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Abstract. The multigrid solution of coupled porous media and Stokes flow problems is consid-
ered. The Darcy equation as the saturated porous medium model is coupled to the Stokes equations
by means of appropriate interface conditions. We focus on an efficient multigrid solution technique
for the coupled problem, which is discretized by finite volumes on staggered grids, giving rise to a
saddle point linear system. Special treatment is required regarding the discretization at the interface.
An Uzawa smoother is employed in multigrid, which is a decoupled procedure based on symmetric
Gauss–Seidel smoothing for velocity components and a simple Richardson iteration for the pressure
field. Since a relaxation parameter is part of a Richardson iteration, local Fourier analysis is applied
to determine the optimal parameters. Highly satisfactory multigrid convergence is reported, and,
moreover, the algorithm performs very well for small values of the hydraulic conductivity and fluid
viscosity, which are relevant for applications.
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1. Introduction. Coupling of free flow and a saturated porous medium has
received considerable attention due to applications in environmental and industrial
contexts, such as in flood simulation, filtration, and contamination. It is challenging
to deal with a coupled multiphysics system, since each part of the system is based
on a different model, and an appropriate coupling at the interface is required. Flow
in the saturated porous medium is modeled by the conventional Darcy equation here
(the solid framework is assumed to be rigid, and there is no interaction between
the fluid and the solid matrix in the porous medium), while the Newtonian flow
through a channel is modeled by the incompressible Stokes equations. Appropriate
interface conditions are based on the principles of mass conservation, equilibrium
of normal stresses across the interface, and a special condition called the Beavers–
Joseph–Saffman condition [29, 42] describing the relation between the shear stress
and the tangential velocity. Many researchers have studied multiphysics problems
theoretically; see, for example, [2, 13, 33, 27].

The numerical solution of these multiphysics problems is also an active research
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area [17, 19, 26, 40, 41]. We discretize the Darcy–Stokes problem by the finite volume
method on a staggered grid, which results in a symmetric system. The mixed formu-
lation of the Darcy problem is used, so that the discretized equations on the staggered
grid result in a matrix of saddle point form [4], where a zero block appears on the
diagonal of the system matrix. The zero block thus appears in the matrix of the com-
plete problem, because a stable staggered discretization is used for the Darcy–Stokes
equations.

There are basically two ways to solve a coupled multiphysics system. A popu-
lar approach is based on the domain decomposition method (DDM) [39, 44]. DDM
exploits the principle of divide-and-conquer and is based on decoupling the global
problem so that mainly independent subproblems are to be solved. Several advanced
iterative solvers of this type have been applied to the Darcy–Stokes system, for exam-
ple, the Dirichlet–Neumann-type DDM [18], Robin–Robin DDM [14, 20], Lagrange
multiplier–based DDM [32], and many others [11, 12, 36]. DDM is often used as
a preconditioner for a Krylov subspace method for such coupled multiphysics prob-
lems. On the other hand, the so-called monolithic solution approach focuses on the
simultaneous solution of the multiphysics system. Methods in this class typically
exhibit robust convergence when there is a strong coupling between the two subsys-
tems. Based on this insight, different monolithic methods have been proposed in the
literature, such as preconditioned GMRES methods [10, 15, 16], where it was demon-
strated that block-triangular and constraint preconditioners yield mesh-independent
convergence.

We solve the coupled system by developing an efficient monolithic multigrid al-
gorithm. Often, multigrid methods have been applied for the efficient solution of
saddle point systems, even dating back to the early days of multigrid for systems of
incompressible Navier–Stokes equations [8, 9]. Other efficient multigrid methods for
Stokes and incompressible Navier–Stokes problems have been developed, for exam-
ple, in [5, 23, 28, 31, 46]. In [1] an efficient monolithic method was proposed for the
magneto-hydrodynamics system.

Within a multigrid method, the choice of the smoothing method plays an im-
portant role. Basically, there are two major categories of smoothers for saddle point
problems, classified as coupled and decoupled smoothers; see [21, 22, 37]. Coupled
smoothers, such as the Vanka smoother [46], or box relaxation, are governed by the
fact that all equations of the system are updated simultaneously in a coupled fashion.
Decoupled, equationwise, smoothing methods, however, are also popular, because of
their convenient implementation. In this paper, we consider an equationwise smoother
within monolithic multigrid for the Darcy–Stokes system. The Uzawa smoother [35]
will be applied for this discrete coupled system. This smoother has been enhanced
for the Stokes equations in [23]. For the problem considered here, the velocities in
the Darcy and Stokes equations are updated first, after which the pressures for both
subsystems are relaxed. The Uzawa smoother is based on a Richardson iteration in
which a relaxation parameter is present. Local Fourier analysis (LFA) is applied to
choose suitable values for the relaxation parameter. LFA is a powerful tool for the
quantitative analysis of the convergence of multigrid, introduced by Brandt [6] in
1977 and then further developed in [7]. A general introduction can be found in [45],
and software is available in [47]. As the optimal relaxation parameter for the Stokes
problem has already been determined in [23], in the present paper we are concerned
with the selection of an optimal parameter for the Darcy problem through LFA. Here,
LFA is also used to confirm the convergence obtained from the monolithic multigrid
method. LFA is applied to the Darcy and Stokes subproblems separately, and it is
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shown that the worst of these factors proves to be the global multigrid convergence
for the coupled problem. By using the monolithic multigrid approach, we are able to
achieve a textbook multigrid convergence rate, even when the values of the physical
parameters are realistically small.

We deal with the so-called multiblock multigrid method which is based on the grid
partitioning technique [45]. Boundary updates are communicated between neighbor-
ing blocks within the algorithm on each multigrid level. In [45, Chapter 6], a detailed
introduction of the grid partitioning technique is given. The convergence of the multi-
block multigrid algorithm is identical to its single block equivalent in our case.

The paper is organized as follows. The equations in free flow and porous media,
together with the interface conditions, are introduced in section 2. Section 3 deals with
the discretization of the coupled Darcy–Stokes system. We give the discrete formulas
for the coupled system including the discretization at the interface. The solution
method, the Uzawa smoother, and its analysis by means of LFA are presented in
section 4. In section 5, several numerical experiments are performed to show the
efficiency of the algorithm. Conclusions are drawn in section 6.

2. Problem formulation. In this work, we restrict ourselves to the two-dimen-
sional Darcy–Stokes problem. The proposed solution strategy can be straightfor-
wardly extended to a three-dimensional setting.

We consider the Darcy–Stokes problem on a bounded domain Ω ⊂ R
2 and as-

sume that Ω is subdivided into two disjoint subdomains Ωd and Ωf , corresponding
to the porous medium and free-flow regions, respectively. Let Γ denote the interface
between the two subregions, that is, Γ = ∂Ωd ∩ ∂Ωf . The geometry of the problem is
represented in Figure 1, where we also display nf and nd, denoting the unit outward
normal vectors on ∂Ωf and ∂Ωd, respectively. At the interface Γ, we have nf = −nd.

Γ

ΩΩf

Ωd

�n�n
f

�nd

�τ

Fig. 1. Geometry of the Darcy–Stokes problem. Subdivision of the domain Ω into a free-flow
subregion Ωf and a porous medium subdomain Ωd by an internal interface Γ.

We describe the porous medium and free-flow models considered on the differ-
ent subdomains, including the boundary conditions for the outer boundaries, in sec-
tions 2.1 and 2.2, and the internal interface conditions governing the interactions
between the fluid and the porous medium in section 2.3.

2.1. Porous medium description. The fluid flow through a rigid and satu-
rated porous medium Ωd is described by Darcy’s law, which is an expression of con-
servation of momentum. The mixed formulation of the Darcy problem is natural for
computations in the porous medium region since it allows one to directly approximate
the velocity. In this work, we will consider this formulation, which reads

(1)
K

−1ud + ∇pd = 0 in Ωd,

∇ · ud = fd in Ωd,
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where ud = (ud, vd) describes the velocity and pd the fluid pressure inside the porous
medium. K is the hydraulic conductivity tensor, representing the properties of the
porous medium and the fluid. Here, the case K = KI, K > 0, is considered. Sinks
and sources are described by the force term fd.

