
"\033[1m\033[91mError:\033[0m " // Bold red #defne WARNHEADER "\033[1m\033[93mWarning:\033[0m " // Bold yellow
"\033[1m\033[94mInfo:\033[0m " // Bold blue #defne DIE(msg) do{ \ fprintf(stderr,ERRORHEADER"%s",msg); \ fprin
%s\n",__func__); \ fprintf(stderr,"\tIn fle %s:%d\n", \ __FILE__,__LINE__); \ exit(EXIT_FAILURE); \ } while(fa
(!*(unsigned char *)&(uint16_t){1}) // 0 001 001 001 001 const uint64_t ONES_BY_TRIPLETS = 0x1249249249249249
contains the variables of 21 samples, one for // each 3 bytes. int64_t L; uint64_t* spins; double beta; double
J_up; uint64_t* J_front; int64_t mc_steps; }; sfmt_t sfmt; // Random number generator object for the mersenne t

RANDOM_BIT (sfmt_genrand_res53(&sfmt)>0.5 ? 1 : 0) // r {0,1} uint64_t random_bits(void){ // For each triple
001. uint64_t base = 0; for(int64_t i=0;i<64/3;i++){ base = base << 3; base += RANDOM_BIT; } return base; } voi
sfmt_init_gen_rand(&sfmt,seed); } uint32_t hash_guides(uint64_t* J_up, uint64_t* J_right, uint64_t* J_front, in
for(hash = i = 0; i < L; ++i){ hash += J_right[i]; hash += (hash << 10); hash ^= (hash >> 6); hash += J_up[i];
6); hash += J_front[i]; hash += (hash << 10); hash ^= (hash >> 6); } hash += (hash << 3); hash ^= (hash >> 11);
// above_spin = net[i + guide_up[i]], for example. int64_t* guide_up = NULL; int64_t* guide_front = NULL; int64
guide_down = NULL; int64_t* guide_behind = NULL; int64_t* guide_left = NULL; void init_guides_pbc(int64_t L){ /
(guide_up != NULL ) free(guide_up); if (guide_front != NULL ) free(guide_front); if (guide_right != NULL ) free
free(guide_down); if (guide_behind != NULL ) free(guide_behind); if (guide_left != NULL ) free(guide_left); gui
guide_front = malloc(sizeof(*guide_front ) * L); guide_right = malloc(sizeof(*guide_right ) * L); guide_down =
guide_behind = malloc(sizeof(*guide_behind) * L); guide_left = malloc(sizeof(*guide_left ) * L); for(int64_t i=
guide_up[i] = +L; guide_front[i] = +L*L; guide_left[i] = -1; guide_down[i] = -L; guide_behind[i] = -L*L; } guid
-L*(L-1); guide_front[L-1] = -L*L*(L-1); guide_left[0] = +(L-1); guide_down[0] = +L*(L-1); guide_behind[0] = +L
SG, double beta){ if (isnan(beta)) DIE("Intended to use β = NaN.\n"); if (beta < 0) DIE("Intended to use β < 0.
exp( +12*beta ); SG->probs[1] = exp( +8*beta ); SG->probs[2] = exp( +4*beta ); SG->probs[3] = exp( 0*beta ); SG
SG->probs[5] = exp( -8*beta ); SG->probs[6] = exp( -12*beta ); } // Obtain a spin glass in a random confgurati
double beta){ init_guides_pbc(L); struct net newnet; newnet.L = L; newnet.mc_steps = 0; set_beta(&newnet, beta)
newnet.spins = malloc(sizeof(*newnet.spins) * L*L*L); for(int64_t i=0;i<L*L*L;i++){ newnet.spins[i] = random_bi
sizeof(*newnet.spins) * L*L*L); newnet.J_up = malloc( sizeof(*newnet.spins) * L*L*L); newnet.J_front = malloc(
for(int64_t i=0;i<L*L*L;i++){ newnet.J_right[i] = random_bits(); newnet.J_up[i] = random_bits(); newnet.J_front
randomness int64_t identical_els = 0; for(int64_t i=0;i<L*L*L;i++){ if (newnet.J_right[i] == newnet.J_right[0])
newnet.J_right[0]) identical_els++; if (newnet.J_front[i] == newnet.J_right[0]) identical_els++; } if (identica
J_guide are identical!"); } return newnet; } void free_spinglass(struct net* spinglass){ free(spinglass->spins)
free(spinglass->J_up); spinglass->J_up = NULL; free(spinglass->J_right); spinglass->J_right = NULL; free(spingl
NULL; } // ∑ σJσ {0,1,,6} uint64_t local_energy(struct net* SG, int64_t idx, int64_t x, int64_t y, in
uint64_t* Jr = SG->J_right; uint64_t* Ju = SG->J_up; uint64_t* Jf = SG->J_front; uint64_t right = S[idx] ^ Jr[
uint64_t left = S[idx] ^ Jr[ idx + guide_left[x] ] ^ S[ idx + guide_left[x] ]; uint64_t up = S[idx] ^ Ju[ idx ]
down = S[idx] ^ Ju[ idx + guide_down[y] ] ^ S[ idx + guide_down[y] ]; uint64_t front = S[idx] ^ Jf[ idx ] ^ S[
= S[idx] ^ Jf[ idx + guide_behind[z] ] ^ S[ idx + guide_behind[z] ]; return right + left + up + down + front +
SG){ int64_t curr_idx = 0; int64_t L = SG->L; for(int64_t z=0;z<L;z++){ for(int64_t y=0;y<L;y++){ for(int64_t x
local_energy(SG, curr_idx, x, y, z); double randomnum = RANDOM_F; for(int_fast8_t spinidx=0; spinidx<21; spinid
3*spinidx; Pidx = Pidx & 0x7; // Select the frst 3 bits. double P = SG->probs[Pidx]; if (Pidx <= 3){ uint64_t
selectmask << 3*spinidx; SG->spins[curr_idx] ^= selectmask; // Flip current σ. } else if (P > randomnum){ uint
selectmask << 3*spinidx; SG->spins[curr_idx] ^= selectmask; // Flip current σ. } } curr_idx++; } } } SG->mc_st
int64_t from, int64_t to, int64_t N){ if(N < 1){DIE("linspace requires N>1.\n");} for(int64_t i=0; i<N;i++){ do
= (B-A)/(N-1)*i + A; } array[0] = from; array[N-1] = to; } void logspace(int64_t* array, int64_t from, int64_t
requires N>1.\n");} for(int64_t i=0; i<N;i++){ double B = log10(to); double A = log10(from); array[i] = pow(10,
array[N-1] = to; } int int_compare(const void *a_ptr, const void *b_ptr){ const int *a = a_ptr, *b = b_ptr; ret
int64_t sort_unique(int64_t* array, size_t N){ qsort(array, N, sizeof(array[0]), int_compare); size_t left = 0;
right){ if (array[left] == array[left+1]){ for(size_t i=left;i<right;i++){ array[i] = array[i+1]; } right--; }
right+1; return newsize; } double mean(double* array, int64_t N){ double acc = 0; for(int64_t i=0;i<N;i++){ acc
variance(double* array, int64_t N){ double mu = mean(array,N); double accdif = 0; for(int64_t i=0;i<N;i++){ ac
mu); } return accdif/(N-1); } void bootstrap(double* array, int64_t N , double (*function)(double*,int64_t) ,
fraction = 0.36787944117144233; // 1/e int64_t samples = 1000; // samples to take int64_t chunksize = foor(fra
DIE("Bootstrap chunks have less than one element!\n"); } double values[samples]; for(int64_t i=0;i<samples;i++)
for(int64_t j=0;j<chunksize;j++){ int64_t idx = foor(RANDOM_F*(chunksize+1)); randchunk[j] = array[idx]; } val
} *fmean = mean(values,samples); *fstdev = sqrt(variance(values,samples)); } double mean_energy(struct net* SG)
L = SG->L; for(int64_t z=0;z<L;z++){ for(int64_t y=0;y<L;y++){ for(int64_t x=0;x<L;x++){ uint64_t localEidx = l
for(int_fast8_t si=0;si<21;si++){ // select the frst 3 bits of the current spin. double thislocalE = (double)(
Hterm = 6 - 2*thislocalE; E += Hterm; } i++; } } } return E/21/(L*L*L)/3/2; } double mean_magnetization(struct
SG->L; for(int64_t i=0;i<L*L*L;i++){ for(int_fast8_t si=0;si<21;si++){ // select the frst 3 bits of the curren
(SG->spins[i] >> 3*si) & 0x1; M += thismagnet? +1 : -1; } } return M/21/L/L/L; } // Save mean and stdev of SD i
schwingerdyson(struct net* SG, double* mn, double* std){ int64_t L = SG->L; double* values = malloc(L*L*L*21 *
for(int64_t z=0;z<L;z++){ for(int64_t y=0;y<L;y++){ for(int64_t x=0;x<L;x++){ uint64_t localEidx = local_energy
i=0;i<21;i++){ // select the frst 3 bits of the current spin. double thislocalE = (double)((localEidx >> 3*i)

