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Resumen

Por estimacion de canales entendemos la aproximacién de la respuesta impulsional discreta de
un canal desconocido usando el criterio de minimo error cuadratico medio (MSE). En un enfoque
clasico, esta aproximacion es obtenida ajustando de manera adaptativa los coeficientes de un
filtro FIR transversal, también conocido como ’entrenamiento’.

La estimacién de canales en canales de banda ultra ancha (UWB) tiene que hacer frente a
respuestas impulsionales largas debido a la alta frecuencia de muestreo y usualmente la energia
estéd concentrada en una pequena fraccion de los intervalos de tiempo. Usando un filtro transver-
sal FIR, se requiere un orden elevado para poder estimar de manera correcta la larga respuesta
impulsional y la mayoria de los coeficientes del filtro reiinen poca o ninguna energia debido a la
concentracién de la energia en pequenas fracciones de intervalos de tiempo.

La fuente de este problema viene del hecho de que una aproximacion consiste en representar
una funcién como una suma ponderada de una base ortonormal completa (también llamadas
funciones base), y luego truncar esta suma a un numero fijo de términos (equivalente al orden
del filtro). En el enfoque clésico del filtro FIR transversal, las funciones base se corresponden
con la delta de Kronecker (6(k — j)), también conocida como la base canénica. El problema con
los canales UWB surgen debido a la extensién temporal extremadamente corta de las funciones
base de los filtros FIR.

Este estudio es una aproximacién tedrica para caracterizar la viabilidad de los filtros de
Laguerre en un sistema de comunicacion UWB. La aproximaciéon es llevada a cabo por medio
de otra base ortonormal, las secuencias de Laguerre, las cuales forman un compromiso entre los
sistemas FIR y los [IR; y ademés pueden ser consideradas como una generalizacién de los filtros
FIR. Estas secuencias son utilizadas para la estimacién del canal para varios canales de prueba
en el &mbito UWB y para realizaciones del modelo estocastico de canales UWB proporcionado
por el estandar IEEE 802.15.4a, mostrando que ofrecen mejor rendimiento, en términos del error
cuadratico medio (MSE), como generalizacién de los filtros FIR, sin embargo esta mejora no es
muy grande cuando el canal presenta cambios abruptos, debido al comportamiento paso bajo
de los filtros de Laguerre.

Métodos adaptativos, como el algoritmo RLS son utilizados para caracterizar de forma préactica
estas aproximaciones y verificar los resultados obtenidos teéricamente.

Proyecto fin de carrera - Javier Jalle Ibarra v






Indice

[Lista de Tablasl ix
[Cista de Figuras| xii
Simbolos xiii
[Abreviaturasl XV
(1__Introduccionl 1
L1 Motivacionl . . . . . . . . . o e e e 1
(L1.1 Presentacion delaideal. . . . . . . . . . . . . ... oL 1

(1.1.2  Descripcion del problemal . . . . . ... ... ... ... ... ..., 2

[1.1.3  Solucidon propuestal . . . . . . . . . .. 3

[1.2  Objetivos del trabajol. . . . . . . . . . . . .. 4
[1.3  Breve descripcion de los capitulos|. . . . . .. ..o 0 o000 4

|2 Secuencias de Laguerre| 5
[2.1 Introduccion a las secuencias ortonormales . . . . . .. ... ... ... 5
[2.2  Secuencias de Laguerre]. . . . . . . . . . .. 6
[2.2.1 Longitud de las secuencias de Laguerre|. . . . . . . . .. ... ... ... .. 9
3__Filtro transversall 13
B.I TIntroduccidnl. . . . . . . . .. 13
[3.2  Filtro transversal de Laguerre] . . . . . . . . .. oo oo 14
8.3 Teoria basica de estimacion lineall . . . . . . . . . . ... o 15
3.4 Coeficientes de correlacionl . . . . . . . . . ... 16
3.5 Meétodo de solucién de las ecuaciones normales| . . . . . ... ... ... ... .. 17

|4 Aproximacion de un canal UWB FIR idealizado| 19
4.1 Introducclon|. . . . . . . . . e e e e 19
[4.2  Error cuadratico medio (MSE) en la aproximacion| . . . . . .. ... ... .. .. 20

5 Canales UWB 25
B.I Tntroduccidnl. . . . . . . . .. 25
Hh2 UWB [ERE 802.15.4a Standard modell . . . . . . .. ... ..o oL 25
(.3 Estimacion del canall . . . . . . . . ... 25

[6 Métodos adaptativos| 37
6.1 Introduccionl. . . . . . . . . . e e 37
6.2 Algoritmo RLS| . . . . . . . . . . 37
6.2.1 FEstimacion de canales UWBI . . . . . .. .. ... .. ... ... ..., 38

|/ Conclusiones y trabajo futuro| 43

vil



Indice

Proyecto fin de carrera - Javier Jalle Ibarra viii



Lista de Tablas

[1.1  Comparacion del coste computacional de un filtro RLS-Laguerre Lattice de orden |

M con un RLS-FIR Lattice de order M’ (normalmente M < M’ ). (Reproducido |

de: ver )| . . . . 4

4.1 NMGSE para un filtro de Laguerre de orden 60 con diferentes posiciones del polo.| 20

NMSE obtenida estimando una realizacion de cana W B con filtros de diferente

ordenes y posiciones del polo.| . . . . . . ... oo oo 29

5.2 Amse o ganancia MSE obtenida estimando una realizacion de canal UWB con |
filtros de diferentes ordenes y posiciones del polo.| . . . . . . . ... ... ... 30
[5.3  Estadisticas del NMSE (en dB) obtenido estimando canales UWB con filtros de |
diterente orden y varias posiciones del polo.| . . . . . . . ... oo L. 32
5.4 Anmsge o ganancia MSE en media, obtenida estimando canales UWB con filtros de |
ordenes vy posiciones del polo diferentes.| . . . . . . .. ... oo L. 33
[5.5  Estadisticas del orden necesario por los diferentes filtros para obtener un NMSE |
especifico.] . . . .. L e e e 35

ix






Lista de Figuras

1.1 Respuesta impulsional de un canal UWB dada por la realizacion de un modelo |

| estocastico (ver [6]).] . . . . ... 1
.2 Biltro transversal clasicol . . . . . . . . . . Lo Lo 2
1.3 Ejemplo de una respuesta FIR que representa de manera sencilla el tipo de canales |

| estudiados. . . . . . e 3
[2.1 Variacion de la posicion del polo.f . . . . . . ... ... oo o000 6
[2.2  Generacion de las secuencias de Laguerre.| . . . . . . . . ... 0oL 7
[2.3  Secuencias de Laguerre con diferente posicion del poloaf. . . . . . . . . . .. .. 8
2.4 Longitud de una secuencia de Laguerre|. . . . . . . . . .. ... 9
[2.5  Longitud de las secuencias de Laguerre en funcion del orden de secuencia y de la |

| posicion del polo.| . . . . . . .o Lo 11
[2.6 Longitud (real y aproximada) de las secuencias de Laguerre|. . . . . . . ... .. 12
3.1 Filtro transversal clasicol . . . . . . . . . .. 13
[3.2  Filtro transversal de Laguerre| . . . . . . . . ... ... oL 14
3.3 Modelo de canal stmple| . . . . . ..o oo 15
8.4 Modelo de estimacion de canall . . . . . . . ... ... o 0oL 15
4.1  Respuesta impulsional del canal UWB FIR idealizado.| . . . . . . ... ... ... 19
4.2 MSE normalizado de la aproximacion del canal FIR en tuncion de la posicion del |

| polo para diferentes ordenes del filtro.| . . . . . .. ... ... oo oL 20
— N T e - -

| para diferentes posiciones del polo.| . . . . . . .. ... 21
|4.4  Variacion de la posicion optima del polo en tuncién del orden del filtro.f . . . . . 21
4.5  Aproximacion del canal FIR con un filtro de Laguerre de orden 60.| . . . . . . . . 22
4.6  Impulse response of the FIR channel . . . . . . . ... ... ... ... ..... 23

4.7 MSE normalizado de la aproximacion del canal FIR en tuncion de la posicion del |

1.3 MSE normalizado de la estimacion del canal UWB en funcion de la posicion del |

| polo para diferentes ordenes del filtro.| . . . . . . . ... ... oo oL 27

[5.4  Efecto del signo del polo en la estimacion de un canal complejo con un filtro de |

| Laguerre de orden 100.|. . . . . . . . . . . . . 28
MSE normalizado de la estimacion del cana VB en funcion del orden del filtro

| para diferentes posiciones del polo.| . . . . . .. . ..o o000 29

[5.6 Variacién de la posiciéon 6ptima (y estimada) del polo para el filtro de Laguerre |

[ en funcion del orden del filtrolJ. . . . . . . . . . ... 30

xi



Lista de Figuras

[5.9  Variacién de la posicion 6ptima (y estimada) del polo para el filtro de Laguerre |

[ en funcién del orden del filtroJ. . . . . . . . . . . ..o 32
[5.10 Funcion de densidad de probabilidad del MSE normalizado para un filtro de |
| Laguerre de orden 100 con diferentes posiciones del polo.f. . . . . . . . ... ... 33
[5.11 Funcion de densidad de probabilidad del MSE normalizado para un filtro de |
| Laguerre de orden 200 con diferentes posiciones del polo.f. . . . . . . .. ... .. 34
[5.12 Funcion de densidad de probabilidad del MSE normalizado para un filtro de |
| Laguerre de orden 300 con diferentes posiciones del polo.|. . . . . ... .. .. .. 34
[5.13 Orden necesario por los diferentes filtros para obtener un NMSE especifico(-3dB, |
| -6dB and -10dB)] . . . . . ... 35
6.1  Modelo usado para la adaptacion.|. . . . . . ... ... 0oL 37
6.2 Realizacion del modelo estocastico de canales UWBJ . . . . ... ... ... .. 39
6.3  Curvas de aprendizaje para el algoritmo RLS para filtros de Laguerre y FIR.| . . 40
[6.4 Respuesta impulsional estimada por filtros de Laguerre (¢ = —0.5 y —0.7) y un |
| filtro FIR de orden 100 con un algoritmo RLS en estado estacionario.|. . . . . . . 41
(7.1 Filtro transversal de Laguerre con polo complejo.| . . . . . . .. . . ... ... .. 43
(7.2 Estructura ortonormal transversal con multiples polos.| . . . . . . ... ... ... 44
[1.3 _Modelo de ecualizacionl) . . . . . . . . . . 44

Proyecto fin de carrera - Javier Jalle Ibarra xii



Simbolos

No e, conjunto de nimeros naturales y el cero

P(NY) oo espacio de Hilbert sobre los nimeros naturales y el cero
T e trasposicién de una matriz
U U PP PP UTURRRURUNt conjugacién compleja

