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A classical result due to Bochner classifies the orthogonal polynomials on the real line

which are common eigenfunctions of a second order linear differential operator. We

settle a natural version of the Bochner problem on the unit circle which answers a

similar question concerning orthogonal Laurent polynomials and can be formulated as

a bispectral problem involving CMV matrices. We solve this CMV bispectral problem

in great generality proving that, except the Lebesgue measure, no other one on the unit

circle yields a sequence of orthogonal Laurent polynomials which are eigenfunctions

of a linear differential operator of arbitrary order. Actually, we prove that this is the

case even if such an eigenfunction condition is imposed up to finitely many orthogonal

Laurent polynomials.

1 Introduction

The motivation for the problem we address here can be traced to work in signal pro-

cessing started by Shannon [39]. Addressing his problem required finding and exploiting

some remarkable mathematical miracles and was accomplished in a series of papers by

three workers at Bell Labs in the 1960s: David Slepian, Henry Landau, and Henry Pollak,

see [32, 33, 42–46]. Themost important of thesemiracles is the existence of a second order
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5834 F. A. Grünbaum and L. Velázquez

differential operator that commutes with Shannon’s time-and-band limiting integral

operator.

In an effort to understand and extend the range of applicability of thesemiracles

one of us introduced the so called “bispectral problem,” see [5]. For connections of this

notion with the “time-and-band limiting problem” of Shannon, see for instance [4, 9–

12, 24]. The basic idea is that bispectral instances should lead to situations featuring

the remarkable algebraic properties exploited by D. Slepian, H. Landau, and H. Pollak.

A strict connection between these two properties has not yet been established.

These algebraic properties have important numerical/practical consequences.

For a very recent account of several computational issues, see [2, 29, 36]. For new

areas of applications involving (sometimes) vector-valued quantities on the sphere, see

[28, 37, 40, 41]. From a different numerical point of view see [7].

The study of the bispectral problem has moved in several fronts and led many

unsuspected areas of mathematics, for a sample, see [13–16, 18–23, 51].

While the initial problem of C. Shannon was formulated in a continuous–

continuous setup, the case of Fourier series (a discrete–continuous version) was handled

by Slepian in [44], and the case of the DFT (a discrete–discrete version) was discussed

in [8].

If one replaces the unit circle by the real line, these bispectral problems have a

precedent in a continuous–discrete setup in the work of Bochner [1] and previous work-

ers such as Routh [38]. They classified all families of orthogonal polynomials on the

real line that admit a common second order differential operator having all of them

as eigenfunctions. This constitutes a bispectral situation since orthogonal polynomi-

als are (formal) eigenvectors of Jacobi matrices. The first step in going beyond second

order differential operators was taken by [31]. This issue was later addressed in other

situations, such as second order q-difference equations, where the Askey–Wilson poly-

nomials were found to be the most general case. If one gets away from polynomials the

class of solutions is much larger, see [16].

With all this as background we can state the contents of the paper: the natural

extension of [44] by replacing the Lebesgue measure (the case of the Fourier series)

by an arbitrary measure on the unit circle leads to a new bispectral problem, which

we consider here. This takes us back to [50] who talked about orthogonal polynomials

with respect to arbitrary measures on the unit circle. A better approach is taken in

[3, 52] (see also [47, 48]), where one applies the Gram–Schmidt process to all the integer

powers—and not only the positive ones as in [50]—and obtains an orthonormal basis for

the corresponding L2 space. We study the bispectral problem for this basis of Laurent

polynomials.
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The CMV Bispectral Problem 5835

This bispectral problem constitutes the natural analogue on the unit circle of the

Bochner problem on the real line. The role of the Jacobi matrices in the ad-conditions is

played now by its unitary counterpart, the CMVmatrices [3, 47, 48, 52], which encode the

recurrence relation for the orthonormal basis of Laurent polynomials. In other words,

our aim is to find all the orthonormal Laurent polynomials (OLP) on the unit circle which

are common eigenfunctions of a linear differential operator.

We will refer to this as the CMV bispectral problem since it can be formulated

as a bispectral problem involving CMV matrices: to find all the CMV matrices whose

(formal) eigenvectors, given by the corresponding OLP, are simultaneously eigenvectors

of a linear differential operator.

The ad-conditions introduced in [5] have been the main workhorse to study dif-

ferent bispectral situations [14, 16, 18], and is the approach we are going to follow here,

see Section 2. However, the standard ad-conditions become too messy to solve the CMV

bispectral problem by applying them directly. Instead of this, we will exploit the unitar-

ity and factorization properties of CMVmatrices to transform the related ad-conditions

into what we call the Hermitian ad-conditions because they come from the calculation

of a Hermitianmatrix. The result is a reduction of the ad-conditions in number and com-

plexity, which allows us to solve them for second order linear differential operators, see

Section 3.

Nevertheless, going beyond second order differential operators calls for more

effective tools than solving ad-conditions by brute force. This is the aim of Sections 4

and 5, which develop the ad-integration and ad-factorization of ad-conditions. The

ad-integration refers to a reduction in the order of the difference equations involved

in the ad-conditions. The idea of solving ad-conditions by means of ad-integration was

first advanced in [14] and then fully developed in [25] for the case of Jacobi matrices.

The adaptation of this technique to CMV matrices is the objective of Section 4.

On the other hand, while the standard ad-conditions are defined in terms of the

power of the ad-operator, given by a single commutator, the more useful Hermitian ad-

conditions are not given by the power of any operator. Despite of this, Section 5 proves

that the Hermitian ad-conditions factorize into lower order ones.

These are the main tools to tackle the general CMV bispectral problem in

Section 6. We not only solve the CMV bispectral problem for linear differential oper-

ators of arbitrary order, but also assuming the corresponding eigenfunction condition

up to finitely many OLP. Furthermore, the solution to this problem follows from the

answer to a more general “bispectral” question in which a tridiagonal matrix takes the

place of the diagonal matrix of eigenvalues for the differential operator. In all these
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cases we find that the only solution to the CMV bispectral problem is given by the inte-

ger powers of a complex variable, which are the OLP related to the Lebesgue measure

on the unit circle.

This is in contrast with the very rich structure of the solutions to the analogous

problem on the real line. As it is pointed out in the conclusions of Section 7, this negative

result should not be viewed as the end of the story, but could help us to focus our

attention on those situations on the unit circle which could end in bispectral problems

with non-trivial solutions. Besides, the triviality of the CMV bispectral problem can be

used to test on the unit circle the not fully understood connections of bispectrality with

the miracles behind the time-and-band limiting problem and its unexpected links with

integrable systems.