We assume that the boundary ∂Ωd \Γ is the union of two disjoint subsets Γd
D and

Γd
N , where Dirichlet and Neumann boundary conditions are imposed. More concretely,

we consider the following boundary conditions:

(2)
pd = gd

D on Γd
D,

ud · nd = gd
N on Γd

N .

2.2. Free-flow description. The free-flow subproblem is modeled by using the
Stokes equations for a viscous, incompressible, Newtonian fluid. It is a linearized form
of the Navier–Stokes equations in the limit case when the nonlinear term becomes
negligible. The motion of the Stokes flow in the region Ωf is described by

(3)
−∇ · σf = ff in Ωf ,

∇ · uf = 0 in Ωf ,

where uf = (uf , vf ) is the fluid velocity, ff = (ff
1 , ff

2 ) represents a prescribed force,
and the fluid stress tensor σf is given by

σf = −pfI + 2νD(uf ),

with pf denoting the fluid pressure and ν representing the fluid viscosity and where
D(uf ) = (∇uf + (∇uf )T )/2 is the strain tensor. The first equation in (3) is the
so-called momentum equation, and the second one is the continuity equation. By
writing the stress tensor σf as

(4) σf :=
(

σxx σxy

σyx σyy

)
,

where

(5) σxx = −pf+2ν
∂uf

∂x
, σxy = σyx = ν

(
∂uf

∂y
+

∂vf

∂x

)
, σyy = −pf+2ν

∂vf

∂y
,

we can rewrite (3) as follows:

−ν

(
∂2uf

∂x2 +
∂2uf

∂y2

)
+

∂pf

∂x
= ff

1 in Ωf ,(6)

−ν

(
∂2vf

∂x2 +
∂2vf

∂y2

)
+

∂pf

∂y
= ff

2 in Ωf ,(7)

∂uf

∂x
+

∂vf

∂y
= 0 in Ωf .(8)

For the free-flow subproblem, we split ∂Ωf\Γ into two disjoint parts Γf
D and Γf

N ,
where we impose the following boundary conditions:

(9)
uf = gf

D on Γf
D,

σf · nf = gf
N on Γf

N .
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2.3. Interface conditions. The Darcy and Stokes systems must be coupled
across the internal interface Γ by adequate conditions. To describe them, we fix the
normal vector to the interface to be n = nf = −nd, and we denote τ (see Figure 1) as
the tangential unit vector at the interface Γ, obtained by rotating the normal vector in
the counterclockwise direction by 90◦. Across Γ the continuity of fluxes and normal
stresses must be imposed. This gives rise to the following two standard coupling
conditions on Γ:

• Mass conservation:

(10) uf · n = ud · n on Γ.

• Balance of normal stresses:

(11) −n · σf · n = pd on Γ.

As the third coupling condition, the so-called Beavers–Joseph–Saffman interface
condition is widely used, which is supported by experimental findings and rigorous
mathematical theory of homogenization. This condition relates the tangential velocity
along the interface with the fluid stresses, that is,

(12) αuf · τ + τ · σf · n = 0 on Γ,

where α is a parameter which needs to be experimentally determined and depends on
the properties of the porous medium.

An alternative to this third interface condition neglects the second term in (12),
giving rise to a no-slip interface condition,

(13) uf · τ = 0 on Γ.

3. Discretization. The finite volume method on a staggered grid [38] is con-
sidered as the discretization scheme for the Darcy–Stokes problem. By using this
discretization we ensure that spurious oscillations do not appear in the numerical so-
lution [25], and we obtain a mass conservative algorithm for the whole system. The
computational domain is partitioned into square blocks of size h × h, so that the
grid is conforming at the interface Γ. For notational convenience, we choose equal-
sized blocks, but the description in the more general case would be straightforward.
Different control volumes are defined depending on which variable is considered. In
Figure 2, we represent in different colors the control volumes corresponding to the
primary variables u, v, and p.1 The pressure unknowns p are defined at the centers
of the blocks (marked by ×-points in Figure 2), and the components of the velocity
unknowns, u and v, are located at the centers of the block faces (denoted by the ◦-
and •-points in the same figure). For the description of the discrete scheme, we need
to fix an adequate indexing for the unknowns, which can be seen in Figure 3, where
each unknown is depicted together with the corresponding control volume and the
different variables around it.

We describe in detail the discretization for the mixed formulation of the Darcy
problem in section 3.1, the discrete scheme for the Stokes equations in section 3.2,
and the special discretization considered for the internal interface Γ in section 3.3.

1In the following figures, the superscript d/f is omitted, as we have the same arrangement for
both subproblems.
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• • • •

• • • •

• • • •

• • • •

• • • •

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

× × × ×

× × × ×

× × × ×

× × × × ×: p

◦: u

•: v

Γ

Fig. 2. Staggered grid location of unknowns for the coupled model, and corresponding control
volumes.

• •

• •

◦× ×pi,j pi+1,jui+ 1
2 ,j

vi+1,j+ 1
2

vi,j+ 1
2

vi+1,j− 1
2

vi,j− 1
2

w e

n

s ◦ ◦

◦ ◦

•

×

×

pi,j

pi,j+1

vi,j+ 1
2

ui+ 1
2 ,j+1ui− 1

2 ,j+1

ui+ 1
2 ,jui− 1

2 ,j

◦ ◦×

•

•

vi,j− 1
2

vi,j+ 1
2

pi,j

ui+ 1
2 ,jui− 1

2 ,j

Fig. 3. Control volumes for the primary unknowns: u (left), v (middle), p (right), together
with the corresponding indexing for each variable.

3.1. Discretization of Darcy equations. Since in the mixed formulation of
the Darcy problem the pressure and the velocities are the primary variables, we de-
scribe the corresponding discretizations for each equation. Regarding the horizontal
velocity unknown, let us consider control volume Vi+1/2,j for variable ud

i+1/2,j (Fig-
ure 3 (left)). By discretizing the first equation in (1) over such a control volume, we
obtain

(14) K−1ud
i+ 1

2 ,j +
pd

i+1,j − pd
i,j

h
= 0.

Similarly, by discretizing the equation for vd in (1) over a control volume Vi,j+1/2 (Fig-
ure 3 (middle)), one obtains the discrete equation for the vertical velocity unknown
vd

i,j+1/2,

(15) K−1vd
i,j+ 1

2
+

pd
i,j+1 − pd

i,j

h
= 0.

Equations (14) and (15) are associated with internal velocity unknowns. In the case
of variables located at the external boundary where Dirichlet boundary conditions for
the pressure are imposed, the corresponding control volumes to consider are half the
size of the inner control volumes and are treated accordingly.

Finally, the discrete equation corresponding to the pressure unknown pd
i,j is ob-

tained by discretizing the second equation in (1) over control volume Vi,j (Figure 3
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(right)), resulting in

(16)
ud

i+ 1
2 ,j

− ud
i− 1

2 ,j

h
+

vd
i,j+ 1

2
− vd

i,j− 1
2

h
= fd

i,j .

3.2. Discretization of Stokes equations. We proceed by briefly presenting
the discretization of the Stokes equations. Regarding the mass balance equation,
similarly as in the previous section, we discretize the second equation in (3) over
control volume Vi,j to obtain the following discrete equation:

(17)
uf

i+ 1
2 ,j

− uf

i− 1
2 ,j

h
+

vf

i,j+ 1
2

− vf

i,j− 1
2

h
= 0.

