s Universidad
A8l Zaragoza

1542

Proyecto Final de Carrera
Ingenieria Informatica
Curso 2011-2012

Desarrollo de Funcionalidades, Plugins y
Herramientas
para Software de Neuroterapia

Sergio Serrano Sanchez

Diciembre de 2011

Director: Javier Minguez Zafra

Departamento de Informatica e Ingenieria de Sistemas
Centro Politécnico Superior
Universidad de Zaragoza

El dolor es inevitable,
el sufrimiento, opcional.

v

Agradecimientos

A mis companeros de clase, por las tardes y noches de laboratorio.

A mis amigos, por ser ellos.

A Sergio y Ana, por darle luz a mis noches.

A Fernando, por ensenarme lo que es un gradiente, y por sus ”terrorismos”.

A los BBTs, por aceptarme con mis defectos y virtudes, por ayudarme en los momentos
mas dificiles.

A la seccién de deportes San Agustin, por permitirme aprender de ellos tantos anos.
A Carlos Sebastidn, por ensenarme que, la lucha por llegar, nos hace fuertes.

A Marfa, por compartir sus metas conmigo, y darme la oportunidad de trabajar cada
dia, por un manana distinto.

A Javier, por dirigir este PFC y por su incansable esfuerzo en convertir todo lo que nos
rodea en algo mejor.

A mis tios, por sus llamadas furtivas, por tener siempre una palabra de aliento.

A mis padres, por celebrar mis triunfos, pero sobre todo por estar a mi lado en mis
derrotas.

A mi hermano y a Eva, por mostrarme el camino de regreso.
A mis abuelos, por ensenarme que no hay nada imposible.

Y como no a Merche, por guiarme , por entenderme, por re-escribir el presente, por
hacerme sonar con el futuro.

vi

Resumen

Desarrollo de Funcionalidades, Plugins y Herramientas

para un Software de Neuroterapia

El objetivo de este proyecto es el andlisis, diseno e implementacién de diversas herra-
mientas que proporcionan funcionalidades para un software de neuroterapia por medio de
tecnologia BCI (Interfaz Cerebro Computador).

El contexto de este proyecto es utilizar BCI como herramienta adicional para el trata-
miento de diversas patologias (TDA, accidente cerebro-vascular, depresion, fibromialgia)
o incluso como herramienta orientada a la mejora de las capacidades cognitivas.

La forma mas basica de aplicacion de la tecnologia BCI para trabajar con cualquier
tipo de caracteristica o trastorno ha sido denominada neurofeedback, el cual es una forma
de biofeedback ligado a aspectos especificos de la actividad eléctrica del cerebro, los cuales
se sabe que estan relacionados con aspectos cognitivos humanos que se desea potenciar.
Se espera que una mejora en estos derive en una mejora de las capacidades cognitivas
asociadas.

En concreto los objetivos del proyecto son:

= Analizar, disenar e implementar plugins y funcionalidades necesarias dentro del
software de neuroterapia.

= Analizar, disenar e implementar una herramienta de comprobacién de defectos de
montaje, teniendo en cuenta aspectos de usabilidad y facilidad de manejo.

= Analizar, disenar e implementar funcionalidades adscritas a la instalacion del soft-
ware BrainUp.

= Colaborar en las diversas etapas de ingenieria del software BrainUp desde su fase
mas temprana.

vil

viii

Indice

1. Introduccién

1.1. Alcance del proyecto

2. Contexto
2.1. Conceptos sobre Neurofeedback
2.2. Arquitectura BZI
2.3. BrainUp : Construya su propia Neuroterapia
2.3.1. Paso 1: Gestion de Usuarios
2.3.2. Paso 2: Gestion de Terapia
2.3.3. Paso 3: Comprobacién de defectos de montaje
2.3.4. Paso 4: Calibracion de Ritmos

2.3.5. Paso b: Terapia

3. Desarrollo

3.1. Herramienta de comprobacion de defectos de montaje

3.1.1. Introduccién
3.1.2. Andlisis o
3.1.3. Diseno oo
3.1.4. Implementacion
3.1.5. Pruebas
3.2. Unidad de deteccion de defectos de montaje

1X

12
12
13
14
15
16

3.2.1. Introducciéno
3.2.2. Analisis
3.23. Disenoo
3.2.4. Implementacion
3.2.5. Pruebas
3.3. Informe de resultados
3.3.1. Introduccién
3.3.2. Analisis
3.3.3. Diseno
3.3.4. Implementacion
3.3.5. Pruebas
3.4. Plugin de visualizacién de actividad cerebral
3.4.1. Introduccién L
3.4.2. Analisis
3.4.3. Disenoo
3.4.4. Implementacion L
3.4.5. Pruebas

4. Localizacion del software

5. Instalador

5.1. Descripcidn L

5.2, AndliSIS

5.3. Diseno

5.4. Implementacion

5.5. Pruebas

6. Aspectos relevantes

7. Conclusiones y trabajo futuro

53

57
57
58
60
61
62

65

67

7.1. Trabajo futuro

Bibliografia

A. Desarrollo
A.1. Distribucién temporal y esfuerzo realizado
A.2. Documentos de disenioo
A.2.1. Herramienta de comprobacion de defectos de montaje
A.2.2. Unidad de deteccién de electrodos erréneos
A23. Informe
A24. Instalador
A.3. Documentos de implementaciéon
A.3.1. Herramienta de comprobacién de defectos de montaje
A.3.2. Unidad de deteccién de electrodos erréneos

A.3.3. Informe

B. Manual de usuario
B.1. Interfaz de comprobaciéon de defectos de montaje
B.2. Plugin de comprobacion de montaje
B.3. Informe
B.4. Instalador

C. Pruebas
C.1. Herramienta de comprobaciéon de montaje
C.2. Unidad de deteccion de electrodos erréneos
C.3. Informe
C.4. Plugin visualizador de actividad cerebral

C.5. Imstalador

x1

69

73
74
78
78
83
84
85
87
87
90
92

98
98
100
101
103

xil

1. Introduccion

El presente proyecto fin de carrera se ha realizado en estrecha colaboracién tanto con
el Grupo de Robética, Percepcion y Tiempo Real del Departamento de Informética e
Ingenieria de Sistemas del Centro Politécnico Superior de la Universidad de Zaragoza,
dentro del equipo de investigacion de Interfaces Cerebro-Computador, asi como BitBrain
Technologies, spin-off de la Universidad de Zaragoza, empresa pionera en la investigacion,
disenio e implementacién de Interfaces Cerebro-Computador.

El objetivo de este proyecto es realizar el andlisis, diseno e implementacion de diversas
herramientas y funcionalidades tanto visuales como matematicas, necesarias dentro de
un sistema de gestion para Neurofeedback basado en tecnologia de interfaces cerebro
computador (BCI, del inglés Brain Computer Interface), y desarrollado por BitBrain
Technologies.

Una interfaz cerebro computador o BCI[1] es un sistema basado en la adquisicién
de senal cerebral, la cual, pasa a ser inmediatamente procesada, con el fin de extraer
actividades o patrones destacables conforme a ciertos ritmos cerebrales. Existen diversos
medios encargados de la adquisicion de esta senal cerebral, divididos en métodos invasivos
y no invasivos dependiendo de su nivel de intrusién en el usuario/paciente. En el caso que
nos ocupa, se utiliza un montaje de electroencefalograma (basado en la colocacién de
electrodos-sensores), ya que supone una solucién con un tiempo de procesado aceptable,
barata, no invasiva y cuyo coste de adaptacién al usuario final es inferior al de otras
soluciones.

Debido a que la senal de encefalograma (EEG[2]) es muy débil (baja amplitud, del
orden de los microvoltios), necesita ser amplificada durante el periodo de adquisicién, este
proceso provoca del mismo modo un incremento en la amplitud de perturbaciones ajenas al
montaje contaminando de este modo la senal. Estas perturbaciones, denominadas también
artefactos pueden ser de dos tipos, fisiolégicas (parpadeos, movimientos musculares) o
eléctricas (fluctuaciones de corriente), siendo en cualquier caso varios érdenes de magnitud
superiores a la senal EEG. Es por ello por lo que han de implementarse métodos de filtrado
y comprobaciéon de artefactos y defectos del montaje.

Los patrones y actividades extraidos después del proceso de adquisicion y procesado
son utilizados con distintos objetivos, desde la tele-operacién de vehiculos no tripulados|3],
control de interfaces en personas con movilidad reducida[4], rehabilitacién de pacientes

1. Introduccién 1.1 Alcance del proyecto

con lesiones medulares o neuroldgicas([5], hasta aplicaciones basadas en neuromarketing o
como en el caso que nos ocupa, neurofeedback.

