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Estimacion del error a posteriori del método de
elementos finitos con la teoria variacional de las
multiescalas aplicado a elasticidad lineal

RESUMEN

El presente trabajo investiga técnicas de estimadores de error a posteriori para el
método de elementos finitos aplicado al problema de elasticidad lineal. Para hallar el error
que comete el método de elementos finitos se emplea el método variacional multiescala.
Con la ayuda de este método y partiendo de los resultados obtenidos de la simulacién
de elementos finitos, se obtiene una estimacién del error cometido. En concreto, en este
proyecto se ha estudiado la estimacion de error para problemas de tensién plana.

A la hora de analizar el acierto en la estimacion de error, es necesario conocer previ-
amente el error real que comete el método de elementos finitos. Por ello, se ha calculado
la solucién analitica de los casos estudiados de tensién plana, empleando las ecuaciones
basicas de elasticidad.

Los problemas estudiados de tension plana son aplicados sobre dominios rectangulares.
Sobre estos dominios se han impuesto distintos tipos de solicitaciones en el contorno para
estudiar cémo afectan los distintos tipos de esfuerzos en los estimadores de error. También
se analiza su influencia con los principales parametros que caracterizan el problema de
elasticidad plana. Con el objetivo de cuantificar la calidad de los estimadores de error, se
establece la denominada eficiencia del estimador de error, el cual relaciona el error esti-
mado con el error realmente cometido.
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Capitulo 1

Introducciéon y objetivos

Los métodos computacionales son una de las tltimas herramientas a disposicion del
ingeniero a la hora de resolver modelos matematicos de un fenémeno fisico. Se empezaron
a desarrollar a mediados del siglo XX tras la irrupcion de los computadores. En un prin-
cipio se limitaron a apoyar o a extender resultados empiricos. Hoy en dia son capaces
de ofrecer soluciones confiables a modelos fisicos plasmados en ecuaciones diferenciales
y a pesar de su relativa novedad, se han integrado de una manera muy notable en los
mas variados procesos industriales. El rapido desarrollo de los ordenadores ha supuesto
un aumento de su capacidad de calculo al mismo tiempo que un abaratamiento de su coste.

La mecéanica de medios continuos es un campo donde los métodos computacionales son
de gran utilidad y al mismo tiempo suponen un gran reto. Ambas situaciones se deben a
la gran complejidad de los modelos mateméticos que describen su comportamiento.

Hay que recordar que las soluciones analiticas que existen en elasticidad son limitadas
y sirven para geometrias sencillas, o bien asumen hipdtesis simplificativas que desvirtian
la solucién obtenida. Sin embargo, los métodos de elementos finitos se adaptan a cualquier
geometria y permiten abordar el problema con toda su complejidad a cambio de tiempo
de computacion.

1.1. Objetivo del trabajo

El objetivo de este Trabajo Fin de Master es investigar la estimacion de error que se
comete en la resolucién numérica por el método de elementos finitos de las ecuaciones de
elasticidad lineal. Para ello, se caracterizan y evalian estimadores de error para el méto-
do de elementos finitos basado en el Método Variacional de las Multiescalas (VMS). La
evaluacion consiste en la comparacion del error estimado con el error exacto.

En el estudio de este trabajo se persiguen los siguientes objetivos concretos:

= Hallar un estimador de error adecuado para elasticidad lineal, en el que se consiga
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una precision y robustez razonables

» Evaluar la influencia en la estimacion del error para los parametros caracteristicos
de la elasticidad lineal.

Partiendo de la formulacién débil del problema y aplicando el VMS, se emplean es-
tos estimadores de error, los cuales involucran directamente el residuo de la solucion de
elementos finitos. De esta manera, se pretende proporcionar al usuario de programas de
FEM una medida de la calidad de la solucién obtenida.

1.2. Motivacion del trabajo

El propésito de realizar este trabajo, partié de la investigacion previamente realizada
en el departamento de Mecdnica de Fluidos sobre estimacién de error ([10], [11], [12]) en
la ecuacién del transporte. En particular, para ecuaciones diferenciales elipticas, como la
ecuacion del calor, los estimadores de error explicitos empleados proporcionan unos buenos
resultados.

Las ecuaciones diferenciales que gobiernan el problema elastico lineal son elipticas. Sin
embargo, en relacién con la ecuacion de calor, la ecuacion de elasticidad presenta algu-
nas diferencias significativas que anaden complejidad al problema y que se detallardan mas
adelante.

Desde este punto de partida y debido a la elevada utilizacién de programas de método
de elementos finitos que existe hoy en dia en el diseno mecénico y estructural, mediante este
trabajo, se estudia la estimacion de error en un campo en el que existe un gran interés en
investigar el error que se comete en la solucién obtenida por el método de elementos finitos.

1.3. Estimacion del error

La estimaciéon de error es uno de los campos de investigacion de mayor interés en la
mecanica computacional. Hoy en dia, los métodos computacionales son fiables, tutiles y
cada vez mas rapidos, de tal manera que ya estan plenamente integrados en el proceso
productivo. La estimacion de error surge como una mejora natural de los mismos. Como
en otros campos de la ciencia o de la ingenieria, es deseable conocer con qué margen de
error se ajustan a la realidad los calculos o incluso los resultados de un experimento. En
los métodos experimentales, una medida no se considera completa sin una estimacién del
error cometido. La tendencia en los métodos computacionales deberia ser la misma, ya
no sélo por una cuestion de rigor cientifico, sino porque una correcta evaluacion del error
puede suponer un ahorro considerable en el coste computacional (y por tanto econémico)
de las simulaciones.

Las soluciones obtenidas por los métodos computacionales en general y el Método de
los elementos finitos, en particular, dependen fuertemente de la discretizacion. La elecciéon



CAPITULO 1. INTRODUCCION Y OBJETIVOS 1.3. ESTIMACION DEL ERROR

de la malla surge por tanto del compromiso entre la precisiéon de la solucién requerida y
el coste computacional que se esta dispuesto a asumir. La estrategia de mallado més in-
teresante es aquella en la que se concentran mayor nimero de elementos en la zona donde
éstos son necesarios. Asi, se impone mayor resoluciéon en las zonas donde los gradientes
son intensos. Cabe destacar que obtener el mallado adecuado seria trivial si tuviésemos ya
una soluciéon donde se observen todos los fenémenos relevantes.

Las técnicas de estimacion de error pueden desempenar un papel crucial en esta
situacion. Para esto es necesario que el estimador proporcione el error en cada elemento.
Si se conoce el error de la simulaciéon en cada punto con fiabilidad, y se relaciona dicho
error con el tamano de los elementos de la malla, se podria elegir un umbral de error que
se considere aceptable y elaborar una malla que obtenga ese resultado. Actuando asi se
obtendrian simulaciones con un error controlado aumentando la densidad de la malla sélo
donde sea necesario. A esta estrategia se le llama mallado adaptativo.

Los principales estimadores de error empleados hoy en dia pueden ser clasificados en
los siguientes grupos:

= Métodos explicitos: Se llaman métodos explicitos porque emplean la solucién obteni-
da mediante elementos finitos de forma directa, sin resolver ecuaciones diferenciales.
Estas técnicas estiman el error a partir del residuo de la solucién aproximada de
elementos finitos. Para ello, emplean el residuo en el interior del elemento, en las
fronteras entre elementos y en el contorno.

= Métodos implicitos: Estos métodos emplean la solucion aproximada de elementos
finitos de forma indirecta. Para la estimacion del error es necesario resolver un prob-
lema de ecuaciones diferenciales aplicados a elementos individuales o a un conjunto
de ellos.

= Métodos de recuperacion: Estos métodos aprovechan las propiedades superconver-
gentes de las soluciones. Se centran en el posproceso de la solucion numérica aplicado
a distintos grupos de elementos.

Es sabido que conforme una malla se hace mas fina, la solucion numérica converge
a la solucion exacta. Es decir, si la malla fuera infinitamente densa la solucion numérica
coincidiria con la solucién analitica. Aprovechando este concepto, el método variacional de
las multiescalas, consiste en realizar una separacion de escalas, separando escalas resueltas
y no resueltas. Este método es un caso particular de los métodos explicitos. La escala
resuelta es la solucion obtenida de la malla empleada, y la escala no resuelta proporciona
el error producido por la discretizacién. Esta descomposicién en escala resuelta y no re-
suelta se introduce en la formulacion variacional del problema a estudiar para realizar una
estimacion del error.
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1.4. Metodologia

El planteamiento general que se ha seguido a la hora de realizar este proyecto ha sido en
primer lugar, establecer unos problemas concretos de tensién plana y hallar analiticamente
su solucion exacta. Seguidamente, se ha empleado el VMS para obtener una formulacién
de los estimadores de error a posteriori y pronosticar el error. Por ultimo, se analizan las
eficiencias obtenidas con los estimadores de error para los distintos problemas tratados.
Los pasos seguidos en el desarrollo del trabajo se esquematizan en la figura [Tl

Estimador
Error

Planteamiento
Problema

Solucion
Analitica
Problema

Calculo de
eficiencia

Figura 1.1: Esquema de trabajo

Para la realizacion del proyecto se han empleado diversos software. La programacién de
la solucién exacta, del estimador de error y del cdlculo de eficiencias se ha implementado
en Fortran. Posteriormente, con la herramienta Tecplot, se han realizado las gréficas de
resultados.

