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Estimación del error a posteriori del método de

elementos finitos con la teoŕıa variacional de las

multiescalas aplicado a elasticidad lineal

Resumen

El presente trabajo investiga técnicas de estimadores de error a posteriori para el
método de elementos finitos aplicado al problema de elasticidad lineal. Para hallar el error
que comete el método de elementos finitos se emplea el método variacional multiescala.
Con la ayuda de este método y partiendo de los resultados obtenidos de la simulación
de elementos finitos, se obtiene una estimación del error cometido. En concreto, en este
proyecto se ha estudiado la estimación de error para problemas de tensión plana.

A la hora de analizar el acierto en la estimación de error, es necesario conocer previ-
amente el error real que comete el método de elementos finitos. Por ello, se ha calculado
la solución anaĺıtica de los casos estudiados de tensión plana, empleando las ecuaciones
básicas de elasticidad.

Los problemas estudiados de tensión plana son aplicados sobre dominios rectangulares.
Sobre estos dominios se han impuesto distintos tipos de solicitaciones en el contorno para
estudiar cómo afectan los distintos tipos de esfuerzos en los estimadores de error. También
se analiza su influencia con los principales parámetros que caracterizan el problema de
elasticidad plana. Con el objetivo de cuantificar la calidad de los estimadores de error, se
establece la denominada eficiencia del estimador de error, el cual relaciona el error esti-
mado con el error realmente cometido.
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5.2.1. Solución anaĺıtica de los problemas . . . . . . . . . . . . . . . . . . 27
5.2.2. Solución de elementos finitos . . . . . . . . . . . . . . . . . . . . . . 28
5.2.3. Análisis de la eficiencia del error . . . . . . . . . . . . . . . . . . . . 30
5.2.4. Análisis de sensibilidad del estimador . . . . . . . . . . . . . . . . . 34

5.3. Viga en voladizo y viga biapoyada . . . . . . . . . . . . . . . . . . . . . . . 37
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C. Solución anaĺıtica: Problema de flexión en los dos ejes 52
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Caṕıtulo 1

Introducción y objetivos

Los métodos computacionales son una de las últimas herramientas a disposición del
ingeniero a la hora de resolver modelos matemáticos de un fenómeno f́ısico. Se empezaron
a desarrollar a mediados del siglo XX tras la irrupción de los computadores. En un prin-
cipio se limitaron a apoyar o a extender resultados emṕıricos. Hoy en d́ıa son capaces
de ofrecer soluciones confiables a modelos f́ısicos plasmados en ecuaciones diferenciales
y a pesar de su relativa novedad, se han integrado de una manera muy notable en los
más variados procesos industriales. El rápido desarrollo de los ordenadores ha supuesto
un aumento de su capacidad de cálculo al mismo tiempo que un abaratamiento de su coste.

La mecánica de medios continuos es un campo donde los métodos computacionales son
de gran utilidad y al mismo tiempo suponen un gran reto. Ambas situaciones se deben a
la gran complejidad de los modelos matemáticos que describen su comportamiento.

Hay que recordar que las soluciones anaĺıticas que existen en elasticidad son limitadas
y sirven para geometŕıas sencillas, o bien asumen hipótesis simplificativas que desvirtúan
la solución obtenida. Sin embargo, los métodos de elementos finitos se adaptan a cualquier
geometŕıa y permiten abordar el problema con toda su complejidad a cambio de tiempo
de computación.

1.1. Objetivo del trabajo

El objetivo de este Trabajo Fin de Master es investigar la estimación de error que se
comete en la resolución numérica por el método de elementos finitos de las ecuaciones de
elasticidad lineal. Para ello, se caracterizan y evalúan estimadores de error para el méto-
do de elementos finitos basado en el Método Variacional de las Multiescalas (VMS). La
evaluación consiste en la comparación del error estimado con el error exacto.

En el estudio de este trabajo se persiguen los siguientes objetivos concretos:

Hallar un estimador de error adecuado para elasticidad lineal, en el que se consiga
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una precisión y robustez razonables

Evaluar la influencia en la estimación del error para los parámetros caracteŕısticos
de la elasticidad lineal.

Partiendo de la formulación débil del problema y aplicando el VMS, se emplean es-
tos estimadores de error, los cuales involucran directamente el residuo de la solución de
elementos finitos. De esta manera, se pretende proporcionar al usuario de programas de
FEM una medida de la calidad de la solución obtenida.

1.2. Motivación del trabajo

El propósito de realizar este trabajo, partió de la investigación previamente realizada
en el departamento de Mecánica de Fluidos sobre estimación de error ([10], [11], [12]) en
la ecuación del transporte. En particular, para ecuaciones diferenciales eĺıpticas, como la
ecuación del calor, los estimadores de error expĺıcitos empleados proporcionan unos buenos
resultados.

Las ecuaciones diferenciales que gobiernan el problema elástico lineal son eĺıpticas. Sin
embargo, en relación con la ecuación de calor, la ecuación de elasticidad presenta algu-
nas diferencias significativas que añaden complejidad al problema y que se detallarán más
adelante.

Desde este punto de partida y debido a la elevada utilización de programas de método
de elementos finitos que existe hoy en d́ıa en el diseño mecánico y estructural, mediante este
trabajo, se estudia la estimación de error en un campo en el que existe un gran interés en
investigar el error que se comete en la solución obtenida por el método de elementos finitos.

1.3. Estimación del error

La estimación de error es uno de los campos de investigación de mayor interés en la
mecánica computacional. Hoy en d́ıa, los métodos computacionales son fiables, útiles y
cada vez más rápidos, de tal manera que ya están plenamente integrados en el proceso
productivo. La estimación de error surge como una mejora natural de los mismos. Como
en otros campos de la ciencia o de la ingenieŕıa, es deseable conocer con qué margen de
error se ajustan a la realidad los cálculos o incluso los resultados de un experimento. En
los métodos experimentales, una medida no se considera completa sin una estimación del
error cometido. La tendencia en los métodos computacionales debeŕıa ser la misma, ya
no sólo por una cuestión de rigor cient́ıfico, sino porque una correcta evaluación del error
puede suponer un ahorro considerable en el coste computacional (y por tanto económico)
de las simulaciones.

Las soluciones obtenidas por los métodos computacionales en general y el Método de
los elementos finitos, en particular, dependen fuertemente de la discretización. La elección
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de la malla surge por tanto del compromiso entre la precisión de la solución requerida y
el coste computacional que se está dispuesto a asumir. La estrategia de mallado más in-
teresante es aquella en la que se concentran mayor número de elementos en la zona donde
éstos son necesarios. Aśı, se impone mayor resolución en las zonas donde los gradientes
son intensos. Cabe destacar que obtener el mallado adecuado seŕıa trivial si tuviésemos ya
una solución donde se observen todos los fenómenos relevantes.

Las técnicas de estimación de error pueden desempeñar un papel crucial en esta
situación. Para esto es necesario que el estimador proporcione el error en cada elemento.
Si se conoce el error de la simulación en cada punto con fiabilidad, y se relaciona dicho
error con el tamaño de los elementos de la malla, se podŕıa elegir un umbral de error que
se considere aceptable y elaborar una malla que obtenga ese resultado. Actuando aśı se
obtendŕıan simulaciones con un error controlado aumentando la densidad de la malla sólo
donde sea necesario. A esta estrategia se le llama mallado adaptativo.

Los principales estimadores de error empleados hoy en d́ıa pueden ser clasificados en
los siguientes grupos:

Métodos expĺıcitos: Se llaman métodos expĺıcitos porque emplean la solución obteni-
da mediante elementos finitos de forma directa, sin resolver ecuaciones diferenciales.
Estas técnicas estiman el error a partir del residuo de la solución aproximada de
elementos finitos. Para ello, emplean el residuo en el interior del elemento, en las
fronteras entre elementos y en el contorno.

Métodos impĺıcitos: Estos métodos emplean la solución aproximada de elementos
finitos de forma indirecta. Para la estimación del error es necesario resolver un prob-
lema de ecuaciones diferenciales aplicados a elementos individuales o a un conjunto
de ellos.

Métodos de recuperación: Estos métodos aprovechan las propiedades superconver-
gentes de las soluciones. Se centran en el posproceso de la solución numérica aplicado
a distintos grupos de elementos.

Es sabido que conforme una malla se hace más fina, la solución numérica converge
a la solución exacta. Es decir, si la malla fuera infinitamente densa la solución numérica
coincidiŕıa con la solución anaĺıtica. Aprovechando este concepto, el método variacional de
las multiescalas, consiste en realizar una separación de escalas, separando escalas resueltas
y no resueltas. Este método es un caso particular de los métodos expĺıcitos. La escala
resuelta es la solución obtenida de la malla empleada, y la escala no resuelta proporciona
el error producido por la discretización. Esta descomposición en escala resuelta y no re-
suelta se introduce en la formulación variacional del problema a estudiar para realizar una
estimación del error.

3
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1.4. Metodoloǵıa

El planteamiento general que se ha seguido a la hora de realizar este proyecto ha sido en
primer lugar, establecer unos problemas concretos de tensión plana y hallar anaĺıticamente
su solución exacta. Seguidamente, se ha empleado el VMS para obtener una formulación
de los estimadores de error a posteriori y pronosticar el error. Por último, se analizan las
eficiencias obtenidas con los estimadores de error para los distintos problemas tratados.
Los pasos seguidos en el desarrollo del trabajo se esquematizan en la figura 1.1.

Figura 1.1: Esquema de trabajo

Para la realización del proyecto se han empleado diversos software. La programación de
la solución exacta, del estimador de error y del cálculo de eficiencias se ha implementado
en Fortran. Posteriormente, con la herramienta Tecplot, se han realizado las gráficas de
resultados.