Ho oo naenaes trasposicién Hermitiana

T unidad imaginaria definida como /—1

> PN letras en negrita denotan vectores

X s letras mayusculas en negrita denotan matrices

T e letras en fuente normal denotan escalares

(X,¥) e producto escalar entre x y y

Ex valor esperado de la variable aleatoria/proceso x
XLy variables ortogonales x y y (i.e., (x,y) = 0)

G20 e, cantidad a definida como b

R(x) e parte real de z

J(X) e parte imaginaria de z

0 e, cero escalar, vector o matriz

27l operador unidad de retardo de tiempo

ko variable de tiempo discreto

X(2) e transformada z-bilateral de la secuencia escalar {z(k)}
X (%) e transformada de Fourier de tiempo discreto de {x(k)}
(k) sefial de entrada del canal

h(k) respuesta impulsional del canal

H(z) i funcién de transferencia del canal

Y(k) sefial de salida del canal

M orden del filtro o aproximacién

GM(E) aproximacion/estimacion de la senal y(k) de orden M
har(k) e aproximacion/estimacion del canal h(k) de orden M
XML eeeveeeeeeeeeii e vector de datos de entrada o vector de regresion

WM,i  vveeeeneeeeeinneee e coeficiente i-ésimo de un filtro de orden M

WAL e vector de los coeficientes de un filtro de orden M

05 .............................. varianza de la senal y

xiil






Lista de Abreviaturas

FIR
IIR
UWB
INLITLS €. eeeeeieeeeieee e e et e e
MSE
NMSE
RLS
LOS
NLOS e,
Fig.
NaN
IST
SNR
AWGN e,
TU Dresden  ..oooooveiiiiiiiiieeeeeeee e

Finite Impulse Response
Infinite Impulse Response
Ultra Wide Band

Minimum Mean Square Error criterion
Mean Square Error

Normalized Mean Square Error
Recursive Least Squares

Line Of Sight

Non Line Of Sight

Figure

Not-a-Number

InterSimbol Interference
Signal-to-Noise Ratio

Additive White Gaussian Noise
Technische Universitdt Dresden

XV



1 Introduccion

1.1 Motivacion

1.1.1 Presentacién de la idea

Los canales de radio en las comunicaciones inaldmbricas sufren de desvanecimientos y dispersién
multicamino. El efecto del multicamino estd provocado por el fenomeno de la propagacion
que ocasiona que una misma senal alcance el receptor por varios caminos (debido a reflex-
iones/refracciones) causando una interferencia que ocasiona el efecto conocido como ISI (inter-
symbol interference). Para eliminar este efecto se utilizan los ecualizadores, los cuales en su
mayoria requieren del conocimiento del canal, que a su vez es estimado usando una secuencia
de entrada conocida. Se necesita tener un criterio para poder evaluar la calidad de dicha es-
timacién (también conocido como aproximacién de sistemas o identificacién de sistemas), que
en este estudio serd el criterio del minimo error cuadratico medio (m.m.s.e.). En particular, en
este estudio se utilizaran canales de banda ultra ancha (UWB) para la estimacién, los cuales se
caracterizan por tener unas respuestas impulsionales muy largas, debido a la alta frecuencia de
muestreo y ademds suelen tener la energia concentrada en pequenias fracciones de intervalos de
tiempo. Como ejemplo de un canal UWB se muestra en la figura[l.1| una realizacién del modelo
dado por el IEEE 802.15.4a tipica para entornos sin linea de visién (Non Line-Of-Sight, NLOS)
y areas residenciales.

Example of UWB channel
0.25 ‘ ‘ ‘

0.15

©
[En

Modulus |h(K)|

0.05

o

1 .
0 500 1000 1500 2000 2500 3000 3500 4000
Samples (k)

Figura 1.1: Respuesta impulsional de un canal UWB dada por la realizacién de un modelo
estocdstico (ver [0]).



CAPITULO 1. INTRODUCCION

1.1.2 Descripciéon del problema

En un enfoque clasico (ver [9], [2]), la estimacién del canal es hecha por medio del entrenamiento
de un filtro transversal (’training’) como el mostrado en la Figura usando algoritmos adap-
tativos. La salida del sistema viene dada por

M
gar(k) = warw(k — i) (1.1)
=0

y la respuesta impulsional del sistema asumiendo un estado estacionario de los coeficientes del
filtro viene dada por la salida del sistema cuando la entrada es una senal de impulso (delta de
Kronecker §(k — 1)), es decir

M
har(k) =) " warid(k — i) (1.2)
i=0
Viendo esta férmula se puede observar que corresponde con una secuencia de longitud finita

x(k—=1) x(k-2) x(k —3) x(k—-M)

x(k)

4 4 zZ I z

Wiro Wira Wiz X Wiz Wyt .
N =D o W (k)

Figura 1.2: Filtro transversal clasico

(FIR), en concreto cada coeficiente del filtro corresponde con una delta de Kronecker (d;1),
lo que unido al hecho de que los canales estudiados poseen una longitud grande hace que sea
necesario un filtro de orden elevado para poder estimar correctamente este tipo de canales.
Como ejemplo, consideremos el canal mostrado en la Figura|l.3|como una respuesta de un canal
UWRB idealizado de prueba, es decir, repuesta impulsional larga y la energia concentrada en
pequenas fracciones de intervalos de tiempo. Con un filtro FIR clésico necesitariamos al menos
un filtro de 400 coeficientes para poderlo aproximar correctamente, con lo que saltan a la vista
dos problemas, el primero es que se necesita un filtro de orden elevado y el segundo es que
la mayoria de los coeficientes del filtro no contienen energia alguna debido a que ésta no esta
distribuida homogeneamente.

El origen de este problema es la extensién temporal extremadamente corta de las funciones
delta de Kronecker, las cuales son las funciones base de los filtros FIR, si consideramos los
canales como elementos de un espacio de funciones, haciendo uso de la teoria de espacios de
Hilbert ¢?(Np) y considerando a las deltas de Kronecker como las funciones base. Esto se
traduce en que cualquier funcién del espacio puede ser representada como una suma ponderada,
de las funciones base

+oo
h(k) = cid(k — 1) (1.3)
=0

para hacer una aproximacion hay que truncar esta suma a un nimero finito de términos, esto es

M

hae(k) = cid(k—1),

=0

que corresponde con la respuesta de un filtro FIR de orden M.

Proyecto fin de carrera - Javier Jalle Ibarra 2



CAPITULO 1. INTRODUCCION

Example of a simple FIR UWB-like channel response
035 T T T T

0.25¢ .

o
N
T
i

0.15¢ .

Amplitude h(k)

0.1r i

0.05¢ ' ‘ .

0 100 200 300 400 500
Samples (k)

Figura 1.3: Ejemplo de una respuesta FIR que representa de manera sencilla el tipo de canales
estudiados.

1.1.3 Solucién propuesta

Siguiendo con la idea de las funciones base, se ha dicho que el problema se origina debido a
la extremadamente corta extension temporal de las deltas de Kronecker. Hay muchos otros
conjuntos de funciones base, como ejemplo, dos conjuntos muy usados son

0(k—1) =0r; Delta de Kronecker (Base candnica)
elwhi Exponenciales complejas (Series de Fourier)

La base candnica es apropiada para funciones con extensién temporal corta, es decir funciones
localizadas en tiempo, y las series de Fourier son apropiadas para funciones con poca extrension
frecuencial, es decir localizadas en frecuencia (o banda estrecha). Lo que estd claro es que estos
dos conjuntos representan los dos casos extremos, las funciones delta tienen extensién temporal
minima e infinita en el dominio frecuencial y con las exponencial complejas ocurre lo contrario.
La idea que surge es que utilizando otro conjunto de funciones entre estos dos casos extremos,
con una extension temporal mas larga se puede llegar a reducir el orden necesario del filtro.

En un primer acercamiento a la solucion, se podrian utilizar filtros de respuesta impulsional
infinita (ITR) para aproximar estas respuestas impulsionales, pero los filtros IIR conllevan una
serie de dificultades, las mas importantes son superficies de error multimodales y el problema
de la estabilidad (ver [3]). Superficies de error multimodales significa que puede haber minimos
locales que no son minimos globales, y el problema de la estabilidad hace necesario desarrollar
métodos para vigilar la estabilidad del sistema y recuperarla si se ha perdido.

Los filtros de Laguerre se presentan como un compromiso entre los filtros FIR y los IIR.
El principal motivo es que poseen (como se vera en el Capitulo un unico polo multiple
ajustable, lo que permite garantizar la estabilidad del sistema manteniendo este polo dentro
de la circunferencia unidad. Otra de las razones para utilizar estos filtros es la existencia de

Proyecto fin de carrera - Javier Jalle Ibarra 3



CAPITULO 1. INTRODUCCION

Tabla 1.1: Comparacién del coste computacional de un filtro RLS-Laguerre Lattice de orden M
con un RLS-FIR Lattice de order M’ (normalmente M <« M’ ). (Reproducido de: ver

41)
Filter || Mult. | Div. | Add.
Laguerre || 17TM + 2 | 14M | 14M + 1
FIR SM” | 8M’' | &M

algoritmos adaptativos muy eficientes (ver [4], [5] ) que poseen una complejidad computacional
de orden O(M) (M es el orden del filtro), en concreto se trata de filtros RLS Laguerre en celosia
(o conocidos como Lattice), lo que los convierte en una opcién factible en comparacién con los
filtros FIR estdndar, como se puede apreciar en la Tabla

1.2 Objetivos del trabajo

El objetivo principal es estimar la respuesta impulsional de canales UWB de prueba con un
filtro de Laguerre. La calidad de la estimacion es evaluada usando el critero del minimo error
cuadratico medio (m.m.s.e.). Alcanzando idealmente un MSE aceptable con un filtro de menor
orden que el que seria necesario con un filtro FIR clésico, para poder reducir el coste computa-
cional. Como objetivo secundario se propone analizar el efecto de la posicién del polo de los
filtros de Laguerre en la estimacion.

1.3 Breve descripcion de los capitulos

En el Capitulo [2| se presentan los conjuntos de secuencias ortonormales y las secuencias de
Laguerre como tal. El Capitulo [3| presenta el filtro utilizado y la teoria bésica de estimaciéon
utilizada para calcular y evaluar la estimacién del canal.

En el Capitulo[4]se presenta la estimacién de un canal de prueba UWB idealizado. En el Capitulo
se presenta la estimaciéon de canales UWB generados por el modelo de canal estocastico del
estandar IEEE 802.15.4a.

El Capitulo [6] realiza el analisis de los métodods adaptativos de Laguerre.

En el anexo se presenta la memoria del proyecto en inglés completa, la cual posee en esencia el
mismo contenido que esta pero mas detallado, algunas pruebas con otros canales de prueba y
otros entornos UWB que no se incluyen en la presente memoria por motivos de extensién.