2 Bispectral CMV matrices and ad-conditions

CMVmatrices naturally arise in the study of orthogonality on theunit circle [3, 47, 48, 52].

For each probability measure μ with an infinite support lying on the unit circle T := {z ∈
C : |z| = 1} we can consider the sequences (χn)n≥0 and (xn)n≥0 of OLP coming from the

orthonormalization in L2
μ of (1, z, z−1, z2, z−2, . . . ) and (1, z−1, z, z−2, z2, . . . ), respectively.

Both sequences are related by the substar operation in the vector space C[z, z−1] of

Laurent polynomials,

χn(z) = xn∗(z), f∗(z) = f (1/z) ∀f ∈ C[z, z−1].

The probability measures on T with infinite support are parameterized by the Verblun-

sky coefficients, a sequence (αn)n≥0 in the open unit disk D := {z ∈ C : |z| < 1} which

generates the OLP via the five term recurrence relations

Ctχ(z) = zχ(z), χ =

⎛⎜⎜⎝
χ0

χ1

...

⎞⎟⎟⎠, Cx(z) = zx(z), x =

⎛⎜⎜⎝
x0

x1

...

⎞⎟⎟⎠, (1)

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0 ρ0α1 ρ0ρ1 0 0 0 0 . . .

ρ0 −α0α1 −α0ρ1 0 0 0 0 . . .

0 ρ1α2 −α1α2 ρ2α3 ρ2ρ3 0 0 . . .

0 ρ1ρ2 −α1ρ2 −α2α3 −α2ρ3 0 0 . . .

0 0 0 ρ3α4 −α3α4 ρ4α5 ρ4ρ5 . . .

0 0 0 ρ3ρ4 −α3ρ4 −α4α5 −α4ρ5 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2)
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where ρn = √
1 − |αn|2. Both the five-diagonal unitary matrix C and its transpose Ct are

named CMV matrices. The identities in (1) follow from the basic ones

zx(z) = Lχ(z), L =
( �0

�2
�4

...

)
,

χ(z) = Mx(z), M =
( 1

�1
�3

...

)
,

�n =
(

αn ρn

ρn −αn

)
, (3)

hence C = LM and Ct = ML factorize as a product of a couple of 2 × 2-block diagonal

symmetric unitary matrices. Using the shift matrix

S =
⎛⎝ 0 1

0 1
0 1
...

...

⎞⎠ (4)

and its adjoint S†, these factors can be expressed as

L = Ae + BeS + S†Be, M = Ao + BoS + S†Bo,

Ae =
⎛⎜⎝

α0
−α0

α2
−α2

...

⎞⎟⎠ , Ao =

⎛⎜⎜⎜⎝
1

α1
−α1

α2
−α2

...

⎞⎟⎟⎟⎠ ,

Be =
⎛⎝ ρ0

0
ρ2

0 ...

⎞⎠ , Bo =
⎛⎝ 0

ρ1
0

ρ3 ...

⎞⎠ .

(5)

For every z ∈ C \ {0}, the relations in (1) identify x(z) and χ(z) as formal eigen-

vectors with eigenvalue z for the matrices C and Ct, respectively. Actually, Proposition

A.1 in the Appendix implies that x(z) and χ(z) span the set of such formal eigenvectors.

Therefore, the search for OLPwhich are also eigenfunctions of a linear differential oper-

ator can be understood as a bispectral problem, which we will call the CMV bispectral

problem. Every linear differential operator

D =
r∑

k=0

Dk(z)
dk

dzk
(6)

arising from the CMV bispectral problemmaps C[z, z−1] on to itself because any Laurent

polynomial is a finite linear combination of OLP. Applying D given by (6) to the powers

zk we see by induction on k that the linear differential operators D : C[z, z−1] → C[z, z−1]
are those with Laurent polynomial coefficients Dk(z).
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The two CMV bispectral problems related to the OLP xn or χn are essentially

identical because both OLP are simultaneously eigenfunctions of a (different) linear

differential operator. This is due to the equivalence

Lxn = λnxn ⇔ L∗χn = λnχn, λn ∈ C,

for any linear operator L in C[z, z−1], where L∗ is the linear operator in C[z, z−1] defined
by

L∗f = (Lf∗)∗ ∀f ∈ C[z, z−1].

In the case of a linear differential operator D, the substar operation yields also a linear

differential operator D∗ of the same order as D, a fact that follows from the general

composition law (̃LL)∗ = L̃∗L∗ together with the substar of a single derivative,(
d

dz

)
∗

= −z2 d

dz
.

Therefore, the relation

Dxn = λnxn ⇔ D∗χn = λnχn,

shows that the CMV bispectral problem can be equivalently studied using C or Ct.

For concreteness, in what follows we will use the CMVmatrix C. In other words,

we will search for OLP xn which are eigenfunctions of some linear differential operator

D of arbitrary order r ≥ 1, that is,

Dxn = λnxn, λn ∈ C, (7)

or equivalently

Dx = �x, � =
⎛⎝ λ0

λ1
λ2

...

⎞⎠.

In this case the CMV matrix C related to xn will be called bispectral.

Actually, we will study a more general problem.

First, we will ask for the linear differential operator D in C[z, z−1] to satisfy (7)

up to finitely many OLP. This is equivalent to stating that Dx = �x with � diagonal up

to a finite submatrix, that is, � = �N ⊕ � for some N , where �N is the N × N principal

submatrix of � and � is diagonal.
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Second, we will search for solutions of more general relations than (7), namely,

Dxn ∈ span{xn−1, xn, xn+1}. (8)

This three-term difference-differential equation reads as Dx = �x with � tridiagonal.

Indeed, we will assume (8) only from some index onwards, which is equivalent to stating

that � is tridiagonal up to a finite submatrix.

These comments are the origin of the following definition.

Definition 2.1. We say that an infinite matrix � is almost (tri)diagonal if it is

(tri)diagonal up to a finite submatrix, that is, � − �̃ has finitely many non-zero entries

for some infinite (tri)diagonal matrix �̃. �

With this terminology, the existence of a linear differential operatorD inC[z, z−1]
satisfying (7) or (8) for large enoughn is equivalent to stating thatDx = �x with� almost

diagonal and almost tridiagonal, respectively.