guide_behind = malloc(sizeof(*guide_behind) * L); guide_left = malloc(sizeof(*guide_left ) * L); for(int64_t i=
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Capítulo 1

Introducción

Los vidrios de espín (spin glasses) son materiales caracterizados por el inusual comportamiento

de sus momentos magnéticos. En lugar de mostrar un alineamiento regular de éstos, como los

materiales ferromagnéticos o los antiferromagnéticos, los momentos están distribuidos de forma

aleatoria, de forma análoga a como la red atómica de un vidrio está dispuesta de forma irregular

frente a la estructura regular de un cristal.

Por debajo de una temperatura crítica 𝑇C estos materiales abandonan la fase paramagnética

para pasar a una fase conocida como fase vidrio de espín, en la cual se dan los efectos que se

estudian en esta memoria: la memoria y el rejuvenecimiento. Para entender dichos efectos, es

especialmente ilustrativo considerar dos tipos de experimento (figura 1.1).

En el dip experiment protocol [1] se mide la parte imaginaria de la susceptibilidad magnética

𝜒″ = 𝜒 sin 𝜑, donde 𝜑 es el desfase entre el campo 𝐻 aplicado y la magnetización 𝑀 de la muestra.

La medición, que depende de la temperatura, se realiza de la siguiente manera:

En primer lugar, recorremos el rango de temperaturas enfriando o calentando el sistema a

un ritmo constante, obteniendo la curva de referencia. En segundo lugar, medimos enfriando el

sistema a un ratio determinado, pero cesando el enfriamiento durante un tiempo a una temperatura

elegida (en el caso mostrado, 𝑇 = 12K) y retomándolo después; durante el tiempo que se deja
reposar al sistema a temperatura constante 𝜒″ decae, efecto conocido como envejecimiento. Por
último, volvemos a medir 𝜒″(𝑇 ) esta vez calentando el sistema al mismo ratio y sin detenernos
en 𝑇 = 12K. Sorprendentemente, el sistema “recuerda” (efecto de memoria) que su enfriamiento
se cesó a 𝑇 = 12K y en lugar de seguir la curva de referencia medida sigue la de enfriamiento

anterior, volviendo a decrecer su susceptibilidad en 𝑇 = 12K la misma cantidad que decreció en

el enfriamiento.

En el protocolo de dos temperaturas [2] comenzamos con un vidrio de espín a temperatura 𝑇1 =
12K. Dejamos evolucionar al sistema a temperatura constante, y vemos que la parte imaginaria
de la susceptibilidad 𝜒″ decae de forma continua, efecto al que llamamos envejecimiento. A

continuación, cambiamos a una temperatura más baja 𝑇2 = 9K. 𝜒″ experimenta un crecimiento
súbito, efecto al que en contraposición con el envejecimiento se le llama rejuvenecimiento. Por

último, tras dejar decrecer a 𝜒″ por un tiempo a 𝑇2, volvemos a calentar al sistema a 𝑇1. El sistema
recupera de forma rápida la 𝜒″ que tenía cuando se pasó de 𝑇1 a 𝑇2, y continúa la evolución como
si nunca hubiera existido la fase a 𝑇2, con la misma pendiente.
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Figura 1.1: Experimentos que muestran los efectos de memoria y rejuvenecimiento en un vidrio de

espín de CdCr1.7In0.3S4 para la parte imaginaria 𝜒″ y real 𝜒 ′ de la susceptibilidad. En la figura

izquierda (tomada de la figura 1 de [1]) vemos el dip experiment protocol y en la derecha (tomada de

la figura 1 de [2]) el protocolo de dos temperaturas.

Modelo

Los primeros vidrios de espín [3] que se estudiaron en los años 70 consistían en metales

nobles impurificados con metales de transición, como por ejemplo el CuMn. Las impurezas crean

perturbaciones aleatorias en la red cristalina modelables mediante el modelo RKKY, que propone

una interacción entre dos momentos magnéticos a distancia 𝑟 de la forma

𝐽 (𝑟) ∝
cos(2𝐾F 𝑟)

𝑟3
(1.1)

donde 𝐾F ∼ 1 × 1010m−1 es el vector de ondas del metal impurificado. La función 𝐽 (𝑟) tiene una
oscilación debida al término coseno de longitud de onda muy corta, cambiando de signo a escala

atómica.

Los momentos magnéticos de los vidrios de espín se modelarán mediante espines discretos

situados en una malla tridimensional de 𝐿 espines de lado con espaciado regular, como propusieron
Edwards y Anderson [4]. Supondremos únicamente interacciones a primeros vecinos (figura 1.2)

y condiciones de contorno periódicas, de forma que cada espín 𝑠𝑖 interactúe con sus seis vecinos
𝑠𝑗 más proximos mediante un hamiltoniano

H = −∑
⟨𝑖,𝑗⟩

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 (1.2)

donde los acoplos 𝐽𝑖𝑗 ∈ ±1 de los espines 𝑠𝑖 ∈ ±1 son números aleatorios de distribución plana,
modelizando la rápida variación de 𝐽 debida a la interacción RKKY. La función de partición del
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Figura 1.2: Modelo de Edwards-Anderson en 3D, con interacciones a primeros vecinos. Cada espín

interacciona únicamente con los 6 espines más cercanos en la red, siendo el signo de la interacción

aleatorio.

sistema queda como

𝒵 = [𝑍𝐽] (1.3)

donde “[ ]” indica un promedio sobre sistemas con diferentes acoplos 𝐽𝑖𝑗, a los que llamaremos
muestras. Este promediado esta justificado por las escalas de tiempos existentes en el problema: los

espines 𝑠𝑖 tienen una evolución mucho más rápida que los acoplos, de forma los acoplos se pueden
suponer fijos durante las iteraciones que se pueden realizar en la simulación de los sistemas. Los

promedios usuales sobre el espacio de configuraciones de una sola muestra se denotan como “⟨ ⟩”.

