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Capitulo 1

Introduccion

Los vidrios de espin (spin glasses) son materiales caracterizados por el inusual comportamiento
de sus momentos magnéticos. En lugar de mostrar un alineamiento regular de éstos, como los
materiales ferromagnéticos o los antiferromagnéticos, los momentos estan distribuidos de forma
aleatoria, de forma analoga a como la red atémica de un vidrio est4 dispuesta de forma irregular
frente a la estructura regular de un cristal.

Por debajo de una temperatura critica T, estos materiales abandonan la fase paramagnética
para pasar a una fase conocida como fase vidrio de espin, en la cual se dan los efectos que se
estudian en esta memoria: la memoria y el rejuvenecimiento. Para entender dichos efectos, es
especialmente ilustrativo considerar dos tipos de experimento (figura 1.1).

En el dip experiment protocol [1] se mide la parte imaginaria de la susceptibilidad magnética
x” = ysin ¢, donde ¢ es el desfase entre el campo H aplicado y la magnetizacion M de la muestra.
La medicion, que depende de la temperatura, se realiza de la siguiente manera:

En primer lugar, recorremos el rango de temperaturas enfriando o calentando el sistema a
un ritmo constante, obteniendo la curva de referencia. En segundo lugar, medimos enfriando el
sistema a un ratio determinado, pero cesando el enfriamiento durante un tiempo a una temperatura
elegida (en el caso mostrado, T = 12K) y retomandolo después; durante el tiempo que se deja
reposar al sistema a temperatura constante y” decae, efecto conocido como envejecimiento. Por
ultimo, volvemos a medir y”(T) esta vez calentando el sistema al mismo ratio y sin detenernos
en T = 12K. Sorprendentemente, el sistema “recuerda” (efecto de memoria) que su enfriamiento
se cesd a T = 12K y en lugar de seguir la curva de referencia medida sigue la de enfriamiento
anterior, volviendo a decrecer su susceptibilidad en T = 12K la misma cantidad que decreci6 en
el enfriamiento.

En el protocolo de dos temperaturas [2] comenzamos con un vidrio de espin a temperatura T; =
12 K. Dejamos evolucionar al sistema a temperatura constante, y vemos que la parte imaginaria
de la susceptibilidad y” decae de forma continua, efecto al que llamamos envejecimiento. A
continuacién, cambiamos a una temperatura mas baja T, = 9K. y” experimenta un crecimiento
subito, efecto al que en contraposicion con el envejecimiento se le llama rejuvenecimiento. Por
ultimo, tras dejar decrecer a y” por un tiempo a T, volvemos a calentar al sistema a T;. El sistema
recupera de forma rapida la y” que tenia cuando se pas6 de T; a T,, y continda la evolucién como

si nunca hubiera existido la fase a T,, con la misma pendiente.
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Figura 1.1: Experimentos que muestran los efectos de memoria y rejuvenecimiento en un vidrio de
espin de CdCr; ,In, S, para la parte imaginaria y” y real y’ de la susceptibilidad. En la figura
izquierda (tomada de la figura 1 de [1]) vemos el dip experiment protocol y en la derecha (tomada de
la figura 1 de [2]) el protocolo de dos temperaturas.

Modelo

Los primeros vidrios de espin [3] que se estudiaron en los afios 70 consistian en metales
nobles impurificados con metales de transicion, como por ejemplo el CuMn. Las impurezas crean
perturbaciones aleatorias en la red cristalina modelables mediante el modelo RKKY, que propone
una interaccién entre dos momentos magnéticos a distancia r de la forma

T(r) o —COS(ZK”) (1.1)
r
donde K, ~ 1 x 10! m™ es el vector de ondas del metal impurificado. La funcién J(r) tiene una
oscilacion debida al término coseno de longitud de onda muy corta, cambiando de signo a escala
atomica.

Los momentos magnéticos de los vidrios de espin se modelaran mediante espines discretos
situados en una malla tridimensional de L espines de lado con espaciado regular, como propusieron
Edwards y Anderson [4]. Supondremos tinicamente interacciones a primeros vecinos (figura 1.2)
y condiciones de contorno periddicas, de forma que cada espin s; interactie con sus seis vecinos

s; mas proximos mediante un hamiltoniano

% = - Z]ijsisj' (12)
Gy

donde los acoplos J;; € +1 de los espines s; € £1 son niimeros aleatorios de distribucion plana,

modelizando la rapida variacion de J debida a la interaccion RKKY. La funcién de particion del



Figura 1.2: Modelo de Edwards-Anderson en 3D, con interacciones a primeros vecinos. Cada espin
interacciona tinicamente con los 6 espines mas cercanos en la red, siendo el signo de la interaccion

aleatorio.

sistema queda como

Z =1[Z)] (1.3)

donde “[ ]” indica un promedio sobre sistemas con diferentes acoplos J;;, a los que llamaremos
muestras. Este promediado esta justificado por las escalas de tiempos existentes en el problema: los
espines s; tienen una evolucion mucho mas rapida que los acoplos, de forma los acoplos se pueden
suponer fijos durante las iteraciones que se pueden realizar en la simulacién de los sistemas. Los

promedios usuales sobre el espacio de configuraciones de una sola muestra se denotan como “()”.