Regarding the momentum equation in (3), we describe only the first component of the
equation since the second one would be deduced in a similar way. Thus, discretizing
such a component over control volume Vi+ 1

2 ,j yields

(18) −
(

(σxx)e − (σxx)w

h
+

(σxy)n − (σxy)s

h

)
= (ff

1 )i+ 1
2 ,j ,

where σxx and σxy are components of the stress tensor. Approximating these compo-
nents as

(σxx)e = −pf
i+1,j + 2ν

uf

i+ 3
2 ,j

− uf

i+ 1
2 ,j

h
,

(σxy)n = ν

⎛⎝uf

i+ 1
2 ,j+1 − uf

i+ 1
2 ,j

h
+

vf

i+1,j+ 1
2

− vf

i,j+ 1
2

h

⎞⎠ ,

(σxx)w = −pf
i,j + 2ν

uf

i+ 1
2 ,j

− uf

i− 1
2 ,j

h
,

(σxy)s = ν

⎛⎝uf

i+ 1
2 ,j

− uf

i+ 1
2 ,j−1

h
+

vf

i+1,j− 1
2

− vf

i,j− 1
2

h

⎞⎠ ,

and substituting them in (18), we obtain the following equation:

−2ν

h2

(
uf

i+ 3
2 ,j

− 2uf

i+ 1
2 ,j

+ uf

i− 1
2 ,j

)
− ν

h2

(
uf

i+ 1
2 ,j+1 − 2uf

i+ 1
2 ,j

+ uf

i+ 1
2 ,j−1

)
− ν

h2

(
vf

i+1,j+ 1
2

− vf

i,j+ 1
2

− vf

i+1,j− 1
2

+ vf

i,j− 1
2

)
+

1
h

(
pf

i+1,j − pf
i,j

)
=
(
ff
1

)
i+ 1

2 ,j
.

3.3. Discretization of the interface. In this section, we describe how we deal
with the interface conditions. Our proposal is to obtain a special discrete equation
for the unknowns at the internal interface. Due to the staggered arrangement of
the unknowns, the only variables at the interface are the vertical components of the
velocity; see Figure 4. For this purpose, we integrate the momentum equation of the
Stokes system over a half-volume, as displayed in red in Figure 4, giving rise to the
following equation:

(19) −
(

(σxy)e − (σxy)w

h
+

(σyy)n − (σyy)s

h/2

)
= (ff

2 )i,j+ 1
2
,
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• • •

• • •

• • •

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

× × ×

× × ×

Γ
v

d/f

i,j+ 1
2

v
d/f

i−1,j+ 1
2

v
d/f

i+1,j+ 1
2

pf
i,j+1uf

i− 1
2 ,j+1 uf

i+ 1
2 ,j+1

pd
i,j

ew

n

s

Fig. 4. Staggered grid location of the unknowns for the interface conditions.

where, as can be seen in Figure 4, e and w denote locations at the interface, whereas
n and s denote the locations of pf

i,j+1 and v
d/f

i,j+ 1
2
, respectively. The approximation of

(σyy)n is easily obtained as

(20) (σyy)n = −pf
i,j+1 +

2ν

h

(
vf

i,j+ 3
2

− vf

i,j+ 1
2

)
,

whereas the approximation of the other components of the stress tensor requires the
use of the interface conditions. To approximate the component (σyy)s, we directly
apply the interface condition (11), obtaining

(21) (σyy)s = −pd
s.

The pressure pd
s is not known at the interface, but it can be approximated with the

help of the Darcy problem. By integrating the corresponding equation over a half-
volume as displayed in blue in Figure 4, we obtain

(22) K−1vd
i,j+ 1

2
+

pd
s − pd

i,j

h/2
= 0.

Substituting this equation in (21), the approximation reads

(23) (σyy)s = −pd
i,j +

h

2K
vd

i,j+ 1
2
.

To approximate the remaining components of the stress tensor, we need to use either
the no-slip or the Beavers–Joseph–Saffman interface condition. Here, we consider the
latter since it is the most involved case. The standard approximation of the Beavers–
Joseph–Saffman condition (12) at the location denoted by e reads

(24) αuf
e − ν

⎛⎝uf

i+ 1
2 ,j+1 − uf

e

h/2
+

vf

i+1,j+ 1
2

− vf

i,j+ 1
2

h

⎞⎠ = 0.

Here, uf
e can be obtained from (24) and substituted into the standard approximation
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of the stress (σxy)e, resulting in

(25)

(σxy)e = ν

⎛⎝uf

i+ 1
2 ,j+1 − uf

e

h/2
+

vf

i+1,j+ 1
2

− vf

i,j+ 1
2

h

⎞⎠
=

2νm

h
uf

i+ 1
2 ,j+1 + νm

vf

i+1,j+ 1
2

− vf

i,j+ 1
2

h
,

where m = (1 − 2ν
hα+2ν ). The approximation of (σxy)w can be calculated in a similar

way. The discrete equation for the vertical velocities for the Stokes problem at the
interface is thus obtained by substituting (20), (23), and (25) into (19), giving

(26)
−2νm

h2

(
uf

i+ 1
2 ,j+1 − uf

i− 1
2 ,j+1

)
− νm

h2

(
vf

i+1,j+ 1
2

− 2vf

i,j+ 1
2

+ vf

i−1,j+ 1
2

)
+

2
h

(
pf

i,j+1 − pd
i,j

)− 4ν

h2

(
vf

i,j+ 3
2

− vf

i,j+ 1
2

)
+

1
K

vf

i,j+ 1
2

=
(
ff
2

)
i,j+ 1

2
,

where we have used the interface condition vd
i,j+ 1

2
= vf

i,j+ 1
2
.

The discretization at the interface is of great importance and can be viewed as
a relevant ingredient toward the construction of a highly efficient multigrid method.
Since the coupled system is treated as a single problem, the equations of fluid dy-
namics, solid mechanics, and their complex interaction are all included in one discrete
formulation. By such a discretization, the fully coupled system possesses a saddle
point structure which is suitable for monolithic multigrid.

4. Numerical method. This section is devoted to the design of a monolithic
geometric multigrid for the Darcy–Stokes problem. For this purpose, we will first
study the application of multigrid methods based on Uzawa smoothers to the Darcy
and Stokes problems separately. In this analysis we will take into account the devel-
opment of an LFA technique to obtain suitable parameters for these methods. These
algorithms will form the basis for constructing a monolithic multigrid for the coupled
problem. This will be possible since the individual Stokes and Darcy systems, as well
as the fully coupled problem, lead to saddle point linear systems of the form

(27)
(

A BT

B 0

)(
u
p

)
=
(

g
f

)
,

by choosing an adequate arrangement of the unknowns. For both problems, BT

and B represent the discrete gradient and the minus discrete divergence operators,
respectively, and A is the discrete representation of either the Laplace-type operator
−νΔ for the Stokes equations, or K−1I for the Darcy equation. For the coupled
problem, rearranging the vector of unknowns to order first the velocities for both
problems and thereafter the pressure unknowns, we obtain the following linear system:

(28)

⎛⎜⎜⎝
Ad 0 (Bd)T 0
0 Af R (Bf )T

Bd R 0 0
0 Bf 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝

ud

uf

pd

pf

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
ff

fd

0

⎞⎟⎟⎠ ,

where the system matrix in (28) has the same saddle point structure as in (27), by
denoting

A =
(

Ad 0
0 Af

)
, B =

(
Bd R
0 Bf

)
, BT =

(
(Bd)T 0

R (Bf )T

)
.
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Here, R is a diagonal matrix containing the relations given by formula (26) between
the vertical velocities vf and the corresponding pressure unknowns in the Darcy do-
main pd. So, most of its elements are zero, and the only nonzero diagonal terms are
those corresponding to the Darcy pressure unknowns close to the internal interface,
appearing in the equations of the vertical velocities on Γ. Due to this structure of the
coupled problem, a geometric multigrid method together with an Uzawa smoother,
which will be introduced in section 4.1, can be applied for the whole system. As we
will see, the choice of adequate relaxation parameters for the Uzawa smoother on each
subproblem will be crucial for excellent multigrid convergence.

4.1. Multigrid based on Uzawa smoother. In order to develop an efficient
multigrid solver, it is necessary to carefully consider each component of multigrid,
such as the smoothing operator and the coarse grid correction components (i.e., the
restriction and prolongation operators, and the coarse grid operator). Regarding
the coarse grid correction, geometric grid coarsening is chosen, as we will deal with
regular Cartesian grids. The sequence of coarse grids is obtained by doubling the
mesh size in each spatial direction. We further use well-known, proven components
for the transfer operators between the fine and coarse grids, which are dictated by the
staggered grid arrangement, and focus our efforts on the analysis of the smoothing
operator. In particular, the interplay between the relaxation method (the smoother)
and the coarse grid correction is crucial for the multigrid performance.