Proyecto fin de carrera - Javier Jalle Ibarra 4



2 Secuencias de Laguerre

2.1 Introduccion a las secuencias ortonormales

Esta seccién presenta conceptos de teoria de sistemas motivados por [I1], [7] o [12]. Una sefial
discreta consiste en un conjunto ordenado de muestras y el conjunto de ceros precedentes, que
puede ser representada como - - -, 0, 0, 2(0), (1), x(2), - -- o de manera mas compacta como el
conjunto {x(k)} = xz(k) donde k representa la variable de tiempo discreto y varia de —oo a +o0.
Este tipo de senales o conjuntos también es denominado secuencia, que se define en matematicas
como una lista o conjunto ordenado de elementos.

Si consideramos el espacio de Hilbert £2(Np) de las secuencias cuadréticamente sumables, toda
secuencia x(k) pertenciente a este espacio puede ser representada en términos de un conjunto
de secuencias ortonormal completo {¢;(k)}, donde el indice i = 0, 1, 2,- - - se refiere al indice de
la secuencia en el conjunto. La expansién viene dada por

+oo
2(k) = Y cioulh) (2.1)
1=0

con los coeficientes ¢; definidos como

ci = (¢i(k), z(k)) (2.2)

donde (-, ) es el producto escalar de dos secuencias que dé como resultado un valor escalar dado
por

+o0
(f(k),g(R) = > f(k)g" (k). (2.3)
k=—o00

Una aproximacién de la secuencia se puede construir truncando la expansion a un nimero finito

de términos, es decir
M

(k) = 3 cion(k) (2.4)
i=0
y aceptando un error en la aproximacién, correspondiente a los términos eliminados de la ex-
pansién.
El conjunto de secuencias {¢;(k)}, i = 0, 1, 2, --- es ortonormal si el producto escalar de
cualquier secuencia del conjunto con cualquier otra es nulo y el producto escalar de cualquier
secuencia consigo misma da como resultado la unidad. Expresado de manera matematica

+oo
(Gi(k), 85 (k)) = > ¢ulk)¢ (k) = b (2.5)

k=—o00

con ¢;; definida como la delta de Kronecker,

1 =g
5”_{0 i



CAPITULO 2. SECUENCIAS DE LAGUERRE

desde una perspectiva geométrica el principio de ortogonalidad implica que cada nueva secuencia
del conjunto anade una nueva dimension ortogonal al espacio extendido por el conjunto de
secuencias.

Estos conjuntos ortonormales son también llamados funciones base. Los dos conjuntos mas
usados se corresponden con

o(k —1) Delta de Kronecker (Base candnica)
ek Exponenciales complejas (Series de Fourier)

La base canonica es apropiada para funciones con extension temporal corta, es decir funciones

localizadas, y las series de Fourier son apropiadas para funciones con poca extrensién frecuencial,

es decir localizadas en frecuencia (o de banda estrecha).

2.2 Secuencias de Laguerre

Las secuencias de Laguerre son la versién discreta de las funciones de Laguerre (procedentes
de la ortonormalizacién de la funcién t‘e P!, i € Ng, p > 0, ver [1]), llamadas Laguerre porque
estan relacionadas con los polinomios de Laguerre, que son la solucién de la ecuacion diferencial
de Laguerre. Estas secuencias forman un conjunto ortonormal completo en £?(Np) y se obtienen
de la ortonormalizacién de las secuencias m'a™, i € Ny, |a| < 1 (ver [10]), vienen dadas en el
dominio del tiempo discreto por

li(k,a) = ﬂjﬁ;(—l)"“(?) ("I Yare

Vi (3

\/;i o (k+i—j)! o
= V1-a?) (-1 kit (2.6)
;0 (i = )5k = 5)!

El pardmetro a representa la posicién del tnico polo multiple, que es variado en el eje real
dentro de la circunferencia unidad, esto es, de —1 a +1 para poder mantener la estabilidad de
las funciones (todos los polos de un sistema deben estar dentro de la circunferencia unidad para
garantizar la estabilidad), como se representa en la Figura enfatizando en el rango de valores
reales que llevan a un comportamiento estable.

Variation of the
Laguerre pole

Smla)

4

Region of allowed
poles for stable
Laguerre sequences

_

—i

Figura 2.1: Variacién de la posicion del polo.
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CAPITULO 2. SECUENCIAS DE LAGUERRE

Las primeras secuencias de Laguerre son

|
lo(k,a) =+1— a2£ak =/1—a2d"

01!
k1)) K
li(k,a) = V1~ a? —ua]“rl +—— a1 =V1-a2 (—(k + 1)a**t + k‘ak’1>
0! 1k — 1)
k +2)! (k+1)! Ko,
—/1_ 2 ( k+2 k k—2
la(k, ) ¢ ( ok ¢ T ne—n” Tag 2
K2 4 3k 42 K2k
=1+/1—a? (Jr;’jLakJr2 — (K* + k)a® + (Z)akz)

Aqui puede apreciarse que las secuencias de Laguerre se componen de diversas secuencias expo-
nenciales multiplicadas por un polinomio solapadas entre si, siendo a el parametro de desvanec-
imiento o decaimiento de la secuencia exponencial, y el orden de la secuencia inidica el niimero
de secuencias exponenciales superpuestas.

La representacion en el dominio z viene dada por

("l —a) V1—a?

P A
Lilza) = V1-d® (1-— a2_1)¢+1 T 1—az ! [1 — az‘l} = Lo(za)lLa(z ) 27
~——

—_——

low—pass all—pass

definiendo Lg(z,a) = ﬁ y La(z,a) = f_t;ﬁ. Aqui puede apreciarse como el pardmetro
a corresponde con el Uinico polo multiple de las secuencias y ademads una de las caracteristicas
principales de estas secuencias que es su sencilla representacion en el dominio frecuencial, que
puede ser separada en un filtro paso bajo, seguido de una cascada de filtros pasa todo. Esto
permite generar las secuencias de Laguerre de manera sencilla con el esquema mostrado en
la Figura obteniendo la secuencia de Laguerre de orden cero como la salida excitada por
un impulso unitario de la seccién paso-bajo, la de primer orden como la salida de la primera
seccién pasa-todo y asi en adelante. Si a partir de este esquema tomamos la suma ponderada de
las salidas de las diferentes secciones del filtro obtenemos la estructura conocida como el filtro

transversal de Laguerre que sera estudiado en el capitulo siguiente.

1, (k,a) L(k.a) 1, (k,a) 1 (k,a) 1,,(k,a)

2 -1 -1 -1 -1
zZ —a zZ —d zZ —a zZ —a
> 5
-1

5@ 1—

1-az l-az

I 1 1
1-az 1—az 1-az

Figura 2.2: Generacién de las secuencias de Laguerre.

En la Figura se muestran diferentes secuencias de Laguerre desde el orden 0 hasta 200
con diferentes posiciones del polo a. Noétese la dependencia de la extensién temporal de cada
secuencia con los dos pardmetros principales, el orden de la secuencia y la posicién del polo,
que define el ratio de decaimiento de la secuencia. Cuanto méas cercano a la circunferencia
unidad esté el polo (|a| cerca de 1), el decaimiento de la secuencia es més lento y por ello
posee una mayor extensién temporal. En el caso opuesto, cuando el polo estd cerca de cero, el
decaimiento es mucho més rapido y la extension temporal se ve reducida. Con el aumento del
orden de la secuencia se puede observar como la extension temporal se ve incrementada. Con
un polo negativo se observa el mismo comportamiento solo que la secuencia oscila mas debido al
factor (—l)k que introduce el polo negativo. Cabe destacar que para el caso a = 0 (observando la

Proyecto fin de carrera - Javier Jalle Ibarra 7



CAPITULO 2. SECUENCIAS DE LAGUERRE

ecuacion 2.7)), las secuencias de Laguerre se convierten en la base candnica (deltas de Kronecker),
lo cual permitirda considerar los filtros de Laguerre como una generalizacién de los filtros FIR

clasicos.

Laguerre sequences

Laguerre sequences

T 1
— \ﬂ\“‘,‘,\\[ﬂ““\\}ﬂi | I
W"WU ' —w A —
S — LK
= L = —Le®
| — L ® g —Le®
i —Ly® iy — Ly
% [0 ||'4"fl“m”n”,‘w \ L10o®)
L120(k) d L LlZO(k)
| —L1e® (AP —Lie®
‘l - LlGO(k) ﬂ‘\‘\Q : ‘l“ - Llsﬂ(k)
a=0.2 —Li® “U a=05 —Lp®
f ) — Ly
; ; ; ; ; T ; ; ; ; ; T
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Samples (k) Samples (k)
(a) a=0.2 (b) a=0.5
Laguerre sequences Laguerre sequences
'W\\‘»\\‘f{ﬂﬂ\ VVAAANANANANANNANANANNANANNY Wl Y -
iy 0 IMAMAAAAAAA — Lk
Ly — LW
= Ly < Lo
S ) 5 —Le®
. | —Lg® —Lg®
AN VNN L0 it NIV VNV VNV N NN NN NS Lo®
L12o®)
i . L
i —
A/ a=08 T
)
. . . . . 7 ; ; ; ; ;
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Samples (k) Samples (k)
(¢) a=0.8 (d) a=0.9
Laguerre sequences Laguerre sequences
) "
j}&h‘ﬂlwwmwwmmwmwmwmm oo
|
g ‘Ii‘m I L "* ) I ot JEET)
memmmw L [ — o0 L®
= E—) = L
= Leo®) = — L
‘ﬂ () L
I Lyoo®) Lyoo®)
\“ Lioo) Lioo)
f Ligo®) —L1o®
— Lo — L@
a=-05 L )
r LZOO(k) D LZBU(k)
. . . . . T . . . . . T
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Samples (k) Samples (k)
(e) a=—-0.5 (f) a=-0.8

Figura 2.3: Secuencias de Laguerre con diferente posicién del polo a.
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CAPITULO 2. SECUENCIAS DE LAGUERRE

2.2.1 Longitud de las secuencias de Laguerre

Length of the Laguerre sequence

——Lag. Seq. (M=50, a=0.5)
O Length

0.05

M

Amplitude | _(k,a)
[<)

50 100 150 200
Samples (k)

Figura 2.4: Longitud de una secuencia de Laguerre

Un aspecto interesante de las secuencias de Laguerre es la extensién temporal que pueden
cubrir, puesto que para poder aproximar una respuesta impulsional larga, de manera intuitiva
una eleccién razonable del polo de las secuencias es aquella que hace que cubran una extension
temporal aproximadamente equivalente a la extension de la respuesta impulsional. Por este
motivo si la longitud (o extensién temporal) de las secuencias de Laguerre se puede modelar,
nos permitiria realizar una estimaciéon de una posible posicién del polo razonablemente buena
usando dicho modelo con un orden y una longitud fija.

