

Información del Plan Docente

Año académico 2016/17

Centro académico 201 - Escuela Politécnica Superior

Titulación 571 - Graduado en Ciencias Ambientales

277 - Graduado en Ciencias Ambientales

Créditos 6.0

Curso

Periodo de impartición Segundo Cuatrimestre

Clase de asignatura Formación básica

Módulo ---

1.Información Básica

1.1.Recomendaciones para cursar esta asignatura

Para seguir adecuadamente esta materia es muy conveniente haber cursado las asignaturas de Física y de Matemáticas de 2º de Bachiller.

Por otra parte, durante el semestre es imprescindible el estudio y el trabajo continuados, tanto por la naturaleza de esta disciplina, como por la posibilidad de realización de pruebas breves de autoevaluación.

1.2. Actividades y fechas clave de la asignatura

Para superar las prácticas de laboratorio se tendrá en cuenta, en primer lugar, que es recomendable haber asistido a las cinco sesiones detalladas en el apartado de actividades y se valorarán especialmente los resultados obtenidos, la calidad del informe correspondiente y la actitud del estudiante en el laboratorio.

Además, cada estudiante realizará un trabajo en grupo, con el asesoramiento y tutoría del profesor. Al igual que en el caso anterior, se valorarán las características del informe escrito y la claridad, el orden y la capacidad de responder a las preguntas que se planteen durante la exposición ante el profesor y el resto del grupo. Las fecha de la prueba global escrita en las convocatorias oficiales puede consultarse <u>aquí</u>.

El calendario semanal de entregas de informes de laboratorio, y de entrega y exposición de trabajos, está publicado en esta misma guía en el cronograma del último apartado.

No obstante todo lo anterior, el estudiante podrá realizar las actividades mencionadas anteriormente al finalizar el semestre, según se detalla en el apartado de evaluación de esta misma guía.

2.Inicio

2.1. Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Enuncia, sintetiza, analiza, relaciona y aplica los principios y fundamentos básicos de Física de Fluidos, Termodinámica,

Ondas, Electricidad y Magnetismo.

Interpreta cuantitativa y cualitativamente los resultados obtenidos en la resolución satisfactoria de determinados casos basados en fenómenos y procesos relacionados con el medioambiente.

Expresa adecuadamente, en fondo y forma: claridad, organización..., tanto de forma oral como escrita, los métodos, los procesos, los resultados obtenidos y el análisis de los mismos en los casos encomendados para su estudio.

Elabora trabajos e informes de laboratorio haciendo un uso adecuado de las TIC (procesador de textos, hoja de cálculo, búsquedas bibliográficas en internet...) en relación a los fenómenos anteriores.

Ejecuta trabajos de laboratorio encomendados en los que el alumno demuestre que es capaz de hacer un uso adecuado de la instrumentación básica en Física.

2.2.Introducción

Breve presentación de la asignatura

Esta asignatura está programada en Primer Curso, Segundo Cuatrimestre, y es de formación básica propia de la Rama de Ciencias. Se encuentra ubicada en el plan de estudios en el "Módulo 1. Interpretación del medio como sistema" que se organiza en torno a la competencia fundamental de un experto en medio ambiente de ser capaz de interpretar un medio identificando todos sus factores constituyentes, los procesos y las interacciones que tienen lugar. Esto conlleva conocimientos fundamentales de todos los sistemas, comprendiendo su constitución y procesos fundamentales y allí es dónde esta asignatura contribuye directamente junto con otras dos, también básicas, como son la Biología y las Bases Químicas del Medio Ambiente.

A lo largo del estudio de esta asignatura, podremos dar respuestas a preguntas como:

- ¿Qué importancia tiene el fenómeno físico de la capilaridad en el ascenso de la savia en los árboles?
- ¿Puede el vertido del agua de refrigeración de una central térmica llegar a perturbar la fauna de un río?
- ¿Cómo se intensifica la sensación sonora cuando se superponen varios sonidos que están próximos al umbral de dolor?

3. Contexto y competencias

3.1.Objetivos

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Se pretende, con la docencia de esta asignatura, proporcionar explicaciones científicas a los fenómenos físicos directamente relacionados con el medio ambiente, especialmente aquellos correspondientes a los campos de los fluidos, de la termodinámica, del movimiento ondulatorio y del electromagnetismo.