Magnitudes

Para estudiar la memoria y el rejuvenecimiento, se definieron y midieron diversos observables

del sistema. Es especialmente interesante el comportamiento de estas magnitudes en el protocolo

de dos temperaturas al que se someterá a los vidrios de espín,

𝑇1 → 𝑇2 → 𝑇1

donde 𝑇2 < 𝑇1 < 𝑇C y los cambios de 𝑇1 a 𝑇2 y de 𝑇2 a 𝑇1 se producen en 𝑡1𝑤 y 𝑡2𝑤 respectivamente.

La energía, de forma similar al hamiltoniano del sistema, se define como

𝐸 = −
1
𝑉
∑
⟨𝑖,𝑗⟩

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 (1.4)

con 𝑉 = 𝐿−3 y tomando valores entre −1 y 1, es indispensable para actualizar los espines en cada
iteración del algoritmo de Metropolis-Hasting [5]. Tiene un comportamiento suave, lo que la

hace útil para comprobar si la simulación ha transcurrido de forma normal, los datos no se han

corrompido al guardarlos, etc.

En los sistemas ferromagnéticos es de especial interés la magnetización del sistema, aquí

definida como
1
𝑉
∑𝑖 𝜎𝑖, por ser el parámetro de orden. No obstante, en los vidrios de espín los

espines se congelan por debajo de 𝑇C con magnetización global es nula [6], de forma que es
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necesario definir como parámetro de orden el overlap entre los espines 𝑠𝑎𝑖 , 𝑠𝑏𝑖 de dos réplicas a y b
como

𝑞 =
1
𝑉
∑
𝑖
𝑠𝑎𝑖 𝑠𝑏𝑖 (1.5)

donde se define como pareja de réplicas a dos sistemas con los mismos acoplos 𝐽𝑖𝑗 pero que han
evolucionado de forma independiente, con distintos números aleatorios en el proceso. Es una

magnitud comprendida entre −1 y 1, cuyo valor en las simulaciones fluctúa alrededor de 𝑞 = 0
con media nula, como puede verse más adelante en la figura 3.2. La distribución del overlap es

objeto de debate, habiéndose propuesto diferentes teorías a lo largo de la historia de los vidrios de

espín; las dos principales teorías en las que se trabaja en la actualidad son la teoría RSB [7][8], de

las siglas inglesas replica simmetry breaking, y la droplet picture [9].

La teoría RSB propone un número infinito de estados en equilibrio, de forma que la distribución

𝑃(𝑞) del overlap es no trivial y posee un continuo de estados entre dos máximos simétricos. En
cambio, en el droplet scenario solo existe un estado fundamental (salvo por una inversión de todos

los espines) y 𝑃(𝑞) consiste en dos deltas de Dirac.
La correlación a dos tiempos 𝑡𝑤, 𝑡𝑤 + 𝑡0 se define como

𝐶(𝑡𝑤, 𝑡𝑤 + 𝑡0) =
1
𝑉
∑
𝑖
⟨𝑠𝑖(𝑡𝑤) 𝑠𝑖(𝑡𝑤 + 𝑡0)⟩ (1.6)

donde 𝑠𝑖 ∈ son los 𝑉 espines del sistema. El parámetro 𝑡0 está relacionado con la frecuencia

experimental de medición de la susceptibilidad 𝜔 como 𝑡0 ≃ 2𝜋/𝜔.
La magnitud en la que se ven con mayor claridad los efectos de memoria y rejuvenecimiento

es la susceptibilidad 𝜒, que se puede calcular gracias al teorema de fluctuación-disipación a través
de la correlación como

𝜒(𝑡𝑤, 𝑡𝑤 + 𝑡0) = 𝛽(1 − 𝐶) (1.7)

donde 𝛽 = 1/𝑘B𝑇 . Si bien este resultado solo es válido en equilibrio térmico, condición extrema-
damente difícil de alcanzar en sistemas con alta frustración como los vidrios de espín, se puede

extender fácilmente fuera de él multiplicando por una función 𝑋 que solo depende de los tiempos

𝑡1, 𝑡2 empleados en la correlación. En este trabajo, no se ha realizado dicha corrección por estar
fuera de los objetivos fijados y requerir un análisis más profundo de estos sistemas.

Por último, mediante el overlap se puede definir la correlación espacial 𝐶4 como

𝐶4(𝑟 , 𝑡𝑤) = ∑
𝑖
⟨𝑞𝑖(𝑡𝑤) 𝑞𝑖+𝑟(𝑡𝑤)⟩ (1.8)

donde 𝑞𝑖+𝑟 es el overlap del espín que está a distancia 𝑟 del 𝑖. La magnitud, con valores entre −1
y 1, aumenta conforme el sistema se acerca al equilibrio (𝑡𝑤 → ∞) y disminuye con la distancia
entre espines 𝑟.
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Capítulo 2

Objetivos

El principal objetivo del trabajo presentado es caracterizar los efectos de memoria y reju-

venecimiento en vidrios de espín. Para ello ha sido necesario familiarizarse con los vidrios de

espín, paradigma de los sistemas complejos, y paralelamente realizar una inmersión a fondo en la

supercomputación, utilizando diferentes arquitecturas (PC, clusters, y ordenadores de propósito

específico) y lenguajes de programación (Python, C99, Julia [10] y Unix Shell) con los que crear

código que realizara y analizara las simulaciones.

Definiendo la energía de los estados como el valor del hamiltoniano se puede explorar el

espacio de configuraciones1, y asignándoles probabilidades 𝑒−𝛽H con 𝛽 = 1/𝑘B𝑇 las magnitudes

del sistema introducidas pueden aproximarse mediante un algoritmo como el de Metrópolis-

Hasting [5]: es simple de implementar, acerca al sistema a la termalización antes que otros

algoritmos como el Heat bath y es muy eficiente computacionalmente. El algoritmo requiere una

gran cantidad de números aleatorios, cuya calidad se comprobó exhaustivamente (Apéndice B).

Cada iteración del algoritmo equivale a aproximadamente un picosegundo de evolución en un

experimento [11], lo que limita los intervalos temporales en el estudio de estos sistemas a las

décimas de segundo.

Los cálculos se realizaron en el cluster Memento y en el ordenador de propósito específico

Janus [12], basado en FPGAs2. Para calcular los observables es necesario un gran número de

muestras, lo que se consiguió de forma diferente en cada arquitectura:

En el cluster el gran número de nodos de computación, los múltiples hilos de ejecución

por cada procesador, y el multispin coding [13] (Apéndice C) permiten simular miles de

muestras simultáneamente.