Magnitudes

Para estudiar la memoria y el rejuvenecimiento, se definieron y midieron diversos observables
del sistema. Es especialmente interesante el comportamiento de estas magnitudes en el protocolo

de dos temperaturas al que se sometera a los vidrios de espin,

donde T, < Ty < T,, y los cambios de T; a T,, y de T, a T; se producen en t., y t% respectivamente.

La energia, de forma similar al hamiltoniano del sistema, se define como

E= —%/Z]ijsisj (1.4)
<@L

con V = L3 y tomando valores entre -1y 1, es indispensable para actualizar los espines en cada
iteracion del algoritmo de Metropolis-Hasting [5]. Tiene un comportamiento suave, lo que la
hace 1til para comprobar si la simulacion ha transcurrido de forma normal, los datos no se han

corrompido al guardarlos, etc.
En los sistemas ferromagnéticos es de especial interés la magnetizacion del sistema, aqui
definida como %/ 2., 0;, por ser el parametro de orden. No obstante, en los vidrios de espin los
espines se congelan por debajo de T, con magnetizacion global es nula [6], de forma que es



necesario definir como pardmetro de orden el overlap entre los espines s¢, s’ de dos réplicas a y b

como

1
9= 5 2. sfs! (1.5)

donde se define como pareja de réplicas a dos sistemas con los mismos acoplos J;; pero que han
evolucionado de forma independiente, con distintos nimeros aleatorios en el proceso. Es una
magnitud comprendida entre -1 y 1, cuyo valor en las simulaciones fluctia alrededor de g = 0
con media nula, como puede verse mas adelante en la figura 3.2. La distribucion del overlap es
objeto de debate, habiéndose propuesto diferentes teorias a lo largo de la historia de los vidrios de
espin; las dos principales teorias en las que se trabaja en la actualidad son la teoria RSB [7][8], de
las siglas inglesas replica simmetry breaking, y la droplet picture [9].

La teoria RSB propone un nimero infinito de estados en equilibrio, de forma que la distribucién
P(q) del overlap es no trivial y posee un continuo de estados entre dos maximos simétricos. En
cambio, en el droplet scenario solo existe un estado fundamental (salvo por una inversién de todos
los espines) y P(q) consiste en dos deltas de Dirac.

La correlacién a dos tiempos t,,, t,, + t, se define como
1
Clty b+ 1) = 5 5 $5ity) sty + o)) (1.6)
i

donde s; € son los V espines del sistema. El parametro t, esta relacionado con la frecuencia
experimental de medicién de la susceptibilidad w como #; =~ 27/ w.

La magnitud en la que se ven con mayor claridad los efectos de memoria y rejuvenecimiento
es la susceptibilidad y, que se puede calcular gracias al teorema de fluctuacion-disipacion a través

de la correlaciéon como
Xty by + 1) = B(1 - C) (1.7)

donde 8 = 1/k; T. Si bien este resultado solo es valido en equilibrio térmico, condiciéon extrema-
damente dificil de alcanzar en sistemas con alta frustracion como los vidrios de espin, se puede
extender facilmente fuera de él multiplicando por una funciéon X que solo depende de los tiempos
t;, t, empleados en la correlacion. En este trabajo, no se ha realizado dicha correccién por estar
fuera de los objetivos fijados y requerir un analisis mas profundo de estos sistemas.

Por ultimo, mediante el overlap se puede definir la correlacién espacial C, como

Calri 1) = 244t Gier(t) (1.9)

donde g, , es el overlap del espin que esta a distancia r del i. La magnitud, con valores entre —1
y 1, aumenta conforme el sistema se acerca al equilibrio (¢,, — o) y disminuye con la distancia

entre espines r.



Capitulo 2

Objetivos

El principal objetivo del trabajo presentado es caracterizar los efectos de memoria y reju-
venecimiento en vidrios de espin. Para ello ha sido necesario familiarizarse con los vidrios de
espin, paradigma de los sistemas complejos, y paralelamente realizar una inmersion a fondo en la
supercomputacion, utilizando diferentes arquitecturas (PC, clusters, y ordenadores de propésito
especifico) y lenguajes de programacién (Python, C99, Julia [10] y Unix Shell) con los que crear
cdodigo que realizara y analizara las simulaciones.

Definiendo la energia de los estados como el valor del hamiltoniano se puede explorar el
espacio de configuraciones!, y asignandoles probabilidades e #* con = 1/k, T las magnitudes
del sistema introducidas pueden aproximarse mediante un algoritmo como el de Metropolis-
Hasting [5]: es simple de implementar, acerca al sistema a la termalizacion antes que otros
algoritmos como el Heat bath y es muy eficiente computacionalmente. El algoritmo requiere una
gran cantidad de numeros aleatorios, cuya calidad se comprobé exhaustivamente (Apéndice B).
Cada iteracion del algoritmo equivale a aproximadamente un picosegundo de evoluciéon en un
experimento [11], lo que limita los intervalos temporales en el estudio de estos sistemas a las
décimas de segundo.

Los célculos se realizaron en el cluster Memento y en el ordenador de propésito especifico
Janus [12], basado en FPGAs?. Para calcular los observables es necesario un gran nimero de

muestras, lo que se consiguié de forma diferente en cada arquitectura:

» En el cluster el gran nimero de nodos de computacion, los multiples hilos de ejecucion
por cada procesador, y el multispin coding [13] (Apéndice C) permiten simular miles de

muestras simultaneamente.

