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Prólogo

Son muchos los campos en los que se desea conocer el comportamiento futuro de ciertos fenómenos con
el objetivo de adelantarse a los acontecimientos. Debido a esta necesidad aparece el estudio de series
temporales cuya principal finalidad es predecir lo que ocurrirá con una variable en el futuro a partir del
comportamiento de esa variable en el pasado y de otros factores que puedan influir. La metodología
actual para analizar series temporales es la concurrencia de varias líneas de trabajo desarrolladas en
distintos campos científicos. Así pues, quedan bien diferenciados cinco campos de trabajo principales
que han permitido la evolución de dicho análisis.

El primero aparece en la primera mitad del siglo XX y tiene sus orígenes en los estudios de series
astronómicas y climáticas. Esto dio lugar a la teoría de procesos estocásticos estacionarios desarrollada
por los matemáticos Kolmogorov, Wiener y Cramer. El segundo campo es el desarrollo de los métodos
de alisado inventados con el fin de prever series de venta y producción por investigadores operativos
en la década 1960-1970 e impulsado por la facilidades de calculo que les proporcionaban los primeros
ordenadores. El tercero, desarrollado en los años 70, es la teoría de predicción y control de sistemas
lineales estimulada por el desarrollo de la ingeniería aeronáutica y espacial. El cuarto es desarrollado
por estadísticos y economistas en los últimos veinte años del siglo XX y es la teoría de procesos no
estacionarios y no lineales. Para terminar, el quinto campo se trata de los modelos multivariantes y los
métodos de reducción de la dimensión en sistemas dinámicos.

Así pues,los métodos empleados para el análisis de series de tiempo actuales son deudores de las in-
vestigaciones de matemáticos, estadísticos, ingenieros, físicos y economistas durante el siglo XX para
resolver el problema de predicción y control de variables para sistemas dinámicos.

Cabe destacar el trabajo realizado en los años 60 por los británicos George E. P. Box (1919-2013) y
Gwilym Jenkins (1932-1982) ya que fruto de sus investigaciones es su célebre libro [2] Box y Jenkins
1970 que marca un hito en el análisis de series temporales al presentar una metodología unificada para
estudiar series estacionarias y no estacionarias, estacionales o no y aplicar estos modelos en la práctica.
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Summary

A time series {Xt}t∈T is a set of variables indexed in time. In many fields knowing the future behavoir
of some phenomens is really useful to plan and prevent. The main utility for the time series is to predict
what will happen to a variable at the future knowing what has happened to this variable in the past and
all the other facts which can modify this variable. Therefore, the study of the analysis methods and the
prediction of the time series are a topic recently investigated in academic circles and it is in continuing
development.

This work introduces the analysis of the time series showing them the basic concepts and results. The
work is divided into two different parts. The first one (Chapters 1 and 2) talks about the theoretical part,
where the basic concepts are defined to analyse a time serie. The second one (Chapter 3) shows a simple
application of the analysis of a particular time serie through R, which is a frame and a program language
with an analysis statistical view.

At the first chapter some basic ideas of stochastic processes and the analysis of time series are explained.
It is really important the concept of stationary time series, due to the basic models of temporary series
are generally models for the stationary series. It is introduced the process of white noise as one of the
stationary processes more important because it is fundamental to define other concepts which are more
complex. We call white noise to every process {Zt}t∈Z is a sequence of uncorrelated random variables,
each with zero mean and variance σ2. This is indicated by the notation {Zt} ∼WN(0,σ2).
Generally, in practice, it is unusual to count with this type of series, so being able to transform any serial
time to a stationary serie is really important to be able to proceed to the modelling of this. At this chapter
the method of differencing let us get this transformation done.
Concepts as the autocovariance function γ(·) and autocorrelation function ρ(·) are basic for the study
of any temporal series, and so the estimation of this functions from some given data.
At the end of the chapter it is considered the problem to predict variables of any stationary series having
the goal to find a lineal combination of the past values which can predict with the minimum failure.

At the second chapter the lineal processes are presented, autoregressive process of order p, AR(p), and
moving-average process of order q, MA(q), all of them defined for stationary series.
At the first part, an important parametric family of models for temporary series, the autoregressive
moving-average, or ARMA(p,q), processes. It is said that {Xt}t∈Z is an ARMA(p,q) if it is stationary
and can be expressed as

Xt −φ1Xt−1− ...−φpXt−p = Zt +θ1Zt−1 + ...+θqZt−q

where {Zt} ∼WN(0,σ2) and polynomials φ(z) = 1− φ1z− ...− φpzp y θ(z) = 1+ θ1z+ ...+ θqzq

haven’t got common roots.
Secondly the autocovariance function and the autocorrelation of a process ARMA are calculated and
the concept of the autocorrelation parcial function is defined and also the algorithm to calculate the
autocorrelation partial function for an ARMA process.
At the third part of the chapter, the aim is to find the model ARMA(p,q) which represents those data the
best. The ARMA models are models of stationary processes therefore, we just have to adjust an ARMA if
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VI Capítulo 0. Summary

the serie is stationary. Once you have identified and adjusted the model, it is always necessary to prove
its validity, which is developed at the end of the third section.

Eventually, at the last section two important extensions of the models ARMA are introduced. Firstly, a
generalization of the ARMA processes which adds a wide range of non-stationary processes, the inte-
grated ARMA processes or ARIMA. And secondly, an extension of the ARIMA processes (and so the
ARMA processes) are the stationary processes ARIMA and the processes SARIMA.

At the forth chapter it is done an analysis of the level of the Ebro river in Tudela, Navarra. To do that
we have the daily data from 28th November 2004 to 9th April 2012, data from the Ebro hydrographical
confederation.
The goal is to predict the future values of the river level with the past values availables.

At the Anexo A you can find the code which has been used to program the practice part of the work.
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Capítulo 1

Introducción a las series temporales y
conceptos básicos

1.1. Series temporales

En este capítulo se presentan algunas ideas básicas de procesos estocásticos y del análisis de series de
tiempo. De particular importancia son los conceptos de estacionariedad, las funciones de autocovarianza
y autocorrelación que se desarrollaran a lo largo del capítulo. Se describen algunas técnicas estándar para
la eliminación y estimación de la tendencia y estacionalidad de una serie temporal observada.

1.1.1. Definiciones previas

Definición 1.1. Se denomina proceso estocástico a toda familia {Xt}t∈T de variables o vectores aleato-
rios definidos sobre el mismo espacio de probabilidad (Ω ,A ,℘).
Definición 1.2. Para p≥ 1 definimos el espacio L p(Ω ,A ,℘) como el espacio de variables aleatorias
reales X : Ω −→ R tal que E(|X |p)< ∞.
Definición 1.3. Llamamos proceso estocástico de segundo orden a todo proceso estocástico {Xt}t∈T

con valores en R y y Xt ∈L 2(Ω ,A ,℘), tal que su función de medias m(t) y su función de covarianzas
Γ (s, t) son definidas ∀t ∈ T como:

m : T −→ R

t 7−→ m(t) = E(Xt)

Γ : T 2 −→ R

(s, t) 7−→ Γ (s, t) =Cov(Xs,Xt) = E(XsXt)−E(Xs)E(Xt)

El proceso será centrado si ∀t ∈ T se tiene que m(t) = 0, en este caso Γ (s, t) = E(XsXt).
Definición 1.4. Llamamos serie temporal a todo proceso estocástico de segundo orden indexado por N
o Z. Sin pérdida de generalidad a partir de ahora se trabajará con {Xt}t∈Z .