All these cases are covered by the relation

Dx = �x, � banded, (9)

a general situation characterized by “ad-conditions” (see [5]) involving the CMV matrix

C related to x. Such CMV ad-conditions, made explicit in Theorem 2.2 below, are given

in terms of a linear operator (ad C) in the vector space of band matrices, defined by the

commutator

(ad C)� = [C,�] = C� − �C.

By induction, its powers can be seen to have the explicit form

(ad C)n� =
n∑

k=0

(−1)k
(
n

k

)
Cn−k�Ck. (10)

This operator is essential in the following result, key for this paper, which is a transla-

tion of the general ideas in [5] to the case of CMV matrices. It characterizes the relation

(9) in terms of CMV ad-conditions. Proposition A.1 in the Appendix will be crucial for

the proof.

In what follows, I stands for the infinite identity matrix.
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Theorem 2.2. Given a sequence xn of OLP on the unit circle with CMV matrix C, the
following conditions are equivalent for any band matrix �:

(i) There is a linear differential operatorD of order atmost r such thatDx = �x.

(ii) (ad C)r+1� = 0. �

Proof. Condition (i) reads as �x(z) ∈ span{x(z), x ′(z), . . . , x(r)(z)}, z ∈ C \ {0}. In view

of Proposition A.1 in the Appendix, this is equivalent to �x(z) ∈ ker(C − zI)r+1, that is,

(C − zI)r+1�x(z) = 0. Using the expansion

(C − zI)n =
n∑

k=0

(−1)k
(
n

k

)
zk Cn−k, (11)

together with (1) and (10), we find that

(C − zI)r+1�x(z) = 0 ⇔
r+1∑
k=0

(−1)k
(
r + 1

k

)
Cr+1−k� Ckx(z) = 0

⇔ (ad C)r+1�x(z) = 0.

Due to the linear independence of the OLP, the last condition is equivalent to (ii). �

The fact that the ad-conditions involve no information about the explicit form

of the operator D, apart from its order, makes the previous characterization particularly

useful for discovering bispectral situations.

The linear differential operator D involved in Theorem 2.2 has the freedom of a

constant factor and an additive constant, which corresponds to the freedom of the band

matrix � in a numerical factor and the addition of a multiple of the identity. Among the

solutions � of the ad-conditions we must discard the multiples of the identity as trivial

solutions corresponding to differential operators of order zero. In what follows, we will

use the expression “linear differential operators” to refer only to those of order greater

than zero, that is, with the form (6) and Dr(z) 
= 0 for r ≥ 1.

The operator (ad C) has a symmetry, inherited from the unitarity of the CMV

matrix C, which will be further exploited in the next section.

Proposition 2.3. For any CMV matrix C and any band matrix �,

(ad C)n�† = Cn((ad C)n�)† Cn. �
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Proof. For n = 1,

C((ad C)�)†C = C(C� − �C)†C = C�† − �†C = (ad C)�†.

Assuming the identity for an index n,

Cn+1((ad C)n+1�)† Cn+1 = C(ad C)n(((ad C)�)†) C
= (ad C)n(C((ad C)�)†C) = (ad C)n+1�†.

�

As a consequence of the previous result,

(ad C)n� = 0 ⇔ (ad C)n�† = 0 ⇔
⎧⎨⎩(ad C)nRe� = 0, Re� = 1

2 (� + �†),

(ad C)nIm� = 0, Im� = 1
2i (� − �†).

(12)

Thismeans that the solutions of theCMVad-conditions canbe chosenHermitianwithout

loss, since any solution � splits into Hermitian ones, Re�, and Im�. Therefore, in the

CMV bispectral problem we can assume that the eigenvalues of the linear differential

operator are real.

In view of Theorem 2.2 and the previous comments, the CMV bispectral problem

can be reduced to the search for CMVmatrices C with non-trivial real diagonal solutions

� of the CMV ad-conditions (ad C)n� = 0 for some n ≥ 2.

3 The Hermitian ad-conditions

The CMV ad-conditions (ad C)n� = 0 are too difficult to solve the problem directly in

this way, but they can be rewritten in a more manageable form.

The matrix (ad C)n� is (4n + 1)-diagonal for any diagonal �, thus (ad C)n� = 0

gives 4n + 1 difference equations, one for each diagonal. These difference equations

are not all independent, so it should be possible to reorganize these ad-conditions in a

smarter way. For this purpose we will introduce a narrower CMV ad-operator (adn C)

which preserves hermiticity and such that (ad C)n� = 0 iff (adn C)� = 0. This will reduce

the number of difference equations. The key result is Proposition 2.3 which shows that,

when � is real, (ad C)n� = Cn((ad C)n�)† Cn. Hence, we can get an Hermitian matrix by

multiplying (ad C)n� on the left and the right by “half” of the matrix factors in (C†)n.

This suggests the following definition.
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Definition 3.1. For any CMV matrix C = LM and any band matrix � we define

(adn C)� :=
⎧⎨⎩(C†)m((ad C)n�)(C†)m, n = 2m,

L†(C†)m((ad C)n�)(C†)mM†, n = 2m+ 1.
�

Due to the unitarity of L and M,

(ad C)n� = 0 ⇔ (adn C)� = 0. (13)

Therefore, Theorem 2.2 can be restated in the following way: given a sequence of OLP xn

on the unit circle with CMVmatrix C, for any bandmatrix� the Hermitian ad-conditions

(adr+1 C)� = 0 characterize the existence of a linear differential operator D of order at

most r such that Dx = �x.

Also, Proposition 2.3 implies that

(adn C)�† = ((adn C)�)†, (14)

so that (adn C)� is Hermitian whenever �† = �, a requirement that we can assume

without loss.

From the definition of (adn C)� we obtain directly the recursion

(adn+1 C)� =
⎧⎨⎩M((adn C)�)M† − L†((adn C)�)L, even n,

L((adn C)�)L† − M†((adn C)�)M, odd n,

(ad0 C)� = �,

(15)

which allows us to find easily the explicit form of (adn C)� for small values of n,

(ad1 C)� = M�M† − L†�L,

(ad2 C)� = LM�M†L† − 2� + M†L†�LM,

(ad3 C)� = MLM�M†L†M† − 3M�M† + 3L†�L − L†M†L†�LML,

(ad4 C)� = LMLM�M†L†M†L† − 4LM�M†L† + 6� − 4M†L†�LM + M†L†M†L†�LMLM.