3.2.Contexto y sentido de la asignatura en la titulación

Los contenidos de esta materia sirven de base para otras de cursos posteriores como Meteorología y Climatología,

Bases de la Ingeniería Ambiental, las diferentes asignaturas de Contaminación (Atmosférica, Radiactiva y Acústica), Hidrogeología Ambiental, Ecosistemas Fluviales y Tecnologías Limpias-Energías Renovables.

3.3.Competencias

Al superar la asignatura, el estudiante será más competente para...

Competencias básicas:

- CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en el área de las ciencias ambientales que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

Competencias específicas:

CE1. Capacidad de interpretación del medio como sistema complejo: identificación de los factores, procesos e interacciones que configuran cualquier tipo de medio. Esto conlleva conocimientos fundamentales de todos los sistemas (hidrología, edafología, meteorología y climatología, zoología, botánica, geología, Sociedad y territorio, etc.), comprendiendo su constitución y procesos fundamentales (física, química y biología) y sus interacciones (ecología).

Competencias genéricas:

- CG1. La comprensión y dominio de los conocimientos fundamentales del área de estudio y la capacidad de aplicación de esos conocimientos fundamentales a las tareas específicas de un profesional del medio ambiente.
- CG2. Comunicación y argumentación, oral y escrita, de posiciones y conclusiones, a públicos especializados o de divulgación e información a públicos no especializados.
- CG3. Capacidad de resolución de los problemas, genéricos o característicos del área mediante la interpretación y análisis de los datos y evidencias relevantes, la emisión de evaluaciones, juicios, reflexiones y diagnósticos pertinentes, con la consideración apropiada de los aspectos científicos, éticos o sociales.

- CG5. Capacidad de razonamiento crítico (análisis, síntesis y evaluación).
- CG6. Capacidad de aplicación de los conocimientos teóricos al análisis de situaciones.
- CG7. Dominio de aplicaciones informáticas relativas al ámbito de estudio, así como la utilización de internet como medio de comunicación y fuente de información.
- CG8. Capacidad de organización y planificación autónoma del trabajo y de gestión de la información.
- CG9. Capacidad de trabajo en equipo, en particular equipos de naturaleza interdisciplinar e internacional característicos del trabajo en este campo.

3.4.Importancia de los resultados de aprendizaje

Las competencias que forma esta asignatura son relevantes porque contribuyen al conocimiento básico de los sistemas físicos y su funcionamiento mediante el análisis de los fenómenos y procesos físicos más elementales desde el punto de vista científico, todos ellos relacionados con el medio ambiente. Además, llevan implícito el desarrollo, en el estudiante, de habilidades de pensamiento de orden superior como el razonamiento, la solución de problemas y el pensamiento crítico. Como asignatura de formación básica que es, sirve de sustento a un amplio grupo de asignaturas de cursos posteriores.

4.Evaluación

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Realización de una prueba global presencial al final del semestre, que estará constituida por:

- 1) Examen presencial escrito con arreglo al programa de teoría de la asignatura, según calendario de <u>exámenes</u> de la EPS.
- 2) Realización, presentación y defensa oral de un trabajo en grupo, consistente en un caso práctico en el que se ponga de manifiesto la relación entre los contenidos de la asignatura y el medio ambiente.
- 3) Un conjunto de prácticas de laboratorio , un cuestionario de preguntas tipo test en cada una de ellas y la presentación en plazo de los informes correspondientes.

Las actividades de evaluación 2 y 3 se pueden realizar, y es lo recomendado, a lo largo del curso en las fechas señaladas en la planificación temporal de la asignatura o en las convocatorias oficiales del curso.

Primera Convocatoria

En la fecha oficial especificada en el calendario de exámenes del centro.

Para poder superar la asignatura, a la Prueba Global deben presentarse todos los alumnos.

Aquellos estudiantes que no hayan realizado el Trabajo, y deseen hacerlo, deberán contactar con el profesorado responsable de la asignatura para que les asigne el tema del mismo, el cual deberá exponerse el día de la fecha oficial de examen.

En el caso de que un estudiante no haya realizado las Prácticas de Laboratorio a lo largo del semestre, deberá hacerlo el día de la fecha oficial de examen, conforme a lo establecido en la actividad de evaluación 3.

Para los estudiantes que soliciten cambio de fecha, de acuerdo con los supuestos especificados en el Artículo 5 del Reglamento de Normas de Evaluación del Aprendizaje, la Prueba Global tendrá las mismas características y restricciones que la realizada en la fecha de la convocatoria oficial.

Segunda Convocatoria

En la fecha oficial especificada en el calendario de exámenes del centro.