De una serie temporal nos interesa describir el pasado y realizar predicciones para el futuro. Para conse-
guir estos objetivos es necesario establecer un modelo de probabilidad que represente el comportamiento
de las variables Xt de la serie y permita realizar inferencia.
Las series temporales aparecen en muchos campos del conocimiento

Economía Tasas de desempleo, producto interior bruto anual,rendimientos mensuales obtenidos
en la Bolsa de Madrid en el periodo 1988 a 2000,...
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2 Capítulo 1. Introducción a las series temporales y conceptos básicos

Demografía Población Europea durante los años 2000 y 2017, mortalidad y natalidad anual de
un país,...

Climatológica Precipitaciones diarias, temperaturas máximas, emisiones anuales de CO2, con-
centración media de nitratos en el agua,...

Medicina Casos de gripe durante los meses de invierno de los últimos 10 años, número de vacu-
naciones en un centro médico,...

1.1.2. Tipos de series tamporales

Serie estacionaria
Una serie temporal {Xt}t∈Z es estacionaria si la función medias m(t) y la función covarianzas
Γ (s, t) son invariantes por traslación de tiempo. Esto es:

1. E(X2
t )< ∞

2. m(t) = m ∀t ∈ Z y m constante

3. Γ (s, t) =Cov(Xs,Xt) =Cov(Xs+h,Xt+h) = Γ (s+h, t +h) ∀s, t,h ∈ Z

En particular eso implica que una serie temporal estacionaria es una serie estable con valores que
oscilan en torno a un nivel medio fijo con una variabilidad constante.
Ejemplo 1.1. Uno de los ejemplos mas importantes de proceso estacionario es el conocido co-
mo ruido blanco ya que presenta un papel fundamental en la definición de otros procesos mas
complejos. Llamamos ruido blanco a todo proceso {Zt}t∈Z de variables aleatorias con la misma
varianza, centradas e incorreladas. Se denotan como {Zt} ∼WN(0,σ2).

Serie con tendencia
Un modelo para series con tendencia es

Xt = mt +Yt

donde mt es la componente de tendencia e Yt es una serie estacionaria de media nula, e.d, E(Yt)= 0

Serie estacional
Es una serie cuyo comportamiento se repite periódicamente. Un modelo para una serie estacional
es

Xt = st +Yt

donde st es la componente estacional de periodo d, esto es st−d = st = st+d , e Yt es una serie
estacionaria de media nula. Se suele imponer que ∑

d
i=1 si = 0.

Serie con tendencia y componente estacional
Como su propio nombre indica, este es un tipo de serie que posee tanto componente de tendencia
como componente estacional. Un modelo para este tipo de series es

Xt = mt + st +Yt

donde mt es la componente de tendencia, st es la componente estacional e Yt es una serie estacio-
naria de media nula.

1.1.3. Conversión a una serie estacionaria

Generalmente los modelos básicos de series temporales son modelos para series estacionarias pero
raramente, en la práctica, aparecen series estacionarias. Por lo que poder transformar cualquier serie a
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una serie estacionaria cobra una gran importancia para poder proceder a la modelización de ésta. Una
serie puede no ser estacionaria en la varianza (cuando la variabilidad se modifica con el tiempo), en la
media (cuando el nivel de la serie no es estable en el tiempo, pudiendo en particular tener tendencia
creciente o decreciente), o en otras características de la distribución de las variables.

Estabilización de la varianza

Para la estabilización de la varianza es necesario llevar a cabo algún tipo de transformación de los
datos. La transformación mas común es trabajar con el logaritmo de los datos iniciales, pero ésta no
es siempre la mejor opción. Las transformaciones de Box y Cox son una familia de transformaciones
usadas en estadística para corregir la heterocedasticidad. Para ver una explicación mas detallada de la
familia de transformaciones de Box y Cox ver [12, pág. 105-106].

Estabilización de la media

Hay dos tipos de enfoques para la conversión de la serie no estacionaria en media a una estacionaria.

− El primer enfoque consiste en estimar las componentes deterministas mt y st y una vez estimadas
restarlas a la serie original con la esperanza de que la componente residual (o ruido) Yt obtenida
sea una serie temporal estacionaria.

− Otro enfoque ampliamente desarrollado por Box y Jenkins en [2] consiste en aplicar los opera-
dores de diferenciación (tanto el operador diferencia O, como el operador diferencia estacional
de orden d ,Od ) hasta que las observaciones diferenciadas se parezcan a la realización de alguna
serie temporal estacionaria.

La selección de la mejor técnica para obtener una serie estacionaria dependerá de diversos factores (si
se necesitan estimadores de las componentes o no, si la componente estacional varía con el tiempo,...).
En esta parte del capítulo se desarrollará el método de diferenciación que será el utilizado en la parte
práctica del trabajo, capítulo 3.

(a) Serie con tendencia Xt = mt +Yt

Definimos el operador diferencia como:

OXt = Xt −Xt−1 = (1−B)Xt

donde B es el operador desplazamiento hacia atrás para el cual se define la siguiente operación:

B jXt = Xt− j ∀ j ∈ N

Toda tendencia polinomial de orden k se reduce a una constante aplicando el operador

Ok = (1−B)k = (1−B) (k...(1−B).

Por lo tanto si a una serie Xt = mt +Yt con una tendencia polinomial de orden k se le aplica el
operador O k veces obtenemos:

OkXt = akk!+Wt

donde ak es el coeficiente de tk y Wt es una serie estacionaria. Normalmente no sabemos el orden de
la tendencia así pues aplicamos el operador O tantas veces como sea necesario para que OkXt sea
estacionaria.
Ejemplo 1.2. Sea mt = a0 +a1t una tendencia polinomial de orden 1. Aplicando el operador O se
obtiene

Omt = mt −mt−1 = a0 +a1t− (a0 +a1(t−1)) = a1
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(b) Serie estacional Xt = st +Yt

En este caso definimos el operador diferencia estacional de orden d como:

OdXt = Xt −Xt−d = (1−Bd)Xt

Aplicando este operador a nuestra serie con componente estacional obtenemos

OdXt = (1−Bd)Xt = (1−Bd)(st +Yt) = st −Bdst +Yt −BdYt = st − st−d +Yt −Yt−d = Yt −Yt−d

que se trata de una serie estacionaria.
Observación 1.1. Es importante destacar que Od 6= Od .

(c) Serie con tendencia y componente estacional Xt = mt + st +Yt

Para eliminar la tendencia y la componente estacional de nuestra serie vamos a proceder de la
siguiente manera:

(1) Aplicamos el operador Od a la serie Xt = mt + st +Yt con estacionalidad de periodo d y obtene-
mos

OdXt = mt −mt−d +Yt −Yt−d

serie sin componente estacional con tendencia mt −mt−d posiblemente distinta a la de la serie
inicial.
Puede suceder que al eliminar la componente estacional se anule la tendencia por lo que ya se
tendría la serie estacionaria deseada. En caso contrario:

(2) eliminamos la tendencia aplicando O a OdXt tantas veces como sea necesario para obtener una
serie estacionaria.

1.1.4. Función de autocovariancia y autocorrelación

Anteriormente se ha definido la función de covarianza como la función de dos parámetros definida por

Γ (s, t) =Cov(Xs,Xt)

En el caso de series estacionarias se puede definir la función de autocovarianza de la serie de la siguiente
manera:
Definición 1.5. Sea {Xt}t∈Z una serie estacionaria. Definimos la función de autocovarianza (ACFV) de
{Xt}t∈Z en el retardo h como

γ(h) =Cov(Xt+h,Xt) = E(Xt+hXt) ∀h ∈ Z

Propiedades básicas de γ(·)

• γ(0)> 0
Se trata simplemente de la afirmación Var(Xt) > 0. Se tiene que si Var(Xt) = 0 entonces Xt es una
variable degenerada, es decir, Xt = cte.

