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Abstract

The present paper is devoted to the development of the theory of monotone dif-
ference schemes, approximating the so-called weakly coupled system of linear elliptic
and quasilinear parabolic equations. Similarly to the scalar case, the canonical form
of the vector-difference schemes is introduced and the definition of its monotonicity
is given. This definition is closely associated with the property of non-negativity
of the solution. Under the fulfillment of the positivity condition of the coefficients,
two-side estimates of the approximate solution of these vector-difference equations
are established and the important a priori estimate in the uniform norm C is given.
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1 Introduction

Computational methods satisfying the discrete maximum principle are called monotone
[14]. The maximum principle allows us not only to establish unique solvability of the
corresponding difference problems, but also to obtain the important theoretical a priori
estimates of stability and convergence of the difference solution in the strongest uniform
norm C or L∞. Monotone difference schemes play an important role in mathematical mod-
eling applications, because they allow to obtain numerical solutions without nonphysical
oscillations [10].

Extensive literature is devoted to the study of monotone difference schemes for linear
elliptic and parabolic equations in the scalar case (see [6, 18]), for example. However,
due to the difficulty of the problem, similar results for systems of elliptic equations are
missing in the scientific literature. This is the case, for example, of the typical elasticity
system of PDEs. In this context, it is interesting to note papers [1, 2], where monotone
finite element methods for parabolic PDE systems are studied.
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The present paper is dedicated to the development of the theory of monotone difference
schemes approximating the so-called weakly coupled system of linear elliptic and quasi-
linear parabolic equations [11]. Similarly to the scalar case [14] the canonical form of
the vector-difference schemes is introduced and the definition of its monotonicity is given.
This definition is closely associated with the property of non-negativity of the approximate
solution. Under the fulfillment of positivity condition of the matrix coefficients, two-side
estimates of difference solution of these vector-difference equations are established and
the important a priori estimates in the uniform norm C are given. Note that the two-
side estimates are especially important for the analysis of theoretical properties of the
computational methods approximating problems with unbounded nonlinearities, where it
is necessary to prove that the discrete solution belongs to a neighborhood of the exact
solution [8]. An example is the Gamma equation modeling options pricing in financial
mathematics [3]. Obtained results are applied to analyze the properties of monotonicity of
the difference schemes in second order system of linear elliptic and quasi-linear parabolic
equations on non-uniform grids [15].

The outline of the paper is as follows. In Section 2 the canonical form of the vector
difference schemes is introduced and the definition of its monotonicity is given. Here,
we understand the monotonicity as a corollary of the maximum principle: from non-
negativity (non-positivity) of the input data it follows non-negativity (non-positivity) of
all components of the unknown grid vector-function. This definition is closely connected
with the works dedicated to finite difference schemes (FDS) preserving positivity of its
solution [3]. In this section, the sufficient conditions of positivity of the coefficients are
formulated. By using these conditions, two-side estimates of the difference solution of the
vector-difference equation and the estimate in the norm C are proved. In Section 3 we
consider a FDS on uniform grids for a two-dimensional weakly coupled steady problem
without convection. Monotonicity of these difference schemes are studied and a priori
estimates of stability of the difference solution are established. In Sections 4 and 5 the
obtained results are generalized to two-dimensional weakly coupled linear elliptic systems
of convection-diffusion equations and two-dimensional quasilinear systems of parabolic
type respectively. Note that in the quasilinear parabolic equation nonlinear coefficient
depends on all components and we have built the difference schemes of second order of
approximation. To construct unconditionally monotone schemes, the idea of regulariza-
tion in the scalar case of A. Samarskii [14] is used. Section 6 is dedicated to construct
unconditionally monotone vector-difference schemes of second order approximation on
an arbitrary non-uniform grid for one-dimensional weakly coupled elliptic systems. For
this purpose, the well-known idea of designing such schemes in the scalar case is used
[15, 7, 9, 16, 4].

2 Monotonicity of finite difference schemes for sys-

tems of PDEs

In this section we define the concept of monotonicity of finite difference schemes for
systems of partial differential equations. Let ω̄h = ωh ∪ ∂ωh denote a grid in a bounded
domain Ω̄ ⊂ Rn, where ωh and ∂ωh are the sets of interior and boundary grid points
respectively.

To each point P ∈ ωh we associate one and only one stencil M(P ) – a subset of ω̄h,
containing this point. The set M ′ (P ) = M (P ) \P is called neighborhood of the point P .
Next, for each inner grid point P ∈ ωh we consider the following finite difference scheme
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written in form

A(P )Y(P ) =
∑

Q∈M ′(P )

B(P,Q)Y(Q) + F(P ), P ∈ ωh, (1)

which is called a canonical form of the vector-difference scheme in a way analogous to
the scalar case [14]. Here Y(P ) = (y1(P ), y2(P ), . . . , ym(P ))T is the unknown vector grid
function associated with node P , A(P ) = (aij(P ))m×m and B(P,Q) = (bij(P,Q))m×m are
the matrices of coefficients of the equations, F(P ) = (f1(P ), f2(P ), . . . , fm(P ))T is the
right-hand side vector of the system.