= En Janus, solo se ha podido simular del orden de una centena de vidrios de espin simul-
taneamente. No obstante, se utiliz6 para reticulos grandes (L > 40), en los que los efectos

de tamafio finito son mucho menos notables y las fluctuaciones de los observables son

'Temperaturas demasiado bajas no son explorables con este método. Valores muy altos para 8 = 1/k,; T crean un
underflow en el calculo de exp(—ﬁE), es decir, el procesador no puede distinguir exp(—ﬁE) de cero. No obstante, se ha

comprobado que el limite esta en T = 1/60, muy inferior a las temperaturas usadas.
2Un FPGA (del inglés Field Programable Gate Array) es un dispositivo basado en puertas logicas que permite

programar las conexiones entre sus puertas internas mediante un ordenador. Esto permite crear circuitos electronicos
adaptados a la aplicacién, consiguiendo altas velocidades de calculo.



menores, requiriendo promedios entre muchas menos muestras (decenas) para conseguir la

misma incertidumbre en las medidas.

Para simulaciones de tiempos cortos y reticulos pequefios que no requirieron la potencia de calculo
de Memento y Janus se emple6 un PC doméstico.

Se decidi6 realizar todas las simulaciones bajo un protocolo de dos temperaturas como el de
la figura 1.1:

1. El sistema, de un L determinado, se deja evolucionar t&v pasos de Montecarlo a una tempera-
tura T;.

2. Una vez realizados los t), pasos de Montecarlo, se enfria de forma instantanea a T, < Ty. En
este cambio se medira el efecto del rejuvenecimiento. El sistema permanece a T, hasta que
se alcance el paso de Montecarlo #2.

3. Alcanzado dicho paso, se vuelve a calentar instantaneamente el sistema a T;. Se le deja

permanecer a esta temperatura 10% iteraciones para poder observar la memoria del sistema.

Ademés, se realiz6 una simulacién de referencia a T = T; = cte. con la que comparar la susceptibi-
lidad para medir rejuvenecimiento y memoria.

En dicho protocolo, se simulé ¢}, € {10%,10°,10°, 107, 108}, T; € {0.9,0.8,0.7, 0.6}, T, € {0.8,0.7.0.6}
y se empleo t, € {10%,10°, 10,107, 10%}. Hay que notar que las #, > t,, no son accesibles experi-
mentalmente, pero por completitud se incluyeron en el analisis.

Se emplearon varios tamanos L de reticulo para la simulacion de referencia, L € {4, 6, 8, 12} en
Memento y L € {8, 48, 80} en Janus. El protocolo de dos temperaturas pudo completarse hasta t2,
para L € {8, 12, 48,80} y mas all4 para L € {8, 48, 80}. Como valor para t2, se escogio t., + 10% para
las redes de Memento y 2 x 10° para las redes de Janus.

Maés adelante se definirdn magnitudes escalares que permitan cuantificar la memoria y el

rejuvenecimiento con objeto de realizar un analisis de sus dependencias funcionales con t;,, t, y
L-T,
T



Capitulo 3

Desarrollo

Los tiempos de simulacion y medicion de magnitudes llegan a la semana para algunos tama-
fos del sistema, por lo que es imprescindible una buena organizacion a la hora de programar las
simulaciones y las medidas. Ademas, es importante comprobar que los sistemas estan evolucio-
nando como se espera, sin fallos de software o hardware que invaliden los resultados. Por ello,
mientras se obtenian las configuraciones de espines se comprob6 que todos los observables del

sistema tenian el comportamiento esperado, como se vera a continuacion.

Comportamiento de los observables

Un observable especialmente til para comprobar que no ha habido fallos graves en la simula-
cion es la energia, que ha de tener un comportamiento suave y continuo como el que muestra la
figura 3.1. El overlap, como muestra la figura 3.2, debe tener un histograma centrado en cero y
una distribucién de doble pico simétrica.

Como puede verse en la figura 3.3, los sistemas estan mas descorrelacionados cuanto mas
aumentamos el intervalo temporal #, debido a que se comparan configuraciones de espines
separadas por un mayor tiempo, y van alcanzando un estado global de mayor correlacién conforme
lo dejamos evolucionar (t,, — o) y el sistema se acerca lentamente al equilibrio térmico.

La dependencia de la correlacion con L es mucho mas marcada para t, elevado, como puede

-1.2
— -14
=)

-1.6

T=0.9 T=0.5 T=0.9
-1.8
0.0 0.5 1.0 1.5 2.0 2.5 3.0
MC[x108]

Figura 3.1: Energia para un sistema L = 80 promediada sobre 8 muestras.
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Figura 3.2: Fluctuaciones del overlap q para L = 8, uno de los pocos tamarios que puede llevarse hasta
10'! iteraciones de Montecarlo en un tiempo de dias. Se muestran en el fondo (azul) el overlap de 32
muestras y en rojo el de una de ellas. A la derecha se muestra un histograma de la distribucion del
overlap de las muestras por encima de 10® pasos de Montecarlo.