El neurofeedback (NFB)[6], también conocido como neuroterapia, se basa en la ca-
pacidad por parte del usuario/paciente de adquirir auto control sobre ciertos patrones
cerebrales mediante el condicionamiento operante. El entrenamiento sobre éstos refleja
rendimiento cognitivo, como mejoras en memoria de trabajo, disminucién del tiempo de
respuesta ante un estimulo aleatorio, progreso asociado a habilidades motoras o trastornos
depresivos, entre otros.

En la actualidad comienzan a adoptarse técnicas basadas en neurofeedback con el fin de
tratar enfermedades como la epilepsia, deficit de atencién[7][8][9], desordenes adictivos[10],
depresion, o fibromialgia[11]. También es utilizado cada vez con mas frecuencia con fines
no estrictamente médicos, como su presencia en entornos lidicos (videojuegos[12], con-
troladores musicales[13], robética de consumo|[14]), o en procesos de toma de decision.

Con el objetivo de dar soporte a estos sistemas nace BrainUp, concebido como un soft-
ware de creacién, configuracién y ejecucién de terapias, orientado a usuarios/terapeutas
sin conocimientos previos en materia de senal EEG, rapido y usable. En la actualidad,
BrainUp y por consiguiente las tareas realizadas en este PFC son utilizadas en varios
ensayos clinicos relacionados con trastornos depresivos y fibromialgia en colaboracion con
el Hospital Miguel Servet de Zaragoza, asi como en sendos estudios de mercado (neuro-
marketing), se espera su lanzamiento al mercado en un plazo maximo de 3 semanas.

1.1. Alcance del proyecto

Las tareas desarrolladas en este PFC comprenden el anélisis, diseno, implementacién e
integracién de herramientas o interfaces de usuario completas, funcionalidades matemati-
cas y visuales dentro de BrainUp.

A continuacion se detallan las tareas en el que se han estructurado este PFC. Pa-
ra conocer su desarrollo temporal debe consultarse el diagrama de Gantt del producto,
presente en la seccion A.1.

Herramientas: Encargadas de dotar a la aplicacion de una determinada funcionali-
dad.

1. Herramienta de comprobacion de defectos de montaje: interfaz de usuario
dedicada a la deteccion y notificacion de los defectos detectados en un montaje de
EEG (electrodos erréneos), tanto antes del entrenamiento, como durante el mismo,
protegiendo asi la integridad de la terapia.

2. Localizacién del software: algoritmo de adaptacién y localizacion lingiiistica para
BrainUp.

1. Introduccién 1.1 Alcance del proyecto

3. Instalador: interfaz de usuario dedicada a la instalacion y configuracion de la apli-
cacion a las diferentes arquitecturas y sistemas operativos soportados.

Funcionalidades Matematicas: Encargadas del procesado de senal EEG.

1. Unidad de deteccién de defectos de montaje: relacionada con la herramienta
de comprobacién de defectos de montaje antes descrita, realiza la operatoria ma-
tematica que reside bajo la misma, siendo la herramienta de comprobaciéon una
representacion visual de sus resultados.

Funcionalidades Visuales: Encargadas de la representacion grafica dentro de las
diferentes interfaces de usuario.

1. Plugin de visualizacién de actividad cerebral: representacion espacial inter-
polada de la actividad cerebral en tiempo real, puede hacer las veces de feedback
visual, asi como ser utilizada como herramienta de calibracién y comprobacién.

2. Informe: representacién visual resultados de neuroterapia, niimero de sesién en la
que nos encontramos, datos relativos al paciente, graficas de evolucién entre fases,
entre otros.

SCREEN1 | SCREEN3

— Informe

Herramienta de comprobracion de defectos
Informe de resultados

Figura 1.1: Alcance de las tareas.

1. Introduccién 1.1 Alcance del proyecto

2.

Contexto

2.1.

Conceptos sobre Neurofeedback

EEG
USUARIO |—> | ADQUISICION |[—>| PROCESADO | —>> APLICACION —

A

Figura 2.1: Esquema general del neurofeedback.

Una aplicaciéon basada en neurofeedback, responde a la estructura bésica de una in-

terfaz

cerebro-computador (Figura 2.1). En sucesivas secciones se concretard el diseno y

funcionamiento particular de una terapia de neurofeedback, comenzaremos en ésta expli-
cando qué elementos posee en comun con cualquier interfaz cerebro-computador (BCI):

1.

Adquisicién: Se lleva a cabo mediante un gorro EEG (montaje), unido a un ampli-
ficador operacional encargado de amplificar la senal. En la actualidad comienzan a
proliferar, sistemas hardware "secos” (sin necesidad de aplicar gel conductor), de
facil montaje y coste inferior a un equipo de EEG tradicional.

. Procesado: Realizado con dos objetivos, por un lado la busqueda de patrones rele-

vantes de los que deseamos mejora y escogidos dentro del entrenamiento que nos
ocupe (Upper Alpha, Lower Alpha) y por otro, la gestién de la senal necesaria para
tales fines, ya sea filtrando, editando o almacenando la misma.

. Aplicacién: Parte esencial del sistema, pues proporciona al usuario feedback (vi-

sual /auditivo/téctil) dependiendo de su correccién/fallo en la realizacién de la ta-
rea (control sobre ritmos determinados), consiguiendo asi un mayor control en el
usuario/paciente gracias al aprendizaje por refuerzo.

b}

2. Contexto 2.1 Conceptos sobre Neurofeedback

Como ya hemos comentado anteriormente el propdsito general de una terapia basada
en neurofeedback, es conseguir que el usuario adquiera gracias al condicionamiento ope-
rante cierto grado de auto-control sobre bandas o ritmos determinados que se considera
reflejan rendimiento cognitivo, como por ejemplo la memoria de trabajo [15][16][17].

Definicién de Banda: Existen diversas bandas o ritmos presentes en la actividad
cerebral (Figura 2.2), pudiendo realizarse terapias/entrenamientos de neurofeedback en
cualquiera de éstas y extrayendo mejoras cognitivas diferentes dependiendo de la banda
o ritmo seleccionado. En el caso que nos ocupa, tanto por la experiencia acumulada por
BitBrain Technologies como por la Universidad de Zaragoza, se escoge la banda Alpha
como objeto de estudio.

DELTA 4 HZ THETA 4-7 ALPHA 8-12 BETA 12-30

Figura 2.2: Bandas de trabajo de una neuroterapia.

Las terapias basadas en neurofeedback desarrolladas hasta la fecha se realizaban sobre
una banda Alpha fija, sin embargo, la existencia de problemas derivados de una metodo-
logia de banda fija, como por ejemplo, su ineficacia en grupos con importantes variaciones
"inter-usuario”, asi como el desconocimiento de qué aspectos cognitivos eran mejorados
realmente si se optaba por metodologias de banda completa[17][18], desembocaron en la
aparicién de nuevas metodologias de neurofeedback.

Como respuesta a este tipo de limitaciones, se introduce el concepto de Individual
Alpha Frequency (IAF), definido como punto de anclaje distintivo entre dos sub-bandas
independientes, upper-alpha (UA) y lower-alpha (LA) y calculado de manera individual
para cada sujeto permitiendo de este modo tener en cuenta variaciones ”inter-usuario”.
Dichas sub-bandas han demostrado comportarse de manera distinta ante distintos tipos
de tareas, siendo la banda UA la que parece més relacionada con mejoras cognitivas[18].

Su localizacién en cada sujeto requiere de la realizacién de tareas previas al entrena-
miento. En nuestro caso, una tarea pasiva y una activa, con el fin de localizar la posicion y
potencia del IAF dentro de la totalidad de la banda Alpha, estas tareas, también conocidas
como calibracién de ritmos, se veran detalladas en secciones posteriores.

2. Contexto 2.1 Conceptos sobre Neurofeedback

TRIAL 1

FASE1 TRIAL ...

SESION 1
TRIALMN

FASE ...

Y Y
SESION ... FASE N
A4
TERAPIA SESION N

N

Figura 2.3: Esquema de una neuroterapia.

Concepto de terapia: Los interfaces cerebro-computador basados en neurofeedback
se estructuran en terapias (Figura 2.3), una terapia se compone de una o varias sesiones,
pudiendo realizarse en un espacio temporal reducido o bien dilatarse en el tiempo (dias,
semanas o meses).

Cada una de estas sesiones se encuentra estructurada en fases, siendo posible realizar
trabajo comun o especifico (tabla 2.1), dotando asi de versatilidad a la terapia. Tienen
una duracién aproximada de entre 10 y 30 minutos, contando con el tiempo programado
de descanso entre fases.

Ejemplo | Protocolo para pacientes de depresion
Fase 1: Mejora cognitiva.
Fase 2: Refuerzo emocional.

Tabla 2.1: Ejemplo de diferencia entre fases.

Cada una de las fases esta compuesta por :

1. Tarea Pasiva: Realizada tiinicamente al inicio de la sesion, su duracién aproximada
es de 2 minutos, donde el usuario/paciente debe estar relajado y permanecer con
los ojos cerrados, procurando aislarse en la manera de lo posible del exterior.