En Janus, solo se ha podido simular del orden de una centena de vidrios de espín simul-

táneamente. No obstante, se utilizó para retículos grandes (𝐿 > 40), en los que los efectos
de tamaño finito son mucho menos notables y las fluctuaciones de los observables son

1Temperaturas demasiado bajas no son explorables con este método. Valores muy altos para 𝛽 = 1/𝑘B𝑇 crean un
underflow en el cálculo de exp(−𝛽𝐸), es decir, el procesador no puede distinguir exp(−𝛽𝐸) de cero. No obstante, se ha
comprobado que el límite está en 𝑇 = 1/60, muy inferior a las temperaturas usadas.

2Un FPGA (del inglés Field Programable Gate Array) es un dispositivo basado en puertas lógicas que permite

programar las conexiones entre sus puertas internas mediante un ordenador. Esto permite crear circuitos electrónicos

adaptados a la aplicación, consiguiendo altas velocidades de cálculo.
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menores, requiriendo promedios entre muchas menos muestras (decenas) para conseguir la

misma incertidumbre en las medidas.

Para simulaciones de tiempos cortos y retículos pequeños que no requirieron la potencia de cálculo

de Memento y Janus se empleó un PC doméstico.

Se decidió realizar todas las simulaciones bajo un protocolo de dos temperaturas como el de

la figura 1.1:

1. El sistema, de un 𝐿 determinado, se deja evolucionar 𝑡1𝑤 pasos de Montecarlo a una tempera-

tura 𝑇1.

2. Una vez realizados los 𝑡1𝑤 pasos de Montecarlo, se enfría de forma instantánea a 𝑇2 < 𝑇1. En
este cambio se medirá el efecto del rejuvenecimiento. El sistema permanece a 𝑇2 hasta que
se alcance el paso de Montecarlo 𝑡2𝑤.

3. Alcanzado dicho paso, se vuelve a calentar instantáneamente el sistema a 𝑇1. Se le deja
permanecer a esta temperatura 108 iteraciones para poder observar la memoria del sistema.

Además, se realizó una simulación de referencia a 𝑇 = 𝑇1 = cte. con la que comparar la susceptibi-

lidad para medir rejuvenecimiento y memoria.

En dicho protocolo, se simuló 𝑡1𝑤 ∈ {104, 105, 106, 107, 108}, 𝑇1 ∈ {0.9, 0.8, 0.7, 0.6}, 𝑇2 ∈ {0.8, 0.7.0.6}
y se empleó 𝑡0 ∈ {104, 105, 106, 107, 108}. Hay que notar que las 𝑡0 ≫ 𝑡𝑤 no son accesibles experi-

mentalmente, pero por completitud se incluyeron en el análisis.

Se emplearon varios tamaños 𝐿 de retículo para la simulación de referencia, 𝐿 ∈ {4, 6, 8, 12} en
Memento y 𝐿 ∈ {8, 48, 80} en Janus. El protocolo de dos temperaturas pudo completarse hasta 𝑡2𝑤
para 𝐿 ∈ {8, 12, 48, 80} y más allá para 𝐿 ∈ {8, 48, 80}. Como valor para 𝑡2𝑤, se escogió 𝑡1𝑤 + 108 para
las redes de Memento y 2 × 108 para las redes de Janus.

Más adelante se definirán magnitudes escalares que permitan cuantificar la memoria y el

rejuvenecimiento con objeto de realizar un análisis de sus dependencias funcionales con 𝑡1𝑤, 𝑡0 y
𝑇1−𝑇2
𝑇1

.
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Capítulo 3

Desarrollo

Los tiempos de simulación y medición de magnitudes llegan a la semana para algunos tama-

ños del sistema, por lo que es imprescindible una buena organización a la hora de programar las

simulaciones y las medidas. Además, es importante comprobar que los sistemas están evolucio-

nando como se espera, sin fallos de software o hardware que invaliden los resultados. Por ello,

mientras se obtenían las configuraciones de espines se comprobó que todos los observables del

sistema tenían el comportamiento esperado, como se verá a continuación.

Comportamiento de los observables

Un observable especialmente útil para comprobar que no ha habido fallos graves en la simula-

ción es la energía, que ha de tener un comportamiento suave y continuo como el que muestra la

figura 3.1. El overlap, como muestra la figura 3.2, debe tener un histograma centrado en cero y

una distribución de doble pico simétrica.

Como puede verse en la figura 3.3, los sistemas están más descorrelacionados cuanto más

aumentamos el intervalo temporal 𝑡0 debido a que se comparan configuraciones de espines

separadas por un mayor tiempo, y van alcanzando un estado global de mayor correlación conforme

lo dejamos evolucionar (𝑡𝑤 → ∞) y el sistema se acerca lentamente al equilibrio térmico.
La dependencia de la correlación con 𝐿 es mucho más marcada para 𝑡0 elevado, como puede

0.0 0.5 1.0 1.5 2.0 2.5 3.0
MC[×108]

1.8

1.6

1.4

1.2

[E
]

T=0.9 T=0.5 T=0.9

Figura 3.1: Energía para un sistema 𝐿 = 80 promediada sobre 8 muestras.
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Figura 3.2: Fluctuaciones del overlap 𝑞 para 𝐿 = 8, uno de los pocos tamaños que puede llevarse hasta

1011 iteraciones de Montecarlo en un tiempo de días. Se muestran en el fondo (azul) el overlap de 32

muestras y en rojo el de una de ellas. A la derecha se muestra un histograma de la distribución del

overlap de las muestras por encima de 108 pasos de Montecarlo.
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Figura 3.3: Correlación para un sistema 𝐿 = 32 promediada sobre 210 muestras. Se muestra en la

escala de color el parámetro (𝑡0 o 𝑡𝑤) no empleado en el eje horizontal. Ambos parámetros toman

valores 𝑡0, 𝑡𝑤 ∈ [1, 103].
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Figura 3.4: Correlación a 𝑇 = 0.9 promediada sobre más de 1000 muestras para 𝐿 < 40 y sobre más

de 30 para 𝐿 > 20 (color en el original). Para 𝑡0 y 𝑡𝑤 bajos, las medidas de la correlación están menos

afectadas por la 𝐿 del sistema.

verse en la figura 3.4. También vemos que de forma cualitativa la correlación crece monótonamente

con 𝐿 para 𝑡𝑤 → ∞.
La correlación espacial es especialmente interesante para saber si la muestra va a mostrar

unos efectos de tamaño finito fuertes, ya que con ella se puede hallar la longitud de correlación 𝜉
mediante el ajuste asintótico [14]

𝐶4(𝑟 , 𝑡𝑤)
𝐿→∞=

𝐴
𝑟𝛼

exp ([−𝑟/𝜉 (𝑡𝑤)]𝛽) (3.1)

o mediante integración [15] de 𝐶4 con

𝜉 (𝑡𝑤) ≃
∫𝐿/20 𝑟2𝐶4(𝑟 , 𝑡𝑤) d𝑟

∫𝐿/20 𝑟𝐶4(𝑟 , 𝑡𝑤) d𝑟
(3.2)

Nótese que no tiene sentido ver el valor de 𝐶4 para 𝑟 > 𝐿/2, ya que las condiciones de contorno
periódicas implican que la distancia entre dos espines es siempre igual o menor que ese valor.