Los estudiantes que tengan aprobadas algunas de las actividades realizadas durante el curso, no tendrán que volver a realizarlas.

La prueba global tendrá la misma estructura, restricciones y condiciones que en la primera convocatoria.

Criterios de Evaluación

Prácticas de Laboratorio

En la evaluación de las prácticas de laboratorio, la nota obtenida dependerá de:

- a) La calificación obtenida en los cuestionarios tipo test realizados antes del comienzo de cada práctica.
- b) La exactitud de los resultados obtenidos en las diferentes secciones de cada práctica.
- c) La calidad de los informes entregados al finalizar cada una de las prácticas. Las pautas de valoración están recogidas en el documento Normas Generales para la Elaboración de Informes.
- d) La participación activa y el interés demostrado por cada uno de los integrantes del grupo durante el desarrollo de la sesión de laboratorio.

Cada práctica se puntuará de 0 a 10 y aunque su ejecución se realice por parejas y sólo se entregue un informe, los integrantes de dicha pareja podrán obtener calificaciones diferentes. Una vez realizadas todas las sesiones, la puntuación obtenida en las Prácticas de Laboratorio será sobre un máximo de 10. Si la nota conseguida es inferior a 5, la asignatura no se considerará aprobada. Su peso en la calificación final de la asignatura será del 20%. Esto quiere decir

que, como máximo, contribuirá con 2 puntos a la calificación final.

Trabajo en Grupo

Cada estudiante efectuará un trabajo, enmarcado en las actividades académicamente dirigidas, que se evaluará teniendo en cuenta la corrección de los resultados obtenidos, así como la calidad de la presentación del trabajo escrito y la claridad, el orden y la capacidad de responder a las preguntas que se planteen durante la exposición ante el profesor y el resto del curso. Se debe tener en cuenta que aunque la ejecución de este trabajo se realice en grupo, sus integrantes podrán obtener calificaciones diferentes. Esta actividad se calificará con un máximo de 10 puntos, y su repercusión en la nota final de la asignatura será del 10%.

Examen Global

Por último, se llevará a cabo un examen presencial correspondiente a la convocatoria oficial que constará de problemas y cuestiones de opción múltiple. Los criterios generales aplicados en la corrección de los exámenes, serán:

Se valorará favorablemente:

- La comprensión de las leyes, teorías y conceptos físicos.
- La destreza y habilidad en el manejo de las herramientas matemáticas.
- La utilización correcta de las unidades en las magnitudes físicas.
- La claridad en los esquemas, figuras y representaciones gráficas.
- El orden, la presentación e interpretación de resultados.

Se valorará desfavorablemente:

- La ausencia de explicaciones en el desarrollo de los problemas.
- El desorden y la mala presentación.
- Las faltas de ortografía.

Se calificará sobre 10 y su repercusión en la nota final será del 70 %. Si la nota conseguida en esta prueba es inferior a 4, la asignatura no se considerará aprobada, independientemente de las notas obtenidas en el resto de las actividades que se evalúan.

Evaluación Global

El sistema mediante el que el estudiante es evaluado en esta asignatura es el de *Evaluación Global*, consistente en: Trabajo, Prácticas de Laboratorio y Prueba presencial escrita.

Resumiendo todo lo anterior, la calificación final sobre 10 (teniendo en cuenta las restricciones especificadas anteriormente), será la obtenida aplicando la siguiente fórmula:

Calificación Final (C.F.) = 70% nota examen + 20% nota prácticas de laboratorio + 10% nota trabajo

Si no se alcanzan los requisitos mínimos exigidos en el Examen Global (4 puntos sobre 10) y en las Prácticas de Laboratorio (5 puntos sobre 10), la asignatura no se considerará aprobada aunque la calificación final (C.F.), según la ponderación arriba indicada, sea igual o superior a 5. En este caso:

Si C.F. >= 4, la calificación final será: suspenso, 4.

Si C.F. < 4, la calificación final será: suspenso, C.F.

5. Actividades y recursos

5.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

Sesiones teóricas que consistirán, fundamentalmente, en lecciones magistrales participativas. Dentro de éstas cabe destacar las dedicadas a la resolución de problemas, en las que se promoverá la participación de los alumnos de forma más intensa que en las dedicadas a la exposición de los contenidos teóricos.