Mediante la presente memoria se expone de manera descriptiva el trabajo desarrolla-
do a lo largo de este proyecto. Primeramente, se presentan las ecuaciones que gobiernan
la tensién plana, para asentar los conceptos basicos. Después, se plantea la formulacién
fuerte y la formulacién débil del problema de elasticidad. Seguidamente, se muestra la
formulacién del VMS y los estimadores de error empleados. Por tltimo, se analizan los
resultados obtenidos con los estimadores de error y se obtienen unas conclusiones.
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Elasticidad bidimensional

En un cuerpo sélido sometido a un estado elastico plano, el rasgo mas relevante es que
tanto la matriz de tensiones como la matriz de deformacion permanecen constantes en una
direccién perpendicular a un plano, llamado plano director. De esta manera, es posible
tratar el problema elastico en dos dimensiones, estudiando el problema en el plano director.

Segtn el estado tensional y de deformacion que se presente, se distinguen dos tipos de
estados tensionales: Deformacion plana y tension plana. En deformacion plana, la defor-
macion en una recta perpendicular al plano director es nula. Sin embargo, para el caso
de tension plana, la tensién es nula en la direcciéon perpendicular al plano director, ex-
istiendo deformacién en la misma. En este trabajo, se han estudiado problemas de tensién
plana, si bien la formulacion de ambos problemas es similar. En ambos casos, el campo de
desplazamientos en el plano director queda perfectamente determinado si se conocen los
desplazamientos en z e y.

{ u(z,y)

v(,y)

donde u(z,y) y v(x,y) son los desplazamientos en x e y respectivamente.

En el siguiente apartado, se muestra mas concretamente, el estado de tensiones y de-
formaciones que se producen en tension plana.

2.1. Estado tensional plano

En la figura 2.1] se muestran los ejes adoptados en el plano director para un sélido
cualesquiera sometido a un estado tensional plano.

Se cumple que las tensiones solamente dependen de z e gy, de manera que 7,, =
T,.=0,=0. Se denomina u, v y w a los desplazamientos en los ejes z, y y 2z respectivamente.
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N

Figura 2.1: Cuerpo sometido a tension

= Ecuaciones de equilibrio

Las ecuaciones de equilibrio, son obtenidas al aplicar la sumatoria de fuerzas que actian
sobre un pequeno bloque rectangular de tamano diferencial como se muestra en la figura
221 En este caso, al trabajar sélo en dos ejes, hay dos ecuaciones de equilibrio.

0o, OTyy B
% 3y +X =0 (2.1)
Jo,  OTyy B
(9—’3/ + O +Y = (2.2)
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donde X e Y son las fuerzas volumétricas.

= Ecuaciones de comportamiento

Las ecuaciones de comportamiento se obtiene aplicando las ecuaciones de Lamé. Para
el caso de los esfuerzos nulos 7,, = 7,,=0,=0 resulta

G+ 39)=0 GBE+59=0 ME+5+5)+26G52=0

Despejando g—f de la tltima ecuacion:

ow A ou Ov

2. x13c'o T o)

(2.3)

Por otro lado, las tensiones no nulas en tensién plana son o, 0y, 7,y. Segun las ecua-

ciones de Lamé, estas tensiones se relacionan con los desplazamientos de la siguiente man-
era:

ou Ov Ow ou
ou Ov Ow ov
ou Ov

donde A y G son los parametros de Lamé. Estos parametros se relacionan con el médulo
elastico y el coeficiente de Poisson de la siguiente manera.

_ E-v
A= (It+v)(1—2v)
G=_E_

2(1+v)

Sustituyendo en las anteriores ecuaciones la expresién (23]), se obtienen las ecuaciones
de las componentes de la matriz de tensiones para tension plana.
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., Ou Ov ou
Oy = (_3x + 8_y) + 2G8_:c 27)
L, O0u Ov v
g, = A (_856 + 8_y) + QGa—y (2.8)
ou Ov
Tay = G(a—y + %) (29)
En las anteriores ecuaciones \* = —2233

= Ecuaciones de compatibilidad

Las ecuaciones de compatibilidad, muestran las relaciones que tienen que tener las de-
formaciones entre si para que los desplazamientos sean fisicamente posibles. Las relaciones
entre deformaciones y desplazamientos son:

B ou v ou Ov

= % Ey = 8_y Yoy = a_y + % (2.10)

€z

Derivando respecto a y dos veces en el primer término de la ecuacién (2.I0), derivan-
do respecto a z el segundo término y, por ultimo, derivando respecto a = y respecto a y
el tercer término, se obtiene la llamada ecuacién de compatibilidad entre las deformaciones.

e, ey Py
oy? 0z Oxz0y

(2.11)

Esta ecuacién diferencial debe ser cumplida por las deformaciones para que existan
unos desplazamientos u y v que satisfagan la ecuacién (2.10]).

Es posible determinar las condiciones de compatibilidad en funcién de las tensiones a
partir de la ley de Hooke y de las ecuaciones de equilibrio. La ley de Hooke, establece la
relacién que se muestra en las siguientes ecuaciones entre deformaciones y tensiones.

Ep = %(am — voy)
ey = g0y — voy)
Yoy = % = 2(1;;_,/) Ty

Sustituyendo las ecuaciones de la ley de Hooke en (2.I1]) se obtiene

02 02 OTx
8—3;2(% —voy) + @(Uy —vo,) =2(1+v) Tay

(2.12)

8
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Por otro lado, volviendo a las ecuaciones de equilibrio (1)) y (Z2I), si se supone que
las fuerzas volumétricas, X e Y, son constantes y se deriva la ecuacién (2.1)) respecto a
y la ecuacién (2.2) respecto a y y, por ultimo, se suman, da como resultado

0?7y o, Doy,

2oy - o2 o (2.13)

Por tanto, sustituyendo (2ZI3) en (2ZI2]) se obtiene la ecuacién de compatibilidad en
funcién de la tension

o* 0

(553 + gg2)(0a00) =0 (2.14)

Por otro lado, es posible establecer una funcién ¢(z, y) a partir de la cual se definan las
componentes de la tensién y que cumpla las ecuaciones de compatibilidad. Esta funcién,
se denomina funcién de Airy. El empleo de la funcion de Airy es un método comunmente
usado para resolver las ecuaciones de elasticidad plana.

Definiendo las componentes de tensiones como

_P _%e ___O¢
COy? VT o w7 0xdy

—Xy—Yz (2.15)

Oz

se puede comprobar que satisfacen las condiciones de compatibilidad y equilibrio. De esta
manera, la funcién de compatibilidad (2.14]) se puede expresar en funcién de la funcién de
Airy de la siguiente manera.

o ot o
0, o 0 _

Ox* ox20y? - Oyt 0 (2.16)

2.2. Problemas de tensién plana

Los problemas de tension plana que se han tratado en este trabajo se muestran en las
figuras y 2.4l En la primera figura, se muestra el primer bloque de problemas analiza-
dos. Son tres problemas de elasticidad lineal con un dominio rectangular apoyados en la
parte inferior. Cada uno de los problemas presenta distintas cargas en el contorno.
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En la figura 2.4l aparecen dos problemas que presentan un estado tensional mas comple-
jo. Al igual que en los problemas de la figura 2.3 1a geometria del dominio es rectangular.
El primer problema es una viga empotrada con una carga aplicada en el extremo de la
misma. En el segundo problema, se aplica una carga distribuida en la cara superior de la
viga, la cual esta apoyada en ambos extremos.

En los anexos, se describe detalladamente la solucién exacta en cada uno de los prob-
lemas.

Mx Mx  Mx Mx
c "\ Nx T ""\ MNx
C I o S - | 7
i A
, I |
M_Lr‘-\\

Figura 2.4: Problema de viga empotrada y de viga apoyada

10
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Problema elastico lineal

3.1. Formulacion fuerte del problema

La formulacién fuerte del problema de elasticidad lineal, se obtiene a partir de la
ecuacion de equilibrio y las condiciones de contorno siguientes. Sea un dominio espacial €2
con contorno I'; el cual es dividido en dos zonas no solapadas I'; y I',, segtin se aplique
condicién de contorno de Dirichlet o Neumann. El planteamiento genérico del problema
consiste en encontrar w : {2 — R tal que para una condicién esencial dada g : I'y — R, la
condicién natural h : I', — R y la fuerza volumétrica f : (2 — R, satisfaga las siguientes
ecuaciones.

Lu=Ff en()
u=g enly
Bu=h enl,

donde L, es el operador de segundo orden y B, el operador diferencial aplicado en el con-
torno para la condicién de contorno natural.

Particularizando para el problema de elasticidad plana

V-o+f=0 en(
u=g en I,
on—=~h en 'y

donde o es el tensor de tensiones de Cauchy, f es el vector de fuerzas volumétricas, g los
desplazamientos impuestos en el contorno, h las tensiones impuestas en el contorno y n
el vector normal hacia fuera del contorno.

Las componentes del tensor de Cauchy, o, son 0,, 0, y Ty siendo la tensién normal
en z, la tension normal en y la tensién cortante en el plano xy respectivamente.

_ [ Oz Tay
0' =
Tey Oy

En el caso de tension plana, la relacién entre el tensor de tensiones de Cauchy, o, v

11
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los desplazamientos, u , se obtiene por medio de las ecuaciones de comportamiento y de
compatibilidad.

= Ecuaciones de comportamiento:

r = (N4 2G)e, + Ney,
or = (N +2G)e, + Ne,
Toy = GVay

De manera que, las componentes del tensor de Cauchy pueden expresarse en funcién
de las componentes de la matriz de deformacién, e, €, ¥ Vay-

= Relacion desplazamiento-deformaciones:
0
€z = 3
-
Yy 0
bu

o
Yoy = 3y T 2a

Por tanto, queda determinada la relacién entre las tensiones y los desplazamientos. Deno-
tando como D a la matriz que relaciona tension y deformacién, y H, al operador diferencial
que relaciona las deformaciones con los desplazamientos, se pueden expresar las tensiones
como o = DHu.