• |γ(h)| ≤ γ(0)
Se trata de una consecuencia inmediata del hecho de que las correlaciones son menores o iguales a 1
en valor absoluto (o la desigualdad de Cauchy-Schwarz).

• γ(h) = γ(−h)
La ACFV es una función simétrica.

• γ(h) es una función no definida negativa
La demostración de esta propiedad se puede encontrar en [6, pág 8].
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Definición 1.6. Sea {Xt}t∈Z una serie estacionaria. Definimos la función de autocorrelación (ACF) de
{Xt}t∈Z a partir de la ACFV como

ρ(h) =
γ(h)
γ(0)

∀h ∈ Z

1.1.5. Estimación de la media y las funciones de autocovarianza y autocorrelación

Un proceso estacionario {Xt}t∈Z bajo la hipótesis de normalidad queda totalmente caracterizado por su
media µ y su función de autocovarianza γ(·). Si se tiene un proceso estacionario pero no satisface las
hipótesis de normalidad no queda totalmente caracterizado por µ y γ(·) pero a veces es suficiente, como
en los procesos ARMA que se trabajarán en el capítulo 2.

Estimación de µ

Un estimador natural de la media µ de un proceso estacionario {Xt}t∈Z es la media muestral

X̄n =
X1 + ...+Xn

n

Se trata de un estimador insesgado, es decir, E(X̄n) = µ con varianza

Var(Xn) =
n

∑
i, j=1

Cov(XiX j) =
n

∑
i− j=−n

(n−|i− j|)γ(i− j) =
1
n ∑
|h|<n

(
1− |h|

n

)
γ(h),

que cumple la siguiente propiedad.

Teorema 1.1. Si {Xt}t∈Z es una serie estacionaria con media µ y función de autocovarianza γ(.), se
tiene que cuando n−→ ∞

Var(X̄n) = E[(X̄n−µ)
2
]−→ 0 si γ(n)−→ 0

y

nE[(X̄n−µ)
2
]−→ ∑

∞
h=−∞ γ(h) si ∑

∞
h=−∞

|γ(h)|< ∞

Demostración.

nVar(Xn) = ∑
|h|<n

(
1− |h|

n

)
γ(h)≤ ∑

|h|<n
|γ(n)|

Si γ(n) −→ 0 cuando n −→ ∞ entonces lı́mn→∞
1
n ∑|h|<n |γ(n)| = 2lı́mn→∞ |γ(n)| = 0 y por lo tanto

Var(Xn)−→ 0

Si ∑
∞
h=−∞ |γ(n)|< ∞ entonces por el teorema de la convergencia dominada

lı́m
n→∞

nVar(X̄n) = lı́m
n→∞

∑
|h|<n

(
1− |h|

n

)
γ(h) =

∞

∑
h=−∞

γ(h)
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Inferencia sobre µ

Para hacer inferencia sobre µ es necesario conocer la distribución de X̄n. Sea una serie de tiempo {Xt}
gaussiana se tiene que

X̄n ∼ N

µ,
∑|h|<n

(
1− |h|n

)
γ(n)

n


Para muchas series de tiempo no gaussianas cuando el tamaño de la muestra se hace grande se puede
aproximar la distribución de X̄n por una normal de media µ y varianza 1

n ∑|h|<∞
γ(h).Véase [3, pág 219].

De este resultado se deduce que un intervalo de confianza al 0,95 para µ es(
Xn−1′96ν

1/2/
√

n,Xn +1′96ν
1/2/
√

n
)

donde ν = ∑|h|<∞
γ(h). Por supuesto ν generalmente no es conocido y por tanto debe ser estimado.

Estimación de la función de autocovarianza γ(·) y autocorrelación ρ(·)

Definición 1.7. Sea la serie temporal {Xt}t∈Z se define la función de autocovarianza muestral y la
función de autocorrelación muestral como

γ̃(h) =
1
n

n−|h|

∑
t=1

(Xt+|h|− X̄n)(Xt − X̄n)

y

ρ̃(h) =
γ̂(h)
γ̂(0)

respectivamente.

Éstos van a ser los estimadores de γ(·) y ρ(·), γ̂(·) y ρ̂(·). Ambos estimadores son asintóticamente
insesgados. Si solo se tienen los datos observados X1, ...,Xn es imposible dar estimaciones razonables
de γ(h) y de ρ(h) para h ≥ n. Incluso para h un poco por debajo de n las estimaciones γ̂(h) y ρ̂(h) no
son fiables ya que hay pocos pares (Xt+h,Xt) disponibles. En [2, pág 33] Box y Jenkins sugieren que n
debe ser al menos 50 y h debe ser menor o igual que n

4 .

Inferencia sobre la función de autocorrelación ρ(·)

Para hacer inferencia relativa a ρ(h) necesitamos la distribución muestral de ρ̂(h). La distribución de
ρ̂(h) puede ser bien aproximada por una distribución normal cuando el tamaño de la muestra es grande.
Se tiene que ρ̂k = (ρ̂(1), ..., ρ̂(k))′ está distribuido para n grande de la siguiente manera

ρ̂k ∼ N(ρk, n−1W )

donde ρk = (ρ(1), ...,ρ(k))t y W es la matriz de covarianza cuyo elemento (i, j) viene dado por la
fórmula de Bartlett

wi, j =
∞

∑
k=1
{ρ(k+ i)+ρ(k− i)−2ρ(i)ρ(k)}{ρ(k+ j)+ρ(k− j)−2ρ( j)ρ(k)}

Se puede ver el desarrollo de este resultado en [3, pág 215].
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1.2. Predicción lineal de series temporales

Se considera el problema de predecir valores Xn+h, h> 0 de una serie estacionaria con media µ y función
de autocovarianza γ conocidas, a partir de los valores X1, ...,Xn. El objetivo es encontrar la combinación
lineal de {Xn, ...,X1,1} que prediga Xn+h con el mínimo error cuadrático medio. Dicho estimador se
denotará por PnXn+h o X̂n+h y será de la forma PnXn+h = a0 + a1Xn + ...+ anX1 donde los coeficientes
a0, ...,an se obtienen como los valores que minimizan

S(a0, ...,an) = E[(Xn+h−PnXn+h)
2] = E[(Xn+h− (a0 +a1Xn + ...+anX1))

2]

Puesto que S es una función cuadrática de a0, ...,an y mayor o igual que cero, está claro que hay al
menos un valor (a0, ...,an) que minimiza S y dicho valor satisface

∂S(a0, ...,an)

∂a j
= 0 ∀ j = 0, ...,n (1.1)

Al evaluar las derivadas 1.1 se obtienen las ecuaciones

E[Xn+h−a0−
n

∑
i=1

aiXn+1−i] = 0 (1.2)

E[(Xn+h−a0−
n

∑
i=1

aiXn+1−i)Xn+1− j] = 0 (1.3)

donde j ∈ {1, ...,n}. Estas ecuaciones se conocen como las ecuaciones de predicción y sirven para
obtener los valores de a0, ...,an. Se pueden escribir con notación vectorial de la siguiente manera

a0 = µ(1−
n

∑
i=1

ai)