Una longitud de correlación cercana a este valor es señal de que el retículo es demasiado pequeño

como para tenerlo en cuenta.

Se consideró cuál de los métodos para hallar 𝜉 emplear; en la figura 3.5 se puede ver un ejemplo
de los resultados de ambos para un retículo con 𝐿 = 12. Se escogió el método mediante integrales
de la ecuación (3.2) por ser mucho más preciso para 𝑡𝑤 ≫ 107 que el ajuste a la ecuación 3.1 [15].

En la figura 3.6 se muestran los resultados obtenidos para la longitud de correlación. Como se

puede ver, siempre se tiene 𝜉 ≪ 𝐿/2, tal y como se buscaba.

Rejuvenecimiento

Antes de estudiar el rejuvenecimiento es importante encontrar una definición cuantitativa; en

la figura 3.7 se exponen las posibles definiciones creadas para el protocolo de dos temperaturas.
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Figura 3.5: En la figura izquierda se muestran los valores de 𝐶4 medidos para un retículo 𝐿 = 12 a
𝑇 = 0.9, correspondiendo cada línea a un 𝑟 ∈ {1, 2, … , 6} junto a los 𝜉 obtenidos mediante el ajuste y

mediante integración en la figura derecha (color en el original). Para 𝑡𝑤 alta el ajuste de 𝐶4 es malo y

la incertidumbre (zona sombreada) crece sin límite.
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L = 80

Figura 3.6: La longitud de correlación 𝜉 a 𝑇 = 0.7 es menor que 𝐿/2 en todo el rango de 𝑡𝑤 empleado;

la imagen no cambia sustancialmente para otras temperaturas 𝑇 < 𝑇C . Los datos para 𝐿 = 80 se han

extraído de [15].
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Δ𝜒

𝑡𝐴rej

Figura 3.7: Definiciones cuantitativas del rejuvenecimiento en un protocolo de dos temperaturas. Se

muestra la susceptibilidad 𝜒(𝑡𝑤).

Hasta ahora solo se han visto ejemplos de rejuvenecimiento fuerte, en el que la susceptibilidad

sube por encima del valor que tenía en 𝑇1 al cambiar a 𝑇2. No obstante, en algunas de las mediciones
se detectó rejuvenecimiento débil, en el que la curva de 𝜒 no sube por encima de 𝑇1 al efectuar
el cambio a 𝑇2. Δ𝜒 es la única magnitud que no diverge en esos casos, por lo que se usará en el
análisis. Para el caso del rejuvenecimiento débil tendrá valores negativos.

Se realizó un bootstrap [16] (Apéndice A) de 𝜒(𝑡𝑤) de las muestras de forma que se tuviera
una incertidumbre para los Δ𝜒 hallados, que se calcularán restando la 𝜒 de referencia a 𝑇1 y la
𝜒 de la fase a 𝑇2 en 𝑡𝑤 = 𝑡1𝑤. El número de muestras tomadas varía según los parámetros 𝑡, 𝑡1𝑤 y
𝑇1−𝑇2
𝑇1

, pero se encuentra siempre entre 15 y 30 para los retículos 𝐿 > 40 y es superior a mil para
los 𝐿 < 40. Además, por cada muestra se promediaron dos réplicas.

Memoria

Antes de analizar los datos tomados, se realizó una pequeña simulación con 𝑡𝑤 bajo y gran

cantidad de estadística para ver cómo se manifestaba la memoria en un caso ideal (figura 3.8). En

ella se aprecia como existe un pequeño tiempo en el que el sistema todavía no ha recuperado la

curva de referencia. Podemos caracterizar ese tiempo Δ𝑡 viendo cuántas iteraciones pasan hasta
que ambas curvas se cruzan, obteniéndose una magnitud escalar para la memoria.
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Δt

Figura 3.8: Tras volver a 𝑇1 desde 𝑇2 el sistema (promedio sobre 10500 muestras, 𝐿 = 12) recupera
la curva 𝜒(𝑇1) desde donde se produjo el cambio a 𝑇2. Se muestran en línea discontinua azul una

simulación a 𝑇1 sin cambio a 𝑇2 como referencia, y en línea discontinua amarilla la curva para 𝑇3
desplazada a la izquierda para facilitar la comparación.
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Capítulo 4

Resultados

Una vez hallados los Δ𝜒 en 𝑡1𝑤 podemos analizar el efecto del rejuvenecimiento, y con los Δ𝑡
hasta que el sistema recupera la memoria podemos cuantificar ésta en función de los parámetros.

Rejuvenecimiento

Se comprobó si el parámetro 𝑡0 de la correlación jugaba un papel importante en la aparición
de rejuvenecimiento débil. Como puede verse en la figura 4.1, en la que se realizó una simulación

para baja 𝑡𝑤, aumentar 𝑡0 hace disminuir Δ𝜒 de forma consistente hasta que desaparece el rejuve-
necimiento fuerte para 𝑡0 ∼

1
2
𝑡1𝑤. No obstante, hay que notar que experimentalmente 𝜔𝑡𝑤 > 1, por

lo que 𝑡0 < 2𝜋𝑡𝑤, lo que restringe el rango de 𝑡0.
En la figura 4.2, puede verse que los parámetros de los que depende el rejuvenecimiento

(𝑡1𝑤, 𝑡0,
𝑇1−𝑇2
𝑇1

) tienen una influencia distinta sobre Δ𝜒.
Notamos que el valor de Δ𝜒 parece tener un mínimo en 𝑡0, visible únicamente para 𝑡1𝑤 ≲ 105.

Además, hay un cambio en el comportamiento de Δ𝜒 conforme aumentamos 𝑡0, que corresponde
experimentalmente a disminuir la frecuencia de medición de la susceptibilidad: para 𝑡0 bajo, una
mayor 𝑡1𝑤 implica un mayor rejuvenecimiento Δ𝜒, mientras que para 𝑡0 alto (rango inaccesible
experimentalmente) ocurre al revés, y menores 𝑡1𝑤 exhiben mayor Δ𝜒. Como predecía el pequeño
experimento de la figura 4.1, las redes que muestran rejuvenecimiento fuerte pasan a mostrar

rejuvenecimiento débil al aumentar 𝑡0.
La influencia de 𝑇1 − 𝑇2 no es muy clara para 𝐿 > 8, pero para 𝐿 = 8 parece que aumentar

dicha diferencia hace disminuir Δ𝜒. En todo caso, es el parámetro que menos influye en el

rejuvenecimiento, probablemente por ser el rango de valores tomados en el resto de parámetros

mucho mayor.

Por último, notamos que solo se ha obtenido rejuvenecimiento fuerte para 𝐿 = 48 y 𝐿 = 80, lo
que indica que el tamaño de la red es relevante en la aparición de este efecto.