3.2. Formulacién débil del problema

La formulacién débil se obtiene a partir de la formulacion fuerte, multiplicando por
una funcién de peso e integrando por partes.

/Q’w-V-a'dQ:/Q—w-fdQ (3.1)

/V~('w-0')dQ—/V'w:0'dQ:/—'w-fdQ (3.2)
Q Q Q
Aplicando el teorema de la divergencia y ordenando términos

/a:deQ:/w-fdQ+ w - ondl’y, (3.3)
Q Q Ty

12
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/ Vw : odf) = / w- fd)+ | w-hdl), (3.4)
Q Q

Ty

Expresando o en funcion de los desplazamientos, w.

/ Vw: (DHu)d) = / w- fdQ)+ [ w-hdl), (3.5)
0 Q

I

La ecuacién (B3] se puede expresar de forma compacta mediante los siguientes oper-
adores:

= a(-,-) es una forma bilineal
= (-,-) es el producto escalar en Ly(f2)

m (+,+)y es el producto escalar en Ly(w)

De este modo la ecuacién ([B.0) queda:

a(w,u) = (w, f) + (w, h)r, (3.6)

Para asegurar que las integrales que han surgido en la formulacién débil se puedan
calcular, hay que imponer como requisito a las funciones de peso, w , y a las funciones
soluciéon, u, que su derivada primera al cuadrado esté acotada. Las funciones que satis-
facen esta condicién son llamadas funciones H' .

Por tanto, los espacios de funciones donde se buscan la funcién solucion y las funciones
de peso son los siguientes:

d={ulue H,u=¢g enl,}
v={wlwe H ,w=0 enl,}

La tnica diferencia entre los dos espacios de funciones es el valor que deben tener en
la parte del contorno donde se aplica la condicién de contorno Dirichlet. De esta manera,
las funciones de ¢ son las que satisfacen la condicién de contorno esencial y las funciones
de v satisfacen las condiciones de contorno esenciales homogéneas.

13
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3.3. Meétodo de aproximacion de Galerkin

Para desarrollar el método de elementos finitos, es necesario crear un espacio de fun-
ciones de dimension finita que sea una aproximacion de ¢ y v. Estos espacios de funciones
se denotan como 6" y v" y su dimensién esté relacionada con la discretizacién que se haga
del dominio.

ohc§
v cwo

Por lo tanto, la formulacién débil discreta del problema para un nimero de elementos
nel se formula:

nel nel nel

> | Vw:(DHu ) =Y [ we- fdQ°+> " [ w-hdl* (3.7)
e=1 Qe e=1 Qe e=1 r

e

h

Considerando un elemento aislado de la discretizacion, como se observa en la figura
B, se puede expresar las componentes del vector desplazamiento en funcién de los de-
splazamientos de sus nodos.

U = UlNl + UQNQ + U3N3 + U4N4
v = ’UlNl + UQNQ + U3N3 + U4N4

o o’

1 4

-? .

Figura 3.1: Representacion de elemento cuadrilatero y sus variables nodales

En la expresion anterior u y v son los desplazamientos en direccién x e y. Por otro
lado N; son las funciones de forma del nodo ¢ al que esta asociado. Las funciones N;, son
funciones polinémicas que valen uno en el nodo ¢ y cero en el resto.

A su vez, las funciones de peso w®, son las mismas que las funciones de forma empleadas
para aproximar los desplazamientos. Las siguientes expresiones muestran las funciones de

14



CAPITULO 3. PROBLEMA ELASTICO LINEAL 3.4. COMPARATIVA ECUACION DE CALOR Y ELASTICIDAD

forma para cuadrilateros.
w® = (N7, Ny, N3, Ny)T Para cuadrilateros

Las incégnitas del problema son los desplazamientos nodales u;, que se determinan
resolviendo el sistema de ecuaciones lineales que resulta de la discretizacion.

3.4. Comparativa ecuacion de calor y elasticidad

En esta seccién se compara la formulacion de la ecuacién de calor y la formulacion de
elasticidad vista en las anteriores secciones.

La ecuacién que gobierna la ecuacién de calor es la ecuacién de Laplace. A contin-
uacién se muestra las ecuaciones para un dominio en el que la conductividad en z es igual
a la conductividad en y. La condicién de contorno natural es el flujo en el contorno y la
condicion de contorno esencial es la temperatura en el contorno.

VT =0 enQ
T=g en Iy
k-g—zn:h en I'y,

donde T es la temperatura, g la temperatura impuesta en el contorno, A el flujo de
calor impuestas en el contorno q es el vector flujo de calor ¢ = (¢z,q,)" y n el vector
normal hacia fuera del contorno, n =(n,,n,).

Por 1ltimo el flujo de calor se expresa como:

q=—-kVT donde

k., 0
()

Las principales diferencias de la formulaciéon del problema de calor y la ecuacion de
elasticidad plana son:

= En la ecuacién de calor, la incognita es un escalar, la temperatura; mientras que en
elasticidad es un vector, los desplazamientos en z y en .

= La matriz constitutiva de las ecuaciones de elasticidad es mas compleja que en el
caso de calor. Aunque ambas matrices son simétricas, la matriz constitutiva de la
ecuacion del calor es diagonal, mientras que para elasticidad, presenta términos no
nulos fuera de la diagonal.

En el capitulo 5 se muestra la resolucién de un problema concreto de la ecuacién de
calor empleando el mismo método de estimaciéon de error que en el caso de elasticidad
plana.
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Capitulo 4

Estimacion de error a posteriori

4.1. Meétodo variacional de las multiescalas

. . . ’ o e
Sean x e y dos puntos cualesquiera sobre el dominio §2. El problema de elasticidad
es una ecuacion diferencial de segundo orden con las condiciones de contorno naturales y
esenciales. Se puede representar de forma genérica

Lu=f en(
u=g enly
Bu=h enl

donde L, es el operador de segundo orden y B, el operador diferencial aplicado en el con-
torno para la condicién de contorno natural.

Como se ha visto anteriormente, particularizando los operadores diferenciales y las
variables para el caso de elasticidad lineal.

Vo+f=0 en()
u=g en Iy
on=h en I'y,

El campo de desplazamientos solucion del problema eldstico se puede descomponer en
suma de los desplazamientos de la escala resuelta, w, y los desplazamientos de la escala
no resuelta, . El desplazamiento @, representa la solucién obtenida mediante FEM y
u’ es la diferencia entre la solucién exacta y la solucién FEM, es decir, el error. De igual
manera. las funciones de peso se pueden dividir andlogamente en W y w'.

_ ’
u=u-+u

_ ’
w=w+w

Incorporando esta descomposicion de las funciones de peso y los desplazamientos en la
formulacién débil.
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CAPITULO 4. ESTIMACION DE ERROR A POSTERIORHM.1. METODO VARIACIONAL DE LAS MULTIESCALAS

/Qv-(m +w’):DH-(ﬁ+u’)dQ:/

(@+w’)-fd§2+/ (W+w')-hdl'  (4.1)

Ty

Gracias a la linealidad de la ecuacién anterior, respeto a los desplazamientos, ésta
ecuacién puede ser dividida en dos problemas, uno de escala grosera y otro de escala fina.

= Problema de escala grosera:

/Qv-m;(DH-(ﬁ+u’))dQ:/Qm-fdQ+/F w - hdll (4.2)

h

s Problema de escala fina:

/v-w’ : (DH-(ﬁ+u'))dQ:/w'-fdQ+ w’ - hdly, (4.3)
Q Q

I

Tanto la formulacién de escala fina como la formulacion de escala grosera, gracias a la
bilinealidad y recordando la férmula (3.6)) se pueden agrupar en los siguientes términos:

a(@, ) = —a(W,u ) + (W, f) + (W, h)r, (4.4)

/ /

uw) = —a(w, @)+ (w, f)+ (w,h)r, (4.5)

En el método de elementos finitos, el dominio del problema, €2, se subdivide en ele-
mentos con dominio ¢ y contorno I'* (e=1,2,..., nel). La agrupacién de los dominios y
el contorno de los elementos se denotan respectivamente:

Q= ugglllgze
I = ure re

Por dltimo, el conjunto del contorno interior de los elementos con los que se ha dis-
. . . !
cretizado el dominio se expresa como 'y, =" \ T

Se denomina [-] al operador salto de una funcién a través de una discontinuidad, co-
mo sucede en los contorno entre elementos. Segun la notacion de la figura [4.1] referida al
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vector normal de los elementos que comparten el mismo contorno, el salto de v se expresa
como:

[v-n]=vT -nt+ov" -n~ (4.6)

Figura 4.1: Notacion para el operador salto

Las funciones para elementos finitos son suaves dentro del elemento pero bastas en el
. ./ [A—
contorno entre elementos. Por tanto, la integracion de a(w , @) resulta

a(ww) = 7 afw’ @
= S (], LB + (', )]

De esta manera el problema de la escala fina queda

a('w,,u,) = —('wl,ﬁﬂ)gr — ('w,, [Ba])r

+w', f) + (w', h)ry
= _(wl’ Lu — f)Q' - (w,> [[BE]])ant - (w/a Bu — h)rh

— (w', Bu)p, (4.7)

int

Agrupando en un mismo término, los saltos en el contorno interior entre los elementos
[Bu] y en el contorno exterior Bu — h.

a(w,,ul) = —(w,,ﬁﬁ —fa — ('w,, [Ba])re (4.8)

donde el término [Bu] representa las saltos que se producen entre las tensiones en las
fronteras entre elementos.
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CAPITULO 4. ESTIMACION DE ERROR A POSTERIORI 4.2. ESTIMACION DE ERROR

4.2. Estimacion de error

La escala fina se puede resolver de forma analitica empleando las funciones de Green.
Llamando G’ (z, y) a la matriz de funciones de Green del problema de escalas finas resulta

’

u () ~ — /Q G (z,y)(Lu — f)(y)d, — . G (z,y)([Bu])(y)dT; (4.9)

/ _ g;($>y) gZ(iB,y)
donde Gley) = ( 9,(,y) gi(x,y) )

Las funciones gg(x,y) y g;(x,y) son las funciones de green definidas en el eje z y en
el eje y respectivamente.