La longitud de una secuencia de Laguerre se obtiene localizando la muestra donde el ultimo
decaimiento exponencial estd por debajo de un umbral como se puede observar en la Figura[2.4
La longitud de las secuencias en funcién de la posicién del polo (a) y el orden de la secuencia
(M) es mostrada en la Figura Viendo la grafica en funcién de la posicion del polo se puede
observar un comportamiento ﬁ y en la gréafica en funcién del orden M, uno lineal.

Si modelamos la longitud real de las secuencias como una variable [(M, a), la longitud aprox-
imada estd definida por

kM + ko M 1

(M, a) = —_— 2.
i(M,a) thr (2.8)

1—lao] "1l

los coeficientes k1 y ko pueden ser obtenidos resolviendo un sencillo problema de minimos cuadra-
dos. Si tenemos la longitud real de las secuencias [(M, a;) para varios pares de valores {M;, a;}
se puede formular el problema

M- 1
l(Ml,al) 1]};1\ 1—\1a1\
(M, a Tolag]  Tolaa]
T B R S [kl}:Hk (2.9)
: : : k2
I(My,an) ) A

I-lan| 1-]an]

la solucién de minimos cuadrados para k viene dada por (ver [9] para més detalles sobre la
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CAPITULO 2. SECUENCIAS DE LAGUERRE

solucién de minimos cuadrados)

(2.10)

k= (HPH) g1 = [ Fi = 1,8402 }

ko = 20,0563

que ha sido calculada utilizando longitudes de secuencias de Laguerre de 6rdenes desde 1 hasta
200 y posiciones del polo de 0 a 0.95.
El modelo para la aproximacién de la longitud de una secuencia de Laguerre queda como

kM + ko

I(M,a) = e with ky = 1,8402and ko = 20, 0563. (2.11)

y la comparacion entre los valores reales de longitud y los estimados estd representada en la
Figura [2.6

La idea detras de este modelado de la longitud es poder hacer una estimacién de una posicién
del polo cercana a la 6ptima cuando la longitud tipica del canal I es conocida y el orden del
filtro M es fijo, despejando a de la Ecuacién [2.11

_ k1M + ko

n (2.12)

afor =

que es la posicion del polo que hace que las secuencias de Laguerre cubran una extensién temporal
similar a la longitud de la respuesta impulsional del canal.
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CAPITULO 2. SECUENCIAS DE LAGUERRE

Laguerre sequences length

3500 :
“ —Order 1
| ——Order 10
@ 3000[ | —— Order 20
= | ——Order 30
% \w‘\ ——Order 40
® 25001 \; ——Order 50
= Il —— Order 60
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e ‘ — 1
£ 15000 Order 100
]
o
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© 1000t \ Bigger M Bigger M =
g ,
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- 500r .
0 — —
-1 -0.5 0 0.5 1
Pole position (a)
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4000H
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[oX H
= 3500
@
(%]
.£ 3000F
e
2
& 2500(
(O]
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& 2000+
>
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o
g
= 1000+
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|
" ‘ 
O T 1 1
0 50 10 150 200

Sequence order (M)
(b) En funcién del orden de secuencia M.

Figura 2.5: Longitud de las secuencias de Laguerre en funcién del orden de secuencia y de la
posicion del polo.
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CAPITULO 2. SECUENCIAS DE LAGUERRE

Length of Laguerre sequences

5000 ‘
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Figura 2.6: Longitud (real y aproximada) de las secuencias de Laguerre.
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3 Filtro transversal

3.1 Introduccidon

x(k-1) x(k-2) x(k—3) x(k—-M)

x(k)

Wiro Wara
L/ L L

Figura 3.1: Filtro transversal clasico

El filtro transversal es una de las estructuras mas usadas dentro del modelado de sistemas
lineales, especialmente si se requiere de métodos adaptativos y se le han encontrado aplicaciones
en identificacién de sistemas, prediccién lineal, ecualizaciéon de canales y cancelacién de eco.
La fuente de esta popularidad estd en su simplicidad, estabilidad y la existencia de algorit-
mos rapidos y eficientes. Existen algunas estructuras relacionadas con el filtro transversal que
también son muy populares como el filtro en celosia (o ”lattice filter”). El filtro FIR transversal
clasico es mostrado en la Figura 3.1

La salida del filtro FIR transversal viene dada por

g (k) = in,im(k — i) = wyxp (k) (3.1)
definiendo los vectores
wy = | wyo wma o wamwm | (3.2)
zo(k) (k)
xar (k) = :r1(k) _ x(k— 1) 53)

siendo w ) el vector de coeficientes del filtro y x7(k) definido como el vector de datos de entrada,
también llamado vector de regresién, que en este caso corresponde con los diferentes retardos de
la entrada. La razén de denominar a la salida del filtro por gas(k) es que el filtro estd disenado
para aproximar la respuesta de un sistema por lo que la salida es una aproximacién de orden M
de la salida deseada y(k). La repuesta impulsional estimada viene dada por

M
har(k) = warid(k — ). (3.4)
=0

Como puede observarse, se trata de una respuesta FIR, que si se interpreta como una aproxi-
macion en el espacio de Hilbert, estd claro que las funciones base de los filtros FIR son las deltas
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CAPITULO 3. FILTRO TRANSVERSAL

de Kronecker §(k—1), también conocidas como base candénica. La duracién finita de la respuesta
impulsional permite la mayoria de las ventajas del filtro transversal como su estabilidad y sim-
plicidad pero también es la causa de que cuando se requiera una respuesta impulsional larga, el
ntimero de unidades de retardo (o orden del filtro) puede ser muy alto.

Una opcién para solventar este problema podrian ser los filtros IIR pero estos tienen sus
propios problemas, especialmente si se usan métodos adaptativos, como superficies de error
multimodal y inestabilidad (ver [3]). Superficies de error multimodal permiten que existan
minimos locales que no corresponden con minimos globales y la inestabilidad, relacionada con
la adaptacién de los polos del sistema (para que un sistema sea estable, sus polos deben estar
dentro de la circunferencia unidad), hace necesario el desarrollo de métodos para controlar la
estabilidad y recuperarla en caso de perdela. Es aqui cuando los filtros de Laguerre se presentan
como una solucién compromiso entre los filtros FIR y los IIR.

3.2 Filtro transversal de Laguerre

x,(k,a) x,(k,a) x,(k,a) x,(k,a) x,,(k,a)

2 - — — —

Zl—a ZI—CI zZ —d z —a
fpya—

1

x(k)

-1 l-az” 1-az™ 1-az 1-—az™

WJ 1.0 (CT) WM 1 (Cl) M{\[ 2 (a) fhw‘u:j (Cl) W VA\[ M (a)
N, =D N, I (k)

Figura 3.2: Filtro transversal de Laguerre

Como se vié en el Capitulo anterior, las secuencias de Laguerre tienen la siguiente repre-
sentacion en el dominio z

Liza) = Vi—a G -0 _Vi-a [Z_l‘“y:Lo<z,a>[LA<z,a>r‘ (35)

(1—az"1)"* 1;%21/ 1—az"1

low—pass all—pass

que se puede expresar como una seccién paso bajo Lo(z,a) seguida de una cascada de secciones
pasa todo La(z,a). Si construimos la suma ponderada de las diferentes secciones obtenemos lo
que se conoce como filtro transversal de Laguerre, mostrado en la Figura con la salida y la
respuesta impulsional dadas por

M
gu(k) = ZwM,i(a)mk,a):wM(a)xM(k,a) (3.6)
A 2]\—/10
ha(k) = > wari(a)li(k, a) (3.7)
1=0

donde ahora el vector xys(k,a) es el vector de datos de entrada que consiste en las senales de
salida de las diferentes secciones del filtro de Laguerre desde orden 0 hasta M. La posicion del
polo a se considera en este estudio como un pardmetro y no una variable, es decir, es elegido a
priori pudiendo variar entre —1 y 1, permitiendo mantener el filtro estable, lo que constituye una
de las razones por las que los filtros de Laguerre son considerados un compromiso entre los filtros
IIR y FIR; y permite ademas controlar el ratio de decaimiento de la respuesta impulsional, lo
cual es ttil para aproximar respuestas impulsionales muy largas. Cabe destacar que cuando el
polo es cero, a = 0, el filtro transversal de Laguerre degenera en el filtro FIR transversal, lo cual
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CAPITULO 3. FILTRO TRANSVERSAL

permite considerar al filtro de Laguerre como una generalizacion de los filtros FIR, y a estos
como un caso particular de los filtros de Laguerre.

3.3 Teoria basica de estimacion lineal

x(k) | H(z) y(k)

Figura 3.3: Modelo de canal simple

Una vez que tenemos el filtro, vamos a definir el sistema en el cual vamos a realizar la
estimacién. Para este caso vamos a utilizar el sistema mostrado en la Figura definiendo
z(k) como la senal de entrada, H(z) o h(k) como el canal a estimar y y(k) como la salida.
La razén de no incluir ruido en este sistema tan simple para que sea mas realista es debido a
que esto es un estudio tedrico de la viabilidad de los filtros de Laguerre estimando canales y
el ruido inicamente anadiria limitaciones a la calidad de la estimacion, de hecho si se anadiera
ruido blanco aditivo gaussiano (AWGN) el efecto conseguido seria que el error cuadrético medio
(MSE) resultante tuviera un valor asinténtico limitado por el SNR efectivo del sistema.

. (k k
x(k) H(z) »( 2\) e, (k)
\ _
. 7V (K)
H,,(2)

Figura 3.4: Modelo de estimacién de canal.

En el modelo de estimacién mostrado en la Figura [3.4] se introduce el sistema estimado de
orden M, Hys(z) o hps(k), la estimacion de la salida y(k) de orden M, §y/(k) y la senal de error

6M(k)

M

gar(k) = wariwi(k) = warxar (k), (3.8)
=0

en (k) = y(k) = gar (k). (3.9)

Un pequeno detalle a tener en cuenta es que la senal de error estd definida en términos de y(k)
y no de h(k) (el objetivo es estimar el canal h(k)), pero si el error resultante se normaliza por
la varianza de y(k) (03 S [y(k)y*(k)]), se obtiene un error normalizado que corresponde con
el error de estimacién del sistema.