1.0

0.8 — -
= 0.6
5 0.
=

E

* 04
@)

0.2

200 400 600 800 1000
0.0
10° 10! 102 103 10° 101 102 103

tw to

Figura 3.3: Correlacion para un sistema L = 32 promediada sobre 210 muestras. Se muestra en la
escala de color el parametro (t, o t,,) no empleado en el eje horizontal. Ambos parametros toman
valores ty, t,, € [1,10%].
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Figura 3.4: Correlacion a T = 0.9 promediada sobre mas de 1000 muestras para L < 40 y sobre mas
de 30 para L > 20 (color en el original). Para t, y t,, bajos, las medidas de la correlacion estan menos

afectadas por la L del sistema.

verse en la figura 3.4. También vemos que de forma cualitativa la correlaciéon crece monétonamente
con L para t,, — oo.

La correlacion espacial es especialmente interesante para saber si la muestra va a mostrar
unos efectos de tamafio finito fuertes, ya que con ella se puede hallar la longitud de correlacion &

mediante el ajuste asint6tico [14]

oo A
Cir.t,) =7 — exp ([-r/E(n,)Y) (31)

o mediante integracion [15] de C, con

f Lz r2Cy(r, t,)dr

) = 0 3.2
(8 jOL/Z rCy(r, t,,)dr 62

Noétese que no tiene sentido ver el valor de C, para r > L/2, ya que las condiciones de contorno
periddicas implican que la distancia entre dos espines es siempre igual o menor que ese valor.
Una longitud de correlacion cercana a este valor es sefial de que el reticulo es demasiado pequefio
como para tenerlo en cuenta.

Se consider6 cual de los métodos para hallar &£ emplear; en la figura 3.5 se puede ver un ejemplo
de los resultados de ambos para un reticulo con L = 12. Se escogid el método mediante integrales
de la ecuacién (3.2) por ser mucho més preciso para t,, » 107 que el ajuste a la ecuacién 3.1 [15].

En la figura 3.6 se muestran los resultados obtenidos para la longitud de correlaciéon. Como se

puede ver, siempre se tiene ¢ « L/2, tal y como se buscaba.

Rejuvenecimiento

Antes de estudiar el rejuvenecimiento es importante encontrar una definicién cuantitativa; en

la figura 3.7 se exponen las posibles definiciones creadas para el protocolo de dos temperaturas.

12
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Figura 3.5: En la figura izquierda se muestran los valores de C, medidos para un reticulo L = 12 a
T = 0.9, correspondiendo cada linea a unr € {1, 2, ..., 6} junto a los & obtenidos mediante el ajuste y
mediante integracion en la figura derecha (color en el original). Para t,, alta el ajuste de C, es malo y
la incertidumbre (zona sombreada) crece sin limite.

10! 103 10° 107 10°
tw

Figura 3.6: La longitud de correlacion £ a T = 0.7 es menor que L/2 en todo el rango de t,, empleado;

la imagen no cambia sustancialmente para otras temperaturas T < T.. Los datos para L = 80 se han
extraido de [15].
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Figura 3.7: Definiciones cuantitativas del rejuvenecimiento en un protocolo de dos temperaturas. Se

muestra la susceptibilidad y(t,,).

Hasta ahora solo se han visto ejemplos de rejuvenecimiento fuerte, en el que la susceptibilidad
sube por encima del valor que tenia en T; al cambiar a T,,. No obstante, en algunas de las mediciones
se detectd rejuvenecimiento débil, en el que la curva de y no sube por encima de T; al efectuar
el cambio a T,. Ay es la Ginica magnitud que no diverge en esos casos, por lo que se usara en el
analisis. Para el caso del rejuvenecimiento débil tendra valores negativos.

Se realiz6 un bootstrap [16] (Apéndice A) de x(t,,) de las muestras de forma que se tuviera
una incertidumbre para los Ay hallados, que se calcularan restando la y de referencia a T; y la

ydelafasea T, en t,, = t.. El nimero de muestras tomadas varia segtin los parametros t, t, y
L-T,

, pero se encuentra siempre entre 15 y 30 para los reticulos L > 40 y es superior a mil para
1
los L < 40. Ademas, por cada muestra se promediaron dos réplicas.

Memoria

Antes de analizar los datos tomados, se realiz6 una pequefia simulacion con t,, bajo y gran
cantidad de estadistica para ver como se manifestaba la memoria en un caso ideal (figura 3.8). En
ella se aprecia como existe un pequerio tiempo en el que el sistema todavia no ha recuperado la
curva de referencia. Podemos caracterizar ese tiempo At viendo cuantas iteraciones pasan hasta

que ambas curvas se cruzan, obteniéndose una magnitud escalar para la memoria.

14
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Figura 3.8: Tras volver a T; desde T, el sistema (promedio sobre 10500 muestras, L = 12) recupera
la curva y(T;) desde donde se produjo el cambio a T,. Se muestran en linea discontinua azul una
simulacion a T, sin cambio a T, como referencia, y en linea discontinua amarilla la curva para Ty
desplazada a la izquierda para facilitar la comparacion.
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Capitulo 4

Resultados

Una vez hallados los Ay en t}, podemos analizar el efecto del rejuvenecimiento, y con los At

hasta que el sistema recupera la memoria podemos cuantificar ésta en funcion de los parametros.