Taking the staggered arrangement of the unknowns into account, the intergrid
transfer operators that act on the different unknowns are defined as follows: at velocity
grid points six-point restrictions are considered, and at pressure grid points a four-
point restriction is applied. In stencil notation, the restriction operators are given
by

Ru
h,2h =

1
8

⎛⎝ 1 2 1
∗

1 2 1

⎞⎠
h

, Rv
h,2h =

1
8

⎛⎝ 1 1
2 ∗ 2
1 1

⎞⎠
h

, Rp
h,2h =

1
4

⎛⎝ 1 1
∗

1 1

⎞⎠
h

,

respectively. As the prolongation operators P
u/v/p
2h,h , we choose the adjoints of the

restrictions.
The choice of smoother requires special attention due to the saddle point structure

of the considered system. An Uzawa smoother, which was proposed for the Stokes
problem in [23], is considered for the coupled system.

The Uzawa smoother. We give a general description of the considered Uzawa
smoother. We will see that this relaxation can be successfully applied in multigrid
for both Stokes and Darcy systems, and also in the multigrid method for the coupled
system. The Uzawa smoother is obtained by splitting the discrete operator as follows:

(29)
(

A BT

B 0

)
=
(

MA 0
B −ω−1 I

)
−
(

MA − A −BT

0 −ω−1 I

)
,

where MA is a typical smoother for A and ω is some positive parameter. MA makes
the approach less costly because of the inexact solve for velocities at each iteration.

From a given approximation of the solution to the system (u, p)T , the relaxed
approximation (û, p̂)T is computed according to the decoupled Uzawa smoother in
the following way:

(30)
(

MA 0
B −ω−1 I

)(
û
p̂

)
=
(

MA − A −BT

0 −ω−1 I

)(
u
p

)
+
(

g
f

)
.
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More concretely, a single step of the relaxation process is described as follows:
• Relax the velocities by applying MA: û = u + M−1

A

(
g − Au − BT p

)
.

• Update the pressure: p̂ = p + ω(Bû − f).
Notice that, in general, the Uzawa method is equivalent to a stationary Richardson
iteration applied to the Schur complement system. This relation allows one to deduce
an expression for parameter ω which minimizes the spectral radius of the correspond-
ing iteration matrix, i.e.,

ω =
2

λmax + λmin
,

where λmax and λmin denote the largest and smallest eigenvalues of the Schur com-
plement, respectively (see [4]). In the local Fourier analysis section we will estimate
optimal relaxation parameter ω in the Uzawa smoother for the Darcy and Stokes
problems, and we will also obtain a similar expression in which λmax and λmin are
substituted for the largest and smallest eigenvalues but only on the high frequencies
for smoothing analysis purposes.

An Uzawa smoother using two forward Gauss–Seidel sweeps as MA was suggested
in [35] for the Stokes problem. In [23] another variant was considered, where MA was
based on the symmetric Gauss–Seidel iterations for A; i.e.,

(31) MA = (DA + LA) D−1
A (DA + UA),

where DA, LA, and UA are, respectively, the diagonal, the strictly lower, and the
strictly upper parts of A. The symmetric Gauss–Seidel method consists of one forward
and one backward sweep for all velocities in the computational domain. Numerical
experiments in [23] revealed that, for essentially the same cost, the convergence asso-
ciated with MA in (31) is most efficient. So, this variant is the one that we extend
to the Darcy equation. The efficiency of the proposed Uzawa smoother for three-
dimensional Stokes and Biot poroelasticity equations was presented in [23] and [34],
respectively.

In addition, MA has two important properties needed in our theoretical analysis,
in addition to its efficiency as a smoother. One is that MA is symmetric positive
definite (SPD) if A is SPD. The other is that the associated largest eigenvalue satisfies
(see, e.g., [3, Theorem 7.17]) λmax(M−1

A A) ≤ 1. We wish to mention the importance of
the choice of an adequate value for the relaxation parameter ω to obtain a satisfactory
performance of the Uzawa smoother. As in [23] for the Stokes equations, analytic
expressions for ω can also be obtained by means of a theoretical analysis for the
Darcy problem. We present this analysis first in a general way to make this work
self-contained, and later we will describe the particular case of the Darcy equations.

4.2. LFA. We briefly introduce the LFA for staggered grids before we focus on
the analysis of the Uzawa smoother.

Basis of LFA. To perform LFA, all discrete operators are assumed to be defined
on an infinite grid Gh, and boundary conditions are neglected. Due to the arrangement
of unknowns on a staggered grid, Gh is divided into three subsets Gk

h defined as

(32) Gk
h = {xk

(i,j) = (i, j)h + δkh| i, j ∈ Z}, with δk =

⎧⎨⎩
(1/2, 0) if k = 1,
(0, 1/2) if k = 2,
(0, 0) if k = 3,

such that Gh = G1
h ∪ G2

h ∪ G3
h. Corresponding to Figure 2, the velocities ud/f and

vd/f are situated at nodes x1
i,j and x2

i,j , respectively, whereas x3
i,j is for the pressure
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unknowns pd/f . The basic idea of LFA is that all occurring multigrid components,
the discrete approximation, and its corresponding error or residual can be repre-
sented by formal linear combinations of Fourier modes. In the case of a staggered
grid, considering ϕ1

h(θ, xi,j) = (eiθ·x1
i,j/h, 0, 0)T , ϕ2

h(θ, xi,j) = (0, eiθ·x2
i,j/h, 0)T , and

ϕ3
h(θ, xi,j) = (0, 0, eiθ·x3

i,j/h)T , the Fourier modes are defined as

(33) ϕh(θ, xi,j) :=
[
ϕ1

h(θ, xi,j) ϕ2
h(θ, xi,j) ϕ3

h(θ, xi,j)
]
,

where xi,j = (x1
i,j , x

2
i,j , x

3
i,j) and θ ∈ Θ := (−π, π]2, which form a unitary basis of

the space of infinite grid functions. The Fourier space generated by Fourier modes is
given by F(Gh) := span{ϕh(θ, ·)|θ ∈ Θ}. For the analysis, we distinguish high- and
low-frequency components on Gh,

(34) Θ2h
low :=

(
− π

2
,
π

2

]2
, Θ2h

high := Θ\Θ2h
low.

To study how efficiently high-frequency error components are eliminated, smooth-
ing factor μ is defined as

(35) μ := sup
θ∈Θ2h

high

ρ(Sh(θ)),

where Sh(θ) represents the Fourier symbol of the relaxation operator. In our case,
the Uzawa smoothing iteration can be written as Sh = Ih − M−1

h Lh, where Lh is the
discrete operator given by the system matrix in (27) and Mh represents the iteration
matrix in (30).

In the transition from Gh to G2h, each low frequency θ = θ00 ∈ Θ2h
low is coupled

with three high frequencies θ11, θ10, θ01, given by

(36) θij = θ00 − (i sign(θ1), j sign(θ2))π, i, j = 0, 1.

For each θ00, three other Fourier modes ϕ2h(θ11, ·), ϕ2h(θ10, ·), and ϕ2h(θ01, ·) are
identical to ϕ2h(θ00, ·) on G2h. As a result, the Fourier space is subdivided into
four-dimensional subspaces, known as 2h-harmonics,
(37)
F2h(θ) := span{ϕh(θ00, ·), ϕh(θ11, ·), ϕh(θ10, ·), ϕh(θ01, ·)}, with θ = θ00 ∈ Θ2h

low.

We can analyze the behavior of multigrid by investigating the effect of the multigrid
components acting on the Fourier space. In particular, the iteration operator of the
two-grid method is given by

(38) Mh,2h = Sν2
h (Ih − P2h,h(L2h)−1Rh,2hLh)Sν1

h ,

where ν1, ν2 are the number of pre- and post-smoothing steps, Lh and L2h are the
discrete operators on the two consecutive grids, P2h,h and Rh,2h are the prolongation
and restriction operators, respectively, and Sh is the relaxation, which in our case
is the Uzawa smoothing iteration previously defined. Since the two-grid operator
leaves the four-dimensional subspaces F2h(θ) invariant, the representation of Mh,2h

on the Fourier space has a block-diagonal structure regarding the partitioning in 2h-
harmonics [47], and therefore it is possible to efficiently calculate the LFA two-grid
convergence factor,

(39) ρ = ρ(Mh,2h),

by computing the maximum of the spectral radius of the blocks.
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LFA for the Uzawa smoother. A detailed study of the Uzawa smoother in
the framework of LFA was already done in [23]. An analytic bound of the smoothing
factor of the Uzawa smoother was given for a family of Stokes problems, showing
a satisfactory approximation of the exact smoothing factor. In that paper, it was
proved that

(40) μ ≤ μ̄ = max
(
(μA)1/2, μS

)
,

where μA is the smoothing factor of MA and μS can be interpreted as the smoothing
factor of the Richardson iteration for the Schur complement,

(41) μS := sup
Θ2h

high

ρ
(
I − ω

(
BA−1BT

))
.