Γnan = γn(h) (1.4)

donde

an = (a1, ...,an)
t

Γn = [γ(i− j)]ni, j=1

γn(h) = (γ(h),γ(h+1), ...,γ(h+n−1))′

En consecuencia

PnXn+h = µ +
n

∑
i=1

ai(Xn+1−i−µ) (1.5)

donde an satisface 1.4. A partir de 1.5 el valor esperado del error de predicción es cero y el error de
predicción en media cuadrática es

E[(Xn+h−PnXn+h)
2] = γ(0)−2

n

∑
i=1

aiγ(h+ i−1)+
n

∑
i=1

n

∑
j=1

aiγ(i− j)a j =γ(0)−a
′
nγn(h)

Ejemplo 1.3. Se han observado valores X1 y X2 de una serie de tiempo centrada con γ(0)= σ2

(1−φ 2)
,γ(1)=

σ2φ

(1−φ 2)
y γ(2) = σ2φ 2

(1−φ 2)
. Se quiere predecir el valor de X3 dados X1 y X2. Se tiene por 1.4 y 1.5 que(

γ(0) γ(1)
γ(1) γ(0)

)(
a1
a2

)
=

(
γ(1)
γ(2)

)
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σ2

1−φ 2

(
1 φ

φ 1

)(
a1
a2

)
=

σ2

1−φ 2

(
φ

φ 2

)
(a1,a2)

t = (φ ,0)t es solución y por lo tanto se tiene que la mejor predicción lineal de X3 es P2X3 = φX2.
Proposición 1.1. Las ecuaciones 1.2 y 1.3 determinan PnXn+h de manera única.

Demostración. Sean {a j, j = 1, ...,n} y {b j, j = 1, ...,n} dos solunciones y se define Z como la diferen-
cia entre los predictores correspondientes, es decir

Z = b0−a0 +
n

∑
j=1

(b j−a j)Xn−( j−1)

Entonces

Z2 = Z(b0−a0 +
n

∑
j=1

(b j−a j)Xn+1− j)

Pero a partir de 1.2 y 1.3 se tiene que E(Z) = 0 y E(ZXn+1− j) = 0 ∀ j = 1, ...,n.
En consecuencia E(Z2) = 0 y Z = 0.

Si {Xt}t∈Z es una serie de tiempo estacionaria, las ecuaciones 1.4 y 1.5 resuelven completamente el pro-
blema de determinar el mejor predictor lineal PnXn+h de Xn+h a partir de {X1, ...,Xn}. Sin embargo, este
enfoque directo requiere resolver un sistema de n ecuaciones lineales, que puede resultar computacio-
nalmente costoso para n grande. Para simplificar este problema, utilizamos el predictor de un solo paso
PnXn+1 (basado en n observaciones previas) para simplificar el cálculo de Pn+1Xn+2, es decir, utilizar un
algoritmo recursivo. Dos de los ejemplos mas importantes de algoritmos recursivos son el algoritmo de
Durbin-Levinson y el algoritmo de innovaciones. Ambos algoritmos quedan ampliamente desarrollados
en [4, pág. 63-75].



Capítulo 2

Procesos ARMA y extensiones

En este tema introducimos una importante familia de modelos para series temporales estacionarias, los
procesos de media móvil auto-regresivo o ARMA. Los procesos ARMA desempeñan un papel clave en
el modelado de series de tiempo.

2.1. Procesos básicos

2.1.1. Procesos lineales

Definición 2.1. Se dice que una serie de tiempo {Xt}t∈Z es un proceso lineal si se puede expresar como

Xt =
∞

∑
k=−∞

akZt−k

donde ∑
∞
k=−∞ a2

k < ∞ , ak ∈ R y {Zt} ∼WN(0,σ2). Al ser combinación lineal de {Zt} se trata de un
proceso estacionario.

2.1.2. Procesos auto-regresivos

Definición 2.2. Se dice que una serie de tiempo {Xt}t∈Z es un proceso auto-regresivo de orden p, AR(p),
si es estacionario y se puede expresar como

Xt = φ1Xt−1 +φ2Xt−2 + ...+φpXt−p +Zt ∀t ∈ Z

donde {Zt} ∼WN(0,σ2).

Un AR(p) tiene solución estacionaria y ésta es causal (concepto que será explicado mas adelante ) si el
polinomio auto-regresivo φ(z) = 1−∑

p
k=1 φkzk tiene todas sus raíces fuera del disco unidad cerrado, es

decir, φ(z) 6= 0 ∀z ∈ C tq |z| ≤ 1. La función de autocovarianza de un AR(p) no posee una forma
explícita excepto en el caso AR(1).
Ejemplo 2.1. Sea {Xt}t∈Z un proceso AR(1), Xt puede expresarse como

Xt = φXt−1 +Zt (2.1)

La solución será estacionaria siempre que |φ |< 1 ya que 1−φz = 0⇔ z = 1
φ

y |z|> 1⇔ |φ |< 1.
De 2.1 se obtiene de manera recursiva la siguiente relación:

Xt = φ(φXt−2 +Zt−1)+Zt = φ
2Xt−2 +φZt−1 +Zt = φ

2(φXt−3 +Zt−2)+φZt−1 +Zt = ...=
∞

∑
k=0

φ
kZt−k

9
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Por lo tanto sea h≥ 0

γ(h) =Cov(Xt+h,Xt) =Cov(
∞

∑
l=0

φ
lZ(t+h)−l,

∞

∑
k=0

φ
kZt−k) =

∞

∑
l=0

∞

∑
k=0

φ
k+h

φ
kCov(Z(t+h)−l,Zt−k)

Obsévese que si (t +h)− l 6= t− k, es decir, l 6= k+h por la incorrelación de las variables {Zt} ∀t ∈ Z
se tiene que Cov(Z(t+h)−l,Zt−k) = 0 y por tanto

γ(h) = σ
2

∞

∑
k=0

φ
k+h

φ
k = σ

2
φ

h
∞

∑
k=0

(φ 2)
k
=

σ2φ h

1−φ 2

Por la paridad de la función de autocovarianza se tiene que ∀h ∈ Z

γ(h) =
σ2φ |h|

1−φ 2

2.1.3. Procesos de media móvil

Definición 2.3. Se dice que una serie de tiempo {Xt}t∈Z es un proceso de media movil de orden q,
MA(q), si es estacionario y ∀t ∈ Z puede expresarse como

Xt = Zt +θ1Zt−1 + ...+θqZt−q

con θ0 = 1 y {Zt} ∼WN(0,σ2).

Notar que un MA(q) es un caso particular de un proceso lineal.

Función de autocovarianza de un proceso MA(q)

La función de autocovarianza de un proceso MA(q) viene dada por la siguiente expresión

γ(h) =


(1+θ 2

1 + ...+θ 2
q )σ

2 si h = 0
(θ|h|+θ1θ|h|+1 + ...+θq−|h|θq)σ

2 si |h|= 1, ...,q
0 si |h|> q

Es importante destacar que para retardos mayores que q la función de autocovarianza de un proceso
MA(q) se anula y por lo tanto sucederá lo mismo con la función de autocorrelación dada la definición
de ésta. Este hecho es importante para identificar el rango de valores en el que se mueve q a la hora de
modelizar una serie de datos a través de un proceso de media móvil.
Ejemplo 2.2. Sea {Xt}t∈Z un proceso MA(1), Xt puede expresarse como

Xt = θZt−1 +Zt

Por lo tanto
γ(h) =Cov(Xh+t ,Xt) =Cov(Xh,X0) =Cov[θZh−1 +Zh,θZ−1 +Z0]

puesto que {Zt} ∼WN(0,σ2) se tiene que

γ(h) = E(θ 2Zt−1Z−1 +θZt−1Z0 +θZtZ−1 +ZtZ0)

γ(t) =

 (θ 2 +1)σ2 si h = 0
θσ2 si |h|= 1
0 en cualquier otro caso
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2.2. Procesos ARMA

Definición 2.4. Se dice que una serie de tiempo {Xt}t∈Z es un proceso ARMA(p,q) si es estacionario y
si puede expresarse como:

Xt −φ1Xt−1− ...−φpXt−p = Zt +θ1Zt−1 + ...+θqZt−q

siendo {Zt} ∼WN(0,σ2) y los polinomios φ(z) = 1−φ1z− ...−φpzp y θ(z) = 1+θ1z+ ...+θqzq no
poseen raíces comunes.