For an arbitrary value of n, using the expansion (10) we obtain

(adn C)� = ( r)· · · MLM)
�
(M†L†M† r)· · · )+ (−1)r

( r)· · · L†M†L†
)
�
(LML r)· · · )

+ narrower band matrices.

Therefore, when � is real diagonal, bearing in mind that M�M† and L†�L are

tridiagonal, we find that (adn C)� is a (4n − 1)-diagonal Hermitian matrix, so the ad-

conditions (adn C)� = 0 only lead to 2n difference equations, corresponding to the main
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and upper diagonals. We can write explicitly the equations of (adn C)� = 0 for the first

values of n. We will order the equations running from the top upper diagonal (2nth

diagonal) to the main one (first diagonal), using the previous equations to simplify the

new ones and omitting them when they yield no independent equation. Proceeding in

this way we obtain the following results for n = 2, 3:

(ad2 C)� = 0

Fourth diagonal (λk+1 − λk)αk = 0, k ≥ 1

Third diagonal (λ1 − λ0)α0 = 0

Second diagonal (λ2 − λ0)α0 = 0

(λk+2 − λk−1)αk = 0, k ≥ 1

First diagonal λ2 − 2λ0 + λ1 = 0

λ3 − 2λ1 + λ0 = 0

λk+4 − 2λk+2 + λk = 0, k ≥ 0

(ad3 C)� = 0

Sixth diagonal (λk+1 − λk)αk = 0, k ≥ 2

Fifth diagonal (λ2 − λ1)α1 = 0

Fourth diagonal (λ3 − λ0)α1 = (λ1 − λ0)α0(α0α1 − α0)

(λk+2 − λk−1)αk = 0, k ≥ 2

Third diagonal (λ2 − λ0)α0 = 0, (λ1 − λ0)α0 = 0

Second diagonal (λ3 − λ0)α0 = 0, (λ4 − λ0)α1 = 0

(λk+3 − λk−2)αk = 0, k ≥ 2

First diagonal λ3 − 3λ1 + 3λ0 − λ2 = 0

λ4 − 3λ2 + 3λ0 − λ1 = 0

λ5 − 3λ3 + 3λ1 − λ0 = 0

λk+6 − 3λk+4 + 3λk+2 − λk = 0, k ≥ 0

We can reorganize the above equations in amore natural way. In the following tables the

equations with the same shape are grouped in the same column, except for the equations

in asterisk (*) at the top of some columns, which are slightly different.

(ad2 C)� = 0

Eq1 Eq2 RR

(λ1 − λ0)α0 = 0 (λ2 − λ0)α0 = 0∗ λ2 − 2λ0 + λ1 = 0∗
(λ2 − λ1)α1 = 0 (λ3 − λ0)α1 = 0 λ3 − 2λ1 + λ0 = 0∗
(λ3 − λ2)α2 = 0 (λ4 − λ1)α2 = 0 λ4 − 2λ2 + λ0 = 0

(λ4 − λ3)α3 = 0 (λ5 − λ2)α3 = 0 λ5 − 2λ3 + λ1 = 0
.
.
.

.

.

.
.
.
.

(ad3 C)� = 0

Eq1 Eq2 Eq3 RR

(λ1 − λ0)α0 = 0 (λ2 − λ0)α0 = 0∗ (λ3 − λ0)α0 = 0∗ λ3 − 3λ1 + 3λ0 − λ2 = 0∗
(λ2 − λ1)α1 = 0 (λ3 − λ0)α1 = 0 (λ4 − λ0)α1 = 0∗ λ4 − 3λ2 + 3λ0 − λ1 = 0∗
(λ3 − λ2)α2 = 0 (λ4 − λ1)α2 = 0 (λ5 − λ0)α2 = 0 λ5 − 3λ3 + 3λ1 − λ0 = 0∗
(λ4 − λ3)α3 = 0 (λ5 − λ2)α3 = 0 (λ6 − λ1)α3 = 0 λ6 − 3λ4 + 3λ2 − λ0 = 0

(λ5 − λ4)α4 = 0 (λ6 − λ3)α4 = 0 (λ7 − λ2)α4 = 0 λ7 − 3λ5 + 3λ3 − λ1 = 0
.
.
.

.

.

.
.
.
.

.

.

.

Let us use the previous results to find, for instance, the CMV matrices C with

non-trivial real diagonal solutions � for (ad2 C)� = 0. All but the first two entries in the

column RR of the corresponding table yield the recurrence relation

λk+4 − 2λk+2 + λk = 0, k ≥ 0,
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whose general solution is

λk = a0 + a1k + (−1)k(b0 + b1k), ai, bi ∈ R.

Imposing the remaining two conditions of RR,

λ2 − 2λ0 + λ1 = 0, λ3 − 2λ1 + λ0 = 0,

yields a1 = 0 and b1 = 2b0, that is,

λk = a0 + b0(−1)k(1 + 2k). (16)

Then, if αj 
= 0 for some index j, the equation (λj+1 − λj)αj = 0 of the column Eq1 implies

that

0 = λj+1 − λj = 4b0(−1)j+1(1 + j),

so that b0 = 0 and � is a multiple of the identity.

Therefore, the only non-trivial solutions may appear when αk = 0 for all k. In

this case the equations of the columns Eq1 and Eq2 are automatically satisfied and the

general solution of (ad2 C)� = 0 is given by (16), that is,

λk = λ0 + (λ0 − λ1)
(−1)k(1 + 2k) − 1

4
, λ0, λ1 ∈ R.

In other words,

� =
⎛⎜⎝

0
−1

1
−2

2
...

⎞⎟⎠ (17)

up to numerical factors and addition of multiples of the identity. This solution

corresponds to the OLP

x2m−1(z) = z−m, x2m(z) = zm,

associated with the Lebesgue measure on the unit circle, which satisfy Dx = �x for the

first order linear differential operator

D = z
d

dz
.
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Using the results of the table for (ad3 C)� = 0 we find that a similar analysis

works for these ad-conditions. Concerning the column RR, the first three equations

impose on the general solution of the remaining equations

λk+6 − 3λk+4 + 3λk+2 − λk = 0, k ≥ 0,

given by

λk = a0 + a1k + a2k
2 + (−1)k(b0 + b1k + b2k

2), ai, bi ∈ R,

the constraints a2 = a1, b1 = 2b0, and b2 = 0. If αj 
= 0 for some j, using Eq1 and Eq2 we

find again that � is a multiple of the identity. This leaves as the only non-trivial solution

that one related to the Lebesgue measure as in the previous case.

