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DIRECTOR: WOLFGANG RAVE

12 de Noviembre, 2011





Agradecimientos

A mi difunta abuela por lo mucho que dis-
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Resumen

Por estimación de canales entendemos la aproximación de la respuesta impulsional discreta de
un canal desconocido usando el criterio de mı́nimo error cuadrático medio (MSE). En un enfoque
clásico, esta aproximación es obtenida ajustando de manera adaptativa los coeficientes de un
filtro FIR transversal, también conocido como ’entrenamiento’.

La estimación de canales en canales de banda ultra ancha (UWB) tiene que hacer frente a
respuestas impulsionales largas debido a la alta frecuencia de muestreo y usualmente la enerǵıa
está concentrada en una pequeña fracción de los intervalos de tiempo. Usando un filtro transver-
sal FIR, se requiere un orden elevado para poder estimar de manera correcta la larga respuesta
impulsional y la mayoŕıa de los coeficientes del filtro reúnen poca o ninguna enerǵıa debido a la
concentración de la enerǵıa en pequeñas fracciones de intervalos de tiempo.

La fuente de este problema viene del hecho de que una aproximación consiste en representar
una función como una suma ponderada de una base ortonormal completa (también llamadas
funciones base), y luego truncar esta suma a un número fijo de términos (equivalente al orden
del filtro). En el enfoque clásico del filtro FIR transversal, las funciones base se corresponden
con la delta de Kronecker (δ(k− j)), también conocida como la base canónica. El problema con
los canales UWB surgen debido a la extensión temporal extremadamente corta de las funciones
base de los filtros FIR.

Este estudio es una aproximación teórica para caracterizar la viabilidad de los filtros de
Laguerre en un sistema de comunicación UWB. La aproximación es llevada a cabo por medio
de otra base ortonormal, las secuencias de Laguerre, las cuales forman un compromiso entre los
sistemas FIR y los IIR; y además pueden ser consideradas como una generalización de los filtros
FIR. Estas secuencias son utilizadas para la estimación del canal para varios canales de prueba
en el ámbito UWB y para realizaciones del modelo estocástico de canales UWB proporcionado
por el estándar IEEE 802.15.4a, mostrando que ofrecen mejor rendimiento, en términos del error
cuadrático medio (MSE), como generalización de los filtros FIR, sin embargo esta mejora no es
muy grande cuando el canal presenta cambios abruptos, debido al comportamiento paso bajo
de los filtros de Laguerre.

Métodos adaptativos, como el algoritmo RLS son utilizados para caracterizar de forma práctica
estas aproximaciones y verificar los resultados obtenidos teóricamente.
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1 Introducción

1.1 Motivación

1.1.1 Presentación de la idea

Los canales de radio en las comunicaciones inalámbricas sufren de desvanecimientos y dispersión
multicamino. El efecto del multicamino está provocado por el fenomeno de la propagación
que ocasiona que una misma señal alcance el receptor por varios caminos (debido a reflex-
iones/refracciones) causando una interferencia que ocasiona el efecto conocido como ISI (inter-
symbol interference). Para eliminar este efecto se utilizan los ecualizadores, los cuales en su
mayoŕıa requieren del conocimiento del canal, que a su vez es estimado usando una secuencia
de entrada conocida. Se necesita tener un criterio para poder evaluar la calidad de dicha es-
timación (también conocido como aproximación de sistemas o identificación de sistemas), que
en este estudio será el criterio del mı́nimo error cuadrático medio (m.m.s.e.). En particular, en
este estudio se utilizarán canales de banda ultra ancha (UWB) para la estimación, los cuales se
caracterizan por tener unas respuestas impulsionales muy largas, debido a la alta frecuencia de
muestreo y además suelen tener la enerǵıa concentrada en pequeñas fracciones de intervalos de
tiempo. Como ejemplo de un canal UWB se muestra en la figura 1.1 una realización del modelo
dado por el IEEE 802.15.4a t́ıpica para entornos sin ĺınea de visión (Non Line-Of-Sight, NLOS)
y areas residenciales.
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Figura 1.1: Respuesta impulsional de un canal UWB dada por la realización de un modelo
estocástico (ver [6]).
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CAPÍTULO 1. INTRODUCCIÓN

1.1.2 Descripción del problema

En un enfoque clásico (ver [9], [2]), la estimación del canal es hecha por medio del entrenamiento
de un filtro transversal (’training’) como el mostrado en la Figura 1.2 usando algoritmos adap-
tativos. La salida del sistema viene dada por

ŷM (k) =
M∑
i=0

wM,ix(k − i) (1.1)

y la respuesta impulsional del sistema asumiendo un estado estacionario de los coeficientes del
filtro viene dada por la salida del sistema cuando la entrada es una señal de impulso (delta de
Kronecker δ(k − i)), es decir

ĥM (k) =
M∑
i=0

wM,iδ(k − i) (1.2)

Viendo esta fórmula se puede observar que corresponde con una secuencia de longitud finita

Figura 1.2: Filtro transversal clásico

(FIR), en concreto cada coeficiente del filtro corresponde con una delta de Kronecker (δik),
lo que unido al hecho de que los canales estudiados poseen una longitud grande hace que sea
necesario un filtro de orden elevado para poder estimar correctamente este tipo de canales.
Como ejemplo, consideremos el canal mostrado en la Figura 1.3 como una respuesta de un canal
UWB idealizado de prueba, es decir, repuesta impulsional larga y la enerǵıa concentrada en
pequeñas fracciones de intervalos de tiempo. Con un filtro FIR clásico necesitaŕıamos al menos
un filtro de 400 coeficientes para poderlo aproximar correctamente, con lo que saltan a la vista
dos problemas, el primero es que se necesita un filtro de orden elevado y el segundo es que
la mayoŕıa de los coeficientes del filtro no contienen enerǵıa alguna debido a que ésta no esta
distribuida homogeneamente.

El origen de este problema es la extensión temporal extremadamente corta de las funciones
delta de Kronecker, las cuales son las funciones base de los filtros FIR, si consideramos los
canales como elementos de un espacio de funciones, haciendo uso de la teoŕıa de espacios de
Hilbert `2(N0) y considerando a las deltas de Kronecker como las funciones base. Esto se
traduce en que cualquier función del espacio puede ser representada como una suma ponderada
de las funciones base

h(k) =
+∞∑
i=0

ciδ(k − i) (1.3)

para hacer una aproximación hay que truncar esta suma a un número finito de términos, esto es

ĥM (k) =

M∑
i=0

ciδ(k − i),

que corresponde con la respuesta de un filtro FIR de orden M .

Proyecto fin de carrera - Javier Jalle Ibarra 2
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Example of a simple FIR UWB−like channel response

Figura 1.3: Ejemplo de una respuesta FIR que representa de manera sencilla el tipo de canales
estudiados.

1.1.3 Solución propuesta

Siguiendo con la idea de las funciones base, se ha dicho que el problema se origina debido a
la extremadamente corta extensión temporal de las deltas de Kronecker. Hay muchos otros
conjuntos de funciones base, como ejemplo, dos conjuntos muy usados son

δ(k − i) = δki Delta de Kronecker (Base canónica)

ejwki Exponenciales complejas (Series de Fourier)

La base canónica es apropiada para funciones con extensión temporal corta, es decir funciones
localizadas en tiempo, y las series de Fourier son apropiadas para funciones con poca extrensión
frecuencial, es decir localizadas en frecuencia (o banda estrecha). Lo que está claro es que estos
dos conjuntos representan los dos casos extremos, las funciones delta tienen extensión temporal
mı́nima e infinita en el dominio frecuencial y con las exponencial complejas ocurre lo contrario.
La idea que surge es que utilizando otro conjunto de funciones entre estos dos casos extremos,
con una extensión temporal más larga se puede llegar a reducir el orden necesario del filtro.

En un primer acercamiento a la solución, se podŕıan utilizar filtros de respuesta impulsional
infinita (IIR) para aproximar estas respuestas impulsionales, pero los filtros IIR conllevan una
serie de dificultades, las más importantes son superficies de error multimodales y el problema
de la estabilidad (ver [3]). Superficies de error multimodales significa que puede haber mı́nimos
locales que no son mı́nimos globales, y el problema de la estabilidad hace necesario desarrollar
métodos para vigilar la estabilidad del sistema y recuperarla si se ha perdido.