Una vez que la senal de error es definida se necesita un criterio para establecer una funcién
de coste a minimizar, en este caso el criterio del minimo error cuadrético medio (m.m.s.e.), que
establece como funcién de coste el error cuadratico medio (MSE)

J(war) = E [ear(k)ely (k)] = E [lear (k)] (3.10)
MSE
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CAPITULO 3. FILTRO TRANSVERSAL

y minimiza este coste eligiendo de manera correcta los coeficientes del filtro wy,

wyr = argmin(J(wyy)).
WM
La minimizacién de la funcién de coste se puede realizar de varias maneras, en la practica se
realiza mediante métodos adaptativos que minimizan la funcién de coste de manera iterativa
como se verd en el Capitulo (] En este caso la minizacién de la funcién de coste se realizard
con el conocimiento perfecto de las estadisticas de segundo orden de las senales del sistema y
da como resultado la llamadas ecuaciones normales (ver memoria en el anexo para més detalles

sobre la minimizacién)
o

definiendo la matriz de autocorrelacién R, y el vector de correlaciéon cruzada py, como

1>

R, E [xas(k)x1] (k)] (3.12)

E [y(k)xi; (k)] - (3.13)

1>

Pyx

Estas ecuaciones reciben el nombre de ecuaciones normales ya que poseen una importante inter-
pretacién geométrica que se puede apreciar mejor si se escriben de la siguiente manera equivalente

E [ear (K)xcff (k)] = 0 (3.14)

en la cual se ve la importante interpretacion geométrica que poseen: Establecen una condicion
de ortogonalidad entre la senial de error ejs(k) y el vector de datos xps(k), de hecho con cualquier
transformacion lineal de los datos, esto quiere decir que ninguna otra transformacion lineal de
los datos puede extraer informacién extra sobre la senal deseada (para reducir el error en media).

BMJ_.TM

3.4 Coeficientes de correlacion

Para calcular los coeficientes wyy; del filtro necesitamos resolver las ecuaciones normales y para
ello necesitamos el conocimiento de las estadisticas de segundo orden del sistema representadas
por R; y pyz. Cada coeficiente de correlacién viene dado por

rij = Elzi(k,a)z}(k, a)] (3.15)
pi = Ely(k)zi(k,a)] (3.16)

que puede ser calculado de manera numérica en el dominio del tiempo tomando una media
aritmética basada en un ntimero finito de puntos N

| Nl
T zi(k,a)z}(k, a)
k=0
| Nl
b Sy (ka).
k=0

Sin embargo, se ha visto en el Capitulo anterior que las secuencias de Laguerre poseen una
representacion frecuencial simple, lo que intuitivamente puede proporcionar una mejor manera
de calcular estos coeficientes utilizando el teorema de Parseval para pasar de la representacion
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CAPITULO 3. FILTRO TRANSVERSAL

temporal a una en el dominio de la frecuencia
1 [t - :
rij = Elzi(k,a)zi(k,a)] = — Xi(e,a) X7 (e, a) dw (3.17)

2 J_,
la representacién frecuencial de la salida i-ésima del filtro de Laguerre, x;(k, a) viene dada por
X;(e,a) = X()VLi(e*,a) = X () Lo(e!, a)[La(e”, a)]’ (3.18)

1A
La(el“,a)

observando que L% (e, a) =

X;(ej“’,a) = X*(ej“’)L("j(ej“’,a)[LZ(ej“’,a)]j:X*(ej“’)LS(ej‘”,a)[LA(ej“’,a)]_j (3.19)

los coeficientes pueden ser expresados como

1 [t

i = 5o 3 Xi(ejw,a)X;(ej“’,a)dw
1 +m . ) ) ) o
= o X(eJ‘“)X*(eJ”)\LO(eJ‘“,a)\2[LA(eJ”,a)]“Jdw (3.20)
4 —T

y definiendo la densidad espectral de potencia de z(k) como ¢, (e/?) = X (el) X*(el?),
1 i jw jw 2 jw i—j
g = 5o Gaz ()| Lo(e,a)|*[La(e,a)]" ™7 dw (3.21)

la dependencia en 7 — j lleva a una estructura Toeplitz de la matriz R,.

Procediendo de la misma manera para los coeficientes de correlacién cruzada

1 +m ) ) 1 +m ) ) . ) )
P = o Y ()X (e a) dw = o Y () X* () Ly(e,a)[La(e,a)] " dw

™ J_r T™J—x
1 +m ) . ) ) ) )

= L [T HE)X (.0 X )Ly, )L, )] de
7T —Tr
1 +m ) ) . ) )

= 5 Gua(e)VH ()L (e, a)[La(e,a)] " dw (3.22)

sustituyendo las funciones de transferencia de los filtros de Laguerre Lo(e/) y La(e!*) por su

expresion
1 4T Ppe(el)(1—a? jw_, \J 0
Tij = o ff;r ‘fe_aij(w‘za ) <1e_aeji> dw (3.23)
+1 H()Paa () VT=a? (e—a \'
pi = g [IT MV (fiaeji) duw (3.24)

3.5 Método de soluciéon de las ecuaciones normales

Primero se calculan los coeficientes de correlacién para un polo a y un orden M dados, teniendo
en cuenta que al tener estructura Toeplitz la matriz R, solo se necesita calcular un vector r de
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esta, es decir, se calculan (ver [I1])

jw iw %
T = Qlﬂ- j;l' q)ITfejaij(irQaz) (fia;j?u) dw, i =0,1,--- M (325)
jw jw w i
pi = g [T S VI (e ) G, = 0,1, M (3.26)

Una vez que se tienen los dos vectores calculados, se procede a la solucién del sistema de
ecuaciones

wyR: = Pya- (3.27)

Este sistema puede ser resuelto por los métodos clasicos de inversiéon de matrices (eliminacién
Gaussiana, ...) sin embargo al poseer la matriz R, una estructura Toeplitz se puede resolver
el sistema de ecuaciones de manera eficiente por medio de un método recursivo explotando la
estructura de los datos. Este método es el algoritmo de Levinson-Durbin (ver memoria adjunta
en el anexo para explicacién), que para hallar la solucién de orden M utiliza la solucién de orden
M —1.

El algoritmo modificado de Levinson-Durbin utilizado da como resultado los coeficientes ¢;
de la expansién ortonormal de §7(k) asumiendo un conjunto de secuencias ortonormales ¢;(k)
(estas secuencias ortonormales son en realidad las secuencias de error de prediccién hacia atrés

b

e’ (k) como se ve en la explicacién del algoritmo en los anexos)

M
g =Y cigilk) (3.28)
i=0

con
Cp = <ya (bz)

notese que los coeficientes ¢; no dependen del orden del filtro porque son los coeficientes de la
expansién ortonormal de y(k). El error cuadratico medio (MSE) para cada orden M es calculado
como

MSE = Juin = Elem|* = (ears enr) = ((y — 9inmr), enr)

recordando que la sefial de error (debido a las ecuaciones normales) es ortogonal a todas las
combinaciones lineales de los datos (es decir, gps)

e

M=

M
MSE = Jmln—<yaeM>_U =Y, Im) —U ch Yy, ¢i(k —0';_
=0 1=0

Normalizando el resultado respecto a la energia de y(k) para obtener el error normalizado

M
NusE=1-Y Ll
g
1=0 )

que es el resultado que pretendiamos obtener desde un principio, el error cuadratico medio
normalizado de la estimacion del sistema por medio de un filtro de Laguerre.
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4 Aproximacion de un canal UWB FIR
idealizado

4.1 Introduccion

Para poder analizar el comportamiento de los filtros de Laguerre en el ambito de los canales
UWB, empezaremos con un modelo de canal idealizado. Los canales UWB usados en este estudio
estan modelados por el estdndar IEEE 802.15.4a (ver [6]), modelo basado en un comportamiento
clusterizado de los diferentes tiempos de llegada de los ecos y un PDP (power delay profile)
exponencial. Los canales presentan una respuesta impulsional larga y para entornos sin linea
de visién (NLOS, non line of sight) no tiene por que haber un eco dominante. La respuesta
impulsional méas simple respondiendo a estas caracteristicas es un canal FIR consistente de dos
PDPs exponenciales retardadas, por ejemplo

h(k) = 0.8 u(k) + 0.8 10 (k — 150), k=0, 1, - --200 (4.1)

con u(k) la funcién escalén

1 :k>0
“(k)_{o k<0

representada en la Figura La razén de no usar todavia el modelo estocéstico de canales
UWB es que para poder interpretar los resultados primero es mejor trabajar con un modelo
determinista simplificado.

Impulse response of the FIR system
0.45 ‘ ‘ ‘

0.4

0.35

o
w

0.25

o
N

Amplitude h(k)

0.15

0.1

0.05

0 50 100 150 200
Samples (k)

Figura 4.1: Respuesta impulsional del canal UWB FIR idealizado.
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4.2 Error cuadratico medio (MSE) en la aproximacion

En la Figura[d.2)se muestra el MSE normalizado (NMSE) para el canal FIR presentado en funcién
de la posicién del polo para diferentes 6rdenes del filtro. Un NMSE de 0 dB corresponde con
un error igual a la unidad, lo que significa que no hay aproximacién alguna (méximo error), por
otro lado un NMSE de —oo dB corresponde con un error nulo, lo que significa una aproximacion
perfecta. La posicién del polo varfa desde —1 a 1 como ya se explicé en el Capitulo[2] destacando
que a = 0 se corresponde con el caso FIR.

Tabla 4.1: NMSE para un filtro de Laguerre de orden 60 con diferentes posiciones del polo.

filtro posicién del polo (a) NMSE (en dB)
FIR transversal 0 -3 dB
Laguerre 0.5 —7.2dB
Laguerre 0.7 —-8.1dB
Laguerre 0.64 (posicién 6ptima) —8.2dB

Normalized MSE(in dB) of the Laguerre transversal filter

O————— ‘ ———————
_2, \\\
_4>
——order 2
-6 order 22
——order 42
o —8f—order 62
'g ——order 82
< -10H ——order 102
("',§ order 122
= -12H ——order 142
——order 162
=14+ order 182
o optimal pole position
_16>
_18>
_20 “““““ S S S T S S S S
-1 -0.5 0 0.5 1

Pole position of the Laguerre filter (a)

Figura 4.2: MSE normalizado de la aproximacién del canal FIR en funcién de la posicion del

polo para diferentes 6rdenes del filtro (nota: a =0 2 filtro FIR ).

Hay varias conclusiones interesantes que se pueden derivar de la figura, la primera de ellas
es que para el caso FIR (a = 0) el NMSE estd atascado en -3 dB hasta que el orden del filtro
alcanza 150, lo cual es algo facil de entender intuitivamente puesto que volviendo a la Figura [4.1]
se puede ver claramente que con un filtro FIR de orden menor que 150 sélo se puede aproximar
el primer PDP, que corresponde con la mitad de la energia, es decir 3 dB. Otra cosa interesante
es que la posicién 6ptima del polo empieza en la constante de tiempo del sistema, en este caso
0.8, para aumentar hasta la unidad y entonces ir disminuyendo con el orden hasta cero cuando
el orden del filtro es comparable con la longitud del canal como se puede ver en la Figura
Esto se debe a que cuando tenemos un order mucho mas pequeno que la longitud del canal se
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necesitan secuencias de mas duracién para poder aproximar mejor (polo cercano a 1) y cuando el
orden es comparable a la longitud, se utilizan polos mas pequenos (polo cercano a cero) porque
ofrecen una mejor resolucién temporal que genera una mejor aproximacién.