In this work we assume Dirichlet boundary conditions for all variables, and therefore,
for each boundary point P ∈ ∂ωh, we have

Y(P ) = µ(P ), P ∈ ∂ωh, (2)

where µ(P ) = (µ1(P ), µ2(P ), . . . , µm(P ))T is a given vector. In the sequel the following
notation will be used:

max
P∈ω̄h

Y(P ) = max
1≤k≤m

max
P∈ω̄h

yk(P ), min
P∈ω̄h

Y(P ) = min
1≤k≤m

min
P∈ω̄h

yk(P ), (3)

‖Y‖ω̄h = max
1≤k≤m

max
P∈ω̄h

|yk(P )|, ‖Y‖∂ωh = max
1≤k≤m

max
P∈∂ωh

|yk (P )| , (4)

A (P ) ≥ 0⇔ aij (P ) ≥ 0 ∀i, j, F (P ) ≥ 0⇔ fi (P ) ≥ 0 ∀i.

Definition 1. Finite difference scheme (1)-(2) is called monotone if its solution satisfies
the conditions:

If F(P ) ≥ 0 ∀P ∈ ωh and µ(P ) ≥ 0 ∀P ∈ ∂ωh then Y(P ) ≥ 0 ∀P ∈ ω̄h.
If F(P ) ≤ 0 ∀P ∈ ωh and µ(P ) ≤ 0 ∀P ∈ ∂ωh then Y(P ) ≤ 0 ∀P ∈ ω̄h.

We now give sufficient conditions on the coefficients of the equations, that can be
checked easily a priori, in order to ensure the monotonicity of the scheme. For this, we
rewrite finite difference scheme (1)-(2) as

A1(P )Y(P ) =
∑

Q∈M ′(P )

B(P,Q)Y(Q) + C1(P )Y(P ) + F(P ), P ∈ ωh, (5)

Y(P ) = µ(P ), P ∈ ∂ωh, (6)

where A(P ) = A1(P ) − C1(P ), with A1(P ) the diagonal matrix of the diagonal entries
of A, A1(P ) = diag(a11(P ), a22(P ), . . . , amm(P )), and C1(P ) = (c1

ij(P ))m×m. If D(P ) =
diag(d11(P ), d22(P ), . . . , dmm(P )) is the diagonal matrix of order m defined by

dii(P ) = aii(P )−

 ∑
Q∈M ′(P )

m∑
j=1

bij(P,Q) +
m∑
j=1

c1
ij(P )

 ,

we have the following result in order to guarantee the property of monotonicity of the
finite difference scheme.

Theorem 1. If the coefficients of problem (5)-(6) satisfy the positivity conditions

A1(P ) > 0, B(P,Q) ≥ 0, C1(P ) ≥ 0, D(P ) > 0, (7)

then the following two-side estimate holds

m1 ≤ yk(P ) ≤ m2, k = 1, . . . ,m, (8)
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where

m1 = min

{
min
P∈∂wh

µ(P ), min
P∈ωh

(
D−1(P )F(P )

)}
, (9)

m2 = max

{
max
P∈∂wh

µ(P ),max
P∈ωh

(D−1(P )F(P ))

}
, (10)

and therefore the finite difference scheme is monotone.

Proof. We prove the upper bound of estimate (8). In a similar way, the lower bound
can be proved. If the vector grid function Y(P ) attains its maximum in sense of notation
(3) at a boundary point P0 ∈ ∂ωh then it exists j ∈ {1, 2, . . . ,m} such that

max
P∈ω̄h

Y(P ) = µj(P0). (11)

Let us now suppose that the solution achieves its maximum at an interior grid point
P0 ∈ ωh, i.e., it exists i ∈ {1, 2, . . . ,m} such that

max
P∈ω̄h

Y(P ) = yi(P0).

From (5), we have the equation

aii(P0)yi(P0) =
∑

Q∈M ′(P0)

m∑
j=1

bij(P0, Q)yj(Q) +
m∑

j=1,j 6=i

c1
ij(P0)yj(P0) + fi(P0).

By applying the positive conditions (7) of the coefficients of the problem, we obtain the
following inequality

aii(P0)yi(P0) ≤
∑

Q∈M ′(P0)

m∑
j=1

bij(P0, Q)yi(P0) +
m∑

j=1,j 6=i

c1
ij(P0)yi(P0) + fi(P0),

or equivalently
dii(P0)yi(P0) ≤ fi(P0).

