

UNIVERSIDAD DE ZARAGOZA MASTER EN ENERGIAS RENOVABLES Y EFICIENCIA ENERGÉTICA

TRABAJO DE FIN DE MASTER TITULADO:

EVALUACIÓN DE LA FIABILIDAD DE UN SISTEMA DE GENERACIÓN ELÉCTRICO CON PARTICIPACIÓN DE FUENTES RENOVABLES

AUTOR: CARMEN P. DELGADO ANTILLÓN

DIRECTOR: JOSÉ A. DOMÍNGUEZ NAVARRO

POP EN INGENIERÍA ELÉCTRICA Y ENERGÉTICA CURSO ACADÉMICO 2010/11 A 15 DE JUNIO DE 2011

EVALUACIÓN DE LA FIABILIDAD DE UN SISTEMA DE GENERACIÓN ELÉCTRICO CON PARTICIPACIÓN DE FUENTES RENOVABLES

RESUMEN

Debido a los avances tecnológicos, a los cambios en la legislación o aspectos de tipo económico, social u otros, los sistemas de suministro eléctrico están en posibilidad de integrar cada vez más a las fuentes de energía renovable. Esta integración debe seguir manteniendo la rentabilidad y fiabilidad del sistema. Por ello, dentro de la extensa gama de investigaciones que hay respecto a la planificación de instalaciones de generación eléctrica, algunas abordan la integración de energías renovables evaluando con métodos probabilísticos la variabilidad de sus fuentes.

La simulación Monte Carlo ha sido ampliamente usada para calcular índices de fiabilidad, aunque es un proceso que por lo general tiene requerimientos computacionales elevados cuanto mejores resultados se pretenden. Por ello, en el presente trabajo se profundiza en el uso de la Función Generadora Universal (UGF) como una opción para el cálculo de los índices de fiabilidad, ya que permite modelar elementos como sistemas multi-estados.

El interés de emplear la UGF es disminuir los tiempos requeridos por los cálculos de los índices de fiabilidad, manteniendo resultados aceptables, además de apoyarse en tales resultados para optimizar las combinaciones de distintas fuentes de generación que se pueden presentar. Estas combinaciones pueden incluir: fuentes de energía eólica, solar, grupos electrógenos y la red eléctrica; todos ellos modelados como sistemas multi-estado.

Ya que es importante que los sistemas o combinaciones de fuentes de energía cumplan ciertos requisitos de rentabilidad y fiabilidad, se optimizan las posibles combinaciones de fuentes de generación en tres objetivos fundamentales: el coste de la energía, la fiabilidad del suministro y el porcentaje de integración de las energías renovables.

El resultado obtenido a través del uso del algoritmo evolutivo multi-objetivo es un grupo de distintas posibilidades de instalaciones eléctricas que interactúan con la demanda propuesta, optimizando los tres objetivos planteados. Las posibilidades u opciones encontradas son cercanas o incluyen a los óptimos reales, con lo cual pueden servir de base para una evaluación más exhaustiva en la planificación de una instalación. Además, al calcular los índices de fiabilidad utilizando la UGF, se logra una reducción en el tiempo y los resultados obtenidos soportan la idea de la sustitución de esta metodología por la otra, para el caso donde la evaluación es a largo plazo.

Finalmente, se presentan las simulaciones hechas con este sistema y se evalúan los resultados que arrojaron, para sustentar el trabajo realizado. A su vez, estos mismos resultados permiten visualizar las mejoras o cambios que en un futuro pueden probarse para fortalecer la metodología propuesta.

CONTENIDO

1.	Introducción	3
2.	Revisión bibliográfica	3
3.	Metodología	5
	3.1 Fiabilidad	5
	3.2 Simulación Monte Carlo	6
	3.3 Función Generadora Universal	7
	3.4 Algoritmos genéticos	8
	3.4.1 Esquema básico	8
	3.4.2 Algoritmos evolutivos multi-objetivo (MOEAs)	S
4.	Desarrollo	S
		10
	4.2 Cálculo del coste total	11
		13
	4.4 Métodos de optimización	13
	4.5 Parámetros de las unidades de generación y demanda	
	- · · · · · · · · · · · · · · · · · · ·	15
		16
		17
	· ·	18
		18
		18
5.	The second of th	19
		22
		24
	nexos	
		26
		27
		30
	Anexo 4. Radiación solar anual horaria	31
	Anexo 5. Cálculo de los valores de estado de la potencia eólica	32
	Anexo 6. Cálculo de los estados y probabilidades de la demanda	33
	Anexo 7. Precios del gasóleo/diesel	34
	Anexo 8. Tarifas de potencia y energía 3	35
	Anexo 9. Probabilidad de las instalaciones de generación	36
	Anexo 10. Comparativa de resultados entre la simulación Monte Carlo y UGF	37
	Anexo 11. Resultado de las simulaciones	38
	Anexo 12. Tablas de correspondencia de las soluciones 5	54
	· · ·	78
	Anexo 14. Diagrama de flujo general del programa	79

1. INTRODUCCIÓN

Dada la importancia de la fiabilidad en los sistemas de suministro eléctrico y el creciente incremento de las energías renovables en el sector energético, se aborda el tema de la planificación de un sistema de generación básico que combine diferentes fuentes de energía eléctrica, entre las que se encuentran: la solar fotovoltaica, eólica, grupos diesel y la provista por la red eléctrica. La planificación se basa en el coste total de la energía en un plazo definido y la fiabilidad del sistema de generación, medida esta última a través de la EENS (Energía Esperada No Suministrada) y la disponibilidad del sistema, A (Availability).

Cada una de las fuentes de generación propuestas presenta a su vez diferentes estados de funcionamiento, que pueden ir desde los dos estados básicos, "Operación" y "Fuera de servicio", a otras combinaciones de más estados, como es el caso de la generación eólica y la solar, simuladas todas como sistemas multi-estados. Una herramienta empleada para obtener los índices de fiabilidad mencionados cuando se trata de sistemas multi-estado, es la simulación Montecarlo, cuyo inconveniente es el tiempo de procesamiento que requiere. Por ello, en el presente trabajo se propone calcular estos índices con la Función Generadora Universal (UGF), evaluando la reducción en los tiempos de cálculo y la similitud en los resultados obtenidos con ambas metodologías.

Por último, haciendo uso de la UGF y un algoritmo genético multi-objetivo (NSGA-II), se lleva a cabo una optimización con la finalidad de encontrar las mejores combinaciones que satisfagan una demanda conocida, utilizando las fuentes de energía mencionadas. La optimización se lleva a cabo para las siguientes combinaciones de objetivos: 1)Coste-EENS-A y 2)Coste-EENS-porcentaje de renovables, a su vez para este último se separan la fuentes eólicas y las solares.

2. REVISIÓN BIBLIOGRÁFICA

Un sistema de suministro eléctrico puede dejar de funcionar, ya sea de forma parcial o total, por diferentes causas, que van desde cargas excesivas no previstas a problemas en el sistema de transmisión, de distribución, de generación, u otros. Debido a la necesidad de asegurar el suministro eléctrico hacia una demanda prevista, se han realizado desde hace tiempo estudios en materia de fiabilidad de instalaciones eléctricas, calculando diversos índices que aporten información al respecto; estos índices pueden variar dependiendo del interés. Por ejemplo: para la evaluación de la fiabilidad del sistema de transmisión, es relevante no sólo asegurar la adecuación del sistema para el transporte de energía, sino también la seguridad del sistema debido a fenómenos transitorios; en el caso de la red de distribución, los índices pueden estar más orientados a las interrupciones del suministro hacia los clientes en cuanto a frecuencia y tiempo de duración de éstas; y en el caso de los sistemas de generación orientarse hacia la capacidad de potencia disponible en un periodo determinado incluyendo evaluaciones de tipo económico, ambiental, etc. [1]. Con ello se puede observar que los índices pueden variar y que la combinación de los mismos puede ser de utilidad para conocer mejor los sistemas en su conjunto.

La generación de tipo renovable, por su naturaleza variable, requiere ser modelada en base a probabilidades. Los trabajos que han abordado el tema de la fiabilidad en el suministro eléctrico cuando éste incluye generación de tipo renovable, se han dividido principalmente en los que emplean simulación Monte Carlo (cronológica) y los métodos analíticos.

Algunos estudios que han optado por la metodología cronológica los encontramos en: [2], donde Billinton a través de la simulación Monte Carlo modela la capacidad de la potencia del viento para un sistema de generación con instalaciones eólicas, utilizando una simulación aleatoria y periodicidad horaria. En [3], Georgilakis presenta un caso de estudio con energías renovables y uso de batería, evaluando la fiabilidad con algunos índices conocidos y proponiendo otros de utilidad en fuentes renovables, la simulación es cronológica anual e incluye la curva de demanda horaria, recursos renovables y la batería. En [4], Matos utiliza la simulación de Monte Carlo aplicada a la evaluación de los requerimientos de reserva de un sistema de generación con penetración de energías renovables. En [5], Taljan presenta un análisis de evaluación de la fiabilidad de sistemas que contienen energías renovables, fuentes de combustibles fósiles y almacenamiento de electricidad, proponiendo dos técnicas para calcular sus índices, una es la simulación Monte Carlo y otra la Enumeración de contingencia para sistemas aislados pequeños (CESIPS). En [6], da Silva presenta una nueva aproximación de la Simulación Montecarlo basada en el método de entropía cruzada para calcular los índices de fiabilidad y minimizar el esfuerzo computacional demandado por este tipo de simulación. Y en [7], Wen presenta una recopilación de diferentes aspectos de la evaluación de la fiabilidad en granias eólicas.

Respecto a los métodos analíticos algunas investigaciones al respecto las tenemos en [8], donde calculan los índices (EUE y LOLE), separando en grupos las energías convencionales de las no convencionales. Las unidades no convencionales son representadas con un modelo de dos estados y se emplea un procedimiento de agrupamiento para identificar los estados del sistema en su conjunto, llevando a cabo el cálculo de la salida eléctrica del subsistema no convencional para cada hora. En [9], Ehsani representa la capacidad de un sistema eólico con tres estados: uno para las velocidades entre arranque y nominal, otro para velocidades entre nominal y de corte, y un último que incluye las velocidades antes de la velocidad de arranque y el estado de fuera de servicio de la instalación como tal, y calculan sus respectivas probabilidades a través del modelado de Markov. En [10], utilizan la metodología de colonia de hormigas para buscar los estados de falla con más probabilidad en pos del cálculo de los índices de fiabilidad. En [11], Liu evalúa la fiabilidad (LOLP Y EENS) de un sistema híbrido eólico-diesel con banco de baterías, y propone la agrupación de las velocidades de viento dentro de intervalos de velocidades.

Como puede observarse, al incluir energías renovables y emplear métodos analíticos, uno de los factores a considerar es el cálculo de los índices de fiabilidad. En [12], Ding hace una evaluación de la fiabilidad de un sistema híbrido de generación eólica y convencional (gas o carbón) empleando la Función Generadora Universal (UGF). Esto disminuye el coste computacional, lo cual es aún más útil cuando se quiere llevar a cabo una optimización en la cual deberán calcularse los índices de fiabilidad para cada una de las posibilidades propuestas, hasta encontrar una o varias óptimas. En una optimización multi-objetivo, es común que encontremos que los objetivos a optimizar estén contrapuestos, con lo cual al ser ponderados pueden dar lugar a diferentes soluciones y por tanto, distintas configuraciones óptimas. Los métodos de optimización son muy variados y las herramientas empleadas también. Un ejemplo lo encontramos en [13], donde Singh examina la base conceptual del proceso de evaluación de la fiabilidad, y explora el rol de algunos métodos de inteligencia artificial en ese aspecto, presentando algunos ejemplos de aplicación con fuentes de energía alternativa.

La evaluación de la fiabilidad en sistemas de generación eléctrica, simulados como sistemas multi-estado, ha sido poco abordada con herramientas distintas al método de simulación Monte Carlo. Por ello se propone profundizar en el estudio de la UGF como herramienta que asociada a alguna metodología de optimización, permita evaluar con

mayor rapidez y resultados confiables, las posibilidades que existan para una nueva instalación de generación eléctrica que incluya fuentes renovables.

3. METODOLOGÍA

En el presente trabajo se emplean algunas metodologías y herramientas de las cuales a continuación se hace un breve resumen, con el fin de tratar con mayor claridad las etapas de desarrollo y resultados.

3.1 FIABILIDAD

Para el caso del suministro eléctrico, como para otros casos, la fiabilidad está relacionada con la calidad del suministro de potencia y está definida como la probabilidad de que un sistema (o componente) pueda funcionar en un período de tiempo T bajo condiciones definidas. Considera para su evaluación los tiempos de falla y reparación ya que es dependiente de la cantidad de interrupciones.

La disponibilidad (A) para este mismo caso, está definida como el porcentaje de tiempo en el cual el sistema se desempeña ininterrumpidamente en la función para la que fue requerido. Es el aspecto más básico de la confiabilidad y es medido en porcentaje o por unidad, su complemento es la no disponibilidad y considerando su evaluación dentro de un intervalo de tiempo T, se puede expresar de forma general como:

$$Disponibilidad = \frac{Tiempo\ en\ servicio}{Tiempo\ en\ servicio\ +\ Tiempo\ fuera\ de\ servicio} \tag{1}$$

Si lo vemos en un contexto más detallado, la fiabilidad trata con las interrupciones y la disponibilidad trata con la probabilidad de estar en un estado de interrupción.

Los índices que son empleados para evaluar la fiabilidad de un sistema son diversos, dependiendo del enfoque. Tenemos índices de tipo determinista, que reflejan el comportamiento medio en la continuidad del suministro de un sistema, no consideran la aleatoriedad de la operación de los sistemas eléctricos y son muy utilizados, pues son intuitivos, simples en cuanto a cálculo y requieren pocos datos para los mismos, además que hacen fácil la comparación entre sistemas; éstos son bien aceptados en sistemas de transmisión. Y por otro lado, tenemos los del tipo probabilista, que consideran la aleatoriedad inherente a la operación de los sistemas eléctricos, tal como: fallo de los grupos, variaciones de la demanda y aportaciones de los diferentes tipos de generación. Son más usados si se requiere más información y de mayor calidad, como es el caso de los sistemas de generación y distribución.

Así por ejemplo, la fiabilidad de los sistemas de generación serán mejor definidos por índices como: la probabilidad y esperanza de pérdida de carga (LOLP y LOLE), la carga esperada no suministrada (EUL), la energía esperada no suministrada (EUE o EENS) u otros. En el anexo 1 se definen algunos de ellos.

Los sistemas al ser evaluados de forma probabilista, como ya se ha mencionado, permiten incluir el comportamiento variable de sus elementos. Este comportamiento variable puede ser representado como estados de funcionamiento, que pueden ir desde el funcionamiento completo hasta un fallo total, pasando por estados intermedios de funcionamiento parcial o reducido. Un sistema que puede desarrollar sus funciones con un número finito de niveles de eficiencia (tasas de desempeño), es llamado un sistema multi-estado (MSS) y está compuesto generalmente por elementos

que a su vez, pueden ser multi-estado. De hecho un sistema binario (funcionamiento perfecto o falla completa) es el caso más simple de un MSS. La combinación de n elementos con (k+1) estados cada unos de ellos, hace que el sistema en su conjunto pueda presentar hasta $\prod_{i=1}^n (k_i+1)$ estados distintos, lo que aumenta la complejidad para evaluar su fiabilidad.

De forma genérica, diferentes tipos de MSS pueden ser definidos al determinar la distribución de desempeño de sus elementos y definir la función de estructura del sistema. Dos estructuras básicas son la estructura serie y la paralelo. En la estructura serie (figura 2.1), la conexión de los elementos del sistema representa el caso donde una falla total de uno de los elementos individuales causa una falla completa del sistema. En cambio, en la estructura en paralelo (figura 2.2), la conexión de los elementos del sistema representa el caso donde el sistema completo falla, si y sólo si, todos sus elementos fallan.

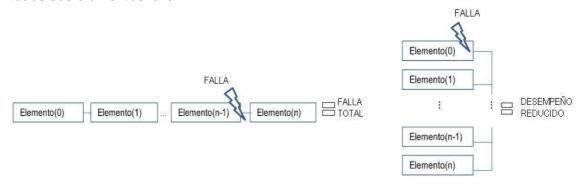


Figura 2.1 Estructura Serie

Figura 2.2 Estructura Paralelo

3.2 SIMULACIÓN MONTECARLO

Las dos principales categorías de técnicas de evaluación de fiabilidad son la simulación y la analítica. Las técnicas analíticas representan al sistema con modelos analíticos y evalúan los índices de fiabilidad de esos modelos usando soluciones matemáticas. Los métodos de simulación Monte Carlo, en cambio, estiman los índices de fiabilidad, al simular el proceso actual y el comportamiento aleatorio del sistema, tratando al problema como una serie de experimentos [14].

Algunas ventajas de los métodos Monte Carlo son:

- En teoría pueden incluir los efectos del sistema o proceso.
- El número de muestras requerido para un nivel de exactitud dado, es independiente del tamaño del sistema y es capaz de llevar a cabo evaluaciones de sistemas de gran escala.
- Pueden simular las distribuciones de probabilidad asociadas con falla de componentes y actividades de restauración, lo cual generalmente no puede hacerse con métodos analíticos.
- Pueden calcular no sólo los índices de fiabilidad en la forma de valores esperados de variables aleatorias, sino también las distribuciones de esos índices, lo cual por lo general no es posible con técnicas analíticas.
- Pueden también simular factores del sistema de tipo no eléctrico, tales como, condiciones de operación de la reserva, efectos climáticos, etc.

Su desventaja radica principalmente en el tiempo y los recursos computacionales requeridos, los cuales se incrementan conforme se desea un mayor nivel de exactitud.

3.3 FUNCIÓN GENERADORA UNIVERSAL (UGF)

La función generadora universal permite evaluar la distribución de desempeño de un MSS completo empleando procedimientos algebraicos sobre las distribuciones de desempeño de los elementos que lo componen. Está basada en procedimientos recursivos simples y provee un método sistemático para la enumeración de los estados del sistema, que puede reemplazar algoritmos combinacionales extremadamente complicados. Es una aproximación efectiva y aplicando en ella técnicas de simplificación se pueden obtener resultados en un tiempo relativamente corto, haciéndola una herramienta útil para problemas de optimización.

Si se considera a una variable aleatoria discreta X que tiene un número finito de posibles valores que pueden ser representados con un vector finito $x = (x_0,...,x_k)$ y con probabilidades representadas por otro vector finito p que consta de las correspondientes probabilidades $p_i = Pr\{X = x_i\}$, el mapeo que resulta de $x_i \to p_i$ es usualmente definido como la función de probabilidad de masa (pmf) de X, siendo:

 $\sum_{i=0}^{k} p_i = 1$, la cual vemos representada en la figura 2.3.

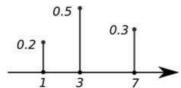


Figura 2.3, pmf de una variable aleatoria discreta

La función de un elemento multi-estado definido como una variable aleatoria discreta, se puede representar por el siguiente polinomio, Ec.(2), usualmente llamado transformada-z de la variable.

$$E(z^{X}) = \sum_{i=0}^{k} p_{i} z^{x_{i}}$$
 (2)

Es así como un elemento puede ser descrito en función de sus estados y la probabilidad de los mismos.

Si consideramos n variables aleatorias discretas $X_1, ..., X_n$ y asumimos que cada variable X_i tiene una pmf representada por los vectores X_i , p_i , para evaluar la pmf de una función arbitraria $f(X_1, ..., X_n)$, se debe evaluar el vector y de todos los posibles valores de esta función y el vector q de las probabilidades que la función toma en cada uno de esos valores. Cada posible valor de la función f corresponde a la combinación de los valores de sus argumentos $X_1, ..., X_n$. Y el número total de combinaciones posibles es como ya se mencionó:

$$K = \prod_{i=1}^{n} (k_i + 1) \tag{3}$$

Donde k_i+1 es el número de diferentes ejecuciones de la variable aleatoria X_i .

Dado que las *n* variables son estadísticamente independientes, la probabilidad de cada combinación única es igual al producto de las probabilidades de las realizaciones de los argumentos que componen esa combinación. Así la probabilidad de la *jth* combinación puede ser obtenida con:

$$q_j = \prod_{i=1}^n p_{ij_i} \tag{4}$$

Y el valor correspondiente de la función puede ser obtenido con:

$$f_i = f(x_{1j_1}, \dots, x_{nj_n})$$
 (5)

Si se desea realizar operaciones entre las variables con la finalidad de evaluar una función f, se puede emplear el operador de composición \otimes_f sobre las representaciones de la transformada-z de las pmf de las n variables independientes. Esta técnica basada en la transformada-z y el operador de composición \otimes_f es llamada la técnica de la función generadora universal (UGF), para más información puede referirse a [1].

Para un sistema multi-estado de n elementos, la distribución de desempeño del sistema completo puede ser obtenida basándose en la UGF de cada elemento del sistema. Para una función de estructura arbitraria ϕ , se puede obtener la distribución de desempeño del sistema aplicando el operador de composición general $\Omega \phi$ sobre las representaciones UGF de los n elementos del sistema [15]:

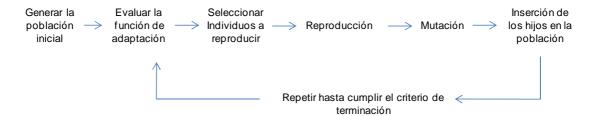
$$\Omega\phi\left(\sum_{i=1}^{k_1} p_{1,i_1} z^{w_{1,i_1}}, \dots, \sum_{i_n=1}^{k_n} p_{n,i_n} z^{w_{n,i_n}}\right) = \sum_{i_1=1}^{k_1} \sum_{i_2=1}^{k_2} \dots \sum_{i_n=1}^{k_n} \left(\prod_{j=1}^n p_{j,i_j} z^{\phi(w_{1,i_1},\dots,w_{n,i_n})}\right) \tag{6}$$

Donde:

 k_j es el número de niveles de desempeño del elemento j, w_{j,i_j} es el nivel de desempeño del elemento j en el estado i, y p_{j,i_j} es la probabilidad correspondiente al estado w_{j,i_j} .

Para el caso de una estructura serie, el operador ϕ se calcula como el mínimo de los valores a evaluar y para el caso de la estructura paralelo, se calcula como la suma de los valores a evaluar. Las operaciones son recursivas considerando dos variables tan solo, cada vez.

3.4 ALGORITMOS GENÉTICOS


Los algoritmos genéticos son una técnica de Inteligencia artificial desarrollados por John Holland y su equipo en la década de 1970, los cuales asemejando el concepto de evolución natural permiten explorar espacios de búsqueda amplios, de manera eficiente; por lo cual es de útil aplicación en problemas de optimización en los que por lo general el tiempo de resolución es importante.

Considera dentro de su metodología el concepto de la supervivencia de los individuos más aptos, que de forma estructurada y aleatoria combinan sus características para generar nuevas poblaciones de individuos. Cada elemento de la población se denomina "cromosoma" y representa de forma codificada, una solución al problema. Este cromosoma está compuesto a su vez por "genes" que representan el valor de cada una de las características. El algoritmo a base de ciclos genéticos va creando nuevas "generaciones" de esa población, cuyos individuos tienden a ser cada vez mejores soluciones al problema.

3.4.1 Esquema básico

La creación de nuevos individuos se logra al aplicar operadores genéticos que actúan sobre los individuos de la población. Los operadores básicos son el cruce y la mutación. El operador de cruce, teniendo dos cromosomas, los combina, bajo un esquema predefinido, logrando así de dos cromosomas padres, dos cromosomas hijo. El operador de mutación modifica alguna de las características del cromosoma de forma aleatoria. Para que dichos operadores puedan ser empleados, se requiere seleccionar a los cromosomas sobre los cuales actuarán. Hay diferentes métodos que por lo general se basan en una función de aptitud que evalúa la capacidad de la solución (para lo cual el cromosoma debe ser decodificado y evaluado en términos reales de acuerdo a lo que su representación significa).

La representación del esquema básico [16] es la siguiente y una explicación con más detalle de los elementos del proceso se puede encontrar en el anexo 2.1:

3.4.2 Algoritmos evolutivos multi-objetivo (MOEAs)

En el caso de los algoritmos genéticos con un solo objetivo, una vez que el criterio de parada se ha alcanzado, se elige entre las soluciones resultantes, la que mejor cumpla con el objetivo deseado. Pero cuando el problema involucra más de un objetivo a optimizar, puede ocurrir que un cromosoma que presenta frente a otro una mejor aptitud para uno de los objetivos, tenga una peor aptitud para otro de los objetivos a optimizar, haciendo con ello más compleja su valoración. En algunos casos se genera una función de aptitud que pondera cada uno de los objetivos en conjunto, o bien, otros calculan una función para cada objetivo por separado.

En estos problemas la idea de óptimo se modifica, ya que es difícil encontrar una solución única que satisfaga la optimización de todos los objetivos a la vez. Por ello, se genera un conjunto de soluciones que forman el llamado frente de Pareto, donde una solución que pertenezca a él, debe ser aquella que al mejorar un criterio no cause un empeoramiento simultáneo en al menos otro criterio. Estas soluciones son llamadas no dominadas y cada una de ellas es una solución óptima.

Los MOEA tienen como propósito aproximarse al frente de Pareto real, muestreándolo adecuadamente y permitiendo así tener diferentes alternativas para cada una de las funciones a optimizar, además de pretender una buena eficiencia computacional. Agregan dos operadores a los algoritmos genéticos, que son el de diversidad y el de asignación de aptitud. El primero ayuda a que la convergencia no se dé sólo a un sector del frente de Pareto y el segundo, está orientada a dar mayor oportunidad de procreación a aquellos individuos con mejores características.

Dentro de los diferentes algoritmos que se han investigado, el NSGA-II (Nondominated Sorting Genetic Algorithm) es uno de los que ha demostrado buenos resultados. Este algoritmo incluye la ordenación de cromosomas en frentes no dominados y un operador adicional para la preservación de la diversidad que evalúa el nivel de agrupamiento o densidad de los cromosomas pertenecientes a un frente dado [17]. La descripción más detallada de los operadores adicionales de este algoritmo se encuentra en el anexo 2.2.

4. DESARROLLO

El sistema desarrollado, tiene como finalidad optimizar la instalación de un sistema de generación que satisfaga una demanda. Dicho sistema debe incluir dentro de las unidades de generación, algunas de tipo renovable (modeladas como un sistema multi-estado).

La optimización será respecto al coste de la instalación, su energía esperada no suministrada (EENS) y su disponibilidad (A) o porcentaje de renovables en la instalación. Para evaluar la A y EENS, se pueden emplear diferentes metodologías como se mencionó anteriormente. Para el caso de estudio presentado en este trabajo, se evaluarán tales parámetros por dos métodos, simulación Montecarlo y Función Generadora Universal (UGF). Se pretende con ello comparar el desempeño en tiempo y valores resultantes. Más, debido a que el objetivo es agilizar el resultado del proceso completo de optimización, la evaluación de las diferentes opciones o combinaciones de unidades de generación que van surgiendo en el proceso, se evaluarán finalmente sólo con la UGF; y la contrastación entre Montecarlo y UGF se hará sólo para algunas combinaciones de prueba.

En lo que respecta a la aplicación o programa computacional desarrollado, debido a que este es extenso, se muestra sólo el diagrama de flujo genérico de la implementación en lenguaje Java. En su mayoría cada recuadro describe a una o más funciones que fueron implementadas y que a su vez actúan sobre los objetos creados. Este diagrama se localiza en el anexo 14.

4.1 FUNCIONES OBJETIVO

La optimización se realiza considerando tres funciones objetivo, que son:

1. Reducción de los costes (instalación, mantenimiento y operación).

$$Min \sum_{i=1}^{n} \sum_{j=1}^{m} C(U_{ij})$$
 (7)

Donde: U_{ij} es cada unidad a evaluar.

i es el tipo de unidad (generación solar, eólica, diesel,

reserva, red eléctrica).

j es cada modelo de cada tipo de unidad.

2. Aumento de la disponibilidad (A).

$$Max(A) = Max\left[E(F(G \ge W))\right] = Max\left[E(1(G \ge W))\right]$$
$$= Max\left[\sum_{i=1}^{n} \sum_{j=1}^{m} p_{j}q_{i}z^{1(g_{j} \ge W_{i},0)}\right]$$
(8)

Donde: F es la función a evaluar.

G es la suma resultante de todas las generaciones.

W es la demanda a cubrir.

 p_i es la probabilidad de los estados de la generación.

 q_i es la probabilidad de los estados de la demanda.

g_j son los estados resultantes de la suma de las diferentes unidades de generación.

 w_i son los estados de la demanda.

Disminución de la energía esperada no suministrada (EENS).

$$Min (EENS) = Min \left[E(max(G \ge W, 0)) \right] = Min \left[\sum_{i=1}^{n} \sum_{j=1}^{m} p_j q_i z^{max(w_i > g_j, 0)} \right]$$
(9)

Donde: G es la suma de todas las unidades de generación.

W es la demanda a cubrir.

 p_i es la probabilidad de los estados de la generación.

 q_i es la probabilidad de los estados de la demanda.

g_j son los estados resultantes de la suma de las diferentes unidades de generación.

 w_i son los estados de la demanda.

4. Porcentaje de renovables (% Renovables).

$$Max \left[\left(\sum_{j=1}^{S} (U_{solar,j} * N_{sj}) + \sum_{j=1}^{E} (U_{eolica,j} * N_{ej}) \right) * 100 / G \right]$$
 (10)

Donde:

S es la cantidad de generaciones de tipo solar a evaluar.

E es la cantidad de generaciones de tipo eólica a evaluar.

 $N_{sj}N_{ej}$ es el número de veces que esa unidad aparece en la solución.

 $U_{solar,j}$ es la potencia nominal de la unidad solar j.

 $U_{eolica,j}$ es la potencia nominal de la unidad solar j.

G es la suma resultante de todas las unidades de generación.

En el caso de que sólo se desee el porcentaje de solar o de eólica, la expresión es la misma, sólo que se excluye de ella la sumatoria de la que no se desea evaluar.

Para todos los casos

$$G = \sum_{j=1}^{m} G_j \tag{11}$$

Sujeto a:

$$0 \le A \le 1$$
;
EENS, G ≥ 0 ;

4.2 CÁLCULO DEL COSTE TOTAL

El coste total representa finalmente la inversión realizada para contar con la energía requerida en un periodo de tiempo T, como un valor actualizado al presente, considerando una demanda variable (modelada como un sistema multi-estado). Una vez definido el periodo de tiempo a evaluar (en años), se calcula, cuánto es lo que cada tipo de generación cuesta en ese periodo de tiempo; así para cada posible combinación de diferentes generaciones, al sumar los costes individuales se obtiene un coste total.

Para el caso de la generación solar y eólica, dada su naturaleza, se consideran los costes de instalación y los de mantenimiento. Para el caso de las energías producidas por grupos electrógenos/diesel, además del coste de instalación y mantenimiento, hay un coste de operación debido al combustible requerido para su funcionamiento. Y finalmente para el caso de las energías de reserva, hay un coste por concepto de potencia (alquiler de las instalaciones de red, dado en €/kW al año) y otro por concepto de energía (consumo dado en €/kWh). Los valores de prueba empleados en el programa se encuentran en el anexo 3.

De lo anterior deducimos que el coste total es:

$$CT = Cr + CD + CR (12)$$

Donde:

$$Cr = \sum_{i=0}^{NS} \left(\frac{T}{LFS_i} * CSinst_i \right) + \left(CSm_i * PS_i * T \right) + \sum_{i=0}^{NE} \left(\frac{T}{LFE_i} * CEinst_i \right) + \left(CEm_i * PE_i * T \right)$$
 (13)

$$CD = \sum_{i=0}^{ND} \left[T / _{LFD_i} * CDinst_i (1 + CDm_i) + \sum_{j=0}^{T} 8760 * CC_j * LPH_i \right]$$
 (14)

$$CR = \sum_{i=0}^{NR} \sum_{j=0}^{T} PR_i * (TE_{ij} * 8760 + TP_{ij})$$
 (15)

Siendo:

Cr el coste por las energías renovables

CD el coste por las energías de grupos diesel o electrógenos

CR el coste por las energías de reserva

NS el número de instalaciones de tipo solar

NE el número de instalaciones de tipo eólica

ND el número de instalaciones diesel/grupos electrógenos

NR el número de instalaciones de reserva

LFS_i, LFE_i, LFD_i el tiempo de vida de las instalaciones *i* de tipo solar, eólica y diesel respectivamente.

*CSinst*_i, *CEinst*_i, *CDinst*_i el coste inicial para cada instalación *i* de tipo solar, eólica y diesel respectivamente.

CSm_i, *CEm_i*, *CDm_i* los costes de operación de las instalaciones *i* de tipo solar, eólica y diesel respectivamente. *CSm_i* y *Cem_i* en €/kWh, y *CDm_i* en % del *CDinst_i*.

PSi, PEi, PRi las potencias nominales de cada instalación *i* de tipo solar, eólica y diesel respectivamente.

 CC_j coste del combustible en el año j.

LPH_i los litros por hora consumidos por la instalación diesel i.

TPii el término de potencia de la instalación de reserva i en el año j en €/kW

TE_{ij} el término de energía de la instalación de reserva *i* en el año *j* en €/kWh

Y todos los costes de instalación, operación y mantenimiento ($Coste_x$) se ven afectados por una tasa de interés anual, y su valor en un año n perteneciente al periodo de estudio T, se calcula como:

$$Costo_{\chi}(n) = \sum_{i=0}^{n-1} Costo(0) * \left(1 + \frac{int_{\chi}}{100}\right)^{i}$$
 (16)

Para:

$$0 \le n \le (T-1)$$

Donde:

intx es el porcentaje de interés propio del coste de: instalación, operación o mantenimiento, para un tipo de unidad dado; el cual puede ser distinto en cada caso o igual en todos los casos si así se desea.

4.3 CÁLCULO DE LA ENNS Y DISPONIBILIDAD

Para el sistema en su conjunto, la EENS y la disponibilidad se calcularon empleando la Función Generadora Universal (UGF). Sin embargo, debido al interés de comparar este método respecto a otro conocido, se hizo el cálculo de algunas combinaciones de unidades de generación respecto a la demanda. Se empleó para ello el método de simulación Monte Carlo para un periodo, utilizando los mismos valores de probabilidad predefinidos para la evaluación a través de la UGF. Los resultados de estas comparaciones se muestran en la sección de resultados.

4.4 MÉTODO DE OPTIMIZACIÓN

Se eligió como método de optimización los algoritmos genéticos, por ser de fácil implementación, rápida convergencia y resultados convenientes.

Las unidades o instalaciones generadoras de energía que se contemplan en este trabajo son: solar fotovoltaica, eólica, diesel, reserva (la red eléctrica, REE), que conforman el paquete de i tipos diferentes de generaciones G_i , donde cada tipo de generación a su vez puede tener j modelos de unidades a evaluar; por lo que nuestro paquete de generación queda conformado por G_{ij} unidades posibles. Partiendo de esto, el número de tipos de unidades a evaluar es i x j. Se da la posibilidad de que cada una de las j tipos de unidades se emplee en la instalación final tantas veces como sea de utilidad para cumplir las funciones objetivo propuestas, teniendo para la aplicación desarrollada, un número máximo de 9.

De acuerdo a lo anterior el fenotipo o estructura, *E*, del cromosoma, queda conformado por *i* x *j* genes, y cada gen, puede tener un valor numérico que va de 0 a 9, dando así la posibilidad de que cada tipo de unidad aparezca hasta 9 veces en la solución final. Esquemáticamente el cromosoma queda como se muestra en la figura 4.1.

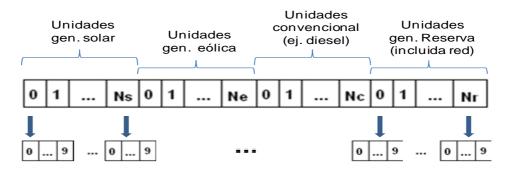


Figura 4.1. Estructura o fenotipo del cromosoma.

Los datos de cada tipo de unidad de generación (estados que la componen, probabilidades de los mismos, coste de instalación, mantenimiento y operación, son recuperados o bien de archivos y/o calculados dentro del programa en base a características propias de cada tipo de generación). El detalle de este proceso, se presenta en el apartado 4.5.

Definido el cromosoma, se plantea como variable el número de elementos que conformará la población, Np, de tal forma que inicialmente se generará una población de Np cromosomas, donde cada cromosoma tendrá como longitud $i \times j$ genes (el número de genes es adaptable, así por ejemplo, si no deseamos incluir unidades de tipo solar ni de reserva, la población contendrá cromosomas sólo con unidades eólicas y convencionales). El valor inicial de cada tipo de unidad j para cada cromosoma de la población inicial, será obtenido aleatoriamente con distribución uniforme entre 0 y 9.

Otros parámetros que deben ser definidos, son la metodología y el porcentaje para la operación de cruce, pc, y el porcentaje de mutaciones, pm, que se llevarán a cabo en cada nueva generación. Estos valores se definen desde el inicio y se aplican indistintamente a cada generación o pueden ser modificados para diferentes evaluaciones (simulaciones del programa). Un último parámetro, es el número de generaciones o valor de convergencia del programa. Debido a que es un problema multiobjetivo, decidir un valor para el cual el programa termine, es difícil, sobre todo porque se desconoce el coste que la instalación puede alcanzar. Esto podría emplearse cuando hay una restricción de no superar un coste de instalación, por ejemplo. Pero para el caso actual se decidió emplear como criterio de término, un valor de ciclos genéticos predefinido, Ncg.