NMSE dependence on filter order

O T T T
2\ f
-4t i
\0.7 0.5 0.3 | MSE gain
—6F O S i
o 8 N 7
o© ~
c T
< -10f T b
ul —
0 T —
= 12t —
_147 |
— Optimal Pole position
—16[ —FIR Filter (a=0) ]
a=0.3
-18p a=0.5 ]
——a=0.7
_20 T L L
0 50 100 150 200

Filter order (M)

Figura 4.3: MSE normalizado de la estimacion del canal FIR en funcién del orden del filtro para

diferentes posiciones del polo (nota: a =0 2 filtro FIR )

Optimal pole position dependence on filter order
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Figura 4.4: Variacion de la posicién 6ptima del polo en funcién del orden del filtro.
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Para ver de manera mas clara estos resultados, la informacion se reorganiza para producir
la Figura que representa el NMSE esta vez como funcién del orden del filtro para algunas
posiciones de polo concretas. En esta figura se puede ver como hay un intervalo en el cual los
filtros de Laguerre producen un mejor resultado que los FIR hasta que el orden del filtro alcanza
un valor comparable con la longitud del canal. Algunos resultados numéricos se muestran en la

tabla 411

Approximation of the FIR test channel

0.81 ——Channel response i
3 0.6- — Laguerre (a=0.5) approximation of order 60 ||
P —— Laguerre (a=0.7) approximation of order 60
© 04 ‘ R
é
= 0.2\ ]
IS
< o —

_0.2 Il Il Il Il Il
0 50 100 150 200 250 300
Samples (k)
Approximation of the FIR test channel
T T T

0.8 —— Channel response N
= 0.6F —FIR (a=0) approximation of order 60 |
= O
()
B 0.4 b
‘S 0.2F A
IS
< ot

_02 1 1 1 1 1
0 50 100 150 200 250 300

Samples (k)
Figura 4.5: Aproximacién del canal FIR con un filtro de Laguerre de orden 60.

Un ejemplo de la aproximacion producida se muestra en la Figura aqui se puede apreciar
como el filtro FIR solo puede aproximar las primeras 60 muestras del canal (se trata de un filtro
de orden 60), mientras que el filtro de Laguerre puede aproximar més longitud del canal porque
tiene una mayor extensién temporal. También puede apreciarse un problema relacionado con los
filtros de Laguerre debido a las discontinuidades o cambios abruptos en el canal, viendo como
en estos puntos se generan oscilaciones (previas y posteriores) que no deberfan estar, similar al
fenomeno de Gibbs en el analisis de Fourier. Este efecto es causa del comportamiento paso bajo
de los filtros de Laguerre (recuérdese que se componen de un filtro paso bajo seguido de una
cascada de filtros paso alto) que hace que no pueda generar las componentes de alta frecuencia
que intrinsecamente poseen los cambios abruptos o discontinuidades.
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Los canales UWB utilizados en este estudio son canales complejos debido a una fase compleja
aleatoria que se le asigna a cada componente multicamino, como se vera en el siguiente Capitulo.
Esto ocasiona que las partes real e imaginaria del canal posean un comportamiento oscilatorio.
Para captar mejor este comportamiento se propone una pequena variacién al canal de prueba
utilizado que consiste en asignarle un signo aleatorio lo que le da un comportamiento oscilatorio,
como se muestra en la Figura

Impulse response of the FIR system
05 T T T

0.4T |

0.2 7

0.1j i

Amplitude h(k)

-0.1p b

0.2 b

-0.3f 7

50 100 150 200
Samples (k)

Figura 4.6: Impulse response of the FIR channel

El MSE resultante se muestra en las Figuras y que muestran que los polos 6ptimos
siguen manteniendo un comportamiento similar solo que esta vez son negativos, para poder
captar mejor el caracter oscilatorio del canal.

Las conclusiones que pueden tomarse de este andlisis son que existe un intervalo de 6rdenes
del filtro en el cual los filtros de Laguerre proporcionan un menor MSE que los filtros FIR,
escogiendo correctamente el polo del filtro. Este intervalo viene delimitado por el orden del
filtro comparable con la longitud de la respuesta impulsional del canal. La posicién del polo
cambia conforme aumentamos el orden del filtro, siendo un valor cercano a la unidad para
6rdenes pequenios (para tener secuencias de mas duracién y poder aproximar mejor respuestas
impulsionales largas) y un valor cercano a cero para érdenes comparables con la longitud del
canal (donde el filtro FIR es la mejor opcién porque posee una mejor resolucién temporal).
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MSE (in dB)
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Figura 4.7: MSE normalizado de la aproximacién del canal FIR en funcién de la posicién del

polo para diferentes 6rdenes del filtro (nota: a =0 = filtro FIR ).
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Figura 4.8: MSE normalizado de la estimacién del canal FIR en funcién del orden del filtro para

diferentes posiciones del polo (nota: a = 0 2 filtro FIR )
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5 Canales UWB

5.1 Introduccion

Las comunicaciones de banda ultra ancha (UWB) son un tema muy actual tanto en el mundo
académico como empresarial, debido al uso de anchos de banda de transmisién muy amplios
permitiendo algunas capacidades deseables como posicionamiento y medicién precisos, alta ca-
pacidad de acceso multiple, comunicaciones encubiertas, ...

El IEEE establecié un grupo de estandarizacién, el IEEE 802.15.4a (rectificaciéon sobre el
IEEE 802.15.4) que describe la capa fisica y de acceso al medio para comunicaciones UWB. El
modelo de la capa fisica corresponde con el modelo utilizado en este estudio.

La mayoria de los modelos de canal para comunicaciones inaldmbricas se basan en la propa-
gacién de una senal a través de un canal consistente de varios caminos (o ecos) también conocido
como propagacién multicamino. Cada componente multicamino tiene su amplitud y su retardo
que son caracterizados para describir el modelo.

Los sistemas UWB cubren un ancho de banda de casi 10 GHz, lo que produce nuevos efectos.
Uno puede ser que solo unas pocas componentes multicamino se solapen como resultado de la
mayor resolucién del sistema, lo que ocasiona que las estadisticas no sean Rayleigh (como en la
mayoria de modelos) y que halla intervalos de muestreo que esten vacios (no contienen energia
recibida).

5.2 UWB IEEE 802.15.4a Standard model

El modelo de canal propuesto por el grupo de estandarizacién (ver [6]) cubre el rango de 2 a 10
GHz para varios entornos (indoor residential, indoor office, industrial, outdoor y open outdoor).
El documento proporciona una implementacién del modelo en MATLAB®.

El modelo estd basado en un modelo Saleh-Valenzuela (ver [§]). En particular, las componentes
multicamino son modeladas en clisteres en lugar de un continuo como en los canales de banda
estrecha. Esto es resultado del corto intervalo de muestreo. Las componentes multicamino son
agrupadas en dos categorias diferentes: como cluster y como eco dentro de un cluster. Ademas
el ”power delay profile” es modelado como un decaimiento exponencial dentro de los clisteres y
para los mismos clisteres .

5.3 Estimacion del canal

En este estudio se utilizara el entorno de area residencial sin linea de visién (residential NLOS)
del modelo de canales UWB debido a que cumple con el comportamiento esperado de los canales
UWB que inspir6 el canal de prueba idealizado del Capitulo [4 La estimacién de canal se lleva
a cabo usando el método descrito en el Capitulo

Algunas realizaciones del modelo estocéstico pueden ser vistas en la Figura [5.1
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Residential NLOS UWB model realizations
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Figura 5.1: Realizaciones del modelo estocéstico de canales UWB.

Si nos centramos primero en una realizaciéon del modelo, como la mostrada en la Figura [5.2
podemos calcular el MSE resultante de estimar este sistema con filtros de Laguerre de diferentes
ordenes y posiciones del polo. En la Figura se puede ver que la longitud efectiva del canal
es de 1000 muestras mas o menos (dato que permitird obtener una estimacién de una posicién
6ptima del polo como se vié en el Capitulo , luego un filtro de orden 200 o 300 deberfa ser
suficiente para poder estimar correctamente gran parte de su respuesta impulsional.

En la Figura[5.3| se muestra el NMSE para esta respuesta impulsional para filtros con érdenes
desde 50 hasta 300 en funcién de la posicién del polo a. Puede apreciarse como los filtros de
Laguerre con una eleccién apropiada de la posicién del polo pueden proporcionar un menor MSE
que los filtros FIR (a = 0) para esta realizacién del canal. También puede verse que las posiciones
optimas del polo son negativas, esto ocurre debido a que el modelo estocédstico proporciona
canales complejos con una fase compleja aleatoria para cada componente multicamino, lo cual
hace que las partes real e imaginaria del canal posean un comportamiento oscilatorio y por ello
un polo negativo funciona mejor para este tipo de canales puesto que el término (—1)F que
introduce genera un comportamiento oscilatorio, como se puede ver en la Figura 5.4
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Residential NLOS UWB channel realization
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Figura 5.2: Realizacion del modelo estocastico de canales UWB.

Normalized MSE (in dB) for the Laguerre transversal filter

|
[«2]

order 50
order 75
=== order 100
order 125

Order 100 order 150 H
order 175

Order 200 | —— order 200
Order 300 order 225 U
order 250

order 275

order 300

O optimal pole position

5 O estimated pole position

-1 -0.5 0 0.5 1
Pole position of the Laguerre filter (a)

|
[ee]

MSE (in dB)

|
=
o

|
-
N

Figura 5.3: MSE normalizado de la estimacién del canal UWB en funcién de la posicién del polo
para diferentes érdenes del filtro (nota: a = 0 2 filtro FIR ).
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Real part of the UWB channel
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Figura 5.4: Efecto del signo del polo en la estimacién de un canal complejo con un filtro de
Laguerre de orden 100.

Volviendo a la Figura puede observarse que las posiciones de polo éptimas y las estimadas
(utilizando el criterio descrito en el Capitulo [2] que aprovecha el conocimiento de la longitud
del canal y hace coincidir ésta con la longitud cubierta por las secuencias de Laguerre) estan
cerca, lo cual muestra que la estimacién del polo realizada no es perfecta pero da una posicién
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suficientemente cercana de manera muy sencilla (utilizando un modelo lineal) que resulta en un
pequeno deterioro del MSE. Una representacién equivalente a la Figura[5.3]en funcién del orden
del filtro es mostrada en la Figura que permite ver estos resultados de manera mas clara.
Se pueded apreciar un decremento sobre 5 dB del MSE y también lo cercana que esta la curva
de MSE de las posiciones de polo estimadas respecto la éptima.