Los filtros de Laguerre se presentan como un compromiso entre los filtros FIR y los IIR.
El principal motivo es que poseen (como se verá en el Caṕıtulo 2) un único polo múltiple
ajustable, lo que permite garantizar la estabilidad del sistema manteniendo este polo dentro
de la circunferencia unidad. Otra de las razones para utilizar estos filtros es la existencia de

Proyecto fin de carrera - Javier Jalle Ibarra 3



CAPÍTULO 1. INTRODUCCIÓN

Tabla 1.1: Comparación del coste computacional de un filtro RLS-Laguerre Lattice de orden M
con un RLS-FIR Lattice de order M’ (normalmente M� M’ ). (Reproducido de: ver
[4])

Filter Mult. Div. Add.

Laguerre 17M + 2 14M 14M + 1

FIR 8M’ 8M’ 8M’

algoritmos adaptativos muy eficientes (ver [4], [5] ) que poseen una complejidad computacional
de orden O(M) (M es el orden del filtro), en concreto se trata de filtros RLS Laguerre en celośıa
(o conocidos como Lattice), lo que los convierte en una opción factible en comparación con los
filtros FIR estándar, como se puede apreciar en la Tabla 1.1.

1.2 Objetivos del trabajo

El objetivo principal es estimar la respuesta impulsional de canales UWB de prueba con un
filtro de Laguerre. La calidad de la estimación es evaluada usando el critero del mı́nimo error
cuadrático medio (m.m.s.e.). Alcanzando idealmente un MSE aceptable con un filtro de menor
orden que el que seŕıa necesario con un filtro FIR clásico, para poder reducir el coste computa-
cional. Como objetivo secundario se propone analizar el efecto de la posición del polo de los
filtros de Laguerre en la estimación.

1.3 Breve descripción de los caṕıtulos

En el Caṕıtulo 2 se presentan los conjuntos de secuencias ortonormales y las secuencias de
Laguerre como tal. El Caṕıtulo 3 presenta el filtro utilizado y la teoŕıa básica de estimación
utilizada para calcular y evaluar la estimación del canal.
En el Caṕıtulo 4 se presenta la estimación de un canal de prueba UWB idealizado. En el Caṕıtulo
5 se presenta la estimación de canales UWB generados por el modelo de canal estocástico del
estándar IEEE 802.15.4a.
El Caṕıtulo 6 realiza el análisis de los métodods adaptativos de Laguerre.
En el anexo se presenta la memoria del proyecto en inglés completa, la cual posee en esencia el
mismo contenido que esta pero más detallado, algunas pruebas con otros canales de prueba y
otros entornos UWB que no se incluyen en la presente memoria por motivos de extensión.
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2 Secuencias de Laguerre

2.1 Introducción a las secuencias ortonormales

Esta sección presenta conceptos de teoŕıa de sistemas motivados por [11], [7] o [12]. Una señal
discreta consiste en un conjunto ordenado de muestras y el conjunto de ceros precedentes, que
puede ser representada como · · · , 0, 0, x(0), x(1), x(2), · · · o de manera más compacta como el
conjunto {x(k)} = x(k) donde k representa la variable de tiempo discreto y vaŕıa de −∞ a +∞.
Este tipo de señales o conjuntos también es denominado secuencia, que se define en matemáticas
como una lista o conjunto ordenado de elementos.

Si consideramos el espacio de Hilbert `2(N0) de las secuencias cuadráticamente sumables, toda
secuencia x(k) pertenciente a este espacio puede ser representada en términos de un conjunto
de secuencias ortonormal completo {φi(k)}, donde el ı́ndice i = 0, 1, 2, · · · se refiere al ı́ndice de
la secuencia en el conjunto. La expansión viene dada por

x(k) =

+∞∑
i=0

ciφi(k) (2.1)

con los coeficientes ci definidos como

ci = 〈φi(k), x(k)〉 (2.2)

donde 〈·, ·〉 es el producto escalar de dos secuencias que dá como resultado un valor escalar dado
por

〈f(k), g(k)〉 =
+∞∑

k=−∞
f(k)g∗(k). (2.3)

Una aproximación de la secuencia se puede construir truncando la expansión a un número finito
de términos, es decir

xM (k) =
M∑
i=0

ciφi(k) (2.4)

y aceptando un error en la aproximación, correspondiente a los términos eliminados de la ex-
pansión.

El conjunto de secuencias {φi(k)}, i = 0, 1, 2, · · · es ortonormal si el producto escalar de
cualquier secuencia del conjunto con cualquier otra es nulo y el producto escalar de cualquier
secuencia consigo misma da como resultado la unidad. Expresado de manera matemática

〈φi(k), φj(k)〉 =
+∞∑

k=−∞
φi(k)φ∗j (k) = δij (2.5)

con δij definida como la delta de Kronecker,

δij =

{
1 : i = j
0 : i 6= j

5



CAPÍTULO 2. SECUENCIAS DE LAGUERRE

desde una perspectiva geométrica el principio de ortogonalidad implica que cada nueva secuencia
del conjunto añade una nueva dimensión ortogonal al espacio extendido por el conjunto de
secuencias.

Estos conjuntos ortonormales son también llamados funciones base. Los dos conjuntos mas
usados se corresponden con

δ(k − i) Delta de Kronecker (Base canónica)

ejwki Exponenciales complejas (Series de Fourier)

La base canónica es apropiada para funciones con extensión temporal corta, es decir funciones
localizadas, y las series de Fourier son apropiadas para funciones con poca extrensión frecuencial,
es decir localizadas en frecuencia (o de banda estrecha).

2.2 Secuencias de Laguerre

Las secuencias de Laguerre son la versión discreta de las funciones de Laguerre (procedentes
de la ortonormalización de la función tie−pt, i ∈ N0, p > 0, ver [1]), llamadas Laguerre porque
están relacionadas con los polinomios de Laguerre, que son la solución de la ecuación diferencial
de Laguerre. Estas secuencias forman un conjunto ortonormal completo en `2(N0) y se obtienen
de la ortonormalización de las secuencias miam, i ∈ N0, |a| < 1 (ver [10]), vienen dadas en el
dominio del tiempo discreto por

li(k, a) =
√

1− a2

i∑
j=0

(−1)i+j
(
i

j

)(
k + i− j

i

)
ak+i+2j

=
√

1− a2

i∑
j=0

(−1)i+j
(k + i− j)!

(i− j)!j!(k − j)!
ak+i+2j . (2.6)

El parámetro a representa la posición del único polo múltiple, que es variado en el eje real
dentro de la circunferencia unidad, esto es, de −1 a +1 para poder mantener la estabilidad de
las funciones (todos los polos de un sistema deben estar dentro de la circunferencia unidad para
garantizar la estabilidad), como se representa en la Figura 2.1, enfatizando en el rango de valores
reales que llevan a un comportamiento estable.

Figura 2.1: Variación de la posición del polo.
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CAPÍTULO 2. SECUENCIAS DE LAGUERRE

Las primeras secuencias de Laguerre son

l0(k, a) =
√

1− a2
k!

0!k!
ak =

√
1− a2ak

l1(k, a) =
√

1− a2

(
−(k + 1)!

0!k!
ak+1 +

k!

1!(k − 1)!
ak−1

)
=
√

1− a2
(
−(k + 1)ak+1 + kak−1

)
l2(k, a) =

√
1− a2

(
(k + 2)!

2!k!
ak+2 − (k + 1)!

1!(k − 1)!
ak +

k!

2!(k − 2)!
ak−2

)
=
√

1− a2

(
k2 + 3k + 2

2
ak+2 − (k2 + k)ak +

(k2 − k)

2
ak−2

)
· · ·

Aqúı puede apreciarse que las secuencias de Laguerre se componen de diversas secuencias expo-
nenciales multiplicadas por un polinomio solapadas entre śı, siendo a el parámetro de desvanec-
imiento o decaimiento de la secuencia exponencial, y el orden de la secuencia inidica el número
de secuencias exponenciales superpuestas.