En el presente problema de elasticidad lineal, el primer término de la ecuacién (4.9) es
despreciable para elementos lineales y bilineales y, por tanto, la fuente de error del método
de elementos finitos proviene de los saltos entre las acciones exteriores y la tensién que
presentan los elementos situados en el contorno y los saltos de tensiones que se producen
en los contornos de los elementos.

o (@)~ — [ G (,y)([Ba])(y)dr: (4.11)

5

Aplicando la inecuacién de Holders

(@) < ||6 @ y)]

Bu e 4.12
oo 1B (4.12)

Lp(T¢

donde 1 < pg<oo,1/p+1/g=1. Tomando la norma L,

[ @), o <16 @], 105w (4.13)
Seleccionando p =17y ¢ = o0
[ @], o <16 @], 15w (4.14)

19



CAPITULO 4. ESTIMACION DE ERROR A POSTERIORI 4.3. FUNCION BUBBLE

Mediante el teorema de la traza, es posible realizar una aproximacion de la norma de
la funcién de Green de la escala fina sobre el contorno I'* y de la norma de la funcién de
Green en el interior del elemento 2° mediante la siguiente expresion:

, 1 meas(I™®)
20 R O LCL o TS s
HH (@, YL, () s 2 meas(Q) |Ge(x, y)l i (02) L) (4.15)
Si la funcién G.(x,y) no cambia de signo en el interior del elemento
G.(x, Qe = || B* (e 4.16
|16 w)lwg]|, . = 1B @)l (4.16)

donde la matriz B¢(x) es la matriz de funciones bubble del residuo. La manera de deter-
minar éstas funciones bubble se estudia en el siguiente apartado.

e e
e __ Ox Oy
B - e (]
Oy Ox

Asi pues, la expresion ([4.14)) se puede expresar como

el

L (Qe) S ||Be(w)||L7‘(Q§) ||[[BH]]||LOO(F€) (417)

En este caso, ||[Bu]||;_ ., representa el salto maximo que existe entre las tensiones
en el contorno del elemento.

La funcién bubble aporta al estimador de error la informacién especifica del problema
fisico a resolver. En la formulacion del estimador de error, la funciéon bubble se introduce

a través de la matriz 77, como se vera mas adelante.

4.3. Funcion bubble

./ . / .
Para encontrar la solucion de desplazamientos de la escala fina, u , es necesario deter-
minar la funcién bubble, que a su vez es la integral de la funciéon Green. La formulacién
para obtener la funcién bubble o burbuja es:

LB¢ =1 en Q°
B¢=0 enl*®

donde BF€ es la funcién bubble y I es la matriz identidad.
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CAPITULO 4. ESTIMACION DE ERROR A POSTERIORI 4.3. FUNCION BUBBLE

El operador diferencial, £, es el mismo que hemos empleado anteriormente para resolver
el problema de tension plana. El problema se evaliia en un elemento ¢, cuyo contorno es
re.

La funcién bubble se ha obtenido de forma numérica. Para ello, mediante el problema
de elementos finitos empleado para resolver los problemas de tension plana, se ha resuel-
to un problema con carga distribuida unidad sobre un area rectangular y condiciones de
contorno Dirichlet homogéneas. El modulo elastico y el coeficiente de Poisson que se han
impuesto son los mismos que los del problema a analizar. En la figura se muestra el
planteamiento del problema.

L =
11
Qo
'-_...‘,._-f

- - e
. - - e e
T S y
—_ = -
e i i e i i

”:D} i

v=a —_- e e — e
—_ - - - - - v=0
- - - - -

=0 /
U=D}
Figura 4.2: Planteamiento del problema para hallar la funciéon bubble

La solucion en desplazamientos del problema anterior, determina la funcién bubble.
Para realizar la integral de la funcién bubble se dispuso con una malla muy fina para que
la integral fuera lo més exacta posible. En la figura se muestra tanto la malla como
los vectores desplazamiento de cada nodo.

Los desplazamientos que se obtienen tanto en el eje x como en el eje y, se integran
por separado para obtener la matriz 7" que nos servird posteriormente para obtener la
estimacion del error. Como se aprecia, existen desplazamientos tanto en z como en y, que
se denominardan w, = (Up,, Upy). Por tanto, si se toma la norma L; y Lo de la funcién

bubble con dichos desplazamientos

e nel e e nel e
Norma Ll : ||bO:c||L1(Q) = Zi:l Qe ubxl dQ2 HbOy} ‘Ll(Q) = Zi:l Qe ubyl Q2 (418)

21
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Figura 4.3: Malla y desplazamientos de los nodos para hallar la funcién bubble

e nel 2 e e o nel 2 e
NormaLs : (Bl = /S0 Jow lesal? A9 |16, ][, 0 = V/ S0k S L A2 (4.19)

4.4. Expresion del estimador de error

Las componentes de la matriz 75" se obtiene a partir de la norma de la funcién bubble
obtenida.
€ €
||b0x||LT(QE) HbOyHLT(Qe)
B 156, | 10621 1, 0
err_ IBCllL,. ey y || L,.(Q¢) z 1L (Q°)
Tel,Lr — meas@e)l/r meas(Qe)i/7

Conociendo la funcién bubble del problema, podemos expresar la matriz 757, para la

norma L; y Ly como:

e _ IBCl| L, @) porr IBl| Ly 00) (4.20)
el,Lq _meas(Qe) el,Lo meas(ﬂe)l/Q )
Asi pues, el estimador de error queda finalmente
! 1 e\1/r__err meas(f‘e)
[ @], ., = gmeasto)mis, Lo oS B (4:21)
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I% < 0.1 Intolerable
0.1 <I% <05  Deficiente
0.5 <% <20 Optima
2.0 < I% < 5.0 Conservadora
5.0 < I < oo Sobrestimado

Tabla 4.1: Valoracion de la eficiencia

4.5. Eficiencia global y eficiencia local

Una manera de medir la calidad de un estimador de error es comparar el error estimado
con el error real que se produce. De esta manera, se definen los conceptos de eficiencia
local y eficiencia global. La eficiencia local es la relacion entre el error estimado en un
elemento y el error real que se produce en él.

¢ = ||Error estimadol| _ _||776|\ (4.92)
||Error real|l [T — ul|q.
donde ||-|| es la norma a considerar. En nuestro caso la variable que nos interesa son los

desplazamientos. El error estimado se denota como n¢. Como ya se ha comentado anteri-
ormente, los desplazamientos obtenidos de la solucién aproximada de elementos finitos es
u y denominado w como la solucién exacta.

Por otro lado, se define la eficiencia global como el cociente de las suma de las normas
del error estimado y error real en todo el dominio. Las normas mas empleadas son la
norma L1y Lo

l l
6, = 2y 15 6., = 2 i (5]
S 1 — g TN T [ -l

(4.23)

En la tabla [4.]] se muestra la valoracion subjetiva con que se evalia la eficiencia y con
la que se determina la calidad de la estimacién de error.
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Capitulo 5

Resultados

En este capitulo se presentan los resultados de las simulaciones realizadas sobre los
distintos problemas de tension plana. El calculo de estimacién de error se ha realizado me-
diante el procedimiento de calculo expuesto. De acuerdo con los objetivos, se muestran los
resultados mas significativos del trabajo, donde se analiza la eficiencia local, la eficiencia
global y la sensibilidad de las mismas respecto a los pardametros principales del problema.
El moédulo elastico y el coeficiente de Poisson seleccionados para las simulaciones son los
tipicos del acero. El médulo eldstico es E = 2.1e11N/m” y el coeficiente de Poisson v = 0.3.

Primeramente, se muestra la aplicacién de esta metodologia de estimacién de error
para la ecuacion del calor, que al ser también una ecuacién eliptica, guarda cierta relacién
con la ecuacién de elasticidad.

5.1. Problema de la ecuacion de calor

Para la ecuacién de calor, se ha utilizado el mismo método que para elasticidad, en el
calculo del error. Evidentemente, al tratarse de un problema diferente el valor de 7 para
la estimacion del error es distinta que para el calculado en elasticidad [10]. En este caso
el valor de 7 segin sea la norma L; o Ly es:

h? h?

_ __ 1
28.45 - k Ta = 5094 k (5-1)

TLl

donde h es la dimensién del elemento y & es la conductividad.