Mediante la presente memoria se expone de manera descriptiva el trabajo desarrolla-
do a lo largo de este proyecto. Primeramente, se presentan las ecuaciones que gobiernan
la tensión plana, para asentar los conceptos básicos. Después, se plantea la formulación
fuerte y la formulación débil del problema de elasticidad. Seguidamente, se muestra la
formulación del VMS y los estimadores de error empleados. Por último, se analizan los
resultados obtenidos con los estimadores de error y se obtienen unas conclusiones.
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Caṕıtulo 2

Elasticidad bidimensional

En un cuerpo sólido sometido a un estado elástico plano, el rasgo más relevante es que
tanto la matriz de tensiones como la matriz de deformación permanecen constantes en una
dirección perpendicular a un plano, llamado plano director. De esta manera, es posible
tratar el problema elástico en dos dimensiones, estudiando el problema en el plano director.

Según el estado tensional y de deformación que se presente, se distinguen dos tipos de
estados tensionales: Deformación plana y tensión plana. En deformación plana, la defor-
mación en una recta perpendicular al plano director es nula. Sin embargo, para el caso
de tensión plana, la tensión es nula en la dirección perpendicular al plano director, ex-
istiendo deformación en la misma. En este trabajo, se han estudiado problemas de tensión
plana, si bien la formulación de ambos problemas es similar. En ambos casos, el campo de
desplazamientos en el plano director queda perfectamente determinado si se conocen los
desplazamientos en x e y.

{

u(x, y)
v(x, y)

donde u(x, y) y v(x, y) son los desplazamientos en x e y respectivamente.

En el siguiente apartado, se muestra más concretamente, el estado de tensiones y de-
formaciones que se producen en tensión plana.

2.1. Estado tensional plano

En la figura 2.1 se muestran los ejes adoptados en el plano director para un sólido
cualesquiera sometido a un estado tensional plano.

Se cumple que las tensiones solamente dependen de x e y, de manera que τxz =
τyz=σz=0. Se denomina u, v y w a los desplazamientos en los ejes x, y y z respectivamente.
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Figura 2.1: Cuerpo sometido a tensión

Ecuaciones de equilibrio

Las ecuaciones de equilibrio, son obtenidas al aplicar la sumatoria de fuerzas que actúan
sobre un pequeño bloque rectangular de tamaño diferencial como se muestra en la figura
2.2. En este caso, al trabajar sólo en dos ejes, hay dos ecuaciones de equilibrio.

Figura 2.2: Cuadrilátero elemental. Ecuaciones de equilibrio

∂σx

∂x
+

∂τxy
∂y

+X = 0 (2.1)

∂σy

∂y
+

∂τxy
∂x

+ Y = 0 (2.2)
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donde X e Y son las fuerzas volumétricas.

Ecuaciones de comportamiento

Las ecuaciones de comportamiento se obtiene aplicando las ecuaciones de Lamé. Para
el caso de los esfuerzos nulos τxz = τyz=σz=0 resulta

G(∂u
∂z

+ ∂w
∂x
) = 0 G(∂u

∂z
+ ∂w

∂x
) = 0 λ(∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
) + 2G∂w

∂z
= 0

Despejando ∂w
∂z

de la última ecuación:

∂w

∂z
=

λ

λ+ 2G
(
∂u

∂x
+

∂v

∂y
) (2.3)

Por otro lado, las tensiones no nulas en tensión plana son σx, σy, τxy. Según las ecua-
ciones de Lamé, estas tensiones se relacionan con los desplazamientos de la siguiente man-
era:

σx = λ(
∂u

∂x
+

∂v

∂y
+

∂w

∂z
) + 2G

∂u

∂x
(2.4)

σy = λ(
∂u

∂x
+

∂v

∂y
+

∂w

∂z
) + 2G

∂v

∂y
(2.5)

τxy = G(
∂u

∂y
+

∂v

∂x
) (2.6)

donde λ y G son los parámetros de Lamé. Estos parámetros se relacionan con el módulo
elástico y el coeficiente de Poisson de la siguiente manera.

λ = E·ν
(1+ν)(1−2ν)

G = E
2(1+ν)

Sustituyendo en las anteriores ecuaciones la expresión (2.3), se obtienen las ecuaciones
de las componentes de la matriz de tensiones para tensión plana.
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σx = λ∗(
∂u

∂x
+

∂v

∂y
) + 2G

∂u

∂x
(2.7)

σy = λ∗(
∂u

∂x
+

∂v

∂y
) + 2G

∂v

∂y
(2.8)

τxy = G(
∂u

∂y
+

∂v

∂x
) (2.9)

En las anteriores ecuaciones λ∗ = 2λG
2G+λ

Ecuaciones de compatibilidad

Las ecuaciones de compatibilidad, muestran las relaciones que tienen que tener las de-
formaciones entre śı para que los desplazamientos sean f́ısicamente posibles. Las relaciones
entre deformaciones y desplazamientos son:

εx =
∂u

∂x
εy =

∂v

∂y
γxy =

∂u

∂y
+

∂v

∂x
(2.10)

Derivando respecto a y dos veces en el primer término de la ecuación (2.10), derivan-
do respecto a x el segundo término y, por último, derivando respecto a x y respecto a y
el tercer término, se obtiene la llamada ecuación de compatibilidad entre las deformaciones.

∂2εx
∂y2

+
∂2εy
∂x2

=
∂2γxy
∂x∂y

(2.11)

Esta ecuación diferencial debe ser cumplida por las deformaciones para que existan
unos desplazamientos u y v que satisfagan la ecuación (2.10).

Es posible determinar las condiciones de compatibilidad en función de las tensiones a
partir de la ley de Hooke y de las ecuaciones de equilibrio. La ley de Hooke, establece la
relación que se muestra en las siguientes ecuaciones entre deformaciones y tensiones.

εx = 1
E
(σx − νσy)

εy =
1
E
(σy − νσx)

γxy =
τxy
G

= 2(1+ν)
E

τxy

Sustituyendo las ecuaciones de la ley de Hooke en (2.11) se obtiene

∂2

∂y2
(σx − νσy) +

∂2

∂x2
(σy − νσx) = 2(1 + ν)

∂τxy
∂x∂y

(2.12)
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Por otro lado, volviendo a las ecuaciones de equilibrio (2.1) y (2.2), si se supone que
las fuerzas volumétricas, X e Y , son constantes y se deriva la ecuación (2.1) respecto a x
y la ecuación (2.2) respecto a y y, por último, se suman, da como resultado

2
∂2τxy
∂x∂y

= −
∂2σx

∂x2
−

∂2σy

∂y2
(2.13)

Por tanto, sustituyendo (2.13) en (2.12) se obtiene la ecuación de compatibilidad en
función de la tensión

(
∂2

∂x2
+

∂2

∂y2
)(σx + σy) = 0 (2.14)

Por otro lado, es posible establecer una función φ(x, y) a partir de la cual se definan las
componentes de la tensión y que cumpla las ecuaciones de compatibilidad. Esta función,
se denomina función de Airy. El empleo de la función de Airy es un método comúnmente
usado para resolver las ecuaciones de elasticidad plana.

Definiendo las componentes de tensiones como

σx =
∂2φ

∂y2
σy =

∂2φ

∂x2
τxy = −

∂2φ

∂x∂y
−Xy − Y x (2.15)

se puede comprobar que satisfacen las condiciones de compatibilidad y equilibrio. De esta
manera, la función de compatibilidad (2.14) se puede expresar en función de la función de
Airy de la siguiente manera.

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+

∂4φ

∂y4
= 0 (2.16)

2.2. Problemas de tensión plana

Los problemas de tensión plana que se han tratado en este trabajo se muestran en las
figuras 2.3 y 2.4. En la primera figura, se muestra el primer bloque de problemas analiza-
dos. Son tres problemas de elasticidad lineal con un dominio rectangular apoyados en la
parte inferior. Cada uno de los problemas presenta distintas cargas en el contorno.
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En la figura 2.4 aparecen dos problemas que presentan un estado tensional más comple-
jo. Al igual que en los problemas de la figura 2.3 la geometŕıa del dominio es rectangular.
El primer problema es una viga empotrada con una carga aplicada en el extremo de la
misma. En el segundo problema, se aplica una carga distribuida en la cara superior de la
viga, la cual está apoyada en ambos extremos.

En los anexos, se describe detalladamente la solución exacta en cada uno de los prob-
lemas.

Figura 2.3: Problemas de elasticidad plana con solicitaciones Mx, My y Nx

Figura 2.4: Problema de viga empotrada y de viga apoyada
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Problema elástico lineal

3.1. Formulación fuerte del problema

La formulación fuerte del problema de elasticidad lineal, se obtiene a partir de la
ecuación de equilibrio y las condiciones de contorno siguientes. Sea un dominio espacial Ω
con contorno Γ, el cual es dividido en dos zonas no solapadas Γg y Γh, según se aplique
condición de contorno de Dirichlet o Neumann. El planteamiento genérico del problema
consiste en encontrar u : Ω → R tal que para una condición esencial dada g : Γg → R, la
condición natural h : Γh → R y la fuerza volumétrica f : Ω → R, satisfaga las siguientes
ecuaciones.







Lu = f en Ω
u = g en Γg

Bu = h en Γh

donde L, es el operador de segundo orden y B, el operador diferencial aplicado en el con-
torno para la condición de contorno natural.

Particularizando para el problema de elasticidad plana







∇ · σ + f = 0 en Ω
u = g en Γg

σn = h en Γh

donde σ es el tensor de tensiones de Cauchy, f es el vector de fuerzas volumétricas, g los
desplazamientos impuestos en el contorno, h las tensiones impuestas en el contorno y n

el vector normal hacia fuera del contorno.

Las componentes del tensor de Cauchy, σ, son σx, σy y τxy siendo la tensión normal
en x, la tensión normal en y la tensión cortante en el plano xy respectivamente.

σ =

(

σx τxy
τxy σy

)

En el caso de tensión plana, la relación entre el tensor de tensiones de Cauchy, σ, y
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CAPÍTULO 3. PROBLEMA ELÁSTICO LINEAL 3.2. FORMULACIÓN DÉBIL DEL PROBLEMA

los desplazamientos, u , se obtiene por medio de las ecuaciones de comportamiento y de
compatibilidad.