La representación en el dominio z viene dada por

Li(z, a) =
√

1− a2
(z−1 − a)

i

(1− az−1)i+1
=

√
1− a2

1− az−1︸ ︷︷ ︸
low−pass

[
z−1 − a
1− az−1

]
︸ ︷︷ ︸

all−pass

i

= L0(z, a)[LA(z, a)]i (2.7)

definiendo L0(z, a) =
√

1−a2
1−az−1 y LA(z, a) = z−1−a

1−az−1 . Aqúı puede apreciarse como el parámetro
a corresponde con el único polo múltiple de las secuencias y además una de las carácteŕısticas
principales de estas secuencias que es su sencilla representación en el dominio frecuencial, que
puede ser separada en un filtro paso bajo, seguido de una cascada de filtros pasa todo. Esto
permite generar las secuencias de Laguerre de manera sencilla con el esquema mostrado en
la Figura 2.2, obteniendo la secuencia de Laguerre de orden cero como la salida excitada por
un impulso unitario de la sección paso-bajo, la de primer orden como la salida de la primera
sección pasa-todo y aśı en adelante. Si a partir de este esquema tomamos la suma ponderada de
las salidas de las diferentes secciones del filtro obtenemos la estructura conocida como el filtro
transversal de Laguerre que será estudiado en el caṕıtulo siguiente.

Figura 2.2: Generación de las secuencias de Laguerre.

En la Figura 2.3 se muestran diferentes secuencias de Laguerre desde el orden 0 hasta 200
con diferentes posiciones del polo a. Nótese la dependencia de la extensión temporal de cada
secuencia con los dos parámetros principales, el orden de la secuencia y la posición del polo,
que define el ratio de decaimiento de la secuencia. Cuanto más cercano a la circunferencia
unidad está el polo (|a| cerca de 1), el decaimiento de la secuencia es más lento y por ello
posee una mayor extensión temporal. En el caso opuesto, cuando el polo está cerca de cero, el
decaimiento es mucho más rápido y la extensión temporal se ve reducida. Con el aumento del
orden de la secuencia se puede observar como la extensión temporal se ve incrementada. Con
un polo negativo se observa el mismo comportamiento solo que la secuencia oscila más debido al
factor (−1)k que introduce el polo negativo. Cabe destacar que para el caso a = 0 (observando la
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CAPÍTULO 2. SECUENCIAS DE LAGUERRE

ecuación 2.7), las secuencias de Laguerre se convierten en la base canónica (deltas de Kronecker),
lo cual permitirá considerar los filtros de Laguerre como una generalización de los filtros FIR
clásicos.
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Figura 2.3: Secuencias de Laguerre con diferente posición del polo a.
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2.2.1 Longitud de las secuencias de Laguerre
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Figura 2.4: Longitud de una secuencia de Laguerre

Un aspecto interesante de las secuencias de Laguerre es la extensión temporal que pueden
cubrir, puesto que para poder aproximar una respuesta impulsional larga, de manera intuitiva
una elección razonable del polo de las secuencias es aquella que hace que cubran una extensión
temporal aproximadamente equivalente a la extensión de la respuesta impulsional. Por este
motivo si la longitud (o extensión temporal) de las secuencias de Laguerre se puede modelar,
nos permitiŕıa realizar una estimación de una posible posición del polo razonablemente buena
usando dicho modelo con un orden y una longitud fija.

La longitud de una secuencia de Laguerre se obtiene localizando la muestra donde el último
decaimiento exponencial está por debajo de un umbral como se puede observar en la Figura 2.4.
La longitud de las secuencias en función de la posición del polo (a) y el orden de la secuencia
(M) es mostrada en la Figura 2.5. Viendo la gráfica en función de la posición del polo se puede
observar un comportamiento 1

1−a y en la gráfica en función del orden M , uno lineal.

Si modelamos la longitud real de las secuencias como una variable l(M,a), la longitud aprox-
imada está definida por

l̂(M,a) =
k1M + k2

1− |a|
= k1

M

1− |a|
+ k2

1

1− |a|
(2.8)

los coeficientes k1 y k2 pueden ser obtenidos resolviendo un sencillo problema de mı́nimos cuadra-
dos. Si tenemos la longitud real de las secuencias l(Mj , aj) para varios pares de valores {Mj , aj}
se puede formular el problema

l =


l(M1, a1)
l(M2, a2)

...
l(MN , aN )

 =


M1

1−|a1|
1

1−|a1|
M2

1−|a2|
1

1−|a2|
...

...
MN

1−|aN |
1

1−|aN |


[
k1

k2

]
= Hk (2.9)

la solución de mı́nimos cuadrados para k viene dada por (ver [9] para más detalles sobre la
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solución de mı́nimos cuadrados)

k = (HHH)−1HH l =

[
k1 = 1, 8402
k2 = 20, 0563

]
(2.10)

que ha sido calculada utilizando longitudes de secuencias de Laguerre de órdenes desde 1 hasta
200 y posiciones del polo de 0 a 0.95.

El modelo para la aproximación de la longitud de una secuencia de Laguerre queda como

l̂(M,a) =
k1M + k2

1− |a|
, with k1 = 1, 8402 and k2 = 20, 0563. (2.11)

y la comparación entre los valores reales de longitud y los estimados está representada en la
Figura 2.6.

La idea detrás de este modelado de la longitud es poder hacer una estimación de una posición
del polo cercana a la óptima cuando la longitud t́ıpica del canal lh es conocida y el orden del
filtro M es fijo, despejando a de la Ecuación 2.11

|â|Opt =

∣∣∣∣1− k1M + k2

lh

∣∣∣∣ (2.12)

que es la posición del polo que hace que las secuencias de Laguerre cubran una extensión temporal
similar a la longitud de la respuesta impulsional del canal.
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Figura 2.5: Longitud de las secuencias de Laguerre en función del orden de secuencia y de la
posición del polo.
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Figura 2.6: Longitud (real y aproximada) de las secuencias de Laguerre.
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3 Filtro transversal

3.1 Introducción

Figura 3.1: Filtro transversal clásico

El filtro transversal es una de las estructuras más usadas dentro del modelado de sistemas
lineales, especialmente si se requiere de métodos adaptativos y se le han encontrado aplicaciones
en identificación de sistemas, predicción lineal, ecualización de canales y cancelación de eco.
La fuente de esta popularidad está en su simplicidad, estabilidad y la existencia de algorit-
mos rápidos y eficientes. Existen algunas estructuras relacionadas con el filtro transversal que
también son muy populares como el filtro en celośıa (o ”lattice filter”). El filtro FIR transversal
clásico es mostrado en la Figura 3.1.

La salida del filtro FIR transversal viene dada por

ŷM (k) =
M∑
i=0

wM,ix(k − i) = wMxM (k) (3.1)

definiendo los vectores

wM =
[
wM,0 wM,1 · · · wM,M

]
, (3.2)

xM (k) =


x0(k)
x1(k)

...
xM (k)

 =


x(k)

x(k − 1)
...

x(k −M)

 (3.3)

siendo wM el vector de coeficientes del filtro y xM (k) definido como el vector de datos de entrada,
también llamado vector de regresión, que en este caso corresponde con los diferentes retardos de
la entrada. La razón de denominar a la salida del filtro por ŷM (k) es que el filtro está diseñado
para aproximar la respuesta de un sistema por lo que la salida es una aproximación de orden M
de la salida deseada y(k). La repuesta impulsional estimada viene dada por

ĥM (k) =
M∑
i=0

wM,iδ(k − i). (3.4)

Como puede observarse, se trata de una respuesta FIR, que si se interpreta como una aproxi-
mación en el espacio de Hilbert, está claro que las funciones base de los filtros FIR son las deltas
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de Kronecker δ(k− i), también conocidas como base canónica. La duración finita de la respuesta
impulsional permite la mayoŕıa de las ventajas del filtro transversal como su estabilidad y sim-
plicidad pero también es la causa de que cuando se requiera una respuesta impulsional larga, el
número de unidades de retardo (o orden del filtro) puede ser muy alto.

Una opción para solventar este problema podŕıan ser los filtros IIR pero estos tienen sus
propios problemas, especialmente si se usan métodos adaptativos, como superficies de error
multimodal y inestabilidad (ver [3]). Superficies de error multimodal permiten que existan
mı́nimos locales que no corresponden con mı́nimos globales y la inestabilidad, relacionada con
la adaptación de los polos del sistema (para que un sistema sea estable, sus polos deben estar
dentro de la circunferencia unidad), hace necesario el desarrollo de métodos para controlar la
estabilidad y recuperarla en caso de perdela. Es aqúı cuando los filtros de Laguerre se presentan
como una solución compromiso entre los filtros FIR y los IIR.