El problema a analizar se muestra en la figura 5.1l Es un dominio rectangular de 10
m de largo y 4 m de ancho en cuyo contorno no hay flujo de calor, a excepcién de dos
zonas en la parte superior en las que se ha impuesto dos temperaturas diferentes. En la
parte de la izquierda se ha impuesto una temperatura T1=10 °C y en la parte derecha
una temperatura T2=0 °C.
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OS

5.1. PROBLEMA DE LA ECUACION DE CALOR

q,=0

4 m 2m 4 m
T1 y T2
s 8 R q.=0 7 N
q,=0
q,=0

Figura 5.1: Problema de la ecuacion de calor

1l

= = | [ | | ||-.I‘\‘-t:::____ : — =] I|I T | e —
| NS T - } ~>\ S
T | VARSI, P ST | | ﬁ‘\\ E -
e 3 .__,.-""-' f/-ll,"fln"llfllll“l |I II III| H‘-ﬁ\\ \‘.\\. e — / /.I"/I ll I "|III i \ H--___
—~ T ."I | %y e 2 ’ . \
7 NN 7 TN B
= -”; S0 | | b ) \-., \ 5 - L l." . 3 s
.'"; :'II |I|I | | | I| \ b \"- ."III |"I lII ! | | I II 'llll \\
'/ 'lJ |II |I |I | || II III III"I .11'| ! ; |'I 'I |I | | I I| " ..-"-
i . . [ 1] | | | 1 1 1
SOLUCION APROXIMADA SOLUCION EXACTA

Figura 5.2: Solucién de la ecuacién de calor

En la figura[5.2] se muestra la solucién obtenida mediante elementos finitos y la solucion
exacta, asi como la malla empleada. En este caso, se ha considerado como solucién exac-
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CAPITULO 5. RESULTADOS 5.2. PROBLEMAS SOMETIDOS A FLEXION EN EL CONTORNO

ta, la solucién obtenida con una malla muy fina. La figura de la izquierda es la solucion
aproximada obtenida por elementos finitos y la figura de la derecha es la solucion exacta.
Se representan las lineas isotermas. Entre cada curva de nivel hay 0.5 °C.

Etfe

Figura 5.3: Eficiencia local para la ecuacién de calor. Norma L, (izquierda) y Lo (derecha)

En la figura se muestra la eficiencia local del estimador de error. En practicamente
todo el dominio, la eficiencia es mayor de la unidad y por tanto va del lado de la seguridad.
Las eficiencias locales y globales obtenidas con L; y Ly son muy similares. La eficiencia
global para la norma L; es 0,98879 y para Ly es 1,9337.

5.2. Problemas sometidos a flexion en el contorno

En primer lugar, se estudian casos sencillos en dominios rectangulares en los que los es-
fuerzos aplicados y el estado tensional no presentan excesiva complejidad. Los tres primeros
problemas analizados son problemas en los que se aplica flexién simple y compuesta en las
caras del contorno.

En la figura [5.4] se muestra la geometria, las cargas y condiciones de contorno de los
problemas que se describen a continuacion:

= Problema (a): El dominio es rectangular y estd sometido a flexién pura en los ex-
tremos. El cuerpo estd apoyado en el centro de la cara inferior.

= Problema (b): Presenta la misma geometria y condiciones de apoyo que el problema
(a) pero en este caso, se aplica una flexiéon en los extremos més un esfuerzo axil. Por
tanto, el esfuerzo aplicado es una flexiéon compuesta.

= Problema (c): La geometria y las condiciones de apoyo son las mismas que en los
problemas anteriores, pero en este problema existe flexién en ambos ejes.

Para los problemas realizados en este trabajo se ha escogido arbitrariamente como di-
mensiones del dominio, una longitud de 10 m y una anchura de 2 m.
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CAPITULO 5. RESULTADOS 5.2. PROBLEMAS SOMETIDOS A FLEXION EN EL CONTORNO

Problema (a) , Froblemna  (b)

A r B3 T —KE

~

-
(51

o ¢
—4—
& X

Figura 5.4: Problemas sometidos a flexién en el contorno

5.2.1. Solucion analitica de los problemas

Para evaluar el error que se comete en la soluciéon del método de elementos finitos vy,
de esta manera, calcular la eficiencia, es preciso conocer la solucion exacta del problema.
A continuacién, se muestran las soluciones analiticas de los problemas (a), (b) y (¢). En
los anexos se detalla detenidamente el proceso de céalculo de la solucién exacta.

Problema (a)

Problema (b)

M, Nz
M, , vM, , vM,, N,
U= o T oprY Tapr¢ " WapWto
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Problema (c)

_ Mm My 2 My 2 My 2
“ T ELYY Ve E” TamnY TaE”
VM.CB 2 MmLIZQ VMm 2 My
Vo= —r07 Y 7 7+ =y

2E1, EI, ' 2EI, ' EI,

donde M,, M, y N son los esfuerzos de momento en z, momento en y y axil respec-

tivamente. [, = f_cc y* - dy es el momento de inercia en el eje z y I, = fl/2

_l/2x2 ~dx es el

momento de inercia en el eje .

5.2.2. Solucidon de elementos finitos

Para realizar las simulaciones se ha realizado un mallado de 20 elementos en z y 4
elementos en y como se muestra en la figura [5.5]

Figura 5.5: Forma del mallado

En las figuras (.6 5.7 y 5.8 se muestra la deformada de los tres casos distintos anal-
izados. Se muestra las cargas aplicadas y los vectores del desplazamiento de los nodos.
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Problema (a)

| ! |
| |
ff‘}‘ﬂ,4 _w\\\\\
rfr?i‘a, T
TTTma, A.4T1T
‘i.kﬁk», 44?‘?‘???
.\\\\Ru.— caar AV

Figura 5.6: Deformada del problema (a)

Problema (b) y

=
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& X
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A S SO
T e a h
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L= o~

Figura 5.7: Deformada del problema (b)

Problema (c)
y
&
= i %
. I |
I* 1
| rh"'\v\g\\
P h 4wy, i n w0
.J'w'l%a‘,. R T
NE o v s on 4 o Y
WA e, Lt t

Figura 5.8: Deformada del problema (c)
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5.2.3. Analisis de la eficiencia del error

Dela figura a[0.T4l se muestra en mapa de colores la eficiencia local tanto en el eje

z como en el eje y para los problemas (a), (b) y (c¢). Se muestra la eficiencia tanto con la
norma L; como con la norma L.

= Problema (a)

En este caso, se ha aplicado un momento en los extremos del dominio de M, = 1000
N m. En las figuras y [B.101 se observan las eficiencias locales.

EFICIENCIAEN X
imcx
20
= 15
1
b s
& i
9_ 05
e %
o 20
— | 1s
= 10
= 5
i 2
o l 1
= 05
Figura 5.9: Eficiencia en z. Problema (a)
EFICIENCIAEN Y
Effic y
-
. o
< 0a
= 028
% 026
2 0.24
oy
o 042
il 04
< 038
= 036
44 o0
(@] o032
¥l o3

Figura 5.10: Eficiencia en y. Problema (a)
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5.2. PROBLEMAS SOMETIDOS A FLEXION EN EL CONTORNO

= Problema (b)

El esfuerzo axil aplicado es N, = —1000N y el el momento en x es M, = 1000N m

EFICIENCIAEN X

imu:x
= i

1
< 3

z :
g 05
e x

o™

o 55
=< L]

= 5

i 2

(8] I 1
= 05

Figura 5.11: Eficiencia en z. Problema (b)
EFICIENCIAEN Y
Effic y
-

o 0az

< m 03
= 028
: =
2 0.24
oy
o 042
23 04
e 038
= 036
44 o0
O [
¥l o3

Figura 5.12: Eficiencia en y. Problema (b)

Se observa que la eficiencia es la misma para el problema (a) que para el problema
(b). Este resultado es coherente, ya que la tinica diferencia entre ambos problemas es
el esfuerzo axil en el eje = que existe en el problema (b). La solucién que proporciona
el método de elementos finitos de una barra traccionada es exacta, ya que en este
caso los desplazamientos son lineales. Por esta razon, el esfuerzo axil aplicado no
introduce error alguno en la solucién de elementos finitos del problema (b). Por otro
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lado, nuestro estimador de error tampoco se ve afectado. De ahi, que la eficiencia
entre los dos problemas sea la misma.

= Problema (c)

En este problema, como ya se ha comentado, se aplica momento de flexiéon en ambas
caras del dominio rectangular. En la cara superior e inferior el momento es M, =
100000N m y en las caras laterales el momento es M, = 1000N m. La diferencia de
la magnitud del momento aplicado en el eje x y en eje y se debe a que la inercia en y
es mayor que en z y por tanto se ha aumentado el momento M, para que la tension
en las caras del dominio sean del mismo orden.
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O 0-4
= 038
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= o 0.54
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Figura 5.13: Eficiencia en z. Problema (c)
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Figura 5.14: Eficiencia en y. Problema (c)
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Graficos de eficiencias locales

Para evaluar la eficiencia local en los elementos de los problemas, se han agrupado
dichas eficiencias segun la tabla [£1]l En las figuras 5.15] y 017 se representan los
diagramas de barras que muestran la frecuencia con que se repite una eficiencia local en
los elementos tanto en la norma L; como Ls.

Eficiencia en X Eficiencia en Y
1 1
0.8 0.8
w w
< 06 T 06
= @ Norma L1 £ @ Norma L1
3 04 @ Norma L2 2 04 @ Noma L2
o o
- g2 - L 02
0 o
<01 0105 0520 2050 >5 <01 0105 0520 2050 =5
Rango de eficiencias Rango de eficiencias
Figura 5.15: Eficiencia en z y en y. Problema (a)
Eficiencia en X Eficiencia en Y
1 1
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@ &
5 06 5 06
S @ Norma L1 - @ Norma L1
2 04 @ Norma L2 2 04 @ Norma L2
i @
0 ]
<01 0105 0.5-20 2050 =5 =01 0.105 0520 2050 =5
Rango de eficiencias Rango de eficiencias

Figura 5.16: Eficiencia en
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Figura 5.17: Eficiencia en z y en y. Problema (c)

Eficiencia Global

Por tltimo, en la siguiente tabla[b.]lse muestran las eficiencias globales obtenidas tanto
en el eje £ como en el y.