Rejuvenecimiento

Se comprobo si el parametro ¢, de la correlacion jugaba un papel importante en la aparicién
de rejuvenecimiento débil. Como puede verse en la figura 4.1, en la que se realiz6 una simulacion
para baja t,,, aumentar #, hace disminuir Ay de forma consistente hasta que desaparece el rejuve-
necimiento fuerte para f, ~ %t&v No obstante, hay que notar que experimentalmente wt,, > 1, por
lo que ¢, < 2xt,, lo que restringe el rango de t,.

En la figura 4.2, puede verse que los parametros de los que depende el rejuvenecimiento
(ths tos b

T

Notamos que el valor de Ay parece tener un minimo en t,, visible inicamente para t., < 10°.

T, .. . o
%) tienen una influencia distinta sobre Ay.

Ademas, hay un cambio en el comportamiento de Ay conforme aumentamos t,, que corresponde
experimentalmente a disminuir la frecuencia de medicion de la susceptibilidad: para t, bajo, una
mayor t,, implica un mayor rejuvenecimiento Ay, mientras que para t, alto (rango inaccesible
experimentalmente) ocurre al revés, y menores ¢}, exhiben mayor Ay. Como predecia el pequefio
experimento de la figura 4.1, las redes que muestran rejuvenecimiento fuerte pasan a mostrar
rejuvenecimiento débil al aumentar t,.

La influencia de T; — T, no es muy clara para L > 8, pero para L = 8 parece que aumentar
dicha diferencia hace disminuir Ay. En todo caso, es el parametro que menos influye en el
rejuvenecimiento, probablemente por ser el rango de valores tomados en el resto de parametros
mucho mayor.

Por ultimo, notamos que solo se ha obtenido rejuvenecimiento fuerte para L = 48 y L = 80, lo

que indica que el tamarfio de la red es relevante en la aparicion de este efecto.

Memoria

Para explorar la forma funcional de At, se optd por representarlo en funcién de tl, #, o
L-T,

y promediar sobre el resto, de forma que pudieran verse tendencias generales (figura 4.3).
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Figura 4.1: Susceptibilidad y para T, = 0.9, T, = 0.5, L = 8 promediadas sobre 31500 muestras con
valores de t, € [1,10°], color en el original. El rejuvenecimiento fuerte desaparece cuando t ~ %103.

Analizando los resultados, vemos que At crece con t, y disminuye con t}, y con la diferencia de
temperaturas T;, T,. Notamos que el comportamiento del reticulo L = 8 es anémalo respecto al
de las redes L = 48 y L = 80, probablemente por su pequefio tamafio. Para t}, > 10°, éste llega a
mostrar un rejuvenecimiento inmediato, alcanzando la curva de referencia en una sola iteracién
de Montecarlo. Ademas, los tiempos de recuperacion At son notablemente méas pequenos para el
reticulo L = 8, cinco 6rdenes de magnitud menores que L = 48 y L = 80. Esto es achacable a que
su evolucion es notablemente mas rapida.
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Figura 4.2: En la columna izquierda se muestran bandas con las medidas de Ay tomadas para cada
, 1 T-T, . . .
grupo de parametros (t,,, t, T), correspondiendo el grosor a la incertidumbre a 1o. En la columna
1
central, se ven esas mismas medidas promediando sobre las distintas temperaturas medidas. A la
derecha se muestra el valor medio del Ay segiin la relacion entre las temperaturas T, y Ty, de nuevo
para todos los grupos de parametros medidos. En color se indica t\, como muestra la leyenda.
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Capitulo 5

Conclusiones

A lo largo del trabajo realizado se ha comprobado que la simulacién de vidrios de espin es un
tema delicado y duro, requiriendo grandes cantidades de tiempo tanto humano como de CPU. A
pesar de la simplicidad del modelo empleado, se ha visto como el comportamiento del sistema era
rico y variado.

A la hora de emplear tanto el cluster como Janus, se tuvieron diversos problemas técnicos
que requirieron adaptar las simulaciones numerosas veces para evitar la pérdida de datos. Las
simulaciones de vidrios de espin duran dias, aumentando la probabilidad de aparicion de errores,
especialmente en maquinas con varios afios de uso como Janus. Por ello, se realizaron distintos
tests sobre el software, incluyendo la simulacién de modelos de Ising, la obtencion de los valores
medios de las ecuaciones de Schwinger-Dyson [17] y el ajuste de la correlacién C(t,,, t,, + t,) a
leyes de potencias conocidas [18].

En el estudio del rejuvenecimiento, se ha comprobado como el rejuvenecimiento fuerte era
especialmente fragil, mostrando la mayoria de los datos tomados rejuvenecimiento débil. La
frecuencia de medicién w de la susceptibilidad, a través del tiempo de correlacidn t,, juega un
papel importante en el efecto junto al tiempo en que se cambia la temperatura del sistema, ...

La memoria ha resultado ser un efecto mucho maés robusto, aunque su forma funcional no se
haya conseguido analizar con la misma precisién que el rejuvenecimiento. En esta magnitud es
especialmente claro el comportamiento anémalo de reticulos pequefios (L = 8), lo que justifica la
simulacion de sistemas cada vez mas grandes y la necesidad de recursos computacionales cada
vez mas potentes.