There are no particular difficulties in obtaining bounds for μA, since LFA results
for many scalar elliptic PDEs are available in the literature; see, for example, [47].
However, to estimate μS is somewhat involved since information about the eigenvalues
of the Schur complement is needed. In particular, the bound of μS is determined by
the maximum and minimum eigenvalues on the high frequencies, that is,

max
θ∈Θ2h

high

(
B̃(θ)Ã−1(θ)B̃T (θ)

)
≤ βmax,(42)

min
θ∈Θ2h

high

(
B̃(θ)Ã−1(θ)B̃T (θ)

)
≥ βmin,(43)

with B̃(θ), Ã−1(θ), and B̃T (θ) the symbols or Fourier representations of operators
B, A−1, and BT for a fixed frequency θ. Let ζ be a positive real number such that
ζ < 2. By defining κβ = βmax

βmin
, the following bound for μS is obtained (see [23] for

more details):

(44) μS ≤ max
(

ζ − 1, 1 − ζ

κβ

)
.

Note that the choice of ζ < 2 is to ensure that μS < 1. Then, by choosing a value of
ζ to minimize the expression in (44), we obtain an optimal relaxation parameter for
the Uzawa smoother as follows:

(45) ω=
2

βmax + βmin
.

Next, we apply this analysis to obtain approximations of the smoothing factor of the
Uzawa smoother for our problem, as well as optimal relaxation parameters for the
Richardson iteration involved in the relaxation process.

In [23], the bound μ̄ = max(0.5, ζ − 1) for the smoothing factor of the Uzawa
smoother was obtained in the case of Stokes equations by choosing the optimal relax-
ation parameter ω = ζν. Notice that μA = 0.25 for the symmetric Gauss–Seidel for
the Laplace operator, and therefore (μA)1/2 = 0.5. These results can be directly used
for our free-flow problem.

Uzawa smoother analysis for Darcy equation. We work out the analysis for
Darcy’s equation in order to obtain a suitable parameter ω for the part corresponding
to the Richardson iteration for the pressure, as well as an approximation for the
smoothing factor of the Uzawa smoother.
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Following the general analysis in the previous section to obtain βmax and βmin in
(42)–(43), we will make use of the following equality:

(46) B̃(θ)Ã−1(θ)B̃T (θ) = KB̃(θ)B̃T (θ) = −KΔ̃(θ) .

From this result, it is straightforward to obtain βmax = 8K
h2 and βmin = 2K

h2 , which
implies

(47) κβ =
βmax

βmin
= 4.

Choosing ζ = 1.6, which gives the lowest value of the maximum in (44), the smoothing
factor is bounded by 0.6, independently of the value of K. This theoretical bound
for the smoothing factor μ̄ matches perfectly with the value μ predicted by the LFA.
Moreover, following (45) the relaxation parameter is given by the expression ω = h2

5K .
Parameter ω depends on the grid size, and therefore it will be different on each grid
of the hierarchy used in the multigrid method.

4.3. Multigrid for the coupled Darcy–Stokes problem. Due to the saddle
point structure of the coupled problem, a geometric multigrid method together with
an Uzawa smoother, as introduced in section 4.1, can be applied for the whole system.
For this purpose, it is important to note that to keep the structure of the matrix of the
saddle point system on the whole grid hierarchy, interface Γ has to be present on each
grid level. Regarding the smoothing process, all velocity unknowns are relaxed before
the pressure unknowns are updated. The relaxation parameter ω for the Richardson
iteration for the Schur complement has to be chosen differently if we are updating
pressure unknowns from the Darcy or the Stokes problem. For the other components,
the same operators can be used at every grid point since the discretization for both
problems is performed with the same staggered arrangement of unknowns.

In the monolithic multigrid method we do not distinguish the subproblems and
the internal interface. All the unknowns play essentially the same role. Only the
relaxation parameter of the smoother is different for each subproblem. For the dis-
cretization at the interface, the unknowns for both subproblems are included in one
equation. We keep the same philosophy for the other components in the monolithic
multigrid. For example, to restrict the unknowns at the interface, six points from
both subgrids around it are employed. A suitable discretization for the unknowns at
the interface of the coupled system is a key step in achieving robustness and efficiency
of our approach.

The proposed multigrid method for the coupled Darcy–Stokes problem can also
be implemented as a multiblock version in which the Darcy and Stokes domains are
assumed to be two different blocks. This is appealing from a practical point of view,
for example, when one has to solve the coupled problem by using two different codes.
Moreover, this multiblock approach is easily parallelizable. Next, we describe in detail
how this implementation can be done.

Multiblock multigrid algorithm. We divide our domain into two different
blocks corresponding to the Darcy and Stokes domains. In this way, the original
staggered grid is split into two different subgrids. Starting with an approximation on
the partitioned grid, it is trivial to compute a new iterate for the interior points of
each subgrid. Near the boundary of each subgrid, the old approximations at those
points belonging to the neighboring subgrid are needed. It is standard within a grid-
partitioning framework [45] for a subgrid to store not only its own data but also a
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copy of the data located in a strip of the neighboring subgrid in an overlap region.
Thus, the mesh corresponding to the Stokes domain is extended by adding an overlap
region of one cell length, as can be seen in Figure 5. After a full iteration, on each
grid level, the copies in the overlap region have to be updated by communication so
that a next iteration can be carried out.
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Γ
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Fig. 5. Communications between two partitioned subgrids.

Next, we explain in detail the two-grid version of the multiblock algorithm. For
simplicity in the presentation of the algorithm, we use pre-smoothing but no post-
smoothing. By recursion, the multigrid version follows straightforwardly.

Multiblock two-grid algorithm (with pre-smoothing but no post-smoothing):
1. Relax velocity unknowns for both blocks.
2. Stokes to Darcy transfer : vertical Stokes velocity unknowns at the interface

are transferred to the Darcy block (see the red dots in Figure 5).
3. Update pressure unknowns by the Richardson iteration with the optimal re-

laxation parameters corresponding to each block.
4. Darcy to Stokes transfer : Darcy pressure unknowns are transferred to the

Stokes overlap region (see the blue crosses in Figure 5).
5. Compute the residual.
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6. Darcy to Stokes transfer : the residual of the vertical Darcy velocity unknowns
is transferred to the Stokes overlap region (see the green dots in Figure 5).

7. Restrict the residual.
8. Solve exactly the defect equation on the coarsest grid.
9. Stokes to Darcy transfer : vertical Stokes velocity unknowns at the interface

are transferred to the Darcy block.
10. Interpolate the error and correct the approximation to the solution.

This multiblock algorithm requires little data communication. In particular, each
communication step involves transfer of information in only one way. Moreover, each
stage in the algorithm can be performed in parallel since the data required for each
operation is available in the same process. Finally, although this multiblock approach
can be cast into the class of DDMs, we wish to emphasize that in our case the com-
munication between both Darcy and Stokes problems is performed on each level in
the hierarchy instead of only on the finest grid as is usually done in the DDMs. This
is crucial to achieve a highly efficient solver for this coupled problem, as we will see
in the numerical experiments section.

LFA results. In this section, we confirm that the asymptotic convergence factor
of the monolithic multigrid based on the Uzawa smoother for the coupled problem
can be estimated with a high accuracy by means of the worst of the two-grid con-
vergence factors predicted by LFA for the individual Darcy and Stokes subproblems.
In Table 1, we display the two-grid convergence factors predicted by the LFA for the
Darcy problem varying the hydraulic conductivity K, and for the Stokes equations
for different values of the viscosity ν. These results are obtained for different numbers
of smoothing steps ν1 + ν2. From this table, we can observe the robustness of the
multigrid method based on the Uzawa smoother for each subproblem, separately.