El algoritmo genético multiobjetivo programado es el NSGA-II, y aplicado al caso queda de la siguiente forma:

Para cada i tipo de generación

Para cada /modelo de cada tipo

Cargar las unidades Gij de generación

Cargar la información de la demanda W

Generar la estructura del cromosoma en función de los Gij

Generar una población inicial PB de Np cromosomas con estructura E.

Evaluar el coste, (fiabilidad o % renovable) y EENS de los cromosomas que componen a *PB*

Inicializar el contador de ciclos a θ

Mientras: (el contador de ciclos sea < Ncg)

- → Generar una población temporal PC de Np cromosomas cruzados, asegurándose que no se repitan cromosomas, para la selección de los padres se emplea el torneo binario y hay solamente un punto de cruce.
- ightarrow Mutar en la población PC aquellos cromosomas cuya probabilidad uniforme aleatoriamente asignada sea menor que pm, asegurándose que no se repitan cromosomas
- \rightarrow Evaluar el coste, (fiabilidad o % renovable)y EENS de los cromosomas de PC
- ightarrow Conjuntar la población base PB y la población nueva PC en una población total PT
- ightarrow Ordenar los cromosomas de la población PT en distintos frentes de acuerdo a su dominancia
- → Conformar la nueva población *PB*, colocando en ella los cromosomas que componen los *frentes*, comenzando por el frente *0*, e incrementando en cada ciclo en 1 el valor del frente a anexar; detenerse si antes de comenzar el ciclo se detecta que la adición del frente en su totalidad superaría el tamaño *Np* definido inicialmente
- ightarrow Calcular el número de cromosomas faltantes para completar el tamaño Np para la población PB
- → Aplicar el operador de *agrupamiento* al frente en que se detuvo la anexión
- ightarrow Colocar en la población PB los cromosomas necesarios para completar el tamaño Np, comenzando por el cromosoma de la primera posición en el frente y continuando de forma ascendente
- → Actualizar el contador de ciclos, incrementándolo en 1

La última población contendrá las Np soluciones óptimas de acuerdo a los m objetivos planteados para la optimización.

4.5 PARAMETROS DE LAS UNIDADES DE GENERACION Y DEMANDA

4.5.1 Energía Solar

Se cuenta con los datos de radiación solar anual en la zona de Zaragoza. Dichos datos son la radiación promedio mensual para cada mes en cada hora del año, teniendo así una serie de 24 por 12 valores, los cuales se presentan en el anexo 4 y se visualizan en la figura 4.2.

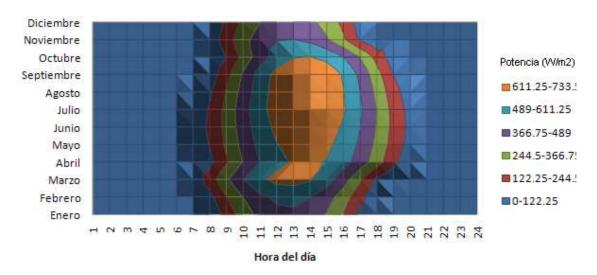


Figura 4.2. Radiación solar horaria promedio para cada mes en la ciudad de Zaragoza.

Estos valores son tratados para obtener una tabla de frecuencias y con ello las probabilidades de los estados indicativos de cada clase de la tabla. El valor de la probabilidad se calcula dividiendo la frecuencia de esa clase entre el valor total de elementos (24 X 12 = 288 valores) y el valor del estado que representa a la clase es la media de los valores que componen la clase.

El programa está diseñado para indicarle en cuantas clases o estados deben ser distribuidos los datos de radiación. Como ejemplo tenemos, que si le solicitamos que se distribuya en 6 estados, el resultado será el mostrado en la tabla 4.1 y figura 4.3:

Tabla 4.1. Radiación solar

Table 4:1: Nadiación Solai										
Clase	Frecuencia	Probabilidad	Estado(i)							
122.25	168	0.5833	9.71							
244.50	19	0.0660	185.11							
366.75	22	0.0764	310.60							
489.00	26	0.0903	426.54							
611.25	26	0.0903	544.42							
733.50	27	0.0938	670.27							

En la gráfica podemos observar los valores de cada estado y su respectiva probabilidad.

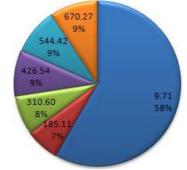


Figura 4.3. Estados y probabilidades calculados en base a la radiación solar

Dado que esta radiación está calculada para un panel de 1000 W, el conjunto de estados de cada una de las instalaciones solares sometidas a evaluación será calculado con:

$$E_{inst_{(i)}} = E_{rad_{(i)}} * PT_{inst}$$
 (17)

donde: $E_{inst_{(i)}}$ es el i-ésimo estado de la instalación a evaluar.

 $E_{rad_{(i)}}$ es el i-ésimo estado calculado para la radiación solar.

 PT_{inst} es la potencia nominal de la instalación.

Un vez obtenidas las probabilidades y estados del recurso disponible, es necesario aplicar a éstas las probabilidades propias de la instalación como tal, las cuales pueden ser vistas de forma independiente, como la probabilidad de que la instalación en su conjunto esté en operación o fuera de operación (sólo se manejan estos dos estados). Las probabilidades consideradas en este trabajo están en el anexo 9.

4.5.2 Energía eólica

La potencia eólica de una instalación es calculada a partir de una distribución de Weibull, presuponiendo el conocimiento de las constantes k y c (factor de forma y escala respectivamente), se sigue el proceso a continuación:

1. Se generan *i* valores de velocidad de viento (si la periodicidad es anual, *i*=8760, o el número de horas comprendido en la periodicidad). Dichos valores tienen una distribución de probabilidad de Weibull y son obtenidos a partir de:

$$V = c[-\ln(1-x)]^{1/k}$$
 (18)

donde: x es un valor aleatorio uniformemente distribuido.

V es cada uno de los valores de velocidad requeridos.

k es el factor de forma.c es el factor de escala.

En el anexo 4, se pueden observar algunas distribuciones de densidad de potencia obtenidas en la ejecución del programa.

2. Una vez obtenidos los valores, éstos son clasificados de acuerdo a la potencia que entrega cada velocidad para una instalación de características conocidas. Dicha potencia es calculada bajo la siguiente aproximación:

$$P(V) = \begin{cases} 0 & 0 \le V < V_{ci} \\ \left(\frac{V - V_{ci}}{V_r - V_{ci}}\right) * \Pr & V_{ci} \le V < V_r \\ Pr & V_r \le V < V_{co} \\ 0 & V \ge V_{co} \end{cases}$$
(19)

Donde: V_{ci} es la velocidad de arranque del aerogenerador.

 V_r es la velocidad a la cual el aerogenerador alcanza su potencia nominal.

 V_{co} es la velocidad de corte del aerogenerador.

 P_r es la potencia nominal del aerogenerador.

Para ello partimos de la aproximación dada por la siguiente representación (figura 4.4) de la curva de potencia de salida de un aerogenerador:

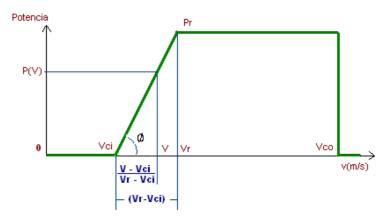


Figura 4.4. Aproximación de la curva de potencia.

En donde la rampa de subida de potencia cero a potencia nominal queda definida por:

$$\tan \emptyset = \frac{Pr}{(Vr - Vci)} = \frac{P(V)}{(V - Vci)}$$
 (20)

Si suponemos una pendiente constante, se obtiene que :

$$P(V) = \left(\frac{V - V_{ci}}{V_r - V_{ci}}\right) * \Pr$$
(21)

- 3. Los valores de las potencias son clasificados en una tabla de frecuencias donde hay dos clases fijas con límite inicial y final igual, estas clases son de (0 a 0) y (Pr a Pr), las potencias restantes, que tienen valores entre 0 y Pr, son divididas en clases equidistantes. El número de clases viene dado por el número de estados que representará a la potencia eólica del aerogenerador, menos dos (clases o estados fijos). De la tabla de frecuencias, se obtiene la probabilidad de cada estado (clase), al dividir su frecuencia de clase entre el número de muestras totales i. El valor representativo de la clase o valor de estado, es el valor medio de los valores de potencia que pertenecen a la clase. En el anexo 5 se presentan 3 gráficas que muestran la diferencia entre los pasos calculados si sólo se pone el valor intermedio de la clase (Vmedio) o se utilizan, como es el caso, el valor promedio obtenido de todos los valores que pertenecen a la clase (Vprom propuesto). En ellos se puede ver que la potencia del promedio de la clase (estado) es mayor que si sólo se considera el valor intermedio.
- 4. Para cada uno de los aerogeneradores de prueba se repiten los pasos 2 y 3.

Al igual que en el caso de la energía solar, una vez obtenidas las probabilidades y estados del recurso disponible, es necesario aplicar a éstas las probabilidades propias de la instalación como tal. Las propuestas para el trabajo están también en el anexo 9.

4.5.3 Energía de reserva

Se considera para este estudio que la energía de reserva puede ser cualquier energía externa que sea suministrada a la demanda, como medio de asegurar un suministro confiable. Para ello se considera que existe un compromiso o contrato entre el propietario de dicha reserva y el propietario de la instalación que se desea emplazar. Para este estudio, se contempla que la reserva es siempre del tipo "firm" (hay un compromiso de tener siempre disponible esa energía), y ésta presenta un coste por potencia y otro por energía. Debido a la complejidad de calcular costes por cada estado de la reserva, se ha optado por que cada unidad de reserva tenga sólo dos

estados, los cuales son, disponibilidad completa y cero o fuera de operación. Así cuando la reserva está disponible la energía empleada es equivalente a la potencia reservada.

Una de las energías posibles consideradas en este apartado, es la entregada por la red eléctrica, de la cual encontramos sus costes en el anexo 8 y sus probabilidades de estado en el anexo 9. Dado que hay un valor límite (9) de posibilidades para la energía de red en el cromosoma planteado, el valor máximo pico que podría ser demandado, se divide entre 9, quedando así, que por cada incremento en 1 en la opción de red para una solución dada, corresponde a un incremento de un noveno del valor pico de demanda.

4.5.4 Energía convencional

Energía convencional en este caso se refiere a energía con que se cuenta en la instalación, por la cual no se debe pagar a terceros y que no presenta temporalidad de acuerdo a condiciones climatológicas. El ejemplo utilizado es el de los grupos electrógenos diesel. Para éstos se ha considerado un precio inicial del gasóleo de 1,25 €/I y un incremento anual en el coste de un 4 %. Dada la volatilidad en los precios que puede observarse en el anexo 7, es difícil predecir un comportamiento, por lo cual se ha optado por ese valor que es más conservador que el promedio entre las fluctuaciones, el cual es de un 7% aproximadamente.

Igual que en el caso de la energía de reserva, se consideran sólo dos estados de operación, disponibilidad completa y cero o fuera de operación, esto con la finalidad de limitar las implicaciones en el cálculo de los costes por uso de combustible en diferentes puntos de operación. Las probabilidades propuestas para estos estados se detallan en el anexo 9.

4.5.5 Demanda

Considerando el perfil de demanda total obtenido de la CNE para el 2010, como ejemplo para las simulaciones, se clasificaron en una tabla de frecuencias los valores de la demanda normalizados, d, respecto a la demanda pico (Anexo 6). Para el caso actual dicha tabla consta de tres clases las cuales serán los estados de la demanda, Ei. Estos estados corresponden a las demandas pico, llano y valle. En caso de que se desee, el sistema puede generar más estados intermedios. Con la tabla de frecuencias y considerando un número n de muestras, se obtiene la probabilidad de cada estado al dividir la frecuencia entre el número de muestras.

$$P(Ei) = \frac{\left(\sum d \in D_i\right)}{n} \tag{22}$$

Siendo Di el subconjunto de muestras pertenecientes a Ei.

4.5.6 Conexión entre los elementos de generación y la demanda.

La estructura de conexión propuesta para los elementos de generación y la demanda evaluados, es: todos los elementos de generación en una estructura paralela, conectada en su totalidad con la demanda, esta última conexión es una estructura serie, y su esquema se muestra en la figura 4.5.

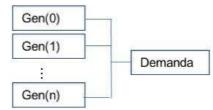


Figura 4.5. Conexión entre los elementos generadores y la demanda.

5. **RESULTADOS**

Este trabajo se realizó fundamentalmente en dos etapas. Primero se evaluó la respuesta en tiempo y resultados de fiabilidad calculados por la simulación Monte Carlo y la UGF, y posteriormente se pasó a la etapa de optimización multiobjetivo.

Para la primera parte, se hicieron pruebas de algunas soluciones básicas. Dos de ellas se presentan en este apartado (tabla 5.1, casos mínimo y máximo respectivamente) y las restantes en el anexo 10. La curva de demanda utilizada es la descrita en el anexo 6 para un valor pico de 450 kW.

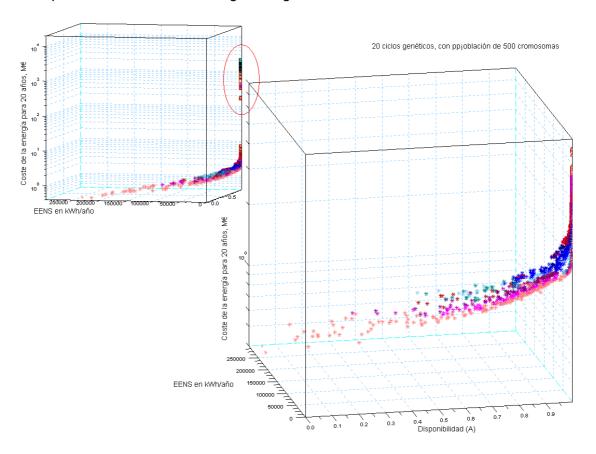
Tabla 5.1 Comparativa de soluciones.

CROMOSOMA "000000001" (una generación de reserva, Red eléctrica modelada con 2 estados)

Simulación		Tiempo de cálculo	EENS	Disponibilidad (A)
UGF		29 μs promedio	16.319519	0.96
Montecarlo	(10 ciclos)	25 μs	0.0	1.0
Montecarlo	(100 ciclos)	173 μs	0.0	1.0
Montecarlo	(500 ciclos)	279 μs	19.692	0.95
Montecarlo	(1000 ciclos)	833 μs	17.622	0.957
Montecarlo	(5000 ciclos)	1261 μs	19.2204	0.9534
Montecarlo	(10000 ciclos)	2621 μs	17.4114	0.9573

[•] Para este caso la reserva se hizo de 450 kW el paquete individual, en vez de 50 kW.

CROMOSOMA "1111111111" (3 fotovoltaicas con 4 estados + 3 eólicas con 6 estados + 3 diesel con 2 estados + 1 reserva, Red eléctrica con 2 estados)


Simulación		Tiempo de cálculo	EENS	Disponibilidad (A)
UGF		1014 μs promedio	0.63084805	0.9932806
Montecarlo	(10 ciclos)	36 μs	0.0	1.0
Montecarlo	(100 ciclos)	129 μs	0.0	1.0
Montecarlo	(500 ciclos)	610 μs	0.86604136	0.992
Montecarlo	(1000 ciclos)	1214 μs	0.76877654	0.992
Montecarlo	(5000 ciclos)	6509 μs	0.71683484	0.9928
Montecarlo	(10000 ciclos)	12710 μs	0.6573834	0.9924

Como se puede apreciar, la simulación Monte Carlo dependiendo de la exactitud requerida para el resultado, va incrementando el tiempo computacional. Y ambas metodologías en general, conforme el sistema cuenta con más unidades, requieren de mayor tiempo para el cálculo. También se observa que para pocas operaciones (adición de unidades), la diferencia entre los índices es menor, pero conforme hay más unidades y con más estados, se requieren más ciclos Monte Carlo para que los resultados se asemejen.

Para la segunda etapa y considerando en base a los tiempos y resultados obtenidos, que el uso de la herramienta UGF para el cálculo de los índices de fiabilidad es adecuado, se llevó a cabo la optimización multiobjetivo en dos modalidades:

- Optimización multiobjetivo: Coste EENS Disponibilidad, y
- Optimización multiobjetivo: Coste EENS -% Renovables.
 De la que se desprende:
 - * % de renovable tipo solar
 - * % de renovable tipo eólica
 - * % de suma de renovables (solar + eólica)

De manera individual y considerando que es suficiente mostrar un caso de simulación para ejemplificar la forma en que el algoritmo trabaja, se presenta a través de la figura 5.1 el proceso de evolución del algoritmo genético en los 20 ciclos de la Simulación I.

Figura 5.1 Simulación con todos los tipos de fuentes en BT (representación de los 20 ciclos genéticos)

En la gráfica superior izquierda de la figura 5.1, se ha marcado una zona con un óvalo rojo; estas soluciones corresponden a una sucesión de los cinco primeros ciclos. En el quinto, el algoritmo localiza algunas soluciones que lo hacen cambiar de espacio de búsqueda. Este nuevo espacio, situado en la zona inferior, se presenta de forma ampliada en la otra gráfica de la misma figura. Los ciclos genéticos se han ordenado en colores que van del negro, tonalidades de marrón, rojo, azul, morado y rosa para los ciclos del 1 al 20 respectivamente.

Los ocho casos o simulaciones realizadas se detallan en mayor profundidad en el anexo 11. Para ello se emplean gráficas que se alimentan de los datos presentados en las tablas del anexo 12. Las diferentes simulaciones realizadas parten de los parámetros establecidos en los anexos 3 y 9 (costes y probabilidades de estado de cada elemento del sistema, respectivamente).

Antes de pasar a resumir las simulaciones mencionadas, se presenta en la tabla 5.2 lo que pretende ser una aproximación de los tiempos que de forma enumerativa puede llevar la solución de alguno de los problemas ejemplo como los abordados en este trabajo. En ella se puede apreciar que evaluar todas las opciones posibles puede tardar días. Considerando que en este caso la simulación que más tiempo tardó fueron aproximadamente 2 horas y media, con una población de soluciones de 500

cromosomas y 15 o 20 ciclos genéticos para cada simulación; se considera que los resultados son lo esperado y la reducción en tiempo se ha conseguido.

Tabla 5.2 Aproximación de tiempos con cálculo enumerativo.

	Tiempo básico (un 1 y demás en 0) 2 estados	Tiempo total (todos en 1) varios estados	Promedio de tiempos ¹	No. de evaluaciones ²	Total en horas (aproximado)
UGF	29 μs	1014 μs	522 μs	(10) ⁹	145
Monte Carlo (1000)	833 μs	1214 μs	1024 μs	(10) ⁹	284
Monte Carlo(5000)	1261 µs	6509 μs	3885 µs	(10) ⁹	1079

Es dificil evaluar un promedio de tiempo por ello se cálculo a partir del menor y mayor tiempo.

Planteada ya la importancia del uso del algoritmo de búsqueda respecto al tiempo de solución, pasamos a los resultados arrojados en las simulaciones. Y dado que cada simulación como ya se mencionó, está discutida en el anexo 11, en esta recopilación sólo se concentrarán los siguientes comentarios:

- Al no ser completamente independientes la EENS y la disponibilidad, las soluciones posibles encontradas por el algoritmo, presentan en las gráficas una franja, más que una superficie. En cambio cuando la optimización combina la EENS con el porcentaje de energía renovable, las soluciones se localizan en diferentes zonas de una misma superficie, mostrando mayor independencia entre los objetivos.
- Se comprueba con el algoritmo, que las soluciones son por completo dependientes de los valores de los parámetros que describen a las unidades en juego. Es importante la capacidad de cada una de ellas y sus posibles estados, pues aun cuando su valor de potencia nominal sea *X*, sus diferentes estados pueden llevar a que su valor de potencia en un periodo dado sea de *0 ≤ Potencia ≤ X*. Esto significa que la veracidad o adaptación a la realidad de los datos con los cuales se hace la simulación, es esencial para los resultados arrojados por la simulación.
- El sistema representa los cambios en los recursos disponibles, permitiendo decidir con cuántas opciones o estados serán modelados.
- Respecto a la cantidad de estados para modelar un elemento, y partiendo de la simulación hecha (V), esta cantidad parece influir más en el cálculo de la EENS que en el de la disponibilidad.
 - Para el caso de la EENS, conforme el número de elementos en el sistema incrementa, la EENS tiende a incrementarse para modelos con más estados que para aquéllos con menos estados, lo que llevaría a que modelos con pocos estados y cantidad considerable de elementos estuvieran sobreestimando la EENS.
 - Respecto a la disponibilidad, aun cuando no se identificó un patrón de comportamiento; se observó que la disponibilidad calculada para un sistema con los mismos elementos pero modelados con diferente número de estados, tiende a ser la misma conforme el sistema crece en número de elementos, y por lo tanto, indistintamente de cuántos estados representan al elemento.
- De acuerdo a las soluciones obtenidas para las simulaciones hechas y dado el conocimiento previo de algunas soluciones óptimas reales (casos de la red eléctrica), el sistema muestra una buena aptitud para entregar resultados que se aproximen o lleguen a ser los óptimos reales.
- Pudiera pensarse que entregar una solución que cumpla con una fiabilidad y el mejor coste sería suficiente, y que no aporta mayor interés el que se entregue un conjunto de soluciones óptimas. El sistema optimiza sólo la generación, lo que significa, que aún deben considerarse los costes de conexión para llevar la

² Son 10 posibles combinaciones de cada uno de los 9 elementos a evaluar.

generación a la demanda, además de visualizar parámetros de tipo social, ambiental u otros que pueden ser o no de tipo económico. Por ello es importante contar con distintas propuestas, cada una de las cuales ofrecerá beneficios sobre otras en algún aspecto.

Oportunidades de mejora:

- Aun cuando las soluciones óptimas encontradas son adecuadas, son dependientes del tamaño de la población y ciclos llevados a cabo, por lo que sería conveniente, adaptar al sistema un parámetro de parada que no esté predefinido por el usuario del mismo, sino por la evaluación propia que el sistema pueda hacer de las soluciones obtenidas en cada generación de resultados.
- Al ser un sistema con influencia económica, la determinación de la variabilidad de los precios en el tiempo es un factor importante. Por el momento, la parte del sistema que hace esta evaluación es funcional para el propósito que se pretende alcanzar en el trabajo, aun cuando es mejorable a través de índices ya establecidos para ello.
- Hasta el momento todos los cálculos se hacen en base a una hora tipo para cada elemento de la simulación. Esta hora tipo concentra la información anual de fuentes como la energía solar, la eólica o la demanda. Sería interesante analizar algunos esquemas en los que por ejemplo, haya más de un tipo de periodo, estos podrían ser: periodos generados a partir de estaciones del año, meses, o periodos horarios. Esta clase de cálculos haría que el coste computacional fuera mayor, por lo que deben analizarse a detalle, pues podrían terminar requiriendo el mismo esfuerzo computacional que la simulación Monte Carlo.
- Incluir almacenamiento como una opción de reserva, es una cuestión importante cuando se habla de sistemas con generación renovable, por tanto, es un punto interesante de evaluar. Sin embargo, requiere de cálculos o metodologías adicionales si se desea que la UGF siga siendo la encargada de llevar a cabo los cálculos de los índices de fiabilidad.

6. CONCLUSIONES

Hay lugares donde independientemente de la regulación en materia de suministro eléctrico, la totalidad de las interrupciones en el suministro y el tiempo que éstas duran es superior al deseado, y en ocasiones, mejorar este desempeño incluye gastos que pueden permitir que otras opciones de suministro sean rentables y seguras. También se da el caso de que acceder al suministro proporcionado por la red eléctrica sea incosteable, y que una combinación de otras fuentes de energía eléctrica aporten una buena solución. La inquietud de evaluar soluciones de esta índole, ha generado variadas herramientas que funcionan en base a distintos objetivos.

Los programas y métodos que abordan la evaluación de varias fuentes energéticas para satisfacer una demanda de tipo variable, por lo general aportan información centrándose en hacer rentables los sistemas. Algunos otros integran la variabilidad que algunas fuentes como las renovables, pueden inducir en el suministro. Son pocos los que fuera del coste, consideran optimizar aspectos tales como la fiabilidad. Aquéllos que lo hacen, emplean principalmente la evaluación cronológica de las fuentes para hacer sus cálculos, y tal vez partan de suponer que la disponibilidad total de las instalaciones es del 100%. Aun así, llegar hasta este último nivel, implica un esfuerzo en recursos computaciones importante. Es aquí donde se decidió aplicar otras herramientas que permiten encontrar buenas soluciones, sin evaluar todas y cada una de las posibles combinaciones energéticas; sino apoyándose en espacios de

búsqueda. Todo con la finalidad de minimizar los tiempos de cálculo, manteniendo resultados aceptables para objetivos tales como: costes, fiabilidad y uso de renovables.

La idea fue la de profundizar en el estudio del uso de la UGF en lugar de la simulación Monte Carlo para calcular algunos índices de fiabilidad como la disponibilidad y la EENS, cuando se integran energías de tipo renovable modeladas como sistemas multi-estado. Después, si se consideraba útil esta sustitución, integrarla en la optimización multiobjetivo para la búsqueda de soluciones óptimas que incluyeran energía solar y/o eólica y/o grupos electrógenos y/o la red eléctrica. Con objetivos tales como minimizar costes y EENS y maximizar la disponibilidad y/o el uso de las renovables.

El trabajo se ha realizado como fue planeado, los resultados soportan la idea de la sustitución de una metodología por otra, para esta cuestión particular; donde la evaluación es a largo plazo. En general el sistema entrega soluciones cercanas a los óptimos reales o que incluyen a éstos y que pueden servir de base para una evaluación más exhaustiva en la planificación de una instalación. Las simulaciones han mostrado la importancia de los valores con que se alimentan los cálculos, tanto en costes como en los valores que definen el modelado multi-estado de los elementos. Y el sistema ha permitido observar la dependencia que el desempeño de las instalaciones renovables presenta respecto a diferentes condiciones de recurso energético.

Quedan por delante algunos puntos interesantes de anexar a un trabajo como éste, por ejemplo, utilizar más de un periodo tipo para la definición de los elementos o incluir el almacenamiento como una energía de reserva.

REFERENCIAS BIBLIOGRÁFICAS

- [1] D. Elmakias. "New computational methods in power system reliability". Springer, 2008.
- [2] R. Billinton, L. Gan. Wind power modeling and application in generating adequacy assessment. WESCANEX 93. 'Communications, Computers and Power in the Modern Environment'. In: Conference Proceedings, IEEE; p.100 –6, 1993.
- [3] P. Georgilakis, Y. Katsigiannis. Reliability and economic evaluation of small autonomous power systems containing only renewable energy sources. Renewable Energy, 34(1):65 70, 2009.
- [4] M. Matos, J. P. Lopes, M. Rosa, R. Ferreira, et.al. Probabilistic evaluation of reserve requirements of generating systems with renewable power sources: The Portuguese and Spanish cases. International Journal of Electrical Power & Energy Systems, 31: 562 569, 2009.
- [5] G. Taljan, A. F. Gubina. Energy-based system well-being analysis for small systems with intermittent renewable energy sources. Renewable Energy, 34: 2651 2661, 2009.
- [6] A. da Silva, R. Fernandez, C. Singh. Generating Capacity Reliability Evaluation Based on Monte Carlo Simulation and Cross-Entropy Methods. IEEE Transactions on Power Systems, 25: 129-137, 2010.
- [7] J. Wen, Y. Zheng, F. Donghan. A review on reliability assessment for wind power. Renewable and Sustainable Energy Reviews, 13(9):2485 2494, 2009.
- [8] C. Singh, Y. Kim. An efficient technique for reliability analysis of power system including time dependent sources. IEEE Transactions on Power Systems, 3(3):1090–6, 1988.
- [9] A. Ehsani, M. Fotuhi. An analytical method for the reliability evaluation of wind energy systems. TENCON 2005. IEEE Region 10, p. 1–7, 2005.
- [10] L. Wang, C. Singh. Adequacy assessment of power-generating systems including wind power integration based on ant colony system algorithm. Power Tech IEEE Lausanne, p. 1629–34, 2007.
- [11] X. Liu, A. Chowdhury, D. Koval. Reliability evaluation of a wind-diesel-battery hybrid power system. Industrial and Commercial Power Systems Technical Conference. ICPS 2008. IEEE/IAS. p. 1–8, 2008.
- [12] Y. Ding, P. Wang, L. Goel., P. Chiang, et. al. Long term reserve expansion of power systems with high wind power penetration using universal generating function methods. IEEE Transactions on Power Systems, 2010. In Press.
- [13] C. Singh, L. Wang. Role of Artificial Intelligence in the Reliability Evaluation of Electric Power Systems. 2008.
- [14] R. Billinton, W. Li. "Reliability assessment of electric power systems using Monte Carlo methods". Springer. 1994.
- [15] A. Lisnianski, G. Levitin. Multi-state system reliability assessment, optimization, applications. World Sci 2003.
- [16] E.Yolis, R. García. "Tesis de grado: Algoritmos genéticos aplicados a la categorización automática de documentos". Universidad de Buenos Aires, Facultad de Ingeniería. Abril 2003.
- [17] K. Deb, A. Pratap, A. Agarwal, T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6-2:182 197, 2010.

Agradecimientos

A mi madre, por ser mi guía y por su amor incondicional.

A mi familia, por su apoyo y cariño.

A mis amigos de lejos que en realidad siempre están cerca.

A Eva y a mis compañeros de despacho, por la convivencia de cada día que hace más fácil el camino.

A Dios por esta oportunidad.

Y de manera especial a mi asesor José Antonio, por su apoyo y porque sus enseñanzas sembraron la semilla que dio vida a este trabajo.

ANEXOS

ANEXO 1. ÍNDICES DE FIABILIDAD

Como ejemplo de los índices de fiabilidad, se muestran a continuación algunos de ellos:

	DETERMINISTAS
Margen de reserva (Reserve Margin, RM)	Exceso de capacidad de generación disponible para satisfacer la demanda máxima anual, el cual es fácil de calcular, pero limitado al no considerar reservas de agua, tamaños, tecnologías o tasas de fallo.
	$RM(pu) = \frac{(Generación\ disponible-Potencia\ máxima\ demandada)}{Potencia\ máxima\ demandada}$
Pérdida del mayor generador (Largest Unit, LU)	Considera la indisponibilidad de la mayor del generador más grande y supera por ello al RM, ya que considera al menos el tamaño de las centrales.
	$LU(pu) = \frac{RM(MW)}{Potencia\ del\ mayor\ generador}$
	Por lo que si LU > 1, podemos permitirnos perder la unidad de mayor tamaño y si LU < 1, al perder esa unidad tendremos energía no suministrada.
Año seco	Usado en sistemas con alto porcentaje hidráulico, que es más un criterio que un índice, haciendo que se satisfaga la demanda del año o serie de años más secos.
	PROBABILISTAS
Probabilidad de pérdida de carga (Loss of Load Probability, LOLP)	Según su nombre sería la probabilidad de no satisfacer la potencia demandada con la generación disponible, sin embargo se mide normalmente en número de horas o días al año con generación insuficiente. Por lo que se define entonces otro índice que es:
Pérdida de carga esperada (Loss of Load Expectation, LOLE)	Como el número de horas al año que se espera no satisfacer la demanda con la generación disponible y la relación entre ambos es:
,	$LOLP = \frac{LOLE}{365 \text{ días o } 8760 \text{ horas}}$
	Aún cuando son los más utilizados para valorar la fiabilidad en generación eléctrica, no informan de la duración y frecuencia de los fallos o la incidencia de las pérdidas de carga. Si el LOLP se calcula para no
	cubrir los 365 picos diarios de la demanda de un año, este será mayor que si se calcula para no cubrir las 8760 demandas horarias.
Pérdida de energía esperada (Loss of Energy Expectation, LOEE)	Más conocida como Energía Esperada No Suministrada EENS (Expected Unserved Energy, EUE). Es la suma de la energía que en cada periodo es demandada y no cubierta, comúnmente expresada por año.
Probabilidad de pérdida de energía (Loss of Energy Probability, LOEP)	Es la probabilidad de no satisfacer un kW.h con la generación disponible y al medirse en tanto por uno, permite comparar sistemas de distinto tamaño.
	$LOEP = \frac{EENS}{Energia\ total\ demandada}$

ANEXO 2. ALGORITMOS GENÉTICOS

Anexo 2.1 Generalidades de los algoritmos genéticos.

Población inicial

Es importante que la población inicial contenga cromosomas que estén bien dispersos dentro del espacio de búsqueda, pues es esta población la que representa la mayor fuente de material genético (riqueza en combinaciones). Una forma útil de generarla es por azar empleando para ello un generador de números aleatorios uniformemente distribuidos, que con algún tratamiento se conviertan en alguno de los posibles valores válidos para cada uno de los genes o para el cromosoma en su conjunto.

Función de aptitud

Nos permite cuantificar la capacidad o aptitud de un cromosoma como solución al problema, siendo está una de sus características que entraran en juego para determinar si forma parte de la nueva población o es seleccionado para formar nuevos individuos. Es por tanto muy importante que esté bien definida, aportando valores altos a las soluciones cercanas a la óptima y decrezca hacia valores bajos para las que se alejen. Además será uno de los elementos que ejerza presión y determine la velocidad de convergencia de la solución. Si esta convergencia es prematura, el algoritmo encontrará una solución sin haber explorado suficientemente el espacio de búsqueda.

Selección de individuos

La selección se realiza mediante un operador de selección que se basa en los valores de adaptación de los individuos. Algunos de los operadores de selección son:

- Basado en el ranking, se ordenan de acuerdo a sus valores de la función de adaptación y se seleccionan los primeros n cromosomas necesarios.
- Por ruleta, se colocan en segmentos continuos sobre una línea, de forma tal que el tamaño de sus segmentos es proporcional a su valor de aptitud y la suma de los segmentos sea 1, se genera un número al azar entre 0 y 1, y el individuo que en su segmento contenga al número generado, es seleccionado.
- Por torneo, T individuos son seleccionados al azar (T es el tamaño del torneo) con una probabilidad p, y entre ellos el que tenga mayor valor en la función de adaptación será seleccionado. Este operador a diferencia de los otros permite un mayor control de la presión selectiva, dependiendo del valor de T y p, así, si T y p son grandes, habrá más presión entre los cromosomas, ya que si todos participan, los cromosomas con menor valor de aptitud difícilmente podrán ser seleccionados.

Reproducción (cruce)

A diferencia de otros métodos los algoritmos genéticos no sólo exploran el vecindario de las buenas soluciones, sino que recombinan partes de sus individuos para generar nuevas soluciones. Para ello eligen dos padres, con alguno de los operadores de selección mencionados, y los recombinan, es decir, parten a los padres en secciones y las reutilizan para conformar un nuevo individuo. Los cruces más típicos son:

Mono-punto, separa a los padres A y B en dos partes cada uno, resultando A1 y A2, B1 y B2. Luego forma nuevos individuos uniendo a A1 con B2 y A2 con

- B1. El punto en el cual se corta a los padres, puede ser predefinido o tomado al azar.
- Multipunto, dado que en el cruce mono-punto, el primer y último gen de los padres no puede pasar al mismo tiempo a un hijo, en este cruce, se eligen M puntos al azar en los que se corta a los padres, y cada sección de los padres pasa a los hijos en forma alternada.
- Uniforme, dado que en el caso multipunto si M es un valor impar, los nuevo hijos siempre tendrán la misma sección inicial y final de uno de los padres; en esta variante se elige al azar cual de los dos bloques de los cromosomas padres se copia en los hijos.

Mutación

Junto con la población inicial, esta es una de las posibilidades de proveer material genético a la población (variabilidad), permitiendo así ampliar la exploración del espacio de búsqueda. Trabaja dentro de un cromosoma haciendo cambios aleatorios en base a una probabilidad pm (probabilidad de mutación). Si el cromosoma tiene genes binarios, sólo se puede invertir su valor, pero si son números reales se pueden hacer cambios en base a valores aleatorios.

Inserción

Dependiendo del número de cromosomas creados, la reinserción puede variar, desde generar una población completa del mismo tamaño que la de los padres, tal que la de hijos sustituya a la de los padres, "reinserción pura"; generar aún más hijos que los elementos de la población padre, seleccionando de entre estos a los mejores y sustituyendo con ellos a la población de padres o bien generar menos que la población de padres, y seleccionar con algún método (p.ej.: azar, elitismo, torneo) cuales individuos de esta población serán eliminados para dejar paso a los hijos.

Este ciclo se debe llevar a cabo hasta cumplir un criterio de parada o término, que puede ser en si un número predefinido de ciclos genéticos o bien el cumplimiento de las restricciones asociadas a la optimización.

Anexo 2.2 Operadores adicionales del algoritmo NSGA-II

La metodología de los frentes no dominados, separa por conjuntos a todos los cromosomas (población de padres más población de hijos). En el primero de ellos están todos aquellos cromosomas que no han sido dominados por algún otro de la población, pero además se guarda la información de cuáles son los cromosomas a quienes cada uno de los cromosomas no dominados a logrado dominar. Para cada uno de los siguientes frentes, se retoman los cromosomas dominados y se evalúan respecto a las listas que cada cromosoma dominante tiene. Por cada vez que un cromosoma aparece en la lista de uno de los cromosomas dominantes, se reduce su cuenta de las veces que ha sido dominado; si en esta revisión un cromosoma logra reducir su cuenta de veces que ha sido dominado a cero, en ese momento, pasa a formar parte del frente que se está formando, si por el contrario, su cuenta aún no disminuye hasta cero, entonces esperará a que ese frente se cierre, y se abra uno nuevo, donde volverá a ser evaluado esperando disminuir su cuenta. Esto se repite hasta que todos los cromosomas de la población quedan integrados en un frente.