2. Tarea Activa: Realizada inicamente al inicio de la sesién, su duracién aproximada
es de unos 2 minutos, donde el usuario/paciente debe realizar una determinada

7

2. Contexto 2.1 Conceptos sobre Neurofeedback

actividad, por ejemplo contar cambios de tonalidad dentro de una gama de colores
ofrecida por pantalla, se trata de una tarea activa si bien todavia no forma parte
del entrenamiento.

Como hemos comentado, la presencia de artefactos puede perturbar la senal dejando-
la inservible, es por ello por lo que durante la tarea activa también es realizada la
calibracién del filtro ICA cuyo objetivo es el filtrado automatico de este tipo de
componentes.

3. Trial: También llamados repeticiones, tras la ejecucion de las tareas pasivas y ac-
tivas, se procede a realizar tandas de entrenamiento, correspondientes al aspecto a
reforzar en la fase (entrenamiento de memoria, de atencién), el usuario recibe feed-
back positivo en caso de alcanzar el estado mental adecuado, y feeedback negativo
en caso contrario, ya sea de tipo visual, auditivo o tactil. Todos los trials deben
reforzar el mismo aspecto cognitivo, pues pertenecen a la misma fase.

El paciente no es informado en ningin instante de la estrategia a seguir para alcanzar
el estado mental adecuado, se ha demostrado que no existe una tnica correcta[16], sino
varias, y que a su vez, la bisqueda por parte del usuario/paciente de estrategias propias
e individuales podria enriquecer y potenciar el entrenamiento frente a usuarios/pacientes
informados con anterioridad.

La decisién de proporcionar feedback positivo o negativo es tomada en torno a un valor
denominado baseline, valor de referencia al inicio de la sesién (calibracién de ritmos). De
esta forma nuestra terapia se convierte en un proceso dinamico, donde los resultados
obtenidos en el dia n estaran relacionados con los progresos particulares del sujeto en
cuestién, adaptandose a éstos de forma transparente.

Validacién: La validacion de la terapia se realizd con 50 sujetos sanos, repartidos en
semanas completas de experimentacion y distribuidos bajo los siguientes roles:

1. Grupo de pacientes: Realizan una bateria de test el primer dia de entrenamiento
y otra el tltimo, con el fin de medir su evolucién tras la terapia/entrenamiento.

2. Grupo de control: Realizan los mismos test pero sin recibir ningtin tipo de en-
trenamiento, gracias a esto podemos estimar la capacidad de adaptacién al test por
parte de los sujetos, y con ello definir la mejora real del grupo de pacientes.

Los resultados arrojaron mejoras de entorno al 10 % en el grupo de pacientes.

Por ultimo cabria destacar que nos movemos en un terreno de gran complejidad, una
terapia o protocolo de neurofeedback es el resultado de un intenso trabajo multidisciplinar
y, si bien las fases de adquisicion, procesado y aplicacion son comunes a todos los interfaces
BCI, la configuracion y diseno de una terapia presenta unos niveles de heterogeneidad
elevados, a esta y otras cuestiones pretende dar respuesta el software desarrollado por
BitBrain Technologies de nombre BrainUp.

2. Contexto 2.2 Arquitectura BZI

BrainUp: Quizas la mejor manera de explicar de qué se compone BrainUp, es remon-
tarnos a la definicién de interfaz cerebro computador dada en el capitulo anterior, donde
quedaba dividida en tres fases bien diferenciadas, enriqueciéndolas ahora con nuevas nece-
sidades como la creacién y edicion de una terapia, o la realizacion de tareas de localizacion
del TAF y de filtrado automético de artefactos (ICA).

BrainUp se encuentra dividido en dos grandes bloques, por un lado la arquitectura
BZI, encargada de las tareas de gestion de la senal cerebral, por otro la interfaz de usuario,
encargada de la edicion, configuracién y ejecucién de la terapia.

1. Adquisicién: Realizada directamente por la arquitectura BZI proveniente del am-
plificador operacional.

2. Procesado: Realizado por la arquitectura BZI, encargada de las diferentes tareas
de gestion de la senal, extraccién de caracteristicas y clasificacién.

3. Aplicacién: Realizado tanto por la arquitectura BZI, como la interfaz de usuario
contenida en BrainUp

a) Arquitectura BZI: Encargada de la visualizacién del feedback de usuario,
conforme a la realizacion del entrenamiento por parte del sujeto

b) Interfaz de Usuario: Monitorizacion y edicién del entrenamiento, ya sea
pausandolo, repitiéndolo o modificandolo.

2.2. Arquitectura BZI

Esta seccién proporciona una descripcion mas detallada de la plataforma para desa-
rrollo de sistemas BCI proporcionada por BitBrain Technologies en colaboracién con la
Universidad de Zaragoza, y de nombre BZI.

Esta arquitectura responde al esquema general comentado anteriormente, donde pue-
de observarse de manera diferenciada, mdédulos de adquisicién en tiempo real, mdédulos
correspondientes a procesado, asi como elementos de visualizacion que asisten y propor-
cionan feedback al usuario o paciente.

2. Contexto 2.2 Arquitectura BZI

Final
Application

Control
3 ‘
BZ' .. E JNSRe O SN IS U
Manager
Adquisition
HW

fes | . | '

: Signal |, i| Application | i
@/ : EEG Processing

Figura 2.4: Esquema que describe la arquitectura de la plataforma BZI.

La arquitectura BZI contiene una serie de componentes basicos: médulos y un manager
de proposito general (Figura 2.4).

— S
0 N 0
E D{’/ 1\"--.|] E
—_— — —
n UPg e URy m

Figura 2.5: Esquema de un moédulo dentro de la plataforma BZI.

Los médulos pueden ser de adquisicion, procesamiento o aplicacion final, y se encuen-
tran comunicados mediante protocolos TCP/IP, es necesario aclarar que no existe comu-
nicacién entre ellos, sino que cada moédulo adquiere y deposita la informacion pertinente
en el manager, mediante mecanismos de suscripcién (Figura 2.5).

10

2. Contexto 2.2 Arquitectura BZI

] |

Inputs | Manager .. | Outputs

T 0 O 0

~ Adquisition - ' - Signal : 5 Application
: : : Processing : : :

Figura 2.6: Esquema del manager dentro de la plataforma BZI.

Los médulos se encuentran formados por unidades de procesamiento, son unidades
encargadas de realizar algin tipo de procesamiento de datos especifico. Pueden ser enca-
denadas construyendo un tratamiento secuencial sobre la senal (Filtro paso banda + FFT
+ Detecciéon de maximo). Al igual que en los mddulos, no poseen comunicacién directa
entre ellas haciendo uso de un repositorio comun, el control viene dado por la estructura
que engloba varias unidades de procesamiento, dicese el médulo.

El manager ya mencionado, hace las veces tanto de concentrador de la informacién
presente en el proceso, como labores de control, gestién y coordinacién del proceso de
neurofeedback, especial relevancia poseen las entradas y salidas del sistema, puesto que
ademas de aquellas estandar del sistema definidas anteriormente, también podemos en-
contramos elementos de control y configuracion capaces de adoptar este tipo de roles
(Figura 2.6).

La dinamica de un sistema BCI desarrollado sobre BZI esta dirigida por el flujo de
datos, todos los médulos del sistema BCI y el manager se implementan como procesos
que estan dormidos hasta la llegada de los mismos.

El flujo de datos se inicia con la adquisicién de senal de EEG, dicha senal es amplificada
y muestreada a una frecuencia determinada (pre-procesado de senial en el hardware de
adquisicién). La senal digitalizada llega al médulo de adquisicién, este médulo procesa
el EEG para obtener un conjunto de muestras (bloque) que son almacenadas (disco y
almacenadas en el manager).

Tras la adquisiciéon el manager envia los datos al siguiente proceso en el flujo de
ejecucion: el moédulo de procesado de senal, en este modulo se lleva a cabo la extraccion
de caracteristicas y clasificacion, dicha tarea es realizada en las unidades de proceso,cada
una de las cuales implementa algin tipo de filtro de senal.

Finalmente el flujo de datos pasa al modulo de aplicacién que aplica reglas y transforma
los datos para emitir la respuesta del sistema.

11

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

2.3. BrainUp : Construya su propia Neuroterapia

BrainUp surge para dar respuesta a todas aquellas necesidades expuestas a lo largo
de las secciones anteriores, se trata de un software de gestion de neuroterapia, donde el
usuario/terapeuta, puede crear, gestionar y desarrollar las terapias o entrenamientos que
considere adecuadas para su usuario/paciente.

A lo largo de esta seccion, desglosaremos los elementos que componen el sistema de
gestion de neuroterapia desarrollado por BitBrain Technologies, de nombre BrainUp.

2.3.1. Paso 1: Gestion de Usuarios

A
management

BITBRAIN

| ZCHNCLGGIZS
USER DATA

CZEE
CEEN

PHONE

E-MAIL

Figura 2.7: Aspecto de la interfaz de usuario correspondiente a la gestién y edicién de usuarios.

