

Información del Plan Docente

Academic Year	2016/17
Academic center	201 - Escuela Politécnica Superior
Degree	437 - Degree in Rural and Agri-Food Engineering
ECTS	6.0
Course	4
Period	First semester
Subject Type	Compulsory
Module	---

1.Basic info**1.1.Recommendations to take this course****1.2.Activities and key dates for the course****2.Initiation****2.1.Learning outcomes that define the subject****2.2.Introduction****3.Context and competences****3.1.Goals****3.2.Context and meaning of the subject in the degree****3.3.Competences****3.4.Importance of learning outcomes****4.Evaluation****5.Activities and resources****5.1.General methodological presentation****5.2.Learning activities****5.3.Program****Theory programme**

COURSE PRESENTATION

Introduction and methodology

Internet-Intranet.

MODULE 1. INTRODUCTION TO GENETIC PLANT IMPROVEMENT (3 weeks)

Elements of general genetics

1. Introduction.
2. Mendelian genetics. Single gene inheritance. Several genes, genetic interaction.
3. Quantitative genetics. Biometric models for working with quantitative features.
4. Population genetics. Hardy-Weinberg equilibrium. Evolution of genetic frequencies in populations. Evolutionary dynamics of cultivated plants.
5. Molecular genetics. Fine structure of the gene. Sequencing, cloning.

MODULE 2. GENETIC VARIABILITY AND SYSTEMS OF REPRODUCTION (3 weeks)

The plant material, floral and reproductive biology.

1. Mechanisms of reproduction.
2. Sexual reproduction, genetic consequences.
3. Mechanisms that promote selfing.
4. Mechanisms promote cross-fertilisation.
5. Asexual reproduction, genetic consequences.
6. Determining the mode of reproduction.

Geographic distribution and the origin of cultivated plants.

1. Centres of origin and of diversity.
2. Micro-centres of diversity.
3. Where and when agriculture arose.
4. The domestication of plants as a method of improvement.

Phylogenetic resources

1. Definition. Genetic erosion.
2. Search and conservation.
3. Conditions and techniques of conservation.

**MODULE 3. METHODS OF IMPROVEMENT FOR SELF-POLLINATING AND CROSS-POLLINATING SPECIES.
METHODS OF IMPROVEMENT FOR VEGETATIVE REPRODUCTION SPECIES (5 weeks)**

Methods of improvement for self-pollinating plants

1. Methods without crossing: Individual and massal selection.
2. Methods with crossing: Massal method, genealogical method, progeny from a single seed.
3. Backcrossing.

Methods of improvement for cross-pollinating plants

1. Massal selection.
2. Hybrid varieties.
3. Synthetic varieties.
4. Recurrent selection.

Methods of improvement for vegetative reproduction

1. Clonal selection. Hybridization.

MODULE 4. BIOTECNOLOGICAL TECHNIQUES (5 weeks)

"In vitro" cultivation and somaclonal variation .

5. Concept of " *in vitro*" cultivation.
6. The " *in vitro* " cultivation laboratory.
7. Types of cultivation, Somatic hybridization and the fusion of protoplasts.
8. Application of " *in vitro* " cultivation in genetic plant improvement.

Genetic engineering .

7. The controlled transfer of genes by means of genetic engineering.
8. Methods of obtaining transgenic plants: The use of *Agrobacterium* , electroporation, gene bombardment.
9. Strategies for improving specific characteristics.
10. Limitations and perspectives.

11. Legislation and standards framework.

Selection aids and molecular markers.

- 4 . Phenotypical or morphological markers.
5. Molecular types of markers and utilities.

MODULE 5. THE CONSERVATION OF VARIETIES AND SEED PRODUCTION (1 week)

Concept of variety and production of improved seeds

12. Categories of seeds and nursery plants.
13. Spanish legislation concerning the protection of varieties.

14. Spanish legislation concerning seed production.

Practical programme

The practicals correspond to the resolution of cases associated with each of the modules and are carried out in coordination with the theory part.

Also, three laboratory sessions are planned, each lasting 2 hours, which will be carried out in the plant production laboratory facilities of the EPS in Huesca. Aspects complementing the theory part will be studied in them.

5.4. Planning and scheduling

5.5. Bibliography and recommended resources