El operador de agrupamiento determina la distancia alrededor de un cromosoma, y le asigna un valor, aquellos cromosomas que tienen mayor valor son los que están más separados de otros y los que tengan menor valor, significa que están localizados en una sección más densamente ocupada. Este operador ayuda a diversificar las soluciones y crear un frente de Pareto más extenso, evitando así que las soluciones óptimas se concentren en una zona.

Para crear una nueva población se retoman los cromosomas agrupados en los frentes, comenzando por el frente número 1 y continuando en orden ascendente, una vez que este proceso determina que agregar los cromosomas del próximo frente superaría el número de elementos de la población inicial, de detiene y evalúa a través del operador de agrupamiento cuales elementos del siguiente frente se considerarán y cuáles no, dándoles prioridad a los que presentan distancias mayores entre ellos. Los frentes restantes o mayores a este último son descartados pues la población ha sido completada.

Aún cuando los cromosomas que serán reproducidos, se seleccionan de manera inicial en base a un torneo binario, es la diferenciación en rangos de dominancia la que decide la aptitud de un cromosoma para pertenecer a una nueva población.

ANEXO 3. VALORES DE LOS PARÁMETROS QUE INCIDEN EN EL CÁLCULO DEL COSTE.

Datos de la prueba preliminar **CASO I** (BT, demanda de 50 kW pico):

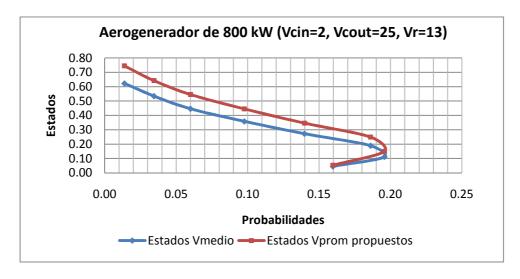
Tipo	Descripción	Potencia	Tiempo de vida	Coste inicial (C.I.)	Mantenimiento	Consumo diesel	Potencia	Energía
			(años)	en €		(l/h)	(€/kW año)	(€/kWh)
Solar	Instalaci n 1	1 kW	20	4 000	0,012 c€/kWh			
	Instalación 2	5 kW	20	20 000	0,012 c€/kWh			
	Instalación 3	10 kW	20	40 000	0,012 c€/kWh			
Eólica	Gaia Wind	11 kW	20	33 000	0,007 c€/kWh			
	PGE	50 kW	20	125 000	0,007 c€/kWh			
	WES	80 kW	20	160 000	0,007 c€/kWh			
Diesel	BCJD40SSP	32 kW	4	10 500	30 % C.I.	9,1		
	BCJD100P	80 kW	4	15 500	30 % C.I.	23,1		
Reserva	Red Eléctrica	5,5556 kW ¹	Indefinido				22,302	0,12844

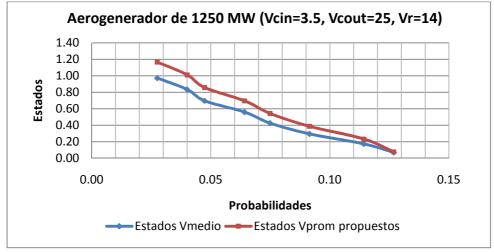
Datos de la prueba preliminar **CASO II** (MT, demanda de 450 kW pico):

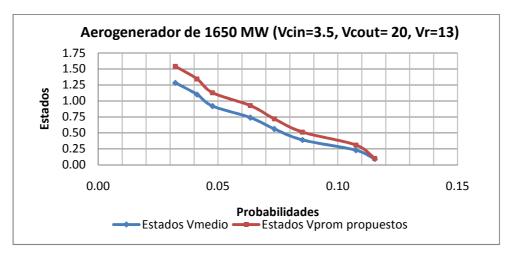
Tipo	Descripción	Potencia	Tiempo de vida	Coste inicial (C.I.)	Mantenimiento	Consumo diesel	Potencia	Energía
			(años)	en €		(l/h)	(€/kW año)	(€/kWh)
Solar	Instalación 1	10 kW	20	40 000	0,012 c€/kWh			
	Instalación 2	50 kW	20	200 000	0,012 c€/kWh			
	Instalación 3	80 kW	20	280 000	0,012 c€/kWh			
Eólic	Gaia Wind	11 kW	20	33 000	0,007 c€/kWh			
	PGE	50 kW	20	125 000	0,007 c€/kWh			
	WES	80 kW	20	160 000	0,007 c€/kWh			
Diesel	BCJD40SSP	32 kW	4	10 500	30 % C.I.	9,1		
	BCJD100P	80 kW	4	15 500	30 % C.I.	23,1		
Reserva	Red Eléctrica	50 kW ¹	Indefinido				16,9817	0,03464

- Las condiciones para la energía solar son las de radiación anual para Zaragoza con días claros.
- En el CASO I y II, la energía eólica fue calculada con velocidades de viento obtenidas a través de la distribución Weibull para una k=2 y c=5.
- Hay un CASO III, que es igual al caso II, pero el valor del parámetro de escala de la distribución Weibull cambia a c=7.

Dado que el pico máximo de energía es 450 kWh o 50 kWh, y la máxima combinación en cuanto a inclusión de la red en el cromosoma es una cantidad de 9, tenemos que por cada unidad en el cromosoma, se contabiliza un paquete de 50 kW o 5,5556 kW respectivamente.


ANEXO 4. RADIACIÓN SOLAR ANUAL HORARIA


Datos de radiación solar promedio mensual por cada hora en Zaragoza.


	Radiación en W/m²											
Hora	Enero	Febrero	Marzo	Abril	Mayo	Junio	Julio	Agosto	Septiembre	Octubre	Noviembre	Diciembre
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	0.00	0.00	35.75	7.75	43.25	59.25	49.00	16.50	0.00	0.00	0.00	0.00
8	23.25	88.50	179.50	89.75	127.00	140.75	132.00	101.50	52.50	7.00	36.25	5.50
9	172.75	238.25	343.25	227.75	266.75	284.50	283.00	252.75	203.50	119.50	190.25	144.00
10	305.25	367.00	484.25	370.00	405.75	427.25	437.50	414.75	379.75	284.25	324.25	271.25
11	400.25	460.75	587.00	490.00	522.50	548.50	569.50	556.25	535.25	430.75	422.25	361.75
12	453.75	514.00	645.75	575.50	607.00	637.00	667.00	660.50	651.00	539.00	478.00	412.75
13	464.50	524.50	657.25	624.25	654.25	686.75	722.50	720.00	717.50	601.50	489.25	422.75
14	432.25	492.50		633.75	663.75	697.25	733.50	732.00	731.25	614.00	455.50	392.25
15	357.75	418.75		604.75	635.25	666.75	700.00	696.00	690.75	576.25	378.25	321.25
16	243.50	306.50	418.00	537.25	569.25	597.25	623.25	613.75	599.00	490.25	261.25	212.25
17	90.75	164.75	262.50	433.75	467.75	491.50	507.25	489.25	461.50	361.50	105.75	59.25
18	0.00	21.75	100.00	300.50	338.00	357.50	362.00	335.00	292.25	202.25	0.00	0.00
19	0.00	0.00	4.25	155.50	195.00	210.75	204.75	172.50	120.50	44.00	0.00	0.00
20	0.00	0.00	0.00	37.50	77.25	90.75	80.75	51.25	11.75	0.00	0.00	0.00
21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

ANEXO 5. CALCULO DE LOS VALORES DE ESTADO DE LA POTENCIA EOLICA.

Calculados con vientos de distribución Weibull k = 2 y c = 6 para el primero y k = 1,3 y c = 7, para los otros dos.

ANEXO 6. CÁLCULO DE LOS ESTADOS Y PROBABILIDADES DE LA DEMANDA.

Tabla A6.1. Distribución de la demanda horaria anual.

Demanda Demanda normalizada (MWh/año) al pico Hora 2009 1 9 971 893 0,80 0,73 2 9 123 533 0,69 3 8 530 362 0,66 4 8 261 587 5 0,66 8 158 359 6 8 253 658 0,66 7 8 806 358 0,71 0,79 8 9 804 556 9 10 638 965 0,85 0,91 10 11 299 011 0,95 11 11 828 190 0,97 12 12 046 688 13 12 205 052 0,98 14 0,98 12 182 435 0,95 15 11 811 826 0,93 16 11 554 804 0,92 17 11 454 420 0,93 18 11 550 036 19 0,95 11 798 000 20 11 997 318 0,96 0,98 21 12 248 779 22 12 445 348 1,00 0,96 23 11 890 094

24

10 886 144

0,87

Tabla A6.2. Distribución de la frecuencia de la demanda y sus respectivas probabilidades.

Clase	Frecuencia	Probabilidad
0.770	6	0.250
0.885	4	0.167
1.000	14	0.583

Tabla A6.3. Estados de la demanda para las simulaciones.

Demanda	Llano	Valle	Pico
pico			
450 kW	373.35	308.15	429.54
50 kW	41.48	34.24	47.73

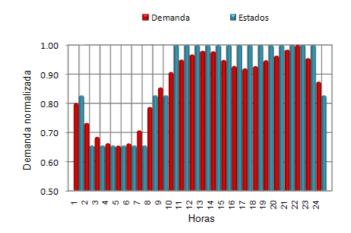


Figura A6.1. Demanda y sus estados.

ANEXO 7. PRECIOS DEL GASÓLEO / DIESEL

Histórico anual de los precios del gasóleo en España.

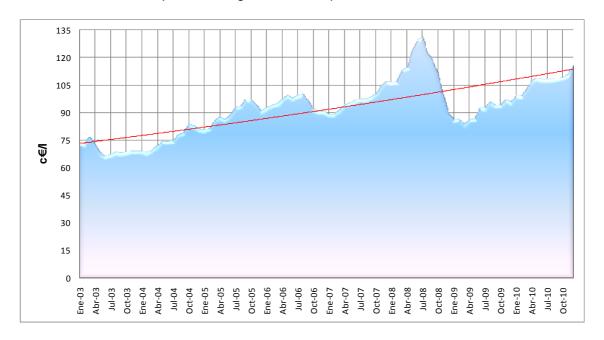


Figura A7.1 Precios medios del gasóleo (con impuestos incluidos).

En la siguiente tabla se aprecia que el incremento del precio del gasóleo, entre años, no es constante y tiene un patrón complejo que responde a variables como la demanda o de tipo económico, social, político u otras. Si su comportamiento fuera constante, en la gráfica de variación habría una línea horizontal que indicaría que el porcentaje de incremento de un año respecto al otro es el mismo.

			-				
	Promedio	Variación	30				
	mensual	entre años	20				
Año	(c€/I)	(%)	20			A	*
2003	70.32		8 . 10			$-\!\!/\!\!-$	
2004	75.84	7.86	del o				/
2005	89.97	18.62					
2006	95.71	6.38	variación 00 entre			\	/
2007	96.96	1.31	S 20				
2008	114.14	17.72	× 20				•
2009	91.18	-20.11	-30				
2010	107.52	17.92	20	04	2006	2008	2010

Figura A7.2 Porcentaje de variabilidad del precio entre un año y el anterior.

ANEXO 8. TARIFAS DE POTENCIA Y ENERGÍA

Cálculo de la tarifa por potencia y por energía, basada en el ITC 3519/2009.

CASO I. Si se requiere baja tensión sin estar adherido por contrato a alguna comercializadora y requiere potencias superiores a 15 kW.

Reserva requerida (Tarifa 3.0.2) Probabilidad Potencia Energía Tarifa de la tarifa (€/kW y mes) (€/kWh) Punta 0.583 0.150208 1.8585 Llano 0.167 1.8585 0.121359 1.8585 Valle 0.250 0.082405 Total 22.3020 (€/kW y año) 0.128439

CASO II. Si la tensión requerida está entre 1 a 36 kV, con potencia en todos los periodos tarifarios igual o inferior a 450 kW, sin considerar facturación por energía reactiva.

Reserva requerida (Tarifa 3.1A) Probabilidad Potencia Energía de la tarifa (€/kW y año) (€/kWh) Tarifa 0.583 23.541922 Punta 0.039922 Llano 0.167 14.517671 0.035520 Valle 0.250 3.329068 0.021737 Total 16.981659 0.034641

ANEXO 9. PROBABILIDADES DE LAS INSTALACIONES DE GENERACIÓN

RESERVA

Las probabilidades de estado para la reserva (REE) consideradas, son las mostradas en la tabla siguiente, para una zona de tipo rural concentrada con las horas máximas de interrupción descritas de acuerdo al R.D. 1955/2000:

	Interrupciones	Estados y su probabilidad						
	(máximo en horas)	En operación	Fuera de operación					
CASO 1 (tarifa 3.0.2)	15	0,9983 %	0,0017 %					
CASO 2 (tarifa 3.1.A)	12	0,9986 %	0,0014 %					

INSTALACIONES EÓLICAS Y SOLARES

Las probabilidades de estado para las instalaciones de energía eólica y solar son las mostradas en la tabla siguiente, para el caso de la eólica la referencia es tomada de OPEX energy y para el caso de la solar, al no tener un dato conocido, se presupuso un valor que fuera superior a la eólica, pensando en que, estas instalaciones cuentan con menos partes móviles y por lo general un estado de fuera de servicio, se puede deber principalmente a los transformadores o inversores:

	Estados y su probabilidad								
	En operación	Fuera de operación							
Eólica	0,96 %	0,04 %							
Solar	0,98 %	0,02 %							

GRUPOS DIESEL

Para el caso de la energía convencional, así llamada en este trabajo los grupos diesel, se consideran las probabilidades de la siguiente tabla:

	Estados y su probabilidad								
	En operación	Fuera de operación							
Eólica	0,96 %	0,04 %							

En función de considerar que los mantenimientos preventivos son por lo general cada 250 a 500 horas con duración de entre 2 a 5 horas. Y las afinaciones mayores son en promedio cada tres meses con duración de 1 a 2 días o más en caso de reposición de piezas, para plantas con uso de un solo turno.

Tenemos que si consideramos que se prevé un uso intensivo de estos grupos, para 8760 horas al año, tendríamos por mantenimientos preventivos una indisponibilidad de 35 paradas si lo hacemos cada 250 horas, lo cual a un promedio de 3 horas y media da 122,5 horas. En el caso de las afinaciones mayores se aumentarían a 6 al año por estar trabajando continuamente y si consideramos un promedio de un día y medio para llevarlas a cabo, tenemos 216 horas. Al sumar las horas de mantenimiento preventivo y afinaciones mayores tenemos 338,5 horas que son de las 8760 horas al año, un porcentaje de aproximadamente 0,04% de indisponibilidad.

ANEXO 10. COMPARATIVA ENTRE RESULTADOS DE LA SIMULACION MONTE CARLO Y LA UGF

CROMOSOMA "100000000" (una generación fotovoltaica solamente modelada con 4 estados)

Simulación		Tiempo de cálculo	EENS	Disponibilidad (A)
UGF		38 μs promedio	406.06705	5.9604645E-8
Montecarlo	(10 ciclos)	26 μs	369.29614	0.0
Montecarlo	(100 ciclos)	28 μs	411.6249	0.0
Montecarlo	(500 ciclos)	134 μs	411.36722	0.0
Montecarlo	(1000 ciclos)	276 μs	407.21454	0.0
Montecarlo	(5000 ciclos)	1366 μs	408.08493	0.0
Montecarlo	(10000 ciclos)	2715 μs	407.1	0.0

CROMOSOMA "0001000000" (una generación eólica solamente modelada con 6 estados)

Simulación		Tiempo de cálculo	EENS	Disponibilidad (A)
UGF		39 μs promedio	375.16943	0.0
Montecarlo	(10 ciclos)	24 μs	378.53876	0.0
Montecarlo	(100 ciclos)	28 μs	370.52664	0.0
Montecarlo	(500 ciclos)	136 μs	373.83545	0.0
Montecarlo	(1000 ciclos)	274 μs	376.17706	0.0
Montecarlo	(5000 ciclos)	1380 μs	377.41895	0.0
Montecarlo	(10000 ciclos)	4117 μs	375.88687	0.0

CROMOSOMA "1110001110" (3 fotovoltaicas modeladas con 4 estados cada una y 3 diesel modeladas con 2 estados cada una)

Simulación		Tiempo de cálculo	EENS	Disponibilidad (A)
UGF		534 μs promedio	121.39175	0.08877337
Montecarlo	(10 ciclos)	21 μs	152.01392	0.0
Montecarlo	(100 ciclos)	83 μs	116.23204	0.1
Montecarlo	(500 ciclos)	394 μs	123.39606	0.08
Montecarlo	(1000 ciclos)	788 μs	120.42577	0.07
Montecarlo	(5000 ciclos)	3882 μs	121.793625	0.0764
Montecarlo	(10000 ciclos)	7880 μs	120.8375	0.0803

CROMOSOMA "1111110000" (3 fotovoltaicas con 4 estados y 3 eólicas con 6 estados)

	•		•	<u> </u>
Simulación		Tiempo de cálculo	EENS	Disponibilidad (A)
UGF		858 μs promedio	133.31383	0.33447328
Montecarlo	(10 ciclos)	21 μs	200.47318	0.4
Montecarlo	(100 ciclos)	88 μs	114.46575	0.4
Montecarlo	(500 ciclos)	420 μs	138.58426	0.322
Montecarlo	(1000 ciclos)	831 μs	134.40767	0.33
Montecarlo	(5000 ciclos)	4159 μs	132.16225	0.3392
Montecarlo	(10000 ciclos)	8383 μs	134.18674	0.3314

CROMOSOMA " 0001111110" (3 eólicas con 6 estados y 3 diesel con 2 estados)

Simulación		Tiempo de cálculo	EENS	Disponibilidad (A)
UGF		443 μs promedio	20.79493	0.7630805
Montecarlo	(10 ciclos)	26 μs	4.200751	0.8
Montecarlo	(100 ciclos)	83 μs	17.419437	0.78
Montecarlo	(500 ciclos)	394 μs	18.5911	0.796
Montecarlo	(1000 ciclos)	788 μs	21.366758	0.743
Montecarlo	(5000 ciclos)	3902 μs	21.076345	0.7666
Montecarlo	(10000 ciclos)	7777 μs	20.46765	0.761

ANEXO 11. RESULTADO DE LAS SIMULACIONES

SIMULACIÓN I. Todas las fuentes de suministro, considerando a la red como suministro en baja tensión.

Para esta simulación se contemplan como fuentes de energía: la solar, eólica, grupos diesel y red eléctrica. Los valores empleados para la simulación son los descritos en el CASO I del anexo 3.

Los objetivos a optimizar son:

- El coste de la energía consumida en 20 años (incluyendo las instalaciones necesarias, su operación y mantenimiento),
- La EENS, y
- La disponibilidad de la instalación (A).

Las soluciones no dominadas resultantes de la simulación para una población de 500 cromosomas y 20 ciclos genéticos, se pueden observar en la figura 11.1 y en la tabla respectiva en el anexo 12.

En las gráficas de la figura 11.1 se ven tan sólo las soluciones no dominadas alcanzadas. En estás gráficas es donde se ve que las variables EENS y la disponibilidad afectan de forma parecida al coste, no siendo del todo independientes una de la otra, lo cual es comprensible partiendo de la definición de cada una de ellas.

Se aprecia que conforme la EENS crece, la disponibilidad tiende a disminuir y el coste de manera general disminuye también.

De las tablas del anexo 12, relativa a esta simulación, tenemos:

- 1) Si queremos mantener la disponibilidad mínima de la REE, las combinaciones cercanas y superiores al cromosoma 982900006 marcado en gris en la tabla, podrían ser opciones válidas, con mayor o menor coste y mayor o menor EENS.
- 2) Si pretendemos por ejemplo mantener máximo 6 horas de pérdida de energía en un año, independientemente del número de sucesos que las contabilicen; tenemos que si son horas pico, la pérdida sería de 300 kWh al año, para lo cual, a partir del cromosoma marcado como 911900006, cualquier combinación por encima de ella, sería viable, con menor o mayor disponibilidad y menor o mayor coste de energía.
- 3) El coste de la energía si sólo se empleara la energía de red, sería de aproximadamente 1,713 M€ (anexo 13). Dentro de las soluciones encontradas no se llegó a esta opción, quizás más ciclos permitirían llegar a ella. Finalmente esto es parte del hecho de que el algoritmo de búsqueda no es enumerativo y no asegura encontrar siempre las mejores opciones, pero si acercarse a ellas.

El hecho de contar con todas las opciones que se logran, permite evaluar de cara a una instalación conectada a red, el coste adicional requerido para que técnicamente sea factible la instalación. Con lo que quizá una solución que aparentemente fuera de mayor coste que otra, al considerar el transporte y entrega en baja tensión de esa cantidad de energía desde la red eléctrica hasta la instalación propuesta, puede finalmente hacer que se prefiera no tomar toda la energía de la red.

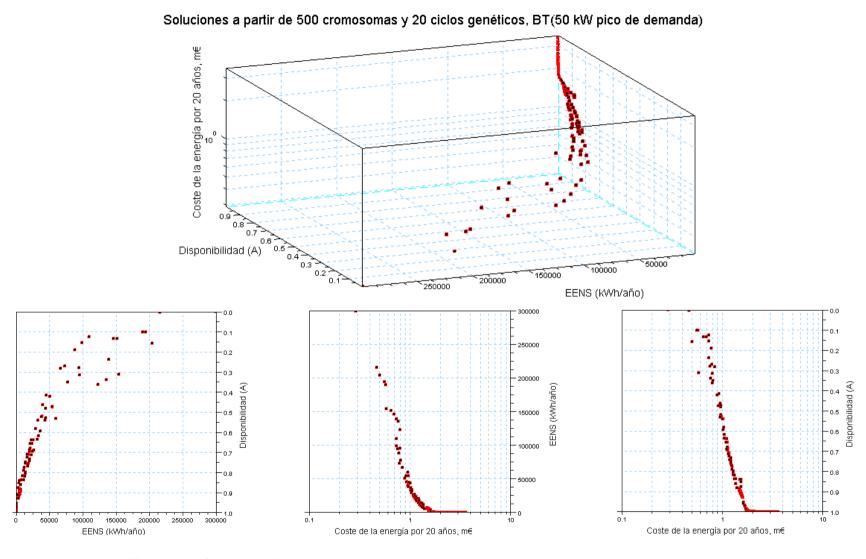


Figura 11.1 Soluciones final con los 3 objetivos, y vistas en 2 dimensiones para cada pareja de objetivos.

SIMULACIÓN II. Todas las fuentes de suministro, considerando a la red como suministro en media tensión.

La simulación contempla como fuentes de energía: la solar, eólica, grupos diesel y red eléctrica. Los valores empleados para la simulación son los descritos en el CASO II del anexo 3.

Los objetivos a optimizar son:

- El coste de la energía consumida en 20 años (incluyendo las instalaciones necesarias, su operación y mantenimiento),
- La EENS, y
- La disponibilidad de la instalación.

Los resultados de la simulación para una población de 500 cromosomas y 20 ciclos genéticos se pueden observar en la figura 11.2 (únicamente la última población, soluciones no dominadas).

El comportamiento de la EENS y disponibilidad afectan de forma parecida al coste, mostrando de nuevo un cierto grado de dependencia una de la otra; aún cuando es más difícil observarlo, dado que las gráficas están por así decirlo, en espejo y además al tener una de ellas un eje logarítmico y la otra de tipo lineal, a simple vista es más difícil percibirlo.

De las tablas del anexo 12, relativa a esta simulación, tenemos:

- 1) Si queremos mantener la disponibilidad mínima de la REE, por lo general, las combinaciones superiores al cromosoma 100610009, podrían ser opciones válidas, con mayor o menor coste y mayor o menor EENS.
- 2) Si pretendemos como en el ejemplo anterior mantener máximo 6 horas de pérdida de energía en un año, independientemente del número de sucesos que las contabilicen; tenemos que si estas son horas pico, la pérdida sería de 2700 kWh al año; para lo cual, a partir de valores cercanos al cromosoma marcado como 000784008, las combinaciones por encima de esta, serían viables, con menor o mayor disponibilidad y menor o mayor coste de energía.
- 3) El coste del la energía si sólo se empleara la energía de red, sería de aproximadamente 4,318 M€ (anexo 12). Dentro de las soluciones encontradas, está no aparece pero si otras muy cercanas como es la del cromosoma 100610009, mencionado antes; de hecho son varias las opciones que después de esta mantienen el valor de 9 paquetes de 50 kW pico en la opción de uso de la red (450 kW).

Al ser la energía de red, la opción más económica y con mejor disponibilidad de todas las evaluadas, es lógico que existan pocas soluciones que contemplen una menor disponibilidad, pues la única situación por la que pueden aparecer, es que su coste sea menor. Por ello las disponibilidades para esta simulación son en general muy altas, pues existe redundancia en la mayoría de las soluciones y al estar las fuentes conectadas en paralelo, la fiabilidad se va incrementando y la EENS disminuyendo.

Al igual que en la simulación anterior, el hecho de tener varias opciones, permiten evaluar de cara a una instalación conectada a red, el coste adicional requerido para interconectar la demanda, la red y las otras fuentes.

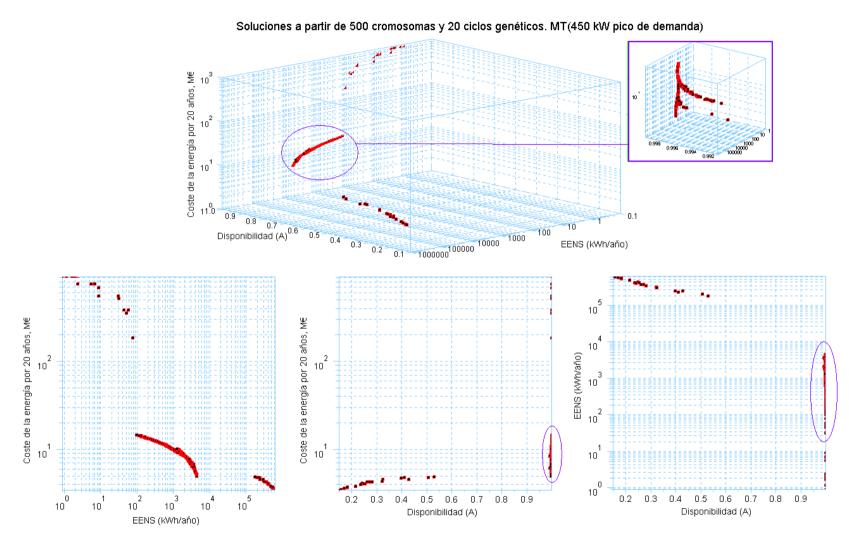
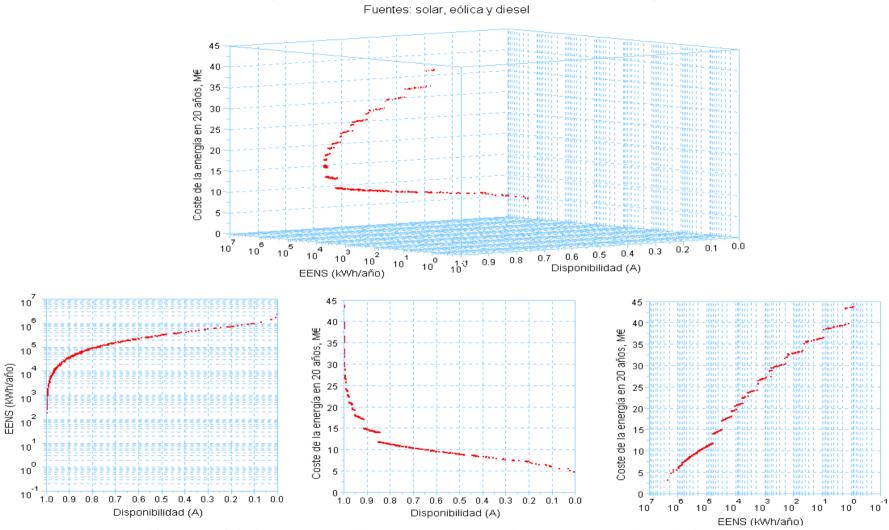


Figura 11.2 Soluciones con los 3 objetivos, y soluciones con vistas en 2 dimensiones para cada pareja de objetivos.

SIMULACIÓN III. Elementos solares, eólicos y grupos diesel como única fuente de suministro.

La simulación contempla como fuentes de energía: la solar, eólica y grupos diesel; descarta el uso de la red eléctrica. Los valores empleados para la simulación son los descritos en el CASO II del anexo 3.


Los objetivos a optimizar son:

- El coste de la energía consumida en 20 años (incluyendo las instalaciones necesarias, su operación y mantenimiento),
- La EENS. v
- La disponibilidad de la instalación.

Los resultados de la simulación para una población de 500 cromosomas y 20 ciclos genéticos se pueden observar en la figura 11.3 (únicamente la última población, soluciones no dominadas).

En las gráficas de la figura 11.3 vemos también las tres gráficas en dos dimensiones, para cada pareja de objetivos a optimizar. Al igual que en la simulación anterior el comportamiento de la EENS y disponibilidad afectan de forma parecida al coste, mostrando de nuevo un cierto grado de dependencia una de la otra; aun cuando no es fácil de nuevo observarlo, dado que las gráficas están en posición espejo una respecto de la otra y además una de ellas tiene un eje logarítmico.

Es interesante observar que el porcentaje de disponibilidad es casi continuo, con un incremento respectivo en coste hasta aproximadamente 0,85 y después comienza a presentar cambios en segmentos de coste y disponibilidad/EENS. Si comparamos esta simulación, con la que a continuación se presenta, en la cual se eliminan los grupos diesel, podemos ver la similitud en todos los parámetros en esa primera línea casi continua por debajo de los 12 M€ aproximadamente. Esto significa que los segmentos adicionales después de esta línea, por encima de los 13 M€, corresponden a la integración paulatino de los grupos diesel en las soluciones; y éstos, al involucrarse comienzan a incrementar el coste y ayudan a mejorar la disponibilidad y reducir la EENS. Esto se puede apreciar en la tabla correspondiente a esta simulación mostrada en el anexo 12.

Soluciones a partir de 500 cromosomas y 20 ciclos genéticos, (demanda pico de 450 kW)

Figura 11.3 Soluciones con los 3 objetivos y con vistas en 2 dimensiones para cada pareja de objetivos.

SIMULACIÓN IV. Sólo con fuentes renovables, demanda de 450 kW pico.

La simulación contempla como fuentes de energía únicamente la solar y la eólica, sin posibilidad de red ni grupos diesel. Los valores empleados para la simulación son los descritos en el CASO II del anexo 3.

Los objetivos a optimizar son:

- El coste de la energía consumida en 20 años (incluyendo las instalaciones necesarias, su operación y mantenimiento),
- La EENS, y
- La disponibilidad de la instalación.

Los resultados de la simulación para una población de 500 cromosomas y 20 ciclos genéticos se pueden observar en la figura 11.4 (únicamente las soluciones finales). En las gráficas inferiores de la misma figura, vemos de nuevo las tres gráficas en dos dimensiones (una por cada pareja de objetivos a optimizar).

De las tablas del anexo 12, relativa a esta simulación, tenemos:

- 1) La mejor disponibilidad, considerando 4 estados para cada tipo de generación, no logra ir más allá del 89%. Lo cual significa que si se desea mejorar el sistema, se requiere considerar para las combinaciones, instalaciones de mayor tamaño o con mejores disponibilidades; pues el régimen de viento o radiación de una zona no cambiaría; a menos que dicha instalación se pueda asentar en otra zona con mejores recursos tanto solares como eólicos, que podría mejorar esta situación.
- 2) En esta ocasión el algoritmo logra explorar hasta la combinación que mayores disponibilidades y menor EENS presenta, con lo cual aun cuando el algoritmo no es enumerativo, las soluciones muestreadas contienen soluciones del grupo de soluciones óptimas reales.
- 3) Por último, podemos observar que el algoritmo reconoce un mayor beneficio en el uso de la energía eólica sobre la solar, bajo las condiciones de prueba propuestas; ya que las cantidades en el uso de los diferentes tipos de eólica para una gran número de soluciones, es de valores tan altos como el algoritmo permite, no siendo el mismo caso para la energía solar, donde los valores altos aparecen poco y están relacionados con la mejora de disponibilidad y EENS.

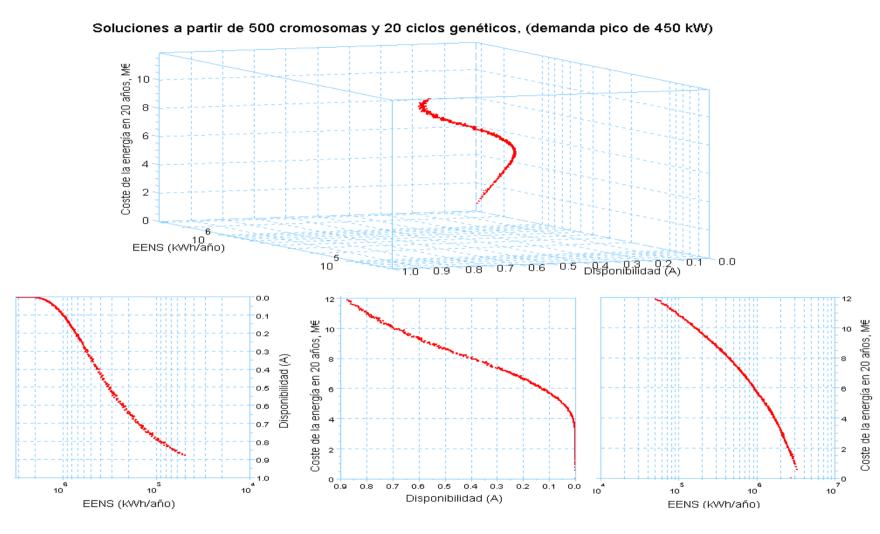
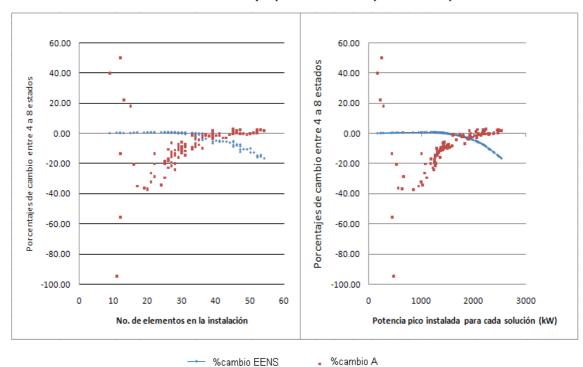


Figura 11.4 Soluciones finales para energías sólo de tipo renovable.

SIMULACIÓN V. Sólo con fuentes renovables, demanda de 450 kW pico.

(Con distribución de los recursos renovables en 8 estados).


Esta simulación es idéntica a la de la simulación III, excepto que tanto las fuentes solares como las eólicas, se representan por ocho (8) estados con sus respectivas probabilidades, en vez de hacerlo con cuatro (4); como se ha venido haciendo en todas las simulaciones.

El interés principal de esta simulación es el de evaluar si los objetivos optimizados, sobre todo la EENS y la disponibilidad, varían significativamente. Para ello, de las soluciones finales de cada simulación se buscaron cromosomas que se repitieran en ambas; y se comparó la EENS y disponibilidad que se obtuvo para cada cromosoma en cada simulación. La tabla comparativa de la que se habla se encuentra en el anexo 12 en la sección relativa a esta simulación (V). Para hacer la comparativa, se introdujeron algunos cálculos como:

- Máxima potencia pico disponible en cada solución (la cual se obtuvo de multiplicar la potencia máxima de cada elemento por el número de elementos elegidos en la solución). Es sólo una referencia y no pretende ser el cálculo exacto de potencia disponible.
- 2. Número de elementos que conforman la solución, que máximo podría ser de 9 elementos por 6 (3 tipos de fuentes solares y 3 eólicas).
- 3. % de cambio, que según sea el caso resulta de:

$$([EENS(4_estados\,) - EENS(8_estados\,)\,] * 100) / EENS(4_estados\,)$$

$$([A(4_estados\,) - A(8_estados\,)\,] * 100) / A(4_estados\,)$$

Cambios en la EENS y A (4 u 8 estados representativos)

Figura 11.5 Comparativa entre simulaciones con 4 u 8 estados representando a las fuentes renovables.

Empleando esos valores podemos comparar mismas soluciones y la representación la vemos en las gráficas de la figura 11.5, donde observamos:

- La disponibilidad (puntos rojos), no parece tener un patrón definido respecto al cambio entre 4 u 8 estados para representar a las fuentes. Aun cuando se observa que la diferencia entre ambas tiene a minimizarse conforme son más los elementos que componen el sistema.
- La EENS (puntos azules) a su vez, presenta un cambio en la diferencia entre ambas simulaciones, que tiende a incrementarse conforme más elementos componen el sistema. Las zonas de mayor diferencia presentan un porcentaje negativo, ya que la EENS de la simulación con 8 estados es mayor que la obtenida con 4 estados.
- Al graficar los porcentajes de variación entre ambas simulaciones, se aprecia una semejanza en los resultados obtenidos si se grafican respecto al número de elementos del sistema o respecto a la potencia pico instalada (las dos gráficas de la figura 11.5 respectivamente); lo cual puede deberse a que al ser más elementos la potencia instalada se incrementa, aun cuando no sea de forma proporcional.