From this inequality, we deduce that

max
P∈ω̄h

Y(P ) = yi(P0) ≤ fi(P0)

dii(P0)
≤ max

P∈ωh

fi(P )

dii(P )
≤ max

P∈ωh
(D−1(P )F(P )). (12)

From (11) and (12), the required upper bound is obtained

yk(P ) ≤ max
P∈ω̄h

Y(P ) ≤ max

{
max
P∈∂wh

µ(P ),max
P∈ωh

(D−1(P )F(P ))

}
, k = 1, . . . ,m.

Finally, it is obvious that if the solution satisfies the two-side estimate (8) then, according
to definition 1, the finite difference scheme is monotone. �

Following the proof of the previous theorem, a stability estimate in the maximum
norm is obtained. In the next theorem we summarize this result.

Theorem 2. If the coefficients of problem (5)-(6) satisfy the positivity conditions (7),
then the following stability estimate in the maximum norm holds

‖Y‖ω̄h ≤ max
{
‖µ‖∂ωh , ‖D−1F‖ωh

}
. (13)
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Proof. The grid function |Y(P )| can attain its maximum at a boundary point, yield-
ing

max
P∈ω̄h

|Y(P )| = max
P∈∂ωh

|µ(P )|, (14)

or at an interior point P0 ∈ ωh, i.e., it exists i ∈ {1, 2, . . . ,m} such that

max
P∈ω̄h

|Y(P )| = |yi(P0)|.

In this latter case, we have the following inequality

aii(P0)|yi(P0)| ≤
∑

Q∈M ′(P0)

m∑
j=1

bij(P0, Q)|yi(P0)|+
m∑

j=1,j 6=i

c1
ij(P0)|yi(P0)|+ |fi(P0)|,

or equivalently
dii|yi(P0)| ≤ |fi(P0)|,

deducing that

max
P∈ω̄h

|Y(P )| = |yi(P0)| ≤ |fi(P0)|
dii(P0)

≤ max
P∈ωh

∣∣∣∣ fi(P )

dii(P )

∣∣∣∣ ≤ max
P∈ωh

|D−1(P )F(P )|. (15)

From (14) and (15), the required estimate is obtained. �

Remark 1. It is easy to show that under the fulfillment of positivity conditions (7) problem
(1)–(2) has a unique solution.

3 A two-dimensional steady diffusion system

In this section we consider a finite difference scheme on uniform grids for a two-dimensional
weakly coupled steady problem without convection. Let Ω be a rectangular domain of
length l1 in the x1-direction and l2 in the x2-direction, Ω = {0 < x1 < l1, 0 < x2 < l2}.
We consider on the domain Ω a system of m weakly coupled reaction-diffusion equations −∆1 0

0
. . . 0
0 −∆m


 u1

...
um

 =

 c11 . . . c1m
...

...
cm1 . . . cmm


 u1

...
um

+

 f1(x)
...

fm(x)

 , (16)

with Dirichlet boundary conditions

uk(x) = µk(x), k = 1, . . . ,m, x ∈ ∂Ω. (17)

This problem can be written in a matrix form as

LU = CU + F(x), x ∈ Ω, (18)

U(x) = µ(x), x ∈ ∂Ω, (19)

where
U(x) = (u1(x), u2(x), . . . , um(x))T is the unknown vector function,
C = (cij)m×m is a matrix of constant coefficients,
F(x) = (f1(x), f2(x), . . . , fm(x))T and µ(x) = (µ1(x), µ2(x), . . . , µm(x))T are the right-
hand side and boundary vector functions respectively,
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and L = −diag(∆1,∆2, . . . ,∆m) is the vector Laplacian operator in the Cartesian coor-
dinate system, with

∆kuk =
∂2uk
∂x2

1

+
∂2uk
∂x2

2

, k = 1, . . . ,m.

We assume that the solution of the problem (16)–(17) exists and is unique, and all coef-
ficients, that are included in the equation (16), and the desired function have continuous
bounded derivatives, which are necessary in the course of the expansion of order. One
interesting solvability approach for the elliptic system (16)–(17) is presented in the work
[19] (see Theorem 3).

Let N1 and N2 be positive integers and let h1 = l1/N1 and h2 = l2/N2 be the space
discretization parameters. We introduce the uniform grid ω̄h = ωh ∪ ∂ωh as

ω̄h = {xi1i2 = (i1h1, i2h2), iα = 0, 1, . . . , Nα, α = 1, 2}, (20)

where ωh and ∂ωh are the set of interior and boundary grid nodes of ω̄h respectively. On
this grid, we approximate the solution of problem (16)-(17) by the finite difference scheme −∆1h 0

0
. . . 0
0 −∆mh


 y1

...
ym

 =

 c11 . . . c1m
...