Como se puede observar en la figura 2.7 se trata de la interfaz encargada del al-
ta/edicién de los usuarios dentro de BrainUp, muestra de manera clara los datos nece-
sarios para el alta de un nuevo usuario, permitiendo también la busqueda de aquellos

12

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

registrados anteriormente.

Todos los datos de usuario surgidos durante el proceso de terapia, asi como los datos
generados durante el proceso de alta, seran almacenados en una base de datos, cumpliendo
ademas con los protocolos de proteccion de datos en vigor.

2.3.2. Paso 2: Gestion de Terapia

Configuration

BITBRAIN
| ZCHNOLOEIZS
SESSION CONFIGURATION

Series number:

SERIES 1 Number of repetitions: EJIEE Duration of each repetition (seconds): SERIES DURATION: 01:20"

Figura 2.8: Aspecto de la interfaz de usuario correspondiente a la gestion y edicion de la terapia.

Una vez seleccionado o creado el usuario destino del entrenamiento, realizaremos tareas
de edicién y configuracién de la sesién en curso de la terapia (Figura 2.8), pudiendo
modificar en ésta tanto el numero de fases/repeticiones, como la duracién de las mismas.
También permite ejecutar la configuracion de sesién por defecto del sistema.

La seleccion personalizada del niimero de fases o repeticiones correspondientes a la
sesién en curso, nos permitird personalizar la terapia a peticién del usuario final, ade-
cuandolo a sus necesidades. Por otro lado, la opcion por defecto suministrada por BrainUp

13

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

responderd a los parametros 6ptimos para la terapia.

2.3.3. Paso 3: Comprobacion de defectos de montaje

Tras la edicién, se deberan realizar comprobaciones acerca del estado del montaje,
puesto que una mala colocacion de los sensores, llevaria de manera unilateral a una errénea
realizacion del entrenamiento.

A

RITRD AIN

management

MONTAGE CHECK

MONTAGE OK

: Sensor Ok
Fz: Sensor Ok
F4: Sensor Ok
C3: Sensor Ok
Cz: Sensor Ok
C4: Sensor Ok
P3: Sensor Ok
Pz: Sensor Ok
P4: Sensor Ok
01: Sensor Ok
0z: Sensor Ok
02: Sensor Ok
Fpl: Sensor Ok
Fp2: Sensor Ok
P7: Sensor Ok
P8: Sensor Ok
Rf: Sensor Ok

Figura 2.9: Aspecto de la interfaz de usuario correspondiente a la calibracién de artefactos.

Conseguiremos la correcta colocacion de los sensores de EEG de una manera facil, usa-
ble e intuitiva, dejando en un segundo plano complejas técnicas basadas en la observaciéon
de senal EEG no filtrada en busqueda de errores relevantes (Figura 2.9).

La deteccion de uno o varios sensores erréneos sera notificada, tanto en la reproduccion
por pantalla del montaje, como en un area de texto anexa al montaje y habilitada para
tales efectos.

14

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

2.3.4. Paso 4: Calibracion de Ritmos

A
management

BITBRAIN

| =CHNOLOGI=S
MACHINE CALIBRATION

PASSIVE TASK

seconds

COMMENTS

ACTIVE TASK

@ seconds

Figura 2.10: Aspecto de la interfaz de usuario correspondiente a la calibracién de ritmos.

Si bien como hemos comentado anteriormente, la eleccion del TAF, permitia a BrainUp
gozar de ciertos beneficios frente a otro tipo de aplicaciones, esta eleccién conlleva el
obligado cumplimiento de una serie de tareas, recogidas en esta interfaz.

La localizacién del IAF necesita de la correcta realizaciéon de ambas tareas (Figura

2.10), asi mismo, durante el proceso de tarea activa se realizard la calibracién del filtro
ICA.

En ocasiones, y debido a diversos factores como puede ser el cansancio o una errénea
realizacion/ejecucién de las tareas puede resultar imposible calcular TAF, en ese caso,
seria aplicado el valor obtenido en sesiones anteriores, en caso de no haberlo, se aplicaria
uno por defecto.

En el caso del filtro ICA, no existe un filtro por defecto, luego en caso de resultar
imposible su cédlculo, la senal quedaria sin filtrar.

15

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

Una vez aplicados ambos parametros, puede realizarse la terapia con total normalidad.

2.3.5. Paso 5: Terapia

A

BITBRAIN

| ZCHNOLGGIZS

management

SESSION

. Serie 1 de 1: Stopped... 01:20

LOG

COMMENTS

Figura 2.11: Aspecto de la interfaz de usuario correspondiente a la fase en curso.

Interfaz de usuario destinada al control del entrenamiento, posee a su vez herramientas
de notificacién de error, de manera que el terapeuta tenga conocimiento en todo momento
de cualquier anomalia surgida durante la terapia.

Permite la pausa/cancelacién de la sesién en ejecucion (Figura 2.11), ya sea a peticién
del usuario (descanso), o bien a juicio del terapeuta (aparicién de artefactos inesperados,
insatisfaccién con la sesién disenada).

16

3. Desarrollo

La metodologia utilizada a lo largo de esta fase ha sido el proceso unificado de desarrollo
software, caracterizado por estar dirigido por los casos de uso, encontrarse centrado en la
arquitectura, ser iterativo e incremental, constando de las siguientes fases:

1. Analisis: Fase cuyo objetivo es producir las tablas de requisitos del sistema previa
identificacién y generacién de los casos de uso, describiendo la interaccion del usuario
con el sistema y pudiendo asi evaluar sus necesidades.

Los requisitos resultantes de esta fase se encuentran divididos en dos grandes grupos:

a) Requisitos funcionales: Aquellos relativos a como seran satisfechos los casos
de uso en el futuro sistema (RF-X).

b) Requisitos No funcionales: Generalmente establecidos por el analista, re-
presentan caracteristicas requeridas por el sistema, o el proceso de desarrollo,
no producen efecto alguno sobre el actor del sistema (RNF-X).

2. Diseno: Consistente en presentar un modelo que permita satisfacer todos los requi-
sitos funcionales y no funcionales recogidos durante la fase anterior, reflejados de
manera estatica por los diagramas de clase y de manera dinamica gracias a los dia-
gramas de secuencia, actividad o estado. A la finalizacién de esta fase se realizara un
prototipado de ventanas.

3. Implementacién: Donde se procede a la codificacion de las clases extraidas en el
diagrama de clases, debiendo satisfacer a su vez la dindmica descrita en los diagramas
de secuencia, actividad o estado.

4. Pruebas: Separadas en pruebas individuales, de integracion y de usabilidad, reali-
zadas a fin de certificar el correcto funcionamiento de la soluciéon implementada.

Como hemos comentado, se trata de un proceso iterativo, donde tras la fase de
implementacion se obtendra una primera version, la cual puede ser incluida de nuevo
en el proceso con el fin de enriquecer sus funcionalidades.

17

3. Desarrollo 3.1 Herramienta de comprobacién de defectos de montaje

3.1. Herramienta de comprobacion de defectos de
montaje

3.1.1. Introduccion

BRAINUP \

|
1
| (BZI USER INTERFACE .
L e T [- e e T S R S T L 1
: I MODULO : MODULO : SCREENT1 SCREENZ : ' + SCREEN3 | ﬂ :
1 1 1 1 1
Vo N ' |:| |:| ' ' ——> | Informe '
\ | N I | 1] '
1 " 1 . ' .
Vo n ' . p— '

1 1 1

__

__

Figura 3.1: Herramienta de comprobacién.

Se trata de una interfaz de usuario dedicada en exclusiva a la comprobacion del estado
del montaje previa al entrenamiento, como vimos, cualquier tipo de perturbacién durante
el mismo producirfa resultados incongruentes con la actividad real del usuario/paciente,
es por ello, por lo que se impide continuar la ejecucién mientras no queden resueltos estos
defectos.

El usuario/terapeuta puede realizar las comprobaciones pertinentes visualizando cual-
quiera de los siguientes indicadores:

1. Representacion visual del montaje.
2. Notificacién del error en cada uno de los sensores (modo texto).

3. Indicador general de estado.

La secciones B.1 y 2.3.3 detallan el funcionamiento de la herramienta de comprobacién,
desde el punto de vista del usuario/terapeuta.

3.1.2. Analisis

Definimos el caso de uso relativo a la comprobacion de defectos en el montaje, proce-
diendo a la posterior extraccion de requisitos funcionales y no funcionales.

18

3. Desarrollo

3.1 Herramienta de comprobacién de defectos de montaje

Nombre Caso de uso 1

Actores que intervienen | Usuario/Terapeuta

Descripcion Comprobacion del estado del montaje.
Precondicién El terapeuta se encuentra en la

herramienta de comprobacion.

Secuencia de acciones

1. Comprueba el estado del montaje en el indicador central.
2. Revisa qué electrodos/sensores se encuentran erréneos y en
qué posicién se encuentran.