Ecuaciones de comportamiento:

σx = (λ∗ + 2G)εx + λ∗εy
σx = (λ∗ + 2G)εy + λ∗εx
τxy = Gγxy

De manera que, las componentes del tensor de Cauchy pueden expresarse en función
de las componentes de la matriz de deformación, εx, εy y γxy.

Relación desplazamiento-deformaciones:

εx = ∂u
∂x

εy =
∂v
∂y

γxy =
∂u
∂y

+ ∂v
∂x

Por tanto, queda determinada la relación entre las tensiones y los desplazamientos. Deno-
tando comoD a la matriz que relaciona tensión y deformación, yH , al operador diferencial
que relaciona las deformaciones con los desplazamientos, se pueden expresar las tensiones
como σ = DHu.

3.2. Formulación débil del problema

La formulación débil se obtiene a partir de la formulación fuerte, multiplicando por
una función de peso e integrando por partes.

∫

Ω

w · ∇ · σdΩ =

∫

Ω

−w · fdΩ (3.1)

∫

Ω

∇ · (w · σ)dΩ−

∫

Ω

∇w : σdΩ =

∫

Ω

−w · fdΩ (3.2)

Aplicando el teorema de la divergencia y ordenando términos

∫

Ω

σ : ∇wdΩ =

∫

Ω

w · fdΩ+

∫

Γh

w · σndΓh (3.3)
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∫

Ω

∇w : σdΩ =

∫

Ω

w · fdΩ+

∫

Γh

w · hdΓh (3.4)

Expresando σ en función de los desplazamientos, u.

∫

Ω

∇w : (DHu)dΩ =

∫

Ω

w · fdΩ+

∫

Γh

w · hdΓh (3.5)

La ecuación (3.5) se puede expresar de forma compacta mediante los siguientes oper-
adores:

a(·, ·) es una forma bilineal

(·, ·) es el producto escalar en L2(Ω)

(·, ·)w es el producto escalar en L2(w)

De este modo la ecuación (3.5) queda:

a(w,u) = (w, f ) + (w,h)Γh
(3.6)

Para asegurar que las integrales que han surgido en la formulación débil se puedan
calcular, hay que imponer como requisito a las funciones de peso, w , y a las funciones
solución, u, que su derivada primera al cuadrado esté acotada. Las funciones que satis-
facen esta condición son llamadas funciones H 1 .

Por tanto, los espacios de funciones donde se buscan la función solución y las funciones
de peso son los siguientes:

δ = {u|u ∈ H1,u = g en Γg}
υ = {w|w ∈ H1,w = 0 en Γg}

La única diferencia entre los dos espacios de funciones es el valor que deben tener en
la parte del contorno donde se aplica la condición de contorno Dirichlet. De esta manera,
las funciones de δ son las que satisfacen la condición de contorno esencial y las funciones
de υ satisfacen las condiciones de contorno esenciales homogéneas.
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CAPÍTULO 3. PROBLEMA ELÁSTICO LINEAL 3.3. MÉTODO DE APROXIMACIÓN DE GALERKIN

3.3. Método de aproximación de Galerkin

Para desarrollar el método de elementos finitos, es necesario crear un espacio de fun-
ciones de dimensión finita que sea una aproximación de δ y υ. Estos espacios de funciones
se denotan como δh y υh y su dimensión está relacionada con la discretización que se haga
del dominio.

δh ⊂ δ
υh ⊂ υ

Por lo tanto, la formulación débil discreta del problema para un número de elementos
nel se formula:

nel
∑

e=1

∫

Ωe

∇we : (DHue)dΩe =
nel
∑

e=1

∫

Ωe

we · fdΩe +
nel
∑

e=1

∫

Γe
h

we · hdΓe (3.7)

Considerando un elemento aislado de la discretización, como se observa en la figura
3.1, se puede expresar las componentes del vector desplazamiento en función de los de-
splazamientos de sus nodos.

u = u1N1 + u2N2 + u3N3 + u4N4

v = v1N1 + v2N2 + v3N3 + v4N4

Figura 3.1: Representación de elemento cuadrilátero y sus variables nodales

En la expresión anterior u y v son los desplazamientos en dirección x e y. Por otro
lado Ni son las funciones de forma del nodo i al que está asociado. Las funciones Ni, son
funciones polinómicas que valen uno en el nodo i y cero en el resto.

A su vez, las funciones de pesowe, son las mismas que las funciones de forma empleadas
para aproximar los desplazamientos. Las siguientes expresiones muestran las funciones de
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CAPÍTULO 3. PROBLEMA ELÁSTICO LINEAL 3.4. COMPARATIVA ECUACIÓN DE CALOR Y ELASTICIDAD

forma para cuadriláteros.

we = (N1, N2, N3, N4)
T Para cuadrilateros

Las incógnitas del problema son los desplazamientos nodales ui, que se determinan
resolviendo el sistema de ecuaciones lineales que resulta de la discretización.

3.4. Comparativa ecuación de calor y elasticidad

En esta sección se compara la formulación de la ecuación de calor y la formulación de
elasticidad vista en las anteriores secciones.

La ecuación que gobierna la ecuación de calor es la ecuación de Laplace. A contin-
uación se muestra las ecuaciones para un dominio en el que la conductividad en x es igual
a la conductividad en y. La condición de contorno natural es el flujo en el contorno y la
condición de contorno esencial es la temperatura en el contorno.







∇2T = 0 en Ω
T = g en Γg

k · ∂T
∂n
n = h en Γh

donde T es la temperatura, g la temperatura impuesta en el contorno, h el flujo de
calor impuestas en el contorno q es el vector flujo de calor q = (qx, qy)

T y n el vector
normal hacia fuera del contorno, n =(nx, ny).

Por último el flujo de calor se expresa como:

q = −k∇T donde

k =

(

kx 0
0 ky

)

Las principales diferencias de la formulación del problema de calor y la ecuación de
elasticidad plana son:

En la ecuación de calor, la incógnita es un escalar, la temperatura; mientras que en
elasticidad es un vector, los desplazamientos en x y en y.

La matriz constitutiva de las ecuaciones de elasticidad es más compleja que en el
caso de calor. Aunque ambas matrices son simétricas, la matriz constitutiva de la
ecuación del calor es diagonal, mientras que para elasticidad, presenta términos no
nulos fuera de la diagonal.

En el caṕıtulo 5 se muestra la resolución de un problema concreto de la ecuación de
calor empleando el mismo método de estimación de error que en el caso de elasticidad
plana.
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Caṕıtulo 4

Estimación de error a posteriori

4.1. Método variacional de las multiescalas

Sean x e y dos puntos cualesquiera sobre el dominio Ω
′

. El problema de elasticidad
es una ecuación diferencial de segundo orden con las condiciones de contorno naturales y
esenciales. Se puede representar de forma genérica







Lu = f en Ω
u = g en Γg

Bu = h en Γh

donde L, es el operador de segundo orden y B, el operador diferencial aplicado en el con-
torno para la condición de contorno natural.

Como se ha visto anteriormente, particularizando los operadores diferenciales y las
variables para el caso de elasticidad lineal.







∇ · σ + f = 0 en Ω
u = g en Γg

σn = h en Γh

El campo de desplazamientos solución del problema elástico se puede descomponer en
suma de los desplazamientos de la escala resuelta, u, y los desplazamientos de la escala
no resuelta, u

′

. El desplazamiento u, representa la solución obtenida mediante FEM y
u

′

es la diferencia entre la solución exacta y la solución FEM, es decir, el error. De igual
manera. las funciones de peso se pueden dividir análogamente en w y w

′

.

u = u+ u
′

w = w +w
′

Incorporando esta descomposición de las funciones de peso y los desplazamientos en la
formulación débil.
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CAPÍTULO 4. ESTIMACIÓN DE ERROR A POSTERIORI4.1. MÉTODO VARIACIONAL DE LAS MULTIESCALAS

∫

Ω

∇ · (w +w
′

) : DH · (u+ u
′

)dΩ =

∫

Ω

(w +w
′

) · fdΩ+

∫

Γh

(w +w
′

) · hdΓ (4.1)

Gracias a la linealidad de la ecuación anterior, respeto a los desplazamientos, ésta
ecuación puede ser dividida en dos problemas, uno de escala grosera y otro de escala fina.

Problema de escala grosera:

∫

Ω

∇ ·w : (DH · (u+ u
′

))dΩ =

∫

Ω

w · fdΩ+

∫

Γh

w · hdΓ (4.2)

Problema de escala fina:

∫

Ω

∇ ·w
′

: (DH · (u+ u
′

))dΩ =

∫

Ω

w
′

· fdΩ +

∫

Γh

w
′

· hdΓh (4.3)

Tanto la formulación de escala fina como la formulación de escala grosera, gracias a la
bilinealidad y recordando la fórmula (3.6) se pueden agrupar en los siguientes términos:

a(w,u) = −a(w,u
′

) + (w, f ) + (w,h)Γh
(4.4)

a(w
′

,u
′

) = −a(w
′

,u) + (w
′

, f ) + (w
′

,h)Γh
(4.5)

En el método de elementos finitos, el dominio del problema, Ω, se subdivide en ele-
mentos con dominio Ωe y contorno Γe (e=1,2,. . . , nel). La agrupación de los dominios y
el contorno de los elementos se denotan respectivamente:

Ω
′

= ∪nel
e=1Ω

e

Γ
′

= ∪nel
e=1Γ

e

Por último, el conjunto del contorno interior de los elementos con los que se ha dis-
cretizado el dominio se expresa como Γint = Γ

′

\ Γ.