...
cm1 . . . cmm


 y1

...
ym

+

 f1(x)
...

fm(x)

 ,

x ∈ ωh, (21)

yk(x) = µk(x), k = 1, . . . ,m, x ∈ ∂ωh, (22)

where ∆kh is the standard discretization of the Laplacian operator, ∆khyk = (yk)x̄1x1 +
(yk)x̄2x2 . This scheme can be rewritten in the canonical form (5)-(6) as

A1Yi1i2 = B1Yi1−1i2 +B2Yi1i2−1 +B3Yi1+1i2 +B4Yi1i2+1

+C1Yi1i2 + Fi1i2 , iα = 1, . . . , Nα − 1, α = 1, 2, (23)

Y(x) = µ(x), x ∈ ∂ωh, (24)

with A1 a diagonal matrix of order m with entries (A1)ii = 2h−2
1 + 2h−2

2 − cii, B1 = B3 =
h−2

1 Im and B2 = B4 = h−2
2 Im. Here, Im denotes the identity matrix of order m. For the

entries of C1 we have

(C1)ij =

{
cij, if i 6= j,
0, if i = j.

We observe that if the coefficients of matrix C satisfy the inequalities

ckk < 0, ckl ≥ 0, k 6= l,
m∑
l=1

ckl < 0, k, l = 1, . . . ,m, (25)

then finite difference scheme (21) satisfies the positive conditions (7), and the following
results arise from Theorems 1 and 2.

Theorem 3. If the coefficients of matrix C in problem (16) satisfy the conditions (25),
then finite difference scheme (21) is monotone and we have the following two-side esti-
mates for its solution

m1 ≤ yk(x) ≤ m2, x ∈ ω̄h, k = 1, . . . ,m,
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where

m1 = min

{
min
x∈∂wh

µ(x),min
x∈ωh

(
D−1F(x)

)}
, (26)

m2 = max

{
max
x∈∂wh

µ(x),max
x∈ωh

(
D−1F(x)

)}
, (27)

with D the diagonal matrix with positive entries dkk = −
∑m

l=1 ckl.

Theorem 4. If the coefficients of matrix C in problem (16) satisfy the conditions (25),
the following estimate holds

‖Y‖ω̄h ≤ max
{
‖µ‖∂ωh , ‖D−1F‖ωh

}
. (28)

4 Two-dimensional steady convection-diffusion-reaction

system

In this section we construct a monotone finite difference scheme on uniform grids for
a two-dimensional steady weakly coupled convection-diffusion-reaction system. For an
overview of schemes for convection-diffusion problems see the monographs [12, 17]. Let
Ω be a rectangular domain, Ω = {(x1, x2), 0 < x1 < l1, 0 < x2 < l2} with boundary ∂Ω.
We consider on the domain Ω a system of m coupled convection-diffusion equations

−LU = CU + F(x), x ∈ Ω, (29)

U(x) = µ(x), x ∈ ∂Ω. (30)

Here U = U(x) is the unknown vector function that is sought, while L = diag(L1,L2, . . . ,Lm),
Lk =

∑2
α=1(Ldkα + Lckα), k = 1, . . . ,m, with

Ldkα =
∂

∂xα

(
kkα(x)

∂

∂xα

)
, Lckα = rkα

∂

∂xα
, (31)

where the functions kkα fulfill the property 0 < kmin ≤ kkα(x) ≤ kmax, k = 1, . . . ,m, α =
1, 2. As in Section 3, C = (cij)m×m is a matrix of constant coefficients, and F(x) and µ(x)
are the right-hand side and boundary vector functions respectively.

On the grid ω̄h (20), we consider the second order finite difference scheme [14]

−
2∑

α=1

Λkαyk(x) =
m∑
l=1

cklyl(x) + fk(x), x ∈ ωh, k = 1, . . . ,m, (32)

yk(x) = µk(x), x ∈ ∂ωh, k = 1, . . . ,m, (33)

where Λkαyk = κkαΛd
kαyk + Λc

kαyk with κkα = (1 +Rkα)−1, Rkα = 0.5hα|rkα|/kkα, and

Λd
kαyk = (akαyk,x̄α)xα , ak1 = kk1(x1 − h1/2, x2), ak2 = kk2(x1, x2 − h2/2),

Λc
kαyk = b+

kαa
(+1)
kα yk,xα + b−kαakαyk,x̄α , b±kα =

r±kα
kkα

, r±kα = 0.5(rkα ± |rkα|).