Table 1

Two-grid convergence factors, ρ predicted by LFA for Darcy and Stokes subproblems, separately,
for different values of the parameters K and ν and different numbers of smoothing steps ν1 + ν2.

Darcy Stokes
ν1 + ν2 K = 1 K = 10−3 K = 10−6 ν = 1 ν = 10−3 ν = 10−6

2 0.600 0.600 0.600 0.304 0.304 0.304
3 0.360 0.360 0.360 0.143 0.143 0.143
4 0.216 0.216 0.216 0.081 0.081 0.081

Table 2

Asymptotic convergence factors, ρh, for the multigrid based on Uzawa smoother for the coupled
Darcy–Stokes problem, for different values of the physical parameters K and ν and different numbers
of smoothing steps ν1 + ν2.

K 1 10−3 10−6

ν 1 10−3 10−6 1 10−3 10−6 1 10−3 10−6

ν1 + ν2

2 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59
3 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
4 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

In Table 2, we show the asymptotic convergence factors experimentally obtained
by using the monolithic multigrid method based on the Uzawa smoother for the
Darcy–Stokes coupled problem. These values have been computed on a fine grid of
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size h = 1/128 and by using a random initial guess and zero right-hand side in order to
avoid round-off errors. We display the convergence factors obtained after 100 multigrid
cycles, since in each test case the numerical convergence has stabilized. Comparing
Tables 1 and 2, we observe that these factors match perfectly with the worst of the two-
grid convergence factors predicted by LFA for both separate subproblems. This means
that the treatment of the discretization at the interface as well as the implementation
of the Uzawa smoother for the whole coupled problem have been performed in the
most efficient way.

Discussion and comparison with other methods. In this section we discuss
alternative solution methods to the proposed monolithic multigrid approach. In the
discussion we include, on the one hand, monolithic multigrid methods with different
smoothers, and on the other hand, domain decomposition techniques and precondi-
tioning strategies.

In a monolithic multigrid method we aim to solve the multiphysics system all at
once. The choice of the smoother is important for the performance of the multigrid
method. The proposed smoother in our work is based on Uzawa relaxation, but
different relaxation schemes can be considered. The Braess–Sarazin method [1, 5]
is an example of another relaxation method. More concretely, the Braess–Sarazin
method is based on the matrix system(

NA BT

B 0

)
as the smoothing iteration matrix for saddle point system (27), where NA is usu-
ally of the form NA := αdiag(A) or NA := αI, with α ∈ R a parameter which is
not smaller than the maximum eigenvalue of A. For the solution of the pressure
it is then necessary to solve a system whose matrix involves the Schur complement
BN−1

A BT . However, in practice, an inexact solve is sufficient. In that case, an inexact
Braess–Sarazin smoother is comparable to the Uzawa iteration and seems an appeal-
ing alternative to the Uzawa smoother. Next to the Braess–Sarazin smoother, the
well-known coupled Vanka smoother [46] is based on solving several small-sized and
local saddle point problems in a block Gauss–Seidel fashion. Originally proposed for
the incompressible Navier–Stokes equations, this approach can be easily extended to
solving the Darcy–Stokes system. The interface conditions, discretized on a staggered
grid, can be naturally incorporated within the coupled Vanka smoothing approach. In
particular, in the staggered case that we consider, five unknowns (pressure pi,j and ve-
locities ui− 1

2 ,j , ui+ 1
2 ,j , vi,j− 1

2
, and vi,j+ 1

2
) are simultaneously updated (see Figure 3),

which results in solving 5 × 5 systems for each cell in the grid. A coupled smoother
is often somewhat more expensive than an equationwise smoother. We will compare
the Uzawa smoother with the Vanka smoother, in terms of computational efficiency,
in the numerical section. Note, however, that the performance of a pointwise coupled
smoother is not satisfactory when stretched grids or anisotropic problem parameters
are encountered (see [22], for example), and their extension to linewise Vanka relax-
ation gives rise to a significant increase in computational cost, since several lines of
unknowns have to be updated simultaneously.

As mentioned in the introduction, other approaches for solving coupled problems
are based on DDMs, splitting the multiphysics system into separate subproblems that
are treated mainly independently, as specific preconditioning techniques for the global
saddle point problem. In this context, preconditioned GMRES methods with block or
constraint preconditioners [10, 15, 16] usually show a mesh-independent convergence
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rate, yielding an effective approach for solving the Darcy–Stokes problem. However,
in the literature it can be observed that these methods can exhibit some parameter
specific convergence, depending on the values of the physical parameters (see [11], for
example). Our monolithic method provides convergence characteristics independent
of parameters K and ν. Even for very small parameter values, when the subproblems
are strongly coupled, the multigrid convergence is excellent. One of the advantages
of the considered monolithic multigrid method is thus the robustness with respect to
the values of the physical parameters.

Remark. As is commonly done, in this work, we mainly focus on the case of
constant hydraulic conductivity K. The proposed multigrid solution method can,
however, be generalized to varying K values and also to the case where the hydraulic
conductivity is prescribed by a full tensor K. In [34], we applied a variant of the Uzawa
smoother for porous media flow when anisotropies due to grid stretching appeared.
Also, heterogeneous coefficients were considered in that work. Grid anisotropies ba-
sically have the same impact as anisotropic conductivity. Therefore, the proposed
algorithm can be adapted to such a setting. When a full SPD tensor K is encoun-
tered, the same solution strategy may be applied since K can be diagonalized. For
the case of a heterogeneous porous medium, some multigrid results are presented in
Appendix A.

5. Numerical experiments. We present three numerical tests in order to study
the accuracy of the discrete scheme and the convergence and robustness of the pro-
posed multigrid method based on the Uzawa smoother with respect to different values
of the kinematic viscosity ν and the hydraulic conductivity K. For the implementa-
tion, we will consider the optimal relaxation parameters for the Richardson iteration
defined in section 4, with values of ζ = 1 for the Stokes problem and ζ = 1.6 for the
Darcy problem. For Stokes it follows that ω = ν, that is, the relaxation parameter is
fixed on all grids and equal to the viscosity of the fluid. This is due to the fact that
the Schur complement is spectrally equivalent to the identity matrix for the consid-
ered discretization, and therefore the eigenvalues are bounded from below and above
by positive constants which do not depend on the mesh size. ω = h2

5K in the Darcy
domain, so ω depends on K, which is the hydraulic conductivity of the porous media,
and on the size of the grid (different on each mesh in the hierarchy).

In all numerical experiments, the initial solution is chosen to be random numbers,
and the stopping criterion is

(48)
||residual||∞

||right-hand side||∞ ≤ tolerance · ||initial residual||∞
||right-hand side||∞ ,

where the tolerance is chosen as 10−10. Moreover, for the sake of simplicity we consider
uniform meshes with grid size h in both directions on each subdomain.

5.1. No-slip interface condition. In this first numerical experiment we deal
with a coupled Darcy–Stokes problem with a known analytic solution on the domain
Ω = (0, 1) × (0, 2), which is a benchmark test widely used to assess the behavior
of different numerical algorithms; see [11, 19, 20], for example. The domain Ω is
divided into two subdomains by the interface Γ = (0, 1) × {1}. The Stokes region
is the upper part Ωf = (0, 1) × (1, 2), whereas the Darcy region is the bottom part
Ωd = (0, 1)×(0, 1). We choose the right-hand side terms and the boundary conditions
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so that the exact solution is given by

(49)

uf (x, y) =
(

uf(x, y)
vf (x, y)

)
=
(

y2 − 2y + 1
x2 − x

)
,

pf (x, y) = 2ν(x + y − 1) +
1

3K
,

ud(x, y) =
(

ud(x, y)
vd(x, y)

)
=
(

(2x − 1)(y − 1) − 2Kν
(x2 − x) − y2 + 2y − 1

)
,

pd(x, y) =
1
K

(
(x − x2)(y − 1) +

y3

3
− y2 + y

)
+ 2νx.

Dirichlet boundary conditions for velocity are prescribed at ∂Ωf \Γ and at the bottom
boundary (0, 1)×{0}. Neumann boundary conditions for pressure are imposed at the
remaining parts, i.e., the lateral boundaries of the porous medium. Moreover, a
simplified no-slip interface condition (13), together with (10) and (11), is considered
here at the internal interface.