Por ultimo, me gustaria aprovechar estas lineas para dar las gracias al BIFI por permitirme
realizar parte de las simulaciones en sus instalaciones y a la Janus Collaboration por cederme
tiempo de computo en su maquina, Janus.
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Apéndice A
Bootstrapping

En ocasiones se quiere hallar el valor de un observable, pero no se posee una magnitud que
sea adecuado asociar con el error de la medida; por ejemplo, la desviacion estandar de una lista de
valores no es un estimador de la incertidumbre de su media. Esto se solucioné empleando técnicas
de remuestreo, concretamente bootstraping (remuestreo con reemplazamiento) [16].

Supongamos que tenemos una lista de N valores v;, y queremos hallar su media. Si bien es
trivial emplear Ai, Eil v; para ello, no conocemos cul es la incertidumbre de dicha medicion.

En un bootstraping, se toman de forma aleatoria M muestras con una fraccion fde los elementos
originales. Si por ejemplo v ={1,2,3,4,5,6,7,8,9} y f = /3, empleando M = 5 obtenemos 5 listas
de 9/3 = 3 elementos. Notar como el muestreo es con reemplazamiento, y por lo tanto puede haber
repeticiones. A continuacién, calculamos el valor de la funcién sobre cada muestra, obteniendo M

valores para la funcion, en este caso la media:

5,5,2 4.0
8,1,7 53
Media
1,2,3,4,5,7,8,9 — {1,9,5 — {50
7,7,4 6.0
3.9,7 6.3

Por dltimo, calculamos la media y la desviacion estandar de los M valores obtenidos, obteniendo
asi un estimador de la incertidumbre de la funcién y su valor medio.

La eleccién del parametro M es facil, ya que basta con que sea lo suficientemente grande
como para garantizar que todos los valores se empleen. Como las listas sobre las que se realiz6
bootstraping en este trabajo tenian unos cien elementos, se escogié M = 10>. Como valor para el
tamarfio de los intervalos se escogié una fracciéon f = 1/e de los datos, como propone el Numerical
Recipes [19].
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Apéndice B
Numeros aleatorios

La eleccion del generador de numeros pseudoaleatorios es crucial para realizar una simulacién
de Montecarlo, ya que puede sesgar notablemente los resultados [20][21] o convertirse en el cuello
de botella del programa si es muy lento.

A la hora de escoger un generador de nimeros pseudoaleatorios, se primé la correctitud en
primer lugar y la velocidad en segundo. En la tabla y grafica siguiente pueden verse algunos de
los resultados de la suite de tests dieharder [22]. Los tests son muy variados, pero a modo de

ejemplo se muestra la descripcion que la propia suite de tests provee para el test diehard craps:

This is the CRAPS TEST. It plays 200,000 games of craps, finds
the number of wins and the number of throws necessary to end
each game. The number of wins should be (very close to) a
normal with mean 200000p and variance 200000p(1-p), with
p=244/495. Throws necessary to complete the game can vary
from 1 to infinity, but counts for all>21 are lumped with 21.
A chi-square test is made on the no.-of-throws cell counts.
Each 32-bit integer from the test file provides the value for
the throw of a die, by floating to [0,1), multiplying by 6

and taking 1 plus the integer part of the result.

Si suponemos como hipétesis nula, Hy, que el generador de niumeros pseudoaleatorios sea
indistinguible de uno realmente aleatorio, podemos realizar diversos tests sobre los ntimeros y ver
el p-value de la distribucion obtenida conociendo la esperada bajo nimeros realmente aleatorios.
Por ejemplo, si lanzamos una moneda virtual, esperamos ver una distribucién binomial, que
podemos comparar con la obtenida para hallar el p-value.

Los propios p-values estan distribuidos de forma estadistica, asi que esperamos ver fallar
incluso a un generador perfecto un tanto por ciento determinado de las veces. Esto hace que no
solo haya que rechazar generadores con un p-value muy bajo, sino también los que tengan un
p-value muy alto. La suite de tests, por defecto, es conservadora y anuncia como “débiles” los
tests con p > 0.995 y p < 0.05y como “fallados” los tests con p > 0.9995y p < 0.005. Todos los

generadores usados pasan todos los tests realizados (ver figura y tabla a continuacién) salvo por el
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generador por defecto de C compilando con Glibc. En la fuente empleada se indica el veredicto

de cada prueba: pass, weak o failed.

En vista de los resultados, se optd por escoger una implementacién [23] del algoritmo Mersenne

Twister, empleando como periodo 2°°! - 1, por ser rapido y correcto.