This scheme can be rewritten in the canonical form (5)-(6) as

A1(xi1i2)Yi1i2 = B1(xi1i2)Yi1−1i2 +B2(xi1i2)Yi1i2−1 +B3(xi1i2)Yi1+1i2

+B4(xi1i2)Yi1i2+1 + C1(xi1i2)Yi1i2 + Fi1i2 , iα = 1, . . . , Nα − 1, α = 1, 2,

Y(x) = µ(x), x ∈ ∂ωh,
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where Bj(xi1i2) = diag(bj11(xi1i2), . . . , b
j
mm(xi1i2)), j = 1, . . . , 4 with entries for k =

1, . . . ,m

b1
kk(xi1i2) =

ak1,i1−1/2i2

h2
1

(κk1,i1i2 − h1b
−
k1,i1i2

),

b2
kk(xi1i2) =

ak2,i1i2−1/2

h2
2

(κk2,i1i2 − h2b
−
k2,i1i2

),

b3
kk(xi1i2) =

ak1,i1+1/2i2

h2
1

(κk1,i1i2 + h1b
+
k1,i1i2

),

b4
kk(xi1i2) =

ak2,i1i2+1/2

h2
2

(κk2,i1i2 + h2b
+
k2,i1i2

),

A1(xi1i2) is a diagonal matrix with diagonal entries a1
kk(xi1i2) = b1

kk(xi1i2) + b2
kk(xi1i2) +

b3
kk(xi1i2)+b4

kk(xi1i2)−ckk and C1(xi1i2) = (c1
kl)m×m is a matrix such that c1

kl = ckl if k 6= l,
and zero in other case.
From the above coefficients, it is easy to see that if the entries of matrix C satisfy the
inequalities

ckk < 0, ckl ≥ 0, k 6= l,

m∑
l=1

ckl < 0, k, l = 1, . . . ,m, (34)

then finite difference scheme (32)-(33) satisfies the positive conditions (7), and therefore
applying Theorem 1 such scheme is monotone. Moreover, from Theorem 2 we have a
priori estimate of the solution, which is summarized in the next result.

Theorem 5. If the coefficients of matrix C in problem (29) satisfy the conditions (34),
the following estimate holds

‖Y‖ω̄h ≤ max
{
‖µ‖∂ωh , ‖D−1F‖ωh

}
, (35)

where D is a diagonal matrix with entries dkk = −
∑m

l=1 ckl.

5 A weakly coupled system of two-dimensional quasi-

linear parabolic equations

Let Ω be the rectangular domain Ω = {(x1, x2), 0 < x1 < l1, 0 < x2 < l2} and ∂Ω its
boundary. For a fixed positive number T > 0, we consider the weakly coupled system of
m quasi-linear parabolic equations

∂U

∂t
= LU + CU + F1(x, t), x ∈ Ω, 0 < t ≤ T, (36)

with Dirichlet boundary conditions

U(x, t) = µ(x, t), x ∈ ∂Ω, 0 < t ≤ T, (37)

and initial condition
U(x, 0) = U0(x), x ∈ Ω ∪ ∂Ω, (38)

where U(x, t) = (u1(x, t), u2(x, t), . . . , um(x, t)) is the sought vector grid function, and L
is a diagonal operator L = diag(L1,L2, . . . ,Lm),

Lkuk =
2∑

α=1

∂

∂xα

(
kkα(U)

∂uk
∂xα

)
, k = 1, . . . ,m,

kkα (U) = kkα (u1, u2, . . . , um) .
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We suppose that the input data is non-negative F1(x, t) ≥ 0, µ(x, t) ≥ 0, U0(x) ≥ 0 and
each function kkα(U), k = 1, . . . ,m, α = 1, 2, fulfills the property

0 < kmin ≤ kkα(U) ≤ kmax, ∀U = (uk)
m
k=1, uk ∈ [m̄1, m̄2] ,

where m̄1 and m̄2 are two constants such that

m̄1 = e−Tc min

{
min

x∈∂Ω,t∈[0,T ]
µ (x, t) , min

x∈Ω̄
U0 (x) + T min

x∈Ω̄,t∈[0,T ]
F1 (x, t)

}
,

m̄2 = max

{
max

x∈∂Ω,t∈[0,T ]
µ (x, t) , max

x∈Ω̄
U0 (x)

}
+ T max

x∈Ω̄,t∈[0,T ]
F1 (x, t) ,

c = max
1≤i≤m

(
−

m∑
j=1

cij

)
> 0,

with Q̄T = Ω̄× [0, T ]. Again, as in previous sections, C = (cij)m×m is a matrix of constant
coefficients satisfying the conditions

ckk < 0, ckl ≥ 0, k 6= l,
m∑
l=1

ckl < 0, k, l = 1, . . . ,m. (39)

Let N0 be positive integers and let τ = T/N0 be the time discretization parameters.
Then, we introduce the uniform grids ω̄hτ = ω̄h × ω̄τ , with ω̄h = ωh ∪ ∂ωh (20) and

ω̄τ = {tn = nτ, n = 0, 1, . . . , N0}.