As a consequence we have the following version of Bochner theorem for OLP on

the unit circle.

Theorem 3.2. The only OLP on the unit circle which are eigenfunctions of a linear

differential operator of order not greater than two are those orthonormal with respect

to the Lebesgue measure. �

We have seen that the simplicity of the Hermitian ad-conditions is enough to

deal with the CMV bispectral problem for linear differential operators of lower degree

just by brute force. However, to go beyond this we need to further develop themachinery

of the CMV ad-conditions.

4 The CMV ad-conditions: ad-integration

The CMV ad-conditions involve commutators with a CMV matrix. Hence, the study of

the centralizer of a CMV matrix can help us to find a short-cut to the solution of such

ad-conditions.

Definition 4.1. We denote by Z(C) the centralizer of the CMV matrix C in the

multiplicative group of infinite band matrices, that is,

Z(C) := {� band matrix : [C,�] = 0}.

We can write Z(C) = ∪n≥0Zn(C), where

Zn(C) := {� (2n+ 1)-diagonal matrix : [C,�] = 0}. �
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The centralizer of a CMVmatrix among banded matrices can be explicitly deter-

mined. Concerning the result below, keep in mind that, due to the unitarity of a CMV

matrix C, its inverse C−1 = C† is also banded.

Proposition 4.2. For any CMV matrix C,

Z(C) = {f (C) : f ∈ C[z, z−1]},
Z2m(C) = Z2m+1(C) = {f (C) : f ∈ span{1, z−1, z, z−2, z2, . . . , z−m, zm}}.

�

Proof. If xn are the OLP related to C we know from Proposition A.1 that, for every

z ∈ C \ {0}, x(z) spans the set of formal eigenvectors of C with eigenvalue z. Thus, due

to the linear independence of the OLP, given a band matrix �,

[C,�] = 0 ⇔ [C,�]x(z) = 0 ⇔ (C − zI)�x(z) = 0 ⇔ �x(z) = f (z)x(z),

for some function f : C → C. From the last equality,

f (z) = f (z)x0(z) =
∑
k

�0,k xk(z),

hence f ∈ C[z, z−1] because � is banded.

Also, if � is (2n+ 1)-diagonal,

f ∈ span{xk}nk=0 =
⎧⎨⎩span{1, z−1, z, z−2, z2, . . . , z−m, zm}, n = 2m,

span{1, z−1, z, z−2, z2, . . . , z−m, zm, z−m−1}, n = 2m+ 1,

so that, for some aj ∈ C, we have that � = ∑m
j=−m ajCj if � is (4m + 1)-diagonal, while

� = ∑m
j=−m−1 ajCj when � is (4m + 3)-diagonal. However, since Cj and C−j = (C†)j are

both strictly (4j + 1)-diagonal, a−m−1 = 0 in the last case because otherwise � would be

(2n+ 3)-diagonal but not (2n+ 1)-diagonal.

This proves that

Z(C) ⊂ {f (C) : f ∈ C[z, z−1]},
Z2m(C),Z2m+1(C) ⊂ {f (C) : f ∈ span{1, z−1, z, z−2, z2, . . . , z−m, zm}}.

The reverse inclusions are obvious. �

The above result permits the integration of the CMV ad-conditions: if C is a CMV

matrix, for any band matrix �,

(ad C)n+1� = 0 ⇔ (ad C)n� = f (C), f ∈ C[z, z−1].
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In the case of � diagonal we can say much more. Indeed, we will state the result for �

tridiagonal because it needs no more effort due to the equality Z2m(C) = Z2m+1(C).

Proposition 4.3. If C is a CMV matrix and � is a tridiagonal matrix, then

(ad C)n+1� = 0 ⇔ (ad C)n� = aCn ⇔ (adn C)� = aI , a ∈ C. �

Proof. Let � be tridiagonal. Then, (ad C)n� is (4n+ 3)-diagonal and

(ad C)n+1� = 0 ⇔ (ad C)n� ∈ Z2n+1(C) ⇔ (ad C)n� =
n∑

j=−n
ajCj, aj ∈ C.

If � is Hermitian, Proposition 2.3 states that (ad C)n� = Cn((ad C)n�)†Cn, hence

r∑
j=−r

ajCj = Cr

⎛⎝ r∑
j=−r

ajC−j

⎞⎠ Cr =
r∑

j=−r
ajC2r−j =

3r∑
j=r

a2r−jCj.

On the other hand, the set {Cj}j∈Z is linearly independent: if
∑

j bjCj = 0, bj ∈ C, then

0 = ∑
j bjCjx(z) = (

∑
j bjz

j)x(z), thus
∑

j bjz
j = 0 and bj = 0 for all j. From these results

we conclude that aj = 0 for j 
= r and ar ∈ R, which proves the proposition for a

Hermitian �.

The result for a non-Hermitian � follows from (12). �

Similar ad-integration techniques to those in Proposition 4.3 have been consid-

ered previously in [25] for Jacobi bispectral problems.

As an illustration of the ad-integration techniques, we will use them to present a

simplified resolution of the ad-conditions (ad C)2� = 0 for a diagonal matrix �. Accord-

ing to Proposition 4.3, this is equivalent to solve (ad1 C)� ∝ I . Using the notation λk,

k ≥ 0, for the diagonal coefficients of �, a simple calculation yields

(ad1 C)� =

⎛⎜⎜⎜⎜⎝
b0 −a0

−a0 −b1 a1

a1 b2 −a2
−a2 −b3 a3

a3 b4 −a4
...

...
...

⎞⎟⎟⎟⎟⎠,

ak = (λk − λk+1)ρkαk, bk =
⎧⎨⎩(λ0 − λ1)ρ

2
0 , k = 0,

(λk−1 − λk)ρ
2
k−1 + (λk − λk+1)ρ

2
k , k ≥ 1.
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Therefore,

(ad1 C)� ∝ I ⇔
⎧⎨⎩ak = 0,

bk+1 = −bk,
⇔

⎧⎨⎩(λk − λk+1)αk = 0,

(λk − λk+1)ρ
2
k = (−1)k(k + 1)(λ0 − λ1)ρ

2
0 .