5.2.4.

Eficiencia x Eficiencia y
Norma L1 | Norma L2 | Norma L1 | Norma L2
Probl (a) 2.475 2.73 0.308 0.358
Probl (b) 2.475 2.73 0.308 0.358
Probl (c) 1.544 1.816 0.309 0.360

Tabla 5.1: Eficiencia globales en z e y en problemas a, b y ¢

Analisis de sensibilidad del estimador

Es interesante comprobar como se comporta el estimador de error al variar los princi-
pales parametros que definen el problema. En este caso, se ha estudiado la eficiencia para
diferentes médulos elasticos y coeficientes de Poisson, los cuales definen el comportamien-
to de un material elastico lineal. También se ha analizado la influencia del tamano del
elemento de la malla.

= Modificacion de Moédulo elastico, E

Para el analisis de sensibilidad aplicado al médulo elastico, £, se ha tomado v = 0.3
y E = 2.1e10,2.1el1y2.1e12 N m. Se ha observado que el estimador proporciona
la misma eficiencia independientemente su valor, como se aprecia en la figura [5.18]
Esto se debe a la proporcionalidad que existe entre el modulo elastico y los desplaza-
mientos, que es la misma que existe entre el médulo elastico y el error estimado.
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Eficiencia desplazamientos en eje X Eficiencia desplazamientos en eje Y
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Figura 5.18: Influencia del médulo elastico en la eficiencia. Norma Ly vy Lo

De esta manera, al doblar el valor del médulo elastico, los desplazamientos que pro-
porciona la solucién de elementos finitos y la solucion exacta es justamente el doble.
Por tanto, el error real que comete el método de elementos finitos es el doble. Por otro
lado, el error estimado también se dobla ya que la funcién bubble dobla su valor y el
estimador es proporcional a esta funcién bubble. Por tanto, al realizar el calculo de
la eficiencia, en la que se divide error estimado y error real, se obtiene el mismo valor.

= Coeficiente de Poisson, v

Desde un punto de vista fisico, los valores que puede tomar el coeficiente de Poisson
de un material va de 0 a 0,5 sin llegar a estos extremos. Por ello, se ha tomado
como médulo elastico £ = 2.1el1 N m y se ha realizado un barrido del parametro
coeficiente de Poisson desde 0,05 a 0,45. En las figura y se muestra los
valores de eficiencia global obtenidos para los tres problemas analizados y para las
normas L1 y Ly. Los problemas (a) y (b) se han agrupado al tener la misma eficiencia.

s Tamano del elemento

Una cuestién importante a analizar en un estimador de error es ver si la eficiencia
se ve afectada por el tamano de los elementos. Para estudiar la sensibilidad de la
eficiencia, se ha partido de un tamano de elemento h y se ha ido haciendo el elemento
méas pequeno h/2 y h/4. En este caso, h es el lado del elemento cuadrilétero.
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Figura 5.19: Influencia del coeficiente de Poisson en la eficiencia. Norma L1
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Figura 5.20: Influencia del coeficiente de Poisson en la eficiencia. Norma 1.2

En las figuras B.211 y B.22] aparece la eficiencia global obtenida con los distintos
tamanos de malla para las normas Ly y Ly con v = 0.3 y E = 2.1ell N m. Se
aprecia que la influencia es minima, exceptuando la eficiencia para el eje z en los

problemas (a) y (b).
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Figura 5.21: Influencia del tamano de malla en la eficiencia. Problema a y b
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Figura 5.22: Influencia del tamano de malla en la eficiencia. Problema c

5.3. Viga en voladizo y viga biapoyada

En este apartado, se muestran los resultados obtenidos en las simulaciones realizadas
para dos casos en los que el estado tensional de los cuerpos es de mayor complejidad. En
la figura [5.23] aparecen los problemas que se han estudiado.

El primer problema, se trata de una viga rectangular en voladizo con una carga P en

el extremo opuesto del empotramiento. El segundo caso, el problema a resolver es una vi-
ga rectangular biapoyada en la que se ha aplicado una carga distribuida en la cara superior.

S x
IL

¥

Pabhbbhhihl b
n

Figura 5.23: Problemas de viga empotrada y viga apoyada

Al igual que en la seccion anterior, se ha seleccionado un dominio con una longitud de
10 m y una anchura de 2 m.

5.3.1. Solucién analitica de los problemas

Como en los problemas anteriormente analizados, hay que conocer la soluciéon exac-
ta del problema a tratar. De esta manera, se puede hallar el error que se comete con el
método de elementos finitos. A continuacién, se muestran las soluciones analiticas de los
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problemas. En los anexos se detalla detenidamente el proceso de calculo de la solucién
exacta.

Problema viga empotrada

P-z?2.y v-P-y3 P-y3 P-1? P.c

- _ : 2

Y 2FE] 6E] sic T SEr ~2ig) Y (5:2)
v-P.x-y* P-22 P-I?.a2 PP

V= T0mr T GBI T 2EI T 3EI (5-3)

Problema viga biapoyada

4 2.9 2
q Y cy 24 2 2 Y Y Lo
S A 2o Y 5.5
! 2EI{12 - eyt =)+ 5y (5:5)
q [Pa* 2t 1,, L a2
QEI[ 5 T —|—(1—|—2V)CCL’]+
5 ql* 12¢2 4 v
B S £ T el G
+24E[[+5l2(5+2)]

(& . . .,
donde I = f_c y? - dy es el momento de inercia de la seccién transversal.

5.3.2. Solucién por elementos finitos

En este caso, para las simulaciones se ha realizado un mallado de 20 elementos en z y
4 elementos en y como se muestra en la figura [5.24]

En la figura se muestra la deformada de la viga empotrada y de la viga apoyada
obtenida mediante el método de elementos finitos. Se representan los vectores desplaza-
miento de los nodos del mallado.

5.3.3. Analisis de la eficiencia del error

En este aparatado se muestra las eficiencias locales obtenidas en la estimacién de error.
En las figuras 5.26] £.27] 5.28 y [5.29] se muestra en mapa de colores la eficiencia tanto en
el eje x como en el eje y para los problemas estudiados.
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Figura 5.24: Forma del mallado
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Figura 5.25: Deformada de la viga empotrada y de la viga apoyada

= Viga empotrada

El valor de la carga P colocada en el extremo del voladizo es de 1000 N.

EFICIENCIAEN X

NORMA L1

NORMA L2

Figura 5.26: Eficiencia en x. Problema viga empotrada
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EFICIENCIAEN Y

NMORMA L1

NORMA L2

Figura 5.27: Eficiencia en y. Problema viga empotrada

= Viga apoyada

En este caso, la carga distribuida en la viga es de 100 N/m.
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Figura 5.28: Eficiencia en x. Problema viga apoyada

Por ltimo, en la siguiente tabla[5.21se muestran las eficiencias globales obtenidas tanto
en el eje £ como en el y.
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EFICIENCIAEN Y
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Figura 5.29: Eficiencia en y. Problema viga apoyada

Eficiencia x Eficiencia y
Norma L1 | Norma L2 | Norma L1 | Norma L2
Viga empotrada | 5.85e-2 6.03e-2 1.37e-2 1.38e-2
Viga biapoyada 0.1968 0.1958 3.533e-2 3.88e-2

Tabla 5.2: Eficiencia en x e y en problemas a, b y ¢
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Capitulo 6

Conclusiones

A raiz de los resultados obtenidos se extraen las siguientes conclusiones:

= En los problemas (a), (b) v (c), las eficiencias tanto locales como globales estan dentro
de limites aceptables. En general, la eficiencia suele ser menor que la unidad, es decir,
la estimacion de error es mas pequena que lo que realmente es. Un aspecto positivo,
es que en las desplazamientos en el eje y, que es donde se produce el desplazamiento
mas importante, la dispersion del error es muy pequena, existiendo entre el error real
y el error estimado un factor de escala practicamente constante en todo el dominio.

= Se aprecia que el valor de la eficiencia local y la eficiencia global no se ve afectada de
forma relevante por el tipo de norma empleada, L y Lo, siendo la eficiencia obtenida
mediante la norma L, un poco mayor que la eficiencia de la norma L;.

= En el estudio de sensibilidad, se ha observado que la calidad de la estimacién de error
no se ve afectada de forma notable por la variacion de los parametros que definen las
propiedades del material. Respecto al modulo elastico, la eficiencia es independiente
de su valor. Por otro lado, el estimador de error es poco sensible a la variacion del
coeficiente de Poisson, v. Ademas, tampoco afecta de forma significativa el tamano
de la malla, siendo las eficiencias de la estimacién del error similares para mallas
diferentes.