3. Visualiza el texto correspondiente a la causa de los errores.

Resultados

El usuario/terapeuta ha comprobado el montaje.

Tabla 3.1: Caso de uso correspondiente a la comprobacién del estado del montaje.

Usuario s

Visualizar
Indicador de
<<include>> > estado

Comprueba c<include>>
Montaje @ /"""~ ---

Visualizar
representacion
de montaje

<<include>> T=\

Visualizar
texto de error

Figura 3.2: Gréfico de caso de uso correspondiente a la comprobacién del montaje.

Obteniendo los siguientes requisitos a satisfacer:

19

3. Desarrollo 3.1 Herramienta de comprobacién de defectos de montaje

Cédigo | Descripcién

RF-0 El sistema debe ofrecer una herramienta de comprobaciéon del montaje
RF-1 La herramienta debe tener un indicador central de estado del montaje.
RF-2 El sistema debe tener una representacion visual del montaje.

RF-3 El sistema debe ofrecer la causa de error de los diferentes sensores.

RNF-1 | Debe ser intuitiva.
RNF-2 | Debe ser muy eficiente y funcionar en tiempo real.
RNF-3 | Debe estar disponible en diferentes idiomas.

Tabla 3.2: Requisitos de la herramienta de comprobacion de defectos de montaje.

3.1.3. Diseno

pkg

DataCalibration StateMontaje

A

GenericCalibration

CalibrationGUI

Figura 3.3: Diagrama de clase base GenericCalibration.

Como hemos comentado anteriormente, se trata de un sistema completo dentro de las
interfaces de usuario presentes en BrainUp (figura 2.9), a tal efecto, debera integrarse y
adaptarse a la estructura disenada para la aplicacién.

Comenzaremos nuestro diseno definiendo la clase base de nuestra herramienta Ge-
nericCalibration, cuya misién es aglutinar elementos comunes a futuros disenos o espe-
cializaciones de la misma. En nuestro caso, cualquier calibracién poseera al menos dos
elementos basicos:

20

3. Desarrollo 3.1 Herramienta de comprobacién de defectos de montaje

1. Un objeto Data, contenedor de valores genéricos y encargado de dotar a cualquier
especializacién de esta clase de métodos de adquisicion y distribucién de datos.

2. Un indicador de estado general del montaje centralizado e independiente de las
herramientas de visualizacién incluidas.

pkg

CalibrationGUI

CommentsFrame

\ Montage
NonEssentialComent |

Head

DataCalibration

Figura 3.4: Diagrama de clase de la herramienta de comprobacién de defectos de montaje

De la clase base definida anteriormente hereda CalibrationGUI, interfaz de usuario en-
cargado de la comprobaciéon del montaje acorde con los requisitos extraidos anteriormente.
Debera encontrarse debidamente comunicado con el resto de interfaces de BrainUp.

Entre sus componentes se encuentra:

= Montage: Se trata de la clase mas importante dentro de nuestra herramienta. Actia
como almacén central de informacién entre la unidad de deteccién de electrodos
erréneos (BZI) y el interfaz de usuario en el que nos encontramos, evitando asi la
necesidad de instanciar un contenedor de datos para cada uno de ellos.

Al tratarse de un elemento comin a ambas partes del sistema es creado por una
instancia superior dentro de BrainUp llamada InterfaceController y ajena a este
PFC, su mision es la creacién y gestion de los diferentes interfaces de usuario,
asi como aquellos elementos compartidos con BZI.

» Head: Representacion visual del montaje realizado, obtiene los datos necesarios
para su representacion del objeto Montage.

» CommentsFrame: Cuya mision es la creacién y gestion de una o varias zonas de
notificacién en modo texto.

= NonEssentialComment: Representa el drea de notificacién de defectos de montaje
(modo texto), asi como sus operaciones de pintado. Adquiere sus datos del objeto
Montage.

21

3. Desarrollo 3.1 Herramienta de comprobacién de defectos de montaje

= StateMontage: Fruto de la herencia con la clase base, hace las veces de indicador
central e inequivoco del estado del montaje. Este objeto tomara especial relevan-
cia en futuras implementaciones, donde existirdan diferentes niveles de error y por
consiguiente, diferentes tipos de notificacién.

sd Secuencia de comprobacion de defectos de montaje)

Interfaces Control | CalibrationGUI I | BZI
I l |
| I | I
| I | I
| 1: nextScreen() Ny | |
L g
| |
loop |[Adquisition==true "Widget exis{e 2 errorElec{rode() I
B |
i I okl __
[
|
1.1: refresh() !

B

Figura 3.5: Secuencia de comprobacién de defectos de montaje.

La adquisicién/distribucién de los valores dentro de CalibrationGUI se realiza a través
del mecanismo heredado de GenericCalibration, gracias a este tipo de operaciones conse-
guimos operar los datos de forma genérica.

En la figura 3.5 y 3.6 podemos observar la secuencia de acciones relativa al caso de
uso 3.2 donde un usuario que desea comprobar el estado del montaje accede al interfaz de
usuario, previa creacién del objeto montaje y de la interfaz de comprobacion de defectos
del montaje. Tras la comunicacion por parte de BZI de qué electrodos se encuentran
erréneos (realizada a InterfacesControl via TCP/IP) procederemos a actualizar el objeto
montaje y a repintar todos los elementos en pantalla. Estas dos tltimas operaciones se
realizaran de manera iterativa mientras se siga adquiriendo senal y procesando electrodos,
o mientras alguno de los objetos de comprobaciéon de montaje se encuentre instanciado
en los interfaces de usuario.

Como puede observarse en la figura 3.6, es InterfacesControl el encargado de la crea-
cién del objeto CalibrationGUI, el objeto Montage y dos vectores de datos, un vector
correspondiente a los electrodos erroneos y otro a los electrodos borrados. Tras esta ope-
racién, el interfaz queda a la espera de ser visualizado a peticion del usuario.

22

3. Desarrollo 3.1 Herramienta de comprobacién de defectos de montaje

Por tltimo en la figura 3.7 definimos la secuencia de acciones a realizar para la repre-
sentacion visual de los electrodos erréneos, en primera instancia y tras la llegada desde
BZI de los datos, procederemos a actualizar el montaje que como recordaremos almacena
la informacién referenciada por todos las clases. Tras esto distribuiremos los datos entre
los objetos de representacion y procederemos a actualizar la representacion cada uno de
los indicadores visuales.

Las secuencias especificas de repintado de los elementos por pantalla se encuentran
detalladas en al anexo A.

Tras esta fase obtenemos un primer prototipo de la herramienta (Figura 3.8)

sd Creacion Calibracion Detalle)

Interfaces CalibrationGUI
Control

, I i
1: prepareCalibrationGUI() > 1.1: new Montage()

i
I
I
F |
1.2: new VectorError() I
I
F |
1.3: new VectorDeleted() |
j 1.4: new Calibration()

Calibracion creada
- SRt Teee

I

I
>
Ll

GUI preparado
2 preparado | L I

Figura 3.6: Prototipo de la herramienta de comprobacién de defectos del montaje.

23

3. Desarrollo 3.1 Herramienta de comprobacién de defectos de montaje

sd Secuencia de representacion de electrodo erréneo)

Calibration GUI StateMontage

|

|

|

1: refresh() |
D>

1.2: getVectorDeleted() I
Lt
Electrodos borrados
lc — — Zectodos dorrados

1.3: setEl) ,;'

>
éE'_ecﬂ'°ﬂ°ieLr°ﬂe§£‘°E'ﬁﬁai°s_ _LJ
1.4: evalueError() N

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.5 selDaéHead() |

Ll
= Nuevo error indicador evaluado

A\

. Eags_adqlfl_ndos
D

__________________________ S

1.7: getError() |

Z

| >

__________________ E zor_agtuzl_____|____________i|J
Il el

|]

1.8: setError()

Error modificado

1.10: display()
Comentarios nodificados

____________ gl

Yy

S €

atos Actualizados

2: repaint| D
2.1: repaint() g

Figura 3.7: Secuencia de representacion de electrodo erréneo

24

3. Desarrollo 3.1 Herramienta de comprobacién de defectos de montaje

Calibraciéon Hardware

Q Montaje Correcto

Fp1 : Erréneo
Fp2 : Correcto
O1: Erréneo

P1: Erréneo
P2: Correcto

Figura 3.8: Secuencia de creacién de la herramienta de comprobacién.

3.1.4. Implementacién

Realizada en C++ bajo el framework Qt[19], en el que se encuentran implementados
todos las interfaces de usuario de BrainUp.

Debido a que la operacién de representacion/pintado es muy costosa en Qt, se utilizo
para Head un tipo especial de elemento grafico de nombre QPainterPath[20], donde en
lugar de dibujar cada elemento individualmente, se permite agrupar gran cantidad de
éstos en una tunica capa y dibujarla de manera atémica tantas veces como sea necesario.