If αj 
= 0 for some j, the above relations imply that λk = λk+1 for all k, that is,� ∝ I . On the

other hand, when αk = 0 for all k the condition ak = 0 is automatically satisfied, while

bk+1 = −bk determines � as in (17) up to numerical factors and addition of multiples of

the identity.

5 The Hermitian ad-conditions: ad-factorization

Another useful tool to deal with the CMV bispectral problem is the ad-factorization of

the Hermitian ad-operator. The original ad-operator (ad C)n is by definition a power of

the simple ad-operator (ad C), but this is no longer true for the Hermitian ad-operator

(adn C). To understand the ad-factorization of (adn C) let us exploit again the possibility

of approaching the CMV bispectral problem using two kinds of OLP, xn and χn.

Section 2 shows that the previous results about the bispectral problem for xn

can be translated to the bispectral problem for χn just by performing the following

transformations:

xn −→ χn

C −→ Ct

L −→ M
M −→ L.

For instance, the bispectral problem Dχ = �χ can be solved by using the ad-conditions

(ad Ct)n� = 0. These ad-conditions are equivalent to the Hermitian ones (adn Ct)� = 0,

where the definition and properties of (adn Ct) can be obtained from those of (adn C) by

simply making the exchanges C ↔ Ct and L ↔ M.

A number of properties relate the ad-operators (adn C) and (adn Ct), among them

the ad-factorization that we are interested in. The following proposition summarizes

these properties.

Proposition 5.1. Given a CMV matrix C, the following relations hold for any band

matrix �:

(i) ((adn C)�)t = (−1)n(adn Ct)�t.
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(ii) (adn C)(L�M) =
⎧⎨⎩L((adn Ct)�)M, even n,

M((adn Ct)�)L, odd n.

(iii) (adn C)� = (adn−k C(k))((adk C)�), C(k) :=
⎧⎨⎩C, even k,

Ct, odd k.
�

Proof. Property (i) follows from Definition 3.1 of (adn C)� and the corresponding one

for (adn Ct)�, together with the relation ((ad C)n�)t = (−1)n(ad Ct)n�t, obtained iterating

((ad C)�)t = −(ad Ct)�t.

Analogously, the iteration of (ad C)(L�M) = L((ad Ct)�)M gives rise to the iden-

tity (ad C)n(L�M) = L((ad Ct)n�)M. Introducing in this equality Definition 3.1 and its

counterpart for (adn Ct)�, when n = 2m+ 1 leads to

(adn C)(L�M) = L†(C†)mL(Ct)mM((adn Ct)�)L(Ct)mM(C†)mM†

= M((adn Ct)�)L.

Here we have used that L(Ct)m = CmL and (Ct)mM = MCm due to the factorizations

C = LM and Ct = ML. This proves Property (ii) for odd n. The proof for even n is

similar.

Property (iii) is a direct consequence of Property (ii). There are four cases to

discuss depending on the parity of n and k. We will show the proof for one of the cases,

the others having a very similar proof. Consider an even n = 2m and an odd k = 2j + 1.

Then, n− k = 2(m− j − 1) + 1 is odd and

(ad C)n� = Cm((adn C)�)Cm, (ad C)k� = CjL((adk C)�)MCj,

(ad C)n−k� = Cm−j−1L((adn−k C)�)MCm−j−1.

Using these relations and the factorization (ad C)n� = (ad C)n−k((ad C)k�) we get

(adn C)� = C−m((ad C)n−k(CjL((adk C)�)MCj))C−m

= Cj−m((ad C)n−k(L((adk C)�)M))Cj−m

= C−1L((adn−k C)(L((adk C)�)M))MC−1.

Finally, Property (ii) gives

(adn C)� = C−1LM((adn−k Ct)((adk C)�))LMC−1 = (adn−k Ct)((adk C)�). �
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Proposition 5.1 (iii) is the ad-factorization of (adn C). A special case is the

recursive algorithm (15) for (adn C)� since it can be written as

(adn+1 C)� = (ad1 C(n))((adn C)�).

The opposite special case,

(adn+1 C)� = (adn Ct)((ad1 C)�), (18)

will be particularly useful in dealing with the CMV bispectral problem for linear

differential operators of arbitrary order.

6 The general CMV bispectral problem

We have proved that the CMV bispectral problem for linear differential operators of

order not greater than two is trivial, that is, the only bispectral CMV matrix is that one

with null Verblunsky coefficients. The purpose of the present section is to generalize

this result as much as possible by weakening the assumptions in different ways:

(A) Admitting linear differential operators of arbitrary order.

(B) Requiring the eigenfunction conditionwith respect to the linear differential

operator up to finitely many OLP.

(C) Substituting the eigenfunction condition by the more general three-term

difference–differential relation (8).

Remember that assuming (B) for a linear differential operator D in C[z, z−1] can be

restated by saying that Dx = �x with � almost diagonal (or almost tridiagonal if com-

bined with (C)), that is, � = �N ⊕ � for some N , with �N the N × N principal submatrix

of � and � diagonal.

A first step in the direction pointed out in (B) is given by the following

proposition.

Proposition 6.1. If C is a CMV matrix, then

� almost diagonal, (ad1 C)� diagonal ⇒ � diagonal. �

Proof. Obviously, � is (almost) diagonal iff Re� and Im� are simultaneously (almost)

diagonal. Also, from (14), Re ((ad1 C)�) = (ad1 C)Re� and Im ((ad1 C)�) = (ad1 C)Im�.
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Therefore, by taking real and imaginary parts, it suffices to prove the proposition for an

Hermitian �.

By induction on N , it is enough to see that � = �N ⊕ � with � diagonal implies

that �N = �N−1 ⊕ λN−1 with λN−1 ∈ R. If we write

�N =
(

�N−1 uN−1

u†
N−1 λN−1

)
, uN−1 ∈ C

N−1, λN−1 ∈ R,

all that we must prove is that uN−1 = 0 whenever (ad1 C)� is diagonal.