3.2 Filtro transversal de Laguerre

Figura 3.2: Filtro transversal de Laguerre

Como se vió en el Caṕıtulo anterior, las secuencias de Laguerre tienen la siguiente repre-
sentación en el dominio z

Li(z, a) =
√

1− a2
(z−1 − a)

i

(1− az−1)i+1
=

√
1− a2

1− az−1︸ ︷︷ ︸
low−pass

[
z−1 − a
1− az−1

]
︸ ︷︷ ︸

all−pass

i

= L0(z, a)[LA(z, a)]i (3.5)

que se puede expresar como una sección paso bajo L0(z, a) seguida de una cascada de secciones
pasa todo LA(z, a). Si construimos la suma ponderada de las diferentes secciones obtenemos lo
que se conoce como filtro transversal de Laguerre, mostrado en la Figura 3.2 con la salida y la
respuesta impulsional dadas por

ŷM (k) =
M∑
i=0

wM,i(a)xi(k, a) = wM (a)xM (k, a) (3.6)

ĥM (k) =
M∑
i=0

wM,i(a)li(k, a) (3.7)

donde ahora el vector xM (k, a) es el vector de datos de entrada que consiste en las señales de
salida de las diferentes secciones del filtro de Laguerre desde orden 0 hasta M . La posición del
polo a se considera en este estudio como un parámetro y no una variable, es decir, es elegido a
priori pudiendo variar entre −1 y 1, permitiendo mantener el filtro estable, lo que constituye una
de las razones por las que los filtros de Laguerre son considerados un compromiso entre los filtros
IIR y FIR; y permite además controlar el ratio de decaimiento de la respuesta impulsional, lo
cual es útil para aproximar respuestas impulsionales muy largas. Cabe destacar que cuando el
polo es cero, a = 0, el filtro transversal de Laguerre degenera en el filtro FIR transversal, lo cual
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permite considerar al filtro de Laguerre como una generalización de los filtros FIR, y a estos
como un caso particular de los filtros de Laguerre.

3.3 Teoŕıa básica de estimación lineal

Figura 3.3: Modelo de canal simple

Una vez que tenemos el filtro, vamos a definir el sistema en el cual vamos a realizar la
estimación. Para este caso vamos a utilizar el sistema mostrado en la Figura 3.3, definiendo
x(k) como la señal de entrada, H(z) o h(k) como el canal a estimar y y(k) como la salida.
La razón de no incluir ruido en este sistema tan simple para que sea mas realista es debido a
que esto es un estudio teórico de la viabilidad de los filtros de Laguerre estimando canales y
el ruido únicamente añadiŕıa limitaciones a la calidad de la estimación, de hecho si se añadiera
ruido blanco aditivo gaussiano (AWGN) el efecto conseguido seŕıa que el error cuadrático medio
(MSE) resultante tuviera un valor asintóntico limitado por el SNR efectivo del sistema.

Figura 3.4: Modelo de estimación de canal.

En el modelo de estimación mostrado en la Figura 3.4 se introduce el sistema estimado de
orden M , ĤM (z) o ĥM (k), la estimación de la salida y(k) de orden M , ŷM (k) y la señal de error
eM (k)

ŷM (k) =

M∑
i=0

wM,ixi(k) = wMxM (k), (3.8)

eM (k) = y(k)− ŷM (k). (3.9)

Un pequeño detalle a tener en cuenta es que la señal de error está definida en términos de y(k)
y no de h(k) (el objetivo es estimar el canal h(k)), pero si el error resultante se normaliza por

la varianza de y(k) (σ2
y
4
= E [y(k)y∗(k)]), se obtiene un error normalizado que corresponde con

el error de estimación del sistema.

Una vez que la señal de error es definida se necesita un criterio para establecer una función
de coste a minimizar, en este caso el criterio del mı́nimo error cuadrático medio (m.m.s.e.), que
establece como función de coste el error cuadrático medio (MSE)

J(wM ) = E [eM (k)e∗M (k)] = E
[
|eM (k)|2

]︸ ︷︷ ︸
MSE

(3.10)
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y minimiza este coste eligiendo de manera correcta los coeficientes del filtro wM

wM = argmin
wM

(J(wM )).

La minimización de la función de coste se puede realizar de varias maneras, en la práctica se
realiza mediante métodos adaptativos que minimizan la función de coste de manera iterativa
como se verá en el Caṕıtulo 6. En este caso la minización de la función de coste se realizará
con el conocimiento perfecto de las estad́ısticas de segundo orden de las señales del sistema y
da como resultado la llamadas ecuaciones normales (ver memoria en el anexo para más detalles
sobre la minimización)

wMRx = pyx (3.11)

definiendo la matriz de autocorrelación Rx y el vector de correlación cruzada pyx como

Rx
4
= E

[
xM (k)xHM (k)

]
(3.12)

pyx
4
= E

[
y(k)xHM (k)

]
. (3.13)

Estas ecuaciones reciben el nombre de ecuaciones normales ya que poseen una importante inter-
pretación geométrica que se puede apreciar mejor si se escriben de la siguiente manera equivalente

E
[
eM (k)xHM (k)

]
= 0 (3.14)

en la cual se ve la importante interpretación geométrica que poseen: Establecen una condición
de ortogonalidad entre la señal de error eM (k) y el vector de datos xM (k), de hecho con cualquier
transformación lineal de los datos, esto quiere decir que ninguna otra transformación lineal de
los datos puede extraer información extra sobre la señal deseada (para reducir el error en media).

eM ⊥ xM

3.4 Coeficientes de correlación

Para calcular los coeficientes wM,i del filtro necesitamos resolver las ecuaciones normales y para
ello necesitamos el conocimiento de las estad́ısticas de segundo orden del sistema representadas
por Rx y pyx. Cada coeficiente de correlación viene dado por

rij = E[xi(k, a)x∗j (k, a)] (3.15)

pi = E[y(k)x∗i (k, a)] (3.16)

que puede ser calculado de manera numérica en el dominio del tiempo tomando una media
aritmética basada en un número finito de puntos N

rij '
1

N

N−1∑
k=0

xi(k, a)x∗j (k, a)

pi '
1

N

N−1∑
k=0

y(k)x∗i (k, a).

Sin embargo, se ha visto en el Caṕıtulo anterior que las secuencias de Laguerre poseen una
representación frecuencial simple, lo que intuitivamente puede proporcionar una mejor manera
de calcular estos coeficientes utilizando el teorema de Parseval para pasar de la representación
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CAPÍTULO 3. FILTRO TRANSVERSAL

temporal a una en el dominio de la frecuencia

rij = E[xi(k, a)x∗j (k, a)] =
1

2π

∫ +π

−π
Xi(e

jω, a)X∗j (ejω, a) dω (3.17)

la representación frecuencial de la salida i-ésima del filtro de Laguerre, xi(k, a) viene dada por

Xi(e
jω, a) = X(ejω)Li(e

jω, a) = X(ejω)L0(ejω, a)[LA(ejω, a)]i (3.18)

observando que L∗A(ejω, a) = 1
LA(ejω ,a)

X∗j (ejω, a) = X∗(ejω)L∗0(ejω, a)[L∗A(ejω, a)]j = X∗(ejω)L∗0(ejω, a)[LA(ejω, a)]−j (3.19)

los coeficientes pueden ser expresados como

rij =
1

2π

∫ +π

−π
Xi(e

jω, a)X∗j (ejω, a) dω

=
1

2π

∫ +π

−π
X(ejω)X∗(ejω)|L0(ejω, a)|2[LA(ejω, a)]i−j dω (3.20)

y definiendo la densidad espectral de potencia de x(k) como φxx(ejω) = X(ejω)X∗(ejω),

rij =
1

2π

∫ +π

−π
φxx(ejω)|L0(ejω, a)|2[LA(ejω, a)]i−j dω (3.21)

la dependencia en i− j lleva a una estructura Toeplitz de la matriz Rx.