On the grid ω̄hτ , we approximate the initial-boundary value problem (36)-(38) by a stan-
dard first order backward implicit scheme

Yn
t = LhY

n+1 + CYn+1 + Fn+1
1 (x), x ∈ ωh, n = 0, . . . , N0 − 1, (40)

Y0 = U0(x), x ∈ ω̄h, (41)

Yn+1 = µ(x, tn+1), x ∈ ∂ωh, n = 0, 1, . . . , N0 − 1, (42)

where Y(x, t) = (y1(x, t), y2(x, t), . . . , ym(x, t))T is the vector approximation grid-function,
and Yn

t (x, t) = (yn1t(x, t), y
n
2t(x, t), . . . , y

n
mt(x, t))

T , with

ynkt(x, t) =
yk(x, t+ τ)− yk(x, t)

τ
, k = 1, . . . ,m.

Discrete operator Lh is a diagonal operator Lh = diag(L1h, L2h, . . . , Lmh), where

Lkhy
n+1
k,iα

=
2∑

α=1

(
akα(Yn

iα)yn+1
k,x̄α

)
xα,iα

, k = 1, . . . ,m, α = 1, 2,

with (
akα(Yn

iα)yn+1
k,x̄α

)
xα,iα

= akα,iα+1

yn+1
k,iα+1 − y

n+1
k,iα

h2
α

− akα,iα
yn+1
k,iα
− yn+1

k,iα−1

h2
α

,

akα,iα =
1

2

(
kkα(Yn

iα−1) + kkα(Yn
iα)
)
.

Notice that we have constructed a finite difference scheme of second-order of approxima-
tion in space. This can be easily deduced from the following lemma

9



Lemma 1. The following approximation holds

ψk = (a (U) (uk)x̄)x −
∂

∂x

(
k(U)

∂uk
∂x

)
= O(h2),

where

a (U) =
k(U)i + k(U)i−1

2
.

Proof. By using the formula of summation by parts (fg)x = f(0.5)gx + fxg(0.5), where
v(0.5) = (v + v+)/2, vx = (v+ − v)/h the approximation error ψ can be split up as
ψk = ψk1 + ψk2, where

ψk1 = a (U)x ((uk)x̄)(0.5) −
∂

∂x
k(U)

∂uk
∂x

,

ψk2 = a (U)(0.5) (uk)x̄x − k(U)
∂2uk
∂x2

.

Taking into account that a (U)(0.5) = k(U) + O(h2), ((uk)x̄)(0.5) = ∂uk
∂x

+ O(h2) and

a (U)x = ∂
∂x
k(U) +O(h2), we obtain the required result. �

Scheme (40)-(42) can be rewritten in the canonical form (5)-(6) as

A1Y
n+1
i1i2

= B1Y
n+1
i1−1i2

+B2Y
n+1
i1i2−1 +B3Y

n+1
i1+1i2

+B4Y
n+1
i1i2+1

+C1Y
n+1
i1i2

+ Fn+1
i1i2

, iα = 1, . . . , Nα − 1, α = 1, 2, (43)

Yn+1(x) = µn+1(x), x ∈ ∂ωh, (44)

with A1 a diagonal matrix of order m with entries

a1
kk = 1 +

τ

h2
1

(ank1,i1+1i2
+ ank1,i1i2

) +
τ

h2
2

(ank2,i1i2+1 + ank2,i1i2
)− τckk.

Matrices Bj, j = 1, . . . , 4, are diagonal matrices Bj = diag(bj11, b
j
22 . . . , b

j
mm), with entries

for k = 1, . . . ,m

b1
kk =

τ

h2
1

ank1,i1i2
, b2

kk =
τ

h2
2

ank2,i1i2
, b3

kk =
τ

h2
1

ank1,i1+1i2
, b4

kk =
τ

h2
2

ank2,i1i2+1,

Fn+1
i1i2

= τFn+1
1,i1i2

+ Yn
i1i2

and C1 = (c1
kl)m×m is a matrix such that c1

kl = τckl if k 6= l, and
zero in other case.
From the above coefficients, we obtain the following theorem about monotonicity of FDS
(40)-(42).

Theorem 6. For the solution of the difference scheme (40)-(42) the two-side estimate

m̃1 ≤ yn+1
k (x) ≤ m̃2, x ∈ ω̄h, k = 1, 2, ...,m, (45)

holds, where

m̃1 = e−Tc min

 min
0≤k≤N0−1
x∈∂ωh

µk+1 (x) , min
x∈ω̄h

U0 (x) + T min
0≤k≤N0−1
x∈ω̄h

Fk+1
1 (x)

 ≥ m̄1,

m̃2 = max

 max
0≤k≤N0−1
x∈∂ωh

µk+1 (x) , max
x∈ω̄h

U0 (x)

+ T max
0≤k≤N0−1
x∈ω̄h

Fk+1
1 (x) ≤ m̄2,

c = max
1≤i≤m

(
−

m∑
j=1

cij

)
> 0,

and therefore the finite difference scheme is monotone.
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Proof. We prove the lower bound of estimate (45). In a similar way, the upper bound
can be proved. The minimum of the vector grid function Yn+1 (x), x = (x1, x2) ∈ ω̄h in
sense of notation (3) can be reached at some function yn+1

i (x), i ∈ {1, 2, ...,m}, i.e.

min
x∈ω̄h

Yn+1 (x) = min
x∈ω̄h

yn+1
i (x) , i ∈ {1, 2, ...,m} .