Suppose that � = �N ⊕ � for an even N , the proof for odd N follows similar

arguments. Then, denoting in general by the subscript N the N ×N principal submatrix

and by the superscript (N) the submatrix obtained deleting the firstN rows and columns,

we have the splitting

A := L†�L = AN ⊕ A(N), AN = L†
N�NLN ,

B := M�M† = BN+1 ⊕ B(N+1), BN+1 = MN+1�N+1M†
N+1,

because LN and MN+1 are direct sums of complete blocks �k. Since �N+1 = �N ⊕λN with

λN ∈ R and

MN+1 = MN−1 ⊕ �N−1 =
(

MN ρN−1eN

ρN−1e†N −αN−1

)
, eN =

⎛⎜⎜⎝
0
...
0
1

⎞⎟⎟⎠ ∈ C
N ,

we find that

BN+1 =
(
BN vN

v†
N ∗

)
, vN = ρN−1(MN�N − λNαN−1IN)eN .

Therefore,

(ad1 C)� = B− A =

⎛⎜⎜⎝
BN − AN vN 0

v†
N

0
B(N) − A(N)

⎞⎟⎟⎠ ,

where 0 stands for the null matrix of the appropriate size. Hence, (ad1 C)� diagonal

implies vN = 0. Bearing in mind that MN = MN−1 ⊕ αN−1 and MN−1 is unitary we

conclude that

vN = 0 ⇒ λNαN−1eN = MN�NeN =
(

MN−1uN−1

λN−1αN−1

)
⇒ uN−1 = 0. �
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Combining the previous proposition and the results of the calculations at the

end of Section 4 we get the following result.

Corollary 6.2. If C is a CMVmatrix whose Verblunsky coefficients are not all null, then

� almost diagonal, (ad1 C)� ∝ I ⇒ � ∝ I . �

We have seen that an almost diagonal matrix satisfying certain ad-conditions

must be actually diagonal. A similar result states that, under some ad-conditions, an

almost tridiagonal matrix becomes almost diagonal.

Proposition 6.3. If C is a CMV matrix, for any n ∈ N,

� almost tridiagonal, (adn C)� = 0 ⇒ � almost diagonal. �

Proof. Supposingwithout loss that� is Hermitian, the fact that� is almost tridiagonal

means that� = �̂+�̃, where �̂has finitelymany non-null coefficients and �̃ is Hermitian

tridiagonal. We can express

�̃ =
⎛⎜⎝

λ̃0 λ0

λ0 λ̃1 λ1

λ1 λ̃2 λ3
...

...
...

⎞⎟⎠ = �̃ + �S + S†�†, λk ∈ C, λ̃k ∈ R,

in terms of the shift matrix S given in (4) and the two diagonal matrices

� =
( λ0

λ1
λ2 ...

)
, �̃ =

⎛⎝ λ̃0
λ̃1

λ̃2 ...

⎞⎠ .

We must prove that � is almost diagonal, that is, λk = 0 for big enough k,

whenever (adn C)� = 0. These ad-conditions imply that (adn C)�̃ = −(adn C)�̂ has only

finitely many non-null coefficients. The conclusions of the proposition will follow from

the analysis of the top upper diagonal of (adn C)�̃, whose coefficients must vanish up to

finitely many ones.

To obtain the top upper diagonal in question it is useful to rewrite also L and

M using the shift matrix, as in (5). The top upper diagonal of (adn C)�̃ is the term cor-

responding to the highest power of the shift. In the case of even n = 2m such a term

comes exclusively from the summands Cm�̃(C†)m + (C†)m�̃Cm and is given by

(BeSBoS)m�S(BoSBeS)m + (BoSBeS)m�S(BeSBoS)m. (19)
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Using the identity (A.1) to permute any diagonal matrix with the powers of the shift, (19)

reads as 	(n)S2n where

	(n) = BeB(1)
o B(2)

e B(3)
o · · · B(n−2)

e B(n−1)
o �(n)B(n+1)

o B(n+2)
e B(n+3)

o B(n+4)
e · · · B(2n−1)

o B(2n)
e

+ BoB(1)
e B(2)

o B(3)
e · · · B(n−2)

o B(n−1)
e �(n)B(n+1)

e B(n+2)
o B(n+3)

e B(n+4)
o · · · B(2n−1)

e B(2n)
o

=
⎛⎝ δ

(n)
0

δ
(n)
1

...

⎞⎠ , δ
(n)

k = ρkρk+1 · · · ρk+n−1λk+nρk+n+1ρk+n+2 · · · ρk+2n.

Since 	(n) must have finitely many non-null coefficients, we conclude that λk = 0 for

big enough k in the case of even n. A similar proof works for odd n. �

Propositions 6.1 and 6.3, as well as Corollary 6.2, remain true when substituting

C by Ct, whose effect is simply exchanging L ↔ M. This can be used to obtain our main

result.

Theorem 6.4. If C is a CMV matrix whose Verblunsky coefficients are not all null, for

any n ∈ N,

� almost tridiagonal, (adn C)� = 0 ⇒ � ∝ I . �

Proof. Suppose � almost tridiagonal satisfying (adn C)� = 0. From Proposition 6.3 we

know that � must be almost diagonal. Hence, �(1) := (ad1 C)� is almost tridiagonal and,

according to the ad-factorization property (18), (adn−1 Ct)�(1) = (adn C)� = 0. Then, the

result analogous to Proposition 6.3 for Ct implies that �(1) is almost diagonal. Hence,

�(2) := (ad1 Ct)�(1) is almost tridiagonal and satisfies (adn−2 C)�(2) = (adn−1 Ct)�(1) =
0 due to the analogue of the ad-factorization (18) for Ct. Thus, Proposition 6.3 implies

that �(2) is almost diagonal. Proceeding by induction we finally find almost diagonal

matrices �(0) = �,�(1),�(2), . . . ,�(n− 1) such that

(adn−k C(k))�(k) = 0, �(k + 1) = (ad1 C(k)) �(k), C(k) =
⎧⎨⎩C, even k,

Ct, odd k.

In particular, �(n − 1) is almost diagonal and (ad1 C(n − 1))�(n − 1) = 0. From

Corollary 6.2 we find that �(n − 1) ∝ I . Hence, (ad1 C(n − 2)) �(n − 2) ∝ I , so that

�(n−2) ∝ I , again by Corollary 6.2. Proceeding in this way we obtain by induction that

� = �(0) ∝ I . �
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The hypothesis of the previous theorem are equivalent to the existence of a

linear differential operator D such that Dx = �x for an almost tridiagonal matrix

�, where xn are the OLP related to C. This means that D preserves C[z, z−1] and

Dxn ∈ span{xn−1, xn, xn+1} for all but finitely many indices n. Therefore, bearing in

mind the equivalence (13), Theorem 6.4 has the following translation in terms of linear

differential operators and OLP on the unit circle.