= En los problemas de la viga en voladizo y la viga biapoyada los resultados de las
eficiencias no son tan satisfactorios. En estos problemas, el estado tensional es mas
complejo que en los problemas méas bésicos como son las problemas (a), (b) o (c).
En gran parte del dominio, la estimacion de error es bastante méas pequena que el
error real. Las posibles causas de esta discrepancia son:

e Las aproximaciones realizadas en la funcién de Green, mediante el teorema de
la traza, en el planteamiento de la formulacién del error.

e Comparando con los problemas (a), (b) y (c), en los problemas de la viga em-
potrada y biapoyada, existe presencia de esfuerzo cortante, donde posiblemente
el estimador de error no trate de forma adecuada el efecto de este esfuerzo a la
estima del error.
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e Ademads, en relacion a la matriz constitutiva de la ecuacién del calor y de la
ecuacién de elasticidad, es en los términos de fuera de la diagonal donde existe
una diferencia significativa entre ambas. En la ecuaciéon de calor, estos valores
son nulos, mientras que en la ecuacién de elasticidad no lo son. Son precisamente
estos valores fuera de la diagonal los que influyen en la aportacion que hacen los
esfuerzos cortantes. Por tanto, seria conveniente en un trabajo futuro, predecir
de manera méas 6ptima la influencia del cortante en la estimacion del error.
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Anexo A

Solucion analitica: Problema flexion
Pura

En este caso, el problema es una viga de gran canto sometida a flexiéon pura. Las
dimensiones y ejes adoptados para el problema de flexién pura se observan en la figura
Segin se muestra, las cargas que se aplican en el contorno del dominio, debido al
momento aplicado en los extremos, es una carga distribuida de forma triangular, es decir,
la magnitud de la carga aplicada es proporcional a la distancia respecto a la fibra neutra.

¥

M'{C o ‘_\Mx
g
c J x

> T P

Figura A.1: Problema flexién pura. Dimensiones y ejes

La distribucién de la carga en el contorno es igual a las tensiones que se producen en la
viga en una seccién perpendicular al eje z. Por otro lado, la tensién en y, o, y el cortante,
Ty, SON NUlOS.
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ANEXO A. SOLUCION ANALITICA: PROBLEMA FLEXION PURA

Oy =

M,
I

donde M, es el momento aplicado e [, = f_cc y? - dy es el momento de inercia.

Conociendo el estado tensional en el dominio del problema, es inmediato hallar el es-
tado de deformacion.

ou 1 M,
Er = % = E(UI I/O'y) E—Ix (AQ)
ov 1 M,
€y = oy E(Uy —vo,) = _VELBy (A.3)

Integrando e imponiendo las condiciones de contorno apropiadas se obtiene el campo
de desplazamientos.

u= Tyt L) (A4)
M,
v = _VQEImy + fo(x) (A.5)

Para determinar fi(z) y fa(x) de las ecuaciones anteriores, se aplica la condicién de
que el esfuerzo cortante es cero.

ou Ov M:(:x_'_ f1(y) n dfz(x)

8_y+%)20—>Elx oy ox

Toy = G( =0 (A.6)

Por lo tanto, para cumplir la ecuacién anterior las funciones fi(y) y fa2(x) se definen
como se muestra a continuacion.

fg(l’) =M 1’2+A

2B,
fily) =0
Sustituyendo en (A.4)) y (A.H), las funciones fo(z) y fi(y)
M,
u= Ejmy-:c (A7)
B M, M,
v= V2Efmy 2E]mx +A (A.8)
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La constante A se debe obtener aplicando una condiciéon de contorno. En esta caso, la
condicién de contorno es que el desplazamiento vertical en el apoyo es cero.

z=0

Y= —c o=t p A== A= M2

2E1; 2EI;

Finalmente, los desplazamientos para el problema de flexién pura en una viga de gran
canto quedan:

M,
EI,

y-x (A.9)

u =

vM, , M,z?> vM, 9
_ _ Al
5e1,Y ~ 2EL T 2ELC (A.10)

v =
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Anexo B

Solucion analitica: Problema flexion
compuesta

Este problema presenta la misma geometria y condiciones de apoyo que en el caso del
anexo [Al La unica diferencia es la carga a la que esta sometida la viga. En los laterales,
se ha anadido al momento del problema de flexién pura, un esfuerzo axil. En la figura
se muestra la disposicion de las cargas y las tensiones aplicadas en el contorno.

Nx L C ‘_\Mx Nx
——
E e xJ

"

I

g

Figura B.1: Problema flexién compuesta. Dimensiones y ejes

Debido a la elasticidad lineal, se puede obtener la solucién analitica mediante el prin-
cipio de superposicion, a partir de la solucién del anexo [Al De esta manera, la solucion
exacta es la suma de la solucién del anexo[Aly la solucién de la viga sometida a esfuerzo axil.
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ANEXO B. SOLUCION ANALITICA: PROBLEMA FLEXION COMPUESTA

La viga sometida a una carga axil, N,, el estado tensional y de deformacién es

Tensiones:

__ N,
Oz = 3¢

Oy = Tpy =0

Deformaciones:
a.
£, =%
— 0
€y = V%

Los desplazamientos, u y v, se determinan integrando las expresiones de las deforma-
ciones.

ou N,

ov N,
Ey uay—m) VQCEy+ (B.2)

Las constantes de integracion se determinan imponiendo las condiciones de contorno.
En este caso, la condicién es que tanto el desplazamiento en z como en y es cero en el apoyo.

}—>{

_ — 0 — o, Ne _ N,
y=—c v=0=vytc+B— B=—-vy%c

2cE

Por tanto, los desplazamientos generados por el esfuerzo axil son

N,
= 55" (B.3)
N,

Sumando esta solucién a la solucién del anexo [Al se obtiene la solucién analitica de
este problema

— xT T B
U E[xy + ok (B.5)
vM, M,z*> vM, 9 N,
_ _ _ B.6
U=y T BL TaErC VapWto (B.6)
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Anexo C

Solucion analitica: Problema de
flexion en los dos ejes

Este problema tiene una geometria y unas condiciones de contorno iguales al anexo [Al
La carga a la que estd sometido es también la misma que en el anexo [Al pero anadiendo
un momento, M, en la cara superior de la viga, como se aprecia en la figura Por
tanto, la solucion analitica de desplazamientos se puede descomponer como suma de dos
soluciones parciales. La primera de ellas sera la solucion debida al momento M, aplicado
en las caras laterales, obtenida en el anexo [Al La otra solucidn, es la debida al momento
M, que solicita la cara superior e inferior, y que se expone a continuacion.

¥
My

LN

Mx
C i

.

-

C
-
c X

Figura C.1: Problema flexion en los dos ejes. Dimensiones y ejes

En primer lugar, para hallar los desplazamientos que produce el momento M, es nece-
sario conocer las tensiones y deformaciones que produce este momento.
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Tensiones:
— My
oy =7,

Deformaciones:
_ou _ _ My
€2 = 5 — V&1, ?*

_ 0w _ My
&y = 5y — EL,Y

Los desplazamientos u y v se obtienen integrando las ecuaciones de deformacion.

_ B M,

En =5 U I/2E[y$ + fi(y) (C.1)
B ov M,

£y = —I/—ay —v= Ely:cy + fo(2) (C.2)

Las ecuaciones fi(y) vy fo(x) se pueden determinar a partir de la condicién de que el
cortante es nulo.

Txy:()—)g—z %:0 (C.3)

Sustituyendo u y v en la ecuacién (C.3)),

Myy  0fily) | 9fa(x)
pu— .4
EI, * dy * O0x 0 (€4
por tanto 8%—5’) = —Ab{—ﬁ’ y 8%—9(6@ = 0 y las funciones fi(y) y fo(z) quedan
M 2
h@)=4  hly)=-—g4-+B (C.5)
y

Los desplazamientos u y v se pueden expresar como

y 2 yy2
My 2 M B .
Y= TELY T 2EL T (C-6)
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M,
v = E—]y:)sy + A (C.7)

Las constantes A y B se obtienen al imponer las condiciones de contorno. En este caso,
el desplazamiento en = e y es cero en el apoyo situado en la cara inferior.

r=0 u=0=—5+ B B =40
y=—c v=0=A—3 A=0

Por tanto, los desplazamientos u y v producidos por M, son

M, , My® M,
_ _ C8
Y=L T 2En ok, (C-8)
My

A estos desplazamientos hay que sumar los obtenidos en el anexo [Al debido al momento
M,. Por tanto, los desplazamientos de la solucion exacta del problema, contando con las
contribuciones de M, y M, son

M, M, , My? M,
M _ C.10
YT ELY U TV3ELY T 3EIL, 2RI, (C-10)
M, , Maz® vM,, M

2F1, El, 2E1, El,
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Anexo D

Solucion analitica: Problema viga
empotrada

En la figura[D.Ilse muestra el esquema que representa la viga empotrada con sus medi-
das. La viga es una viga rectangular de gran canto, empotrado en uno de sus lados y en su
lado opuesto hay una fuerza de valor P. En la cara superior e inferior no hay ninguna carga.

¥ c
c P

X

Figura D.1: Viga empotrada con carga P en su extremo. Dimensiones, carga y ejes.

La distribucién de tensiones en la viga que resulta de la aplicacion de estas cargas es
la siguiente:

_ 3P-x-y
Oz = —75.3
oy, =0 .
_ 3P y
Ty = —1.(1 = &)

Definiendo el momento de inercia, I = §c3 , las expresiones anteriores quedan:

_ _Pazy
Op = =77
oy, =0

_ P (.2 2
Tey = _ﬁ(c _y)
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ANEXO D. SOLUCION ANALITICA: PROBLEMA VIGA EMPOTRADA

Para que realmente existan estas tensiones en el dominio, en virtud del principio de
Saint-Venant, la carga aplicada en el borde del empotramiento tiene que tener una dis-
tribucién parabdlica, tal y como ocurre con 7,,. De lo contrario, en el borde del voladizo
la distribucién de tensiones no sera la indicada anteriormente.