NMSE dependence on filter order
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Figura 5.5: MSE normalizado de la estimacién del canal UWB en funcién del orden del filtro

para diferentes posiciones del polo (nota: a =0 2 filtro FIR ).

Algunos valores numeéricos son mostrados en la Tabla que contiene el NMSE para filtros
de orden 100, 200 y 300 con diferentes posiciones del polo (recordar que el filtro FIR es un filtro
Laguerre con posicién del polo a = 0). Si calculamos la ganancia en MSE por los diferentes
filtros de Laguerre en comparacién con el filtro FIR como Aysg = MSEFIR —MSE%9, se obtiene
la Tabla que muestra para la posicién del polo estimada una ganancia sobre 5 dB que puede
obtenerse con los filtros de Laguerre.

Tabla 5.1: NMSE obtenida estimando una realizacion de canal UWB con filtros de diferentes
ordenes y posiciones del polo.

filtro posicién del polo(a) Orden 100 Orden 200 Orden 300
FIR transversal filter 0 -2.4 dB -6.3 dB -8.4 dB
Laguerre filter —0.5 -5.9 dB -11.1 dB -14.9 dB
Laguerre filter -0.7 -7.0 dB -10.2 dB -12.6 dB
Laguerre filter Optima -7.1 dB -11.5 -15.0 dB

La posicién éptima del polo para cada orden del filtro es mostrada en la Figura [5.6] junto con
la estimada.

Proyecto fin de carrera - Javier Jalle Ibarra 29



CAPITULO 5. CANALES UWB

Tabla 5.2: Aypsge 0 ganancia MSE obtenida estimando una realizacion de canal UWB con filtros
de diferentes 6rdenes y posiciones del polo.
pole position (a) Order 100 Order 200 Order 300

—-0.5 3.5 dB 4.8 dB 6.5 dB
-0.7 4.6 dB 3.9 dB 4.2 dB
Estimated 4.3 dB 5.1 dB 6.5 dB
Optimal 4.7 dB 5.2 dB 6.6 dB

Optimal pole position dependence on filter order

¢ Real optimal pole position
o _estimated pole position (Channel length ~ 1000) |

Pole position

0 50 100 150 200 250 300
Filter order (M)

Figura 5.6: Variacién de la posicién 6ptima (y estimada) del polo para el filtro de Laguerre en
funcién del orden del filtro.

Una vez que el caso concreto de una realizacion ha sido estudiao, un caso més general se puede
obtener analizando el comportamiento de varias realizaciones del experimento estocastico. En
concreto se realiza la estimacién de canal por medio de un filtro de Laguerre de orden hasta 300
de 500 realizaciones del modelo estocastico de canales UWB.

Primero de todo el NMSE en media para las 500 realizaciones del canal se representa como
funcién de la posicién del polo para algunos 6rdenes del filtro en la Figura y como funcion
del orden del filtro para varias posiciones del polo en la Figura[5.8] Aquf se puede apreciar un
incremento de 4 o 5 dB para los filtros de Laguerre en comparacién con los FIR. Otra vez las
posiciones 6ptimas del polo son negativas por los mismos motivos explicados anteriormente y
las posiciones estimadas del polo parecen ser una buena eleccién por su cercania a las posiciones
6ptimas lo que se traduce en un pequeno deterioro del MSE. Si observamos la Figura[5.8] la curva
del MSE para las posiciones del polo estimadas y la 6ptima estdn muy cerca. Las posiciones
optimas del polo y las estimadas son mostradas en la Figura[5.9
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MSE (in dB)

Normalized MSE (in dB) for the Laguerre transversal filter

Order 100
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order 275 —
=== Order 300 4

O optimal pole position
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‘0‘ C

0.5 1

Pole position of the Laguerre filter (a)

Figura 5.7: MSE normalizado medio de la estimacion de los canales UWB en funcién de la

posicién del polo para diferentes érdenes del filtro (nota: a =0 2 filtro FIR ).

MSE (in dB)

_8,

NMSE (in dB) dependence on filter order

FIR filter

Laguerre Filters
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—FIR Filter (a=0)
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Filter order (M)
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250 300

Figura 5.8: MSE normalizado medio de la estimacién de los canales UWB en funcién del orden

del filtro para diferentes posiciones del polo (nota: a =0 2 filtro FIR ).
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Optimal pole position dependence on filter order
_03 I I I
¢ Real optimal pole position
Predicted with the approx. model (Channel length = 1000)

Pole position

0 50 100 150 200 250 300
Filter order (M)

Figura 5.9: Variacién de la posicién 6ptima (y estimada) del polo para el filtro de Laguerre en
funcién del orden del filtro.

La funcién de densidad de probabilidad (pdf) experimental para el MSE es obtenida para
filtros de 6rdenes 100, 200 y 300 y posiciones del polo a =0, -0.5, -0.7 y la 6ptima para cada
orden (nota: a = 0 corresponde con el filtro FIR transversal). La razén de elegir -0.7 y -0.5 es
que viendo el comportanmiento en la Figura ambos parecen ser una buena eleccion, ademas
el filtro correspondiente con ¢ = —0.5 conlleva una implementaciéon computacional eficiente
porque una multiplicacién o divisién por una potencia de 2 es muy sencilla con tecnologia dig-
ital (se reduce a anadir ceros o eliminar bits). Los resultados son resumidos en la Tabla y
representados en las Figuras [5.10] [5.11] y [5.12] para los érdenes 100, 200 y 300 respectivamente.
Las figuras muestran que en general los filtros de Laguerre ofrecen mejores resultados propor-
cionando un menor MSE para un orden dado, con mejoras medias de 3.2 dB, 4.7 dB y 5 dB
para filtros de orden 100, 200 y 300 respectivamente con una posiciéon del polo 6ptima como se
puede ver en la Tabla [5.4l Este mejor comportamiento responde al hecho de que los filtros de
Laguerre son una generalizacion de los filtros FIR y como tal pueden funcionar mejor o igual
que los filtros FIR.

Tabla 5.3: Estadisticas del NMSE (en dB) obtenido estimando canales UWB con filtros de difer-
ente orden y varias posiciones del polo.

Orden 100 Orden 200 Orden 300
filtro posicién del polo (a) Media Std Media Std Media Std
FIR transversal filter 0 -1.5 1.7 -3.7 2.5 -6.6 3.0
Laguerre filter -0.5 -4.0 2.0 -8.3 2.4 -11.6 | 2.5
Laguerre filter -0.7 -4.7 1.7 =77 1.9 -9.6 2.0
Laguerre filter Optima -4.7 1.7 -8.4 2.2 -11.6 | 2.5
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Tabla 5.4: Ayse o ganancia MSE en media, obtenida estimando canales UWB con filtros de
ordenes y posiciones del polo diferentes.
pole position (a) Order 100 Order 200 Order 300

-0.5 2.5 dB 4.6 dB 5 dB
-0.7 3.2 dB 4.0 dB 3 dB
Estimated 3.0dB 4.7 dB 4.9 dB
Optimal 3.2 dB 4.7 dB 5 dB

Probability Density Function for the MSE with different Laguerre filters
0.7 \

— FIR filter (a=0)

Laguerre filter with a=-0.5
0.6F —— Laguerre filter with a=-0.7
—— Laguerre filter with a=Optimal Pole
—— Laguerre filter with a=Estimated Pole

FIR filter

N
SN
T

Laguerre Filters

Filter Order =
100

P(MSE)
o
w

-12 -10 -8 -6 -4 -2 0
MSE (in dB)

Figura 5.10: Funciéon de densidad de probabilidad del MSE normalizado para un filtro de La-
guerre de orden 100 con diferentes posiciones del polo.
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Probability Density Function for the MSE with different Laguerre filters

— FIR filter (a=0)
Laguerre filter with a=-0.5
—— Laguerre filter with a=-0.7

0-25 —— Laguerre filter with a=Optimal Pole )
—— Laguerre filter with a=Estimated Pole
0.2f FIR filter
m
2 0.15- Laguerre Filters—” |
a

Filter Order =
200
0.1+
0.05F
0 L L L L L
-16 -14 -12 -10 -8 -6 -4 -2 0

MSE (in dB)

Figura 5.11: Funcién de densidad de probabilidad del MSE normalizado para un filtro de La-
guerre de orden 200 con diferentes posiciones del polo.

Probability Density Function for the MSE with different Laguerre filters

— FIR filter (a=0)
Laguerre filter with a=-0.5
0251 —— Laguerre filter with a=-0.7 |
' —— Laguerre filter with a=Optimal Pole
—— Laguerre filter with a=Estimated Pole
0.2 |Laguerre Filters |
m FIR filter
2 0.15¢ 1
a .
Filter Order =
300
0.1r
0.05-

O L
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
MSE (in dB)

Figura 5.12: Funciéon de densidad de probabilidad del MSE normalizado para un filtro de La-
guerre de orden 300 con diferentes posiciones del polo.

Si el orden necesario para cumplir un MSE especifico (-3 dB, -6 dB y -10 dB) se calcula, se
obtienen los resultados mostrados en la Figura y la Tabla
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Probability Density Function for the filter order needed to achieve a -3 dB MSE. Probability Density Function for the filter order needed to achieve a -6 dB MSE.
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Probability Density Function for the filter order needed to achieve a =10 dB MSE.
0.01 T T T T T T T T
—FIR filter (a=0)
0.009}+ Laguerre filter with a=-0.3}{
—— Laguerre filter with a=-0.5
0.008 —— Laguerre filter with a=-0.7
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0.0011 1
0 h

400 500 600 700 800 900
Filter order (M)

0 100 200 300
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Figura 5.13: Orden necesario por los diferentes filtros para obtener un NMSE especifico(-3dB,

-6dB and -10 dB).

Tabla 5.5: Estadisticas del orden necesario por los diferentes filtros para obtener un NMSE

especifico.

-3dB NMSE -6dB NMSE -10dB NMSE
filtro posicién del polo (a) Media Std Media Std Media  Std
FIR transversal 0 197 | 106 296 | 118 425 124
Laguerre -0.3 118 62 187 73 285 83
Laguerre -0.5 88 44 150 58 260 89
Laguerre —-0.7 69 33 148 66 327 116

Proyecto fin de carrera - Javier Jalle Ibarra 35






6 Meétodos adaptativos

6.1 Introduccion

En los capitulos anteriores, se resolvié el problema de estimacion de manera tedrica conociendo
de manera exacta las estadisticas de segundo orden de las senales involucradas en el sistema. En
la practica esta situacion no es la real y el problema se resuelve ajustando los coeficientes del
filtro por medio de métodos adaptativos usando una secuencia de entrada conocida (secuencia
de entrenamiento). Los métodos adaptativos constituyen una solucién iterativa al problema de
minizacion de la funcion de coste o del error cuadratico medio. En este capitulo el indice de
tiempo discreto k se cambiara por i, puesto que ahora el tiempo discreto es interpretado como

iteracién.
M
Gar (i) =Y war (i) (i) = wixap (i) (6.1)
=0
x(7) w(i) e, ()
H(z) =D
i
If[_l ) V(D)
/

Figura 6.1: Modelo usado para la adaptacion.