En el caso que nos ocupa, donde la mayoria de los electrodos no van a modificar
su estado en largos periodos de tiempo, y teniendo un tiempo de ciclo reducido, resulta
mas eficiente anadir elementos comunes (electrodos correctos o erréneos) en una variable
QPainterPath que dibujarlos individualmente[21] en cada iteracién de adquisicién, tarea
que resultaba critica.

3.1.5. Pruebas

Las pruebas se realizaron en Matlab, comparando los electrodos erroneos provenientes
de la unidad de deteccién de defectos de montaje (la cual explicaremos en la préxima
seccién) con los errores presentes en el objeto Montage en el instante previo a la invo-
cacién a repaint(). De esta manera somos capaces de asegurar que los datos generados

25

3. Desarrollo 3.1 Herramienta de comprobacién de defectos de montaje

por la unidad de deteccién y los datos preparados para su pintado son iguales, y que por
consiguiente la representacion visual es correcta.

Las pruebas 3.3 fueron realizadas con cuatro ficheros de FEG grabados con anteriori-
dad, y se encuentran disponibles en el anexo C.

Fichero: testSOOR00/.bzi

Precondicion: El interfaz de comprobacion y la unidad han procesado fichero.
Datos de entrada: | unitChannelsSO0R00/ : contiene los canales detectados como
erréneos calculadas por la unidad.

interfaceChannelsSO0R00/ : contiene los canales detectados como
erréneos presentes en el interfaz.

A = loadFile(inter faceChannelsS00R004)

B = loadFile(matlabChannelsS00R004)

ans =A— B

Resultado: ans = 0 Los canales detectados como erréneos son iguales
tanto en cudles son detectados, como en qué instante temporal.

Tabla 3.3: Prueba 1 de la herramienta de comprobacién de defectos de montaje.

A su vez, se realizaron pruebas con semantica diferencial con el fin de conocer el
grado de aceptacién de la herramienta, asi como su calificacién en materia de usabilidad,
claridad y facilidad de uso. Estas pruebas, cuyo resultado puede observarse en la tabla 3.4
les fueron realizadas a 10 sujetos y se encuentran disponibles por cada uno de los usuarios
en el anexo C.

La técnica se desarrolla proponiendo dos adjetivos al sujeto, que se han de relacionar
con los conceptos propuestos siendo presentados de forma bipolar, mediando entre ambos
extremos una serie de valores intermedios.

El sujeto procede puntuando asi : Bueno 3 2 1 0 -1 -2 -3 Malo.

Pregunta Respuesta
3210-1-2-3
En general el interfaz de comprobacién de montaje | Me gusta 2.3
El interfaz me parece Intuitivo 2.9
El notificador de estado del montaje Claro 2.6
La representacion visual del montaje Claro 2.8
La representacion tipo texto de los errores Claro 1.9
En términos generales el funcionamiento me parece | Claro 2.7

Tabla 3.4: Resultados globales de la evaluacién.

26

3. Desarrollo 3.2 Unidad de deteccién de defectos de montaje

3.2. Unidad de deteccién de defectos de montaje

3.2.1. Introduccion

__
'

BRAINGE ~ 77T T T T oSS SSoSoomoomooosoosomsees)
' 1
' 1
: BZI USER INTERFACE :
D | MODOIG T 1MODOLG T 77T | SCAEENT™Y (SCREENZ2” /SCREENG™) !
1 ! ' 1 ! [y 1
1 1 (N 1 % 1 ! [1 :
C N ' ' ' :|:||:|: ' '| ——> | informe :
i ! [1 D ——— [l P o ' '
ol | : : 0 ! :
f 1 [1 1 [! 1 1
1 1 (N 1] ! ! 1 1
.
.
1
1
.
.
1

Figura 3.9: Unidad de comprobacién.

Como en todo sistema de comprobacién y chequeo, el apartado visual solo representa
una pequena parte de la herramienta, siendo necesario un algoritmo de procesamiento
capaz de proveer datos a esta interfaz de usuario. En nuestro caso, versiones anteriores
se limitaban a proporcionar EEG no filtrado como mecanismo de chequeo mediante ins-
peccién visual, resultando altamente ineficiente pues requeria de conocimientos previos en
material de senal.

Son estos conocimientos en materia de senal los que han permitido a BitBrain Tech-
nologies desarrollar un método de procesamiento donde como entrada tendremos la senal
EEG tradicional, y como salida qué electrodos del montaje se encuentran erréneos asi co-
mo su causa. Gracias a este tipo de algoritmos somos capaces de ofrecer una interfaz
usable e intuitiva al usuario/terapeuta, sin necesidad de que éste posea conocimientos
previos sobre encefalografia.

El método de forma genérica consta de lo siguientes pasos:

1. Subsampleo: Debido a que necesitamos una ventana temporal de n segundos, pero
no deseamos procesar la totalidad de la informacién, por ello elegimos un factor de
subsampleo m, segin el cual seran adquiridos 1 de cada m samples.

2. Calculo de medias: Tras subsamplear la senal procedente de la fase de adquisicién
se procedera al calculo de las medias por cada canal (sensor) para cualquier instante
de tiempo y en valor absoluto, procediendo en tltima instancia a su ordenacién de
menor a mayor.

3. Regresion: Calcularemos la recta de regresién conforme a las num primeras medias
anteriormente calculadas.

27

3. Desarrollo 3.2 Unidad de deteccién de defectos de montaje

4. Logica: Tras el calculo de la recta de regresion se procede a aplicar logica de decisién
sobre la distancia de cada una de las medias a la recta, y en comparaciéon con un
threshold definido previamente. Si la distancia supera el threshold, se considera que
en ese sensor y en ese instante temporal (sample) se ha producido popping.

Un electrodo puede producir error por las siguientes razones:

= Ausencia de gel: Para el correcto funcionamiento de los electrodos del montaje
debe aplicarse en cada uno de ellos un gel conductor evitando asi los problemas de
medicion producidos por el tejido epitelial o el cuero cabelludo.

» Electrodo suelto (Popping): Es el problema mas comtn en un montaje de EEG,
se produce cuando un electrodo pierde el contacto durante momentos puntuales del
entrenamiento/terapia perturbando la senal.

= Ruido: Aumentando sustancialmente la frecuencia y amplitud de la senal, puede
ser provocado por artefactos de tipo muscular (tensién involuntaria en la frente,
pulso) o de tipo eléctrico (acoplamiento, electricidad estética).

» Puente (Bridge): Evidencia de interconexion en el gel aplicado en dos sensores
préximos en el espacio, provocando un cortocirtuito y obteniendo en ambos la misma
senal eléctrica.

El método expuesto anteriormente, permite la deteccién de popping de forma robusta,
su eficacia ha sido probada en el entorno matematico Matlab con resultados satisfactorios.
El procesamiento del resto de defectos de montaje se encuentra en fase de desarrollo.

3.2.2. Analisis

En este caso no existen nuevos casos de uso, pues ya han sido definidos para la herra-
mienta de comprobacién de defectos de montaje en la seccion 3.1.2, sin embargo, como
fruto del andlisis, en esta seccién si es generado un nuevo requisito no funcional la ne-
cesidad de implementar una unidad de deteccion de defectos de montaje dentro de la
arquitectura BZI.

28

3. Desarrollo 3.2 Unidad de deteccién de defectos de montaje

Cédigo | Descripcién
RF-0 El sistema debe ofrecer una herramienta de comprobacién del montaje
RF-1 La herramienta debe ofrecer un indicador de estado del montaje.
RF-2 El sistema debe contener una representacion visual del montaje.
RF-3 El sistema debe ofrecer la causa de error de los diferentes sensores.
RNF-1 | Debe procesarse la informacion con una unidad de BZI

para obtener los sensores erroneos y poder representarlos.
RNF-2 | Debe ser intuitiva.
RNF-3 | Debe ser muy eficiente y funcionar en tiempo real.
RNF-4 | Debe estar disponible en diferentes idiomas.

Tabla 3.5: Requisitos completos de la herramienta de comprobacion de defectos de montaje.

3.2.3.

Diseno

pkg

GenericUnit

- _mpRepo : Repositoryinterface *

+ GenericUnit() : void
~ GenericUnit() : void
+initialize() : void

+ process() : void

+ reset() : void

+ setRepo() : void

Figura 3.10: Estructura de la clase base GenericUnit

Comenzaremos comentando la estructura de clase base proporcionada por BZI para
la creacién de unidades de procesamiento (figura 3.10), como podemos observar se dota
a cualquier especializacién de ésta de mecanismos de inicializacion, procesado y reseteo,
asi como acceso a la estructura de repositorio y comparticién de datos presente en BZI.

29

3. Desarrollo 3.2 Unidad de deteccién de defectos de montaje

Mientas los procedimientos de inicializacién (Initialize) y reseteo (Reset) se encuentran
definidos en la clase base, el mecanismo de procesado (process) es virtual puro, luego
debera ser reimplementado en cualquier de las especializacién de la clase base, como en
el caso que nos ocupa.