Theorem 6.5. The only OLP xn on the unit circle satisfying

Dxn ∈ span{xn−1, xn, xn+1}, ∀n ≥ n0, n0 ∈ N,

for a linear differential operator D : C[z, z−1] → C[z, z−1] of arbitrary order, are those

orthonormal with respect to the Lebesgue measure. �

As a particular case of this theorem we get the triviality of the general CMV

bispectral problem.

Corollary 6.6. The only OLP on the unit circle which, up to finitely many ones, are

eigenfunctions of a linear differential operatorD : C[z, z−1] → C[z, z−1] of arbitrary order,
are those orthonormal with respect to the Lebesgue measure. �

7 Conclusions and outlook

We have shown that the CMV bispectral problem on the unit circle—at least in its tra-

ditional formulation, or even in some generalizations—admits only the trivial solution.

The question is: does this result close the topic?Our intention, based in other experiences

involving the bispectral problem and its connections with the problem of C. Shannon,

is to keep looking in different directions in the context of the unit circle. Some hope

is offered, for instance by results in [17, 26, 49, 53], where one sees how getting away

from polynomials leads to interesting situations. These references also show that con-

sidering not necessarily positive definite measures can be fruitful. The richness of the

matrix valued Bochner problem in the case of the real line (whose full solution is still

unknown, as a small sample see [6, 19, 22, 23]), compared to the scalar case, suggests

that the triviality of the CMV bispectral problem may disappear if one admits matrix

valued measures. A different path in this direction could arise from the use of more

exotic kind of orthogonality on the unit circle, such as the one related to Sobolev inner

products. All of this remains as a challenge.
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It is important to point out that the Bochner–Krall problem—see [25] for a very

nice presentation—is intimately connected with the study of the Toda lattice and its

Virasoro symmetries. In connection with CMV matrices very relevant references are

[27, 30, 34, 35], where the Ablowitz–Ladik hierarchy is seen to be the integrable system

that plays the role that the Toda lattice played for Jacobi matrices.
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Appendix

In this appendix we prove the following technical result, crucial for Theorem 2.2.

Proposition A.1. Let xn and χn be the OLP related to the CMVmatrices C and Ct, respec-

tively. Then, a basis of ker(C − zI)n is given by {x(z), x ′(z), . . . , x(n−1)(z)} and a basis of

ker(Ct − zI)n is given by {χ(z),χ ′(z), . . . ,χ (n−1)(z)} for every z ∈ C \ {0}. �

Proof. We will prove the result for C and xn, the proof for Ct and χn begin similar.

From (1) we find that (C − zI)x(k)(z) = k x(k−1)(z) by induction on k. This

leads to (C − zI)kx(k) = k! x(z) and (C − zI)k+1x(k)(z) = 0, which implies that

span{x(z), x ′(z), . . . , x(n−1)(z)} ⊂ ker(C − zI)n. Besides, {x(z), x ′(z), . . . , x(n−1)(z)} is lin-

early independent for every z 
= 0 because applying (C − zI)n−1 to the equation

c0(z)x(z) + c1(z)x ′(z) + · · · + cn−1(z)x(n−1)(z) = 0 yields (n − 1)! cn−1(z) = 0, so an induc-

tion gives ck(z) = 0 for all k. Hence, to prove that {x(z), x ′(z), . . . , x(n−1)(z)} is a basis of

ker(C − zI)n we only need to show that dimker(C − zI)n = n.

To determine dimker(C − zI)n note that, due to the unitarity of L and M, mul-

tiplying (C − zI)n on the left by L† or M† does not change its kernel. In particular,

ker(C − zI)n = ker[K(n)(C − zI)n], where

K(2m) = (C†)m, K(2m+ 1) = L†(C†)m.
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The advantage of K(n)(C − zI)n over (C − zI)n is its narrower band structure, which is

shown by inserting the expansion (11), so that

K(2m)(C − zI)2m =
m∑

j=−m
(−1)m−j

(
2m

m− j

)
zm−jCj

= (−1)m
(
2m

m

)
zm +

m∑
j=1

(−1)m−j
(

2m

m− j

) (
zm−jCj + zm+j(C†)j

)
,

K(2m+ 1)(C − zI)2m+1 =
m∑

j=−m−1

(−1)m−j
(
2m+ 1

m− j

)
zm−jMCj

=
m∑
j=0

(−1)m−j
(
2m+ 1

m− j

) (
zm−jMCj − zm+j+1L†(C†)j

)
.

The above expressions prove that K(n)(C − zI)n is (2n+ 1)-diagonal. Besides, the coeffi-

cients of its top upper diagonal are non-null for z 
= 0. To check this last statement note

that this top upper diagonal comes exclusively from the terms

Cm + zn(C†)m, n = 2m,

MCm − znL†(C†)m, n = 2m+ 1,

and corresponds to the power Sn when expanding in powers of the shift S given in (4).

Using (5) we find that such upper diagonal is

(BeSBoS)m + zn(BoSBeS)m, n = 2m,

BoS(BeSBoS)m − znBeS(BoSBeS)m, n = 2m+ 1.

We can permute any diagonal matrix � with the powers of the shift S via the identity

Sk� = �(k)Sk, (A.1)

where �(k) is obtained by deleting the first k rows and columns of �. Therefore, the top

upper diagonal in question reads as �(n)Sn with

�(n) =
⎧⎨⎩BeB(1)

o · · · B(n−2)
e B(n−1)

o + znBoB(1)
e · · · B(n−2)

o B(n−1)
e , n = 2m,

BoB(1)
e · · · B(n−2)

e B(n−1)
o − znBeB(1)

o · · · B(n−2)
o B(n−1)

e , n = 2m+ 1.
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More explicitly,

�(n) =
⎛⎝ γ

(n)
0

γ
(n)
1

...

⎞⎠ , γ
(n)

k =
⎧⎨⎩ρkρk+1 · · · ρk+n−1, k,n same parity,

(−1)nznρkρk+1 · · · ρk+n−1, k,n different parity,

which clearly has non-null diagonal coefficients for z 
= 0.

The fact thatK(n)(C−zI)n is (2n+1)-diagonalwith non-null coefficients in the top

upper diagonal implies that dimker[K(n)(C−zI)n] = n. In otherwords, dimker(C−zI)n =
n, which ends the proof of the proposition. �
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