Memoria

Para explorar la forma funcional de Δ𝑡, se optó por representarlo en función de 𝑡1𝑤, 𝑡0 o
𝑇2−𝑇1
𝑇1

y promediar sobre el resto, de forma que pudieran verse tendencias generales (figura 4.3).
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Figura 4.1: Susceptibilidad 𝜒 para 𝑇1 = 0.9, 𝑇2 = 0.5, 𝐿 = 8 promediadas sobre 31500 muestras con

valores de 𝑡0 ∈ [1, 103], color en el original. El rejuvenecimiento fuerte desaparece cuando 𝑡 ≃ 1
2
103.

Analizando los resultados, vemos que Δ𝑡 crece con 𝑡0 y disminuye con 𝑡1𝑤 y con la diferencia de

temperaturas 𝑇1, 𝑇2. Notamos que el comportamiento del retículo 𝐿 = 8 es anómalo respecto al
de las redes 𝐿 = 48 y 𝐿 = 80, probablemente por su pequeño tamaño. Para 𝑡1𝑤 > 106, éste llega a
mostrar un rejuvenecimiento inmediato, alcanzando la curva de referencia en una sola iteración

de Montecarlo. Además, los tiempos de recuperación Δ𝑡 son notablemente más pequeños para el
retículo 𝐿 = 8, cinco órdenes de magnitud menores que 𝐿 = 48 y 𝐿 = 80. Esto es achacable a que
su evolución es notablemente más rápida.
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Figura 4.2: En la columna izquierda se muestran bandas con las medidas de Δ𝜒 tomadas para cada

grupo de parámetros (𝑡1𝑤, 𝑡0,
𝑇1−𝑇2
𝑇1

), correspondiendo el grosor a la incertidumbre a 1σ. En la columna

central, se ven esas mismas medidas promediando sobre las distintas temperaturas medidas. A la

derecha se muestra el valor medio del Δ𝜒 según la relación entre las temperaturas 𝑇2 y 𝑇1, de nuevo
para todos los grupos de parámetros medidos. En color se indica 𝑡1𝑤, como muestra la leyenda.
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Figura 4.3: Se muestra el tiempo Δ𝑡 necesario para que el sistema recupere la curva de referencia tras

volver a 𝑇1 en función de 𝑡0,𝑡1𝑤 o
𝑇1−𝑇2
𝑇1

y promediando sobre el resto. Se indica en color el tamaño del

sistema simulado.

19



Capítulo 5

Conclusiones

A lo largo del trabajo realizado se ha comprobado que la simulación de vidrios de espín es un

tema delicado y duro, requiriendo grandes cantidades de tiempo tanto humano como de CPU. A

pesar de la simplicidad del modelo empleado, se ha visto como el comportamiento del sistema era

rico y variado.

A la hora de emplear tanto el cluster como Janus, se tuvieron diversos problemas técnicos

que requirieron adaptar las simulaciones numerosas veces para evitar la pérdida de datos. Las

simulaciones de vidrios de espín duran días, aumentando la probabilidad de aparición de errores,

especialmente en máquinas con varios años de uso como Janus. Por ello, se realizaron distintos

tests sobre el software, incluyendo la simulación de modelos de Ising, la obtención de los valores

medios de las ecuaciones de Schwinger-Dyson [17] y el ajuste de la correlación 𝐶(𝑡𝑤, 𝑡𝑤 + 𝑡0) a
leyes de potencias conocidas [18].

En el estudio del rejuvenecimiento, se ha comprobado como el rejuvenecimiento fuerte era

especialmente frágil, mostrando la mayoría de los datos tomados rejuvenecimiento débil. La

frecuencia de medición 𝜔 de la susceptibilidad, a través del tiempo de correlación 𝑡0, juega un
papel importante en el efecto junto al tiempo en que se cambia la temperatura del sistema, 𝑡1𝑤.

La memoria ha resultado ser un efecto mucho más robusto, aunque su forma funcional no se

haya conseguido analizar con la misma precisión que el rejuvenecimiento. En esta magnitud es

especialmente claro el comportamiento anómalo de retículos pequeños (𝐿 = 8), lo que justifica la
simulación de sistemas cada vez más grandes y la necesidad de recursos computacionales cada

vez más potentes.

Por último, me gustaría aprovechar estas líneas para dar las gracias al BIFI por permitirme

realizar parte de las simulaciones en sus instalaciones y a la Janus Collaboration por cederme

tiempo de cómputo en su máquina, Janus.
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Apéndice A

Bootstrapping

En ocasiones se quiere hallar el valor de un observable, pero no se posee una magnitud que

sea adecuado asociar con el error de la medida; por ejemplo, la desviación estándar de una lista de

valores no es un estimador de la incertidumbre de su media. Esto se solucionó empleando técnicas

de remuestreo, concretamente bootstraping (remuestreo con reemplazamiento) [16].

Supongamos que tenemos una lista de 𝑁 valores 𝑣𝑖, y queremos hallar su media. Si bien es
trivial emplear

1
𝑁
∑𝑁

𝑖=1 𝑣𝑖 para ello, no conocemos cuál es la incertidumbre de dicha medición.
En un bootstraping, se toman de forma aleatoria𝑀muestras con una fracción 𝑓 de los elementos

originales. Si por ejemplo 𝑣 = {1, 2, 3, 4, 5, 6, 7, 8, 9} y 𝑓 = 1/3, empleando 𝑀 = 5 obtenemos 5 listas
de 9/3 = 3 elementos. Notar como el muestreo es con reemplazamiento, y por lo tanto puede haber
repeticiones. A continuación, calculamos el valor de la función sobre cada muestra, obteniendo 𝑀
valores para la función, en este caso la media:

1, 2, 3, 4, 5, 7, 8, 9 →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5, 5, 2

8, 1, 7

1, 9, 5

7, 7, 4

3, 9, 7

Media
→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4.0

5.3

5.0

6.0

6.3

Por último, calculamos la media y la desviación estándar de los 𝑀 valores obtenidos, obteniendo

así un estimador de la incertidumbre de la función y su valor medio.

La elección del parámetro 𝑀 es fácil, ya que basta con que sea lo suficientemente grande

como para garantizar que todos los valores se empleen. Como las listas sobre las que se realizó

bootstraping en este trabajo tenían unos cien elementos, se escogió 𝑀 = 103. Como valor para el
tamaño de los intervalos se escogió una fracción 𝑓 = 1/𝑒 de los datos, como propone el Numerical

Recipes [19].
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Apéndice B

Números aleatorios

La elección del generador de números pseudoaleatorios es crucial para realizar una simulación

de Montecarlo, ya que puede sesgar notablemente los resultados [20][21] o convertirse en el cuello

de botella del programa si es muy lento.

A la hora de escoger un generador de números pseudoaleatorios, se primó la correctitud en

primer lugar y la velocidad en segundo. En la tabla y gráfica siguiente pueden verse algunos de

los resultados de la suite de tests dieharder [22]. Los tests son muy variados, pero a modo de

ejemplo se muestra la descripción que la propia suite de tests provee para el test diehard craps:

This is the CRAPS TEST. It plays 200,000 games of craps, finds

the number of wins and the number of throws necessary to end

each game. The number of wins should be (very close to) a

normal with mean 200000p and variance 200000p(1-p), with

p=244/495. Throws necessary to complete the game can vary

from 1 to infinity, but counts for all>21 are lumped with 21.