SIMULACIÓN VI. Todas las fuentes de suministro, optimizando el porcentaje de renovables.

Los resultados de la simulación para una población de 500 cromosomas, en 20 ciclos genéticos se pueden observar en la figura 11.6. Para la simulación se emplean los datos del caso II (Media tensión), con parámetros de Weibull c=5 y k=2. Todas las fuentes participan en la simulación.

Los objetivos a optimizar son:

- El coste de la energía consumida en 20 años (incluyendo las instalaciones necesarias, operación y mantenimiento),
- La EENS, y
- El porcentaje de renovables en la instalación (sumadas la eólica y la solar).

Respecto a los resultados, se puede observar que:

- 1. A diferencia de las gráficas anteriores, no hay una dependencia tan clara entre la EENS y el porcentaje de renovable alcanzado.
- 2. La disminución de la EENS al igual que en otras simulaciones, aumenta de forma general el coste de la instalación.
- 3. Incrementar el porcentaje de energías renovables incrementa en la mayoría de las simulaciones el coste.
- 4. En la tabla del anexo 12 correspondiente a este caso, se han marcado algunas combinaciones, como por ejemplo, la solución 301585007 donde con un coste de 7,671 M€ permite el uso de 73,38 % de fuentes renovables, con una EENS de 2694, que estaría por debajo de las 6 horas de interrupción del servicio que se planteaban en la simulación II. El algoritmo llega hasta soluciones con 97,38 % donde incluso hace uso de los grupos diesel con lo que incrementa sustancialmente el coste.

Se reitera que estos casos al ser aplicados a una zona rural concentrada, tienen más posibilidades de acceder a la red, pero no siempre es así y no siempre es una inversión más rentable incluir nuevas líneas y elementos de conexión a red, o mejorar las instalaciones ya existentes para que soporten cargas adicionales. Es ahí cuando un incremento del porcentaje de renovables es útil, y más aún si hay incentivos económicos por su instalación.

No se debe perder de vista, el hecho de que los resultados pueden variar significativamente para una misma solución (conjunto de unidades), entre un emplazamiento y otro. Donde los recursos de uno a otro, pueden favorecer o no a la generación renovable. Con la intención de visualizar esta situación, se presenta la siguiente simulación, para la cual, se mejora el recurso eólico.

Optimización en base a % renovable (solar y eólico) Coste de la energía en 20 años, M€ 10e0 10e-1 10e-2 0e-2 5e+5 1e+6 1.5e+6 2e+6 2.5e+6 3e+6 3.5e+6 70 80 90 100 % renovable (solar + eólica) 102 102 Costo de la energía en 20 años, M€ Coste de la energía en 20 años, M€ 5e+5 10 1e+6 EENS (KWh/año) 1.5e+6 10⁰ 100 2e+6 2.5e+6 10⁻¹ 3e+6 10⁻² 60 70 80 90 60 90 5e+5 1e+61.5e+62e+62.5e+63e+63.5e+6 40 50 100 30 40 50 70 80 % renovable (solar + eólica) % renovable (solar + eólico) EENS (KWh/año)

Soluciones a partir de 500 cromosomas y 20 ciclos genéticos. MT (450 kW pico de demanda)

Figura 11.6 Soluciones no dominadas.

SIMULACIÓN VII. Todas las fuentes, dando prioridad a la energía eólica.

Esta simulación es igual a la simulación VI, excepto por el cambio en el objetivo del porcentaje renovable (ahora es únicamente eólico), y que se modificó el valor del parámetro de Weibull c, siendo ahora de 7 m/s (recurso de mayor potencia), Caso III del anexo III.

Ya que desde la simulación anterior, se observó mayor predilección en la simulación por la energía eólica, se hace este cambio adicional en el recurso para visualizar nuevo características y la respuesta del sistema de simulación a ellas. Por lo que se espera comprobar que un incremento en el potencial del viento, mejora los resultados de las mismas soluciones.

La simulación se hace con una población de 500 cromosomas, en 15 ciclos genéticos y sus soluciones se pueden observar en la figura 11.7 y en la tabla comparativa correspondiente a la simulación (anexo 12). La simulación incluye todas las fuentes posibles, esto es: solar, eólica, grupos diesel y red eléctrica (Caso II de MT) y los objetivos a optimizar son:

- El coste de la energía consumida en 20 años (incluyendo las instalaciones necesarias, operación y mantenimiento),
- La EENS, y
- El porcentaje de energía renovable de tipo eólica para la instalación.

Respecto a los resultados, se puede observar que:

- 1. De las soluciones que como ejemplo se marcan en tonos grises en la tabla correspondiente a este, con 5,975 M€ se logra estar por debajo de las 6 horas de interrupciones que se han venido ejemplificando, de hecho el valor es de 2272 de 2700 kWh/año permisibles; respecto a la simulación anterior donde para lograr estar por debajo de ese límite la solución era de 7,671 M€, la diferencia en coste es considerable, tan sólo cambiando el recurso eólico.
- 2. Los costes máximos de soluciones que fluctuaban en la simulación anterior por encima de los 30 000 M€ ahora rondan los 11 M€, con lo cual, las soluciones en su conjunto son más económicas.
- 3. Las EENS para ambas soluciones se mantienen en el mismo intervalo.

Con esto se comprueba que soluciones de instalación similares en diferentes zonas pueden tener diferente fiabilidad y rendimiento, dependiendo del recurso disponible.

Algo que llama la atención es que las soluciones en la simulación anterior, se asemejan a escalones dentro del espacio de búsqueda y para ésta, parecen dispersas sobre una superficie o bien que la separación entre tales escalones fuera menor.

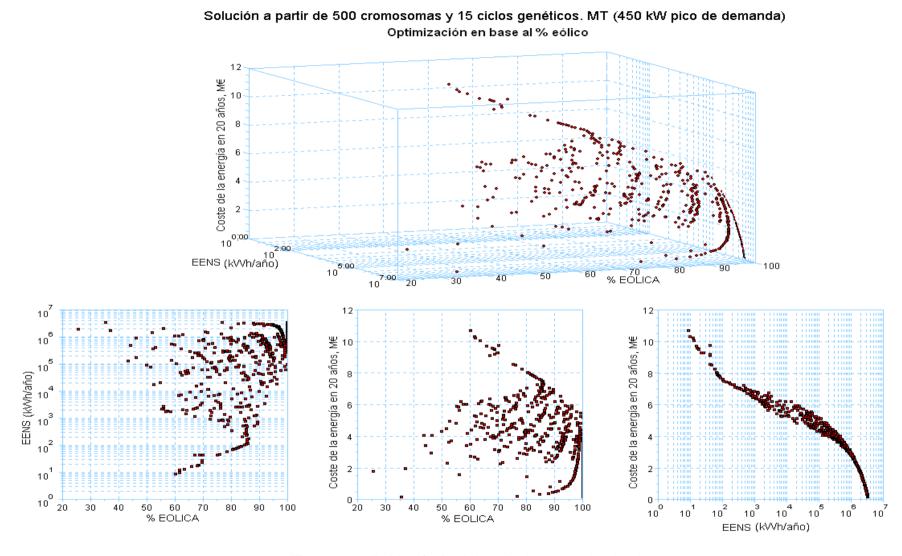


Figura 11.7 Población final de soluciones no dominadas.

SIMULACIÓN VIII. Todas las fuentes, dando prioridad a la energía solar.

Para comparar esta simulación respecto al anterior, se decidió dejar el parámetro c=7 m/s. Las soluciones finales para la simulación con una población de 500 cromosomas, en 15 ciclos genéticos se pueden observar en la figura 11.8. La simulación incluye todas las fuentes posibles, esto es, solar, eólica, grupos diesel y red eléctrica, bajo las condiciones del caso II (MT).

Los objetivos a optimizar en esta simulación son:

- El coste de la energía consumida en 20 años (incluyendo las instalaciones necesarias, operación y mantenimiento),
- La EENS, v
- El porcentaje de energía renovable de tipo solar para la instalación.

De los resultados de las gráficas y tablas respectivas del anexo 12 podemos indicar lo siguiente:

- 1. Aun cuando la optimización tiende a incorporar más recuso solar, los porcentajes de energía eólica son grandes puesto que el recurso es abundante.
- 2. Para permanecer por debajo de las 6 horas de interrupción que se han venido ejemplificando en las distintas simulaciones (de la II en delante), hay dos opciones: se hace concentrando la instalación sobre las fuentes eólicas y la red, buenos costes y baja EENS o bien, se incrementa el porcentaje solar pero se acompaña de fuertes cantidades de la red, mayor penetración solar a mayor coste.
- 3. De hecho esas dos opciones que se mencionan en el punto anterior, se pueden identificar sobre las gráficas, al ver que la superficie que se forma, parece estar concentrada en dos zonas, con una división intermedia formada por una menor concentración de puntos. En una de esas zonas se puede apreciar claramente que los valores bajos de EENS (cercanos o por debajo de 3000 kWh/año) están asociados a altos costes, producto de la redundancia y aumento de unidades. Y que cuando la EENS ronda o supera los 100 000 kWh/año, los costes disminuyen de la mitad de la banda de costes hacia abajo.

A diferencia de la simulación anterior, el recurso solar no se modificó, por lo cual es de esperase este resultado. De hecho se hizo así, con la finalidad de evaluar que tan capaz era el sistema de encontrar posibilidades que cumplieran con los objetivos. Lo cual lo hace, agregando en las soluciones la redundancia necesaria para equilibrar los requerimientos.

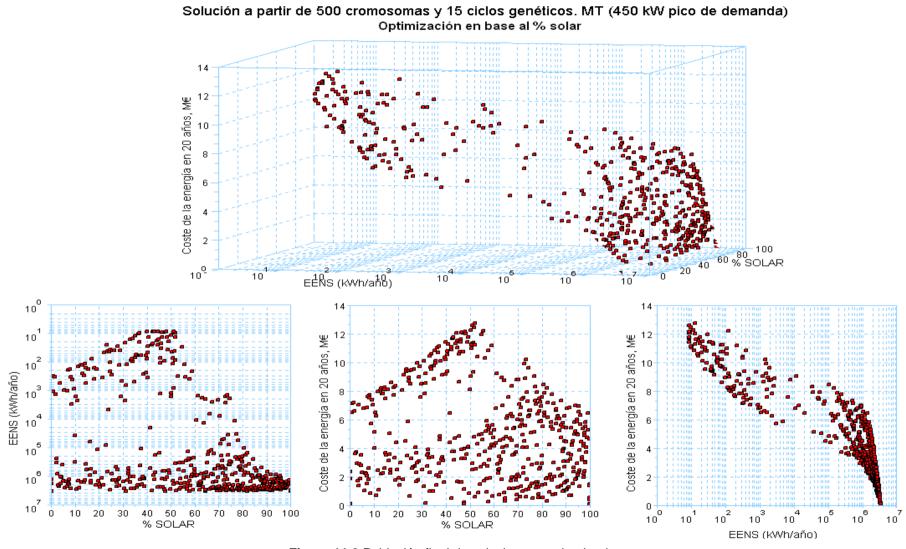


Figura 11.8 Población final de soluciones no dominadas.

ANEXO 12. TABLAS DE CORRESPONDENCIA DE LAS SOLUCIONES

De las tablas que a continuación se muestran, sólo la primera se ha dejado completa, como una muestra del resultado total de una simulación, las restantes se han reducido cada cierto grupo de soluciones, para evitar la redundancia de información similar y suponiendo que con la primera tabla queda ejemplificado el funcionamiento del sistema propuesto en este trabajo.

SIMULACIÓN I. Todas las fuentes de suministro, considerando a la red como suministro en baja tensión.

СРОМОСОМА	Unid. Solar 1	Unid. Solar 2	Unid. Solar 3	Unid. Eólica 1	Unid. Eólica 2	Unid. Eólica 3	Grupo Diesel 1	Grupo Diesel 2	Reserva (REE)	Coste de la energía en 20	EENS	Disponibilidad
CROMOSOMA	4	_	0	_	_	_	_	_		años (M€)		(A)
430000001	4	3	0	0	0	0	0	0	1	0.292	299516	0.000001
511300001	5	1	1	3	0	0	0	0	1	0.466	215532	0.001637
400110001	4	0	0	1	1	0	0	0	1	0.498	204137	0.155885
380001000	3	8	0	0	0	1	0	0	0	0.559	194100	0.099542
661001000	6	6	1	0	0	1	0	0	0	0.575	189661	0.100839
200220000	2	0	0	2	2	0	0	0	0	0.583	153640	0.309982
960201000	9	6	0	2	0	1	0	0	0	0.649	151400	0.133619
301201001	3	0	1	2	0	1	0	0	1	0.700	146033	0.133396
803600001	8	0	3	6	0	0	0	0	1	0.731	109397	0.125214
232210001	2	3	2	2	1	0	0	0	1	0.731	139096	0.237705
921700001	9	2	1	7	0	0	0	0	1	0.738	98653	0.155459
211601000	2	1	1	6	0	1	0	0	0	0.756	94745	0.278321
711020001	7	1	1	0	2	0	0	0	1	0.768	135249	0.338243
741700001	7	4	1	7	0	0	0	0	1	0.781	87919	0.189537
953800000	9	5	3	8	0	0	0	0	0	0.792	73311	0.271242
720120001	7	2	0	1	2	0	0	0	1	0.798	122851	0.361611
310610001	3	1	0	6	1	0	0	0	1	0.800	94779	0.313530
130701000	1	3	0	7	0	1	0	0	0	0.807	77670	0.351352
841800001	8	4	1	8	0	0	0	0	1	0.843	67048	0.282815
207900000	2	0	7	9	0	0	0	0	0	0.891	50503	0.420920
540801000	5	4	0	8	0	1	0	0	0	0.911	53983	0.474626
870900001	8	7	0	9	0	0	0	0	1	0.926	45331	0.414453
330720000	3	3	0	7	2	0	0	0	0	0.950	59972	0.530913
490900001	4	9	0	9	0	0	0	0	1	0.958	40303	0.463008
211810001	2	1	1	8	1	0	0	0	1	0.960	53972	0.470942
138800000	1	3	8	8	0	0	0	0	0	0.963	44002	0.480304
118900000	1	1	8	9	0	0	0	0	0	0.966	39275	0.519682
237900000	2	3	7	9	0	0	0	0	0	0.971	38123	0.523293
760801000	7	6	0	8	0	1	0	0	0	0.975	44643	0.528388
210801001	2	1	0	8	0	1	0	0	1	1.005	43952	0.540151
572900001	5	7	2	9	0	0	0	0	1	1.017	32635	0.538899
032901000	0	3	2	9	0	1	0	0	0	1.021	35984	0.593841
885900000	8	8	5	9	0	0	0	0	0	1.030	29631	0.580638
922901000	9	2	2	9	0	1	0	0	0	1.042	33343	0.616642
570901000	5	7	0	9	0	1	0	0	0	1.042	32286	0.634987
196900000	1	9	6	9	0	0	0	0	0	1.073	25344	0.639465
539900000	5	3	9	9	0	0	0	0	0	1.073	24047	0.655907
664900001	6	6	4	9	0	0	0	0	1	1.103	23325	0.637798
262901000	2	6	2	9	0	1	0	0	0	1.112	26468	0.687426
493900001	4		3	9	0	0	0	0	1	1.112	21322	0.654596
		9										
078900000	0	7	8	9	0	0	0	0	0	1.121	21258	0.679687
581901000	5	8	1	9	0	1	0	0	0	1.128	24718	0.695537
259900000	2	5	9	9	0	0	0	0	0	1.132	20595	0.694139
427900001	4	2	7	9	0	0	0	0	1	1.145	20290	0.684532
088900000	0	8	8	9	0	0	0	0	0	1.148	18926	0.710825
491901000	4	9	1	9	0	1	0	0	0	1.149	22897	0.712005

984900001	9	8	4	9	0	0	0	0	1	1.172	16761	0.710794
098900000	0	9	8	9	0	0	0	0	0	1.175	16817	0.723527
644901000	6	4	4	9	0	1	0	0	0	1.187	20612	0.742206
013901001	0	1	3	9	0	1	0	0	1	1.211	20312	0.731717
183901000	1	8	3	9	0	1	0	0	0	1.214	18549	0.754154
828900001	8	2	8	9	0	0	0	0	1	1.220	14519	0.748792
383901000	3	8	3	9	0	1	0	0	0	1.224	17735	0.760630
947900001	9	4	7	9	0	0	0	0	1	1.226	13813	0.753530
483901000	4	8	3	9	0	1	0	0	0	1.230	17334	0.768563
876900001	8	7	6	9	0	0	0	0	1	1.247	12065	0.776028
876900001		7	6	9	0	0	_	0	1			0.776028
	8						0			1.247	12065	
976900001	9	7	6	9	0	0	0	0	1	1.253	11693	0.789256
527901000	5	2	7	9	0	1	0	0	0	1.289	14562	0.797744
118901000	1	1	8	9	0	1	0	0	0	1.294	14510	0.803414
796900001	7	9	6	9	0	0	0	0	1	1.295	9429.6	0.816391
537901000	5	3	7	9	0	1	0	0	0	1.316	13070	0.819220
397900001	3	9	7	9	0	0	0	0	1	1.328	8218.2	0.837191
257901000	2	5	7	9	0	1	0	0	0	1.353	11238	0.837226
959900001	9	5	9	9	0	0	0	0	1	1.360	7164.4	0.861500
798900001	7	9	8	9	0	0	0	0	1	1.403	5498.1	0.883028
987901000	9	8	7	9	0	1	0	0	0	1.471	6613.5	0.885374
484901001	4	8	4	9	0	1	0	0	1	1.474	6608.2	0.888518
578901000	5	7	8	9	0	1	0	0	0	1.476	6600.4	0.894370
686910001	6	8	6	9	1	0	0	0	1	1.493	5813.5	0.887706
400600006	4	0	0	6	0	0	0	0	6	1.500	4803.0	0.841453
098901000	0	9	8	9	0	1	0	0	0	1.503	5890.9	0.897482
886910001	8	8	6	9	1	0	0	0	1	1.504	5487.4	0.892705
575901001	5	7	5	9	0	1	0	0	1	1.506	5762.1	0.900529
198901000	1	9	8	9	0	1	0	0	0	1.508	5726.5	0.905478
398901000	3	9	8	9	0	1	0	0	0	1.519	5445.5	0.904135
187910001	1	8	7	9	1	0	0	0	1	1.520	5261.3	0.895295
988901000	9	8	8	9	0	1	0	0	0	1.524	5231.2	0.905331
758910001	7	5	8	9	1	0	0	0	1	1.526	5222.4	0.899121
	4	6	6	9	0	1	0	0	1	1.527		
466901001							_				5318.0	0.907568
511500006	5	1	1	5	0	0	0	0	6	1.529	4788.7	0.840832
387910001	3	8	7	9	1	0	0	0	1	1.531	4913.3	0.901981
611500006	6	1	1	5	0	0	0	0	6	1.535	4579.6	0.850524
698901000	6	9	8	9	0	1	0	0	0	1.535	4994.6	0.911406
101600006	1	0	1	6	0	0	0	0	6	1.537	3816.6	0.876642
728901001	7	2	8	9	0	1	0	0	1	1.543	5135.0	0.912435
200700006	2	0	0	7	0	0	0	0	6	1.545	2694.6	0.909019
297910001	2	9	7	9	1	0	0	0	1	1.552	4379.9	0.916527
595901001	5	9	5	9	0	1	0	0	1	1.559	4394.4	0.919960
701600006	7	0	1	6	0	0	0	0	6	1.569	2794.3	0.910524
448901001	4	4	8	9	0	1	0	0	1	1.581	4267.9	0.923305
548901001	5	4	8	9	0	1	0	0	1	1.586	4156.5	0.920847
469910001	4	6	9	9	1	0	0	0	1	1.590	3763.4	0.926245
799901000	7	9	9	9	0	1	0	0	0	1.594	3790.9	0.927919
886901001	8	8	6	9	0	1	0	0	1	1.602	3592.0	0.929675
500800006	5	0	0	8	0	0	0	0	6	1.617	1138.8	0.953157
010800006	0	1	0	8	0	0	0	0	6	1.617	1177.1	0.958521
660600006	6	6	0	6	0	0	0	0	6	1.671	997.16	0.968845
211800006	2	1	1	8	0	0	0	0	6	1.681	758.09	0.900043
	4	2	0	9	0	0	0		6			
420900006								0		1.722	417.25	0.985206
420900006	4	2	0	9	0	0	0	0	6	1.722	417.25	0.985206
740800006	7	4	0	8	0	0	0	0	6	1.735	425.48	0.986107
701900006	7	0	1	9	0	0	0	0	6	1.738	391.68	0.989024
430900006	4	3	0	9	0	0	0	0	6	1.748	337.33	0.990876
240900006	2	4	0	9	0	0	0	0	6	1.764	313.81	0.990151
911900006	9	1	1	9	0	0	0	0	6	1.775	292.09	0.991516
821900006	8	2	1	9	0	0	0	0	6	1.797	255.85	0.992519
141900006	1	4	1	9	0	0	0	0	6	1.813	244.25	0.993209
712900006	7	1	2	9	0	0	0	0	6	1.818	244.21	0.994695
950900006	9	5	0	9	0	0	0	0	6	1.829	201.93	0.996123
170900006	1	7	0	9	0	0	0	0	6	1.839	197.03	0.996183
570900006	5	7	0	9	0	0	0	0	6	1.861	173.78	0.996914
280900006	2	8	0	9	0	0	0	0	6	1.872	168.32	0.996548
						-	-	-	-	- -		

680900006	6	8	0	9	0	0	0	0	6	1.893	149.41	0.997261
923900006	9	2	3	9	0	0	0	0	6	1.909	153.01	0.997275
923900006	9	2	3	9	0	0	0	0	6	1.909	153.01	0.997275
590900006	5	9	0	9	0	0	0	0	6	1.914	136.56	0.997632
890900006	8	9	0	9	0	0	0	0	6	1.930	125.71	0.998133
781900006	7	8	1	9	0	0	0	0	6	1.952	118.48	0.998214
572900006	5	7	2	9	0	0	0	0	6	1.968	114.68	0.998043
872900006	8	7	2	9	0	0	0	0	6	1.984	106.05	0.998321
		4	4		0	0	0	0	6			
644900006	6			9						2.000	104.58	0.998370
744900006	7	4	4	9	0	0	0	0	6	2.006	102.22	0.998410
354900006	3	5	4	9	0	0	0	0	6	2.011	101.16	0.998122
982900006	9	8	2	9	0	0	0	0	6	2.016	92.743	0.998585
592900006	5	9	2	9	0	0	0	0	6	2.022	91.356	0.998698
692900006	6	9	2	9	0	0	0	0	6	2.027	89.530	0.998608
873900006	8	7	3	9	0	0	0	0	6	2.038	86.628	0.998670
483900006	4	8	3	9	0	0	0	0	6	2.043	85.244	0.998756
093900006	0	9	3	9	0	0	0	0	6	2.048	84.411	0.998710
664900006	6	6	4	9	0	0	0	0	6	2.054	83.078	0.998770
664900006	6	6	4	9	0	0	0	0	6	2.054	83.078	0.998770
293900006	2	9	3	9	0	0	0	0	6	2.059	80.544	0.998821
883900006	8	8	3	9	0	0	0	0	6	2.064	77.822	0.998773
493900006	4	9	3	9	0	0	0	0	6	2.070	76.759	0.998824
593900006	5	9	3	9	0	0	0	0	6	2.075	74.766	0.998917
384900006	3	8	4	9	0	0	0	0	6	2.091	71.610	0.998894
484900006	4	8	4	9	0	0	0	0	6	2.097	69.697	0.998985
484900006	4	8	4	9	0	0	0	0	6	2.097	69.697	0.998985
	9	7	4	9	0	0	0	0	6	2.097	69.045	
974900006												0.998997
684900006	6	8	4	9	0	0	0	0	6	2.107	66.485	0.999031
884900006	8	8	4	9	0	0	0	0	6	2.118	63.583	0.999000
984900006	9	8	4	9	0	0	0	0	6	2.123	62.059	0.999056
675900006	6	7	5	9	0	0	0	0	6	2.134	60.830	0.999044
794900006	7	9	4	9	0	0	0	0	6	2.139	58.165	0.999083
385900006	3	8	5	9	0	0	0	0	6	2.145	58.363	0.999095
994900006	9	9	4	9	0	0	0	0	6	2.150	55.347	0.999186
195900006	1	9	5	9	0	0	0	0	6	2.161	54.658	0.999189
195900006	1	9	5	9	0	0	0	0	6	2.161	54.658	0.999189
295900006	2	9	5	9	0	0	0	0	6	2.166	53.476	0.999209
885900006	8	8	5	9	0	0	0	0	6	2.172	51.759	0.999178
985900006	9	8	5	9	0	0	0	0	6	2.177	50.399	0.999187
476900006	4	7	6	9	0	0	0	0	6	2.177	51.761	0.999187
595900006	5	9	5	9	0	0	0	0	6	2.182	49.544	0.999255
695900006	6	9	5	9	0	0	0	0	6	2.188	48.416	0.999239
857900006	8	5	7	9	0	0	0	0	6	2.198	47.614	0.999240
467900006	4	6	7	9	0	0	0	0	6	2.204	46.834	0.999284
686900006	6	8	6	9	0	0	0	0	6	2.214	43.741	0.999333
												-
886900006	8	8	6	9	0	0	0	0	6	2.225	41.745	0.999319
886900006	8	8	6	9	0	0	0	0	6	2.225	41.745	0.999319
986900006	9	8	6	9	0	0	0	0	6	2.231	40.609	0.999326
986900006	9	8	6	9	0	0	0	0	6	2.231	40.609	0.999326
596900006	5	9	6	9	0	0	0	0	6	2.236	39.907	0.999381
796900006	7	9	6	9	0	0	0	0	6	2.247	37.895	0.999371
287900006	2	8	7	9	0	0	0	0	6	2.247	38.993	0.999377
858900006	8	5	8	9	0	0	0	0	6	2.252	38.264	0.999379
858900006	8	5	8	9	0	0	0	0	6	2.252	38.264	0.999379
858900006	8	5	8	9	0	0	0	0	6	2.252	38.264	0.999379
996900006	9	9	6	9	0	0	0	0	6	2.257	35.898	0.999433
197900006	1	9	7	9	0	0	0	0	6	2.268	35.399	0.999443
197900006	1	9	7	9	0	0	0	0	6	2.268	35.399	0.999443
197900006	1	9	7	9	0	0	0	0	6	2.268	35.399	0.999443
787900006	7	8	7	9	0	0	0	0	6	2.273	34.253	0.999458
397900006	3	9	7	9	0	0	0	0	6	2.279	33.752	0.999430
578900006	5	7	8	9	0	0	0	0	6	2.289	32.485	0.999478
678900006	6	7	8	9	0	0	0	0	6	2.295	31.706	0.999477
759900006	7	5	9	9	0	0	0	0	6	2.300	31.409	0.999477
897900006	8	9	7	9	0	0	0	0	6	2.306	29.407	0.999484
959900006	9	5	9	9	0	0	0	0	6	2.311	29.753	0.999516
959900006	9	5	9	9	0	0	0	0	6	2.311	29.753	0.999516
698900006	6	9	8	9	0	0	0	0	6	2.348	24.647	0.999568

679900006	6	7	9	9	0	0	0	0	6	2.348	25.160	0.999568
798900006	7	9	8	9	0	0	0	0	6	2.354	23.924	0.999570
798900006	7	9	8	9	0	0	0	0	6	2.354	23.924	0.999570
798900006	7	9	8	9	0	0	0	0	6	2.354	23.924	0.999570
489900006	4	8	9	9	0	0	0	0	6	2.364	23.315	0.999605
399900006	3	9	9	9	0	0	0	0	6	2.386	21.165	0.999615
989900006	9	8	9	9	0	0	0	0	6	2.391	20.301	0.999621
984901006	9	8	4	9	0	1	0	0	6	2.452	22.310	0.999637
675901006	6	7	5	9	0	1	0	0	6	2.462	21.920	0.999634
428901006	4	2	8	9	0	1	0	0	6	2.478	21.947	0.999643
195901006	1	9	5	9	0	1	0	0	6	2.489	19.588	0.999690
086901006	0	8	6	9	0	1	0	0	6	2.511	18.202	0.999710
497910006	4	9	7	9	1	0	0	0	6	2.514	17.470	0.999688
895901006	8	9	5	9	0	1	0	0	6	2.527	16.271	0.999716
876901006	8	7	6	9	0	1	0	0	6	2.527	16.651	0.999710
467901006	4	6	7	9	0	1	0	0	6	2.532	16.709	0.999729
878910006	8	7	8	9	1	0	0	0	6	2.536	15.952	0.999724
177901006	1	7	7	9	0	1	0	0	6	2.543	16.002	0.999724
786901006	7	8	6	9	0	1	0	0	6	2.548	15.142	0.999754
187901006	1	8	7	9	0	1	0	0	6	2.569	14.182	0.999762
896901006	8	9	6	9	0	1	0	0	6	2.580	12.963	0.999767
	8	9	6	9	0	1	0	0	6		12.963	0.999767
896901006 387901006	3	8	7	9	0	1	0	0	6	2.580 2.580	13.403	0.999767
	0	7	8	9	0	1	0	0	6	2.580		
078901006	1	7	8	9	0	1	0	0	6		13.096	0.999775
178901006 768901006	7	6	8	9	0	1	0	0	6	2.596 2.602	12.734 12.279	0.999789 0.999794
		4	9	9	0	1	0	0	-	2.607	12.279	0.999794
849901006	8	4	9	9	0	1	0	0	6	2.607	12.226	0.999789
849901006	8				-		_		-			
497901006	4	9	7	9	0	1	0	0	6	2.612	11.501	0.999790
578901006	5	7	8	9	0	1	0	0	6	2.618	11.398	0.999809
897901006	8	9	7	9	0	1	0	0	6	2.634	10.257	0.999810
897901006	8	9	7	9	0	1	0	0	6	2.634	10.257	0.999810
897901006	8	9	7	9	0	1	0	0	6	2.634	10.257	0.999810
959901006	9	5	9	9	0	1	0	0	6	2.639	10.418	0.999822
398901006	3	9	8	9	0	1	0	0	6	2.661	9.3620	0.999828
988901006	9	8	8	9	0	1	0	0	6	2.666	8.9709	0.999831
798901006	7	9	8	9	0	1	0	0	6	2.682	8.3052	0.999843
798901006	7	9	8	9	0	1	0	0	6	2.682	8.3052	0.999843
798901006	7	9	8	9	0	1	0	0	6	2.682	8.3052	0.999843
979901006	9	7	9	9	0	1	0	0	6	2.693	8.0156	0.999858
984902006	9	8	4	9	0	2	0	0	6	2.780	7.9753	0.999863
675902006	6	7	5	9	0	2	0	0	6	2.790	7.8519	0.999862
756902006	7	5	6	9	0	2	0	0	6	2.796	7.8028	0.999857
187911006	1	8	7	9	1	1	0	0	6	2.800	7.5770	0.999869
894902006	8	9	4	9	0	2	0	0	6	2.801	7.2358	0.999875
647902006	6	4	7	9	0	2	0	0	6	2.817	7.2424	0.999877
785902006	7	8	5	9	0	2	0	0	6	2.823	6.7360	0.999887
197911006	1	9	7	9	1	1	0	0	6	2.826	6.6339	0.999886
197911006	1	9	7	9	1	1	0	0	6	2.826	6.6339	0.999886
885902006	8	8	5	9	0	2	0	0	6	2.828	6.5609	0.999880
985902006	9	8	5	9	0	2	0	0	6	2.833	6.3625	0.999882
397911006	3	9	7	9	1	1	0	0	6	2.837	6.3049	0.999883
538902006	5	3	8	9	0	2	0	0	6	2.839	6.7200	0.999886
186902006	1	8	6	9	0	2	0	0	6	2.844	6.3202	0.999887
186902006	1	8	6	9	0	2	0	0	6	2.844	6.3202	0.999887
186902006	1	8	6	9	0	2	0	0	6	2.844	6.3202	0.999887
895902006	8	9	5	9	0	2	0	0	6	2.855	5.7451	0.999893
386902006	3	8	6	9	0	2	0	0	6	2.855	5.9697	0.999893
486902006	4	8	6	9	0	2	0	0	6	2.860	5.7926	0.999901
848902006	8	4	8	9	0	2	0	0	6	2.882	5.4379	0.999903
986902006	9	8	6	9	0	2	0	0	6	2.887	5.0444	0.999905
596902006	5	9	6	9	0	2	0	0	6	2.892	4.9560	0.999915
387902006	3	8	7	9	0	2	0	0	6	2.908	4.7179	0.999914
487902006	4	8	7	9	0	2	0	0	6	2.914	4.5769	0.999920
297902006	2	9	7	9	0	2	0	0	6	2.930	4.2667	0.999925
569902006	5	6	9	9	0	2	0	0	6	2.973	3.5833	0.999933
198902006	1	9	8	9	0	2	0	0	6	2.978	3.4376	0.999939
988902006	9	8	8	9	0	2	0	0	6	2.994	3.1141	0.999939

969902006	9	6	9	9	0	2	0	0	6	2.994	3.1848	0.999940
579902006	5	7	9	9	0	2	0	0	6	2.999	3.1256	0.999944
	-	-	-		-		-					
189902006	1	8	9	9	0	2	0	0	6	3.005	3.0875	0.999942
998902006	9	9	8	9	0	2	0	0	6	3.021	2.7011	0.999950
575903006	5	7	5	9	0	3	0	0	6	3.113	2.8687	0.999950
794903006	7	9	4	9	0	3	0	0	6	3.124	2.6357	0.999948
875903006	8	7	5	9	0	3	0	0	6	3.129	2.6411	0.999951
176903006	1	7	6	9	0	3	0	0	6	3.145	2.5472	0.999955
295903006	2	9	5	9	0	3	0	0	6	3.151	2.4172	0.999957
985903006	9	8	5	9	0	3	0	0	6	3.162	2.2470	0.999955
538903006	5	3	8	9	0	3	0	0	6	3.167	2.3872	0.999958
348903006	3	4	8	9	0	3	0	0	6	3.183	2.2267	0.999957
348903006	3	4	8	9	0	3	0	0	6	3.183	2.2267	0.999957
957903006	9	5	7	9	0	3	0	0	6	3.188	2.0720	0.999962
686903006	6	8	6	9	0	3	0	0	6	3.199	1.9283	0.999965
886903006	8	8	6	9	0	3	0	0	6	3.210	1.8280	0.999964
886903006	8	8	6	9	0	3	0	0	6	3.210	1.8280	0.999964
496903006	4	9	6	9	0	3	0	0	6	3.215	1.7922	0.999964
496903006	4	9	6	9	0	3	0	0	6	3.215	1.7922	0.999964
596903006	5	9	6	9	0	3	0	0	6	3.220	1.7383	0.999968
498912006	4	9	8	9	1	2	0	0	6	3.224	1.6627	0.999965
796903006	7	9	6	9	0	3	0	0	6	3.231	1.6386	0.999967
387903006	3	8	7	9	0	3	0	0	6	3.237	1.6556	0.999968
487903006	4	8	7	9	0	3	0	0	6	3.242	1.6037	0.999971
197903006	1	9	7	9	0	3	0	0	6	3.253	1.5314	0.999971
197903006	1	9	7	9	0	3	0	0	6	3.253	1.5314	0.999971
397903006	3	9	7	9	0	3	0	0	6	3.263	1.4513	0.999971
	8	4	9	9	0	3	0	0	6	3.263	1.5021	
849903006												0.999971
987903006	9	8	7	9	0	3	0	0	6	3.269	1.3854	0.999971
088903006	0	8	8	9	0	3	0	0	6	3.274	1.4104	0.999974
678903006	6	7	8	9	0	3	0	0	6	3.279	1.3591	0.999974
797903006	7	9	7	9	0	3	0	0	6	3.285	1.2809	0.999973
897903006	8	9	7	9	0	3	0	0	6	3.290	1.2398	0.999974
878903006	8	7	8	9	0	3	0	0	6	3.290	1.2777	0.999974
859903006	8	5	9	9	0	3	0	0	6	3.290	1.3089	0.999974
788903006	7	8	8	9	0	3	0	0	6	3.312	1.1488	0.999978
398903006	3	9	8	9	0	3	0	0	6	3.317	1.1318	0.999976
969903006	9	6	9	9	0	3	0	0	6	3.322	1.1050	0.999978
798903006	7	9	8	9	0	3	0	0	6	3.338	0.9956	0.999979
998903006	9	9	8	9	0	3	0	0	6	3.349	0.9324	0.999981
889903006	8	8	9	9	0	3	0	0	6	3.370	0.8760	0.999981
989903006	9	8	9	9	0	3	0	0	6	3.376	0.8760	0.999981
989903006	9	8	9	9	0	3	0	0	6	3.376	0.8760	0.999981
187913006	1	8	7	9	1	3	0	0	6	3.456	0.9330	0.999981
894904006	8	9	4	9	0	4	0	0	6	3.458	0.9059	0.999982
796913006	7	9	6	9	1	3	0	0	6	3.461	0.8760	0.999982
387913006	3	8	7	9	1	3	0	0	6	3.467	0.8776	0.999982
939913006	9	3	9	9	1	3	0	0	6	3.472	0.8872	0.999983
195904006	1	9	5	9	0	4	0	0	6	3.474	0.8761	0.999984
195904006	1	9	5	9	0	4	0	0	6	3.474	0.8761	0.999984
295904006	2	9	5	9	0	4	0	0	6	3.479	0.8760	0.999984
987913006	9	8	7	9	1	3	0	0	6	3.499	0.8760	0.999984
088913006	0	8	8	9	1	3	0	0	6	3.504	0.8760	0.999985
486904006	4	8	6	9	0	4	0	0	6	3.517	0.8760	0.999985
897913006	8	9	7	9	1	3	0	0	6	3.520	0.8760	0.999986
469913006	4	6	9	9	1	3	0	0	6	3.526	0.8760	0.999986
688913006	6	8	8	9	1	3	0	0	6	3.536	0.8760	0.999987
187904006	1	8	7	9	0	4	0	0	6	3.554	0.8760	0.999988
387904006	3	8	7	9	0	4	0	0	6	3.565	0.8760	0.999988
378904006	3	7	8	9	0	4	0	0	6	3.592	0.8760	0.999989
088904006	0	8	8	9	0	4	0	0	6	3.602	0.8760	0.999990
000304000	U	0	O	J	U	4	U	U	O	3.002	0.0700	0.555550

SIMULACIÓN II. Todas las fuentes de suministro, considerando a la red como suministro en media tensión.