Las sesiones de laboratorio (en número de cinco), consistirán en la realización, por parejas, de lo detallado en el programa de prácticas y en la elaboración de un informe conteniendo los resultados obtenidos en las mediciones y las respuestas a las preguntas planteadas en el correspondiente guión. En la elaboración de dicho informe, los alumnos deben cumplir lo establecido en las Normas correspondientes.

Por último, dentro de las actividades académicamente dirigidas se llevará a cabo, por grupos de 3 estudiantes, la resolución de un *trabajo práctico*, especialmente enfocado a la aplicación de conceptos físicos al campo de las ciencias ambientales. Cada grupo tendrá varias sesiones de tutoría grupal en las que irán presentando al profesor sus avances y las dificultades que les vayan surgiendo. Finalmente, todos los grupos tendrán que realizar una exposición ante el profesor y el resto de los alumnos de la asignatura, de los resultados obtenidos en su trabajo y estar dispuestos a responder a cuantas aclaraciones o preguntas se les formulen por parte de la audiencia. Para esta exposición deberán utilizar las aplicaciones informáticas apropiadas.

5.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

Sesiones teóricas y prácticas de resolución de problemas en el aula

Al comenzar cada tema, se le proporciona al alumno, tanto el contenido teórico que el profesor va a exponer en clase como una colección de ejercicios con sus soluciones numéricas, de los cuales se resuelven algunos en el aula, quedando el resto para trabajo no presencial del estudiante.

Prácticas de laboratorio

Antes de comenzar el periodo de prácticas el alumno puede disponer de un cuaderno con los guiones de las cinco prácticas que tiene que realizar en el laboratorio, así como una información preliminar sobre la correcta presentación de los informes que deberá entregar.

Sesiones de tutorización

En grupos de tres estudiantes, con la finalidad de asesorarles en la realización del trabajo académicamente dirigido propuesto por el profesor. La temática del mismo se asigna por sorteo. Para su realización resulta de gran ayuda la

consulta de la bibliografía recomendada, tanto básica como complementaria.

5.3. Programa

Programa de Teoría

Bloque I: Física de Fluidos

- Tema 1: Estática de Fluidos
- Tema 2: Dinámica de Fluidos

Bloque II: Termodinámica

- Tema 3: Temperatura y Calor
- Tema 4: Primer Principio de la Termodinámica
- Tema 5: Segundo Principio de la Termodinámica

Bloque III: Ondas

- Tema 6: Movimiento Oscilatorio
- Tema 7: Movimiento Ondulatorio

Bloque IV: Electromagnetismo

- Tema 8: Electrostática
- Tema 9: Electrocinética
- Tema 10: Magnetismo
- Tema 11: Inducción electromagnética
- Tema 12: Corriente Alterna
- Tema 13: Ondas Electromagnéticas

Programa de Prácticas de Laboratorio

Práctica 1.- Mecánica de sólidos y fluidos

- a) Dilatación de sólidos.
- b) Comprobación de la ecuación fundamental de la estática de fluidos y del principio de Arquímedes. Medida de la densidad de un cilindro.
- c) Medida de velocidades medias de fluidos utilizando la ecuación de continuidad.
- d) Comprobación de la ecuación de Bernoulli.
- e) Medida de velocidades en flujos turbulentos.

Práctica 2.- Energía calorífica

a) Determinación de la capacidad calorífica de un calorímetro.

b) Determinación del calor específico de los líquidos.

c) Determinación del calor específico de los sólidos.

25206 - Bases físicas del medio ambiente

Práctica 3 Movimiento oscilatorio: el péndulo simple
a) Determinación del período y de la aceleración de la gravedad.
b) Estudio de la variación del período de un péndulo simple con la longitud.
c) Determinación del periodo de un péndulo simple para grandes oscilaciones.
Práctica 4 Ley de Ohm. Asociación de resistencias
a) Medida de resistencias y cálculo de errores.
b) Representación gráfica de la ley de Ohm.
c) Determinación de la distribución de voltaje en un circuito en serie
d) Determinación de la distribución de corrientes y potencias en un circuito serie-paralelo.
Práctica 5 Carga y descarga de un condensador en un circuito RC en serie
a) Variación de la intensidad y del voltaje en función del tiempo.
b) Determinación del tiempo de relajación del circuito.
5.4.Planificación y calendario Calendario de sesiones presenciales y presentación de trabajos
Se estima que un estudiante medio debe dedicar a esta asignatura, de 6 ECTS, un total de 150 horas, aproximadamente, que deben englobar tanto las actividades presenciales como las no presenciales. La dedicación a la misma debe procurarse que se reparta de forma equilibrada a lo largo del cuatrimestre. Con esta previsión, la carga

semanal del estudiante, en horas, queda reflejada en el siguiente cronograma:

Tipo de	1	2	3	4	5	6	7	8	9	10
Actividad / Semana Actividad Presencial Teoría Problemas Prácticas de laboratorio Presentación trabajos Evaluación Actividad	3	2 2	2	2 2	2	1 1 2	1 1 2	3 1	2	
No Presencial	_		•		•		•		•	•
Trabajo individual Trabajo	5	4	2	4	2	1	2	4	2	8
en grupo			۷		۷	3	۷		۷	
TOTAL Tipo de	8 11	8 12	8 13	8 14	8 15	8 16	8 17	8 18	8 19	8 Total
Actividad / Semana Actividad Presencial Teoría Problemas	1 2	2 1	2	3	0	2	0			61 28 13
Prácticas de laboratorio					2					10
Presentación trabajos					2	1	1			6
Evaluación Actividad No								4		4 89
Presencial Trabajo	5	5	5	4	1	2	9	7		72
individual Trabajo en					3	3				17
grupo TOTAL	8	8	8	8	8	9	10	11	0	150

5.5.Bibliografía y recursos recomendados

BB

Burbano de Ercilla, Santiago. Física general / Santiago Burbano de Ercilla, Enrique Burbano García, Carlos Gracia Muñoz . 32ª ed. Madrid : Tébar, D.L. 2003

ВВ	Burbano de Ercilla, Santiago. Problemas de física general / Santiago Burbano de Ercilla , Enrique Burbano García, Carlos Gracia Muñoz. 26ª ed. Zaragoza : Mira Editores, D.L.1994 Español Garrigós, Pep. Bases físicas del
ВВ	medio ambiente / Pep Español, Javier García Sanz, Ignacio Zúñiga . 1ª reimp. Madrid : UNED, 2004 (reimp.2005) Jaque Rechea, Francisco. Bases de la
ВВ	Física Medioambiental / Francisco Jaque e Íñigo Aguirre de Cárcer . Barcelona : Ariel , 2002
ВВ	Problemas y cuestiones de física / Atanasio Lleó[et.al] . Madrid [etc] : Mundi-Prensa, 2002 Física universitaria / Francis W. Sears [et al.] ; contribución de los autores, A.
BC	Lewis Ford; traducción, Roberto Escalona García; revisión técnica, Jorge Lomas Treviño [et al.] . 11ª ed. México: Pearson Educación, cop. 2004 Gettys, W. Edward. Física para ciencias e ingeniería / W. Edward Gettys, Frederick J. Keller, Malcolm J. Skove; traducción, Luis Arizmendi López, José A. García Sole,
ВС	Carlos E. Zaldo Luezas ; revisión técnica, Ángel Hernández Fernández, Sergio Saldaña Sánchez, María del Carmen Enriqueta Hano Roa. 2a ed. México : McGraw Hill Interamericana, cop. 2005 González, Félix A La física en problemas
ВС	/ Félix A. González . Nueva ed. actualizada Madrid : Tébar Flores, D.L. 2000 Serway, Raymond A. Física para ciencias
ВС	e ingeniería / Raymond A. Serway, Robert J. Beichner . 5ª ed. México [etc.] : McGraw-Hill, cop. 2002
ВС	Smith, C. (2001). Environmental physics. London: Routledge Spiegel, Murray R Manual de fórmulas y tablas matemáticas: 2400 fórmulas y 60
ВС	tablas / Murray R. Spiegel ; traducción y adaptación Orlando Guerrero Ribero . [1a ed. en español, reimp.] Madrid [etc] : McGraw-Hill, imp. 2003 Tipler, Paul A Física para la ciencia y la tecnología. Vol. 1, Mecánica, oscilaciones
ВС	y ondas, termodinámica / Paul A. Tipler, Gene Mosca; [coordinador y traductor José Casas-Vázquez; traductores Albert Bramon Planas et al.] 6ª ed. Barcelona: Reverté, D.L. 2010 Tipler, Paul A Física para la ciencia y la
ВС	tecnología. Vol. 2, Electricidad y magnetismo, luz / Paul A. Tipler, Gene Mosca; [coordinador y traductor José

Casas-Vázquez ; traductores Albert Bramon Planas ... et al.]. 6ª ed. Barcelona : Reverté, D.L. 2010