Como una especializacion de GenericUnit y haciendo uso del mecanismo de herencia,
definimos Montage Checker (Figura 3.11), unidad encargada de realizar el procesamiento
descrito en la seccién 3.2.1. Compuesta de un objeto Subsampler encargado del subsampleo
de la senal y de FElectrodeChecker donde se realizard tanto el procesado, como la légica de
decision.

pkg

GenericUnit

Montage Checker

ElectrodeChecker Subsampler

Figura 3.11: Diagrama de clase de MontageChecker

El diagrama 3.12 responde a la secuencia de acciones a realizar por la unidad de
deteccién de electrodos erréneos. Tras la invocacion a Initialize, se procede a subsamplear
la senal mientras el criterio de parada de la ventana/buffer de recepcién asi lo indique,
este criterio de parada ofrece dos vertientes:

= Tamano de ventana: Es necesario completar una latencia inicial, el tiempo que
tardara la ventana en llenarse de datos.

= Frecuencia de refresco: Tras completar esta latencia inicial, se lanzara un primer
chequeo de electrodos, para posteriormente lanzar uno cada frecuenciaDeRefresco
samples.

Tras la invocacién a la comprobacién de electrodos y en caso de encontrarse electrodos
erréneos, estos seran distribuidos a NetModule, médulo de red TCP /IP que posteriormente

30

3. Desarrollo 3.2 Unidad de deteccién de defectos de montaje

los comunicara al Manager de BZI, quien por tltimo informard al interfaz de comprobacion
de defectos de montaje, descrito en la seccion 3.1.2.

La secuencia completa de comprobacion de defectos de montaje, tanto por parte de
BZI, como por parte de los interfaces de usuario, se encuentra presente en el anexo A
(Figura A.10).

sd Secuencia de deteccion de electrodos erréneos)

NetModule | | MontageChecker | | Subsampler | | ElectrodeChecker | | Manager
1 i 1 i i
| | |
| 1: Initialize() | |

" |

ok
K== |
T | |

loop [Adquisition==true "widget exd;le]) |

i 2: Process() B[L l
Ll |

H |

|

alt [IbufferFull] :

3: subsample()
c___ ok ___ EI

[bufferFull] 4: checkE]ectrodes()
T

6: setErrorElectrodes()

|
|
|
|
|
;
|
L
|
|
|
|
i
|
_Lg
|
:
|
|
|
i
|
—_———— =
|
|
|
i

Figura 3.12: Diagrama de secuencia de deteccion de electrodos erroneos.

3.2.4. Implementacién

Realizada respetando la estructura basica de toda unidad BZI , facilitando asi su
integracién en la arquitectura y su implantacion en el resto del sistema. Esta modularidad
le permite asi mismo estar abierta a futuras implementaciones, como la deteccion de ruido
en la senal, sin que la dindmica del resto del sistema se vea comprometida.

Se encuentra implementada en Qt, siendo asistida por el framework mateméatico Ar-

31

3. Desarrollo 3.2 Unidad de deteccién de defectos de montaje

madillo[22] en labores como la ordenacién del vector de medias o la localizacion de la
posicién de las mismas tras el cdlculo de la recta de regresion (componente 1 corresponde
a canal 3(FP1)), evitando asi tener que recurrir a una estructura de tipo Map para la
indexacién de las mismas.

Durante la fase de implementacion se debe proceder a ajustar los parametros de pro-
cesamiento convenientemente (ventana, refresco) puesto que una mala eleccién de los
mismos podria desembocar en un mal funcionamiento de la unidad. Se debe gestionar a
su vez la cadencia con la que la unidad de deteccion de defectos de montaje debe informar
a los interfaces de usuario de la presencia de popping (Ej : no informar mientras no se
produzcan cambios en el estado, o en qué electrodos producen popping).

3.2.5. Pruebas

En este caso, y al igual que con la herramienta de comprobacién de defectos de montaje
se realizaron pruebas de funcionamiento de la unidad, comparando los resultados obteni-
dos por la misma, con los resultados obtenidos tras la ejecucion del mismo algoritmo en
Matlab. Se disenaron en dos fases, una primera donde se comprobé el valor de las medias,
y otra donde se comprobd los electrodos erroneos resultantes.

En la tabla 3.6 y la figura 3.13 se observan las medias obtenidas por la unidad de
deteccion, asi como las resultantes del algoritmo de procesamiento codificado en Matlab.

Fichero: testSOOR0015.bzi

Precondicién: Matlab y la unidad han procesado el fichero.

Datos de entrada: | unitMeansSO0R0015 : contiene las medias calculadas por la unidad.
matlabMeansSO0R0015 : contiene las medias calculadas por matlab.

A = loadFile(unitMeansS00R0015)
B = loadFile(matlabM eansS00R0015)
ans =A— B

Resultado: ans = 0 Las medias calculadas son iguales en ambos casos.

Tabla 3.6: Prueba de unidad de deteccion de electrodos medias 4.

En la tabla 3.7 y la figura 3.14 se observan los valores obtenidos por la unidad de
deteccion, asi como los resultantes del procesamiento con el mismo algoritmo en Matlab,
aquellos bloques de senal donde se ha producido popping son marcados con una linea
horizontal.

32

3. Desarrollo 3.2 Unidad de deteccién de defectos de montaje

D 500 1000 1500 2000 2500 3000

0 L A *i‘-wwal

1] 500 1000 1500 2000 2500 3000

Figura 3.13: Comprobacién de medias en fichero testSO00R015.bzi.

Fichero: testSOOR0015.bz1

Precondicion: Matlab y la unidad han procesado el fichero.

Datos de entrada: | unitChannelsSOOR0015 : contiene los canales detectados como
erréneos calculadas por la unidad.

matlabChannelsSO0R0015 : contiene los canales detectados como
erréneos calculadas por matlab.

A = loadFile(unitChannelsS00R0015)

B = loadFile(matlabChannelsS00R0015)

ans=A—B

Resultado: ans = 0 Los canales detectados como erréneos son iguales

tanto en cuales son detectados, como en que momento temporal.

Tabla 3.7: Prueba de unidad de deteccién de electrodos 4.

33

3. Desarrollo 3.2 Unidad de deteccién de defectos de montaje

1r
0.9- 0.8- B
08- 0.8- B
07- 0.7 - B
06- 0.6- b
056- 0.6- b
04- 0.4- b
03- 0.3- T
n2- 0.2- T
01- 01 - T

UEI H‘:IEI 1EIIE|E| 1500 EEIIEIEI ZH‘II 3000 3500 Dé 5‘30 WDIDD 1600 2UIDD 25;30 2000 3600

(a) Unidad (b) Matlab

Figura 3.14: Comparacién de popping en fichero testSO0R015.bzi

34

3. Desarrollo 3.3 Informe de resultados

3.3. Informe de resultados

3.3.1. Introduccion

= T !
'

: BZI USER INTERFACE :

B T N [i N I !

: :MODULO ::MODULO : 1 SCREEN1 | 1SCREEN2 | 1 SCREEN3 :

v o ' —_—> | ' :l:ll:l' i ' '
1 1 1 1

; E EE E ' . | ' , . . nforme E
1 ! [1

Y Il 1 1

| g | ool :

! | ! ! % ¥ : !

'

1

1

'

'

1

'

Figura 3.15: Informe de resultados.

Toda terapia necesita dejar constancia de sus resultados, ya sea con el fin de dimensio-
nar el progreso, informar convenientemente al usuario/paciente o verificar su correccion.
En este PFC se desarroll6 el informe de resultados para BrainUp, tanto en su faceta vi-
sual, encuadrado dentro de las interfaces de usuario como impreso via PDF, constando
de los siguientes elementos:

» Cabecera de datos de paciente: Contiene los datos de usuario/paciente, el niime-
ro de sesién en la que nos encontramos, su nombre y la fecha de realizacion.

» Datos de terapia: Contiene los datos de calibracién de ritmos (descritas ante-
riormente [CA+IAF), la duracién total del entrenamiento/terapia y la de cada
repeticién realizada.

» Gréfica de rendimiento: Representa la evolucién del usuario/paciente en cada
repeticién con respecto al baseline tomado al inicio de la sesion.

» Grafica de permanencia temporal: Muestra cuanto tiempo se ha ofrecido feed-
back positivo al usuario/paciente en cada repeticién, tomando como valor de refe-
rencia duracionEnSegundosDelTrial /2

» Gréfica de tres dltimas sesiones: Muestra la evolucién en el usuario/paciente
durante las tres ultimas sesiones normalizado al valor del baseline de la primera
sesion representada.

3.3.2. Analisis

Definimos en primera instancia el caso de uso relativo a la visualizacion del infor-
me de resultados, para proceder a la posterior extraccién de requisitos funcionales y no

35

3. Desarrollo

3.3 Informe de resultados

Nombre Caso de uso 1

Actores que intervienen | Usuario/Terapeuta

Descripcion Comprobacion del estado del montaje.
Precondicion El terapeuta se encuentra en un interfaz de usuario.