Se denomina J·K al operador salto de una función a través de una discontinuidad, co-
mo sucede en los contorno entre elementos. Según la notación de la figura 4.1, referida al
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vector normal de los elementos que comparten el mismo contorno, el salto de v se expresa
como:

Jv · nK = v+
· n+ + v−

· n− (4.6)

Figura 4.1: Notación para el operador salto

Las funciones para elementos finitos son suaves dentro del elemento pero bastas en el
contorno entre elementos. Por tanto, la integración de a(w

′

,u) resulta

a(w
′

,u) =
∑nel

i=1 a(w
′

,u)Ωe

=
∑nel

i=1[(w
′

,Lu)Ωe + (w
′

,Bu)Γe ]

= (w
′

,Lu)Ω′ + (w
′

, JBuK)Γint
+ (w

′

,Bu)Γh

De esta manera el problema de la escala fina queda

a(w
′

,u
′

) = −(w
′

,Lu)Ω′ − (w
′

, JBuK)Γint
− (w

′

,Bu)Γh
(4.7)

+(w
′

, f ) + (w
′

, h)Γh
= −(w

′

,Lu− f )Ω′ − (w
′

, JBuK)Γint
− (w

′

,Bu− h)Γh

Agrupando en un mismo término, los saltos en el contorno interior entre los elementos
JBuK y en el contorno exterior Bu− h.

a(w
′

,u
′

) = −(w
′

,Lu− f )Ω′ − (w
′

, JBuK)Γe (4.8)

donde el término JBuK representa las saltos que se producen entre las tensiones en las
fronteras entre elementos.
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4.2. Estimación de error

La escala fina se puede resolver de forma anaĺıtica empleando las funciones de Green.
Llamando G

′

(x,y) a la matriz de funciones de Green del problema de escalas finas resulta

u
′

(x) ≈ −

∫

Ω′

G
′

(x,y)(Lu− f )(y)dΩy −

∫

Γe
y

G
′

(x,y)(JBuK)(y)dΓe
y (4.9)

donde G
′

(x,y) =

(

gex(x,y) gey(x,y)
gey(x,y) gex(x,y)

)

Las funciones gex(x,y) y gey(x,y) son las funciones de green definidas en el eje x y en
el eje y respectivamente.

En el presente problema de elasticidad lineal, el primer término de la ecuación (4.9) es
despreciable para elementos lineales y bilineales y, por tanto, la fuente de error del método
de elementos finitos proviene de los saltos entre las acciones exteriores y la tensión que
presentan los elementos situados en el contorno y los saltos de tensiones que se producen
en los contornos de los elementos.

u
′

(x) ≈ −

∫

Γe
y

G
′

(x,y)(JBuK)(y)dΓe
y (4.11)

Aplicando la inecuación de Hölders

∣

∣

∣
u

′

(x)
∣

∣

∣
≤

∣

∣

∣

∣

∣

∣
G

′

(x,y)
∣

∣

∣

∣

∣

∣

Lp(Γe
y)
||JBuK||Lq(Γe) (4.12)

donde 1 ≤ p,q ≤ ∞ , 1/p+ 1/q = 1. Tomando la norma Lr

∣

∣

∣

∣

∣

∣
u

′

(x)
∣

∣

∣

∣

∣

∣

Lr(Ωe)
≤

∣

∣

∣

∣

∣

∣
‖G

′

(x,y)‖Lp(Γe
y)

∣

∣

∣

∣

∣

∣

Lr(Ωe
x)
||JBuK||Lq(Γe) (4.13)

Seleccionando p = 1 y q = ∞

∣

∣

∣

∣

∣

∣
u

′

(x)
∣

∣

∣

∣

∣

∣

Lr(Ωe)
≤

∣

∣

∣

∣

∣

∣
‖G

′

(x,y)‖L1(Γe
y)

∣

∣

∣

∣

∣

∣

Lr(Ωe
x)
||JBuK||L∞(Γe) (4.14)
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Mediante el teorema de la traza, es posible realizar una aproximación de la norma de
la función de Green de la escala fina sobre el contorno Γe y de la norma de la función de
Green en el interior del elemento Ωe mediante la siguiente expresión:

∣

∣

∣

∣

∣

∣
‖G

′

(x,y)‖L1(Γe
y)

∣

∣

∣

∣

∣

∣

Lr(Ωe
x)
≈

1

2

meas(Γe)

meas(Ωe)

∣

∣

∣

∣

∣

∣
‖Ge(x,y)‖L1(Ωe

y)

∣

∣

∣

∣

∣

∣

Lr(Ωe
x)

(4.15)

Si la función Ge(x,y) no cambia de signo en el interior del elemento

∣

∣

∣

∣

∣

∣
‖Ge(x,y)‖L1(Ωe

y)

∣

∣

∣

∣

∣

∣

Lr(Ωe
x)
= ‖Be(x)‖Lr(Ωe

x) (4.16)

donde la matriz Be(x) es la matriz de funciones bubble del residuo. La manera de deter-
minar éstas funciones bubble se estudia en el siguiente apartado.

Be =

(

be0x be0y
be0y be0x

)

Aśı pues, la expresión (4.14) se puede expresar como

∣

∣

∣

∣

∣

∣
u

′

(x)
∣

∣

∣

∣

∣

∣

Lr(Ωe)
≤ ‖Be(x)‖Lr(Ωe

x) ||JBuK||L∞(Γe) (4.17)

En este caso, ||JBuK||L∞(Γe) representa el salto máximo que existe entre las tensiones
en el contorno del elemento.

La función bubble aporta al estimador de error la información espećıfica del problema
f́ısico a resolver. En la formulación del estimador de error, la función bubble se introduce
a través de la matriz τ err

el,Lr como se verá más adelante.

4.3. Función bubble

Para encontrar la solución de desplazamientos de la escala fina, u
′

, es necesario deter-
minar la función bubble, que a su vez es la integral de la función Green. La formulación
para obtener la función bubble o burbuja es:

{

LBe = I en Ωe

Be = 0 en Γe

donde Be es la función bubble y I es la matriz identidad.
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El operador diferencial, L, es el mismo que hemos empleado anteriormente para resolver
el problema de tensión plana. El problema se evalúa en un elemento Ωe, cuyo contorno es
Γe.

La función bubble se ha obtenido de forma numérica. Para ello, mediante el problema
de elementos finitos empleado para resolver los problemas de tensión plana, se ha resuel-
to un problema con carga distribuida unidad sobre un área rectangular y condiciones de
contorno Dirichlet homogéneas. El módulo elástico y el coeficiente de Poisson que se han
impuesto son los mismos que los del problema a analizar. En la figura 4.2 se muestra el
planteamiento del problema.

Figura 4.2: Planteamiento del problema para hallar la función bubble

La solución en desplazamientos del problema anterior, determina la función bubble.
Para realizar la integral de la función bubble se dispuso con una malla muy fina para que
la integral fuera lo más exacta posible. En la figura 4.3 se muestra tanto la malla como
los vectores desplazamiento de cada nodo.

Los desplazamientos que se obtienen tanto en el eje x como en el eje y, se integran
por separado para obtener la matriz τ err

el que nos servirá posteriormente para obtener la
estimación del error. Como se aprecia, existen desplazamientos tanto en x como en y, que
se denominarán ub = (ubx, uby). Por tanto, si se toma la norma L1 y L2 de la función
bubble con dichos desplazamientos

Norma L1 : ||be0x||L1(Ω) =
∑nel

i=1

∫

Ωe |ubx| dΩ
e

∣

∣

∣

∣be0y
∣

∣

∣

∣

L1(Ω)
=

∑nel
i=1

∫

Ωe |uby| dΩ
e(4.18)
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Figura 4.3: Malla y desplazamientos de los nodos para hallar la función bubble

Norma L2 : ||be0x||L2(Ω) =
√

∑nel
i=1

∫

Ωe |ubx|
2 dΩe

∣

∣

∣

∣be0y
∣

∣

∣

∣

L2(Ω)
=

√

∑nel
i=1

∫

Ωe |uby|
2 dΩe(4.19)

4.4. Expresión del estimador de error

Las componentes de la matriz τ err
el se obtiene a partir de la norma de la función bubble

obtenida.

τ err
el,Lr =

||Be||Lr(Ωe)

meas(Ωe)1/r
=







||be0x||Lr(Ωe)

∣

∣

∣

∣be0y
∣

∣

∣

∣

Lr(Ωe)
∣

∣

∣

∣be0y
∣

∣

∣

∣

Lr(Ωe)
||be0x||Lr(Ωe)







meas(Ωe)1/r

Conociendo la función bubble del problema, podemos expresar la matriz τ err
el,Lr para la

norma L1 y L2 como:

τ err
el,L1

=
||Be||L1(Ωe)

meas(Ωe)
τ err
el,L2

=
||Be||L2(Ωe)

meas(Ωe)1/2
(4.20)

Aśı pues, el estimador de error queda finalmente

∣

∣

∣

∣

∣

∣
u

′

(x)
∣

∣

∣

∣

∣

∣

Lr(Ωe)
≈

1

2
meas(Ωe)1/rτ errel,Lr

meas(Γe)

meas(Ωe)
||JBuK||L∞(Γe) (4.21)
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Ieeff < 0.1 Intolerable
0.1 < Ieeff < 0.5 Deficiente

0.5 < Ieeff < 2.0 Óptima
2.0 < Ieeff < 5.0 Conservadora
5.0 < Ieeff < ∞ Sobrestimado

Tabla 4.1: Valoración de la eficiencia

4.5. Eficiencia global y eficiencia local

Una manera de medir la calidad de un estimador de error es comparar el error estimado
con el error real que se produce. De esta manera, se definen los conceptos de eficiencia
local y eficiencia global. La eficiencia local es la relación entre el error estimado en un
elemento y el error real que se produce en él.

Ieeff =
||Error estimado||

||Error real||
=

||ηe||

||u− u||Ωe

(4.22)

donde ||·|| es la norma a considerar. En nuestro caso la variable que nos interesa son los
desplazamientos. El error estimado se denota como ηe. Como ya se ha comentado anteri-
ormente, los desplazamientos obtenidos de la solución aproximada de elementos finitos es
u y denominado u como la solución exacta.