Glibc rand ()
4.0-107 rand/s

Mersenne twister

5.7:10" rand/s

Parisi-Rapuano
5.4-107 rand/s

/dev/urandom
2.8-107 rand/s

Generador

23

diehard birthdays 0.77798187 0.45147138 0.99298037 0.98661661
diehard operm5 0.77805163 0.69607618 0.57700663 0.97395944
diehard rank 32x32 0.00000000 0.85981358 0.25006856 0.32911572
diehard rank 6x8 0.33539556 0.42226451 0.99099839 0.29919422
diehard bitstream 0.00000000 0.58769831 0.47283337 0.59593074
diehard opso 0.25581034 0.25032842 0.32690586 0.99882142
diehard ogso 0.88991963 0.39452423 0.11213205 0.69691232
diehard dna 0.00000000 0.10489982 0.56864535 0.91507214
diehard count 1s str 0.00000000 0.98221540 0.04749207 0.03141170
diehard count 1s byt 0.00000000 0.60468106 0.02067600 0.02277030
diehard parking lot 0.00000000 0.78148856 0.35955403 0.40756286
diehard 2dsphere 0.00000000 0.97711410 0.86656341 0.79222547
diehard 3dsphere 0.00000000 0.87744534 0.67729253 0.51452466
diehard squeeze 0.00000000 0.88793557 0.92759964 0.73919529
diehard sums 0.00000000 0.84744756 0.90264575 0.56030728
diehard runs 0.79338389 0.69696354 0.06846611 0.99999754
diehard craps 0.00000000 0.39061750 0.98312026 0.93221284
marsaglia tsang gcd 0.00000000 0.80756474 0.15047973 0.95279822
sts monobit 0.00000000 0.97927930 0.49533581 0.97838676
sts runs 0.00000000 0.44167854 0.77021754 0.70077385
sts serial 0.00000000 0.53670356 0.30774783 0.01020360
rgb bitdist 0.00000000 0.42450528 0.29655434 0.13467538
1.0 . ° ° o.,
0.8 eo° os
3 0.6 °
2 o
g 0.4
o N e oo
0.2
0.0 e °s o
rand() Mersenne Parisi urandom



Apéndice C
Multispin coding

La simulacion de vidrios de espin requiere un gran nimero de réplicas, necesitindose correr
varias simulaciones en paralelo. La naturaleza binaria de los espines, que solo necesitan un bit
para ser codificados, hace que sea conveniente “empaquetar” varios en las palabras de 32 o 64 bit
de un ordenador en las iteraciones del algoritmo de Metrdpolis-Hasting [5] empleado, obteniendo
paralelismo a nivel de bits como se vera a continuacion.

Supongamos, para simplificar la explicacion, un modelo de Ising simple con hamiltoniano
Ho= =Y, ap Sisj- En cada iteracion del algoritmo de Metrdpolis-Hasting, necesitamos hallar la
energia de los espines y si es necesario voltearlos. Sin optimizaciones, el algoritmo para actualizar

cada espin seria el siguiente:

1. Calcular la energia con los 6 vecinos. Esto requiere una suma de 6 términos zj $j, una

multiplicacidon s; - ), .s; y una negacion por el sigsno menos del hamiltoniano.
1 j ]

2. Calcular la probabilidad e#” de volteo. La forma mas eficiente de ejecutar este paso es
construir una look up table con los términos precalculados para los posibles valores de la
energia J7, € {0, +4, £8, +12}, lo que ademas nos ahorra la negacion aritmética anterior sin

mas que ordenar la tabla al revés.

3. Voltear el espin, si procede. Esto requiere una negacion aritmética y el calculo de un nimero

aleatorio.

Notar que en el algoritmo se han despreciado los accesos a la memoria caché!.

La primera optimizacion que se puede realizar consiste en explotar el caracter binario de
los espines y emplear inicamente operaciones logicas, mucho méas rapidas que las aritméticas.
Para ello, pasamos de variables s € {1} a variables ¢ € {0, 1}. Vemos que s = 2¢ + 1, por lo que
podemos traducir las sumas ). s; a sumas en o con facilidad. Ademas, las multiplicaciones se

pueden sustituir por un XOR y una negacién asignando +1 — 1y -1 — 0:

"Incluso para L = 40, los datos necesarios (~L* palabras de 64 bits para el c6digo empleado) caben cémodamente en
la memoria caché de Memento, el ordenador empleado.
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S1 S22 | S1°% oy 0y | 7oy @ 0y)
+1 +1 +1 1 1 1
+1 -1 -1 1 0 0
-1 +1 -1 0 1 0
-1 -1 +1 0 0 1

Una vez que se ha pasado de operaciones aritméticas a logicas se puede explotar paralelismo
en las propias palabras binarias empleadas, en este caso de 64 bits. En cada palabra cabrian 64
espines, pero como la suma zj oj puede valer como méximo 6 (110 en binario) necesitamos 3 bits

por espin, de forma que caben 21 espines de diferentes sistemas por palabra binaria®:

Representacion

Espines TRV T
Octal 110101000000101101011
Hexadecimal 1208200001048209

Binario 0.001.001.000.001.000.001.000--

Notar como al haber un espin por cada tres posiciones las posibles palabras binarias en
octal solo pueden tener los niimeros 0 (000) o 1 (001); cualquier otra alternativa implicaria mas
de un espin por posicion. Por este motivo, la representacion octal de las palabras corresponde
directamente a los espines, haciéndola especialmente util en la fase de debugging.

El algoritmo mencionado previamente pasa a ser el siguiente:

1. Calculamos la energia con los vecinos. Para ello, comenzamos por hacer la suma Zj ojde

los seis primeros vecinos del espin o;:

0 000 001 000 000 001 001 000 000 Q00 000
001 000 001 000 000 001 001 001 000 000
001 001 000 001 001 000 000 001 000 001
001 001 001 001 000 000 Q01 001 000 000
000 000 000 000 001 001 000 001 000 001
000 000 001 001 000 001 001 001 000 001
0 011 011 @11 @11 011 100 011 101 000 011

donde se han truncado las palabras binarias a 31 bits por motivos de espacio. A continuacion,

+
S © & & &

multiplicamos por el o; de /7 = 0; ), 0;, donde )] 0; es la cantidad que acabamos de calcular.
Para ello, hacemos un XOR 16gico; no es necesario negarlo, ya que basta con alterar el orden

de la look up table en la que se guardan las probabilidades de la exponencial e/,