Conviene expresar la definición en términos del operador retardo, B, visto en el capítulo anterior.

φ(B)Xt = θ(B)Zt (2.2)

donde φ(B) = 1−φ1B− ...−φpBp y θ(B) = 1+θ1B+ ...+θqBq.
Los procesos AR(p) y MA(q) no son sino casos particulares de los procesos ARMA(p,q), que se obtie-
nen con θ(z)≡ 1 y φ(z)≡ 1, respectivamente.

Condición para la existencia y unicidad de una solución estacionaria de un proceso ARMA

La condición para que un proceso ARMA(p,q) posea una solución estacionaria y que ésta a su vez sea
única, es que

φ(z) = 1−φ1z− ...−φpzp 6= 0 ∀z ∈ C tq |z|= 1

En efecto, si φ(z) 6= 0 ∀z en el círculo unidad entonces ∃δ > 0 t.q. se puede escribir el desarrollo en
series de potencias de 1

φ(z) de la siguiente manera

1
φ(z)

=
∞

∑
j=−∞

χ jz j 1−δ < |z|< 1+δ y
∞

∑
j=−∞

|χ j|< ∞

Por lo tanto se define el operador χ(B) = 1
φ(B) = ∑

∞
j=−∞ χ jB j y aplicándolo a la ecuación 2.2 se obtiene

Xt = χ(B)θ(B)Zt = ψ(B)Zt =
∞

∑
J=−∞

ψ jZt− j (2.3)

Dónde los coeficientes {ψ j} no tienen una forma explícita, en general, vienen dados por

ψ(z) =
∞

∑
j=0

ψ jz j = χ(z)θ(z) =
θ(z)
φ(z)

(2.4)

Un caso sencillo en el que si se puede encontrar la expresión explícita de los coeficientes es en el caso
que se tenga un proceso ARMA(1,1), ejemplo que se muestra a continuación.
Ejemplo 2.3. Sea {Xt}t∈Z un proceso ARMA(1,1) que satisface la siguiente relación

Xt −φXt−1 = Zt +θZt−1 con |φ |< 1 (2.5)

de 2.3 y 2.4 se tiene que
(1−φz)(ψ0 +ψ1z+ψ2z2 + ...) = 1+θz

ψ0 +ψ1z+ψ2z2 + ...−φψ0z−φψ1z2− ...= 1+θz

Identificando coeficientes se tiene que

ψ0 = 1
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ψ1−φψ0 = θ ⇒ ψ1 = θ +φ

ψ−φψ1 = 0⇒ ψ2 = φ(θ +φ)

...

En resumen {
ψ0 = 1
ψ j = (φ +θ)φ j−1 j ≥ 1

(2.6)

Es decir

Xt = Zt +(φ +θ)
∞

∑
j=1

φ
j−1Zt− j

Causalidad e invertibilidad

Definición 2.5. Un proceso {Xt}t∈Z ARMA(p,q) se dice causal si ∃ constantes {ψt} con ∑
∞
j=0 |ψ j|< ∞

de manera que

Xt =
∞

∑
j=0

ψ jZt− j

La causalidad es equivalente a la condición

φ(z) 6= 0 ∀z ∈ C tq |z| ≤ 1

La demostración se puede encontrar en [3, pág 85].
La causalidad permite que el proceso {Xt} pueda ser expresado en términos de los valores pasados del
proceso ruido blanco {Zt}.
Definición 2.6. Un proceso {Xt}t∈Z ARMA(p,q) se dice invertible si ∃ constantes {π j} con ∑

∞
j=0 |π j|<

∞ de manera que

Zt =
∞

∑
j=0

π jXt− j

La invertibilidad es equivalente a la condición

θ(z) 6= 0 ∀ ∈ zC tq |z| ≤ 1

La demostración se puede encontrar en [3, pág 87].
La invertibilidad permite que Zt se exprese en términos de Xs con s≤ t. Observar que la causalidad y la
invertibilidad no son propiedades de Xt sino mas bien de la relación entre los procesos {Xt} y {Zt}
Proposición 2.1. Si {Xt}t∈Z es un proceso ARMA(p,q) definido por 2.2 donde θ(z) 6= 0 si |z| = 1
entonces siempre es posible encontrar polinomios φ̃(z) y θ̃(z) y una secuencia de ruidos blancos {Wt}
de manera que

φ̃(B)Xt = θ̃(B)Wt

donde φ̃(z),θ̃(z) son distintos de 0 ∀z ∈ C tq |z| ≤ 1. Véase [3, pág 127]

Esta es una proposición importante ya que permite, sin pérdida de generalidad, representar cualquier
proceso ARMA que no sea causal y/o invertible mediante un modelo equivalente que si lo sea. Por ello
se puede centrar la atención en los modelos ARMA causales e invertibles.

2.2.1. Función de autocovarianza, de autocorrelación y de autocorrelación parcial de
un proceso ARMA

El objetivo de esta sección es el cálculo de la ACVF y la ACF de un proceso ARMA, así como la
presentación y el cálculo de la función de autocorrelación parcial, PACF.
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Función de autocovarianza de un proceso ARMA

Sea {Xt}t∈Z un proceso ARMA(p,q) con solución

Xt =
∞

∑
j=0

ψ jZt− j

y sea h≥ 0 se tiene que

γ(h) =Cov(Xt+h,Xt) =Cov(
∞

∑
l=0

ψlZ(t+h)−l,
∞

∑
j=0

ψ jZt− j) =
∞

∑
l=0

∞

∑
j=0

ψlψ jCov(Z(t+h)−l,Zt− j)

Obsérvese que si (t+h)− l 6= t− j, es decir, l = h+ j se tiene que Cov(Z(t+h)−l,Zt− j) = 0 y por lo tanto

γ(h) = σ
2

∞

∑
j=0

ψ jψh+ j

Debido a la paridad de la función de autocovarianza se tiene que

γ(h) = σ
2

∞

∑
j=0

ψ jψ|h|+ j (2.7)

Nótese que la ACVF no posee una expresión explícita general en términos de los coeficientes φ y θ

(ya que los coeficientes {ψi} no la tienen) y requiere la solución de sistemas de ecuaciones no lineales
que deben resolverse mediante algoritmos numéricos. Un caso particular sencillo que si posee expresión
explícita es para un ARMA(1,1).
Ejemplo 2.4. Sea {Xt}t∈Z un proceso ARMA(1,1) satisfaciendo 2.5. Se tiene por 2.7 que

γ(0)=σ
2

∞

∑
j=0

ψ
2
j =σ

2(1+
∞

∑
j=1

ψ
2
j )=σ

2[1+
∞

∑
j=1

(φ +θ)2
φ
−2 j−2] =σ

2[1+(φ +θ)2
φ
−2

∞

∑
j=1

(φ 2)
j
] =σ

2[1+
(φ +θ)2

1−φ 2 ]