Por otro lado, se define la eficiencia global como el cociente de las suma de las normas
del error estimado y error real en todo el dominio. Las normas más empleadas son la
norma L1 y L2

IGeff,L1
=

∑nel
i=1 η

e
i

∑nel
i=1 ||u− u||Ωe

i

IGeff,L2
=

√

√

√

√

∑nel
i=1[η

e
i ]

2

∑nel
i=1 ||u− u||2Ωe

i

(4.23)

En la tabla 4.1 se muestra la valoración subjetiva con que se evalúa la eficiencia y con
la que se determina la calidad de la estimación de error.
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Caṕıtulo 5

Resultados

En este caṕıtulo se presentan los resultados de las simulaciones realizadas sobre los
distintos problemas de tensión plana. El cálculo de estimación de error se ha realizado me-
diante el procedimiento de cálculo expuesto. De acuerdo con los objetivos, se muestran los
resultados más significativos del trabajo, donde se analiza la eficiencia local, la eficiencia
global y la sensibilidad de las mismas respecto a los parámetros principales del problema.
El módulo elástico y el coeficiente de Poisson seleccionados para las simulaciones son los
t́ıpicos del acero. El módulo elástico es E = 2.1e11N/m2 y el coeficiente de Poisson ν = 0.3.

Primeramente, se muestra la aplicación de esta metodoloǵıa de estimación de error
para la ecuación del calor, que al ser también una ecuación eĺıptica, guarda cierta relación
con la ecuación de elasticidad.

5.1. Problema de la ecuación de calor

Para la ecuación de calor, se ha utilizado el mismo método que para elasticidad, en el
cálculo del error. Evidentemente, al tratarse de un problema diferente el valor de τ para
la estimación del error es distinta que para el calculado en elasticidad [10]. En este caso
el valor de τ según sea la norma L1 o L2 es:

τL1 =
h2

28.45 · k
τL2 =

h2

24.24 · k
(5.1)

donde h es la dimensión del elemento y k es la conductividad.

El problema a analizar se muestra en la figura 5.1. Es un dominio rectangular de 10
m de largo y 4 m de ancho en cuyo contorno no hay flujo de calor, a excepción de dos
zonas en la parte superior en las que se ha impuesto dos temperaturas diferentes. En la
parte de la izquierda se ha impuesto una temperatura T1=10 oC y en la parte derecha
una temperatura T2=0 oC.
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Figura 5.1: Problema de la ecuación de calor

Figura 5.2: Solución de la ecuación de calor

En la figura 5.2 se muestra la solución obtenida mediante elementos finitos y la solución
exacta, aśı como la malla empleada. En este caso, se ha considerado como solución exac-
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ta, la solución obtenida con una malla muy fina. La figura de la izquierda es la solución
aproximada obtenida por elementos finitos y la figura de la derecha es la solución exacta.
Se representan las ĺıneas isotermas. Entre cada curva de nivel hay 0.5 oC.

Figura 5.3: Eficiencia local para la ecuación de calor. Norma L1 (izquierda) y L2 (derecha)

En la figura 5.3 se muestra la eficiencia local del estimador de error. En prácticamente
todo el dominio, la eficiencia es mayor de la unidad y por tanto va del lado de la seguridad.
Las eficiencias locales y globales obtenidas con L1 y L2 son muy similares. La eficiencia
global para la norma L1 es 0,98879 y para L2 es 1,9337.

5.2. Problemas sometidos a flexión en el contorno

En primer lugar, se estudian casos sencillos en dominios rectangulares en los que los es-
fuerzos aplicados y el estado tensional no presentan excesiva complejidad. Los tres primeros
problemas analizados son problemas en los que se aplica flexión simple y compuesta en las
caras del contorno.

En la figura 5.4 se muestra la geometŕıa, las cargas y condiciones de contorno de los
problemas que se describen a continuación:

Problema (a): El dominio es rectangular y está sometido a flexión pura en los ex-
tremos. El cuerpo está apoyado en el centro de la cara inferior.

Problema (b): Presenta la misma geometŕıa y condiciones de apoyo que el problema
(a) pero en este caso, se aplica una flexión en los extremos más un esfuerzo axil. Por
tanto, el esfuerzo aplicado es una flexión compuesta.

Problema (c): La geometŕıa y las condiciones de apoyo son las mismas que en los
problemas anteriores, pero en este problema existe flexión en ambos ejes.

Para los problemas realizados en este trabajo se ha escogido arbitrariamente como di-
mensiones del dominio, una longitud de 10 m y una anchura de 2 m.
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Figura 5.4: Problemas sometidos a flexión en el contorno

5.2.1. Solución anaĺıtica de los problemas

Para evaluar el error que se comete en la solución del método de elementos finitos y,
de esta manera, calcular la eficiencia, es preciso conocer la solución exacta del problema.
A continuación, se muestran las soluciones anaĺıticas de los problemas (a), (b) y (c). En
los anexos se detalla detenidamente el proceso de cálculo de la solución exacta.

Problema (a)

u =
Mx

Ix
x · y

v = −
Mx

2EIx
x2 −

νMx

2EIx
y2 +

νMx

2EIx
c2

Problema (b)

u =
Mx

Ix
x · y +

Nx

2cE

v = −
Mx

2EIx
x2 −

νMx

2EIx
y2 +

νMx

2EIx
c2 − νν

Nx

2cE
(y + c)
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Problema (c)

u =
Mx

EIx
x · y − ν

My

2IyE
x2 −

My

2EIy
y2 +

My

2IyE
c2

v = −
νMx

2EIx
y2 −

Mxx
2

EIx
+

νMx

2EIx
c2 +

My

EIy
xy

donde Mx, My y N son los esfuerzos de momento en x, momento en y y axil respec-

tivamente. Ix =
∫ c

−c
y2 · dy es el momento de inercia en el eje x y Iy =

∫ l/2

−l/2
x2 · dx es el

momento de inercia en el eje y.

5.2.2. Solución de elementos finitos

Para realizar las simulaciones se ha realizado un mallado de 20 elementos en x y 4
elementos en y como se muestra en la figura 5.5.

Figura 5.5: Forma del mallado

En las figuras 5.6, 5.7 y 5.8 se muestra la deformada de los tres casos distintos anal-
izados. Se muestra las cargas aplicadas y los vectores del desplazamiento de los nodos.
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Figura 5.6: Deformada del problema (a)

Figura 5.7: Deformada del problema (b)

Figura 5.8: Deformada del problema (c)
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5.2.3. Análisis de la eficiencia del error

Dela figura 5.9 a 5.14, se muestra en mapa de colores la eficiencia local tanto en el eje
x como en el eje y para los problemas (a), (b) y (c). Se muestra la eficiencia tanto con la
norma L1 como con la norma L2.

Problema (a)

En este caso, se ha aplicado un momento en los extremos del dominio de Mx = 1000
N m. En las figuras 5.9 y 5.10 se observan las eficiencias locales.

Figura 5.9: Eficiencia en x. Problema (a)

Figura 5.10: Eficiencia en y. Problema (a)
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Problema (b)

El esfuerzo axil aplicado es Nx = −1000N y el el momento en x es Mx = 1000N m

Figura 5.11: Eficiencia en x. Problema (b)

Figura 5.12: Eficiencia en y. Problema (b)

Se observa que la eficiencia es la misma para el problema (a) que para el problema
(b). Este resultado es coherente, ya que la única diferencia entre ambos problemas es
el esfuerzo axil en el eje x que existe en el problema (b). La solución que proporciona
el método de elementos finitos de una barra traccionada es exacta, ya que en este
caso los desplazamientos son lineales. Por esta razón, el esfuerzo axil aplicado no
introduce error alguno en la solución de elementos finitos del problema (b). Por otro
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lado, nuestro estimador de error tampoco se ve afectado. De ah́ı, que la eficiencia
entre los dos problemas sea la misma.

Problema (c)

En este problema, como ya se ha comentado, se aplica momento de flexión en ambas
caras del dominio rectangular. En la cara superior e inferior el momento es My =
100000N m y en las caras laterales el momento es Mx = 1000N m. La diferencia de
la magnitud del momento aplicado en el eje x y en eje y se debe a que la inercia en y
es mayor que en x y por tanto se ha aumentado el momento My para que la tensión
en las caras del dominio sean del mismo orden.

Figura 5.13: Eficiencia en x. Problema (c)

Figura 5.14: Eficiencia en y. Problema (c)
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Gráficos de eficiencias locales

Para evaluar la eficiencia local en los elementos de los problemas, se han agrupado
dichas eficiencias según la tabla 4.1. En las figuras 5.15, 5.16 y 5.17 se representan los
diagramas de barras que muestran la frecuencia con que se repite una eficiencia local en
los elementos tanto en la norma L1 como L2.

Figura 5.15: Eficiencia en x y en y. Problema (a)

Figura 5.16: Eficiencia en x y en y. Problema (b)
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Figura 5.17: Eficiencia en x y en y. Problema (c)

Eficiencia Global

Por último, en la siguiente tabla 5.1 se muestran las eficiencias globales obtenidas tanto
en el eje x como en el y.

Eficiencia x Eficiencia y
Norma L1 Norma L2 Norma L1 Norma L2

Probl (a) 2.475 2.73 0.308 0.358
Probl (b) 2.475 2.73 0.308 0.358
Probl (c) 1.544 1.816 0.309 0.360

Tabla 5.1: Eficiencia globales en x e y en problemas a, b y c

5.2.4. Análisis de sensibilidad del estimador

Es interesante comprobar cómo se comporta el estimador de error al variar los princi-
pales parámetros que definen el problema. En este caso, se ha estudiado la eficiencia para
diferentes módulos elásticos y coeficientes de Poisson, los cuales definen el comportamien-
to de un material elástico lineal. También se ha analizado la influencia del tamaño del
elemento de la malla.