CROMOSOMA	Unid. Solar 1	Unid. Solar 2	Unid. Solar 3	Unid. Eólica 1	Unid. Eólica 2	Unid. Eólica 3	Grupo Diesel 1	Grupo Diesel 2	Reserva (REE)	Coste de la energía en 20 años (M€)	EENS	Disponibilidad (A)
100301006	1	0	0	3	0	1	0	0	6	3.429	633433	0.147875
100220006	1	0	0	2	2	0	0	0	6	3.505	585530	0.157680
100601006	1	0	0	6	0	1	0	0	6	3.598	565102	0.170327
100910006	1	0	0	9	1	0	0	0	6	3.668	513724	0.183012
300601006	3	0	0	6	0	1	0	0	6	3.705	537272	0.183992
100460006	1	0	0	4	6	0	0	0	6	4.538	247586	0.429259
		1	0	9	2	1	0	0	6	4.709	247366	
510921006 200623006	5 2	0	0	6	2	3	0	0	6	4.768	243247	0.397396 0.410493
	1	0	0		8	0	0	0	6			
100080006				0						4.774	201056	0.507241
100280006	1	0	0	2	8	0	0	0	6	4.886	173838	0.529896
100610009	1	0	0	6	1	0	0	0	9	4.939	4439	0.998600
110120009	1	1	0	1	2	0	0	0	9	5.157	4363	0.998600
400520009	4	0	0	5	2	0	0	0	9	5.274	4255	0.998600
200330009	2	0	0	3	3	0	0	0	9	5.285	4225	0.998600
000811009	0	0	0	8	1	1	0	0	9	5.326	4202	0.998600
300720009	3	0	0	7	2	0	0	0	9	5.333	4200	0.998600
910820009	9	1	0	8	2	0	0	0	9	5.978	3909	0.998600
810920009	8	1	0	9	2	0	0	0	9	5.981	3893	0.998600
210921009	2	1	0	9	2	1	0	0	9	5.988	3850	0.998600
010341009	0	1	0	3	4	1	0	0	9	6.004	3819	0.998600
120621009	1	2	0	6	2	1	0	0	9	6.034	3872	0.998600
000934008	0	0	0	9	3	4	0	0	8	6.347	3357	0.997658
300690008	3	0	0	6	9	0	0	0	8	6.408	3247	0.997488
610814008	6	1	0	8	1	4	0	0	8	6.420	3426	0.997829
100707008	1	0	0	7	0	7	0	0	8	6.583	3304	0.998243
211641009	2	1	1	6	4	1	0	0	9	6.668	3473	0.998599
010990009	0	1	0	9	9	0	0	0	9	7.163	2998.0	0.998600
		0	0	3		4		0	8	7.103	2763.0	
100384008	1				8		0					0.998387
400683008	4	0	0	6	8	3	0	0	8	7.216	2750.6	0.998463
910981008	9	1	0	9	8	1	0	0	8	7.263	2766.3	0.998569
100809008	1	0	0	8	0	9	0	0	8	7.295	2883.1	0.998583
300983008	3	0	0	9	8	3	0	0	8	7.330	2653.7	0.998585
120790009	1	2	0	7	9	0	0	0	9	7.372	2936.2	0.998600
000784008	0	0	0	7	8	4	0	0	8	7.386	2621.3	0.998517
410792008	4	1	0	7	9	2	0	0	8	7.442	2622.2	0.998539
400693008	4	0	0	6	9	3	0	0	8	7.446	2593.2	0.998531
100928008	1	0	0	9	2	8	0	0	8	7.484	2718.9	0.998587
001774008	0	0	1	7	7	4	0	0	8	7.544	2591.5	0.998499
210983008	2	1	0	9	8	3	0	0	8	7.545	2562.5	0.998559
010928008	0	1	0	9	2	8	0	0	8	7.698	2626.80	0.998591
100899006	1	0	0	8	9	9	0	0	6	8.407	2056.62	0.993789
000999006	0	0	0	9	9	9	0	0	6	8.409	2010.56	0.994781
200687008	2	0	0	6	8	7	0	0	8	8.421	2073.76	0.998621
500989006	5	0	0	9	8	9	0	0	6	8.447	1991.55	0.995686
100999006	1	0	0	9	9	9	0	0	6	8.463	1942.96	0.994950
400999006	4	0	0	9	9	9	0	0	6	8.624	1746.729	0.996172
610998006	6	1	0	9	9	8	0	0	6	8.670	1779.956	0.996378
010999006	0	1	0	9	9	9	0	0	6	8.677	1740.423	0.996515
700899006	7	0	0	8	9	9	0	0	6	8.728	1668.828	0.996667
100969008	1	0	0	9	6	9	0	0	8	8.732	1930.769	0.998636

011999006	0	1	1	9	9	9	0	0	6	9.066	1447.513	0.997191
820889006	8	2	0	8	8	9	0	0	6	9.087	1480.549	0.997404
620699006	6	2	0	6	9	9	0	0	6	9.098	1489.236	0.997406
211899006	2	1	1	8	9	9	0	0	6	9.117	1431.095	0.997323
300689008	3	0	0	6	8	9	0	0	8	9.131	1702.492	0.998671
221999006	2	2	1	9	9	9	0	0	6	9.441	1215.807	0.997715
311999006	8	1	1	9	9	9	0	0	6	9.494	1168.158	0.998213
310989008	3	1	0	9	8	9	0	0	8	9.568	1489.684	0.998713
30899006	8	3	0	8	9	9	0	0	6	9.585	1153.102	0.998177
240999006	2	4	0	9	9	9	0	0	6	9.588	1149.667	0.998195
110999008	4	1	0	9	9	9	0	0	8	9.851	1331.269	0.998752
551988006	6	5	1	9	8	8	0	0	6	9.900	1087.207	0.998462
211989008	2	1	1	9	8	9	0	0	8	9.903	1345.528	0.998753
104799006	1	0	4	7	9	9	0	0	6	9.905	1036.297	0.998224
004899006	0	0	4	8	9	9	0	0	6	9.908	1011.562	0.998043
513999006	5	1	3	9	9	9	0	0	6	10.111	907.045	0.998709
30789008	6	3	0	7	8	9	0	0	8	10.152	1289.855	0.998772
641999006	6	4	1	9	9	9	0	0	6	10.191	890.688	0.998770
132999006	4	3	2	9	9	9	0	0	6	10.204	882.919	0.998705
341999006	8	4	1	9	9	9	0	0	6	10.298	850.837	0.998838
150000			_	_	_	_			_	10-0:	004.00:-	0.00===
315999006	3	1	5	9	9	9	0	0	6	10.781	681.8046	0.998956
624999006	6	2	4	9	9	9	0	0	6	10.821	671.9536	0.998987
652999006	6	5	2	9	9	9	0	0	6	10.847	677.8483	0.999017
324899006	8	2	4	8	9	9	0	0	6	10.872	666.9810	0.998970
106899006	4	0	6	8	9	9	0	0	6	10.899	654.5962	0.999000
						•				11011	570 1750	0.000400
064989006	0	6	4	9	8	9	0	0	6	11.341	573.1753	0.999109
391999006	3	9	1	9	9	9	0	0	6	11.370	552.2236	0.999121
345998006	6	4	5	9	9	8	0	0	6	11.417	537.4077	0.999153
354999006	3	5	4	9	9	9	0	0	6	11.464	511.6254	0.999202
308898006	8	0	8	8	9	8	0	0	6	11.563	498.5953	0.999171
194900006	1	8	4	8	9	0	0	0	6	12.265	357.9091	0.000391
184899006 219999006	2	1	9	9	9	9	0	0	6	12.282	332.8471	0.999381
		9	3	9	9	9	0	0	6	12.415		0.999367
393999006 239998006	8	3	9	9	9	8	0	0	6	12.415	325.6457 314.3094	
		1	9		9	9	0	0	-			0.999446
319799006	8	1	9	7	9	9	U	U	6	12.491	308.4369	0.999437
76999006	9	7	6	9	9	9	0	0	6	13.098	220.1655	0.999568
558999006	5	5	8	9	9	9	0	0	6	13.126	214.2842	0.999566
339999006	8	3	9	9	9	9	0	0	6	13.126	209.5530	0.999571
368799006	3	6	8	7	9	9	0	0	6	13.139	219.0962	0.999579
39999006	9	3	9	9	9	9	0	0	6	13.174	202.8641	0.999579
,00000000	9	J	9	9	9	9	U	U	U	10.130	202.0041	0.55500
869998006	8	6	9	9	9	8	0	0	6	13.615	169.3849	0.999641
959799006	9	5	9	7	9	9	0	0	6	13.616	167.1378	0.999646
78699006	9	7	8	6	9	9	0	0	6	13.707	164.5522	0.999658
197999006	4	9	7	9	9	9	0	0	6	13.755	151.4256	0.999679
697999006	6	9	7	9	9	9	0	0	6	13.755	140.9681	0.999679
									-			2.300002
189878306	4	8	9	8	7	8	3	0	6	518.818	31.7972	0.999904
949997116	9	4	9	9	9	7	1	1	6	549.436	30.8320	0.999905
189899115	4	8	9	8	9	9	1	1	5	550.360	8.8882	0.999966
697998406	6	9	7	9	9	8	4	0	6	687.398	8.8558	0.999966
97988024	6	9	7	9	8	8	0	2	4	748.675	6.6672	0.999973
649899125	6	4	9	8	9	9	1	2	5	917.561	2.0577	0.999990
369699125	3	6	9	6	9	9	1	2	5	917.824	1.8418	0.999990
169899125	1	6	9	8	9	9	1	2	5	917.829	1.6808	0.999990
978899125	9	7	8	8	9	9	1	2	5	918.137	1.1597	0.999990
		7	9	9	9	9	1	2	5	918.581	0.8760	

SIMULACIÓN III. Elementos solares, eólicos y grupos diesel como única fuente de suministro.

CROMOSOMA	Unid. Solar 1	Unid. Solar 2	Unid. Solar 3	Unid. Eólica 1	Unid. Eólica 2	Unid. Eólica 3	Grupo Diesel 1	Grupo Diesel 2	Coste de la energía en 20 años (M€)	EENS	Disponibilidad (A)
24251200	2	4	2	5	1	2	0	0	3.123	2336167	0.000000
11921200	1	1	9	2	1	2	0	0	4.818	1768953	0.007732
10264900	1	0	2	6	4	9	0	0	5.042	1433752	0.024895
41954100	4	1	9	5	4	1	0	0	5.509	1451890	0.030578
31099800	3	1	0	9	9	8	0	0	5.630	1109668	0.070213
41099900	4	1	0	9	9	9	0	0	6.012	977880	0.102891
02099900	0	2	0	9	9	9	0	0	6.066	963819	0.112691
61199800	6	1	1	9	9	8	0	0	6.180	947055	0.111465
92099800	9	2	0	9	9	8	0	0	6.220	945774	0.108198
	4		2	7	9			0			
41279800	4	1	2	,	9	8	0	U	6.349	911211	0.126497
02469900	0	2	4	6	9	9	0	0	7.452	616074	0.266319
50688800	5	0	6	8	8	8	0	0	7.515	620332	0.273278
30697900	3	0	6	9	7	9	0	0	7.562	607570	0.269422
20599900	2	0	5	9	9	9	0	0	7.580	559789	0.301999
30649900	3	0	6	4	9	9	0	0	7.742	558353	0.314536
50789900	5	0	7	8	9	9	0	0	8.462	393839	0.427489
15499900	1	5	4	9	9	9	0	0	8.477	397986	0.431423
48289900	4	8	2	8	9	9	0	0	8.608	390530	0.424259
81799800	8	1	7	9	9	8	0	0	8.619	376602	0.441123
30959800	3	0	9	5	9	8	0	0	8.636	392191	0.445316
30959600	3	U	9	5	9	0	U	U	0.030	392191	0.445316
71799900	7	1	7	9	9	9	0	0	8.893	320038	0.502696
30959900	3	0	9	5	9	9	0	0	8.964	327037	0.504806
01999800	0	1	9	9	9	8	0	0	8.967	319973	0.502387
61898900	6	1	8	9	8	9	0	0	8.998	318354	0.505876
42799900	4	2	7	9	9	9	0	0	9.000	306037	0.509411
01999900	0	1	9	9	9	9	0	0	9.295	263363	0.560899
04799900	0	4	7	9	9	9	0	0	9.322	264674	0.564670
81899900	8	1	8	9	9	9	0	0	9.335	257710	0.561949
53899800	5	3	8	9	9	8	0	0	9.382	264652	0.565019
31989900	3	1	9	8	9	9	0	0	9.400	253932	0.565700
					_						,
61999900	6	1	9	9	9	9	0	0	9.617	222941	0.614482
92899900	9	2	8	9	9	9	0	0	9.657	219565	0.615752
53899900	5	3	8	9	9	9	0	0	9.710	214933	0.623568
32999900	3	2	9	9	9	9	0	0	9.710	212466	0.623568
	1	4	8	9	9	9	0	0	9.724	212466	
14899900	I	4	0	9	9	9	U	U	9.764	210621	0.620727
					_	_	•••	_			
95789900	9	5	7	8	9	9	0	0	10.016	187520	0.647229
46799900	4	6	7	9	9	9	0	0	10.072	180070	0.658294
85899800	8	5	8	9	9	8	0	0	10.079	185574	0.661524
35989800	3	5	9	8	9	8	0	0	10.143	183439	0.667285
73989900	7	3	9	8	9	9	0	0	10.150	172744	0.671860
35989900	3	5	9	8	9	9	0	0	10.472	146148	0.718856
49699900	4	9	6	9	9	9	0	0	10.487	145253	0.713108
77799900	7	7	7	9	9	9	0	0	10.501	141579	0.711800
17889900	1	7	8	8	9	9	0	0	10.512	144915	0.719760
94989900	9	4	9	8	9	9	0	0	10.525	140152	0.716892
3.300000	J	•	•		J	J			. 5.525	. 10102	3.1.10002
95989900	9	5	9	8	9	9	0	0	10.793	120231	0.747600
85999900	8	5	9	9	9	9	0	0	10.796	117430	0.761452
98799900	9	8	7	9	9	9	0	0	10.876	113862	0.762064
77899900	7	7	8	9	9	9	0	0	10.889	112391	0.758651
66989900	6	6	9	8	9	9	0	0	10.900	113974	0.767034

99799900	9	9	7	9	9	9	0	0	11.143	97011	0.783163
38969900	3	8	9	6	9	9	0	0	11.163	103314	0.784326
67989900	6	7	9	8	9	9	0	0	11.168	97250	0.79460
08999900	0	8	9	9	9	9	0	0	11.171	96387	0.73400
	9	8	8	8	9	9	0	0	11.208		
98889900	9	0	0	0	9	9	U	U	11.206	94960	0.79513
		_	-		_	_	•••				
99889900	9	9	8	8	9	9	0	0	11.476	80567	0.813746
89899900	8	9	8	9	9	9	0	0	11.478	78702	0.81687
68999900	6	8	9	9	9	9	0	0	11.492	78069	0.819879
98979900	9	8	9	7	9	9	0	0	11.541	78990	0.82446
88989900	8	8	9	8	9	9	0	0	11.543	77115	0.817949
69999900	6	9	9	9	9	9	0	0	11.760	65958	0.847042
89989900	8	9	9	8	9	9	0	0	11.811	65104	0.843596
99989900	9	9	9	8	9	9	0	0	11.865	62620	0.848418
89999900	8	9	9	9	9	9	0	0	11.867	61077	0.851124
98799910	9	8	7	9	9	9	1	0	13.982	61433	0.85293
	_	_		-	-	-		-			
77899910	7	7	8	9	9	9	1	0	13.996	61059	0.844713
17989910	1	7	9	8	9	9	1	0	14.007	63751	0.853313
59799910	5	9	7	9	9	9	1	0	14.036	60187	0.845386
66999910	6	6	9	9	9	9	1	0	14.063	58604	0.862159
69799910	6	9	7	9	9	9	1	0	14.089	57749	0.858617
59889910	5	9	8	8	9	9	1	0	14.368	49226	0.869429
98899910	9	8	8	9	9	9	1	0	14.371	46896	0.883164
59899910	5	9	8	9	9	9	1	0	14.424	45961	0.876214
97989910	9	7	9	8	9	9	1	0	14.435	46286	0.886173
38999910	3	8	9	9	9	9	1	0	14.438	45681	0.886154
30333310	J J	U	3	3	3	3		0	14.430	43001	0.00013
00000040	9	0	9	9	9	9	1	0	14.760	35560	0.908064
98999910	-	8									
59999910	5	9	9	9	9	9	1	0	14.813	34845	0.901864
79989910	7	9	9	8	9	9	1	0	14.864	34483	0.911426
69999910	6	9	9	9	9	9	1	0	14.867	33346	0.911433
89989910	8	9	9	8	9	9	1	0	14.918	33031	0.906376
98899920	9	8	8	9	9	9	2	0	17.478	22120	0.934680
28999920	2	8	9	9	9	9	2	0	17.491	23010	0.934789
58989920	5	8	9	8	9	9	2	0	17.596	21816	0.933489
89889920	8	9	8	8	9	9	2	0	17.636	20730	0.935359
79899920	7	9	8	9	9	9	2	0	17.638	20028	0.940709
								-			
99989920	9	9	9	8	9	9	2	0	18.078	14451	0.953413
58999901	5	8	9	9	9	9	0	1	19.252	14353	0.955050
99889901	9	9	8	8	9	9	0	1	19.290	13662	0.953607
19999901	1	9	9	9	9	9	0	1	19.306	14125	0.954117
99899901	9	9	8	9	9	9	0	1	19.346	12566	0.956740
38999930	3	8	9	9	9	9	3	0	20.651	9530	0.968562
58989930	5	8	9	8	9	9	3	0	20.702	9435	0.965543
09999930	0	9	9	9	9	9	3	0	20.759	8950	0.96725
99889930	9	9	8	8	9	9	3	0	20.796	8140	0.972109
88989930	8	8	9	8	9	9	3	0	20.863	7999	0.970672
	-	-	-	-	-	-		-			
59999911	5	9	9	9	9	9	1	1	22.627	4747	0.98203
79989911	7	9	9	8	9	9	1	1	22.678	4646	0.983339
99999911	9	9	9	9	9	9	1	1	22.841	3651	0.985443
98889940	9	8	8	8	9	9	4	0	23.635	3929	0.985702
49899940	4	9	8	9	9	9	4	0	23.691	3727	0.98644
98999921	9	8	9	9	9	9	2	1	25.680	1739	0.993554
79989921	7	9	9	8	9	9	2	1	25.785	1722	0.993033
98799950	9	8	7	9	9	9	5	0	26.409	1715	0.992936
79789950	7	9	7	8	9	9	5	0	26.514	1648	0.993243
	7	9	7	9	9	9	5	0	26.570	1467	0.993909
79799950											

59989931	5	9	9	8	9	9	3	1	28.784	653.4	0.996936
59999931	5	9	9	9	9	9	3	1	28.840	582.6	0.997238
36999960	3	6	9	9	9	9	6	0	29.436	616.1	0.997294
98789960	9	8	7	8	9	9	6	0	29.460	563.2	0.997396
98799960	9	8	7	9	9	9	6	0	29.516	494.2	0.997690
39999960	3	9	9	9	9	9	6	0	30.239	255.5	0.998555
98999960	9	8	9	9	9	9	6	0	30.293	213.2	0.998967
89989960	8	9	9	8	9	9	6	0	30.451	190.4	0.998875
89899941	8	9	8	9	9	9	4	1	31.719	200.3	0.998994
69989941	6	9	9	8	9	9	4	1	31.944	181.0	0.999191
89889970	8	9	8	8	9	9	7	0	33.169	68.86	0.999543
58999970	5	8	9	9	9	9	7	0	33.185	71.15	0.999559
99889970	9	9	8	8	9	9	7	0	33.223	63.19	0.999656
99899970	9	9	8	9	9	9	7	0	33.279	54.25	0.999701
79989970	7	9	9	8	9	9	7	0	33.504	47.86	0.999756
98899980	9	8	8	9	9	9	8	0	36.118	15.39	0.999909
79889980	7	9	8	8	9	9	8	0	36.222	15.16	0.999914
89889980	8	9	8	8	9	9	8	0	36.276	13.85	0.999895
98998980	9	8	9	9	8	9	8	0	36.276	14.62	0.999914
99889980	9	9	8	8	9	9	8	0	36.330	12.59	0.999922
97898990	9	7	8	9	8	9	9	0	38.726	6.047	0.999961
57899990	5	7	8	9	9	9	9	0	38.742	5.961	0.999953
36999990	3	6	9	9	9	9	9	0	38.756	6.601	0.999962
98789990	9	8	7	8	9	9	9	0	38.780	5.142	0.999966
98799990	9	8	7	9	9	9	9	0	38.836	4.294	0.999971
79889990	7	9	8	8	9	9	9	0	39.329	2.631	0.999982
89889990	8	9	8	8	9	9	9	0	39.383	2.388	0.999978
99889990	9	9	8	8	9	9	9	0	39.436	2.148	0.999983
99899990	9	9	8	9	9	9	9	0	39.492	1.787	0.999986
98999990	9	8	9	9	9	9	9	0	39.613	1.614	0.999988
79789981	7	9	7	8	9	9	8	1	43.648	1.089	0.999990
97899981	9	7	8	9	9	9	8	1	43.664	0.994	0.999990
79799981	7	9	7	9	9	9	8	1	43.704	0.918	0.999990
99789981	9	9	7	8	9	9	8	1	43.755	0.893	0.999990
78899981	7	8	8	9	9	9	8	1	43.824	0.876	0.999990

SIMULACIÓN IV. Sólo con fuentes renovables, demanda de 450 kW pico.

	ar 1	ar 2	ar 3	Eólica 1	Jnid. Eólica 2	Unid. Eólica 3			
	Unid. Solar	Jnid. Solar	Unid. Solar	ΞÓΞ	Ξί	Ξί			
	<u>.</u>	<u>.</u>	<u>.</u>	- -	- '		Coste de la		
0001000111	P	L	I	Unid.	.i	Ü	energía en 20	==110	Disponibilidad
CROMOSOMA							años (M€)	EENS	(A)
400700	4	0	0	7	0	0	0.607	3200259	0.000001
100701	1	0	0	7	0	1	0.775	3117275	0.000001
400701	4	0	0	7	0	1	0.935	3067245	0.000001
400910	4	0	0	9	1	0	0.950	3033584	0.000001
500910	5	0	0	9	1	0	1.003	3017211	0.000001
000360	0	0	0	3	6	0	1.549	2712009	0.000000
620701	6	2	0	7	0	1	1.578	2870413	0.000002
200650	2	0	0	6	5	0	1.595	2707060	0.000000
000070	0	0	0	0	7	0	1.611	2684903	0.000001
310930	3	1	0	9	3	0	1.624	2746118	0.000001
000960	0	0	0	9	6	0	1.886	2544625	0.000001
100080	1	0	0	0	8	0	1.895	2556322	0.000009
000180	0	0	0	1	8	0	1.897	2545481	0.000011
100960	1	0	0	9	6	0	1.939	2528159	0.000001
200080	2	0	0	0	8	0	1.948	2538574	0.000015
200070	2	0	0	0	7		0.077	0000405	0.000000
300970	3	0	0	9	7	0	2.277	2383405	0.000023
000490	0	0	0	4	9	0	2.296	2347833	0.000102
010090	0	1	0	0	9	0	2.339	2378711	0.000105
200390	2	0	0	3	9	0	2.347	2342670	0.000096
000590	0	0	0	5	9	0	2.352	2319341	0.000130
500790	5	0	0	7	9	0	2.732	2182119	0.000375
300990	3	0	0	9	9	0	2.737	2159215	0.000410
020390	0	2	0	3	9	0	2.775	2211170	0.000428
400990	4	0	0	9	9	0	2.791	2142982	0.000453
210790	2	1	0	7	9	0	2.839	2149465	0.000561
300991	3	0	0	9	9	1	3.065	2026568	0.001180
201990	2	0	1	9	9	0	3.072	2044170	0.001254
000193	0	0	0	1	9	3	3.112	2035356	0.001658
400991	4	0	0	9	9	1	3.119	2010384	0.001306
100193	1	0	0	1	9	3	3.165	2016919	0.001645
200094	2	0	0	0	9	4	3.491	1894406	0.004014
300593	3	0	0	5	9	3	3.497	1872578	0.003930
200194	2	0	0	1	9	4	3.547	1867587	0.003841
100294	1	0	0	2	9	4	3.550	1856122	0.004253
200294	2	0	0	2	9	4	3.603	1839471	0.005125
000894	0	0	0	8	9	4	3.833	1705600	0.007915
100295	1	0	0	2	9	5	3.878	1723023	0.008262
000994	0	0	0	9	9	4	3.889	1678203	0.009101
400694	4	0	0	6	9	4	3.935	1695459	0.009236
200894	2	0	0	8	9	4	3.940	1673353	0.009506
100296	1	0	Λ	2	Ω	6	4.206	1500704	0.014779
000396	0	0	0	3	9	6	4.206	1590794 1578959	0.014779
200296	2	0	0	2	9	6	4.260	1578959	0.015602
100396	1	0	0	3	9	6	4.262	1563041	0.016784
001994	0	0	1	9	9	4	4.262	1547972	0.016236
	-	-		-					
100297	1	0	0	2	9	7	4.534	1459847	0.024585
200796	2	0	0	7	9	6	4.540	1437443	0.024528
000996	0	0	0	9	9	6	4.545	1415352	0.026978
000497	0	0	0	4	9	7	4.593	1421508	0.027489
100996	1	0	0	9	9	6	4.599	1399437	0.027193

400497	4	0	0	4	9	7	4.807	1357610	0.03454
000298	0	0	0	2	9	8	4.809	1347325	0.03557
500996	5	0	0	9	9	6	4.813	1334882	0.03533
000897	0	0	0	8	9	7	4.817	1313191	0.03751
000398	0	0	0	3	9	8	4.865	1319525	0.04039
00000				J			1.000	1010020	0.01000
000798	0	0	0	7	9	8	5.090	1212828	0.05394
200698	2	0	0	6	9	8	5.141	1208401	0.05389
000898	0	0	0	8	9	8	5.146	1186635	0.05622
400598	4	0	0	5	9	8	5.192	1203557	0.057429
300698	3	0	0	6	9	8	5.194	1192732	0.05870
100699	1	0	0	6	9	9	5.415	1099885	0.07287
000799	0	0	0	7	9	9	5.418	1089004	0.07776
300599	3	0	0	5	9	9	5.466	1095170	0.07976
000899	0	0	0	8	9	9	5.474	1063537	0.08065
400599	4	0	0	5	9	9	5.520	1079992	0.08240
400899	4	0	0	8	9	9	5.688	1003339	0.10009
300999	3	0	0	9	9	9	5.691	992986	0.10291
500899	5	0	0	8	9	9	5.742	988594	0.10074
400999	4	0	0	9	9	9	5.744	978329	0.10574
001699	0	0	1	6	9	9	5.750	996871	0.10523
001000	J	U		U			0.700	550071	3.10010
301899	3	0	1	8	9	9	6.023	904384	0.13175
		0	1						
201999	2			9	9	9	6.026	894880	0.13593
510999	5	1	0	9	9	9	6.066	892556	0.13298
301999	3	0	1	9	9	9	6.079	880294	0.13763
120999	1	2	0	9	9	9	6.119	879042	0.13643
702899	7	0	2	8	9	9	6.626	742958	0.19087
103799	1	0	3	7	9	9	6.637	743384	0.19170
003899	0	0	3	8	9	9	6.640	733514	0.20138
802899	8	0	2	8	9	9	6.680	729663	0.19685
312899	3	1	2	8	9	9	6.680	730783	0.19859
222899	2	2	2	8	9	9	6.894	680318	0.23050
013899	0	1	3	8	9	9	6.908	670717	0.23625
431999	4	3	1	9	9	9	6.937	668995	0.22478
812899	8	1	2	8	9	9	6.948	666660	0.23166
222999	2	2	2	9	9	9	6.950	658863	0.24423
903999	9	0	3	9	9	9	7.178	599343	0.26765
304899	3	0	4	8	9	9	7.189	600668	0.27972
232999	2	3	2	9	9	9	7.218	599031	0.26831
613899	6	1	3	8	9	9	7.229	597215	0.27747
304999	3	0	4	9	9	9	7.245	580490	0.28614
				-	-				J.=30.1
214999	2	1	4	9	9	9	7.459	536711	0.32081
105899	1	0	5	8	9	9	7.470	537923	0.32001
005999	0	0	5		9	9	7.473	529386	
			4	9	9	9			0.32730
804999	8	0	4	9			7.513	524211	0.32424
314999	3	1	4	9	9	9	7.513	526114	0.32532
F00000		_		-				400001	00115
533999	5	3	3	9	9	9	7.767	482034	0.34409
814999	8	1	4	9	9	9	7.781	473573	0.35720
215899	2	1	5	8	9	9	7.792	476290	0.35843
914999	9	1	4	9	9	9	7.835	462875	0.37374
705999	7	0	5	9	9	9	7.848	456751	0.37643
	0	1	6	8	9	9	8.073	422478	0.41762
016899				_	_	_		445400	0.00040
016899 924999	9	2	4	9	9	9	8.102	415468	0.39816
924999	9	1	5 5	9	9	9	8.102 8.116	415468	
									0.398162 0.413093 0.430633

906999	9	0	6	9	9	9	8.344	367465	0.452741
307899	3	0	7	8	9	9	8.355	370861	0.457037
207999	2	0	7	9	9	9	8.357		0.437037
		-		-		-		364028	
026999	0	2	6	9	9	9	8.397	362025	0.471306
307999	3	0	7	9	9	9	8.411	355839	0.470075
								I	1
108899	1	0	8	8	9	9	8.636	325442	0.509975
907899	9	0	7	8	9	9	8.676	319790	0.510020
807999	8	0	7	9	9	9	8.679	313917	0.501801
208899	2	0	8	8	9	9	8.690	317303	0.504351
108999	1	0	8	9	9	9	8.692	311673	0.52302
046999	0	4	6	9	9	9	8.933	284441	0.541910
427899	4	2	7	8	9	9	8.944	284177	0.535299
327999	3	2	7	9	9	9	8.947	278974	0.539652
608999	6	0	8	9	9	9	8.960	273586	0.547376
109799	1	0	9	7	9	9	8.969	282591	0.556712
103733	1	U	3	,	9	-	0.909	202391	0.550712
400000	Α	0	0	0	0		0.242	227565	0.50000
409999	4	0	9	9	9	9	9.242	237565	0.599025
927999	9	2	7	9	9	9	9.268	236828	0.593024
718999	7	1	8	9	9	9	9.282	233764	0.60067
509999	5	0	9	9	9	9	9.295	231118	0.597120
328999	3	2	8	9	9	9	9.335	229095	0.598397
909999	9	0	9	9	9	9	9.510	206095	0.641067
519999	5	1	9	9	9	9	9.563	201947	0.633947
547999	5	4	7	9	9	9	9.590	202426	0.643589
338999	3	3	8	9	9	9	9.603	200058	0.635337
719899	7	1	9	8	9	9	9.614	200132	0.644597
857799	8	5	7	7	9	9	9.906	178000	0.675310
548899	5	4	8	8	9	9	9.922	172244	0.68545
239999	2	3	9	9	9	9	9.938	166648	0.695024
757999	7	5	7	9	9	9	9.965	165342	0.67944
829999	8	2	9	9	9	9	9.992	160148	0.688780
029999	0		9	9	9	9	9.992	100140	0.000700
858799	0		0	7	0		10 205	1.4200.4	0.70604/
	8	5	8	7	9	9	10.295	142904	0.726016
758899	7	5	8	8	9	9	10.297	139787	0.718792
549899	5	4	9	8	9	9	10.311	138294	0.73474
449999	4	4	9	9	9	9	10.313	135163	0.727852
368899	3	6	8	8	9	9	10.351	136877	0.735747
968899	9	6	8	8	9	9	10.672	111820	0.75150
859799	8	5	9	7	9	9	10.683	113756	0.77142
896999	8	9	6	9	9	9	10.701	109836	0.760552
959799	9	5	9	7	9	9	10.737	110143	0.764569
859899	8	5	9	8	9	9	10.739	107313	0.781273
098999	0	9	8	9	9	9	11.050	89619.5	0.80003
688999	6	8	8	9	9	9	11.103	85360.5	0.80583
189799	1	8	9	7	9	9	11.112	89932.3	0.810728
579899	5	7	9	8	9	9	11.114	86381.7	0.806636
997999	9	9	7	9	9	9	11.143	83064.7	0.81019
	, ,				-				2.3.3.0
998999	9	9	8	9	9	9	11.532	64498.6	0.845752
989799	9	8	9	7	9	9	11.541	67660.6	0.84715
989899	9	8	9	8	9	9	11.541	63397.1	
									0.854805
889999	8	8	9	9	9	9	11.599	61669.7	0.851473
989999	9	8	9	9	9	9	11.653	59346.4	0.862217
799899	7	9	9	8	9	9	11.757	57644.4	0.86428
999799	9	9	9	7	9	9	11.808	56932.0	0.861904
799999	7	9	9	9	9	9	11.814	53914.5	0.871289
999899	9	9	9	8	9	9	11.865	53229.9	0.869029
	9	9	9	9	9	9	11.921	49720.8	0.875910

SIMULACIÓN V. Sólo con fuentes renovables, demanda de 450 kW pico. (Con distribución de los recursos renovables en 8 estados).