γ(1)=σ
2

∞

∑
j=0

ψ jψ j+1 =σ
2(ψ0ψ1+

∞

∑
j=1

ψ jψ j+1)=σ
2[(φ +θ)+(φ +θ)2

∞

∑
j=1

φ
2 j−1] =σ

2[(φ +θ)+
φ(φ +θ)2

1−φ 2 ]

y finalmente para h ∈ Z tq |h|> 1 se tiene

γ(h) = σ
2(ψ0ψh +

∞

∑
j=1

ψ jψ j+h) = σ
2[(φ +θ)φ h−1 +(φ +θ)2

φ
h−2

∞

∑
j=1

(φ 2)
j
= φ

h−1
γ(1)

Función de autocorrelación de un proceso ARMA

Recuérdese que la ACF es la función ρ(·) que se define a partir de la ACVF como

ρ(h) =
γ(h)
γ(0)

∀h ∈ Z

calculada ya en el apartado anterior.
Ejemplo 2.5. Sea {Xt}t∈Z un proceso ARMA(1,1) satisfaciendo 2.5. Una vez calculada su función de
autocovarianza se obtiene de manera inmediata

ρ(0) = 1

ρ(1) =
θ 2φ +θφ 2 +θ +φ

θ 2 +2φθ +1

ρ(h) = φ
h−1

ρ(1)

donde h ∈ Z tq |h|> 1.
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Función de autocorrelación parcial de un proceso ARMA

La función de autocorrelación parcial PACF en el retardo h de una serie estacionaria es la función de
correlación entre Xt y Xt−h una vez eliminada la dependencia lineal debida a las variables intermedias.
Para su cálculo se procede de la siguiente manera:

1. Se elimina de Xt el efecto de Xt−1, ...,Xt−h+1 mediante la regresión:

Xt = β1Xt−1 + ...+βh−1Xt−h+1 +Ut

donde la variable Ut recoge la parte de Xt no común con Xt−1, ...,Xt−h+1

2. Se elimina de Xt−h el efecto de Xt−1, ...,Xt−h+1 mediante la regresión:

Xt−h = γ1Xt−1 + ...+ γh−1Xt−h+1 +Vt

donde, de nuevo, Vt contiene la parte de Xt−h no común con las observaciones intermedias.

3. El coeficiente de correlación simple entre Ut y Vt es el coeficiente de correlación parcial entre Xt y
Xt−h que se denotará por α(h).

Algoritmo de cálculo de la función de autocorrelación parcial de un proceso ARMA

La PACF de un proceso ARMA es la función α(·) definida de la siguiente manera:

α(0) = 1

α(h) = φhh h≥ 1

donde φhh es la última componente del vector φh = Γ
−1
h γh en el cual

Γh = [γ(i− j)]hi, j=1

γh = (γ(1), ...,γ(h))t

Veáse [3, pág. 171] para el desarrollo de este resultado.

2.3. Modelización con procesos ARMA

Dada una serie de datos, el objetivo es buscar el modelo ARMA(p,q) que mejor represente esos da-
tos. Esto incluye: la elección de p y q, la estimación de la media, de los coeficientes {φi i = 1, ..., p}
{θi i = 1, ...,q} de ambos polinomios y de σ2. Los modelos ARMA son modelos de procesos estacio-
narios por lo tanto, sólo debe ajustarse un ARMA si la serie es estacionaria.
Una vez identificado y ajustado el modelo, siempre es necesario comprobar su validez. Esta parte es la
de validación del modelo y es fundamental en todo análisis de datos.

2.3.1. Estimación de los parámetros

Existen varios métodos de estimación pero el más frecuente es el método de máxima verosimilitud
debido a la buenas propiedades que poseen los estimadores máximo verosímiles. Bajo condiciones
bastante generales, los estimadores máximo verosímiles, son insesgados y asintóticamente normales con
varianzas al menos tan pequeñas como las de cualquier otro estimador lineal e insesgado que resultan
ser los mas eficientes.
Otros métodos para la estimación de los parámetros son el método de mínimos cuadrados, el método
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de Yule Walker, el de las innovaciones,... Estos métodos y otros quedan ampliamente desarollados en el
capítulo 5 de [4].

Estimación máximo verosímil

Si la serie es gaussiana, la muestra Xn
t = {X1, ...,Xn} se puede interpretar como una observación de

una variable aleatoria normal multivariante de dimensión n con matriz de varianzas Γn desconocida.
Supondremos, sin pérdida de generalidad, que µ = 0 ya que si {Xt}t∈Z es una serie estacionaria con
media µ siempre se puede definir la serie centrada {Yn}t∈Z definida de la siguiente manera Yn = Xn−µ .
La función de verosimilitud se obtiene a partir de la función de densidad

L(Γn) = (2π)−n/2(detΓn)
−1/2exp(−1

2
Xn

t
Γ
−1
n Xn)

En un ARMA los elementos de Γn se pueden expresar en términos del vector de parámetros β =
(φ1, ...,φp,θ1, ...,θq,σ

2). Los estimadores máximo verosímiles de dichos parámetros,
β̂ = (φ̂1, ..., φ̂p, θ̂1, ..., θ̂q, σ̂

2), serán aquellos que maximicen la función de verosimilitud. Para encon-
trarlos se deben recurrir a algoritmos numéricos.
Los estimadores máximo verosímiles se desarrollan suponiendo que la distribución conjunta de la mues-
tra es normal multivariante. Sin embargo, se ha probado que incluso aunque la serie {Xt}t∈Z no sea
gaussiana, sólo exigiendo que {Zt} ∼WN(0,σ2), la función de verosimilitud considerada se puede ver
como una medida de bondad de ajuste del modelo y que los estimadores obtenidos maximizándola, si
la muestra es grande tienen las mismas propiedades que los estimadores máximo verosímiles por lo que
se les sigue denotando de la misma manera aunque estrictamente no lo son. Véase [4, pág. 158-164].

2.3.2. Selección del orden p y q

Existen diversos tipos de criterios para seleccionar el orden del modelo.

- Algunos se utilizan de forma preliminar ya que no requieren la estimación del modelo (criterios basa-
dos en la ACF y la PACF) que se explicarán en la parte práctica del trabajo.

- Otros son de carácter confirmatorio y sólo se pueden calcular tras haber estimado los modelos que se
requieren comparar (criterios basados en la comparación de la bondad de ajuste de los modelos).

A continuación se explica una medida bondad del ajuste utilizada con frecuencia en el análisis confir-
matorio, el criterio AIC.

Criterio de información de Akaike (AIC)

El criterio AIC es una medida de la calidad relativa de un modelo estadístico para un conjunto de datos
dado. El AIC maneja un trade-off entre la bondad de ajuste del modelo y la complejidad de éste.
Dicho criterio mide la bondad de ajuste en términos de su verosimilitud.