El modelo de adaptacién usado es el mostrado en la Figura Conceptos comunes en los
métodos adaptativos son la convergencia (E[eps(7)] P Jmin, con Jyin el MSE tedrico/asintético,
1——+00

que coincide con el calculado en los capitulos previos) y velocidad de convergencia (como de
rapido se alcanza este valor asintético o como de larga ha de ser la secuencia de entrenamiento).

El método escogido para esta seccién es el algoritmo RLS (del inglés, Recursive-Least-Squares
algorithm), que es uno de los algoritmos adaptativos mas usados, puesto que presenta una rapida
convergencia y hay muchas implementaciones eficientes (en términos de coste computacional),
como los algoritmos RLS lattice (ver [4], [5]). La descripcién y desarrollo precisos de este método
se puede encontrar en cualquier buen libro sobre métodos adaptativos, como [9] y [2].

6.2 Algoritmo RLS

El algoritmo RLS puede verse de dos maneras diferentes. La primera es como una solucién
del método de steepest descent con un gradiente estocastico que emplea una aproximacion mas
sofisticada para la matriz de autocorrelacién R, dada por una media ponderada exponencial-
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mente )
R 1 X i L
Re =77 ; A3 ()% ()

en lugar de una aproximacién instantdnea como en el método de Least Mean Squares (LMS).

Sin embargo, el algoritmo RLS puede verse también como la solucién exacta de un problema
de minimos cuadrados (LS del inglés Least Squares) bien definido (en concreto un problema de
minimos cuadrados ponderados regularizado), dado por

w

min [ X (w — W) TH(w — W) + > X |y(j) — xpr(j)w/? (6.2)
j=0

que el algoritmo RLS resuelve de manera iterativa. La iteracion RLS viene dada por

em(i) = y(i) —xp(i)wi-1, (6.3)
1
Yi = - N 6.4
1+%XM(Z)P1'_1XJ\H/[(Z) (6.4)
1 .
g = XPz‘—lxﬂHN)%, (6.5)
w, = W;_1+giem(i), (6.6)
1 gigl
P, = P —=—. 6.7

Para evaluar las prestaciones del algoritmo RLS se utiliza la curva de aprendizaje promedi-
ada de varios experimentos (ensemble-average learning curve). La curva de aprendizaje de un
experimento viene dada por el valor de la funcién de coste (J) en funcién de la iteracién (i)

J(i) = lea ()], (6.8)

Esta funcién de coste es calculada para un ntmero de iteraciones, 0 < ¢ < N, suficientemente
grande para garantizar que se puede observar convergencia, calculando la sefial de error y la
correspondiente curva de error cuadratico. La funcién de coste resultado del primer experimento
se denota por

{J(l)(i)} (6.9)

con el superindice V) usado para indicar que es el primer experimento. El experimento es
repetido varias veces con las mismas condiciones iniciales obteniendo L funciones de coste. La
curva de aprendizaje promedio en el intervalo 0 < ¢ < N esta definida como la media muestral
de los L experimentos:

A 1 .
J(i) & =Y JU6E), 0<i < N. (6.10)
Para L = 100 experimentos en este estudio.

6.2.1 Estimacion de canales UWB

Los resultados tedricos hallados en el Capitulo [5| pueden ser comprobados y reproducidos por
medio del algoritmo RLS sin conocimiento previo alguno sobre el canal (o las estadisticas), y
observar como funciona la convergencia y la longitud de la secuencia de entrenamiento sabiendo
que el valor asintontico debe coincidir con el valor tedrico hallado anteriormente.
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Residential NLOS UWB channel realization
035 T T T T T T
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Figura 6.2: Realizacion del modelo estocastico de canales UWB.

El canal a probar es la realizacién del modelo de canales UWB utilizado anteriormente,
mostrado en la Figura [6.2

Como se vié en el Capitulo p|en la Figura para un filtro de orden 100, una posicién del
polo de -0.7 o0 -0.5 son una buena eleccién. Las curvas de aprendizaje promedio para a = —0.5
y a = —0.7 son mostradas en la Figura [6.3] Como se puede ver el comportamiento asintético
del algoritmo adaptativo coincide con el tedrico hallado conociendo exactamente las estadisticas
de segundo orden del sistema y también se puede observar una dependencia del tiempo de
convergencia con la posicion del polo. Esta convergencia se debe a que, viendo las Figuras
para una posicién de polo mayor (a = —0.7) se consigue estimar una mayor parte de la respuesta
impulsional debido a la mayor longitud de las secuencias lo que hace necesario un mayor tiempo
de convergencia.
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Learning Curves for RLS algorithms
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Figura 6.3: Curvas de aprendizaje para el algoritmo RLS para filtros de Laguerre y FIR.

La respuesta impulsioinal estimada resultante en el estado estacionario del filtro (cuando la
convergencia o comportamiento asintético es alcanzado) es mostrada en la Figura que mues-
tra la motivacién principal de la estimacion de canales con filtros de Laguerre en comparacion
con los FIR, pudiendo estos primeros aproximar una mayor parte del canal sin requerir un orden
excesivamente grande que los filtros FIR no pueden.
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Estimation of an UWB channel by means of RLS algorithm.
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Estimation of an UWB channel by means of RLS algorithm.
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Figura 6.4: Respuesta impulsional estimada por filtros de Laguerre (a = —0.5 y —0.7) y un filtro
FIR de orden 100 con un algoritmo RLS en estado estacionario.
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7 Conclusiones y trabajo futuro

Los filtros de Laguerre, como generalizacién de los filtros FIR, pueden funcionar mejor o igual
que los filtros FIR, en particular para los canales UWB, se ha visto que se puede obtener
una mejora en media alrededor de 5 dB para el entorno del modelo de canal escogido, con
caracteristicas Non Line-Of-Sight (NLOS). La conclusién es que las secuencias de Laguerre no
son especialmente adecuadas para este tipo de canales, sobretodo si presentan comportamiento
cadticos y poco dispersos (o non-sparse), como ocurre con algunos de los canales UWB. Aun asf,
como generalizacién de los filtros FIR, funcionan mejor o igual que los filtros FIR y son una buena
opcién cuando el orden del filtro tiene que ser pequeiio y las respuestas impulsionales largas. Son
més adecuados para canales con respuestas impulsionales con cambios més suaves (”smooth”)
como los canales con una funcién de transferencia racional. Esta falta de idoneidad de las
secuencias para este tipo de canales se debe en mayor parte a su comportamiento intrinseco
paso-bajo, si recordamos que consisten de una seccidén paso-bajo seguida de una cascada de
secciones pasa-todo.

Otro punto interesante es la seleccién de la posicién éptima del polo del filtro de Laguerre.
Se ha visto que la posicién 6ptima varia segin el orden del filtro, empezando por una posién del
polo de gran magnitud (cercana a 1) para érdenes pequenos del filtro para poder disponer de
secuencias mas largas, y posiciones mas cercanas a cero para filtros de mayor orden para tener
secuencias con menor extensién temporal pero mejor resolucion temporal. La posiciéon éptima
del polo puede ser estimada con relativo éxito utilizando la sencilla idea de hacer coincidir
aproximadamente la extensién temporal que cubren las secuencias de Laguerre con la longitud
tipica de los canales. Esto unido al modelado lineal de la longitud de las secuencias de Laguerre,
ha demostrado ser una estimacién bastante buena de la posicion éptima del polo para un longitud
tipica del canal dada y un orden fijo del filtro, lo que hace que la seleccién de la posicién del
polo una tarea sencilla para canales UWB.

Para posibles profundizaciones en este estudio de los filtros de Laguerre, se pueden realizar
todavia un par de generalizaciones sobre el filtro basico de Laguerre. La primera de ellas consiste
en considerar el caso de tener un polo complejo (siempre dentro de la circunferencia unidad)
en lugar de limitarse al caso de un polo real. El filtro considerado es mostrado en la Figura
Anadir una fase compleja al polo no afecta a la extensiéon temporal de las secuencias y
proporciona un grado nuevo de libertad para optimizar la posicién del polo, que intuitivamente
proporcionaria ventajas si se pudiera ajustar la posicion del polo de manera adaptativa.

x,(k,a) x,(k,a) x,(k,a) x,(k,a) x,(k,a)
c(k 2 * * -
x(i) 1-|a|” z'-a z'—a ' —a o
1=zt 1-az l-az? 1-az"
Varo (a) Wara (a) War2 (@) Wis (a) Warar (,\a)
N > S Yy ()

Figura 7.1: Filtro transversal de Laguerre con polo complejo.
La segunda generalizacién consiste en considerar la estructura ortonormal de la Figura

que consiste en usar diferentes polos para cada seccién del filtro en lugar de uno solo. Esta
estructura conlleva un problema de optimizacién multivariable para la eleccién de la posicién
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optima del polo con su respectiva complejidad.

x(k) '—a '-a z'—a 7 -a,,
-1 = a3 I I —
l-a,z l-az l-a,z l-ay, z 1
2 2 2 2 2
1—|a0| 1—|a1| 1—|a2| l—|a3| 1—|a_w|
l-az"! l-az l-a,z" l-a;z" l-a,z"!
x, (k) x, (k) x, (k) x,(k) x,, (k)
Waro Wira Wiz Witz Warar
D D o =D i, (b

Figura 7.2: Estructura ortonormal transversal con miltiples polos.

Otro tema a tratar seria la ecualizacion, o el diseno de ecualizadores con filtros de Laguerre
segin el modelo mostrado en la Figura Si disponemos de un filtro FIR, H(z) = B(z),
entendiendo por ecualizador el sistema inverso G(z), este es por definicién un sistema IIR,
G(z) = H(2) = %, lo cual puede representar una ventaja para los filtros de Laguerre.
Aunque analizandolo desde un punto de vista frecuencial, la mayoria de los canales presentan
un comportamiento paso-bajo lo que hace que el sistema inverso tenga comportamiento paso-
alto al contrario que los filtros de Laguerre que poseen un comportamiento paso-bajo, lo que los
convierte, en este sentido, en una peor opcién.

v(k)
R ’ Y — e, (k
&k) H(2) y(k) A, X, (k=A) D v (K)
x(k—A)

Figura 7.3: Modelo de ecualizacion.
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