Procediendo de la misma manera para los coeficientes de correlación cruzada

pi =
1

2π

∫ +π

−π
Y (ejω)X∗i (ejω, a) dω =

1

2π

∫ +π

−π
Y (ejω)X∗(ejω)L∗0(ejω, a)[LA(ejω, a)]−i dω

=
1

2π

∫ +π

−π
H(ejω)X(ejω, a)X∗(ejω, a)L∗0(ejω, a)[LA(ejω, a)]−i dω

=
1

2π

∫ +π

−π
φxx(ejω)H(ejω)L∗0(ejω, a)[LA(ejω, a)]−i dω (3.22)

sustituyendo las funciones de transferencia de los filtros de Laguerre L0(ejω) y LA(ejω) por su
expresión

rij = 1
2π

∫ +π
−π

Φxx(ejω)(1−a2)
|1−aejω |2

(
ejω−a
1−aejω

)j−i
dω (3.23)

pi = 1
2π

∫ +π
−π

H(ejω)Φxx(ejω)
√

1−a2
1−aejω

(
ejω−a
1−aejω

)i
dω (3.24)

3.5 Método de solución de las ecuaciones normales

Primero se calculan los coeficientes de correlación para un polo a y un orden M dados, teniendo
en cuenta que al tener estructura Toeplitz la matriz Rx, solo se necesita calcular un vector r de
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esta, es decir, se calculan (ver [11])

ri = 1
2π

∫ +π
−π

Φxx(ejω)(1−a2)
|1−aejω |2

(
ejω−a
1−aejω

)i
dω, i = 0, 1, · · ·M (3.25)

pi = 1
2π

∫ +π
−π

H(ejω)Φxx(ejω)
√

1−a2
1−aejω

(
ejω−a
1−aejω

)i
dω, i = 0, 1, · · ·M (3.26)

Una vez que se tienen los dos vectores calculados, se procede a la solución del sistema de
ecuaciones

wMRx = pyx. (3.27)

Este sistema puede ser resuelto por los métodos clásicos de inversión de matrices (eliminación
Gaussiana, ...) sin embargo al poseer la matriz Rx una estructura Toeplitz se puede resolver
el sistema de ecuaciones de manera eficiente por medio de un método recursivo explotando la
estructura de los datos. Este método es el algoritmo de Levinson-Durbin (ver memoria adjunta
en el anexo para explicación), que para hallar la solución de orden M utiliza la solución de orden
M − 1.

El algoritmo modificado de Levinson-Durbin utilizado da como resultado los coeficientes ci
de la expansión ortonormal de ŷM (k) asumiendo un conjunto de secuencias ortonormales φi(k)
(estas secuencias ortonormales son en realidad las secuencias de error de predicción hacia atrás
ebi(k) como se ve en la explicación del algoritmo en los anexos)

ŷM =
M∑
i=0

ciφi(k) (3.28)

con
ci = 〈y, φi〉

nótese que los coeficientes ci no dependen del orden del filtro porque son los coeficientes de la
expansión ortonormal de y(k). El error cuadrático medio (MSE) para cada orden M es calculado
como

MSE = Jmin = E|eM |2 = 〈eM , eM 〉 = 〈(y − ŷM ), eM 〉

recordando que la señal de error (debido a las ecuaciones normales) es ortogonal a todas las
combinaciones lineales de los datos (es decir, ŷM )

MSE = Jmin = 〈y, eM 〉 = σ2
y − 〈y, ŷM 〉 = σ2

y −
M∑
i=0

ci〈y, φi(k)〉 = σ2
y −

M∑
i=0

|ci|2.

Normalizando el resultado respecto a la enerǵıa de y(k) para obtener el error normalizado

NMSE = 1−
M∑
i=0

|ci|2

σ2
y

que es el resultado que pretendiamos obtener desde un principio, el error cuadrático medio
normalizado de la estimación del sistema por medio de un filtro de Laguerre.
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4 Aproximación de un canal UWB FIR
idealizado

4.1 Introducción

Para poder analizar el comportamiento de los filtros de Laguerre en el ámbito de los canales
UWB, empezaremos con un modelo de canal idealizado. Los canales UWB usados en este estudio
están modelados por el estándar IEEE 802.15.4a (ver [6]), modelo basado en un comportamiento
clusterizado de los diferentes tiempos de llegada de los ecos y un PDP (power delay profile)
exponencial. Los canales presentan una respuesta impulsional larga y para entornos sin ĺınea
de visión (NLOS, non line of sight) no tiene por que haber un eco dominante. La respuesta
impulsional más simple respondiendo a estas caracteŕısticas es un canal FIR consistente de dos
PDPs exponenciales retardadas, por ejemplo

h(k) = 0.8ku(k) + 0.8k−150u(k − 150), k = 0, 1, · · · 200 (4.1)

con u(k) la función escalón

u(k) =

{
1 : k ≥ 0
0 : k < 0

representada en la Figura 4.1. La razón de no usar todav́ıa el modelo estocástico de canales
UWB es que para poder interpretar los resultados primero es mejor trabajar con un modelo
determinista simplificado.
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Figura 4.1: Respuesta impulsional del canal UWB FIR idealizado.
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4.2 Error cuadrático medio (MSE) en la aproximación

En la Figura 4.2 se muestra el MSE normalizado (NMSE) para el canal FIR presentado en función
de la posición del polo para diferentes órdenes del filtro. Un NMSE de 0 dB corresponde con
un error igual a la unidad, lo que significa que no hay aproximación alguna (máximo error), por
otro lado un NMSE de −∞ dB corresponde con un error nulo, lo que significa una aproximación
perfecta. La posición del polo vaŕıa desde −1 a 1 como ya se explicó en el Caṕıtulo 2, destacando
que a = 0 se corresponde con el caso FIR.

Tabla 4.1: NMSE para un filtro de Laguerre de orden 60 con diferentes posiciones del polo.

filtro posición del polo (a) NMSE (en dB)

FIR transversal 0 −3 dB
Laguerre 0.5 −7.2 dB
Laguerre 0.7 −8.1 dB
Laguerre 0.64 (posición óptima) −8.2 dB
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Figura 4.2: MSE normalizado de la aproximación del canal FIR en función de la posición del

polo para diferentes órdenes del filtro (nota: a = 0
4
= filtro FIR ).

Hay varias conclusiones interesantes que se pueden derivar de la figura, la primera de ellas
es que para el caso FIR (a = 0) el NMSE está atascado en -3 dB hasta que el orden del filtro
alcanza 150, lo cual es algo fácil de entender intuitivamente puesto que volviendo a la Figura 4.1
se puede ver claramente que con un filtro FIR de orden menor que 150 sólo se puede aproximar
el primer PDP, que corresponde con la mitad de la enerǵıa, es decir 3 dB. Otra cosa interesante
es que la posición óptima del polo empieza en la constante de tiempo del sistema, en este caso
0.8, para aumentar hasta la unidad y entonces ir disminuyendo con el orden hasta cero cuando
el orden del filtro es comparable con la longitud del canal como se puede ver en la Figura 4.4.
Esto se debe a que cuando tenemos un order mucho más pequeño que la longitud del canal se
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necesitan secuencias de más duración para poder aproximar mejor (polo cercano a 1) y cuando el
orden es comparable a la longitud, se utilizan polos más pequeños (polo cercano a cero) porque
ofrecen una mejor resolución temporal que genera una mejor aproximación.
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Figura 4.3: MSE normalizado de la estimación del canal FIR en función del orden del filtro para

diferentes posiciones del polo (nota: a = 0
4
= filtro FIR ).
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Figura 4.4: Variación de la posición óptima del polo en función del orden del filtro.
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Para ver de manera mas clara estos resultados, la información se reorganiza para producir
la Figura 4.3 que representa el NMSE esta vez como función del orden del filtro para algunas
posiciones de polo concretas. En esta figura se puede ver como hay un intervalo en el cual los
filtros de Laguerre producen un mejor resultado que los FIR hasta que el orden del filtro alcanza
un valor comparable con la longitud del canal. Algunos resultados numéricos se muestran en la
tabla 4.1.
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Figura 4.5: Aproximación del canal FIR con un filtro de Laguerre de orden 60.

