000065616 001__ 65616
000065616 005__ 20200221144243.0
000065616 0247_ $$2doi$$a10.1016/j.solmat.2015.09.053
000065616 0248_ $$2sideral$$a92311
000065616 037__ $$aART-2016-92311
000065616 041__ $$aeng
000065616 100__ $$0(orcid)0000-0003-3480-398X$$aOliete, P. B.$$uUniversidad de Zaragoza
000065616 245__ $$aDirectionally solidified Al2O3-Yb3Al5O12 eutectics for selective emitters
000065616 260__ $$c2016
000065616 5060_ $$aAccess copy available to the general public$$fUnrestricted
000065616 5203_ $$aAl2O3-Yb3Al5O12 eutectic rods were directionally solidified using the laser floating zone method at rates between 25 and 750 mm/h. The microstructure consisted of an interpenetrated network of both eutectic phases for all the growth rates. The size of the phases was strongly dependent on the growth rate, the eutectic interspacing decreasing from 4.5 µm at the lowest growth rate to 600 nm at 750 mm/h. The optical transmission of the sample with coarser microstructure was measured and compared with that of an Yb3Al5O12 single crystal grown "ad hoc" using the same method. The apparent "oscillator strength" of the single 2F7/2¿2F5/2 Yb3+ absorption band was larger in the eutectic sample than in the single crystal, which was attributed to the increase in the light path caused by multiple refractions at the eutectic interphases. The thermal emission of the eutectic rod was studied between 1000 °C and 1500 °C. An intense and relatively narrow emission band at about 1 µm corresponding to the 2F5/2¿2F7/2 Yb3+ electronic transition was observed in the whole temperature range. The intensity of the band increased with the temperature up to about 1300 °C. At higher temperatures a saturation of the selective emission was observed which was attributed to the competition between the increase in the thermal population of the excited state and the enhancement of the non-radiative de-excitation channels with the temperature.
000065616 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2013-41045-R$$9info:eu-repo/grantAgreement/ES/UZ/CUD2014-TEC-11
000065616 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000065616 590__ $$a4.784$$b2016
000065616 591__ $$aENERGY & FUELS$$b13 / 92 = 0.141$$c2016$$dQ1$$eT1
000065616 591__ $$aPHYSICS, APPLIED$$b22 / 147 = 0.15$$c2016$$dQ1$$eT1
000065616 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b40 / 275 = 0.145$$c2016$$dQ1$$eT1
000065616 592__ $$a1.599$$b2016
000065616 593__ $$aElectronic, Optical and Magnetic Materials$$c2016$$dQ1
000065616 593__ $$aSurfaces, Coatings and Films$$c2016$$dQ1
000065616 593__ $$aRenewable Energy, Sustainability and the Environment$$c2016$$dQ1
000065616 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000065616 700__ $$aMesa, M. C.
000065616 700__ $$0(orcid)0000-0003-0747-405X$$aMerino, R. I.$$uUniversidad de Zaragoza
000065616 700__ $$0(orcid)0000-0001-9690-9064$$aOrera, V. M.$$uUniversidad de Zaragoza
000065616 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000065616 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000065616 773__ $$g144 (2016), 405-410$$pSol. energy mater. sol. cells$$tSOLAR ENERGY MATERIALS AND SOLAR CELLS$$x0927-0248
000065616 8564_ $$s304475$$uhttps://zaguan.unizar.es/record/65616/files/texto_completo.pdf$$yPostprint
000065616 8564_ $$s50532$$uhttps://zaguan.unizar.es/record/65616/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000065616 909CO $$ooai:zaguan.unizar.es:65616$$particulos$$pdriver
000065616 951__ $$a2020-02-21-13:22:41
000065616 980__ $$aARTICLE