante un bucle se aplica el test de Ljung-Box para los 7 = 12
primeros retardos. Los p-valores obtenidos mediante dicho test se representan en la siguiente grafica

p values for Ljung-Box statistic

08

p value
. 04
T TR B N

lag

Todos son mayores que 0,05 por lo que no se rechaza la hipétesis nula, es decir los A primeros retardos
son incorrelados simultdneamente, a un nivel de significacién o = 0,05.

3.5. Calculo de predicciones

Uno de los principales intereses de estudiar el comportamiento de series temporales y buscar modelos
que se ajusten a ellas, es poder predecir datos futuros. Se quieren hacer predicciones tanto de la serie
estacionaria como de la serie original del mes siguiente, es decir, mayo de 2012.

Prediccion de la serie estacionaria

> predARMA65<-predict (ARMA65,30)

> predARMA65

Time Series:

Start = c(2012, 100)

End = c(2012, 129)

Frequency = 365

[1] -0.0040497982 -0.0235517394 -0.0061503438 0.0169979332 -0.0015990159
[6] 0.0245292487 0.0019294353 -0.0149035176 0.0134475181 -0.0082939823
[11] 0.0083750726 0.0164616945 -0.0145991660 0.0096878554 -0.0017597189
[16] -0.0081694249 0.0191636688 -0.0085296186 0.0013069713 0.0091722435
[21] -0.0151640825 0.0123654584 0.0011420996 -0.0083678943 0.0148134890
[26] -0.0111771753 0.0009117048 0.0102703523 -0.0131479282 0.0113394112
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Forecasts from ARIMA(6,0,5) with non-zero mean

1.0

0.0
|

-1.0

I I I I I I I
2006 2007 2008 2009 2010 2011 2012

Las predicciones de la serie estacionaria se mueven en torno al cero al igual que la serie. El drea gris
clara representa el intervalo de confianza de las predicciones al 95 % y el oscuro al intervalo de confianza
al 80 %.

Prediccion de la serie original

Utilizando la funcién ’Arima’, con el fin de predecir los valores de la serie original, el autor del paquete
[7] dice que dicha funcién permite un periodo estacional hasta 350 pero generalmente en la prictica se
quedard sin memoria cada vez que el periodo sea mayor que 200. Por lo tanto, si se quieren obtener
predicciones de la serie original no se puede utilizar el procedimiento descrito. Como alternativa, en
vez de eliminar la componente estacional s, diferenciando la serie original, se va a estimar y una vez
estimada se le restard a la serie original para obtener una serie sin componente estacional. Hay muchos
métodos para estimar la componente estacional pero en este caso se va a estimar s, como suma de
armoénicos.

Asi pues, las predicciones del nivel del rio Ebro en el municipio de Tudela de los cinco pirmeros dias
del mes de mayo de 2012 son las siguientes.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
2012.2712 0.8686082 0.8166249 0.9319771 0.7926284 0.9716833
2012.2740 0.8671177 0.7959707 0.9615414 0.7647538 1.0259203
2012.2767 0.8743753 0.7895470 0.9941357 0.7535809 1.0814403
2012.2795 0.8767288 0.7829571 1.0149854 0.7440948 1.1209478
2012.2822 0.8754646 0.7754839 1.0278096 0.7347319 1.1493181

La primera columna de la tabla obtenida muestra el dia, la segunda la prediccién del caudal del rio,
las dos siguientes muestran la cota inferior y superior del intervalo de confianza para el valor de la
prediccion al 80 % y las dos tltimas lo mismo pero para el 95 %. Para ver el resto de las predicciones
numéricas véase A.
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La gréfica siguiente muestra la prediccién completa para el mes de mayo de 2012.

Forecasts from Regression with ARIMA(6,1,5) errors

2006 2008 2010 2012

El 4rea gris clara representa el intervalo de confianza de las predicciones al 95 % y el oscuro al intervalo
de confianza al 80 %. Se prevee un descenso del caudal del rio Ebro en el municipio de Tudela para el
mes de mayo de 2014.
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