A chi-square test is made on the no.-of-throws cell counts.

Each 32-bit integer from the test file provides the value for

the throw of a die, by floating to [0,1), multiplying by 6

and taking 1 plus the integer part of the result.

Si suponemos como hipótesis nula, 𝐻0, que el generador de números pseudoaleatorios sea

indistinguible de uno realmente aleatorio, podemos realizar diversos tests sobre los números y ver

el p-value de la distribución obtenida conociendo la esperada bajo números realmente aleatorios.

Por ejemplo, si lanzamos una moneda virtual, esperamos ver una distribución binomial, que

podemos comparar con la obtenida para hallar el p-value.

Los propios p-values están distribuídos de forma estadística, así que esperamos ver fallar

incluso a un generador perfecto un tanto por ciento determinado de las veces. Esto hace que no

solo haya que rechazar generadores con un p-value muy bajo, sino también los que tengan un

p-value muy alto. La suite de tests, por defecto, es conservadora y anuncia como “débiles” los

tests con 𝑝 > 0.995 y 𝑝 < 0.05 y como “fallados” los tests con 𝑝 > 0.9995 y 𝑝 < 0.005. Todos los
generadores usados pasan todos los tests realizados (ver figura y tabla a continuación) salvo por el
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generador por defecto de C compilando con Glibc. En la fuente empleada se indica el veredicto

de cada prueba: pass, weak o failed .

En vista de los resultados, se optó por escoger una implementación [23] del algoritmoMersenne

Twister, empleando como periodo 2601 − 1, por ser rápido y correcto.

Glibc rand() Mersenne twister Parisi-Rapuano /dev/urandom

4.0⋅10⁷ rand/s 5.7⋅10⁷ rand/s 5.4⋅10⁷ rand/s 2.8⋅10⁷ rand/s

diehard birthdays 0.77798187 0.45147138 0.99298037 0.98661661

diehard operm5 0.77805163 0.69607618 0.57700663 0.97395944

diehard rank 32x32 0.00000000 0.85981358 0.25006856 0.32911572

diehard rank 6x8 0.33539556 0.42226451 0.99099839 0.29919422

diehard bitstream 0.00000000 0.58769831 0.47283337 0.59593074

diehard opso 0.25581034 0.25032842 0.32690586 0.99882142

diehard oqso 0.88991963 0.39452423 0.11213205 0.69691232

diehard dna 0.00000000 0.10489982 0.56864535 0.91507214

diehard count 1s str 0.00000000 0.98221540 0.04749207 0.03141170

diehard count 1s byt 0.00000000 0.60468106 0.02067600 0.02277030

diehard parking lot 0.00000000 0.78148856 0.35955403 0.40756286

diehard 2dsphere 0.00000000 0.97711410 0.86656341 0.79222547

diehard 3dsphere 0.00000000 0.87744534 0.67729253 0.51452466

diehard squeeze 0.00000000 0.88793557 0.92759964 0.73919529

diehard sums 0.00000000 0.84744756 0.90264575 0.56030728

diehard runs 0.79338389 0.69696354 0.06846611 0.99999754

diehard craps 0.00000000 0.39061750 0.98312026 0.93221284

marsaglia tsang gcd 0.00000000 0.80756474 0.15047973 0.95279822

sts monobit 0.00000000 0.97927930 0.49533581 0.97838676

sts runs 0.00000000 0.44167854 0.77021754 0.70077385

sts serial 0.00000000 0.53670356 0.30774783 0.01020360

rgb bitdist 0.00000000 0.42450528 0.29655434 0.13467538

rand() Mersenne Parisi urandom
Generador

0.0

0.2

0.4

0.6

0.8
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p 
va

lu
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Apéndice C

Multispin coding

La simulación de vidrios de espín requiere un gran número de réplicas, necesitándose correr

varias simulaciones en paralelo. La naturaleza binaria de los espines, que solo necesitan un bit

para ser codificados, hace que sea conveniente “empaquetar” varios en las palabras de 32 o 64 bit

de un ordenador en las iteraciones del algoritmo de Metrópolis-Hasting [5] empleado, obteniendo

paralelismo a nivel de bits como se verá a continuación.

Supongamos, para simplificar la explicación, un modelo de Ising simple con hamiltoniano

H = −∑⟨𝑖𝑗⟩ 𝑠𝑖𝑠𝑗. En cada iteración del algoritmo de Metrópolis-Hasting, necesitamos hallar la

energía de los espines y si es necesario voltearlos. Sin optimizaciones, el algoritmo para actualizar

cada espín sería el siguiente:

1. Calcular la energía con los 6 vecinos. Esto requiere una suma de 6 términos ∑𝑗 𝑠𝑗, una
multiplicación 𝑠𝑖 ⋅ ∑𝑗 𝑠𝑗 y una negación por el signo menos del hamiltoniano.

2. Calcular la probabilidad 𝑒−𝛽H𝑖 de volteo. La forma más eficiente de ejecutar este paso es

construir una look up table con los términos precalculados para los posibles valores de la

energía H𝑖 ∈ {0, ±4, ±8, ±12}, lo que además nos ahorra la negación aritmética anterior sin
más que ordenar la tabla al revés.

3. Voltear el espín, si procede. Esto requiere una negación aritmética y el cálculo de un número

aleatorio.

Notar que en el algoritmo se han despreciado los accesos a la memoria caché1.

La primera optimización que se puede realizar consiste en explotar el carácter binario de

los espines y emplear únicamente operaciones lógicas, mucho más rápidas que las aritméticas.

Para ello, pasamos de variables 𝑠 ∈ {±1} a variables 𝜎 ∈ {0, 1}. Vemos que 𝑠 = 2𝜎 + 1, por lo que
podemos traducir las sumas ∑𝑖 𝑠𝑖 a sumas en 𝜎 con facilidad. Además, las multiplicaciones se

pueden sustituir por un XOR y una negación asignando +1 → 1 y −1 → 0:
1Incluso para 𝐿 = 40, los datos necesarios (∼L³ palabras de 64 bits para el código empleado) caben cómodamente en

la memoria caché de Memento, el ordenador empleado.
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𝑠1 𝑠2 𝑠1 ⋅ 𝑠2
+1 +1 +1

+1 -1 -1

-1 +1 -1

-1 -1 +1

𝜎1 𝜎2 ¬(𝜎1 ⊕ 𝜎2)
1 1 1

1 0 0

0 1 0

0 0 1

Una vez que se ha pasado de operaciones aritméticas a lógicas se puede explotar paralelismo

en las propias palabras binarias empleadas, en este caso de 64 bits. En cada palabra cabrían 64

espines, pero como la suma∑𝑗 𝜎𝑗 puede valer como máximo 6 (110 en binario) necesitamos 3 bits
por espín, de forma que caben 21 espines de diferentes sistemas por palabra binaria2:

Representación

Espines ↑↑↓↑↓↑↓↓↓↓↓↓↑↓↑↑↓↑↓↑↑

Octal 110101000000101101011

Hexadecimal 1208200001048209

Binario 0.001.001.000.001.000.001.000⋯

Notar como al haber un espín por cada tres posiciones las posibles palabras binarias en

octal solo pueden tener los números 0 (000) o 1 (001); cualquier otra alternativa implicaría más

de un espín por posición. Por este motivo, la representación octal de las palabras corresponde

directamente a los espines, haciéndola especialmente útil en la fase de debugging.