Modificación de Módulo elástico, E

Para el análisis de sensibilidad aplicado al módulo elástico, E, se ha tomado ν = 0.3
y E = 2.1e10, 2.1e11y2.1e12 N m. Se ha observado que el estimador proporciona
la misma eficiencia independientemente su valor, como se aprecia en la figura 5.18.
Esto se debe a la proporcionalidad que existe entre el módulo elástico y los desplaza-
mientos, que es la misma que existe entre el módulo elástico y el error estimado.
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Figura 5.18: Influencia del módulo elástico en la eficiencia. Norma L1 y L2

De esta manera, al doblar el valor del módulo elástico, los desplazamientos que pro-
porciona la solución de elementos finitos y la solución exacta es justamente el doble.
Por tanto, el error real que comete el método de elementos finitos es el doble. Por otro
lado, el error estimado también se dobla ya que la función bubble dobla su valor y el
estimador es proporcional a esta función bubble. Por tanto, al realizar el cálculo de
la eficiencia, en la que se divide error estimado y error real, se obtiene el mismo valor.

Coeficiente de Poisson, ν

Desde un punto de vista f́ısico, los valores que puede tomar el coeficiente de Poisson
de un material va de 0 a 0,5 sin llegar a estos extremos. Por ello, se ha tomado
como módulo elástico E = 2.1e11 N m y se ha realizado un barrido del parámetro
coeficiente de Poisson desde 0,05 a 0,45. En las figura 5.19 y 5.20 se muestra los
valores de eficiencia global obtenidos para los tres problemas analizados y para las
normas L1 y L2. Los problemas (a) y (b) se han agrupado al tener la misma eficiencia.

Tamaño del elemento

Una cuestión importante a analizar en un estimador de error es ver si la eficiencia
se ve afectada por el tamaño de los elementos. Para estudiar la sensibilidad de la
eficiencia, se ha partido de un tamaño de elemento h y se ha ido haciendo el elemento
más pequeño h/2 y h/4. En este caso, h es el lado del elemento cuadrilátero.
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Figura 5.19: Influencia del coeficiente de Poisson en la eficiencia. Norma L1

Figura 5.20: Influencia del coeficiente de Poisson en la eficiencia. Norma L2

En las figuras 5.21 y 5.22 aparece la eficiencia global obtenida con los distintos
tamaños de malla para las normas L1 y L2 con ν = 0.3 y E = 2.1e11 N m. Se
aprecia que la influencia es mı́nima, exceptuando la eficiencia para el eje x en los
problemas (a) y (b).

Figura 5.21: Influencia del tamaño de malla en la eficiencia. Problema a y b
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Figura 5.22: Influencia del tamaño de malla en la eficiencia. Problema c

5.3. Viga en voladizo y viga biapoyada

En este apartado, se muestran los resultados obtenidos en las simulaciones realizadas
para dos casos en los que el estado tensional de los cuerpos es de mayor complejidad. En
la figura 5.23 aparecen los problemas que se han estudiado.

El primer problema, se trata de una viga rectangular en voladizo con una carga P en
el extremo opuesto del empotramiento. El segundo caso, el problema a resolver es una vi-
ga rectangular biapoyada en la que se ha aplicado una carga distribuida en la cara superior.

Figura 5.23: Problemas de viga empotrada y viga apoyada

Al igual que en la sección anterior, se ha seleccionado un dominio con una longitud de
10 m y una anchura de 2 m.

5.3.1. Solución anaĺıtica de los problemas

Como en los problemas anteriormente analizados, hay que conocer la solución exac-
ta del problema a tratar. De esta manera, se puede hallar el error que se comete con el
método de elementos finitos. A continuación, se muestran las soluciones anaĺıticas de los
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problemas. En los anexos se detalla detenidamente el proceso de cálculo de la solución
exacta.

Problema viga empotrada

u = −
P · x2 · y

2EI
−

ν · P · y3

6EI
+

P · y3

6IG
+ (

P · l2

2EI
−

P · c2

2IG
) · y (5.2)

v =
ν · P · x · y2

2EI
+

P · x3

6EI
−

P · l2 · x

2EI
+

P · l3

3EI
(5.3)

Problema viga biapoyada

u =
q

2EI

[

(l2x−
x3

3
)y + x(

2

3
y3 −

2

5
c2y) + νx(

1

3
y3 − c2y +

2

3
c3)

]

(5.4)

v = −
q

2EI

{

y4

12
−

c2y2

2
+

2

3
c3y + ν[(l2 − x2)

y2

2
+

y4

6
−

1

5
c2y2]

}

− (5.5)

−
q

2EI
[
l2x2

2
−

x4

12
−

1

5
c2x2 + (1 +

1

2
ν)c2x2]+

+
5

24

ql4

EI
[1 +

12

5

c2

l2
(
4

5
+

ν

2
)]

donde I =
∫ c

−c
y2 · dy es el momento de inercia de la sección transversal.

5.3.2. Solución por elementos finitos

En este caso, para las simulaciones se ha realizado un mallado de 20 elementos en x y
4 elementos en y como se muestra en la figura 5.24.

En la figura 5.25 se muestra la deformada de la viga empotrada y de la viga apoyada
obtenida mediante el método de elementos finitos. Se representan los vectores desplaza-
miento de los nodos del mallado.

5.3.3. Análisis de la eficiencia del error

En este aparatado se muestra las eficiencias locales obtenidas en la estimación de error.
En las figuras 5.26, 5.27, 5.28 y 5.29 se muestra en mapa de colores la eficiencia tanto en
el eje x como en el eje y para los problemas estudiados.
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Figura 5.24: Forma del mallado

Figura 5.25: Deformada de la viga empotrada y de la viga apoyada

Viga empotrada

El valor de la carga P colocada en el extremo del voladizo es de 1000 N.

Figura 5.26: Eficiencia en x. Problema viga empotrada
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Figura 5.27: Eficiencia en y. Problema viga empotrada

Viga apoyada

En este caso, la carga distribuida en la viga es de 100 N/m.

Figura 5.28: Eficiencia en x. Problema viga apoyada

Por último, en la siguiente tabla 5.2 se muestran las eficiencias globales obtenidas tanto
en el eje x como en el y.
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Figura 5.29: Eficiencia en y. Problema viga apoyada

Eficiencia x Eficiencia y
Norma L1 Norma L2 Norma L1 Norma L2

Viga empotrada 5.85e-2 6.03e-2 1.37e-2 1.38e-2
Viga biapoyada 0.1968 0.1958 3.533e-2 3.88e-2

Tabla 5.2: Eficiencia en x e y en problemas a, b y c
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Conclusiones

A ráız de los resultados obtenidos se extraen las siguientes conclusiones:

En los problemas (a), (b) y (c), las eficiencias tanto locales como globales están dentro
de ĺımites aceptables. En general, la eficiencia suele ser menor que la unidad, es decir,
la estimación de error es más pequeña que lo que realmente es. Un aspecto positivo,
es que en las desplazamientos en el eje y, que es donde se produce el desplazamiento
más importante, la dispersión del error es muy pequeña, existiendo entre el error real
y el error estimado un factor de escala prácticamente constante en todo el dominio.

Se aprecia que el valor de la eficiencia local y la eficiencia global no se ve afectada de
forma relevante por el tipo de norma empleada, L1 y L2, siendo la eficiencia obtenida
mediante la norma L2 un poco mayor que la eficiencia de la norma L1.

En el estudio de sensibilidad, se ha observado que la calidad de la estimación de error
no se ve afectada de forma notable por la variación de los parámetros que definen las
propiedades del material. Respecto al módulo elástico, la eficiencia es independiente
de su valor. Por otro lado, el estimador de error es poco sensible a la variación del
coeficiente de Poisson, ν. Además, tampoco afecta de forma significativa el tamaño
de la malla, siendo las eficiencias de la estimación del error similares para mallas
diferentes.

En los problemas de la viga en voladizo y la viga biapoyada los resultados de las
eficiencias no son tan satisfactorios. En estos problemas, el estado tensional es más
complejo que en los problemas más básicos como son las problemas (a), (b) o (c).
En gran parte del dominio, la estimación de error es bastante más pequeña que el
error real. Las posibles causas de esta discrepancia son:

• Las aproximaciones realizadas en la función de Green, mediante el teorema de
la traza, en el planteamiento de la formulación del error.

• Comparando con los problemas (a), (b) y (c), en los problemas de la viga em-
potrada y biapoyada, existe presencia de esfuerzo cortante, donde posiblemente
el estimador de error no trate de forma adecuada el efecto de este esfuerzo a la
estima del error.
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CAPÍTULO 6. CONCLUSIONES

• Además, en relación a la matriz constitutiva de la ecuación del calor y de la
ecuación de elasticidad, es en los términos de fuera de la diagonal donde existe
una diferencia significativa entre ambas. En la ecuación de calor, estos valores
son nulos, mientras que en la ecuación de elasticidad no lo son. Son precisamente
estos valores fuera de la diagonal los que influyen en la aportación que hacen los
esfuerzos cortantes. Por tanto, seŕıa conveniente en un trabajo futuro, predecir
de manera más óptima la influencia del cortante en la estimación del error.
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Anexo A

Solución anaĺıtica: Problema flexión
Pura

En este caso, el problema es una viga de gran canto sometida a flexión pura. Las
dimensiones y ejes adoptados para el problema de flexión pura se observan en la figura
A.1. Según se muestra, las cargas que se aplican en el contorno del dominio, debido al
momento aplicado en los extremos, es una carga distribuida de forma triangular, es decir,
la magnitud de la carga aplicada es proporcional a la distancia respecto a la fibra neutra.

Figura A.1: Problema flexión pura. Dimensiones y ejes

La distribución de la carga en el contorno es igual a las tensiones que se producen en la
viga en una sección perpendicular al eje x. Por otro lado, la tensión en y, σy, y el cortante,
τxy, son nulos.