Aplicando la ley de Hooke, se obtienen las deformaciones producidas por el estado
tensional:

_Ou _ ox _ _ Puzy _ v _ . 0s _ ,,Pxy
€= 9s = E — T EBI Cy =%y~ VE = VEr
o, =0

—Ou v _Twy _ _ P (2 2
%y_aijaz_G_ 2IG(C y)

donde E y G son el modulo eldstico de Young y el médulo eléstico transversal respectiva-
mente.

Para obtener los desplazamientos, hay que integrar las ecuaciones de las deformaciones
anteriores.

P2y
2ET1

v-P-x-y?

+ fi(y) v = T*‘ﬁ(i’f) (D.1)

u =

Las funciones fi(y) y fo(z), han surgido de realizar la integral. Sustituyendo u y v en
la ecuacién de la deformacion tangencial se obtiene una relacién entre fi(y) y fo(z).

P a? df1(y) I/-P-y2 df2(1')_ P, 2
Yo7 S PRy >y S iy T (D:2)

Agrupando en la expresién anterior los términos constantes y los términos que dependen
de x e y.

Flx)+Gy) =K (D.3)

2 dfs(x Py? vPy? d
donde F(z) = —% + ffl; )7 Gly)=—2L + 2L 4 f;_Z(Jy)_
Como puede comprobarse, F(z)y G(y) deben de ser constantes, ya que de lo contrario,
si F(z) variara con x, y G(y) variara con g, la ecuacién (D.3) no se cumplirfa. Llamando

F(z) =dy G(y) = e la ecuacién (D.3)) queda:

(D.4)

56



ANEXO D. SOLUCION ANALITICA: PROBLEMA VIGA EMPOTRADA

Por tanto, podemos obtener una expresién para las funciones fi(y) y fa(x).

dfy(z) P-a? P2
= f— . D
. Yol +d — fo(x) o +d-x+h (D.5)
fi(y) vPy*  P-y? vPy® Py’
= = 2 te. D.
dy 2Bl T e hW =g teigtevty (DO)

Introduciendo fi(y) y fo(x) en las expresiones de u y w.

P:L'zy I/Py3 Py3
- - : D.
5ET  6EI 61G T ¢YTY (D7)

vPx -y?> Pa?
V= 5mT +6E]+d-x—|—h (D.8)

Las constantes d, e, g, h se pueden determinar a partir de tres condiciones de contorno
y de las ecuaciones (D.7)) y (D.8). En primer lugar, impondremos las condiciones de que
el desplazamiento horizontal y vertical es nulo en el centro de la seccién del empotramiento.

Enx=ley=0—=u=0ywv=0,sustituyendo en las ecuaciones anteriores.

urz=Ly=0)=0—9=0

.73
ve=1Ly=0)=0—->h=-CL—d-I

Las ecuaciones para los desplazamientos (D.7) y (D.8)), al introducir el valor de estas
constantes, resultan como se expresan en (D.9) y (D.10)). Por tanto, inicamente queda por
determinar las constantes d y e.

_p.I2.y_V.p.y3

DY) oic e (D-9)
v-P-z-y* P23 P.3
V= —py ~%IC +d-at—6E[—d-l) (D.10)

Para determinar la constante d, impondremos la restricciéon que anula la rotacion sobre
el centro de la secciéon de empotramiento.

Enz=ley=0— (£),-1y-0 = 0. Por tanto, derivando la ecuacién de (D.I0).
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ANEXO D. SOLUCION ANALITICA: PROBLEMA VIGA EMPOTRADA

dvy _ P.? _ _ _ P2
() =g +d=0—d=—55

La constante e, se puede hallar directamente aplicando la ecuacién (D.4).

_ _ pc _ b2 _ P&
d+e=—5g = €=55 — 3G

De este modo, sustituyendo en las ecuaciones (D.9) y (D.I0) las constantes d y e por
su valor, los desplazamientos quedan de la siguiente manera.

Pz?*y  vPy? Py P2 Pc?
_ B _ D.11
Y 557~ 65r Tora T 2Bl 2rg) (D-11)
Pry?  Pz3 P2z PP
vPzy @ Plx (D.12)

V=

5EI | 6BI  2EI | 3EI
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Anexo E

Solucion analitica: Problema viga
apoyada

En este problema, se considera una viga de seccién rectangular estrecha, apoyada en
sus extremos.

2 T4

Figura E.1: Problema de viga apoyada. Dimensiones y ejes

En la figura [E.T] se ilustra la disposicién del problema. La solicitacién de la viga es una
carga distribuida en la cara superior de valor gq.

Las condiciones de las tensiones en los contornos del dominio son:

- Cara superior e inferior:

(Txy)y::l:c = 07 (Uy)y:+c = 07 (Uy)y:—c = —q (El)
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- Cara laterales:

/ Teydy = %4l / o.dy =0, / o:ydy =0 (E.2)

—C —C —C

Las dos ultimas ecuaciones de (E.2]) establecen, que sobre los extremos no hay esfuer-
zo longitudinal ni ningtin momento flector. Las condiciones (EI) y (E2) se cumplen al
combinar varias de las funciones de Airy.

a b c
01 = 6x2y3 g = §x2 O3 = §x2y (E.3)

A partir de estas funciones de Airy se generan las siguientes tensiones

— (2, _ 2,3
oo = a(zy — 31°)
1
oy = say® +cy+b
Ty = —axy? — Cx
Reemplazando estas componentes de tension en las condiciones (E.Il) se determinan
las constantes a, b y c.

c=77 (E.4)

2 3 q , 9 3
= —_—— —_— = -_—— —_— E.
0p = =507y = 5y°) = —57 @y = 5y7) (E.5)
3¢ 1 2 g 1 2
v _@(gyg — Y+ 503) - _ﬁ(§y3 — Y+ 503) (E6)
3q q
Toy = — (¢ = ) = —on (¢ = ) (E.7)

Como se puede ver, esta solucion de tensiones cumplen con las condiciones de tensiones
(E) v las dos primeras condiciones de (E-2). La tltima condicién no es satisfecha. Esta
condicion expresa que en las caras laterales, no existe un par aplicado. Por tanto, impon-
dremos una flexién simple o, = d - y, que proviene de la funcién de Airy ¢, = %y?’. El

coeficiente d se obtiene al imponer precisamente la condiciéon comentada en los extremos
xr = =*l.

C (& 3 2
[ vty = [ 152y - ) + dulydy =0 (E5)
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por tanto

23 _ = E.9
40(02 5) (E-9)
De manera que la tensién o, queda
q ., 5 2 5.0 3¢, 2 q ., 5 2 4 q . ., 2
. = —— — = - (=== )y=—= - = — (" — — E.1
Y 57 @y = gy) (G 2y = oy = 5y) 4 o =y (E10)

Una vez obtenido el estado tensional, se puede hallar facilmente las deformaciones
aplicando la ley de Hooke

ou o, q , 9 24 q . 27
=~ =2_-__1_ - = — (" — — E.11
Al iyl oy A A U yoy A U (E-11)
ov oy, qg 14 5 24
_ — v _ 1 (=3 - E.12
=5 " E - amiaY Cvt3e) (E-12)
ou  0v Ty q 5 9
oy = — — 1 (2 E.13
Ty 8y+8:£ G 2Gl( v)e ( )
Por tanto los desplazamientos se pueden expresar como
3 2
4 mY 2 42
51t s T3V ) T ogp (T v+ Aiy) (E.14)
q 1 4 1,5 24
— L (A - E.1
sEI Y ~ 3¢y T 3cy) T+ fale) (E.15)

Las funciones fi(y) y fo(z) se determinan sustituyendo las funciones (E.I4)) y (E.I5)
en la ecuacién (E.13). De esta manera las funciones f1(y) y f2(x) que resultan

fily) =A (E.16)
249 5 qg =t  vgcta?
fo(x) = s E1CC Y Eio1 T 1Bl + B (E.17)

donde A y B son constantes de integracion. Estas se determinan mediante las condiciones

de apoyo. Sustituyendo en (EI4) y (EI3) las funciones fi(y) y fo(x) y reordenando
términos las funciones v y v quedan:
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3 9 9 1 9
u= —221 {(l% - %)y +o(3y’ = 2y) + vyt -y + 503)] +4  (E18)
4 2,.2 2 4
q Y cy 24 2 on Y Y 1,5,
_ vy 2 _ Y 2 E.1
v QEI{m o eyt =) T+ 5 — sy (E-19)
q 22?2 2!

1 1
— - S (1 §V)02$2] + B

La constante A de (E.2I]) se observa que es cero (A = 0), ya que el desplazamiento
horizontal en la seccién central es nulo. Por otro lado, la constante B se puede hallar con
la condicién de apoyo en los extremos, en la que el desplazamiento v es nulo.

5ql41 12¢2 4 v

“oipr TyEG ) (E.20)

Por tanto, los desplazamientos u y v de la solucién analitica son:

3
q 2 z 24 2, 14 2 2 4
_ _z 2B LI < E.21
u QEI[(lx 3)y+x(3y 5cy)+vx(3y cy+30) (E.21)
4 2,2 2 4
q Y cy 2 4 2 nY Y 1,5,

-t J)J _ I 4 = [? — AT — E.22
v 2E[{12 2+30y+u[( x)2+6 5cy]} (E.22)
q Pz ot 2 9 N
QEI[ 5 D 5cx —|—(1—|—2V)CCL’]+
5 qlt 12¢2 4 v
+ﬂEl[ €z2(5+2)]
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