El algoritmo mencionado previamente pasa a ser el siguiente:

1. Calculamos la energía con los vecinos. Para ello, comenzamos por hacer la suma∑𝑗 𝜎𝑗 de
los seis primeros vecinos del espín 𝜎𝑖:

+

0 000 001 000 000 001 001 000 000 000 000

0 001 000 001 000 000 001 001 001 000 000

0 001 001 000 001 001 000 000 001 000 001

0 001 001 001 001 000 000 001 001 000 000

0 000 000 000 000 001 001 000 001 000 001

0 000 000 001 001 000 001 001 001 000 001

0 011 011 011 011 011 100 011 101 000 011

donde se han truncado las palabras binarias a 31 bits por motivos de espacio. A continuación,

multiplicamos por el 𝜎𝑖 deH𝑖 = 𝜎𝑖∑ 𝜎𝑗, donde∑ 𝜎𝑗 es la cantidad que acabamos de calcular.
Para ello, hacemos un XOR lógico; no es necesario negarlo, ya que basta con alterar el orden

de la look up table en la que se guardan las probabilidades de la exponencial 𝑒𝛽H𝑖 .

⊕

0 011 011 011 011 011 100 011 101 000 011

0 001 001 000 001 001 000 001 001 000 000

0 010 010 011 010 010 100 010 100 000 011

2. Consultamos para cada uno de los 21 grupos de tres espines el índice correspondiente en

la look up table, obteniendo las 21 probabilidades 𝑒−𝛽H . Con ellas, fabricamos una nueva

palabra binaria de 64 bits que contiene 21 grupos de tres bits. Si el espín correspondiente se

2El bit sobrante (21 × 3 = 63 < 64) se ignora en el tratamiento y en el software.
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va a girar, se coloca 111, si no 000. Basta con hacer un XOR de 𝜎𝑖 con esta palabra binaria
para girar los correspondientes espines.

Hay que notar que el nuevo algoritmo necesita un bucle sobre los 21 espines de cada palabra,

haciendo que a pesar de realizar operaciones más simples (binarias frente a aritméticas) sea más

lento. No obstante, requiere 21 veces menos números aleatorios, y calcula en paralelo la evolución

de 21 sistemas, que en el caso de este trabajo serán 21 muestras diferentes.

En los benchmarks realizados se comprobó que este algoritmo era tres veces más lento3, pero

el gran aumento en estadística que se tiene lo hace imprescindible: para sistemas de 𝐿 < 20, son
necesarias miles de muestras para obtener los valores medios de algunos observables, como la

correlación. Como referencia, la simulación en un PC (Intel Core i7 cuarta generación) necesita

aproximadamente 20 ns por espín sin multispin coding y 60 ns por cada grupo de 21 espines con
él.

Cuando se simulan sistemas con 𝐽 variable hay que modificar ligeramente el algoritmo [24]:
en lugar de poder sacar los acoplos 𝐽𝑖𝑗 de la suma ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗 como una constante, es necesario
multiplicarlos primero por los 𝜎𝑗. Para cada espín 𝜎𝑖,

∑
𝑗
𝐽𝑖𝑗𝜎𝑖𝜎𝑗 = 𝜎𝑖∑

𝑗
𝐽𝑖𝑗𝜎𝑗 (C.1)

De forma que hay que realizar seis multiplicaciones 𝐽𝑖𝑗𝜎𝑗 antes de sumar los espines de los
seis primeros vecinos y multiplicar por 𝜎𝑖. En el siguiente apéndice se muestra un ejemplo de
implementación.

3Sin optimizaciones agresivas en el compilador (-ffast-math -O2 en clang y gcc), es dos veces más lento.
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Apéndice D

Código fuente

El código fuente de la memoria, incluyendo tanto la librería desarrollada para las simulaciones

como utilidades para realizarlas, junto al código LATEX de la memoria y el empleado para generar

las gráficas, está disponible en un repositorio público de GitHub en lugar de en un anexo por ser

relativamente extenso:

github.com/redpointyjackson/tfg

El código para las simulaciones se ha escrito en C99, mientras que el análisis de los datos se

ha realizado en Julia [10] y Python.

A continuación se reproducen las dos funciones principales de la librería principal, el cálculo de

H𝑖 = −∑𝑗 𝐽𝑖𝑗𝜎𝑖𝜎𝑗 y el algoritmo de Metropolis-Hasting [5], en las que se ve el uso de operaciones

binarias para paralelizar la simulación mediante multispin coding (Apéndice C). Los 𝐿3 espines
se guardan en un vector unidimensional de palabras binarias de 64 bits, y se emplean tablas

precalculadas para calcular la posición de los primeros vecinos (guide_left y similares) y las

probabilidades 𝑒𝛽H𝑖 (el campo probs dentro de la estructura SG).

uint64_t local_energy(struct net* SG, int64_t idx, int64_t x, int64_t y, int64_t z){

uint64_t* S = SG->spins;

uint64_t* Jr = SG->J_right;

uint64_t* Ju = SG->J_up;

uint64_t* Jf = SG->J_front;

uint64_t right = S[idx] ^ Jr[ idx ] ^ S[ idx + guide_right[x] ];

uint64_t left = S[idx] ^ Jr[ idx + guide_left[x] ] ^ S[ idx + guide_left[x] ];

uint64_t up = S[idx] ^ Ju[ idx ] ^ S[ idx + guide_up[y] ];

uint64_t down = S[idx] ^ Ju[ idx + guide_down[y] ] ^ S[ idx + guide_down[y] ];

uint64_t front = S[idx] ^ Jf[ idx ] ^ S[ idx + guide_front[z] ];

uint64_t behind = S[idx] ^ Jf[ idx + guide_behind[z] ] ^ S[ idx + guide_behind[z] ];

return right + left + up + down + front + behind;

}
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void metropolis(struct net* SG){

int64_t curr_idx = 0;

int64_t L = SG->L;

for(int64_t z=0;z<L;z++){

for(int64_t y=0;y<L;y++){

for(int64_t x=0;x<L;x++){

uint64_t E = local_energy(SG, curr_idx, x, y, z);

double randomnum = RANDOM_F;

for(int_fast8_t spinidx=0; spinidx<21; spinidx++){

uint64_t Pidx = E;

Pidx = Pidx >> 3*spinidx;

Pidx = Pidx & 0x7; // Select the first 3 bits.

double P = SG->probs[Pidx];

if (Pidx <= 3 || P > randomnum){

uint64_t selectmask = 0x1;

selectmask = selectmask << 3*spinidx;

SG->spins[curr_idx] ^= selectmask; // Flip current .

}

}

curr_idx++;

}

}

}

SG->mc_steps++;

}
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