First of all, we compare the numerical solution with the given exact solution
for fixed values of viscosity ν = 1 and hydraulic conductivity K = 1. For different
grid sizes, in Table 3 we display the maximum norm of the error for each variable.
As expected, second-order accuracy is obtained for the Darcy problem, whereas for
the Stokes problem, we achieve second-order accuracy for velocities and first-order
accuracy for the pressure field. The maximum errors for vertical velocities are the
same in both subdomains due to the fact that such a maximum is achieved at the
internal interface Γ.

Table 3

Maximum norm errors of variables ud/f , vd/f , pd/f for different grid sizes, by considering
fixed values ν = 1 and K = 1.

32 × 64 64 × 128 128 × 256 256 × 512

ud 2.03 × 10−4 5.38 × 10−5 1.39 × 10−5 3.51 × 10−6

vd 3.11 × 10−4 8.81 × 10−5 2.34 × 10−5 6.02 × 10−6

pd 2.43 × 10−4 6.09 × 10−5 1.52 × 10−5 3.81 × 10−6

uf 2.29 × 10−4 5.91 × 10−5 1.50 × 10−5 3.78 × 10−6

vf 3.11 × 10−4 8.81 × 10−5 2.34 × 10−5 6.02 × 10−6

pf 3.61 × 10−2 1.81 × 10−2 9.07 × 10−3 4.54 × 10−3

Now we focus on the study of the behavior of the proposed multigrid method
for the Darcy–Stokes problem. First, a multigrid W -cycle with two pre- and two
post-smoothing steps is applied in order to see the h-independent convergence of
the algorithm for fixed values ν = K = 1. In Figure 6 we show the history of the
convergence for different grid sizes h = 1/2k for k = 5, 6, 7, 8. The maximum norm
of the residuals divided by the maximum norm of the right-hand sides is plotted
in logarithmic scale against the number of multigrid cycles necessary to fulfill the
stopping criterion. It can be seen that the convergence rate is independent of the
space discretization parameter, and that the proposed multigrid method performs well
for the coupled problem, since only 15 iterations are needed to achieve the desired
convergence.

Next, we investigate the robustness of the multigrid algorithm with respect to a
wide range of values of the physical parameters ν and K. This is important since the
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Fig. 6. History of the convergence of the W (2, 2)-multigrid method for different grids.

values of the parameters which are relevant for geoscientific applications are typically
very small. For example, K = 10−2 is the hydraulic conductivity for sand and K =
10−5 for limestone, and ν = 10−6 is the viscosity of water. In Table 4, we show the
number of iterations necessary to reach the stopping criterion for different values of
ν and K, and for different multigrid cycles and numbers of pre- and post-smoothing
steps. All of these results are obtained on a grid with space discretization parameter
h = 1

128 .

Table 4

Number of iterations necessary to achieve the desired convergence for different values of the
parameters ν and K, by using W - and V -cycles with different numbers of pre- and post-smoothing
steps.

K ν W (1, 1) W (1, 2) W (2, 2) V (2, 2) V (3, 3)

1 1 38 21 15 22 13

10−3 1 38 20 14 28 13

1 10−3 45 24 17 32 14

10−3 10−3 38 20 14 23 10

10−2 10−6 39 21 15 24 11

10−4 10−6 37 20 14 22 9

10−6 10−6 37 20 14 22 9

10−7 10−6 37 20 14 22 9

As can be observed, the proposed multigrid method results in a robust solver when
W -cycles are used. If V -cycles are chosen, we can also observe a satisfactory behavior
of the multigrid method. Moreover, very good results are obtained for small values of
the physical parameters. In order to analyze the efficiency of the proposed method,
we have done a comparison of the number of arithmetic operations needed for both
cycles. The most efficient multigrid cycle in Table 4 is the V (3, 3)-cycle. Therefore,
we choose this cycle to compare the efficiency of the proposed multigrid based on
the Uzawa smoother with a multigrid algorithm based on the Vanka smoother. For
these two methods, the only difference is the smoothing part on each level of the
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hierarchy. By calculating the computational work per V -cycle, we observe that the
Uzawa smoother is approximately 30% cheaper than the Vanka smoother. In Table 5,
the number of multigrid cycles necessary to achieve the desired accuracy is presented.
Overall, the method based on the Uzawa relaxation needs 50% fewer operations than
the Vanka-based multigrid method. Therefore, in our case the Uzawa smoother is
preferred to the Vanka relaxation.

Table 5

Number of iterations necessary to achieve the desired convergence for different values of the
parameters ν and K, by using a V (3, 3)-cycle with both Uzawa and Vanka smoothers.

K 1 10−3 1 10−3 10−2 10−4 10−6 10−7

ν 1 1 10−3 10−3 10−6 10−6 10−6 10−6

Uzawa 13 13 14 10 11 9 9 9

Vanka 12 11 13 11 12 11 11 11

5.2. Beavers–Joseph–Saffman interface condition. Now we consider a more
complicated and realistic numerical test in which the Beavers–Joseph–Saffman inter-
face condition is prescribed instead of the no-slip condition previously considered.
In this case, the domain Ω = (0, 1) × (−1, 1) is divided into a porous medium part
Ωd = (0, 1) × (−1, 0) and a free-flow subdomain Ωf = (0, 1) × (0, 1) by the interface
Γ = (0, 1)× {0}. The source terms and the boundary conditions are chosen such that
the analytic solution of the Darcy–Stokes problem is as follows:

(50)

ud(x, y) =
(

ud(x, y)
vd(x, y)

)
=
( −Key cosx

−Key sin x

)
,

pd(x, y) = ey sin x,

uf (x, y) =
(

uf(x, y)
vf (x, y)

)
=
(

λ′(y) cosx
λ(y) sin x

)
,

pf(x, y) = 0,

where λ(y) = −K − y
2ν + (− α

4ν2 + K
2 )y2. At the outer boundaries of the free-flow

domain, Dirichlet boundary conditions for velocities are prescribed. In the case of the
porous medium, the pressure is fixed at the bottom, (0, 1) × {−1}, whereas Dirichlet
conditions for velocities are imposed at the lateral walls. Along the internal interface
Γ, the Beavers–Joseph–Saffman condition (12) is taken into account.

By comparing the numerical solution with the given exact solution for fixed values
of the parameters ν = K = 1 and for different grid sizes h = 1/2k for k = 5, 6, 7, 8,
second-order accuracy is again obtained for all variables except for the pressure in the
free-flow subdomain, where we achieve first-order accuracy. This time the errors for
the vertical velocities do not reach their maximum at the interface as in the previous
numerical test in which we imposed the no-slip condition instead the Beavers–Joseph–
Saffman condition.

Regarding the performance of the monolithic multigrid method for the coupled
problem considered in this numerical test, we display in Figure 7 the history of the
convergence of the algorithm by using a W (2, 2)-cycle for different grids and ν = K =
1. The W (2, 2)-cycle is chosen here since it gives a more robust multigrid method.
It is clear that the convergence is independent of the mesh size and that the method
performs efficiently since it needs only around 13 iterations to achieve the required
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stopping criterion. In Figure 8 the robustness of the proposed multigrid method is
displayed, since for different values of ν and K and different grid sizes the convergence
of the algorithm is highly satisfactory and independent of the parameters. We can
observe that with the more complicated Beavers–Joseph–Saffman condition at the
interface Γ, the results provided by the proposed multigrid method for the Darcy–
Stokes problem are highly satisfactory.

Fig. 7. History of the convergence of the W (2, 2)-multigrid method when the Beavers–Joseph–
Saffman interface condition is considered.

(a) (b)

Fig. 8. History of the convergence of the W (2, 2)-multigrid method when the Beavers–Joseph–
Saffman interface condition is considered for different values of the physical parameters: (a) ν = 1,
K = 10−3, and (b) ν = 10−6, K = 10−4.

