

Información del Plan Docente

Academic Year 2016/17

Academic center 110 - Escuela de Ingeniería y Arquitectura

Degree 435 - Bachelor's Degree in Chemical Engineering

ECTS 6.0 **Course** 2

Period Second semester

Subject Type Compulsory

Module ---

- 1.Basic info
- 1.1.Recommendations to take this course
- 1.2. Activities and key dates for the course
- 2.Initiation
- 2.1.Learning outcomes that define the subject
- 2.2.Introduction
- 3.Context and competences
- 3.1.Goals
- 3.2. Context and meaning of the subject in the degree
- 3.3.Competences
- 3.4.Importance of learning outcomes
- 4.Evaluation
- 5. Activities and resources

5.1.General methodological presentation

This course of Mechanics deals with the relationship between the forces acting on a mechanical system (vehicle, robot, mechanism...) and the resulting motion of the system. Therefore, emphasis is placed on the dynamic problem under the classical laws of physics (Newtonian Mechanics)

Thus, this course is divided in two consecutive and interconnected parts: kinematics (motion description with no concern about its causes) and kinetics (causes, analysis, modelling and resolution of the dynamic problem). Kinematics will cover

not only 2D systems but 3D systems as well (introducing Euler angles). Regarding kinetics, we will solve 3D models using Newton laws. In addition, energy principles will be applied only to 2D systems with one degree of freedom.

5.2.Learning activities

Teaching activities will be developed in three levels: theory classes, problem classes and laboratory sessions, with increasing level of student participation. The student will take three hours a week in the classroom (theory lectures and problem classes) and five laboratory sessions during the semester.

- In theory classes, the theoretical basis of mechanical systems will be presented, using real world, engineering, examples as well as bibliographic references and websites.
- In problem classes, representative problems and case studies will be solved, encouraging student participation by means of oral questions.
- Laboratory sessions will be dedicated to show students a variety of mechanisms and mechanical systems: scotch
 yoke, four bar linkage, gyroscope, etc. Students will work with basic mechanism simulation software to understand
 the motion of mechanisms.

At the same time, students will be asked to solve some programmed exercises in small groups, thus promoting collaborative learning, to help following the basic topics, which cover from movement description to dynamical analysis.

5.3.Program

- 1. Particle kinematics
- Kinematic frames of reference: relative and absolute motion
- Kinematic vectors: position, velocity, acceleration.
- Intrinsic components of acceleration.
- 2. Bases and orientation
- Vector bases: orientation and angular velocity
- Derivative of an arbitrary vector. Bouré expression
- Orientation in mechanical systems. Euler angles.
- 3. Relative motion
- Velocity and acceleration using a moving reference frame

- Motion from a moving reference system: case studies
4. Kinematics of rigid bodies
- Kinematics of rigid bodies: general equations
- Rolling without slipping
5. Mechanical systems kinematics
- Generalized coordinates and degrees of freedom
- Constraints. Holonomic and non holonomic systems.
6. Plane motion of rigid bodies.
- Planar kinetics. Mechanisms.
- Instant centre of rotation.
7. Forces in Newtonian mechanics
- Force and moment. Torsor of forces.
- Active and passive forces.
- Basic models for mechanical elements: springs, dumpers, engines, friction
8. Geometry of rigid bodies.
- Centre of inertia. Examples.
- Inertia tensor. Moments and products of inertia. Parallel axis theorem (Steiner).

- -Symmetric and Spherical Rotors.
- 9. Newtonian kinetics of rigid body systems
- Equations of motion: Newton-Euler laws
- Case studies in 3D motion
- 10. Work-energy theorem
- Work and energy. Kinetic and potential energy.
- Work and energy principle application to planar kinematics. Case studies.

5.4. Planning and scheduling

5.5.Bibliography and recomended resources

ВВ	partícula y del sólido rígido / Joaquim Agulló Batlle ; versión en castellano de Ana Barjau Condomines . 2ª ed. corr. y amp. Barcelona : OK Punt, D.L. 2000 Lladó París, Juan. Mecánica : Grado en Ingeniería de Tecnologías Industriales / Juan Lladó París, Beatriz Sánchez Tabuenca. Zaragoza : Copy Center, D.L.
ВС	2013 Cardona Foix, Salvador. Teoría de máquinas / Salvador Cardona Foix, Daniel Clos Costa . 2ª ed. Barcelona : UPC, 2008 García Prada, J. C Problemas resueltos
ВС	de teoría de máquinas y mecanismos / J. C. García Prada, C. Castejón Sisamón, H. Rubio Alonso Madrid: Thomson-Paraninfo, D. L. 2007
ВС	Lamadrid Martínez, Adelardo de. Cinemática y dinámica de máquinas / Adelardo de Lamadrid Martínez y Antonio de Corral Saiz . 7a. ed. Madrid : [los autores], 1992 e(Madrid : fE.T.S. de Ingenieros Industriales de Madrid) Mabie, Hamilton H Mecanismos y
ВС	dinámica de maquinaria / Hamilton H. Mabie, Fred W. Ocvirk . 2a. ed., 2a reimpr.
ВС	Mexico [etc.] : Limusa, cop. 2000 Norton, Robert L. : Diseño de maquinaria :

Agulló Batlle, Joaquim. Mecánica de la

síntesis y análisis de máquinas y mecanismos / Robert L. Norton ; revisión técnica, Miguel Ángel Ríos Sánchez, Cuitláhuac Osornio Correa, Mario Acevedo Alvarado . - 5ª ed. México [etc.] : McGraw-Hill, cop. 2013 Sclater, N; Chironis, N. Mechanisms and mechanical devices sourcebook. - 4ª McGraw Hill, 2007.

BC