Un ejemplo de la aproximación producida se muestra en la Figura 4.5, aqúı se puede apreciar
como el filtro FIR solo puede aproximar las primeras 60 muestras del canal (se trata de un filtro
de orden 60), mientras que el filtro de Laguerre puede aproximar más longitud del canal porque
tiene una mayor extensión temporal. También puede apreciarse un problema relacionado con los
filtros de Laguerre debido a las discontinuidades o cambios abruptos en el canal, viendo como
en estos puntos se generan oscilaciones (previas y posteriores) que no debeŕıan estar, similar al
fenómeno de Gibbs en el análisis de Fourier. Este efecto es causa del comportamiento paso bajo
de los filtros de Laguerre (recuérdese que se componen de un filtro paso bajo seguido de una
cascada de filtros paso alto) que hace que no pueda generar las componentes de alta frecuencia
que intŕınsecamente poseen los cambios abruptos o discontinuidades.
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Los canales UWB utilizados en este estudio son canales complejos debido a una fase compleja
aleatoria que se le asigna a cada componente multicamino, como se verá en el siguiente Caṕıtulo.
Esto ocasiona que las partes real e imaginaria del canal posean un comportamiento oscilatorio.
Para captar mejor este comportamiento se propone una pequeña variación al canal de prueba
utilizado que consiste en asignarle un signo aleatorio lo que le da un comportamiento oscilatorio,
como se muestra en la Figura 4.6.
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Figura 4.6: Impulse response of the FIR channel

El MSE resultante se muestra en las Figuras 4.7 y 4.8, que muestran que los polos óptimos
siguen manteniendo un comportamiento similar solo que esta vez son negativos, para poder
captar mejor el carácter oscilatorio del canal.

Las conclusiones que pueden tomarse de este análisis son que existe un intervalo de órdenes
del filtro en el cual los filtros de Laguerre proporcionan un menor MSE que los filtros FIR,
escogiendo correctamente el polo del filtro. Este intervalo viene delimitado por el orden del
filtro comparable con la longitud de la respuesta impulsional del canal. La posición del polo
cambia conforme aumentamos el orden del filtro, siendo un valor cercano a la unidad para
órdenes pequeños (para tener secuencias de más duración y poder aproximar mejor respuestas
impulsionales largas) y un valor cercano a cero para órdenes comparables con la longitud del
canal (donde el filtro FIR es la mejor opción porque posee una mejor resolución temporal).
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Figura 4.7: MSE normalizado de la aproximación del canal FIR en función de la posición del

polo para diferentes órdenes del filtro (nota: a = 0
4
= filtro FIR ).
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Figura 4.8: MSE normalizado de la estimación del canal FIR en función del orden del filtro para

diferentes posiciones del polo (nota: a = 0
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= filtro FIR ).
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5 Canales UWB

5.1 Introducción

Las comunicaciones de banda ultra ancha (UWB) son un tema muy actual tanto en el mundo
académico como empresarial, debido al uso de anchos de banda de transmisión muy amplios
permitiendo algunas capacidades deseables como posicionamiento y medición precisos, alta ca-
pacidad de acceso múltiple, comunicaciones encubiertas, . . .

El IEEE estableció un grupo de estandarización, el IEEE 802.15.4a (rectificación sobre el
IEEE 802.15.4) que describe la capa f́ısica y de acceso al medio para comunicaciones UWB. El
modelo de la capa f́ısica corresponde con el modelo utilizado en este estudio.

La mayoŕıa de los modelos de canal para comunicaciones inalámbricas se basan en la propa-
gación de una señal a través de un canal consistente de varios caminos (o ecos) también conocido
como propagación multicamino. Cada componente multicamino tiene su amplitud y su retardo
que son caracterizados para describir el modelo.

Los sistemas UWB cubren un ancho de banda de casi 10 GHz, lo que produce nuevos efectos.
Uno puede ser que solo unas pocas componentes multicamino se solapen como resultado de la
mayor resolución del sistema, lo que ocasiona que las estad́ısticas no sean Rayleigh (como en la
mayoŕıa de modelos) y que halla intervalos de muestreo que esten vaćıos (no contienen enerǵıa
recibida).

5.2 UWB IEEE 802.15.4a Standard model

El modelo de canal propuesto por el grupo de estandarización (ver [6]) cubre el rango de 2 a 10
GHz para varios entornos (indoor residential, indoor office, industrial, outdoor y open outdoor).
El documento proporciona una implementación del modelo en MATLAB R©.

El modelo está basado en un modelo Saleh-Valenzuela (ver [8]). En particular, las componentes
multicamino son modeladas en clústeres en lugar de un continuo como en los canales de banda
estrecha. Esto es resultado del corto intervalo de muestreo. Las componentes multicamino son
agrupadas en dos categoŕıas diferentes: como cluster y como eco dentro de un cluster. Además
el ”power delay profile” es modelado como un decaimiento exponencial dentro de los clústeres y
para los mismos clústeres .

5.3 Estimación del canal

En este estudio se utilizará el entorno de área residencial sin ĺınea de visión (residential NLOS)
del modelo de canales UWB debido a que cumple con el comportamiento esperado de los canales
UWB que inspiró el canal de prueba idealizado del Caṕıtulo 4. La estimación de canal se lleva
a cabo usando el método descrito en el Caṕıtulo 3.

Algunas realizaciones del modelo estocástico pueden ser vistas en la Figura 5.1.
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Figura 5.1: Realizaciones del modelo estocástico de canales UWB.

Si nos centramos primero en una realización del modelo, como la mostrada en la Figura 5.2,
podemos calcular el MSE resultante de estimar este sistema con filtros de Laguerre de diferentes
ordenes y posiciones del polo. En la Figura 5.2, se puede ver que la longitud efectiva del canal
es de 1000 muestras mas o menos (dato que permitirá obtener una estimación de una posición
óptima del polo como se vió en el Caṕıtulo 2), luego un filtro de orden 200 o 300 debeŕıa ser
suficiente para poder estimar correctamente gran parte de su respuesta impulsional.

En la Figura 5.3 se muestra el NMSE para esta respuesta impulsional para filtros con órdenes
desde 50 hasta 300 en función de la posición del polo a. Puede apreciarse como los filtros de
Laguerre con una elección apropiada de la posición del polo pueden proporcionar un menor MSE
que los filtros FIR (a = 0) para esta realización del canal. También puede verse que las posiciones
óptimas del polo son negativas, esto ocurre debido a que el modelo estocástico proporciona
canales complejos con una fase compleja aleatoria para cada componente multicamino, lo cual
hace que las partes real e imaginaria del canal posean un comportamiento oscilatorio y por ello
un polo negativo funciona mejor para este tipo de canales puesto que el término (−1)k que
introduce genera un comportamiento oscilatorio, como se puede ver en la Figura 5.4.
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Figura 5.2: Realización del modelo estocástico de canales UWB.
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Figura 5.3: MSE normalizado de la estimación del canal UWB en función de la posición del polo

para diferentes órdenes del filtro (nota: a = 0
4
= filtro FIR ).
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Figura 5.4: Efecto del signo del polo en la estimación de un canal complejo con un filtro de
Laguerre de orden 100.

Volviendo a la Figura 5.3, puede observarse que las posiciones de polo óptimas y las estimadas
(utilizando el criterio descrito en el Caṕıtulo 2, que aprovecha el conocimiento de la longitud
del canal y hace coincidir ésta con la longitud cubierta por las secuencias de Laguerre) están
cerca, lo cual muestra que la estimación del polo realizada no es perfecta pero da una posición
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suficientemente cercana de manera muy sencilla (utilizando un modelo lineal) que resulta en un
pequeño deterioro del MSE. Una representación equivalente a la Figura 5.3 en función del orden
del filtro es mostrada en la Figura 5.5, que permite ver estos resultados de manera más clara.
Se pueded apreciar un decremento sobre 5 dB del MSE y también lo cercana que está la curva
de MSE de las posiciones de polo estimadas respecto la óptima.
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Figura 5.5: MSE normalizado de la estimación del canal UWB en función del orden del filtro

para diferentes posiciones del polo (nota: a = 0
4
= filtro FIR ).

Algunos valores numéricos son mostrados en la Tabla 5.1, que contiene el NMSE para filtros
de orden 100, 200 y 300 con diferentes posiciones del polo (recordar que el filtro FIR es un filtro
Laguerre con posición del polo a = 0). Si calculamos la ganancia en MSE por los diferentes
filtros de Laguerre en comparación con el filtro FIR como ∆MSE = MSEFIR−MSELag, se obtiene
la Tabla 5.2, que muestra para la posición del polo estimada una ganancia sobre 5 dB que puede
obtenerse con los filtros de Laguerre.