AIC(β̂ ) =−2ln(L(β̂ ))+2(p+q+1)

Otro criterio similar es el AIC corregido (AICC)

AICC =−2ln(L(β̂ ))+
2(p+q+1)n
(n− p−q−2)

Ambos métodos son asintóticamente equivalentes.
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2.3.3. Diagnóstico del modelo

Las técnicas de validación se basan en los residuos que comparan los valores observados con los valores
predichos por el modelo ajustado. Para validar un modelo es necesario saber cómo es el comportamiento
de los residuos cuando el modelo es adecuado, por lo tanto, si los residuos no presentan ese comporta-
miento se concluirá que el modelo no es adecuado.
Los residuos de un modelo ARMA vienen dados por

Ŵt =
Xt − X̂t(φ̂1, ..., φ̂p, θ̂1, ..., θ̂q)√

rt−1(φ̂1, ..., φ̂p, θ̂1, ..., θ̂q)

donde rt = Ê[(Xt+1− X̂t+1)
2
] es un estimador del error cuadrático medio de X̂t . Si el modelo planteado

es adecuado, Ŵt debe tener propiedades similares a las de una serie WN(0,σ2). Si es conveniente se
puede trabajar también con los residuos reescalados

R̂t =
Ŵt

σ̂

con σ̂ =

√
∑

n
i=1 Ŵ 2

t
n . Cuando el modelo es adecuado los residuos reescalados deben presentar esperanza

nula, varianza constante e igual a 1 e incorrelación; la incorrelación es la condición central para validar
el modelo. Otra propiedad que se suele validar es la normalidad de los residuos pero un resultado de
[3, Sección 10.8] hace que esta condición no sea imprescindible para estimar y hacer inferencia sobre
los parámetros del modelo, pero es una propiedad deseable. Si la serie es normal, la incorrelación es
equivalente a la independencia y por lo tanto podemos asegurar que no queda información por modelizar.

Herramientas estadisticas para las comprobaciones sobre los residuos reescalados

• Esperanza nula y varianza constante e igual a 1
Principalmente se comprueban estudiando el gráfico de los residuos a lo largo del tiempo. Otras
técnicas mas teóricas vienen ampliamente desarrolladas en [8, pág. 326-327]

• Incorrelación
Se dispone de diferentes técnicas para la comprobación de la incorrelación de los residuos. La primera
es representar el correlograma de la ACF de los residuos. Otra técnica es el test de Ljung-Box el cual
permite contrastar si los h primeros retardos de la función de autocorrelación de los residuos son nulos
simultáneamente. El test de Ljung-Box contrasta la hipótesis ρ(1) = ρ(2) = ...= ρ(h) = 0 (hipótesis
nula) contra a la hipótesis ρ(i) 6= 0 para algún i ∈ {1, ...,h} (hipótesis alternativa). El estadístico que
se utiliza para contrastar las hipótesis es

T = n(n+2)
h

∑
k=1

ρ̂2
k

n− k

donde ρ̂k es la autocorrelación de la muestra en el retardo k, n el tamaño de la muestra y h es el número
de retardos para el que se quiere probar la hipótesis. Bajo la hipótesis nula el estadístico T sigue una
distribución χ2

h . Para un nivel de significación α , la región crítica para el rechazo de la hipótesis nula
es T > χ2

1−α,h donde χ2
1−α,h es el α- cuantil de la distribución chi cuadrado con h grados de libertad.

Si se aplica el test a los residuos de un modelo los grados de libertad deben ser ajustados para reflejar
la estimación de parámetros. Por ejemplo, para un modelo ARMA(p,q) los grados de libertad serán
h− p−q.
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2.4. Extensión de los procesos ARMA

Los procesos no estacionarios mas importantes son los procesos integrados que tienen la propiedad
fundamental que al diferenciarlos se obtienen procesos estacionarios.
Definición 2.7. Un proceso es integrado de orden h ≥ 0 cuando al diferenciarlo h veces se obtiene un
proceso estacionario.

2.4.1. Procesos ARIMA

Ya se ha visto la importancia de los modelos ARMA para representar series estacionarias. Una genera-
lización de esta clase de procesos que incorpora una amplia gama de series no estacionarias es propor-
cionada por los procesos integrados ARIMA, es decir, los procesos que se reducen a los ARMA cuando
se diferencian un número finito de veces.
Definición 2.8. Sea d un entero no negativo, entonces una serie de tiempo {Xt}t∈Z es un proceso
ARIMA(p,d,q) si Yt := (1−B)dXt ∀t ∈ Z es un proceso ARMA(p,q). Esta definición significa que
Xt satisface una ecuación de la forma

φ
∗(B)Xt := φ(B)(1−B)dXt = θ(B)Zt (2.8)

donde

{Zt} ∼WN(0,σ2)

φ(z) y θ(z) son dos polinomios de grado p y q respectivamente

φ(z) 6= 0 ∀z ∈ Z tq |z| ≤ 1

El polinomio φ ∗(B) := φ(B)(1−B)d tiene una raiz de orden d en z = 1

El proceso ARIMA(p,d,q) {Xt}t∈Z es estacionario ⇔ d = 0. En el caso d = 0 se trata de un proceso
ARMA(p,q)

2.4.2. Procesos SARIMA: Procesos estacionales ARIMA

Los procesos ARIMA(p,d,q) permiten representar series con tendencia. Los procesos SARIMA permi-
ten representar series que además tienen un comportamiento estacional. Los más sencillos representan
series que aplicando el operador Od se convierten en estacionarias.
Definición 2.9. Si d y D son enteros no negativos, la serie de tiempo {Xt}t∈Z sigue un proceso SARIMA(p,d,q)×
(P,D,Q)s con periodo s si la serie diferenciada Yt = (1−B)d(1−Bs)DXt es un proceso ARMA causal
definido por

φ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Zt

donde {Zt} ∼WN(0,σ2) y

φ(z) = 1−φ1z− ...−φpzp

Φ(z) = 1−Φ1z− ...−ΦPzP

θ(z) = 1+θ1z+ ...+θqzq

Θ(z) = 1+Θ1z+ ...+ΘQzQ

Nótese que el proceso {Yt}t∈Z es causal⇔ φ(z) 6= 0 y Φ(z) 6= 0 ∀z ∈ C tq |z| ≤ 1.





Capítulo 3

Aplicación

3.1. Análisis de la serie

3.1.1. Introducción

Se desea realizar un análisis del nivel del río Ebro en el municipio de Tudela, Navarra. Para ello se
cuenta con datos diarios desde el día 28 de noviembre de 2004 al 9 de abril de 20121. Se va a trabajar
con un fichero que tiene tres columnas: el año (de 2004 a 2012), el día (de 1 a 365) y el nivel diario del
río Ebro en Tudela (medido en metros). Definimos los valores de la variable del nivel del río, ’NivelT’,
como un objeto de R de tipo serie de tiempo con comienzo en el día 332 del año 2004 Y fin el día 99
del año 2012. La frecuencia será 365 ya que los datos de los que se disponen son diarios.

3.1.2. Análisis inicial

Una vez definida la serie se representa gráficamente para hacer un análisis previo de la misma.

En primer lugar se observa en el gráfico que la serie no es estacionaria. Presenta cierto comportamiento
periódico anual. Esta periodicidad se podía intuir por la física de los datos ya que el nivel de un río se
ve afectado principalmente por factores climatológicos los cuales varían según la estación del año. A
simple vista el gráfico no presenta una tendencia claramente definida.

1Datos proporcionados por la Confederación Hidrográfica del Ebro, CHE
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Se observa heterocedasticidad por lo tanto es necesario transformar la variable para salvar problemas
de heterogeneidad en la varianza. Sea {Xt} la serie original se tiene que la mejor transformación para
estabilizar la varianza es 1

X2
t

, dicha transformación se ha obtenido de la familia de transformaciones de
Box-Cox con la función ’boxCox’ del paquete [5] de R. La siguiente gráfica muestra la serie transfor-
mada

Se observa una mejora notable en la heterocedasticidad de los datos.