5.3. Realistic test: Cross-flow membrane filtration model. This test ad-
dresses the coupling of the Darcy–Stokes problem which is in a cross-flow filtration
setting. The cross-flow filtration can be applied in a wide range of industrial applica-
tions ranging from oil production to medical treatment. The data in this test is taken
from the experiment presented in [24], which is a micromembrane filtration model.
This model is used to clean fluids that are difficult to filter and to separate fine matter
such as cells, proteins, enzymes, and viruses [24].

The domain of the coupled problem is shown in Figure 9. Ωf represents a channel
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� x

�
y

Γ

Block1

Block2 Block3 Block4

ud = 0 ud = 0

0 0.015pd = 00.00375 0.01125

uf = 0.1
vf = 0

vf = 0uf = 0

uf = 0
vf = 0

Exit
σxx = 0
σxy = 0

0.0025

0.0075

Ωf

Ωd

uf = vf = 0 uf = vf = 0

Fig. 9. Geometry of the cross-flow membrane filtration model. Subdivision of the domain Ω
into a free-flow subregion Ωf and a filter subdomain Ωd, by an internal interface Γ.

on the top where the flow can go through, while Ωd represents a filter. Since the lengths
of the free-flow domain and the porous medium are not the same, the coupled domain
is divided into four different blocks corresponding to the Darcy (Block1) and Stokes
(Block2, Block3, and Block4) domains. The two-block multigrid algorithm described
in section 4.3 can be straightforwardly adapted for fours blocks. The information
transfer between Block1 and Block3 is the same as before. For the Stokes domain,
two artificial boundaries are generated by the partitioning. As the communication
between the subgrids in Ωf is necessary, an overlap region of one cell length is created
for Block2 and Block4 along the artificial boundaries. The data located in the overlap
region is computed and transferred from the neighboring subgrid in Block3.

The unknowns at the artificial boundaries, i.e., uf , are updated in Block2 and
Block4, and then sent to Block3. The communication is implemented on each level in
the multigrid algorithm. The inflow entering into the domain Ωf is specified. At the
interface, the Beavers–Joseph–Saffman condition is imposed. At the bottom of the
porous medium, the pore pressure is set as zero. There is an exit (see the dashed line
in Figure 9) at the right vertical boundary of the free-flow domain. The height of the
exit is 0.00125, which is quite small compared to the inlet. The stress-free boundary
condition is employed at the exit, where the flow may leave the domain freely. All
the other imposed conditions are shown in Figure 9.

Two values of hydraulic conductivity, K = 0.1 and K = 10−6, are considered in
the numerical experiment. The fluid viscosity is chosen as 10−6. The solutions are
investigated on four grids, as shown in Table 6. For the test with K = 0.1, the velocity
components along the vertical and horizontal centerlines are shown in Figure 10. It
can be seen that the solutions for Grid3 and Grid4 do not differ much. This indicates
that the numerical solution is convergent with the increase of the grid cells, and the
exact solution is closely approximated on these grids. For a multigrid W (2, 2)-cycle,
the multigrid convergence factor is around 0.2 for all cases, and the multigrid method
exhibits a highly satisfactory behavior. This is in accordance with the previous tests.
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Table 6

Different grids in the computational tests.

Block1 Block2 Block3 Block4

Grid1 192 × 64 96 × 128 192 × 128 96 × 128

Grid2 96 × 32 48 × 64 96 × 64 48 × 64

Grid3 48 × 16 24 × 32 48 × 32 24 × 32

Grid4 24 × 8 12 × 16 24 × 16 12 × 16

(a) x = 0.0075. (b) y = 0.00375.

(c) x = 0.0075. (d) y = 0.00375.

Fig. 10. Velocity component (a) u along the vertical centerline in the coupled domain, (b)
u along the horizontal centerline in the coupled domain, (c) v along the vertical centerline in the
coupled domain, and (d) v along the horizontal centerline in the coupled domain.

In Figure 11, we show the velocity vector corresponding to K = 0.1. Since the
hydraulic conductivity of the porous medium is quite high, when the fluid travels
tangentially across the interface, the majority of the flow seeps into the filter, while
only a small amount of fluid goes through the exit of the channel.

In Figure 12, the velocity vector corresponding to K = 10−6 is represented. With
such a low hydraulic conductivity of the porous medium, the minority of the flow
penetrates the interface, whereas most of the fluid flows toward the small exit of the
channel.
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Fig. 11. Velocity vectors over the cross-flow filtration domain with hydraulic conductivity K = 0.1.
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Fig. 12. Velocity vectors over the cross-flow filtration domain with hydraulic conductivity K =
10−6. For easier viewing, the vectors have been scaled by 1.5.

6. Conclusions. In this paper, we investigated the multigrid convergence of a
coupled system consisting of a porous medium and incompressible flow. For this
purpose, we formulated a coupled model based on the Darcy equation and the incom-
pressible Stokes equations with appropriate internal interface conditions. The model
is discretized by finite volumes on a staggered grid, and special care has been taken
regarding the accurate discretization at the interface. We focused on an efficient multi-
grid algorithm for the coupled problem. A decoupled Uzawa smoother is employed,
which is based on symmetric Gauss–Seidel smoothing for the velocity components,
and a simple Richardson iteration on the Schur complement to update the pressure
field. By local Fourier analysis we have selected suitable relaxation parameters for
both systems, and we have confirmed the global convergence of the monolithic multi-
grid, which proves to be the worst of the convergence factors of the individual Darcy
and Stokes subproblems. Numerical tests have shown a highly satisfactory conver-
gence of our multigrid method for the coupled system. The algorithm performed very
well in numerical experiments for a wide range of physical parameter values and for
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different interface conditions.

Appendix A. Heterogeneity test. Often, a porous medium is defined by
complicated material properties. Therefore, here we consider a porous medium with
a random heterogeneous hydraulic conductivity K. Our aim is to study the effect of
this heterogeneity model on the multigrid convergence. To simulate heterogeneity in
the porous medium, a statistical approach is chosen. In order to generate random
spatial data, a Gaussian model characterized by parameters λg and σ2

g is considered,
i.e.,

(51) C(dg) = σ2
g exp

(
− d2

g

λg

)
,

where dg is the distance between two points, λg defines the correlation length, and
σ2

g represents the variance. By using a so-called circulant embedding technique, out-
lined in [43], we generate a random field on a vertex-centered grid which is twice as
fine as the computational grid. As an example, in Figure 13 we present a possible
random sample of the hydraulic conductivity K corresponding to the porous medium
in Figure 9 with parameters λg = 0.3 and σ2

g = 1. Dark blue in Figure 13 represents
a higher value of the hydraulic conductivity, whereas dark red is for low conductivity.

Fig. 13. Example of random field of hydraulic conductivity K in log-scale.

Note that when our multigrid algorithm with Uzawa smoother is applied, the
relaxation parameter ω is varied in the Darcy domain, because ω depends on hydraulic
coefficient K. The corresponding suitable relaxation parameters for each grid point
on each grid level can be calculated and used within the Uzawa smoother. Moreover,
the random field should be transferred from the finest grid to the other grid levels, to
guarantee the same characteristics of the porous medium on fine and coarse grids.

In our current experiment, for solving the problem in section 5.3, two different
values for parameter λg are chosen to analyze the multigrid convergence results; λg =
0.1 denotes a more heterogeneous porous medium than λg = 0.3. Solutions are
computed on three grids, as indicated in Table 6. Conductivity K is restricted to
each grid level as the average value of four neighboring fine grid points [30]. For each
case, 50 realizations of the random field are generated, and we record the multigrid
convergence factors of the W (2, 2)-cycle. The mean value of the convergence factors
is presented in Table 7. Since fine grids are able to represent the field more accurately,
the convergence results are improved with grid refinement. Multigrid exhibits better
convergence for the less heterogeneous porous medium. In Figure 14, the solutions
for λg = 0.3 are depicted. As expected, the velocity in the porous medium is higher
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(blue and white in Figure 14) where the value of hydraulic conductivity is higher
(Figure 13).

Table 7

Mean value of the multigrid convergence factors after 50 realizations of the random field.

λg = 0.3 λg = 0.1

Grid1 0.19 0.20
Grid2 0.19 0.21
Grid3 0.20 0.29

Fig. 14. L2-norm of the velocity vectors over the cross-flow filtration domain with random
distribution of hydraulic conductivity K (λg = 0.3).
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