_	7	က	_	2	က			4 ESTADOS 8 ESTADOS					
Unid. Solar 1	Solar 2	Solar	Eólica 1	Eólica ;	Unid. Eólica	m <	de Ss					Diferencia	Diferencia
ŏ.	ŏ.	ŏ.	Ű.	É	Ę,	Potencia pico (kW)	Número de elementos					entre las EENS en %	entre las A en %
Jnid	Unid.	Unid.	Unid.	Unid.	nid	ote	ime					[(1)-(2)]	[(3)-(4)]
		\supset	Ō	Ō	Ō	<u>Б</u>	NÚ ele	EENS (1)	A (3)	EENS (2)	A (4)	*100/(1)	*100/(3)
1	0	0	7	0	1	167	9	3117275	0.000001	3115229	0.000001	0.07	40.00
0	0	0	2	9	0	472	11	2404626	0.000061	2396092	0.000118	0.35	-94.85
4	0	0	5	3	0	245	12	2924031	0.000001	2920123	0.000001	0.13	50.00
2	0	0	2	8	0	442	12	2483173	0.000024	2475860	0.000027	0.29	-13.42
0	0	0	4	8	0	444	12	2460124	0.000022	2451931	0.000034	0.33	-55.55
2	0	0	9	2	0	219	13	2955915	0.000001	2952033	0.000001	0.13	22.22
3	0	0	9	3	0	279	15	2828243	0.000001	2823407	0.000001	0.17	18.18
0	0	0	7	9	0	527	16	2264183	0.000220	2255381	0.000265	0.39	-20.70
0	0	0	2	9	6	952	17	1607267	0.013500	1597278	0.018221	0.62	-34.97
1	0	0	9	9	0	559	19	2192356	0.000314	2182780	0.000428	0.44	-36.39
1	0	0	9	9	1	639	20	2059516	0.000965	2048710	0.001320	0.52	-36.82
1	0	0	6 5	9	4	846 995	20 21	1744436 1508132	0.006554 0.019214	1734479 1499067	0.009009 0.025423	0.57 0.60	-37.45 -32.32
2	0	0	3	9	6 7	1063	21	1416583	0.019214	1499067	0.025425	0.62	-32.32
3	0	0	9	9	1	659	22	2026568	0.028088	2015472	0.033312	0.62	-28.69
2	0	0	5	9	6	1005	22	1491787	0.001180	1483030	0.001319	0.59	-13.48
0	0	0	6	9	7	1076	22	1367270	0.022302	1358193	0.040022	0.66	-20.38
2	0	0	7	9	6	1027	24	1437443	0.024528	1428093	0.032896	0.65	-34.12
2	0	0	7	9	7	1107	25	1308357	0.038990	1299900	0.050458	0.65	-29.41
0	0	0	8	9	8	1178	25	1186635	0.056229	1178842	0.067479	0.66	-20.01
1	0	0	6	9	9	1246	25	1099885	0.072873	1093608	0.086468	0.57	-18.66
0	0	0	7	9	9	1247	25	1089004	0.077763	1082791	0.092950	0.57	-19.53
1	0	0	8	9	8	1188	26	1171558	0.059677	1163441	0.069809	0.69	-16.98
0	0	0	9	8	9	1219	26	1139838	0.064820	1131487	0.079662	0.73	-22.90
3	0	0	5	9	9	1255	26	1095170	0.079765	1089351	0.093727	0.53	-17.50
0	0	0	8	9	9	1258	26	1063537	0.080658	1057209	0.095112	0.59	-17.92
0	0	2	6	9	9	1396	26	885476	0.143734	882928	0.158955	0.29	-10.59
3	0	0	6	9	9	1266	27	1069436	0.083888	1063977	0.095916	0.51	-14.34
2	0	0	7	9	9	1267	27	1058914	0.084666	1053102	0.102954	0.55	-21.60
1	0	0	8	9	9	1268	27	1048808	0.084929	1042328	0.098078	0.62	-15.48
0	0	0	9	9	9	1269	27	1038019	0.088512	1031719	0.105572	0.61	-19.27
0	0	1	8	9	9	1338	27	947369	0.117907	943761	0.132596	0.38	-12.46
0	0	2	7	9	9	1407	27	861443	0.152840	859249	0.162702	0.25	-6.45
2	0	0	9	8	9	1239	28	1108945	0.070371	1101971	0.087459	0.63	-24.28
2	0	0	8	9	9	1278	28	1033570	0.092814	1027733	0.106376	0.56	-14.61
1	0	0	9	9	9	1279	28	1023372	0.089990	1017541	0.108082	0.57	-20.10
0	1	0	9	9	9	1319	28	964843	0.110321	959939	0.124895	0.51	-13.21
0	0	2	8	9	9	1418	28	837599	0.160411	835858	0.178423	0.21	-11.23
2	0	1	8	9	9	1358	29	919813	0.125500	915810	0.139334	0.44	-11.02
1	0	1	9	9	9	1359	29	909112	0.128092	905698	0.148616	0.38	-16.02
0	0	2	8	9	9	1428 1429	29 29	823991 814295	0.164335 0.166814	822543 812460	0.180983 0.179201	0.18 0.23	-10.13 -7.43
0	0	3	8	9	9	1429	29	733514	0.166614	734527	0.179201	-0.14	-7.43 -9.51
4	0	0	8	9	9	1298	30	1003339	0.201381	998990	0.220532	0.43	-9.51 -10.04
3	0	0	9	9	9	1299	30	992986	0.100093	988366	0.116499	0.43	-13.20
2	0	1	9	9	9	1369	30	894880	0.102913	891501	0.110499	0.38	-9.51
1	2	0	9	9	9	1379	30	879042	0.136437	876453	0.152473	0.29	-11.75
1	1	1	9	9	9	1409	30	839478	0.154925	837129	0.168490	0.28	-8.76
1	0	2	9	9	9	1439	30	800299	0.172256	799351	0.182318	0.12	-5.84
0	0	3	9	9	9	1509	30	711679	0.210079	712721	0.228756	-0.15	-8.89
5	0	0	8	9	9	1308	31	988594	0.100747	984335	0.112442	0.43	-11.61
4	0	0	9	9	9	1309	31	978329	0.105298	973844	0.120383	0.46	-14.33
1	0	3	9	9	9	1519	31	698691	0.214880	700834	0.230340	-0.31	-7.19
0	1	3	9	9	9	1559	31	649573	0.241794	653279	0.264070	-0.57	-9.21

5 0 1 9 9 9 1399 33 852070 0.147176 849841 0.102603 0.30 -0.48 3 0 3 9 9 9 1539 33 672975 0.228890 675754 0.250134 -0.41 -9.28 5 1 1 9 9 9 1539 33 672975 0.228890 675754 0.250134 -0.41 -9.28 5 1 1 9 9 9 1449 34 7643455 0.172736 763208 0.188337 0.14 49.03 0 1 6 9 9 9 1589 34 406192 0.40685 413282 0.435833 -1.75 -1.23 0 0 8 9 9 1889 34 406192 0.433333 39054 406265 -3.15 -3.15 0 0 2 8 9 9 1489 <th></th>														
3 0 3 9 9 9 1539 33 672975 0.228890 675754 0.250124 -0.41 -9.28 5 1 1 8 9 9 1608 33 600668 0.279720 606800 0.283224 -0.90 -1.26 5 1 1 3 9 9 1589 34 613096 0.278192 616821 0.278592 -0.61 4.29 0 0 7 9 9 9 1829 34 406192 0.430333 39564 0.462665 -2.39 6.77 7 0 0 8 9 9 1488 35 742958 0.49266 0.46266 -2.39 -7.73 1 1 4 9 9 1488 35 742958 0.19074 743169 0.25422 -0.03 -7.53 3 1 4 9 9 9 1498 35	5	0	1	9	9	9	1399	33	852207	0.147175	849641	0.162603	0.30	-10.48
S	_					-								
5 1 9 9 9 1448 34 764345 0.17236 783208 0.188337 0.14 -9.03 3 1 3 9 9 9 1589 34 613096 0.288192 61436933 -1.75 -1.23 0 0 7 9 9 9 1829 34 481457 0.433333 390564 0.462665 -2.39 -6.77 7 0 2 8 9 9 1488 35 742958 0.190674 743169 0.205242 -0.03 -7.53 3 1 4 9 9 1488 35 742958 0.190674 743169 0.205242 -0.03 -7.53 3 1 4 9 9 19 1488 35 742958 0.190674 743169 0.206404 -0.01 -9.99 19 1498 36 201904 0.256252 20.216430 -0.01 -9.99						-								
1	_													
0	_					-								
0 0 7 9 9 9 9 1829 34 381457 0.43333 390564 0.462665 -2.39 -6.77 0 0 0 8 8 8 9 9 1898 34 332962 0.489515 343458 0.507926 -3.15 3.76 7 0 2 8 8 9 9 1498 35 742958 0.190574 743169 0.205242 -0.03 -7.53 8 1 4 9 9 9 1669 35 526114 0.325325 531866 0.339608 -1.09 4.39 8 0 2 8 8 9 9 1498 36 252614 0.325325 531866 0.339608 -1.09 4.39 8 0 2 8 7 9 9 9 1498 36 252614 0.325325 531866 0.339608 -1.011 -9.95 0 2 7 9 9 9 9 1498 36 264309 0.562229 275991 0.576468 -4.42 -2.53 0 8 9 9 9 1619 37 556951 0.284012 582570 0.265518 -0.97 -0.64 2 0 8 9 9 9 1619 37 556951 0.284012 582570 0.255513 -3.31 -1.41 0 0 0 7 9 9 9 9 1899 36 264309 0.562229 275991 0.576468 -4.42 -2.53 0 8 9 9 9 1619 37 556951 0.284012 582570 0.256518 -0.97 -0.64 2 0 8 9 9 9 1899 38 39238 0.421414 399938 0.428745 -1.94 -1.26 1 1 5 9 9 9 9 1739 39 456751 0.376437 463495 0.379422 -1.48 -0.79 6 1 5 9 9 9 9 1779 39 418870 0.399436 426094 0.409295 -1.72 -2.47 4 1 7 7 9 9 9 1879 39 307836 0.523511 317666 0.513800 -3.19 1.85 5 0 8 8 9 9 1949 39 308836 0.523511 317666 0.513800 -3.19 1.85 1 0 7 9 9 9 1849 39 283844 0.540115 2.99030 0.539912 -3.57 0.44 1 3 8 9 9 9 1249 39 283844 0.540115 2.99030 0.539912 -3.71 0.44 1 3 8 9 9 9 1249 39 283844 0.540115 2.99030 0.632835 -5.38 1.79 1 3 9 8 8 9 9 2039 40 229095 0.598397 240170 0.607584 -4.83 -1.54 1 9 0 5 9 9 9 1759 41 436998 0.664167 192890 0.632835 -5.38 1.79 1 3 3 8 8 9 9 9 2039 41 23118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 9 9 2039 41 23118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 9 9 2039 41 23118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 9 9 2039 41 23118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 9 9 2039 44 123118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 9 9 2039 45 1423118 0.597120 2.02380 0.636823 -5.67 -0.23 5 2 8 9 9 9 9 2039 41 23118 0.597120 2.02380 0.636823 -5.67 -0.23 5 2 8 9 9 9 9 2039 41 231855 0.602801 230160 0.621040 -5.50 -3.03 8 1 9 9 9 9 2039 41 123118 0.597120 242533 0.606116 -4.94 -1.51 5 7 8 8 9 9 9 2039 41 132118 0.597120 242533 0.606116 -4.94 -1.51 5 7 8 8 9 9 9 2039 41						-								
0 0 8 8 9 9 1898 34 332962 0.489515 343458 0.507926 -3.15 -3.76 7 0 2 8 9 9 1488 35 742956 0.190674 743169 0.205242 -0.03 -7.753 3 1 4 9 9 9 1699 35 526114 0.325525 531866 0.39908 -1.09 4.99 8 0 2 8 9 9 1929 36 301904 0.517967 311899 0.576468 -4.42 -2.53 6 1 3 9 9 9 1619 37 576971 0.284012 582570 0.285818 -0.97 0.044 -2.25 5 9 9 9 1839 39 18619 37 5769671 0.284012 582750 0.285818 -0.97 0.644 2.247 3.221 1.174 4.22 5.5						-								
To To To To To To To To						-								
3 1 4 9 9 9 1669 35 526114 0.325325 531866 0.336068 -1.09 -4.39 8 0 2 7 9 9 9 1929 36 301904 0.517967 311899 0.525253 -3.31 -1.41 0 0 9 9 9 1929 36 301904 0.517967 311899 0.525253 -3.31 -1.41 0 0 9 9 9 1869 36 264309 0.562229 275991 0.575488 -4.42 -2.53 6 1 3 9 9 18189 36 0.575721 31899 0.285818 -0.97 -0.64 4 2 5 9 9 9 1809 38 3923338 0.421414 399938 0.428745 -1.94 -1.72 -2.47 5 0 7 9 9 19189 39 <						-								
8 0 2 8 9 9 1498 36 729663 0.196853 730459 0.216430 -0.11 -9.95 0 2 7 9 9 9 1989 36 264309 0.576262 275991 0.576468 -4.42 -2.53 6 1 3 9 9 1619 37 576971 0.284012 582570 0.285818 -0.97 -0.64 2 0 8 9 9 1619 37 5076971 0.284012 582570 0.285818 -0.97 -0.64 1 2 5 9 9 1879 38 392333 0.421414 399938 0.428745 -1.94 -1.74 7 0 5 9 9 1779 39 418870 0.379436 426094 0.409295 -1.72 -2.47 1 1 7 9 9 1879 39 338697 0.78075 <td>_</td> <td></td>	_													
0 2 7 9 9 9 1989 36 301904 0.517967 311899 0.525253 -3.31 -1.41 0 0 9 9 9 1989 36 264309 275991 0.576468 -4.42 -2.53 2 0 8 9 9 1619 37 576971 0.284012 582570 0.285818 -0.97 -0.64 2 5 9 9 1809 38 392338 0.421718 314673 0.523753 -3.56 -1.26 4 2 5 9 9 1739 39 456751 0.376437 463495 0.378422 -1.48 -0.79 6 1 5 9 9 17179 39 418870 0.399436 426094 0.409255 -1.72 -2.47 4 0 7 9 9 19189 39 307836 0.525361 317666 0.513800 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						-								
0 0 9 9 9 9 1619 37 576971 0.284012 582570 0.285818 -0.97 -0.64 2 0 8 9 9 9 1619 37 576971 0.284012 582570 0.285818 -0.97 -0.64 4 2 5 9 9 1809 38 392338 0.421414 399938 0.428745 -1.94 -1.74 7 0 5 9 9 9 1779 39 418870 0.399436 426094 0.409295 -1.72 -2.47 5 0 7 9 9 1879 39 338697 0.478075 347932 0.493431 -2.73 -3.21 4 1 7 9 9 1949 39 307836 0.523511 317666 0.513800 -3.18 2.240 4 0 8 9 9 1949 39 228344	8					-								
6 1 3 9 9 9 1619 37 576971 0.284012 582570 0.285818 -0.97 -0.64 2 0 8 9 9 9 1929 37 303786 0.517218 314673 0.523753 -3.58 -1.26 7 0 5 9 9 9 1809 38 392338 0.428145 -1.194 -1.74 7 0 5 9 9 9 1779 39 418870 0.399436 426094 0.409295 -1.72 -2.47 6 1 7 9 9 9 1879 39 388897 0.478075 347932 0.498431 -2.21 -2.47 6 1 7 9 9 9 1949 39 238389 0.525809 304463 0.538452 -3.58 -2.40 7 0 8 9 9 1949 39 283844 <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>301904</td> <td></td> <td></td> <td></td> <td></td> <td></td>	0					-			301904					
2 0 8 9 9 9 1929 37 303786 0.517218 314673 0.523753 -3.58 -1.26 4 2 5 9 9 9 1809 38 392338 0.421414 399938 0.428745 -1.94 -1.74 -1.94 -1.74 -1.94 -1.74 -1.94 -1.72 -1.48 -0.79 6 1 5 9 9 9 1779 39 418870 0.399436 426094 0.409295 -1.72 -2.47 5 0 7 9 9 9 1879 39 336697 0.478075 347932 0.493431 -2.73 -3.21 4 1 7 9 9 1948 39 293950 0.525809 304463 0.538452 -3.58 -2.40 4 0 8 9 9 1049 39 21882 0.504115 29900 0.635312 -3.71	0					-	1989							
4 2 5 9 9 9 1809 38 392338 0.421414 399938 0.428745 -1.94 -1.74 7 0 5 9 9 9 17739 39 456751 0.376437 463495 0.379422 -1.48 0.79 5 0 7 9 9 9 1879 39 338697 0.478075 347932 0.493431 -2.73 -3.21 4 1 7 9 9 9 1919 39 307836 0.523511 317666 0.513800 -3.19 1.85 5 0 8 9 9 1948 39 293950 0.525809 304463 0.538452 -3.58 -2.40 4 0 8 9 9 2039 211982 0.621736 223389 0.632835 -5.38 -1.79 1 3 2 8 9 9 2039 40						-								
7 0 5 9 9 9 1739 39 456751 0.376437 463495 0.379422 -1.48 -0.79 6 1 5 9 9 9 1779 39 418870 0.399436 426094 0.409295 -1.72 -2.47 5 0 7 9 9 1879 39 338697 0.478075 347932 0.493431 -2.73 -3.21 4 1 7 9 9 19194 39 239350 0.528511 317666 0.513800 -3.19 1.85 5 0 8 8 9 9 1949 39 2039 0.522511 317666 0.513800 -3.58 -2.40 4 0 8 9 9 1949 39 21388 0.539912 -3.71 0.04 1 3 3 8 9 9 2039 41 236989 0.39033 449	2						1929	37	303786	0.517218		0.523753		
6 1 5 9 9 9 1779 39 418870 0.399436 426094 0.409295 -1.72 -2.47 5 0 7 9 9 9 1879 39 336697 0.478075 347932 0.493431 -2.73 -3.21 4 1 7 9 9 1948 39 293950 0.525809 304463 0.538452 -3.58 -2.40 4 0 8 9 9 1949 39 288344 0.540115 299030 0.539912 -3.71 0.04 4 0 8 9 9 2069 39 211982 0.621736 223899 0.632835 -5.38 -1.79 1 3 9 8 9 9 2039 40 229095 0.598397 240170 0.607584 -4.83 -1.54 3 2 8 9 9 2039 41 231118 0.597120	_					-	1809						-1.94	
5 0 7 9 9 9 1879 39 338697 0.478075 347932 0.493431 -2.73 -3.21 4 1 7 9 9 9 1919 39 307836 0.523511 317666 0.513800 -3.19 1.85 5 0 8 8 9 9 1948 39 293950 0.525809 304463 0.538452 -3.58 -2.40 4 0 8 9 9 9 1949 39 288344 0.540115 299030 0.538912 -3.71 0.04 1 3 8 9 9 2138 39 180968 0.66167 192890 0.632835 -5.38 -1.79 1 3 7 9 9 9 2138 39 198 9 2139 40 229095 0.624170 0.6067584 -4.83 -1.54 3 3 3 3 </td <td>7</td> <td>0</td> <td>5</td> <td>9</td> <td>9</td> <td>9</td> <td></td> <td>39</td> <td>456751</td> <td>0.376437</td> <td>463495</td> <td>0.379422</td> <td></td> <td>-0.79</td>	7	0	5	9	9	9		39	456751	0.376437	463495	0.379422		-0.79
4 1 7 9 9 9 1919 39 307836 0.523511 317666 0.513800 -3.19 1.85 5 0 8 8 9 9 1948 39 293950 0.525809 304463 0.538452 -3.58 -2.40 4 0 8 9 9 1949 39 288344 0.540115 299930 0.539812 -3.71 0.04 1 3 8 9 9 9 2089 39 211982 0.621736 223389 0.632835 -5.38 -1.79 1 3 2 8 9 9 2039 40 229095 0.598397 240170 0.607584 -4.83 -1.54 5 0 9 9 9 2039 41 231118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 2039 41	6	1	5	9	9	9		39	418870	0.399436	426094	0.409295	-1.72	-2.47
5 0 8 8 9 9 1948 39 293950 0.525809 304463 0.538452 -3.58 -2.40 4 0 8 9 9 9 1949 39 288344 0.540115 299030 0.539912 -3.71 0.04 1 3 8 9 9 2138 39 180968 0.621736 223389 0.632835 -5.38 -1.79 1 3 9 8 9 9 2138 39 180968 0.664167 192890 0.672002 -6.59 -1.18 3 2 8 9 9 2039 40 229095 0.598397 240170 0.607584 -4.83 -1.54 9 0 5 9 9 1759 41 436998 0.3900033 443976 0.396189 -1.60 -1.58 3 3 8 9 9 2089 41 230168	5	0	7		9	-			338697	0.478075	347932	0.493431	-2.73	-3.21
4 0 8 9 9 9 1949 39 288344 0.540115 299030 0.539912 -3.71 0.04 1 3 8 9 9 9 2069 39 211982 0.621736 223389 0.632835 -5.38 -1.79 1 3 9 8 9 9 2138 39 180968 0.664167 192890 0.672002 -6.59 -1.18 3 2 8 9 9 2039 40 229095 0.0607584 -4.83 -1.54 9 0 5 9 9 9 2039 41 231118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 2059 42 216201 0.60478 227678 0.622728 -5.31 -3.09 7 0 9 9 9 2059 43 218155 0.602801 <td< td=""><td>4</td><td>1</td><td>7</td><td>9</td><td>9</td><td>-</td><td>1919</td><td></td><td>307836</td><td>0.523511</td><td>317666</td><td></td><td></td><td></td></td<>	4	1	7	9	9	-	1919		307836	0.523511	317666			
1 3 8 9 9 9 2069 39 211982 0.621736 223389 0.632835 -5.38 -1.79 1 3 9 8 9 9 2138 39 180968 0.664167 192890 0.672002 -6.59 -1.18 3 2 8 9 9 9 2039 40 229095 0.598397 240170 0.667584 -4.83 -1.54 9 0 5 9 9 9 2039 41 231118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 9 2089 41 200058 0.635337 211409 0.636823 -5.67 -0.23 5 2 8 9 9 2059 42 216201 0.604078 227678 0.622728 -5.31 -3.09 7 0 9 9 9 2108 <td< td=""><td>5</td><td>0</td><td>8</td><td>8</td><td>9</td><td>9</td><td>1948</td><td>39</td><td>293950</td><td>0.525809</td><td>304463</td><td>0.538452</td><td>-3.58</td><td>-2.40</td></td<>	5	0	8	8	9	9	1948	39	293950	0.525809	304463	0.538452	-3.58	-2.40
1 3 9 8 9 9 2138 39 180968 0.664167 192890 0.672002 -6.59 -1.18 3 2 8 9 9 9 2039 40 229095 0.598397 240170 0.607584 -4.83 -1.54 9 0 5 9 9 9 14 436998 0.39033 440976 0.396189 -1.60 -1.58 5 0 9 9 9 2039 41 200058 0.635337 211409 0.636823 -5.67 -0.23 5 2 8 9 9 2059 42 216201 0.604078 227678 0.622728 -5.31 -3.09 7 0 9 9 9 2059 43 218155 0.602801 230160 0.621040 -5.50 -3.03 8 1 9 8 9 9 <t>2049 45 221054 <t< td=""><td>4</td><td>0</td><td>8</td><td>9</td><td>9</td><td>9</td><td>1949</td><td>39</td><td>288344</td><td>0.540115</td><td>299030</td><td>0.539912</td><td>-3.71</td><td>0.04</td></t<></t>	4	0	8	9	9	9	1949	39	288344	0.540115	299030	0.539912	-3.71	0.04
3 2 8 9 9 9 2039 40 229095 0.598397 240170 0.607584 -4.83 -1.54 9 0 5 9 9 9 1759 41 436998 0.390033 443976 0.396189 -1.60 -1.58 5 0 9 9 9 2039 41 231118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 2059 42 216201 0.604078 227678 0.622728 -5.31 -3.09 7 0 9 9 9 2059 43 218155 0.602801 230160 0.621040 -5.50 -3.03 8 1 9 8 9 9 2049 45 221054 0.607502 232364 0.60193 -5.12 1.20 9 0 9 9 9 2079 45 206095	1	3	8	9	9	9	2069	39	211982	0.621736	223389	0.632835	-5.38	-1.79
9 0 5 9 9 9 1759 41 436998 0.390033 443976 0.396189 -1.60 -1.58 5 0 9 9 9 9 2039 41 231118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 9 2059 42 216201 0.604078 227678 0.622728 -5.31 -3.09 7 0 9 9 9 2059 42 216201 0.604078 227678 0.622728 -5.31 -3.09 7 0 9 9 9 2059 43 218155 0.602801 230160 0.621040 -5.50 -3.03 8 1 9 8 9 9 2108 44 194355 0.642345 206281 0.648482 -6.14 -0.96 9 1 8 9 9 9 2079 <td< td=""><td>1</td><td>3</td><td>9</td><td>8</td><td>9</td><td>9</td><td>2138</td><td>39</td><td>180968</td><td>0.664167</td><td>192890</td><td>0.672002</td><td>-6.59</td><td>-1.18</td></td<>	1	3	9	8	9	9	2138	39	180968	0.664167	192890	0.672002	-6.59	-1.18
5 0 9 9 9 9 2039 41 231118 0.597120 242533 0.606116 -4.94 -1.51 3 3 8 9 9 9 2089 41 200058 0.635337 211409 0.636823 -5.67 -0.23 5 2 8 9 9 9 2059 42 216201 0.604078 227678 0.622728 -5.31 -3.09 7 0 9 9 9 2059 43 218155 0.602801 230160 0.621040 -5.50 -3.03 8 1 9 9 9 2049 45 221054 0.607502 232364 0.600193 -5.12 1.20 9 0 9 9 9 2049 45 226095 0.641067 218107 0.624264 -5.83 2.62 6 3 9 9 9 2199 45 147269	3	2	8	9	9	9	2039	40	229095	0.598397	240170	0.607584	-4.83	-1.54
3 3 8 9 9 9 2089 41 200058 0.635337 211409 0.636823 -5.67 -0.23 5 2 8 9 9 9 2059 42 216201 0.604078 227678 0.622728 -5.31 -3.09 7 0 9 9 9 2059 43 218155 0.602801 230160 0.621040 -5.50 -3.03 8 1 9 8 9 9 2108 44 194355 0.642345 206281 0.600193 -5.12 1.20 9 1 8 9 9 2079 45 206095 0.641067 218107 0.624264 -5.83 2.62 6 3 9 9 9 2199 45 147269 0.707203 18657 0.710080 -7.73 -0.41 5 4 9 9 9 2239 45 130826	9	0	5	9	9	9	1759	41	436998	0.390033	443976	0.396189	-1.60	-1.58
5 2 8 9 9 9 2059 42 216201 0.604078 227678 0.622728 -5.31 -3.09 7 0 9 9 9 9 2059 43 218155 0.602801 230160 0.621040 -5.50 -3.03 8 1 9 8 9 9 2108 44 194355 0.642345 206281 0.648482 -6.14 -0.96 9 1 8 9 9 2049 45 221054 0.607502 232364 0.600193 -5.12 1.20 9 0 9 9 9 2079 45 206095 0.641067 218107 0.624264 -5.83 2.62 6 3 9 9 9 2199 45 147269 0.707203 158657 0.710080 -7.73 -0.41 5 4 9 9 9 2169 46 160148	5	0	9	9	9	9	2039	41	231118	0.597120	242533	0.606116	-4.94	-1.51
7 0 9 9 9 2059 43 218155 0.602801 230160 0.621040 -5.50 -3.03 8 1 9 8 9 9 2108 44 194355 0.642345 206281 0.648482 -6.14 -0.96 9 1 8 9 9 9 2049 45 221054 0.607502 232364 0.600193 -5.12 1.20 9 0 9 9 9 2079 45 206095 0.641067 218107 0.624264 -5.83 2.62 6 3 9 9 9 2199 45 147269 0.707203 158657 0.710080 -7.73 -0.41 5 4 9 9 9 2239 45 130826 0.745371 142282 0.724867 -8.76 2.75 8 2 9 9 9 2169 46 142701 0.715880	3	3	8	9	9	9	2089	41	200058	0.635337	211409	0.636823	-5.67	-0.23
8 1 9 8 9 9 2108 44 194355 0.642345 206281 0.648482 -6.14 -0.96 9 1 8 9 9 9 2049 45 221054 0.607502 232364 0.600193 -5.12 1.20 9 0 9 9 9 9 2079 45 206095 0.641067 218107 0.624264 -5.83 2.62 6 3 9 9 9 2199 45 147269 0.707203 158657 0.710080 -7.73 -0.41 5 4 9 9 9 2169 46 160148 0.688780 171780 0.687531 -7.26 0.18 7 3 9 9 9 2179 47 155293 0.702152 166761 0.685674 -7.38 2.35 7 5 8 9 9 2229 47 132209 <	5	2	8	9	9	9			216201	0.604078	227678	0.622728	-5.31	-3.09
9 1 8 9 9 9 2049 45 221054 0.607502 232364 0.600193 -5.12 1.20 9 0 9 9 9 9 2079 45 206095 0.641067 218107 0.624264 -5.83 2.62 6 3 9 9 9 2199 45 147269 0.707203 158657 0.710080 -7.73 -0.41 5 4 9 9 9 2239 45 130826 0.745371 142282 0.724867 -8.76 2.75 8 2 9 9 9 2169 46 160148 0.688780 171780 0.687531 -7.26 0.18 7 3 9 9 9 2209 46 142701 0.715880 154084 0.702969 -7.98 1.80 9 2 9 9 9 2229 47 155293 0.702152	7	0	9	9	9	9	2059	43	218155	0.602801	230160	0.621040	-5.50	-3.03
9 0 9 9 9 9 2079 45 206095 0.641067 218107 0.624264 -5.83 2.62 6 3 9 9 9 9 2199 45 147269 0.707203 158657 0.710080 -7.73 -0.41 5 4 9 9 9 9 2239 45 130826 0.745371 142282 0.724867 -8.76 2.75 8 2 9 9 9 2169 46 160148 0.688780 171780 0.687531 -7.26 0.18 7 3 9 9 9 2209 46 142701 0.715880 154084 0.702969 -7.98 1.80 9 2 9 9 9 2179 47 155293 0.702152 166761 0.685674 -7.38 2.35 7 8 9 9 2229 47 132209 0.729811	8	1	9	8	9	-	2108	44	194355	0.642345	206281	0.648482	-6.14	-0.96
6 3 9 9 9 2199 45 147269 0.707203 158657 0.710080 -7.73 -0.41 5 4 9 9 9 9 2239 45 130826 0.745371 142282 0.724867 -8.76 2.75 8 2 9 9 9 2169 46 160148 0.688780 171780 0.687531 -7.26 0.18 7 3 9 9 9 2209 46 142701 0.715880 154084 0.702969 -7.98 1.80 9 2 9 9 9 22179 47 155293 0.702152 166761 0.685674 -7.38 2.35 7 5 8 9 9 2229 47 132209 0.729811 143542 0.733910 -8.57 -0.56 5 7 8 9 9 2378 47 86382 0.806636 96958 <td>9</td> <td>1</td> <td>8</td> <td>9</td> <td>9</td> <td>9</td> <td>2049</td> <td>45</td> <td>221054</td> <td>0.607502</td> <td>232364</td> <td>0.600193</td> <td>-5.12</td> <td>1.20</td>	9	1	8	9	9	9	2049	45	221054	0.607502	232364	0.600193	-5.12	1.20
5 4 9 9 9 2239 45 130826 0.745371 142282 0.724867 -8.76 2.75 8 2 9 9 9 9 2169 46 160148 0.688780 171780 0.687531 -7.26 0.18 7 3 9 9 9 9 2209 46 142701 0.715880 154084 0.702969 -7.98 1.80 9 2 9 9 9 2179 47 155293 0.702152 166761 0.685674 -7.38 2.35 7 5 8 9 9 2229 47 132209 0.729811 143542 0.733910 -8.57 -0.56 5 7 8 9 9 2309 47 103416 0.775876 114476 0.777232 -10.69 -0.17 5 7 9 8 9 9 2309 48 104863	9	0	9	9	9	9	2079	45	206095	0.641067	218107	0.624264	-5.83	2.62
8 2 9 9 9 2169 46 160148 0.688780 171780 0.687531 -7.26 0.18 7 3 9 9 9 9 2209 46 142701 0.715880 154084 0.702969 -7.98 1.80 9 2 9 9 9 2179 47 155293 0.702152 166761 0.685674 -7.38 2.35 7 5 8 9 9 9 2229 47 132209 0.729811 143542 0.733910 -8.57 -0.56 5 7 8 9 9 2309 47 103416 0.775876 114476 0.777232 -10.69 -0.17 5 7 9 8 9 9 2378 47 86382 0.806636 96958 0.805924 -12.24 0.09 7 5 9 9 9 2309 48 104863 <	6	3	9	9	9	9	2199	45	147269	0.707203	158657	0.710080	-7.73	-0.41
7 3 9 9 9 9 2209 46 142701 0.715880 154084 0.702969 -7.98 1.80 9 2 9 9 9 9 2179 47 155293 0.702152 166761 0.685674 -7.38 2.35 7 5 8 9 9 9 2229 47 132209 0.729811 143542 0.733910 -8.57 -0.56 5 7 8 9 9 2309 47 103416 0.775876 114476 0.777732 -10.69 -0.17 5 7 9 8 9 9 2378 47 86382 0.806636 96958 0.805924 -12.24 0.09 7 5 9 9 9 2309 48 104863 0.774777 115759 0.775802 -10.39 -0.13 9 6 8 8 9 9 22279	5	4	9	9	9	9	2239	45	130826	0.745371	142282	0.724867	-8.76	2.75
9 2 9 9 9 9 2179 47 155293 0.702152 166761 0.685674 -7.38 2.35 7 5 8 9 9 9 2229 47 132209 0.729811 143542 0.733910 -8.57 -0.56 5 7 8 9 9 9 2309 47 103416 0.775876 114476 0.777232 -10.69 -0.17 5 7 9 8 9 9 2378 47 86382 0.806636 96958 0.805924 -12.24 0.09 7 5 9 9 9 2309 48 104863 0.774777 115759 0.775802 -10.39 -0.13 9 6 8 8 9 9 2288 49 111820 0.751506 123515 0.758831 -10.46 -0.97 8 9 6 9 9 9 23	8	2	9	9	9	9	2169	46	160148	0.688780	171780	0.687531	-7.26	0.18
7 5 8 9 9 9 2229 47 132209 0.729811 143542 0.733910 -8.57 -0.56 5 7 8 9 9 9 2309 47 103416 0.775876 114476 0.777232 -10.69 -0.17 5 7 9 8 9 9 2378 47 86382 0.806636 96958 0.805924 -12.24 0.09 7 5 9 9 9 2309 48 104863 0.774777 115759 0.775802 -10.39 -0.13 9 6 8 8 9 9 2288 49 111820 0.751506 123515 0.758831 -10.46 -0.97 8 9 6 9 9 9 2279 50 109836 0.760552 120679 0.760121 -9.87 0.06 7 8 8 9 9 9 23	7	3	9	9	9	9	2209	46	142701	0.715880	154084	0.702969	-7.98	1.80
5 7 8 9 9 9 2309 47 103416 0.775876 114476 0.777232 -10.69 -0.17 5 7 9 8 9 9 2378 47 86382 0.806636 96958 0.805924 -12.24 0.09 7 5 9 9 9 2309 48 104863 0.774777 115759 0.775802 -10.39 -0.13 9 6 8 8 9 9 2288 49 111820 0.751506 123515 0.758831 -10.46 -0.97 8 9 6 9 9 9 2279 50 109836 0.760552 120679 0.760121 -9.87 0.06 7 8 8 9 9 9 2379 50 82266 0.805209 92584 0.807904 -12.54 -0.33 8 8 9 9 9 2389	9	2	9	9	9	9	2179	47	155293	0.702152	166761	0.685674	-7.38	2.35
5 7 9 8 9 9 2378 47 86382 0.806636 96958 0.805924 -12.24 0.09 7 5 9 9 9 9 2309 48 104863 0.774777 115759 0.775802 -10.39 -0.13 9 6 8 8 9 9 2288 49 111820 0.751506 123515 0.758831 -10.46 -0.97 8 9 6 9 9 9 2279 50 109836 0.760552 120679 0.760121 -9.87 0.06 7 8 8 9 9 9 2379 50 82266 0.805209 92584 0.807904 -12.54 -0.33 8 8 9 9 9 2389 51 79375 0.817128 89382 0.815996 -12.61 0.14 9 8 9 9 9 2468 52<	7	5	8	9	9	9	2229	47	132209	0.729811	143542	0.733910	-8.57	-0.56
7 5 9 9 9 9 2309 48 104863 0.774777 115759 0.775802 -10.39 -0.13 9 6 8 8 9 9 2288 49 111820 0.751506 123515 0.758831 -10.46 -0.97 8 9 6 9 9 9 2279 50 109836 0.760552 120679 0.760121 -9.87 0.06 7 8 8 9 9 9 2379 50 82266 0.805209 92584 0.807904 -12.54 -0.33 8 8 9 9 9 2389 51 79375 0.817128 89382 0.815996 -12.61 0.14 9 8 9 9 2468 52 63397 0.854805 72749 0.835438 -14.75 2.27 8 8 9 9 9 2469 52 61670 <t< td=""><td>5</td><td>7</td><td>8</td><td>9</td><td>9</td><td>9</td><td>2309</td><td>47</td><td>103416</td><td>0.775876</td><td>114476</td><td>0.777232</td><td>-10.69</td><td>-0.17</td></t<>	5	7	8	9	9	9	2309	47	103416	0.775876	114476	0.777232	-10.69	-0.17
9 6 8 8 9 9 2288 49 111820 0.751506 123515 0.758831 -10.46 -0.97 8 9 6 9 9 9 2279 50 109836 0.760552 120679 0.760121 -9.87 0.06 7 8 8 9 9 9 2379 50 82266 0.805209 92584 0.807904 -12.54 -0.33 8 8 9 9 9 2389 51 79375 0.817128 89382 0.815996 -12.61 0.14 9 8 9 9 2468 52 63397 0.854805 72749 0.835438 -14.75 2.27 8 8 9 9 9 2469 52 61670 0.851473 70740 0.848547 -14.71 0.34 7 9 9 9 9 2509 52 53914 0.871289 62399 0.857258 -15.74 1.61 9 8 9 9	5	7	9	8	9	9	2378	47	86382	0.806636	96958	0.805924	-12.24	0.09
8 9 6 9 9 9 2279 50 109836 0.760552 120679 0.760121 -9.87 0.06 7 8 8 9 9 9 2379 50 82266 0.805209 92584 0.807904 -12.54 -0.33 8 8 8 9 9 9 2389 51 79375 0.817128 89382 0.815996 -12.61 0.14 9 8 9 9 2468 52 63397 0.854805 72749 0.835438 -14.75 2.27 8 8 9 9 9 2469 52 61670 0.851473 70740 0.848547 -14.71 0.34 7 9 9 9 9 2509 52 53914 0.871289 62399 0.857258 -15.74 1.61 9 8 9 9 9 2449 53 64499 0.845752 <	7	5	9	9	9	9	2309	48	104863	0.774777	115759	0.775802	-10.39	-0.13
7 8 8 9 9 9 2379 50 82266 0.805209 92584 0.807904 -12.54 -0.33 8 8 8 9 9 9 2389 51 79375 0.817128 89382 0.815996 -12.61 0.14 9 8 9 9 9 2468 52 63397 0.854805 72749 0.835438 -14.75 2.27 8 8 9 9 9 2469 52 61670 0.851473 70740 0.848547 -14.71 0.34 7 9 9 9 9 2509 52 53914 0.871289 62399 0.857258 -15.74 1.61 9 9 8 9 9 9 2449 53 64499 0.845752 73657 0.828687 -14.20 2.02 9 8 9 9 9 2479 53 59346 0.862	9	6	8	8	9	9	2288	49	111820	0.751506	123515	0.758831	-10.46	-0.97
8 8 8 9 9 9 2389 51 79375 0.817128 89382 0.815996 -12.61 0.14 9 8 9 8 9 9 2468 52 63397 0.854805 72749 0.835438 -14.75 2.27 8 8 9 9 9 9 2469 52 61670 0.851473 70740 0.848547 -14.71 0.34 7 9 9 9 9 2509 52 53914 0.871289 62399 0.857258 -15.74 1.61 9 9 8 9 9 9 2449 53 64499 0.845752 73657 0.828687 -14.20 2.02 9 8 9 9 9 2479 53 59346 0.862217 68410 0.843028 -15.27 2.23	8	9	6	9	9	9	2279	50	109836	0.760552	120679	0.760121	-9.87	0.06
9 8 9 8 9 9 2468 52 63397 0.854805 72749 0.835438 -14.75 2.27 8 8 9 9 9 9 2469 52 61670 0.851473 70740 0.848547 -14.71 0.34 7 9 9 9 9 9 2509 52 53914 0.871289 62399 0.857258 -15.74 1.61 9 9 8 9 9 9 2449 53 64499 0.845752 73657 0.828687 -14.20 2.02 9 8 9 9 9 2479 53 59346 0.862217 68410 0.843028 -15.27 2.23	7	8	8	9	9	9	2379	50	82266	0.805209	92584	0.807904	-12.54	-0.33
8 8 9 9 9 9 2469 52 61670 0.851473 70740 0.848547 -14.71 0.34 7 9 9 9 9 9 2509 52 53914 0.871289 62399 0.857258 -15.74 1.61 9 9 8 9 9 9 2449 53 64499 0.845752 73657 0.828687 -14.20 2.02 9 8 9 9 9 2479 53 59346 0.862217 68410 0.843028 -15.27 2.23	8	8	8	9	9	9	2389	51	79375	0.817128	89382	0.815996	-12.61	0.14
7 9 9 9 9 9 52 53914 0.871289 62399 0.857258 -15.74 1.61 9 9 8 9 9 9 2449 53 64499 0.845752 73657 0.828687 -14.20 2.02 9 8 9 9 9 2479 53 59346 0.862217 68410 0.843028 -15.27 2.23	9	8	9	8	9	9	2468	52	63397	0.854805	72749	0.835438	-14.75	2.27
9 9 8 9 9 9 2449 53 64499 0.845752 73657 0.828687 -14.20 2.02 9 8 9 9 9 9 2479 53 59346 0.862217 68410 0.843028 -15.27 2.23	8	8	9	9	9	9	2469	52	61670	0.851473	70740	0.848547	-14.71	0.34
9 8 9 9 9 9 2479 53 59346 0.862217 68410 0.843028 -15.27 2.23	7	9	9	9	9	9	2509	52	53914	0.871289	62399	0.857258	-15.74	1.61
	9	9	8	9	9	9	2449	53	64499	0.845752	73657	0.828687	-14.20	2.02
9 9 9 9 9 9 2529 54 49721 0.875910 57879 0.859331 -16.41 1.89	9	8	9	9	9	9	2479	53	59346	0.862217	68410	0.843028	-15.27	2.23
	9	9	9	9	9	9	2529	54	49721	0.875910	57879	0.859331	-16.41	1.89

SIMULACION VI. Todas las fuentes de suministro, optimizando el porcentaje de renovables.