Then from Theorem 1, we have

min
x∈ω̄h

yn+1
i (x) ≥ min

{
min
x∈∂ωh

µn+1
i (x) ,

1

dii

(
min
x∈ω̄h

yni (x) + τ min
x∈ωh

fn+1
i (x)

)}
,

≥ 1

dii
min

{
min
x∈γh

µn+1
i (x) ,min

x∈ω̄h
yni (x) + τ min

x∈ωh
fn+1
i (x)

}
. (46)

It’s easy to see that yn+1
i (x) ≥ 0. So from (46) by recursive process, we obtain

min
x∈ω̄h

yn+1
i (x) ≥

≥ 1

(dii)
n+1 min

 min
0≤k≤N0−1
x∈∂ωh

µk+1
i (x) ,min

x∈ωh
ui0 (x) + T min

0≤k≤N0−1
x∈∂ωh

fk+1
i (x)

 .

Using estimate e−cT ≤ 1
(dii)

n+1 ≤ 1
dii
≤ 1, c = max

1≤i≤m

(
−

m∑
j=1

cij

)
> 0 we obtain (45). The

theorem is proved. �

Remark 2. By the similar way it is possible to prove estimates for solution of finite
difference scheme (40)–(42) in cases: µ (x, t) ≤ 0,F1 (x, t) ≤ 0; µ (x, t) ≥ 0,F1 (x, t) ≤ 0
and µ (x, t) ≤ 0,F1 (x, t) ≥ 0.

Theorem 7. If the coefficients of matrix C in problem (36) satisfy the conditions (39),
the following estimate holds

‖Yn+1‖ω̄h ≤ max

{
max

0≤k≤N0−1
‖µk+1‖∂ωh , ‖u0‖ω̄h

}
+ T max

0≤k≤N0−1
‖Fk+1

1 ‖ωh . (47)

Proof. From Theorem 2, we deduce

‖Yn+1‖ω̄h ≤ max
{
‖µn+1‖∂ωh , ‖D−1Fn+1‖ωh

}
,

where D is a diagonal matrix with entries dkk = 1− τ
∑m

l=1 ckl. As dkk ≥ 1, k = 1, . . . ,m,
we have

‖Yn+1‖ω̄h ≤ max
{
‖µn+1‖∂ωh , ‖Yn‖ω̄h + τ‖Fn+1

1 ‖ωh
}
.

By recursive process, the required estimate holds. �

6 One-dimensional steady convection-diffusion-reaction

system on non-uniform grids

In this section, we study the monotonicity of a finite difference scheme on non-uniform
grids for a one-dimensional steady weakly coupled convection-diffusion-reaction system.
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On the domain Ω = (0, L), we consider a system of m coupled convection-diffusion equa-
tions

−LU = CU + F(x), x ∈ (0, L), (48)

U(0) = µ1, U(L) = µ2, (49)

where L = diag(L1,L2, . . . ,Lm), Lk = Ldk + Lck, k = 1, . . . ,m, with

Ldk =
d

dx

(
kk(x)

d

dx

)
, Lck = rk(x)

d

dx
, (50)

and the functions kk(x) fulfill the property 0 < kmin ≤ kk(x) ≤ kmax, k = 1, . . . ,m, with
kmin and kmax two real numbers. As in previous sections C = (cij) is a square matrix of
order m of constant coefficients, F(x) is the right-hand side and µ1,µ2 are the boundary
vectors.