47



ANEXO A. SOLUCIÓN ANALÍTICA: PROBLEMA FLEXIÓN PURA

σx =
Mx

Ix
y σy = 0 τxy = 0 (A.1)

donde Mx es el momento aplicado e Ix =
∫ c

−c
y2 · dy es el momento de inercia.

Conociendo el estado tensional en el dominio del problema, es inmediato hallar el es-
tado de deformación.

εx =
∂u

∂x
=

1

E
(σx − νσy) =

Mx

EIx
y (A.2)

εy =
∂v

∂y
=

1

E
(σy − νσx) = −ν

Mx

EIx
y (A.3)

Integrando e imponiendo las condiciones de contorno apropiadas se obtiene el campo
de desplazamientos.

u =
Mx

EIx
y · x+ f1(y) (A.4)

v = −ν
Mx

2EIx
y2 + f2(x) (A.5)

Para determinar f1(x) y f2(x) de las ecuaciones anteriores, se aplica la condición de
que el esfuerzo cortante es cero.

τxy = G(
∂u

∂y
+

∂v

∂x
) = 0 →

Mx

EIx
x+

∂f1(y)

∂y
+

∂f2(x)

∂x
= 0 (A.6)

Por lo tanto, para cumplir la ecuación anterior las funciones f1(y) y f2(x) se definen
como se muestra a continuación.

f2(x) = − Mx

2EIx
x2 + A

f1(y) = 0

Sustituyendo en (A.4) y (A.5), las funciones f2(x) y f1(y)

u =
Mx

EIx
y · x (A.7)

v = −ν
Mx

2EIx
y2 −

Mx

2EIx
x2 + A (A.8)
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ANEXO A. SOLUCIÓN ANALÍTICA: PROBLEMA FLEXIÓN PURA

La constante A se debe obtener aplicando una condición de contorno. En esta caso, la
condición de contorno es que el desplazamiento vertical en el apoyo es cero.

x = 0
y = −c

} → v = −ν Mx

2EIx
c2 + A = 0 ⇒ A = νMx

2EIx
c2

Finalmente, los desplazamientos para el problema de flexión pura en una viga de gran
canto quedan:

u =
Mx

EIx
y · x (A.9)

v = −
νMx

2EIx
y2 −

Mxx
2

2EIx
+

νMx

2EIx
c2 (A.10)
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Anexo B

Solución anaĺıtica: Problema flexión
compuesta

Este problema presenta la misma geometŕıa y condiciones de apoyo que en el caso del
anexo A. La única diferencia es la carga a la que está sometida la viga. En los laterales,
se ha añadido al momento del problema de flexión pura, un esfuerzo axil. En la figura B.1
se muestra la disposición de las cargas y las tensiones aplicadas en el contorno.

Figura B.1: Problema flexión compuesta. Dimensiones y ejes

Debido a la elasticidad lineal, se puede obtener la solución anaĺıtica mediante el prin-
cipio de superposición, a partir de la solución del anexo A. De esta manera, la solución
exacta es la suma de la solución del anexo A y la solución de la viga sometida a esfuerzo axil.
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ANEXO B. SOLUCIÓN ANALÍTICA: PROBLEMA FLEXIÓN COMPUESTA

La viga sometida a una carga axil, Nx, el estado tensional y de deformación es

Tensiones:

σx = Nx

2c

σy = τxy = 0

Deformaciones:

εx = σx

E

εy = −ν σx

E

Los desplazamientos, u y v, se determinan integrando las expresiones de las deforma-
ciones.

εx =
∂u

∂x
→ u =

Nx

2cE
x+ A (B.1)

εy = −ν
∂v

∂y
→ v = −ν

Nx

2cE
y +B (B.2)

Las constantes de integración se determinan imponiendo las condiciones de contorno.
En este caso, la condición es que tanto el desplazamiento en x como en y es cero en el apoyo.

x = 0
y = −c

} →

{

u = A = 0
v = 0 = ν Nx

2cE
c+B → B = −ν Nx

2cE
c

Por tanto, los desplazamientos generados por el esfuerzo axil son

u =
Nx

2cE
x (B.3)

v = −ν
Nx

2cE
(y + c) (B.4)

Sumando esta solución a la solución del anexo A se obtiene la solución anaĺıtica de
este problema

u =
Mx

EIx
y · x+

Nx

2cE
x (B.5)

v = −
νMx

2EIx
y2 −

Mxx
2

EIx
+

νMx

2EIx
c2 − ν

Nx

2cE
(y + c) (B.6)

51



Anexo C

Solución anaĺıtica: Problema de
flexión en los dos ejes

Este problema tiene una geometŕıa y unas condiciones de contorno iguales al anexo A.
La carga a la que está sometido es también la misma que en el anexo A pero añadiendo
un momento, My, en la cara superior de la viga, como se aprecia en la figura C.1. Por
tanto, la solución anaĺıtica de desplazamientos se puede descomponer como suma de dos
soluciones parciales. La primera de ellas será la solución debida al momento Mx aplicado
en las caras laterales, obtenida en el anexo A. La otra solución, es la debida al momento
My que solicita la cara superior e inferior, y que se expone a continuación.

Figura C.1: Problema flexión en los dos ejes. Dimensiones y ejes

En primer lugar, para hallar los desplazamientos que produce el momento My, es nece-
sario conocer las tensiones y deformaciones que produce este momento.
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ANEXO C. SOLUCIÓN ANALÍTICA: PROBLEMA DE FLEXIÓN EN LOS DOS EJES

Tensiones:

σy =
My

Iy
x

σx = τxy = 0

Deformaciones:

εx = ∂u
∂x

= −ν My

EIy
x

εy =
∂v
∂y

= My

EIy
x

Los desplazamientos u y v se obtienen integrando las ecuaciones de deformación.

εx =
∂u

∂x
→ u = −ν

My

2EIy
x2 + f1(y) (C.1)

εy = −ν
∂v

∂y
→ v =

My

EIy
xy + f2(x) (C.2)

Las ecuaciones f1(y) y f2(x) se pueden determinar a partir de la condición de que el
cortante es nulo.

τxy = 0 →
∂u

∂y
+

∂v

∂x
= 0 (C.3)

Sustituyendo u y v en la ecuación (C.3),

Myy

EIy
+

∂f1(y)

∂y
+

∂f2(x)

∂x
= 0 (C.4)

por tanto ∂f1(y)
∂y

= −Myy

EIy
y ∂f2(x)

∂x
= 0 y las funciones f1(y) y f2(x) quedan

f2(x) = A f1(y) = −
Myy

2

2EIy
+B (C.5)

Los desplazamientos u y v se pueden expresar como

u = −ν
My

2EIy
x2 −

Myy
2

2EIy
+B (C.6)
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ANEXO C. SOLUCIÓN ANALÍTICA: PROBLEMA DE FLEXIÓN EN LOS DOS EJES

v =
My

EIy
xy + A (C.7)

Las constantes A y B se obtienen al imponer las condiciones de contorno. En este caso,
el desplazamiento en x e y es cero en el apoyo situado en la cara inferior.

x = 0
y = −c

} →

{

u = 0 = −Myc2

2EIy
+B → B = Myc2

2EIy

v = 0 = A → A = 0

Por tanto, los desplazamientos u y v producidos por My son

u = −ν
My

2EIy
x2 −

Myy
2

2EIy
+

Myc
2

2EIy
(C.8)

v =
My

EIy
xy (C.9)

A estos desplazamientos hay que sumar los obtenidos en el anexo A debido al momento
Mx. Por tanto, los desplazamientos de la solución exacta del problema, contando con las
contribuciones de Mx y My son

u =
Mx

EIx
y · x− ν

My

2EIy
x2 −

Myy
2

2EIy
+

Myc
2

2EIy
(C.10)

v = −
νMx

2EIx
y2 −

Mxx
2

EIx
+

νMx

2EIx
c2 +

My

EIy
xy (C.11)
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Anexo D

Solución anaĺıtica: Problema viga
empotrada

En la figura D.1 se muestra el esquema que representa la viga empotrada con sus medi-
das. La viga es una viga rectangular de gran canto, empotrado en uno de sus lados y en su
lado opuesto hay una fuerza de valor P. En la cara superior e inferior no hay ninguna carga.

Figura D.1: Viga empotrada con carga P en su extremo. Dimensiones, carga y ejes.

La distribución de tensiones en la viga que resulta de la aplicación de estas cargas es
la siguiente:

σx = −3P ·x·y
2·c3

σy = 0

τxy = −3P
4·c
(1− y2

c2
)

Definiendo el momento de inercia, I = 2
3
c3 , las expresiones anteriores quedan:

σx = −P ·x·y
I

σy = 0
τxy = − P

2·I
(c2 − y2)
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ANEXO D. SOLUCIÓN ANALÍTICA: PROBLEMA VIGA EMPOTRADA

Para que realmente existan estas tensiones en el dominio, en virtud del principio de
Saint-Venant, la carga aplicada en el borde del empotramiento tiene que tener una dis-
tribución parabólica, tal y como ocurre con τxy. De lo contrario, en el borde del voladizo
la distribución de tensiones no será la indicada anteriormente.

Aplicando la ley de Hooke, se obtienen las deformaciones producidas por el estado
tensional:

εx = ∂u
∂x

= σx

E
= −P ·x·y

E·I
εy =

∂v
∂y

= −ν σx

E
= ν P ·x·y

E·I

σx = 0
γxy =

∂u
∂y

+ ∂v
∂x

= τxy
G

= − P
2IG

(c2 − y2)

donde E y G son el modulo elástico de Young y el módulo elástico transversal respectiva-
mente.

Para obtener los desplazamientos, hay que integrar las ecuaciones de las deformaciones
anteriores.

u = −
P · x2 · y

2EI
+ f1(y) v =

ν · P · x · y2

2EI
+ f2(x) (D.1)

Las funciones f1(y) y f2(x), han surgido de realizar la integral. Sustituyendo u y v en
la ecuación de la deformación tangencial se obtiene una relación entre f1(y) y f2(x).