Tabla 5.1: NMSE obtenida estimando una realización de canal UWB con filtros de diferentes
órdenes y posiciones del polo.

filtro posición del polo(a) Orden 100 Orden 200 Orden 300

FIR transversal filter 0 -2.4 dB -6.3 dB -8.4 dB
Laguerre filter −0.5 -5.9 dB -11.1 dB -14.9 dB
Laguerre filter −0.7 -7.0 dB -10.2 dB -12.6 dB

Laguerre filter Óptima -7.1 dB -11.5 -15.0 dB

La posición óptima del polo para cada orden del filtro es mostrada en la Figura 5.6 junto con
la estimada.
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Tabla 5.2: ∆MSE o ganancia MSE obtenida estimando una realización de canal UWB con filtros
de diferentes órdenes y posiciones del polo.

pole position (a) Order 100 Order 200 Order 300

−0.5 3.5 dB 4.8 dB 6.5 dB
−0.7 4.6 dB 3.9 dB 4.2 dB
Estimated 4.3 dB 5.1 dB 6.5 dB
Optimal 4.7 dB 5.2 dB 6.6 dB
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Figura 5.6: Variación de la posición óptima (y estimada) del polo para el filtro de Laguerre en
función del orden del filtro.

Una vez que el caso concreto de una realización ha sido estudiao, un caso más general se puede
obtener analizando el comportamiento de varias realizaciones del experimento estocástico. En
concreto se realiza la estimación de canal por medio de un filtro de Laguerre de orden hasta 300
de 500 realizaciones del modelo estocástico de canales UWB.

Primero de todo el NMSE en media para las 500 realizaciones del canal se representa como
función de la posición del polo para algunos órdenes del filtro en la Figura 5.7 y como función
del orden del filtro para varias posiciones del polo en la Figura 5.8. Aqúı se puede apreciar un
incremento de 4 o 5 dB para los filtros de Laguerre en comparación con los FIR. Otra vez las
posiciones óptimas del polo son negativas por los mismos motivos explicados anteriormente y
las posiciones estimadas del polo parecen ser una buena elección por su cercańıa a las posiciones
óptimas lo que se traduce en un pequeño deterioro del MSE. Si observamos la Figura 5.8, la curva
del MSE para las posiciones del polo estimadas y la óptima están muy cerca. Las posiciones
óptimas del polo y las estimadas son mostradas en la Figura 5.9.
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Figura 5.7: MSE normalizado medio de la estimación de los canales UWB en función de la

posición del polo para diferentes órdenes del filtro (nota: a = 0
4
= filtro FIR ).
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Figura 5.8: MSE normalizado medio de la estimación de los canales UWB en función del orden

del filtro para diferentes posiciones del polo (nota: a = 0
4
= filtro FIR ).
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Figura 5.9: Variación de la posición óptima (y estimada) del polo para el filtro de Laguerre en
función del orden del filtro.

La función de densidad de probabilidad (pdf) experimental para el MSE es obtenida para
filtros de órdenes 100, 200 y 300 y posiciones del polo a =0, -0.5, -0.7 y la óptima para cada
orden (nota: a = 0 corresponde con el filtro FIR transversal). La razón de elegir -0.7 y -0.5 es
que viendo el comportanmiento en la Figura 5.7 ambos parecen ser una buena elección, además
el filtro correspondiente con a = −0.5 conlleva una implementación computacional eficiente
porque una multiplicación o división por una potencia de 2 es muy sencilla con tecnoloǵıa dig-
ital (se reduce a añadir ceros o eliminar bits). Los resultados son resumidos en la Tabla 5.3, y
representados en las Figuras 5.10, 5.11 y 5.12 para los órdenes 100, 200 y 300 respectivamente.
Las figuras muestran que en general los filtros de Laguerre ofrecen mejores resultados propor-
cionando un menor MSE para un orden dado, con mejoras medias de 3.2 dB, 4.7 dB y 5 dB
para filtros de orden 100, 200 y 300 respectivamente con una posición del polo óptima como se
puede ver en la Tabla 5.4. Este mejor comportamiento responde al hecho de que los filtros de
Laguerre son una generalización de los filtros FIR y como tal pueden funcionar mejor o igual
que los filtros FIR.

Tabla 5.3: Estad́ısticas del NMSE (en dB) obtenido estimando canales UWB con filtros de difer-
ente orden y varias posiciones del polo.

Orden 100 Orden 200 Orden 300
filtro posición del polo (a) Media Std Media Std Media Std

FIR transversal filter 0 -1.5 1.7 -3.7 2.5 -6.6 3.0
Laguerre filter -0.5 -4.0 2.0 -8.3 2.4 -11.6 2.5
Laguerre filter -0.7 -4.7 1.7 -7.7 1.9 -9.6 2.0

Laguerre filter Óptima -4.7 1.7 -8.4 2.2 -11.6 2.5
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Tabla 5.4: ∆MSE o ganancia MSE en media, obtenida estimando canales UWB con filtros de
órdenes y posiciones del polo diferentes.

pole position (a) Order 100 Order 200 Order 300

-0.5 2.5 dB 4.6 dB 5 dB
-0.7 3.2 dB 4.0 dB 3 dB
Estimated 3.0 dB 4.7 dB 4.9 dB
Optimal 3.2 dB 4.7 dB 5 dB
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Figura 5.10: Función de densidad de probabilidad del MSE normalizado para un filtro de La-
guerre de orden 100 con diferentes posiciones del polo.
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Figura 5.11: Función de densidad de probabilidad del MSE normalizado para un filtro de La-
guerre de orden 200 con diferentes posiciones del polo.
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Figura 5.12: Función de densidad de probabilidad del MSE normalizado para un filtro de La-
guerre de orden 300 con diferentes posiciones del polo.

Si el orden necesario para cumplir un MSE espećıfico (-3 dB, -6 dB y -10 dB) se calcula, se
obtienen los resultados mostrados en la Figura 5.13 y la Tabla 5.5.
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Figura 5.13: Orden necesario por los diferentes filtros para obtener un NMSE espećıfico(-3dB,
-6dB and -10 dB).

Tabla 5.5: Estad́ısticas del orden necesario por los diferentes filtros para obtener un NMSE
espećıfico.

-3dB NMSE -6dB NMSE -10dB NMSE
filtro posición del polo (a) Media Std Media Std Media Std

FIR transversal 0 197 106 296 118 425 124
Laguerre −0.3 118 62 187 73 285 83
Laguerre −0.5 88 44 150 58 260 89
Laguerre −0.7 69 33 148 66 327 116
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6 Métodos adaptativos

6.1 Introducción

En los caṕıtulos anteriores, se resolvió el problema de estimación de manera teórica conociendo
de manera exacta las estad́ısticas de segundo orden de las señales involucradas en el sistema. En
la práctica esta situación no es la real y el problema se resuelve ajustando los coeficientes del
filtro por medio de métodos adaptativos usando una secuencia de entrada conocida (secuencia
de entrenamiento). Los métodos adaptativos constituyen una solución iterativa al problema de
minización de la funcion de coste o del error cuadrático medio. En este caṕıtulo el ı́ndice de
tiempo discreto k se cambiará por i, puesto que ahora el tiempo discreto es interpretado como
iteración.

ŷM (i) =
M∑
j=0

wM,j(i)xj(i) = wixM (i) (6.1)

Figura 6.1: Modelo usado para la adaptación.

El modelo de adaptación usado es el mostrado en la Figura 6.1. Conceptos comunes en los
métodos adaptativos son la convergencia (E[eM (i)] −−−−→

i→+∞
Jmin, con Jmin el MSE teórico/asintótico,

que coincide con el calculado en los caṕıtulos previos) y velocidad de convergencia (como de
rápido se alcanza este valor asintótico o como de larga ha de ser la secuencia de entrenamiento).

El método escogido para esta sección es el algoritmo RLS (del inglés, Recursive-Least-Squares
algorithm), que es uno de los algoritmos adaptativos mas usados, puesto que presenta una rápida
convergencia y hay muchas implementaciones eficientes (en términos de coste computacional),
como los algoritmos RLS lattice (ver [4], [5]). La descripción y desarrollo precisos de este método
se puede encontrar en cualquier buen libro sobre métodos adaptativos, como [9] y [2].