2 011 011 @11 211 211 100 @11 101 000 011
® 0 001 001 000 001 001 000 001 001 000 000
0 010 010 011 010 010 100 010 100 000 011

2. Consultamos para cada uno de los 21 grupos de tres espines el indice correspondiente en

la look up table, obteniendo las 21 probabilidades e#”. Con ellas, fabricamos una nueva

palabra binaria de 64 bits que contiene 21 grupos de tres bits. Si el espin correspondiente se

“El bit sobrante (21 x 3 = 63 < 64) se ignora en el tratamiento y en el software.
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va a girar, se coloca 111, si no 000. Basta con hacer un XOR de o; con esta palabra binaria

para girar los correspondientes espines.

Hay que notar que el nuevo algoritmo necesita un bucle sobre los 21 espines de cada palabra,
haciendo que a pesar de realizar operaciones mas simples (binarias frente a aritméticas) sea mas
lento. No obstante, requiere 21 veces menos niimeros aleatorios, y calcula en paralelo la evolucién
de 21 sistemas, que en el caso de este trabajo seran 21 muestras diferentes.

En los benchmarks realizados se comprob6 que este algoritmo era tres veces mas lento®, pero
el gran aumento en estadistica que se tiene lo hace imprescindible: para sistemas de L < 20, son
necesarias miles de muestras para obtener los valores medios de algunos observables, como la
correlaciéon. Como referencia, la simulaciéon en un PC (Intel Core i7 cuarta generacién) necesita
aproximadamente 20 ns por espin sin multispin coding y 60 ns por cada grupo de 21 espines con
él.

Cuando se simulan sistemas con J variable hay que modificar ligeramente el algoritmo [24]:
en lugar de poder sacar los acoplos J;; de la suma ) J;;0;0; como una constante, es necesario

multiplicarlos primero por los ¢;. Para cada espin o;,
Z]ijUin = UiZ]ijUj (C.1)
J J

De forma que hay que realizar seis multiplicaciones J;;0; antes de sumar los espines de los
seis primeros vecinos y multiplicar por o;. En el siguiente apéndice se muestra un ejemplo de

implementacion.

*Sin optimizaciones agresivas en el compilador (-ffast-math -02 en clang y gcc), es dos veces més lento.
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Apéndice D
Céodigo fuente

El c6digo fuente de la memoria, incluyendo tanto la libreria desarrollada para las simulaciones
como utilidades para realizarlas, junto al codigo IKIEX de la memoria y el empleado para generar
las graficas, esta disponible en un repositorio publico de GitHub en lugar de en un anexo por ser

relativamente extenso:
github.com/redpointyjackson/tfg

El codigo para las simulaciones se ha escrito en C99, mientras que el analisis de los datos se
ha realizado en Julia [10] y Python.

A continuacion se reproducen las dos funciones principales de la libreria principal, el calculo de
I = - Zj Jijoio;y el algoritmo de Metropolis-Hasting [5], en las que se ve el uso de operaciones
binarias para paralelizar la simulaciéon mediante multispin coding (Apéndice C). Los L* espines
se guardan en un vector unidimensional de palabras binarias de 64 bits, y se emplean tablas
precalculadas para calcular la posicién de los primeros vecinos (guide_left y similares) y las

probabilidades e/ (el campo probs dentro de la estructura SG).

uint64_t local_energy(struct net* SG, int64_t idx, int64_t x, int64_t y, int64_t z){
uint64_tx S = SG->spins;

uint64_t* Jr = SG->J_right;

uint64_t* Ju = SG->J_up;

uint64_tx Jf = SG->J_front;

uint64_t right = S[idx] * Jr[ idx 1 » S[ idx + guide_right[x] 1;
uint64_t left = S[idx] * Jr[ idx + guide_left[x] 1 ~ S[ idx + guide_left[x] 1;
uint64_t up = S[idx] * Ju[ idx 1 ~ S[ idx + guide_uply] 1;
uint64_t down = S[idx] * Ju[ idx + guide_down[y] 1 * S[ idx + guide_down[y] 1;
uint64_t front = S[idx] * Jf[ idx 1 » S[ idx + guide_front[z] 1;
uint64_t behind = S[idx] * Jf[ idx + guide_behind[z] 1 * S[ idx + guide_behind[z] 1;

return right + left + up + down + front + behind;
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void metropolis(struct net* SG){
int64_t curr_idx = 0;
int64_t L = SG->L;

for(int64_t z=0;z<L;z++){
for(int64_t y=0;y<L;y++){
for(int64_t x=0;x<L;x++){

uint64_t E = local_energy(SG, curr_idx, x, y, z);
double randomnum = RANDOM_F;

for(int_fast8_t spinidx=0; spinidx<21; spinidx++){

uint64_t Pidx = E;
Pidx = Pidx >> 3*spinidx;
Pidx = Pidx & 0x7; // Select the first 3 bits.

double P = SG->probs[Pidx];

if (Pidx <= 3 || P > randomnum){
uint64_t selectmask = 0x1;
selectmask = selectmask << 3*spinidx;
SG->spins[curr_idx] “= selectmask; // Flip current .

}
3
curr_idx++;
}
}
3
SG->mc_steps++;

3
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