CDOMOCOMA	Unid. Solar 1	Unid. Solar 2	Unid. Solar 3	Unid. Eólica 1	Unid. Eólica 2	Unid. Eólica 3	Grupo Diesel 1	Grupo Diesel 2	Reserva (REE)	Coste de la energía en 20	FENC	% renovables
CROMOSOMA		_								años (M€)	EENS	(solar+eólica
100000000	1	0	0	0	0	0	0	0	0	0.054	3445640	100.0
100001000	1	0	0	0	0	1	0	0	0	0.382	3316163	100.0
300500000	3	0	0	5	0	0	0	0	0	0.441	3275994	100.0
201100000	2	0	1	1	0	0	0	0	0	0.552	3270390	100.0
300700000	3	0	0	7	0	0	0	0	0	0.554	3221523	100.0
400100002	4	0	0	1	0	0	0	0	2	1.230	2494466	33.77
300200002	3	0	0	2	0	0	0	0	2	1.233	2494466	34.21
400730000	4	0	0	7	3	0	0	0	0	1.298	2881973	100.00
	3	0	0	2	5	0	0	0	0	1.424	2819805	100.00
300250000 101100002	1	0	1	1	0	0	0	0	2	1.458	2412660	50.25
101100002	1	U	'	'	U	U				1.430	2412000	30.23
101831000	1	0	1	8	3	1	0	0	0	1.910	2643932	100.0
300620002	3	0	0	6	2	0	0	0	2	1.918	2159489	66.22
300230002	3	0	0	2	3	0	0	0	2	1.923	2160129	66.89
301731000	3	0	1	7	3	1	0	0	0	1.961	2637956	100.00
300630002	3	0	0	6	3	0	0	0	2	2.148	2051968	71.10
600542000	6	0	0	5	4	2	0	0	0	2.179	2538030	100.0
001901002	0	0	1	9	0	1	0	0	2	2.182	2079270	72.14
001832000	0	0	1	8	3	2	0	0	0	2.184	2530198	100.0
201130002	2	0	1	1	3	0	0	0	2	2.202	2072163	72.30
000170002	0	0	0	1	7	0	0	0	2	2.627	1806598	78.31
301231002	3	0	1	2	3	1	0	0	2	2.640	1899474	78.35
100142002	1	0	0	1	4	2	0	0	2	2.646	1855906	79.21
210703002	2	1	0	7	0	3	0	0	2	2.712	1891140	79.47
000161002	0	0	0	1	6	1	0	0	2	2.725	1787335	79.63
		_										
101513002	1	0	1	5	1	3	0	0	2	2.897	1808132	81.31
000533002	0	0	0	5	3	3	0	0	2	2.915	1739040	81.65
201602003	2	0	1	6	0	2	0	0	3	2.929	1562431	68.49
401771000	4	0	1	7	7	1	0	0	0	2.935	2189675	100.0
200682000	2	0	0	6	8	2	0	0	0	2.941	2144195	100.0
E00EE0003	E	0	0	Е	Е	^	^		2	2 120	1201620	70.20
500550003	5	0	0	5	5	0	0	0	3	3.139	1391620	70.30
000933002	0	0	0	9	3	3	0	0	2	3.140 3.183	1631103	83.02 71.43
400541003		0		5	4				3		1388735	
120233002 500861002	1 5	2	0	2	3 6	3	0	0	2	3.336 3.386	1641624 1512241	83.92 83.82
300001002	3	U	U	0	U		U	U		3.300	1312241	03.02
400542003	4	0	0	5	4	2	0	0	3	3.511	1261469	75.21
300207002	3	0	0	2	0	7	0	0	2	3.530	1574234	85.96
210342003	2	1	0	3	4	2	0	0	3	3.560	1266299	75.53
500542003	5	0	0	5	4	2	0	0	3	3.565	1245750	75.61
201142003	2	0	1	1	4	2	0	0	3	3.568	1273489	75.85
000534003	0	0	0	5	3	4	0	0	3	3.723	1176303	77.78
300672002	3	0	0	6	7	2	0	0	2	3.724	1367501	85.84
300563002	3	0	0	5	6	3	0	0	2	3.766	1372415	86.21
401742003	4	0	1	7	4	2	0	0	3	4.012	1083303	78.78
000925003	0	0	0	9	2	5	0	0	3	4.046	1048235	79.97
004500000	_		4	_	_		•••			4.400	4004000	00.00
201526002 301752003	2	0	1	5	2	6	0	0	2	4.166	1294660	88.02
	.5	0	1	7	5	2	0	0	3	4.189	998282	79.92

801026002	8	0	1	0	2	6	0	0	2	4.206	1330594	88.10
300145003	3	0	0	1	4	5	0	0	3	4.218	1006835	81.04
001853003	0	0	1	8	5	3	0	0	3	4.412	900637	81.44
200596000	2	0	0	5	9	6	0	0	0	4.428	1546381	100.0
200745003	2	0	0	7	4	5	0	0	3	4.501	872787	82.29
001918002	0	0	1	9	1	8	0	0	2	4.709	1074065	89.68
101528002	1	0	1	5	2	8	0	0	2	4.768	1060263	89.85
		_		_	_	_			_			
001908003	0	0	1	9	0	8	0	0	3	4.959	768797	84.52
001128003	0	0	1	1	2	8	0	0	3	4.970	778008	84.71
001566002	0	0	1	5	6	6	0	0	2	4.979	927462	90.15
201828002	2	0	1	8	2	8	0	0	2	4.990	968325	90.27
400938002	4	0	0	9	3	8	0	0	2	4.995	936777	90.28
300084004	3	0	0	0	8	4	0	0	4	5.234	423724	78.95
410637003	4	1	0	6	3	7	0	0	3	5.246	662946	85.24
		0					-			5.247	813087	90.87
000568002	0		0	5	6	8	0	0	2			
010486002	0	1	0	4	8	6	0	0	2	5.262	806015	90.69
000158003	0	0	0	1	5	8	0	0	3	5.272	619002	85.73
101928003	1	0	1	9	2	8	0	0	3	5.473	580247	86.10
201598000	2	0	1	5	9	8	0	0	0	5.473	1170179	100.0
101586002	1	0	1	5	8	6	0	0	2	5.493	729882	91.11
500178002	5	0	0	1	7	8	0	0	2	5.520	747643	91.31
000999000	0	0	0	9	9	9	0	0	0	5.530	1098846	100.0
										0.000	.0000.0	
400406002	4	0	0	1	0	6	0	0	3	E 7E0	4EE640	96 74
400196003					9	6				5.750	455649	86.74
100198002	1	0	0	1	9	8	0	0	2	5.766	631763	91.74
000278003	0	0	0	2	7	8	0	0	3	5.788	451299	87.09
100298002	1	0	0	2	9	8	0	0	2	5.822	610291	91.82
301599000	3	0	1	5	9	9	0	0	0	5.855	1035733	100.0
100217007	1	0	0	2	1	7	0	0	7	6.052	15657	64.72
400768003	4	0	0	7	6	8	0	0	3	6.053	383923	87.57
300209006	3	0	0	2	0	9	0	0	6	6.106	57733	72.01
701584004	7	0	1	5	8	4	0	0	4	6.118	234949	82.22
401678002	4	0	1	6	7	8	0	0	2	6.136	551141	92.16
401070002	-	U		U	,	0	U	U	2	0.130	331141	32.10
44400000				_					-	0.400	2000	04.50
411680007	4	1	1	6	8	0	0	0	7	6.408	9960	64.50
401189002	4	0	1	1	8	9	0	0	2	6.414	485897	92.60
001981007	0	0	1	9	8	1	0	0	7	6.422	7734	65.31
401398002	4	0	1	3	9	8	0	0	2	6.428	464389	92.55
020868003	0	2	0	8	6	8	0	0	3	6.431	312736	88.26
830680007	8	3	0	6	8	0	0	0	7	6.769	6306	66.54
243796000	2	4	3	7	9	6	0	0	0	6.778	833424	100.0
101779003	1	0	1	7	7	9	0	0	3	6.839	224346	89.19
101698003	1	0	1	6	9	8	0	0	3	6.915	204622	89.26
101999003	1	0	1	9	9	9	0	0	2	6.932	319848	93.15
101333002		U	ı	9	9	9	U	U	2	0.∀3∠	318040	93.13
		-	_	-		_						
405648003	4	0	5	6	4	8	0	0	3	7.480	189677	89.97
001186007	0	0	1	1	8	6	0	0	7	7.614	3004	73.50
104979002	1	0	4	9	7	9	0	0	2	7.638	239244	93.75
301585007	3	0	1	5	8	5	0	0	7	7.671	2694	73.38
240798003	2	4	0	7	9	8	0	0	3	7.708	120581	90.24
307289000	3	0	7	2	8	9	0	0	0	7.788	573849	100.0
501158007	5	0	1	1	5	8	0	0	7	7.848	2648	74.66
405198002	4	0	5	1	9	8	0	0	2	7.870	229597	93.91
200289006	2	0	0	2	8	9	0	0	6	7.893	4488	79.48
_0020000		U	U		U	J	U	U	U	7.000	TTUU	1 3.40
40550000		_	-	-	_	_			•	0.000	400400	0401
105599002	1	0	5	5	9	9	0	0	2	8.262	160429	94.24
405499002	4	0	5	4	9	9	0	0	2	8.366	152763	94.30
300788007	3	0	0	7	8	8	0	0	7	8.379	1889	76.62
	0	8	1	9	6	8	0	0	3	8.483	81663	91.01
081968003	U	-		_								

701587007	7	0	1	5	8	7	0	0	7	8.542	1883	76.90
144888002	1	4	4	8	8	8	0	0	2	8.555	141332	94.31
034889002	0	3	4	8	8	9	0	0	2	8.562	133928	94.38
025898002	0	2	5	8	9	8	0	0	2	8.584	130031	94.38
106599002	1	0	6	5	9	9	0	0	2	8.651	125622	94.49
309868002	3	0	9	8	6	8	0	0	2	9.073	110998	94.68
109778002	1	0	9	7	7	8	0	0	2	9.140	103205	94.73
330189007	3	3	0	1	8	9	0	0	7	9.174	1596	78.93
181588004	1	8	1	5	8	8	0	0	4	9.252	15059	88.80
309878002	3	0	9	8	7	8	0	0	2	9.303	89300	94.81
228898002	2	2	8	8	9	8	0	0	2	9.857	53507	95.09
006187007	0	0	6	1	8	7	0	0	7	9.885	1325	80.57
677598000	6	7	7	5	9	8	0	0	0	9.894	220020	100.0
304289007	3	0	4	2	8	9	0	0	7	9.981	1213	81.00
319898002	3	1	9	8	9	8	0	0	2	10.032	46820	95.19
069368003	0	6	9	3	6	8	0	0	3	10.719	17553	93.00
999696000	9	9	9	6	9	6	0	0	0	10.768	148853	100.0
769989000	7	6	9	9	8	9	0	0	0	10.780	124297	100.0
359498002	3	5	9	4	9	8	0	0	2	10.879	28399	95.52
639398003	6	3	9	3	9	8	0	0	3	10.927	10932	93.19
											. 5552	55.10
398698002	3	9	8	6	9	8	0	0	2	11.674	14380	95.79
789568003	7	8	9	5	6	8	0	0	3	11.742	5986	93.58
719387007	7	1	9	3	8	7	0	0	7	11.806	652.44	83.97
809987007	8	0	9	9	8	7	0	0	7	11.929	567.92	84.16
699688002	6	9	9	6	8	8	0	0	2	11.993	11979	95.89
033000002	U	J	J	U	U	U	U	U		11.555	11070	33.03
299488004	2	9	9	4	8	8	0	0	4	12.626	646.96	91.92
	9	9	9	6	9	9	0	0	2	12.712	5208	
999699002			9	3	8	9	0	0		12.712	328.51	96.15 87.67
159389006	1	5					_		6			
499888004	4	9	9	8	8	8	0	0	4	12.958	369.51	92.12
449489007	4	4	9	4	8	9	0	0	7	13.162	325.38	85.85
759987007	7	5	9	9	8	7	0	0	7	13.215	315.81	85.71
059689007	0	5	9	6	8	9	0	0	7	13.328	290.55	86.03
089887007	0	8	9	8	8	7	0	0	7	13.587	270.21	86.10
789089006	7	8	9	0	8	9	0	0	6	13.690	212.63	88.51
098989006	0	9	8	9	8	9	0	0	6	13.699	174.64	88.50
998689006	9	9	8	6	8	9	0	0	6	14.013	153.24	88.75
399689006	3	9	9	6	8	9	0	0	6	14.080	148.82	88.83
989889006	9	8	9	8	8	9	0	0	6	14.246	125.82	88.96
579998103	5	7	9	9	9	8	1	0	3	15.389	723.03	92.69
677598200	6	7	7	5	9	8	2	0	0	16.108	72667	97.06
059998200	0	5	9	9	9	8	2	0	0	16.252	59663	97.12
789986200	7	8	9	9	8	6	2	0	0	16.544	59061	97.13
999697200	9	9	9	6	9	7	2	0	0	17.309	32399	97.33
989889106	9	8	9	8	8	9	1	0	6	17.353	66.40	87.93
789998200	7	8	9	9	9	8	2	0	0	17.431	25008	97.38
739989014	7	3	9	9	8	9	0	1	4	19.709	89.72	88.52
868489014	8	6	8	4	8	9	0	1	4	19.897	95.02	88.64
298889206	2	9	8	8	8	9	2	0	6	19.897	48.25	86.43
			9			9	2	0				
089889206	9	8 7	9	8	8 7	9	0	1	6 4	19.977	47.65	86.48
979079014	9	- 1	9	U	1	9	U	ı	4	20.153	101.61	88.84
359799303	3	5	9	7	9	9	3	0	2	21.175	85.47	90.13
		8	9	9	8	7	3		3			90.13
689987303	6							0	3	21.365	85.05	
799988302	7	9	9	9	8	8	3	0	2	21.535	276.53	92.39
089599303	0	8	9	5	9	9	3	0	3	21.706	58.24	90.51
098789306	0	9	8	7	8	9	3	0	6	22.907	26.35	85.24
700000000	-	_	_	_	_	^	^		_	00.400	0.00	00.00
799969023	7	9	9	9	6	9	0	2	3	28.190	8.96	88.39
069399602	0	6	9	3	9	9	6	0	2	29.898	12.58	88.39
798997602	7	9	8	9	9	7	6	0	2	30.368	8.76	88.60
	_	-	-	-	-		_	-	_			
789997602 799999602	7	8	9	9	9	7	6	0	2	30.489 31.414	8.76 8.76	88.73 89.58

SIMULACIÓN VII. Todas las fuentes, dando prioridad a la energía eólica.

СРОМОСОМА	Unid. Solar 1	Unid. Solar 2	Unid. Solar 3	Unid. Eólica 1	Unid. Eólica 2	Unid. Eólica 3	Reserva (REE)	Coste de la energía en 20 años (M€)	EENS	Disponibilidad
CROMOSOMA	0	_	0	4	_	_	_			(A)
2001000	2	0	0	1	0	0	0	0.163	3383141	35.5
0003000	0	0	0	3	0	0	0	0.168	3323806	100.0
1003000	1	0	0	3	0	0	0	0.222	3307494	76.7
0004000	0	0	0	4	0	0	0	0.225	3277368	100.0
0000100	0	0	0	0	1	0	0	0.230	3257111	100.0
1007100	1	0	0	7	1	0		0.677	2046224	92.70
1007100		-	-			0	0	0.677	2916331	
0001020	0	0	0	1	0	2	0	0.713	2922584	100.0
1009100			0	0	0.789	2823757	93.71			
0004400	0	0	0	4 5	4	0	0	1.145	2457049	100.00
0005400	0	0	0	5	4	0	0	1.201	2410106	100.0
1008310	1	0	0	8	3	1	0	1.521	2211946	96.95
0005410	0	0	0	5	4	1	0	1.529	2162609	100.00
1006500	1	0	0	6	5	0	0	1.541	2141416	96.9
0007500	0	0	0	7	5	0	0	1.543	2111749	100.00
0007500	0	0	0	3	6	0	0	1.549	2092410	100.00
0003000	U	U	U	3	U	-		1.549	2092410	100.00
1008600	1	0	0	8	6	0	0	1.883	1842233	97.49
1004700	1	0	0	4	7	0	0	1.889	1823727	97.52
0005700	0	0	0	5	7	0	0	1.891	1793011	100.00
1005700	1	0	0	5	7	0	0	1.945	1777513	97.59
1003700	1	0	0	4	1	0	3	1.948	1744726	37.01
1004103	'	U	U	4	'	U		1.940	1744720	37.01
0007900	0	0	0	7	0	0	0	2.234	1409607	100.0
0007800 1003900		0		3	8	0		2.293	1498607 1463238	97.97
	0	-	0	4	9	0	0			
0004900	0	0		2	9	0	0	2.296	1433691	100.0 100.00
0002910 1002910	1	0	0	2	9	1	0	2.512 2.565	1286815 1267552	98.22
1002910	'	U	U		9	'	U	2.303	1207332	90.22
1005403	1	0	0	5	4	0	• •	2.604	1000510	61.45
0005711	0	0	0	5	7	1	3 1	2.694 2.700	1088512 1121065	90.65
1005910	1	0	0	5	9	1	0	2.733	1136843	98.32
2005403	2	0	0	5	4	0	3	2.748	1071941	60.00
0002811	0	0	0	2	8	1	1	2.761	1063957	90.94
0002011	U	U	U		0	-		2.701	1003937	30.34
1001802	1	0	0	1	8	0	2	2.910	909546	78.89
2009801	2	0	0	9	8	0	1	2.933	958927	87.70
			-	8	2	0	4			
2008204 2005901	2	0	0	5	9	0	1	2.936 2.939	907938 943346	46.08 87.83
2005901	2	0	0	1	8	0	2	2.939	897168	77.40
2001002		U	U	'	0	U		2.904	097 100	77.40
1004830	1	0	0	4	8	3	0	3.104	924446	98.56
0008612 0003821	0	0	0	8	6 8	1 2	2	3.118	782071	82.39 92.22
	0	0	0				1	3.146	806186 768253	
0004930 1004902	0	0	0	4	9	3	0	3.280 3.309	624346	100.00 81.79
1004902	ı	U	U	4	9			3.309	024340	01.79
1004840	1	0	0	4	8	4	0	3.432	724984	98.71
0007930	0	0	0	7	9	3	0	3.449	659273	100.0
0007930								3.466	534397	84.52
0000812			3.482	584055	92.95					
0005921	0	0	0	5	9	2	1	3.488	574510	93.01
0003821	U	U	U	J	J		ı	3.400	374310	a3.01
1001903	1	0	0	1	0	0	•	3.620	405177	74.2
1001903	1	0	0	2	9	0	3			
111117877	1	0	0	4	8	2	2 5	3.623	488120	84.10
0004315	0	0	0			1		3.642	360902	52.29

0004931	2007840	2	0	0	7	8	4	0	3.654	605955	97.55	
2005940	0004931	0	0	0	4	9	3	1	3 760	447609	93 62	
						_						
3000614				_								
1005822				_		-						
0001913				_		-						
0009514	1005822	1	0	0	5	8	2	2	3.791	398350	84.83	
0005614 0 0 0 0 5 6 1 4 3 3.909 265691 68.50 0008623 0 0 0 0 8 6 2 3 3 3.926 297302 78.51 1007850 1 0 0 7 8 5 0 3.928 457510 98.87 0004832 0 0 0 0 4 8 8 3 2 4 4.010 304697 87.24 1005670 1 0 0 0 5 6 7 0 4.012 466336 99.92 0008533 0 0 0 8 5 3 3 4.024 278536 79.40 3009912 3 0 0 9 9 1 2 4.025 294999 82.87 2008850 2 0 0 8 8 5 5 0 4.038 419427 97.80 0004832 1 0 0 0 9 8 8 2 2 4 4.123 276422 83.52 1002632 1 0 0 6 8 3 2 4 4.176 259917 86.52 1002705 1 0 0 0 6 8 3 2 4 4.176 259917 86.52 1002705 1 0 0 0 9 8 4 1 4.192 288288 93.17 3009814 1 0 0 0 9 8 4 1 4.192 288288 93.17 3009704 3 0 0 9 9 7 0 4 4.196 165271 66.13 1007913 1 0 0 0 7 9 1 3 4.285 156848 79.14 0008941 0 0 0 8 9 9 4 1 4.313 230935 94.49 4007950 4 0 0 7 9 5 0 4.319 320797 95.9 100913 1 0 0 0 8 9 1 2 6 4.325 88156 49.92 1008913 1 0 0 0 8 9 1 4 4.476 229926 93.76 1009161 1 0 0 0 9 1 2 6 4.325 88156 49.92 1008913 1 0 0 0 8 9 1 4 4.476 263173 99.02 3008941 3 0 0 9 7 7 0 4.467 263173 99.02 3008941 0 0 0 8 9 7 7 0 4.467 263173 99.02 3008941 0 0 0 8 9 7 7 0 4.467 263173 99.02 3008941 0 0 0 8 9 1 3 4.4946 86159 77.54 1007913 1 0 0 0 8 9 1 4 4.476 74394 51.44 1008652 1 0 0 9 9 0 3 6 4.476 74394 51.44 1008661 1 0 0 0 5 8 8 1 4 4.594 86159 77.55 100970 1 0 0 8 8 9 1 1 3 4.485 86159 77.55 1009861 0 0 0 8 8 6 5 2 4.782 112168 88.67 1009870 1 0 0 0 8 8 6 5 2 4.782 112168 88.67 1009871 0 0 0 0 8 8 6 5 2 4.782 112168 88.67 1009861 0 0 0 0 8 8 8 1 4 4.594 86159 79.53 100861 1 0 0 0 8 8 8 1 4 4.594 86159 79.53 1008652 1 0 0 0 8 8 8 1 4 4.4501 126752 95.17 1009861 0 0 0 0 8 8 8 1 4 4.4501 126752 95.17 1009861 0 0 0 0 8 8 8 1 5 5 5.018 17660 69.44 1008652 1 0 0 0 9 7 7 5 3 3 5.018 17660 69.44 1008651 1 0 0 0 8 8 8 1 5 5.018 17660 69.44 1008652 1 0 0 0 8 8 8 1 5 5.018 17660 69.44 1008652 1 0 0 0 9 7 7 5 3 3 5.018 17660 69.44 1009900000000000000000000000000000000	0001913	0	0	0	1	9	1	3	3.895	283166	78.29	
0005614 0 0 0 0 5 6 6 1 4 3 3.090 265691 68.50 0008623 0 0 0 0 8 6 2 3 3 3.926 297302 78.51 1007850 1 0 0 7 8 5 0 3.928 457510 98.87 10067850 1 0 0 0 4 8 8 3 2 4 4.010 304697 87.24 1005670 1 0 0 0 5 6 7 0 4.012 466336 99.92 1005670 1 0 0 0 5 6 7 0 4.012 466336 99.92 1005670 1 0 0 0 8 8 5 3 3 4.024 278536 79.40 3009912 3 0 0 0 9 9 1 2 4.025 294699 82.87 2008850 2 0 0 8 8 5 5 0 4.038 419427 97.80 1006832 1 0 0 0 6 8 3 2 4.176 250917 86.52 1002705 1 0 0 0 6 8 3 2 4.176 250917 86.52 1002705 1 0 0 0 6 8 3 2 4.176 250917 86.52 1002705 1 0 0 0 9 8 4 1 4.192 288288 93.17 3009704 3 0 0 9 9 7 0 4 4.196 165271 66.13 1007913 1 0 0 0 8 9 9 4 1 4.192 288288 93.17 3009704 3 0 0 9 7 9 5 0 4.319 320797 95.9 100913 1 0 0 0 8 9 9 4 1 4.4131 220935 94.49 4007950 4 0 0 7 9 1 5 2 6 4.325 88156 49.92 1008913 1 0 0 0 8 9 9 4 1 4.476 250917 95.9 100913 1 0 0 0 8 9 1 2 6 4.325 88156 49.92 1008913 1 0 0 0 8 8 9 1 3 3 4.342 140747 79.43 1008913 1 0 0 0 9 8 4 1 4.476 263173 99.02 3008941 3 0 0 9 7 7 0 4.467 263173 99.02 3008941 3 0 0 0 9 7 7 7 0 4.467 263173 99.02 3008941 3 0 0 0 9 7 7 7 0 4.467 263173 99.02 3008941 3 0 0 0 9 8 8 9 1 3 3 4.342 140747 79.43 1008632 1 0 0 0 8 8 9 1 3 3 4.342 140747 79.43 1008632 1 0 0 0 8 8 9 1 3 3 4.342 140747 79.43 1008652 1 0 0 0 9 8 8 1 4 4.476 74394 51.44 1008652 1 0 0 0 9 8 8 1 4 4.476 74394 51.44 1008652 1 0 0 0 9 8 8 1 4 4.4594 66159 77.5 14.30 3008941 0 0 0 0 8 8 9 1 3 3 4.884 11.5594 66.13 1008661 1 0 0 0 8 8 9 1 4 4.476 74394 51.44 1008652 1 0 0 0 8 8 6 5 2 4.4884 13559 95.75 37.552 1005661 1 0 0 0 8 8 9 1 4 4.4594 66159 77.55 37.552 1005661 1 0 0 0 8 8 8 1 1 5 5 5.018 17660 69.44 4009914 0 0 0 0 5 9 8 8 1 4 4.4594 66159 77.55 37.552 1005661 1 0 0 0 8 8 8 1 5 5.50 88 8961 82.70 1006624 1 0 0 0 8 8 8 1 5 5.50 88 8961 82.70 1006624 1 0 0 0 0 8 8 8 1 5 5.50 88 3188 85.16 1006624 1 0 0 0 9 9 7 7 5 5 3 5.018 17660 69.44 4009914 4 0 0 0 9 9 7 7 5 5 3 5.08 31818 85.16 1006626 1 0 0 0 0 8 8 8 1 5 5.50 83 3188 85.16 1006626 1 0 0 0 0 8 8 8 8 1 5 5.00 33 3188 85.16 1006626 1 0 0 0 0 8 8 8 8 1 5 5.50 5.53 5	0009514	0	0	0	9	5	1	4	3.903	258849	68.20	
0008623		0	0			_	1	4				
1007850						_						
1005670												
1005670												
0008533 0 0 0 0 8 8 5 3 3 3 4.024 278536 79.40 000812 3 0 0 9 9 9 1 2 4.025 294699 82.87 2008850 2 0 0 8 8 5 0 4.038 419427 97.80												
3009912 3 0 0 0 9 9 1 1 2 4.025 294699 82.87 2008850 2 0 0 0 8 8 5 0 0 4.038 419427 97.80 3009822 3 0 0 0 9 8 8 2 2 2 4.123 276422 83.52 1006832 1 0 0 0 6 8 3 2 2 4.176 250917 86.52 1002705 1 0 0 0 2 7 0 5 4.176 135542 58.9 1009841 1 0 0 0 9 8 4 1 4.192 288288 93.17 3009704 3 0 0 9 7 0 4 4.196 165271 66.13 1007913 1 0 0 7 9 1 3 4.285 156848 79.14 0008941 0 0 0 0 8 9 4 1 4.313 230935 94.49 4007950 4 0 0 7 7 9 5 0 4.319 320797 95.9 1009126 1 0 0 0 8 9 1 2 6 6 4.325 88156 49.92 1008913 1 0 0 0 8 9 1 3 4.342 140747 79.43 1002861 1 0 0 0 9 7 7 7 0 4.467 263173 99.02 3008941 3 0 0 8 9 4 1 4.473 211002 91.47 2009036 2 0 0 9 0 3 6 4.476 74394 51.44 1008652 1 0 0 8 8 9 5 1 4.473 211002 91.47 2009036 1 0 0 0 8 8 9 5 1 4.473 211002 91.47 2009036 1 0 0 0 8 8 9 5 1 4.473 211002 91.47 2009036 1 0 0 0 8 8 9 5 1 4.484 183593 87.75 0009814 0 0 0 0 8 8 9 5 1 4.4948 66159 74.33 0005914 0 0 0 0 8 8 9 5 1 4.4959 66753 74.52 0009851 0 0 0 0 8 8 9 5 1 4.4081 150624 94.94 0007833 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0009861 1 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0009814 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0009814 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0009814 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0009814 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0009814 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0009814 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0009814 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 8 9 5 1 4.4094 75135 75158 74.82 0008861 0 0 0 0 8 8 8 9 5 1 4.4094 75135 74.52 0008861 0 0 0 0 8 8 8 9 5 1 4.4094 75135 75158 74.82 00089753 0 0 0 0 9 9 7 7 5 3 5.193 96964 100.00 0009753 0 0 0 0 9 9 7 5 5 3 5.208 38188 85.16 0009953 0 0 0 0 4 9 9 5 5 2 5.231 45306 89.6 0009553 0 0 0				-								
2008850	0008533	0	0	0	8	5	3	3	4.024	278536	79.40	
3. 0 0 9 8 2 2 4.123 276422 83.52 1008832 1 0 0 6 8 3 3 2 4.176 250917 86.52 1002705 1 0 0 0 2 7 0 5 4.176 135542 58.9 1009841 1 0 0 9 9 8 4 1 4.192 288288 93.17 1009841 1 0 0 0 9 7 0 4 4.196 165271 66.13 1007913 1 0 0 7 9 1 3 4.285 156848 79.14 0008941 0 0 0 0 8 9 4 1 4.313 230935 94.49 4007950 4 0 0 7 9 5 5 0 4.319 320797 95.9 1009126 1 0 0 0 9 1 2 6 6 4.325 88156 49.92 1008913 1 0 0 8 9 1 3 4.342 140747 79.43 1002861 1 0 0 0 9 7 7 0 4.466 229926 93.76 1009770 1 0 0 9 7 7 7 0 4.467 263173 99.02 3008941 3 0 0 8 9 4 1 4.473 211002 91.47 1008652 1 0 0 8 6 5 2 4.484 183593 87.75 0009814 0 0 0 0 8 8 6 5 2 4.484 183593 87.75 0009814 0 0 0 0 5 9 1 4 4 4.594 66159 74.33 0005914 0 0 0 5 8 6 1 4.624 178135 93.97 1005861 1 0 0 5 8 6 1 4.624 178135 93.97 1005861 1 0 0 8 8 9 1 4 4 4.599 67753 74.52 1005861 1 0 0 8 8 9 5 1 4.641 150624 94.94 0007833 0 0 0 0 7 8 8 3 3 3 4.658 89961 82.70 1009851 0 0 0 8 9 9 5 1 4.801 12675 95.77 1006862 1 0 0 8 8 9 5 1 4.601 12675 95.77 1006864 1 0 0 0 8 8 9 5 1 4.601 12675 95.77 1006864 1 0 0 0 8 8 9 5 1 4.601 12675 95.77 1006864 1 0 0 0 8 8 9 5 1 4.601 12675 95.77 1006864 1 0 0 0 8 8 9 5 1 4.601 12675 95.77 1006864 1 0 0 0 8 8 9 5 1 4.601 12675 95.77 1006864 1 0 0 0 8 8 9 5 1 4.601 12675 95.77 1006864 1 0 0 0 8 8 9 5 1 4.601 12675 95.77 1006864 1 0 0 0 8 8 4 9 1 4.803 159957 95.27 1006866 0 1 0 8 8 6 0 6 4.977 17436 52.57 0008961 0 0 0 8 8 4 9 1 4.803 159957 95.27 1006866 0 1 0 8 8 6 8 8 4 4.994 59514 78.45 0008961 0 0 0 8 8 8 8 1 5.395 51343 95.76	3009912	3	0	0	9	9	1	2	4.025	294699	82.87	
1006832 1 0 0 6 8 3 2 4.176 250917 86.52 1002705 1 0 0 2 7 0 5 4.176 135542 58.9 1007841 1 0 0 9 8 4 1 4.192 28288 93.17 3009704 3 0 0 9 7 0 4 4.196 165271 66.13 1007913 1 0 0 7 9 1 3 4.285 156848 79.14 4007950 4 0 0 7 9 5 0 4.319 320797 95.9 1009126 1 0 0 9 1 2 6 4.325 88156 49.92 1008913 1 0 0 2 8 6 1 4.456 229926 93.76 1008913 1 0	2008850	2	0	0	8	8	5	0	4.038	419427	97.80	
1006832 1 0 0 6 8 3 2 4.176 250917 86.52 1002705 1 0 0 2 7 0 5 4.176 135542 58.9 1009841 1 0 0 9 8 4 1 4.192 28288 93.17 3009704 3 0 0 9 7 0 4 4.196 165271 66.13 1007913 1 0 0 7 9 1 3 4.285 156848 79.14 4007950 4 0 0 7 9 5 0 4.319 320797 95.9 1009126 1 0 0 9 1 2 6 4.325 88156 49.92 1008913 1 0 0 9 8 1 3 4.436 229926 93.76 <td< td=""><td>000000</td><td></td><td>_</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td>0=0.15=</td><td>~~</td></td<>	000000		_	_	_	_				0=0.15=	~~	
1002705										-		
1009841				-								
3009704 3 0 0 9 7 0 4 4.196 165271 66.13				_								
	1009841		0	0		8			4.192	288288	93.17	
0008941 0 0 8 9 4 1 4.313 230935 94.49 4007950 4 0 0 7 9 5 0 4.319 320797 95.9 95.0 1009126 4.92 1008913 1 0 0 8 9 1 3 4.342 140747 79.43 100870 1 0 0 2 8 6 1 4.456 229926 93.76 1009770 1 0 0 9 7 7 0 4.467 263173 99.02 3008941 3 0 0 8 9 4 1 4.473 211002 91.47 2009036 2 0 0 9 0 3 6 4.476 74394 51.44 1008662 1 0 0 8 6 1 4.594 66159 74.33	3009704	3	0	0	9	7	0	4	4.196	165271	66.13	
0008941 0 0 0 8 9 4 1 4.313 230935 94.49 4007950 4 0 0 7 9 9 5 0 4.319 320797 95.9 1009126 1 0 0 9 1 2 6 4.325 88156 49.92 1008913 1 0 0 8 9 1 3 4.342 140747 79.43 ***********************************	1007012	1	Λ	n	7	Ω	1	2	A 29F	156949	70.14	
4007950 4 0 0 7 9 5 0 4.319 320797 95.9 1009126 1 0 0 9 1 2 6 4.325 88156 49.92 1008913 1 0 0 8 9 1 3 4.342 140747 79.43 1009770 1 0 0 9 7 7 0 4.467 263173 99.02 91.47 2009036 2 0 0 9 0 3 6 4.476 74394 51.44 1008652 1 0 0 8 6 5 2 4.484 183593 87.75												
1009126 1 0 0 9 1 2 6 4.325 88156 49.92 1008913 1 0 0 8 9 1 3 4.342 140747 79.43 1002861 1 0 0 2 8 6 1 4.456 229926 93.76 1009770 1 0 0 9 7 7 0 4.467 263173 99.02 3008941 3 0 0 8 9 4 1 4.473 211002 91.47 41008652 1 0 0 8 6 5 2 4.484 183593 87.75 0009814 0 0 0 5 9 1 4 4.594 66159 74.33 0005961 0 0 8 9 5 1 4.641 150624 94.94 9				-		-						
1008913				_		-		-				
1002861												
1009770 1 0 0 9 7 7 0 4.467 263173 99.02 3008941 3 0 0 8 9 4 1 4.473 211002 91.47 2009036 2 0 0 9 0 3 6 4.476 74394 51.44 1008652 1 0 0 8 6 5 2 4.484 183593 87.75	1008913	1	0	0	8	9	1	3	4.342	140747	79.43	
1009770 1 0 0 9 7 7 0 4.467 263173 99.02 3008941 3 0 0 8 9 4 1 4.473 211002 91.47 2009036 2 0 0 9 0 3 6 4.476 74394 51.44 1008652 1 0 0 8 6 5 2 4.484 183593 87.75	1002861	1	0	0	2	8	6	1	4.456	220026	93.76	
3008941 3 0 0 8 9 4 1 4.473 211002 91.47 2009036 2 0 0 9 0 3 6 4.476 74394 51.44 1008652 1 0 0 8 6 5 2 4.484 183593 87.75 ***********************************												
2009036 2 0 0 9 0 3 6 4.476 74394 51.44 1008652 1 0 0 8 6 5 2 4.484 183593 87.75 0009814 0 0 0 5 9 1 4 4.599 67753 74.52 1005861 1 0 0 5 8 6 1 4.624 178135 93.97 0008951 0 0 0 8 9 5 1 4.641 150624 94.94 0007833 0 0 0 7 8 3 3 4.658 89961 82.70 1001952 1 0 0 1 9 5 2 4.782 112168 88.67 0005961 0 0 0 5 9 6 1 4.801 126752												
1008652 1 0 0 8 6 5 2 4.484 183593 87.75 0009814 0 0 0 9 8 1 4 4.594 66159 74.33 0005914 0 0 0 5 9 1 4 4.599 67753 74.52 1005861 1 0 0 5 8 6 1 4.624 178135 93.97 0008951 0 0 0 8 9 5 1 4.641 150624 94.94 0007833 0 0 0 7 8 3 3 4.658 89961 82.70 1001952 1 0 0 1 9 5 2 4.782 112168 88.67 0008491 0 0 0 8 4 9 1 4.803 159957 95.27 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
0009814												
0005914 0 0 5 9 1 4 4.599 67753 74.52 1005861 1 0 0 5 8 6 1 4.624 178135 93.97 0008951 0 0 0 8 9 5 1 4.641 150624 94.94 0007833 0 0 0 7 8 3 3 4.658 89961 82.70 1001952 1 0 0 1 9 5 2 4.782 112168 88.67 1008491 0 0 0 8 4 9 1 4.803 159957 95.27 1006824 1 0 0 6 8 2 4 4.807 51558 74.88 3008525 3 0 0 8 6 0 <	1008652	1	0	0	8	6	5	2	4.484	183593	87.75	
0005914 0 0 5 9 1 4 4.599 67753 74.52 1005861 1 0 0 5 8 6 1 4.624 178135 93.97 0008951 0 0 0 8 9 5 1 4.641 150624 94.94 0007833 0 0 0 7 8 3 3 4.658 89961 82.70 1001952 1 0 0 1 9 5 2 4.782 112168 88.67 1008491 0 0 0 8 4 9 1 4.803 159957 95.27 1006824 1 0 0 6 8 2 4 4.807 51558 74.88 3008525 3 0 0 8 6 0 <	0009814	0	0	0	9	8	1	4	4.594	66159	74.33	
1005861 1 0 0 5 8 6 1 4.624 178135 93.97 0008951 0 0 0 8 9 5 1 4.641 150624 94.94 0007833 0 0 0 7 8 3 3 4.658 89961 82.70 1001952 1 0 0 1 9 5 2 4.782 112168 88.67 <												
0008951 0 0 0 8 9 5 1 4.641 150624 94.94 0007833 0 0 0 7 8 3 3 4.658 89961 82.70 1001952 1 0 0 1 9 5 2 4.782 112168 88.67 0005961 0 0 0 5 9 6 1 4.801 126752 95.17 0008491 0 0 0 8 4 9 1 4.803 159957 95.27 1006824 1 0 0 6 8 2 4 4.807 51558 74.88 3008525 3 0 0 8 6 0 6 4.977 17436 52.57 0008044 0 0 0 8 8 4 4.994 59514 78.45 0008815						-	-					
0007833 0 0 0 7 8 3 3 4.658 89961 82.70 1001952 1 0 0 1 9 5 2 4.782 112168 88.67 0005961 0 0 0 5 9 6 1 4.801 126752 95.17 0008491 0 0 0 8 4 9 1 4.803 159957 95.27 1006824 1 0 0 6 8 2 4 4.807 51558 74.88 3008525 3 0 0 8 5 2 5 4.816 42906 64.01 0108606 0 1 0 8 6 0 8 4 4.994 59514 78.45 0008815 0 0 0 8 8 1 5 5.018				_								
1001952		_	-	-	_	-	_					
0005961 0 0 0 5 9 6 1 4.801 126752 95.17 0008491 0 0 0 8 4 9 1 4.803 159957 95.27 1006824 1 0 0 6 8 2 4 4.807 51558 74.88 3008525 3 0 0 8 5 2 5 4.816 42906 64.01 0108606 0 1 0 8 6 0 6 4.977 17436 52.57 0008084 0 0 0 8 8 4 4.994 59514 78.45 0008815 0 0 0 8 8 1 5 5.018 17660 69.44 4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084	0007633	U	U	U	1	0	ى 		4.056	09901	02.70	
0008491 0 0 0 8 4 9 1 4.803 159957 95.27 1006824 1 0 0 6 8 2 4 4.807 51558 74.88 3008525 3 0 0 8 5 2 5 4.816 42906 64.01 0108606 0 1 0 8 6 0 6 4.977 17436 52.57 0008084 0 0 0 8 8 4 4.994 59514 78.45 0008815 0 0 0 8 8 1 5 5.018 17660 69.44 4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084 1 0 0 8 0 8 4 5.048 56521 77.61	1001952	1	0	0	1	9	5	2	4.782	112168	88.67	
0008491 0 0 0 8 4 9 1 4.803 159957 95.27 1006824 1 0 0 6 8 2 4 4.807 51558 74.88 3008525 3 0 0 8 5 2 5 4.816 42906 64.01 0108606 0 1 0 8 6 0 6 4.977 17436 52.57 0008084 0 0 0 8 8 4 4.994 59514 78.45 0008815 0 0 0 8 8 1 5 5.018 17660 69.44 4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084 1 0 0 8 0 8 4 5.048 56521 77.61	0005961	0	0	0	5	9	6	1	4.801	126752	95.17	
1006824 1 0 0 6 8 2 4 4.807 51558 74.88 3008525 3 0 0 8 5 2 5 4.816 42906 64.01 0108606 0 1 0 8 6 0 6 4.977 17436 52.57 0008084 0 0 0 8 0 8 4 4.994 59514 78.45 0008815 0 0 0 8 8 1 5 5.018 17660 69.44 4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084 1 0 0 8 0 8 4 5.048 56521 77.61 0003990 0 0 0 3 9 9 0 5.193 96964 100.00 0009753 0 0 0 9 7 5 <												
3008525 3 0 0 8 5 2 5 4.816 42906 64.01 0108606 0 1 0 8 6 0 6 4.977 17436 52.57 0008084 0 0 0 8 0 8 4 4.994 59514 78.45 0008815 0 0 0 8 8 1 5 5.018 17660 69.44 4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084 1 0 0 8 0 8 4 5.048 56521 77.61 0003990 0 0 0 0 3 9 9 0 5.193 96964 100.00 0009753 0 0 0 9 7 5 3 5.197 35602 84.98 0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009526 1 0 0 9 9 5 2 6 5.245 7029 62.15 1008545 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 0 0 0 4 9 5 3 5.376 25531 85.63 0008881 0 0 0 8 8 8 8 1 5.395 51343 95.76				_								
0008084 0 0 0 8 0 8 4 4.994 59514 78.45 0008815 0 0 0 8 8 1 5 5.018 17660 69.44 4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084 1 0 0 8 0 8 4 5.048 56521 77.61 0003990 0 0 0 3 9 9 0 5.193 96964 100.00 0009753 0 0 0 9 7 5 3 5.197 35602 84.98 0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009526 1 0 0 9 5 2 6 5.245 7029 62.15 <td col<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td>											
0008084 0 0 0 8 0 8 4 4.994 59514 78.45 0008815 0 0 0 8 8 1 5 5.018 17660 69.44 4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084 1 0 0 8 0 8 4 5.048 56521 77.61 0003990 0 0 0 3 9 9 0 5.193 96964 100.00 0009753 0 0 0 9 7 5 3 5.197 35602 84.98 0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009526 1 0 0 9 5 2 6 5.245 7029 62.15 <td col<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td>											
0008815 0 0 0 8 8 1 5 5.018 17660 69.44 4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084 1 0 0 8 0 8 4 5.048 56521 77.61 0003990 0 0 0 3 9 9 0 5.193 96964 100.00 0009753 0 0 0 9 7 5 3 5.197 35602 84.98 0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009526 1 0 0 9 5 2 5.231 45306 89.6 1009526 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 <				_								
4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084 1 0 0 8 0 8 4 5.048 56521 77.61 0003990 0 0 0 3 9 9 0 5.193 96964 100.00 0009753 0 0 0 9 7 5 3 5.197 35602 84.98 0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009526 1 0 0 9 9 5 2 5.231 45306 89.6 1009526 1 0 0 9 5 2 6 5.245 7029 62.15 1008545 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 0 0 0 8 8 8 <td< td=""><td>0008084</td><td></td><td>0</td><td>0</td><td></td><td></td><td>8</td><td></td><td></td><td></td><td></td></td<>	0008084		0	0			8					
4009914 4 0 0 9 9 1 4 5.038 31691 72.38 1008084 1 0 0 8 0 8 4 5.048 56521 77.61 0003990 0 0 0 3 9 9 0 5.193 96964 100.00 0009753 0 0 0 9 7 5 3 5.197 35602 84.98 0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009526 1 0 0 9 9 5 2 5.231 45306 89.6 1009526 1 0 0 9 5 2 6 5.245 7029 62.15 1008545 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 0 0 0 8 8 8 <td< td=""><td>0008815</td><td>0</td><td>0</td><td>0</td><td>8</td><td>8</td><td>1</td><td>5</td><td>5.018</td><td>17660</td><td></td></td<>	0008815	0	0	0	8	8	1	5	5.018	17660		
1008084 1 0 0 8 0 8 4 5.048 56521 77.61 0003990 0 0 0 3 9 9 0 5.193 96964 100.00 0009753 0 0 0 9 7 5 3 5.197 35602 84.98 0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009526 1 0 0 9 9 5 2 5.231 45306 89.6 1009526 1 0 0 9 5 2 6 5.245 7029 62.15 1008545 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 0 0 0 8 8 8 1 5.395 51343 95.76	4009914	4	0	0	9	9	1	4	5.038	31691	72.38	
0009753 0 0 0 9 7 5 3 5.197 35602 84.98 0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009526 1 0 0 9 9 5 2 5.231 45306 89.6 1009526 1 0 0 9 5 2 6 5.245 7029 62.15 1008545 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 0 0 0 4 9 5 3 5.376 25531 85.63 0008881 0 0 0 8 8 8 1 5.395 51343 95.76	1008084	1	0	0	8	0	8	4	5.048		77.61	
0009753 0 0 0 9 7 5 3 5.197 35602 84.98 0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009526 1 0 0 9 9 5 2 5.231 45306 89.6 1009526 1 0 0 9 5 2 6 5.245 7029 62.15 1008545 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 0 0 0 4 9 5 3 5.376 25531 85.63 0008881 0 0 0 8 8 8 1 5.395 51343 95.76	0000000								E 400	00004	400.00	
0001953 0 0 0 1 9 5 3 5.208 38188 85.16 1009952 1 0 0 9 9 5 2 5.231 45306 89.6 1009526 1 0 0 9 5 2 6 5.245 7029 62.15 1008545 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 0 0 0 4 9 5 3 5.376 25531 85.63 0008881 0 0 0 8 8 8 1 5.395 51343 95.76												
1009952 1 0 0 9 9 5 2 5.231 45306 89.6 1009526 1 0 0 9 5 2 6 5.245 7029 62.15 1008545 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 0 0 0 4 9 5 3 5.376 25531 85.63 0008881 0 0 0 8 8 8 1 5.395 51343 95.76				-								
1009526 1 0 0 9 5 2 6 5.245 7029 62.15 1008545 1 0 0 8 5 4 5 5.365 11322 71.68 0004953 0 0 0 4 9 5 3 5.376 25531 85.63 0008881 0 0 0 8 8 8 1 5.395 51343 95.76												
1008545												
0004953 0 0 0 4 9 5 3 5.376 25531 85.63 0008881 0 0 0 8 8 8 1 5.395 51343 95.76	1009526	1	0	0	9	5	2	6	5.245	7029	62.15	
0004953 0 0 0 4 9 5 3 5.376 25531 85.63 0008881 0 0 0 8 8 8 1 5.395 51343 95.76	1008545	1	Λ	n	Ω	5	1		5 265	11322	71 69	
0008881 0 0 0 8 8 8 1 5.395 51343 95.76												
100/682 1 0 0 / 6 8 2 5.412 43604 90.24												
	1007682	1	0	0	7	6	8	2	5.412	43604	90.24	