6.2 Algoritmo RLS

El algoritmo RLS puede verse de dos maneras diferentes. La primera es como una solución
del método de steepest descent con un gradiente estocástico que emplea una aproximación más
sofisticada para la matriz de autocorrelación Rx, dada por una media ponderada exponencial-
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mente

R̂x =
1

i+ 1

i∑
j=0

λi−jxM (i)xHM (i)

en lugar de una aproximación instantánea como en el método de Least Mean Squares (LMS).

Sin embargo, el algoritmo RLS puede verse también como la solución exacta de un problema
de mı́nimos cuadrados (LS del inglés Least Squares) bien definido (en concreto un problema de
mı́nimos cuadrados ponderados regularizado), dado por

min
w

λi+1(w − w̄)∗Π(w − w̄) +
i∑

j=0

λi−j |y(j)− xM (j)w|2
 (6.2)

que el algoritmo RLS resuelve de manera iterativa. La iteración RLS viene dada por

eM (i) = y(i)− xM (i)wi−1, (6.3)

γi =
1

1 + 1
λxM (i)Pi−1xHM (i)

, (6.4)

gi =
1

λ
Pi−1x

H
M (i)γi, (6.5)

wi = wi−1 + gieM (i), (6.6)

Pi =
1

λ
Pi−1 −

gig
H
i

γi
. (6.7)

Para evaluar las prestaciones del algoritmo RLS se utiliza la curva de aprendizaje promedi-
ada de varios experimentos (ensemble-average learning curve). La curva de aprendizaje de un
experimento viene dada por el valor de la función de coste (J) en función de la iteración (i)

J(i) = |eM (i)|2. (6.8)

Esta función de coste es calculada para un número de iteraciones, 0 ≤ i ≤ N , suficientemente
grande para garantizar que se puede observar convergencia, calculando la señal de error y la
correspondiente curva de error cuadrático. La función de coste resultado del primer experimento
se denota por {

J (1)(i)
}

(6.9)

con el supeŕındice (1) usado para indicar que es el primer experimento. El experimento es
repetido varias veces con las mismas condiciones iniciales obteniendo L funciones de coste. La
curva de aprendizaje promedio en el intervalo 0 ≤ i ≤ N está definida como la media muestral
de los L experimentos:

Ĵ(i) ,
1

L

L∑
j=1

J (j)(i), 0 ≤ i ≤ N. (6.10)

Para L = 100 experimentos en este estudio.

6.2.1 Estimación de canales UWB

Los resultados teóricos hallados en el Caṕıtulo 5 pueden ser comprobados y reproducidos por
medio del algoritmo RLS sin conocimiento previo alguno sobre el canal (o las estad́ısticas), y
observar como funciona la convergencia y la longitud de la secuencia de entrenamiento sabiendo
que el valor asintóntico debe coincidir con el valor teórico hallado anteriormente.
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Figura 6.2: Realización del modelo estocástico de canales UWB.

El canal a probar es la realización del modelo de canales UWB utilizado anteriormente,
mostrado en la Figura 6.2.

Como se vió en el Caṕıtulo 5 en la Figura 5.3, para un filtro de orden 100, una posición del
polo de -0.7 o -0.5 son una buena elección. Las curvas de aprendizaje promedio para a = −0.5
y a = −0.7 son mostradas en la Figura 6.3. Como se puede ver el comportamiento asintótico
del algoritmo adaptativo coincide con el teórico hallado conociendo exactamente las estad́ısticas
de segundo orden del sistema y también se puede observar una dependencia del tiempo de
convergencia con la posición del polo. Esta convergencia se debe a que, viendo las Figuras 6.4,
para una posición de polo mayor (a = −0.7) se consigue estimar una mayor parte de la respuesta
impulsional debido a la mayor longitud de las secuencias lo que hace necesario un mayor tiempo
de convergencia.
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Figura 6.3: Curvas de aprendizaje para el algoritmo RLS para filtros de Laguerre y FIR.

La respuesta impulsioinal estimada resultante en el estado estacionario del filtro (cuando la
convergencia o comportamiento asintótico es alcanzado) es mostrada en la Figura 6.4, que mues-
tra la motivación principal de la estimación de canales con filtros de Laguerre en comparación
con los FIR, pudiendo estos primeros aproximar una mayor parte del canal sin requerir un orden
excesivamente grande que los filtros FIR no pueden.
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(b) a = −0.5
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Figura 6.4: Respuesta impulsional estimada por filtros de Laguerre (a = −0.5 y −0.7) y un filtro
FIR de orden 100 con un algoŕıtmo RLS en estado estacionario.
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Los filtros de Laguerre, como generalización de los filtros FIR, pueden funcionar mejor o igual
que los filtros FIR, en particular para los canales UWB, se ha visto que se puede obtener
una mejora en media alrededor de 5 dB para el entorno del modelo de canal escogido, con
caracteŕısticas Non Line-Of-Sight (NLOS). La conclusión es que las secuencias de Laguerre no
son especialmente adecuadas para este tipo de canales, sobretodo si presentan comportamiento
caóticos y poco dispersos (o non-sparse), como ocurre con algunos de los canales UWB. Aun aśı,
como generalización de los filtros FIR, funcionan mejor o igual que los filtros FIR y son una buena
opción cuando el orden del filtro tiene que ser pequeño y las respuestas impulsionales largas. Son
más adecuados para canales con respuestas impulsionales con cambios más suaves (”smooth”)
como los canales con una función de transferencia racional. Esta falta de idoneidad de las
secuencias para este tipo de canales se debe en mayor parte a su comportamiento intŕınseco
paso-bajo, si recordamos que consisten de una sección paso-bajo seguida de una cascada de
secciones pasa-todo.

Otro punto interesante es la selección de la posición óptima del polo del filtro de Laguerre.
Se ha visto que la posición óptima vaŕıa según el orden del filtro, empezando por una posión del
polo de gran magnitud (cercana a 1) para órdenes pequeños del filtro para poder disponer de
secuencias más largas, y posiciones mas cercanas a cero para filtros de mayor orden para tener
secuencias con menor extensión temporal pero mejor resolución temporal. La posición óptima
del polo puede ser estimada con relativo éxito utilizando la sencilla idea de hacer coincidir
aproximadamente la extensión temporal que cubren las secuencias de Laguerre con la longitud
t́ıpica de los canales. Esto unido al modelado lineal de la longitud de las secuencias de Laguerre,
ha demostrado ser una estimación bastante buena de la posición óptima del polo para un longitud
t́ıpica del canal dada y un orden fijo del filtro, lo que hace que la selección de la posición del
polo una tarea sencilla para canales UWB.

Para posibles profundizaciones en este estudio de los filtros de Laguerre, se pueden realizar
todav́ıa un par de generalizaciones sobre el filtro básico de Laguerre. La primera de ellas consiste
en considerar el caso de tener un polo complejo (siempre dentro de la circunferencia unidad)
en lugar de limitarse al caso de un polo real. El filtro considerado es mostrado en la Figura
7.1. Añadir una fase compleja al polo no afecta a la extensión temporal de las secuencias y
proporciona un grado nuevo de libertad para optimizar la posición del polo, que intuitivamente
proporcionaŕıa ventajas si se pudiera ajustar la posición del polo de manera adaptativa.

Figura 7.1: Filtro transversal de Laguerre con polo complejo.

La segunda generalización consiste en considerar la estructura ortonormal de la Figura 7.2,
que consiste en usar diferentes polos para cada sección del filtro en lugar de uno solo. Esta
estructura conlleva un problema de optimización multivariable para la elección de la posición
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óptima del polo con su respectiva complejidad.

Figura 7.2: Estructura ortonormal transversal con múltiples polos.

Otro tema a tratar seŕıa la ecualización, o el diseño de ecualizadores con filtros de Laguerre
según el modelo mostrado en la Figura 7.3. Si disponemos de un filtro FIR, H(z) = B(z),
entendiendo por ecualizador el sistema inverso G(z), este es por definición un sistema IIR,
G(z) = H−1(z) = 1

B(z) , lo cual puede representar una ventaja para los filtros de Laguerre.
Aunque analizandolo desde un punto de vista frecuencial, la mayoŕıa de los canales presentan
un comportamiento paso-bajo lo que hace que el sistema inverso tenga comportamiento paso-
alto al contrario que los filtros de Laguerre que poseen un comportamiento paso-bajo, lo que los
convierte, en este sentido, en una peor opción.

Figura 7.3: Modelo de ecualización.
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