3.2. Transformación de la serie a estacionaria: Diferenciación de la serie

Se observa que la serie transformada se trata de una serie con tendencia y componente estacional. Como
se ha explicado en la sección 1.1.3, con el fin de convertir la serie a una estacionaria, primero se aplica
el operador Od con d = 365, quedando así una serie sin componente estacional pero posiblemente con
tendencia, y a continuación se aplica el operador O las veces necesarias para eliminar la tendencia, en
este caso se ha aplicado el operador O una sola vez. La serie resultante posee la siguiente gráfica

A continuación se desea comprobar si la serie obtenida es estacionaria o no. Para ello se utiliza el
’kpss.test’ en el cual la hipótesis nula es la estacionariedad de la serie.

KPSS Test for Level Stationarity

data: niveldifdif

KPSS Level = 0.0011972, Truncation lag parameter = 11, p-value = 0.1

Warning message:

In kpss.test(niveldifdif) : p-value greater than printed p-value
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El test devuelve un p-valor mayor que 0,1, por lo que no se rechaza que la serie sea estacionaria (hipó-
tesis nula) a un nivel de significación α = 0,5.

3.3. Selección del modelo

Para la selección preliminar del mejor modelo ARMA para modelizar la serie estacionaria, se utilizará el
correlograma de la ACF y la PACF , y el criterio AIC. Los correlogramas resultan útiles ya que la ACF
de un proceso MA(q) se anula para los retardos mayores que q, y la PACF de un proceso AR(p) se anula
para los retardos mayores que p. Véase [8, pág. 163-165]

Se comprueba que en el caso del correlograma de la PACF para retardos mayores que 14, éste se anula
y en el caso de la ACF es para retardos mayores que 6. Por lo tanto se va a seleccionar el modelo
ARMA(p,q) con menor valor AIC entre todos los modelos ARMA con p ∈ [0,14] y con q ∈ [0,6]. El
mínimo AIC se alcanza en el modelo ARMA(6,5).

3.3.1. Modelo seleccionado

El modelo seleccionado cuenta con la siguiente información:

Series: serie

ARIMA(6,0,5) with non-zero mean
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Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ma1 ma2 ma3

0.4559 -0.1119 0.2555 -0.5776 0.7507 -0.0745 -0.4402 0.0381 -0.2798

s.e. 0.0737 0.0474 0.0344 0.0705 0.0422 0.0218 0.0735 0.0470 0.0350

ma4 ma5 mean

0.5376 -0.8013 2e-04

s.e. 0.0735 0.0407 8e-04

sigma^2 estimated as 0.03574: log likelihood=555.54

AIC=-1085.08 AICc=-1084.92 BIC=-1010.27

3.4. Validación del modelo

En primer lugar se calculan los residuos del modelo seleccionado ARMA(2,2) y se transforman ya que
se busca que tengan varianza igual a 1 con el fin de trabajar con los residuos reescalados.

> residuos<-ARMA65$resid[is.na(ARMA65$resid)==F]

> var(residuos)

[1] 0.0360381

> resstan<-residuos/(sum(residuos**2)/length(residuos))**0.5

> var(resstan) #varianza de los residuos estandarizados; sale muy próxima a 1

[1] 1.000429

A continuación se debe comprobar que los residuos tienen media nula y varianza constante. Si se hace un
estudio gráfico se observa que la serie se mueve en torno al cero aunque el análisis gráfico no permite
asegurar la hipótesis de homocedasticidad. De acuerdo al resultado de [1], incluso en presencia de
heterocedasticidad, los estimadores de un modelo ARMA son consistentes.

Ahora, se debe comprobar la incorrelación de los residuos. Se disponen de diferentes técnicas:

Gráfico ACF de la serie de los residuos

Si los residuos son incorrelados, aproximadamente el 95% de los retardos (excepto el de orden 0) debe
estar dentro de las bandas de confianza. En el correlagrama de la ACF se observa que solo dos retardos,el
retardo 16 y el 19, que se salen fuera de la banda, y además lo hacen mínimamente, por lo que no se
rechaza la incorrelación.
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Test de Ljung-Box

El test de Ljung-Box permite contrastar si los h primeros retardos de la función de autocorrelación de los
residuos son nulos simultáneamente. Mediante un bucle se aplica el test de Ljung-Box para los h = 12
primeros retardos. Los p-valores obtenidos mediante dicho test se representan en la siguiente gráfica

Todos son mayores que 0,05 por lo que no se rechaza la hipótesis nula, es decir los h primeros retardos
son incorrelados simultáneamente, a un nivel de significación α = 0,05.

3.5. Cálculo de predicciones

Uno de los principales intereses de estudiar el comportamiento de series temporales y buscar modelos
que se ajusten a ellas, es poder predecir datos futuros. Se quieren hacer predicciones tanto de la serie
estacionaria como de la serie original del mes siguiente, es decir, mayo de 2012.

Predicción de la serie estacionaria

> predARMA65<-predict(ARMA65,30)

> predARMA65

Time Series:

Start = c(2012, 100)

End = c(2012, 129)

Frequency = 365

[1] -0.0040497982 -0.0235517394 -0.0061503438 0.0169979332 -0.0015990159

[6] 0.0245292487 0.0019294353 -0.0149035176 0.0134475181 -0.0082939823

[11] 0.0083750726 0.0164616945 -0.0145991660 0.0096878554 -0.0017597189

[16] -0.0081694249 0.0191636688 -0.0085296186 0.0013069713 0.0091722435

[21] -0.0151640825 0.0123654584 0.0011420996 -0.0083678943 0.0148134890

[26] -0.0111771753 0.0009117048 0.0102703523 -0.0131479282 0.0113394112
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Las predicciones de la serie estacionaria se mueven en torno al cero al igual que la serie. El área gris
clara representa el intervalo de confianza de las predicciones al 95% y el oscuro al intervalo de confianza
al 80%.

Predicción de la serie original

Utilizando la función ’Arima’, con el fin de predecir los valores de la serie original, el autor del paquete
[7] dice que dicha función permite un periodo estacional hasta 350 pero generalmente en la práctica se
quedará sin memoria cada vez que el periodo sea mayor que 200. Por lo tanto, si se quieren obtener
predicciones de la serie original no se puede utilizar el procedimiento descrito. Como alternativa, en
vez de eliminar la componente estacional st diferenciando la serie original, se va a estimar y una vez
estimada se le restará a la serie original para obtener una serie sin componente estacional. Hay muchos
métodos para estimar la componente estacional pero en este caso se va a estimar st como suma de
armónicos.
Así pues, las predicciones del nivel del río Ebro en el municipio de Tudela de los cinco pirmeros días
del mes de mayo de 2012 son las siguientes.

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

2012.2712 0.8686082 0.8166249 0.9319771 0.7926284 0.9716833

2012.2740 0.8671177 0.7959707 0.9615414 0.7647538 1.0259203

2012.2767 0.8743753 0.7895470 0.9941357 0.7535809 1.0814403

2012.2795 0.8767288 0.7829571 1.0149854 0.7440948 1.1209478

2012.2822 0.8754646 0.7754839 1.0278096 0.7347319 1.1493181

La primera columna de la tabla obtenida muestra el día, la segunda la predicción del caudal del río,
las dos siguientes muestran la cota inferior y superior del intervalo de confianza para el valor de la
predicción al 80% y las dos últimas lo mismo pero para el 95%. Para ver el resto de las predicciones
numéricas véase A.
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La gráfica siguiente muestra la predicción completa para el mes de mayo de 2012.

El área gris clara representa el intervalo de confianza de las predicciones al 95% y el oscuro al intervalo
de confianza al 80%. Se prevee un descenso del caudal del río Ebro en el municipio de Tudela para el
mes de mayo de 2014.
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