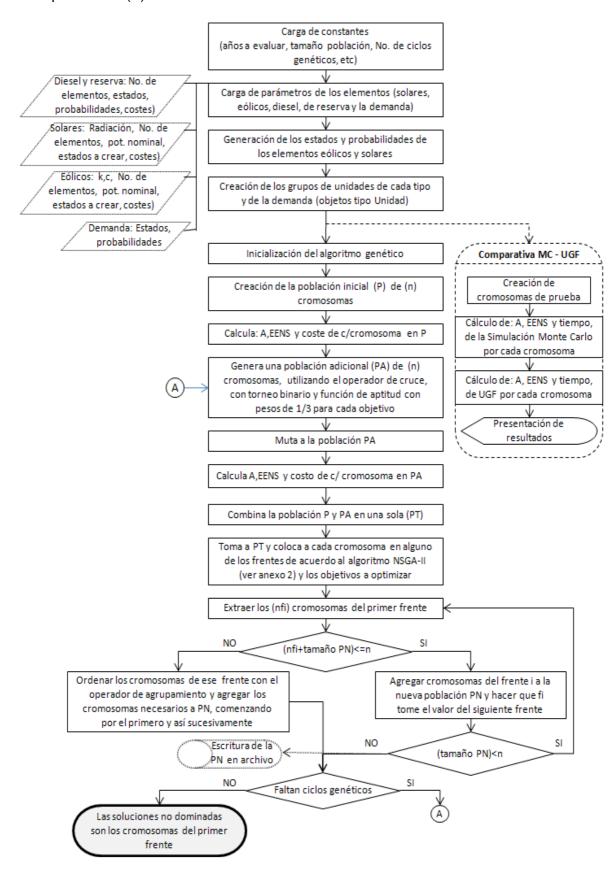
1008626	1	0	0	8	6	2	6	5.419	4860	63.87
3007990	3	0	0	7	9	9	0	5.578	57414	97.65
2008791	2	0	0	8	7	9	1	5.601	42703	94.3
2005/91	2	0	0	5	8	3	5	5.613	6222	72.02
1003176	1			3	1	7	6		5755	67.47
		0	0					5.629		
0007863	0	0	0	7	8	6	3	5.643	14617	86.45
0005991	0	0	0	5	9	9	1	5.785	26538	96.08
1109934	1	1	0	9	9	3	4	5.802	7356	75.21
4004907	4	0	0	4	9	0	7	5.869	2154	55.88
1006565	1	0	0	6	5	6	5	5.910	3777	75.38
0007565	0	0	0	7	5	6	5	5.912	3375	76.35
3009891	3	0	0	9	8	9	1	5.940	22441	93.84
0008991	0	0	0	8	9	9	1	5.954	18043	96.18
2004954	2	0	0	4	9	5	4	5.963	4992	80.3
4009863	4	0	0	9	8	6	3	5.969	8476	83.75
3009266	3	0	0	9	2	6	6	5.975	2272	67.29
0009200	0	0	0	9	9	6	3	5.985	5970	87.28
	4				2		-			0
4009266		0	0	9		6	6	6.028	2181	66.63
4007907	4	0	0	7	9	0	7	6.037	1805	57.47
3008907	3	0	0	8	9	0	7	6.040	1749	58.6
7008636	7	0	0	8	6	3	6	6.069	1998	62.9
1003855	1	0	0	3	8	5	5	6.103	2300	76.21
1008954	1	0	0	8	9	5	4	6.134	2587	81.71
3009963	3	0	0	9	9	6	3	6.146	4995	85.11
4008565	4	0	0	8	5	6	5	6.183	2217	73.83
3009792	3	0	0	9	7	9	2	6.190	9400	89.99
6008907	6	0	0	8	9	0	7	6.201	1662	56.75
0008917	0	0	0	8	9	1	7	6.207	1456	63.84
2000072		0		0	_			6.364	2000	86.59
2008973	2	0	0	8	9	7	3		3009	
0109926	0	1	0	9	9	2	6	6.380	1131	66.95
0009936	0	0	0	9	9	3	6	6.440	893	72.45
1008286	1	0	0	8	2	8	6	6.468	1189	72.76
4008973	4	0	0	8	9	7	3	6.471	2646	85.25
1005784	1	0	0	5	7	8	4	6.490	1632	83.27
2009855	2	0	0	9	8	5	5	6.494	859	76.90
3004983	3	0	0	4	9	8	3	6.522	2737	86.30
1009992	1	0	0	9	9	9	2	6.543	3332	92.02
0005495	0	0	0	5	4	9	5	6.554	1066	79.59
1008865	1	0	0	8	8	6	5	6.712	587.2	78.83
0002984	0	0	0	2	9	8	4	6.728	889.7	84.76
0005993	0	0	0	5	9	9	3	6.745	1291	89.09
0109992	0	1	0	9	9	9	2	6.758	2762	89.43
1005993	1	0	0	5	9	9	3	6.799	1214	88.45
0002894	0	0	0	2	8	9	4	6.826	773.3	85.10
4009983	4	0	0	9	9	8	3	6.856	1013	86.22
3009865	3	0	0	9	8	6	5	6.875	474.8	77.76
1008884	1	0	0	8	8	8	4	6.889	499.1	84.30
6008993	6	0	0	8	9	9	3	7.235	480.2	85.69
1005994	1	0	0	5	9	9	4	7.279	230.9	85.37
1007994	1	0	0	7	9	9	4	7.391	161.2	85.59
1009994	1	0	0	9	9	9	4	7.503	113.9	85.80
3009994	3	0	0	9	9	9	4	7.610	101.8	84.66
0000001	•	_	_	_	_			0.404	40.40	07.04
8608984	8	6	0	8	9	8	4	9.101	42.19	67.01
7318895	7	3	1	8	8	9	5	9.210	42.61	68.71
8609994	8	6	0	9	9	9	4	9.485	18.17	68.63
5709994	5	7	0	9	9	9	4	9.593	16.93	67.90
6059994	6	0	5	9	9	9	4	9.714	16.05	65.79
0169994	0	1	6	9	9	9	4	10.049	12.95	63.48
2078994	2	0	7	8	9	9	4	10.221	12.16	61.73
3079994	3	0	7	9	9	9	4	10.331	9.81	61.63
0010001										

SIMULACIÓN VIII. Todas las fuentes, dando prioridad a la energía solar.

CROMOSOMA	Unid. Solar 1	Unid. Solar 2	Unid. Solar 3	Unid. Eólica 1	Unid. Eólica 2	Unid. Eólica 3	Reserva (REE)	Coste de la energía en 20	EENS	% Energía
	_	-	_	_		-		años (M€)		Solar
0002000	0	0	0	2	0	0	0	0.112	3370786	0.0
0002013	0	0	0	2	0	1			1814552	0.00
0000403	0	0	0	0	4	0	3	2.360	1335349	0.0
1007894	1	0	0	7	8	9	4	7.161	311.39	0.71
1004865	1	0	0	4	8	6	5	6.488	1090.0	0.84
2003994	2	0	0	3	9	9	4	7.220	333.49	1.41
2006557	2	0	0	6	5	5	7	6.595	1343.9	1.84
1004206	1	0	0	4	2	0	6	3.618	345228	2.20
1006007	1	0	0	6	0	0	7	3.750	239375	2.35
1005105	1	0	0	5	1	0	5	2.964	836579	2.74
2009103	2	0	0	9	1	0	3	2.282	1499104	6.27
2008103			0	3	2.226	1546102	6.49			
4106874	4	1	0	6	8	7	4	6.877	1054.5	6.84
2001121	2	0	0	1	1	2	1	1.530	2253743	6.87
2003013	2	0	0	3	0	1	3	2.043	1733433	7.1
2000010	_	J	•	J	J	•		2.040	1100-100	7.1
2102903	2	1	0	2	9	0	3	3.998	325200	10.12
7106845	7	1	0	6	8	4	5	6.533	1602.1	10.38
1003001	1	0	0	3	0	0	1	0.702	2869427	10.75
1206067	1	2	0	6	0	6	7	6.254	2308.1	10.9
2027894	2	0	2	7	8	9	4	7.992	144.65	11.4
1101900	1	1	0	1	9	0	0	2.449	1481805	11.52
2009001	2	0	0	9	0	0	1	1.092	2577780	11.83
4027894	4	0	2	7	8	9	4	8.099	127.85	12.52
4002203	4	0	0	2	2	0	3	2.226	1586701	12.82
4127794	4	1	2	7	7	9	4	8.136	176.14	15.65
8005205	8	0	0	5	2	0	5	3.569	559075	16.49
2100601	2	1	0	0	6	0	1	2.236	1683773	16.67
1201602	1	2	0	1	6	0	2	2.986	1145918	21.11
9327894	9	3	2	7	8	9	4	9.170	47.59	22.26
						••				
0247594	0	2	4	7	5	9	4	8.507	282.01	25.19
3012105	3	0	1	2	1	0	5	3.291	812740	25.46
3157894	3	1	5	7	8	9	4	9.479	39.68	25.57
2018103	2	0	1	8	1	0	3	2.615	1414184	25.77
3013113	3	0	1	3	1	1	3	2.716	1383988	26.00
	_	_	_	_	_		•			
9806874	9	8	0	6	8	7	4	9.020	127.99	28.55
8807394	8	8	0	7	3	9	4	8.528	479.68	29.50
3015103	3	0	1	5	1	0	3	2.500	1535914	30.14
5087894	5	0	8	7	8	9	4	10.484	16.23	33.06
0083884	0	0	8	3	8	8	4	9.663	85.13	33.46
	_			_						_
7643974	7	6	4	3	9	7	4	9.993	57.80	35.70
1011201	1	0	1	1	2	0	1	1.438	2425362	35.86
7103012	7	1	0	3	0	1	2	2.099	2008645	36.04
3197894	3	1	9	7	8	9	4	11.033	10.28	36.41
1197794	1	1	9	7	7	9	4	10.696	20.12	36.67
4040400			4					0.450	4004000	00.05
1219103	1	2	1	9	1	0	3	3.153	1221866	38.85
4086845	4	0	8	6	8	4	5	9.213	244.25	39.63
3190974	3	1	9	0	9	7	4	10.214	76.84	39.80
6123213	6	1	2	3	2	1	3	3.763	936239	42.65
1407103	1	4	0	7	1	0	3	3.188	1276491	43.12
4086057	4	0	8	6	0	5	7	8.660	1279.1	45.45

4497394	4	4	9	7	3	9	4	10.740	74.55	45.56
5015101	5	0	1	5	1	0	1	1.647	2377595	45.6
9960974	9	9	6	0	9	7	4	11.513	21.84	45.74
8494865	8	4	9	4	8	6	5	11.432	33.29	46.00
2002000	2	0	0	2	0	0	0	0.219	3337683	47.6
2314013	2	3	1	4	0	1	3	3.292	1312424	47.71
7797874	7	7	9	7	8	7	4	12.199	8.76	47.96
7799494	7	7	9	9	4	9	4	12.047	13.19	48.33
2229103	2	2	2	9	1	0	3	3.595	1075778	48.36
2229103				9	ı			3.393	10/3/78	40.30
7977194	7	9	7	7	1	9	4	11.003	111.78	50.78
7022103	7	0	2	2	1	0	3	2.934	1475748	50.88
6302012	6	3	0	2	0	1	2	2.525	1906902	51.0
8996964	8	9	9	6	9	6	4	12.634	8.76	51.10
7282807	7	2	8	2	8	0	7	9.332	806.48	51.20
0101101	0	1	0	4	1	0	1	1.463	2562402	F2 04
8101101 6127201	8 6	1	2	7	2	0	1	2.700	2562493 1850503	53.94 54.33
9996664	9 8	9	9	6	6 1	6	5	11.997	30.07 341295	54.64
8234105	4	3	3	9	2	0	3	4.984		54.97 55.20
4339203	4	J	<u> </u>	9		U	<u> </u>	4.589	676890	55.20
1222012	1	2	2	2	0	1	2	2.767	1807125	57.20
7430115	7	4	3	0	1	1	5	5.570	238260	57.30
1022002	1	0	2	2	0	0	2	1.903	2216467	58.22
8990744	8	9	9	0	7	4	4	11.180	210.92	58.96
3059103	3	0	5	9	1	0	3	4.279	853596	58.98
0407404				_				0.507	000000	00.40
0137101	0	1	3	7	1	0	1	2.537	2020332	62.10
1424012	1	4	2	4	0	1	2	3.415	1551945	62.3
6131301	6	1	3	1	3	0	1	2.982	1787848	62.39
9338103	9	3	3	8	1	0	3	4.571	818635	62.5
6412012	6	4	1	2	0	1	2	3.182	1693288	62.7
2490407	2	4	9	0	4	0	7	8.956	1766.5	63.09
4026001	4	0	2	6	0	0	1	1.808	2421536	63.29
7142013	7	1	4	2	0	1	3	4.078	1096869	63.58
2142103	2	1	4	2	1	0	3	3.712	1215974	63.73
1258103	1	2	5	8	1	0	3	4.651	780703	63.91
1498017	1	4	9	8	0	1	7	8.759	1987.9	64.23
1201100	1	2	0	1	1	0	0	0.876	3032293	64.33
4002000	4	0	0	2	0	0	0	0.327	3304966	64.5
1448103	1	4	4	8	1	0	3	4.798	750866	64.79
3160105	2	3	6	0	1	0	5	5.390	332985	65.12 65.39
2364105 7175105	7	1	6 7	4 5	1	0	5	6.097 6.273	168537 136141	65.70
7173103	1	'	1		'			0.213	130141	05.70
7269103	7	2	6	9	1	0	3	5.417	558185	68.49
7142012	7	1	4	2	0	1	2	3.598	1530570	68.54
9021101	9	0	2	1	1	0	1	2.026	2364165	69.25
5104000	5	1	0	4	0	0	0	0.760	3114210	69.44
9331103	9	3	3	1	1	0	3	4.178	1118815	69.5
8498007	8	4	9	8	0	0	7	8.806	2191.8	69.54
1111001	1	1	1	1	0	0	1	1.246	2748592	69.65
7189013	7	1	8	9	0	1	3	6.025	416003	69.79
9787115	9	7	8	7	1	1	5	8.817	7912.3	70.27
9025001	9	0	2	5	0	0	1	2.020	2385586	70.42
8003000	8	0	0	3	0	0	0	0.597	3193623	70.80
1092203	1	0	9	2	2	0	3	5.563	567873	72.85
4694007	4	6	9	4	0	0	7	8.903	2683.1	72.83
1013000	1	0	1	3	0	0	0	0.611	3176774	72.90
0305000	0	3	0	5	0	0	0	1.084	2985483	73.17
8995107	8	9	9	5	1	0	7	10.207	1450.2	73.31
								. 5.25	50.2	. 0.0 1

4026000 1831103 1211001 9590105	1 1	8	3	6 1	0	0	3	1.328	2856731	75.19
1211001 9590105			3	1	1	0	2	F 000	064022	75 40
9590105	1	_			-	U	3	5.088	861932	75.49
		2	1	1	0	0	1	1.514	2666741	75.7
	9	5	9	0	1	0	5	7.949	56991	77.9
0526001	0	5	2	6	0	0	1	2.933	2072257	77.95
1121001	1	1	2	1	0	0	1	1.635	2616128	78.29
	-									
4392013	4	3	9	2	0	1	3	6.396	475804	78.31
3102000	3	1	0	2	0	0	0	0.541	3238865	78.4
0761103	0	7	6	1	1	0	3	5.933	627348	79.73
7141101	7	1	4	1	1	0	1	2.964	2050778	79.85
8697103	8	6	9	7	1	0	3	7.596	206266	79.88
9115000	9	1	1	5	0	0	0	1.419	2870737	80.00
7437001	7	4	3	7	0	0	1	3.485	1861455	80.06
2070212		_						0.450	700450	
8672012	8	6	7	2	0	1	2	6.156	768150	82.31
1790013	1	7	9	0	0	1	3	7.194	371846	82.4
0023000	0	0	2	3	0	0	0	0.946	3060466	82.9
8036000	8	0	3	6	0	0	0	1.931	2659170	82.90
4088001	4	0	8	8	0	0	1	4.252	1542276	83.1
8102000	8	1	0	2	0	0	0	0.809	3157296	85.53
9597002	9	5	9	7	0	0	2	6.672	619150	85.69
7690012	7	6	9	0	0	1	2	6.768	659202	85.83
3775101	3	7	7	5	1	0	1	5.747	1072360	85.84
4591201	4	5	9	1	2	0	1	6.048	956396	86.25
8957001	8	9	5	7	0	0	1	5.655	1190677	87.98
9130100	9	1	3	0	1	0	0	2.146	2633883	88.37
6497001	6	4	9	7	0	0	1	5.763	1112052	88.53
9012000	9	0	1	2	0	0	0	0.983	3091463	88.54
2495001	2	4	9	5	0	0	1	5.437	1262533	89.95
0473001	0	4	7	3	0	0	1	4.440	1639197	90.15
7792002	7	7	9	2	0	0	2	6.820	703681	90.33
0111000		1	1	1	0			0.713	2202424	02.20
0111000	2	3	1	1 5	0	0	0	3.523	3202124	92.20
2365000			6		0	0	0		2164477	92.20 92.38
3371001	3	3	7	1	0	0	1	4.221	1763835	
0191001	0	1	9	1	0	0	1	4.301	1716679	92.66
1381001	1	3	8	1	0	0	1	4.502	1667345	92.92
8395000	8	3	9	5	0	0	0	5.010	1678653	94.53
9591001	9	5	9	1	0	0	1	5.855	1255173	94.56
7691001	7	6	9	1	0	0	1	6.016	1210498	94.70
3142000	3	1	4	2	0	0	0	2.095	2712524	94.79
7232000	7	2	3	2	0	0	0	2.189	2695906	94.9
0.400.00-				_	_			=-	46.=	
2483000	2	4	8	3	0	0	0	4.456	1915164	96.30
2172000	2	1	7	2	0	0	0	3.208	2337535	96.63
3082000	3	0	8	2	0	0	0	3.382	2272297	96.82
7593000	7	5	9	3	0	0	0	5.380	1624928	96.92
2141000	2	1	4	1	0	0	0	1.986	2774726	97.26
8931000	8	9	3	1	0	0	0	4.062	2155031	98.59
5581000	5	5	8	1	0	0	0	4.772	1876462	98.84
0881000	0	8	8	1	0	0	0	5.308	1715610	98.95
9991000	9	9	9	1	0	0	0	6.447	1367964	99.13
1000000	1	0	0	0	0	0	0	0.054	3445640	100.0
	2	0	0	0	0	0	0			100.0
2000000							-	0.107	3429134	
0010000	0	0	1	0	0	0	0	0.389	3330204	100.00
2040000	3	0	1	0	0	0	0	0.549	3281010	100.00
	^	4	0	^	_ ^	^	^	4 007	2047047	40000
3010000 6120000 1130000	6	1	2	0	0	0	0	1.367 1.487	3017017 2967923	100.00 100.0


ANEXO 13. COSTES APROXIMADOS POR TIPO DE DEMANDA

Coste aproximado si cada tipo de fuente cubriera por sí sola la demanda pico y su único estado fuera el nominal.

Interes (diesel y energía red)		4 % 5 %					aluar en año	S	20							
Interes de potencia		5 %			(Costo del die	sel		1.28		4800					
FOLICO (D	isponibilidad variable)	1	2	3	4	5	6	7	8	9	AÑOS 10	11	12	13	14	15
O & M Eólico	(€/kWh)	0.0070	0.0073	0.0076	0.0079	0.0082	0.0085	0.0089	0.0092	0.0096	0.0100	0.0104	0.0108	0.0112	0.0117	0.0121
Instalación	(€/kWh *20 años)	3000	2500	2000										****	*.*	******
Total del kWh en 20 Años	(6) 25 453	4825.99	4264.67	3700.90 €	;											
Coste de 50 kW para 20 años		0.1500	0.1250	0.1000 N												
Coste de 450 kW para 20 año		2.1717	1.9191	1.6654 N												
											AÑOS					
SOLAR(Di	sponibilidad variable)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
O & M Solar	(€/kWh)	0.0120	0.0125	0.0130	0.0135	0.0140	0.0146	0.0152	0.0158	0.0164	0.0171	0.0178	0.0185	0.0192	0.0200	0.0208
Instalación	(€/kWh *20 años)	4000	4000	3000												
Total del kWh en 20 Años		7130.27	7130.27	6130.27 €]											
Coste de 50 kW para 20 años		0.2000	0.2000	0.1500 N	Л€											
Coste de 450 kW para 20 año		3.2086	3.2086	2.7586 N	Л€											
											AÑOS					
REE BT (D	isponibilidad 99,83%)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Potencia	(€/kw año)	22.3020	23.4171	24.5880	25.8174	27.1082	28.4636	29.8868	31.3812	32.9502	34.5977	36.3276	38.1440	40.0512	42.0537	44.1564
Energía	(€/kWh)	0.1284	0.1336	0.1389	0.1445	0.1503	0.1563	0.1625	0.1690	0.1758	0.1828	0.1901	0.1977	0.2056	0.2139	0.2224
Total del kWh en 20 Años		34241.78	Ĭ.													
Coste de 50 kW para 20 años		1.7121	VI€													
											AÑOS					
	isponibilidad 99,86%)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Potencia	(€/kw año)	16.9817	17.8308	18.7223	19.6584	20.6414	21.6734	22.7571	23.8950	25.0897	26.3442	27.6614	29.0445	30.4967	32.0215	33.6226
Energía	(€/kWh)	0.0346	0.0360	0.0375	0.0390	0.0405	0.0421	0.0438	0.0456	0.0474	0.0493	0.0513	0.0533	0.0555	0.0577	0.0600
Total del kWh en 20 Años Coste de 450 kW para 20 año		9597.73 4 4.3190 I														
Coste de 450 kw para 20 ano	5	4.3190 1	VI€								. ~					
Diosal (Dispon	ibilidad 96%), planta 32 kW	1	2	3	4	5	6	7	8	9	AÑOS 10	11	12	13	14	15
Instalacion	(€/kw año)	328.13			-	383.87	- 0		0	449.07	10	11	12	525.35	14	13
0 & M	(30 % inst. inicial)	98.44				115.16				134.72				157.60		
Diesel (9,1 L/h)	(€/kWh)	0.364	0.379	0.394	0.409	0.426	0.443	0.461	0.479	0.498	0.518	0.539	0.560	0.583	0.606	0.630
Total del kWh en 20 Años	(C) KVIII)	97942.86		0.554	0.403	0.420	0.443	0.401	0.473	0.430	0.510	0.555	0.500	0.505	0.000	0.030
Coste del elemento en 20 año	ns (32	3.13														
Coste de 50 kW para 20 años	-	4.90 1														
Coste de 450 kW para 20 año		44.07 1														
· · · · · · · · · · · · · · · · · · ·											AÑOS					
Diesel (Dispon	ibilidad 96%), planta 80 kW	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Instalacion	(€/kw año)	193.75				226.66				265.16				310.20		
0 & M	(30 % inst. inicial)	58.13				68.00				79.55				93.06		
Diesel (23,1 L/h)	(€/kWh)	0.370	0.384	0.400	0.416	0.432	0.450	0.468	0.486	0.506	0.526	0.547	0.569	0.592	0.615	0.640
Total del kWh en 20 Años		98178.62	3													
Coste del elemento en 20 año	os (80	7.85 1	VI€													
Coste de 450 kW para 20 año		44.18														

ANEXO 14. DIAGRAMA DE FLUJO GENERAL DEL PROGRAMA

Si uno de los objetivos es el "% renovables", este se intercambia en el diagrama por la disponibilidad (A).