Let ω̄h = ωh ∪ ∂ωh be the non-uniform grid given by ωh = {xi = xi−1 + hi, i =
1, . . . , N − 1} and ∂ωh = {x0 = 0, xN = L}. In the sequel we will use the following
notations. We denote ~i = 0.5(hi + hi+1), and x̄i = xi + h̃i, with h̃i = (hi+1 − hi)/3.
Besides, for a independent variable x = xi, we denote x± = xi±1, whereas for a grid
function v = vi = v(xi), v

(±1) = v(xi±1). Moreover, we will use the standard notation,

vx̄x,i =
vx,i − vx̄,i

~i
, vx,i =

vi+1 − vi
hi+1

, vx̄,i =
vi − vi−1

hi
, (51)

v(βkiβk+1i) = βkivi+1 + (1− βki − βk+1i)vi + βk+1ivi−1. (52)

On this grid, we consider the finite difference scheme

−Λkyk = ckkyk(β5β6) +
m∑

l=1,l 6=k

(cklyl(β1β2)) + ϕk, k = 1, . . . ,m, (53)

yk(0) = µ1
k, yk(L) = µ2

k, k = 1, . . . ,m. (54)

As in the continuous case, discrete operator Λk is split into two parts: the diffusive and
the convective terms given by the following expressions Λkyk = κkΛD

k yk + ΛC
k yk, where

ΛD
k yk = 0.5(kk(β1β2)yk,x̄x + (kkyk)x̄x − kk,x̄xyk(β3β4)), (55)

ΛC
k yk = b̄+

k a
(+1)
k yk,x + b̄−k akyk,x̄, (56)

with ak = kk(x− h/2) and b̄±k =
r±k (x̄)

kk(x̄)
, r+

k (x̄) = 0.5(rk + |rk|) ≥ 0 and r−k (x̄) = 0.5(rk −

|rk|) ≤ 0. Parameter κk is defined as κk =
1

1 +Rk

, where Rk = b̄+
k

2h+ h+

6
− b̄−k

h+ 2h+

6
,

and ϕk = fk(x̄). Coefficients βi, i = 1, . . . , 6 are chosen in order to obtain a monotone
second-order scheme

β1 =
|h̃|+ h̃

2h+

, β2 =
|h̃| − h̃

2h
, β3 =

h̃kkx̄x − |h̃kkx̄x|
2h+kkx̄x

, (57)

β4 = − h̃kkx̄x + |h̃kkx̄x|
2hkkx̄x

, β5 =
h̃− |h̃|

2h+

, β6 = −|h̃|+ h̃

2h
. (58)

This scheme can be rewritten in the canonical form (5)–(6) as

A1(xi)Yi = B1(xi)Yi−1 +B2(xi)Yi+1 + C1(xi)Yi + Fi, i = 1, . . . , N − 1,

Y0 = µ1, YN = µ2,
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where B1(xi) = (b1
kl)m×m and B2(xi) = (b2

kl)m×m are matrices defined by the coefficients

b1
kl(xi) = cklβ2i, b2

kl(xi) = cklβ1i, l = 1, . . . ,m, l 6= k, (59)

b1
kk(xi) =

κki(kk(β1iβ2i) + kki−1)

2~ihi
− κkiβ4ikkx̄x,i

2
− b̄−k aki

hi
+ ckkβ6i, (60)

b2
kk(xi) =

κki(kk(β1iβ2i) + kki+1)

2~ihi+1

− κkiβ3ikkx̄x,i
2

+
b̄+
k aki+1

hi+1

+ ckkβ5i. (61)

A1(xi) is a diagonal matrix with diagonal entries a1
kk(xi) = b1

kk(xi) + b2
kk(xi) − ckk and

C1(xi) = (c1
kl(xi))m×m is a matrix such that c1

kl(xi) = ckl(1− β1i − β2i) if k 6= l, and zero
in other case.
From the above coefficients, it is easy to see that if the entries of matrix C verify the
inequalities

ckk < 0, ckl ≥ 0, k 6= l,

m∑
l=1

ckl < 0, k, l = 1, . . . ,m, (62)

then finite difference scheme (53)-(54) satisfies the positive conditions (7), and therefore
applying Theorem 1 such scheme is monotone. Moreover, from Theorem 2 we have a
priori estimate of the solution, which is summarized in the next result.

Theorem 8. If the coefficients of matrix C in problem (48) satisfy the conditions (62),
the following estimate holds

‖Y‖ω̄h ≤ max
{
‖µ1‖∂ωh , ‖µ2‖∂ωh , ‖D−1F‖ωh

}
, (63)

where D is a diagonal matrix with entries dkk = −
∑m

l=1 ckl.

Remark 3. The obtained results can be generalized to semi-linear weakly coupled elliptic
and parabolic system of equations with nonlinear right-hand sides [5, 13].

Conclusions

In this paper we have developed a theory of monotonicity for finite difference schemes ap-
proximating weakly coupled system of linear elliptic and quasilinear parabolic equations.
Sufficient conditions of positivity of the input data are given to guarantee the property
of monotonicity of the finite difference schemes. Besides, these positive conditions al-
low us obtain two-side estimates of the approximate solution. This theory is applied to a
wide range of finite difference schemes approximating weakly coupled system of equations.
In particular we consider finite differences schemes for two-dimensional weakly coupled
diffusion problems, two-dimensional quasilinear parabolic systems, and one-dimensional
weakly coupled elliptic systems on non-uniform grids.
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