−
P · x2

2EI
+

df1(y)

dy
+

ν · P · y2

2EI
+

df2(x)

dx
= −

P

2IG
(c2 − y2) (D.2)

Agrupando en la expresión anterior los términos constantes y los términos que dependen
de x e y.

F (x) +G(y) = K (D.3)

donde F (x) = −P ·x2

2EI
+ df2(x)

dx
, G(y) = −Py2

2IG
+ νPy2

2EI
+ df1(y)

dy
.

Como puede comprobarse, F(x) y G(y) deben de ser constantes, ya que de lo contrario,
si F(x) variara con x, y G(y) variara con y, la ecuación (D.3) no se cumpliŕıa. Llamando
F (x) = d y G(y) = e la ecuación (D.3) queda:

d+ e = −
P · c2

2IG
(D.4)

56



ANEXO D. SOLUCIÓN ANALÍTICA: PROBLEMA VIGA EMPOTRADA

Por tanto, podemos obtener una expresión para las funciones f1(y) y f2(x).

df2(x)

dx
=

P · x2

2EI
+ d → f2(x) =

P · x3

6EI
+ d · x+ h (D.5)

f1(y)

dy
= −

νPy2

2EI
+

P · y2

2IG
+ e → f1(y) = −

νPy3

6IE
+

Py3

6IG
+ e · y + g (D.6)

Introduciendo f1(y) y f2(x) en las expresiones de u y v.

u = −
Px2y

2EI
−

νPy3

6EI
+

Py3

6IG
+ e · y + g (D.7)

v =
νPx · y2

2EI
+

Px3

6EI
+ d · x+ h (D.8)

Las constantes d, e, g, h se pueden determinar a partir de tres condiciones de contorno
y de las ecuaciones (D.7) y (D.8). En primer lugar, impondremos las condiciones de que
el desplazamiento horizontal y vertical es nulo en el centro de la sección del empotramiento.

En x = l e y = 0 → u = 0 y v = 0, sustituyendo en las ecuaciones anteriores.

u(x = l, y = 0) = 0 → g = 0

v(x = l, y = 0) = 0 → h = −P ·l3

6EI
− d · l

Las ecuaciones para los desplazamientos (D.7) y (D.8), al introducir el valor de estas
constantes, resultan como se expresan en (D.9) y (D.10). Por tanto, únicamente queda por
determinar las constantes d y e.

u = −
P · x2 · y

2EI
−

ν · P · y3

6IG
+ e · y) (D.9)

v = −
ν · P · x · y2

2EI
−

P · x3

6IG
+ d · x−

P · l3

6EI
− d · l) (D.10)

Para determinar la constante d, impondremos la restricción que anula la rotación sobre
el centro de la sección de empotramiento.

En x = l e y = 0 → ( dv
dx
)x=l,y=0 = 0. Por tanto, derivando la ecuación de (D.10).
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ANEXO D. SOLUCIÓN ANALÍTICA: PROBLEMA VIGA EMPOTRADA

( dv
dx
) = P ·l2

2EI
+ d = 0 → d = −P ·l2

2EI

La constante e, se puede hallar directamente aplicando la ecuación (D.4).

d+ e = −Pc2

2IG
→ e = P l2

2EI
− Pc2

2IG

De este modo, sustituyendo en las ecuaciones (D.9) y (D.10) las constantes d y e por
su valor, los desplazamientos quedan de la siguiente manera.

u = −
Px2y

2EI
−

νPy3

6EI
+

Py3

6IG
+ (

P l2

2EI
−

Pc2

2IG
)y (D.11)

v =
νPxy2

2EI
+

Px3

6EI
−

P l2x

2EI
+

P l3

3EI
(D.12)
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Anexo E

Solución anaĺıtica: Problema viga
apoyada

En este problema, se considera una viga de sección rectangular estrecha, apoyada en
sus extremos.

Figura E.1: Problema de viga apoyada. Dimensiones y ejes

En la figura E.1 se ilustra la disposición del problema. La solicitación de la viga es una
carga distribuida en la cara superior de valor q.

Las condiciones de las tensiones en los contornos del dominio son:

- Cara superior e inferior:

(τxy)y=±c = 0, (σy)y=+c = 0, (σy)y=−c = −q (E.1)
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ANEXO E. SOLUCIÓN ANALÍTICA: PROBLEMA VIGA APOYADA

- Cara laterales:
∫ c

−c

τxydy = ±ql,

∫ c

−c

σxdy = 0,

∫ c

−c

σxydy = 0 (E.2)

Las dos últimas ecuaciones de (E.2) establecen, que sobre los extremos no hay esfuer-
zo longitudinal ni ningún momento flector. Las condiciones (E.1) y (E.2) se cumplen al
combinar varias de las funciones de Airy.

φ1 =
a

6
x2y3 φ2 =

b

2
x2 φ3 =

c

2
x2y (E.3)

A partir de estas funciones de Airy se generan las siguientes tensiones

σx = a(x2y − 2
3
y3)

σy =
1
3
ay3 + cy + b

τxy = −axy2 − cx

Reemplazando estas componentes de tension en las condiciones (E.1) se determinan
las constantes a, b y c.

a = −
3

4

q

c3
b = −

q

2
c =

3

4

q

c
(E.4)

Teniendo en cuenta que 2c3/3 es el momento de inercia I de la sección transversal.

σx = −
3q

4c3
(x2y −

2

2
y3) = −

q

2I
(x2y −

2

2
y3) (E.5)

σy = −
3q

4c3
(
1

3
y3 − c2y +

2

3
c3) = −

q

2I
(
1

3
y3 − c2y +

2

3
c3) (E.6)

τxy = −
3q

4c3
(c2 − y2)x = −

q

2I
(c2 − y2)x (E.7)

Como se puede ver, esta solución de tensiones cumplen con las condiciones de tensiones
(E.1) y las dos primeras condiciones de (E.2). La última condición no es satisfecha. Ésta
condición expresa que en las caras laterales, no existe un par aplicado. Por tanto, impon-
dremos una flexión simple σx = d · y, que proviene de la función de Airy φ4 = d

6
y3. El

coeficiente d se obtiene al imponer precisamente la condición comentada en los extremos
x = ±l.

∫ c

−c

σxydy =

∫ c

−c

[−
3q

4c3
(l2y −

2

2
y3) + dy]ydy = 0 (E.8)
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por tanto

d =
3

4

q

c
(
l2

c2
−

2

5
) (E.9)

De manera que la tensión σx queda

σx = −
q

2I
(x2y −

2

2
y3) +

3

4

q

c
(
l2

c2
−

2

5
)y = −

q

2I
(x2y −

2

2
y3) +

q

2I
(l2 −

2c2

5
)y (E.10)

Una vez obtenido el estado tensional, se puede hallar fácilmente las deformaciones
aplicando la ley de Hooke

εx =
∂u

∂x
=

σx

E
= −

q

2EI
(x2y −

2

3
y3) +

q

2EI
(l2 −

2c2

5
)y (E.11)

εy =
∂v

∂y
=

σy

E
= −

q

2EI
(
1

3
y3 − c2y +

2

3
c3) (E.12)

γxy =
∂u

∂y
+

∂v

∂x
=

τxy
G

= −
q

2GI
(c2 − y2)x (E.13)

Por tanto los desplazamientos se pueden expresar como

u = −
q

2EI
(
x3y

3
−

2

3
y3x) +

q

2EI
(l2 −

2c2

5
)yx+ f1(y) (E.14)

v = −
q

2EI
(
1

12
y4 −

1

2
c2y2 +

2

3
c3y) + f2(x) (E.15)

Las funciones f1(y) y f2(x) se determinan sustituyendo las funciones (E.14) y (E.15)
en la ecuación (E.13). De esta manera las funciones f1(y) y f2(x) que resultan

f1(y) = A (E.16)

f2(x) = −
2

5

q

EI
c2x2 +

q

EI

x4

24
−

νqc2x2

4EI
+B (E.17)

donde A y B son constantes de integración. Éstas se determinan mediante las condiciones
de apoyo. Sustituyendo en (E.14) y (E.15) las funciones f1(y) y f2(x) y reordenando
términos las funciones u y v quedan:
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u =
q

2EI

[

(l2x−
x3

3
)y + x(

2

3
y3 −

2

5
c2y) + νx(

1

3
y3 − c2y +

2

3
c3)

]

+ A (E.18)

v = −
q

2EI

{

y4

12
−

c2y2

2
+

2

3
c3y + ν[(l2 − x2)

y2

2
+

y4

6
−

1

5
c2y2]

}

(E.19)

−
q

2EI
[
l2x2

2
−

x4

12
−

1

5
c2x2 + (1 +

1

2
ν)c2x2] +B

La constante A de (E.21) se observa que es cero (A = 0), ya que el desplazamiento
horizontal en la sección central es nulo. Por otro lado, la constante B se puede hallar con
la condición de apoyo en los extremos, en la que el desplazamiento v es nulo.

B =
5

24

ql4

EI
[1 +

12

5

c2

l2
(
4

5
+

ν

2
)] (E.20)

Por tanto, los desplazamientos u y v de la solución anaĺıtica son:

u =
q

2EI

[

(l2x−
x3

3
)y + x(

2

3
y3 −

2

5
c2y) + νx(

1

3
y3 − c2y +

2

3
c3)

]

(E.21)

v = −
q

2EI

{

y4

12
−

c2y2

2
+

2

3
c3y + ν[(l2 − x2)

y2

2
+

y4

6
−

1

5
c2y2]

}

− (E.22)

−
q

2EI
[
l2x2

2
−

x4

12
−

1

5
c2x2 + (1 +

1

2
ν)c2x2]+

+
5

24

ql4

EI
[1 +

12

5

c2

l2
(
4

5
+

ν

2
)]
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