Secuencia de acciones

1. Visualiza el nimero de sesién y los datos del paciente.

2. Visualiza los datos de calibracion de ritmos.

3. Visualiza la grafica de progreso.

4. Visualiza la grafica de tiempo.

5. Visualiza la grafica de las tres ultimas sesiones.
6. El usuario/terapeuta obtiene el informe en PDF.

Resultados

El usuario/terapeuta ha visualizado y obtenido el informe.

Tabla 3.8: Caso de uso correspondiente a visualizaciéon y impresion del informe.

funcionales del sistema.

Usuario

)
! ~
! S e =
i A > Alisuali
| <<extend>> Sl grafica
. S tiempo
Imprimir en Se
PDF

Visualizar
datos de

. terapia
<<include>> P

- Visualizar
g datos de
s <<inc|ude>>7 paciente

- . < - i Visualizar
Visualizar N\ ________ ffl_nshid_e_)f_ rafica de
Informe 2

- progreso

S ~~._ _ <<include>>

<<include>>
Comparar 3

altimas
sesiones

Figura 3.16: Gréfico de caso de uso correspondiente al informe.

Obteniendo los siguientes requisitos a satisfacer:

36

3. Desarrollo 3.3 Informe de resultados

Cédigo | Descripcién

RF-0 Debe ofrecer el niimero de sesion y los datos de paciente

RF-1 Debe contener la duracién de la terapia y de las repeticiones.
asi como la de la calibracién de ritmos.

RF-2 Debe ofrecer una representacién gréfica del progreso (rendimiento).

RF-3 Debe ofrecer una representacion gréfica del progreso (tiempo).

RF-4 Debe contener una comparacion de las tres ultimas sesiones.

RF-4 El informe debe poder imprimirse.

RNF-1 | Debe ser intuitivo.

RNF-2 | Debe guardarse en PDF.

RNF-3 | Debe estar disponible en diferentes idiomas.

Tabla 3.9: Requisitos del informe.

3.3.3. Diseno

pkg

QwtPlotCurve QwtPlot QColor QMap ReportLegend

IV

GenericGraph

ReportGraph

Figura 3.17: Diagrama de clase base GenericUnit

Comenzaremos disenando la clase base de nombre GenericGraph, puesto que se debe
permitir de cara a futuras implementaciones, un amplio espectro de representaciones
graficas (diagramas de barras, puntos, o funciones interpoladas), asi como diferentes
formatos, colores o estilos de linea.

37

3. Desarrollo 3.3 Informe de resultados

Es por ello, por lo que ademés de disponer de los habituales métodos de adquisi-
cién/distribucién de datos, contiene los siguientes elementos:

1. QwtPlotCurve: Perteneciente a Qut (framework de representacion grafica z-y en
C++ [23]), y cuya misién es proveer soporte matematico a la representacién gréfica,
cada objeto QuwtPlotCurve representa una f(z) diferente.

2. QwtPlot: Clase Quwt encargada de las labores de visualizacion, le pueden ser trans-
mitidas de 1 a n QuwtPlotCurve gracias al procedimiento Attach(). Una vez anadidas
al objeto, pueden ser representadas invocando a la funcién show() de manera similar
al resto de componentes de los diferentes interfaces de usuario, permitiendo ademas
editar su estilo y su escala.

3. QColor: Debe contener todos aquellos colores que deseemos incluir en la represen-
tacion grafica.

4. QMap: Relaciona cada color incluido en @QColor con una QuwtPlotCurve diferen-
te, de manera que podamos representar todos aquellos puntos pertenecientes a un
determinado color con una tnica QuwtPlotCurve Ej: [1,3,5] Rojo; [2,4,6] Azul; Esti-
lo="Barras’.

5. ReportLegend: Proporciona la leyenda de la grafica, su posicién en la misma es
configurable gracias a un atributo enumerado (Above, Below, Left, Right).

ReportGraph se define como una especializacién de GenericGraph, donde deberd im-
plementarse la logica de decision de qué puntos del eje x corresponden a qué colores,
asi como qué estilo debe ser aplicado (puntos,barras,lineas).

Contemplaremos dos casos:

Caso 1: Los valores en el eje = representaran repeticiones/trials, y los del eje y potencia
media de todos los canales por cada repeticién/trial. Aquellos puntos por encima del
baseline inicial se representaran en rojo, mientras que aquellos que se encuentren por
debajo, se representaran en azul, el baseline serd representado con una linea amarilla
horizontal (Estilo="Barras’).

Caso 2: Los valores en el eje = representaran repeticiones/trials, y los del eje y el
tiempo que ha permanecido el usuario/paciente por encima del baseline en cada repeti-
cién/trial. Aquellos puntos por encima de duracion EnSegundosDelTrial /2 se represen-
taran en rojo, mientras que aquellos que se encuentren por debajo, se representaran en
azul, duracionEnSegundosDelTrial /2 sera representado con una linea amarilla horizon-
tal (Estilo="Barras’).

ThreeSessionGraph se disena también como una especializacion de GenericGraph bajo
la siguiente premisa:

38

3. Desarrollo

3.3 Informe de resultados

Caso 1: Los valores en el eje = representardan repeticiones/trials de las tres ultimas
sesiones, y los del eje y potencia media de todos los canales por cada repeticién/trial en
las tres ultimas sesiones. Aquellos puntos por encima del baseline de cada sesion se repre-
sentardan en rojo, mientras que aquellos que se encuentren por debajo, se representaran en
azul, el baseline sera representado como un punto en x adicional pero en color amarillo,
todos los valores se encontraran normalizados al baselinede la primera sesion representada

(Estilo="Puntos’).

pkg

0..*

NtpReport

1

1

1

1

MainReport

QScrollArea

ReportTopWidget

1

1

ReportGraph

ThreeSessionGraph

ReportHead

Figura 3.18: Diagrama de clases del informe de resultados.

La figura 3.19 ilustra la estructura del objeto principal NtpReport, compuesto a su vez
de QScrollArea (necesario para desplazarnos dentro del documento formato A4 generado),
ReportTop Widget (encabezado donde apareceran el ntimero de sesién y los datos del
usuario/paciente), y un objeto de tipo MainReport que contiene el informe en si.

MainReport se compone de dos objetos de tipo ReportGraph (grafica de rendimiento
y de tiempo) y uno de tipo ThreeSessionGraph (gréafica de tres ultimas sesiones).

39

3. Desarrollo 3.3 Informe de resultados

pkg
NtpReport
MainReport QScrollArea ReportTopWidget
1 1
1
0..* 1 1
ReportGraph ThreeSessionGraph ReportHead

Figura 3.19: Diagrama de clases del informe de resultados.

sd Secuencia de representacion del informe)

Interfaces Control

| |
| 1: nextScreen() |
D.—

I
|
1.1: setValues() ,¥|

e EY Y B

Figura 3.20: Diagrama de secuencia de representacién del informe.

Como podemos observar en la figura 3.20 y 3.21 la estrategia utilizada para el informe
de resultados es similar a la utilizada en apartado anteriores. Tras la peticién por parte
del usuario de ”Siguiente pantalla”, InterfaceController procede a servir a cada uno de
los objetos mencionados los datos necesarios para su correcta representacién, una vez
visualizado el informe se procede a su impresién en formato PDF.

40

3. Desarrollo 3.3 Informe de resultados

sd Secuencia de llegada de datos y representacion del informe)

Interfaces Controll | ReportHead I I ReportTopWidget | | ReportGraph | | NtpReport
T T T T T
| 1: nextScreen() o | | |
| 1.1: setData() p | | |
Datos adquiridos :]‘
1.2: sktData() N |
Datos ! quiridos j'J ‘
- — - — Patosgfaviidos ____ J
| 1.3:setcolorg | N
il

1.9: printfPDF(N

D>
PDF generado
K——————————____ _FDRoemerade _ _ _ _ _ _ _ _ ______ J'IJ

|

Figura 3.21: Diagrama de secuencia de llegada de datos y representacién del informe.

El diagrama de secuencia correspondiente a la representacion grafica de ReportGraph
se encuentra disponible en el anexo A, figura A.11.

Tras esta fase obtenemos un primer prototipo de la herramienta (Figura 3.22).

41

3. Desarrollo 3.3 Informe de resultados

Informe sesién 3 BrainUp
Apellidos: Grillo

Nombre: Pepito

Fecha: 20.Abril.2011

Informacion sesion actual:

Tiempo de calibracion: 2’ tarea pasiva/ 3’tarea activa
Duracién de entrenamiento: 20’

Numero repeticiones: 10

Calibracién: no (error en tarea activa/ pasiva)

Rendimiento durante la sesién

g Valor inicial (representa el estado mental inicial, previo al entrenamiento)
@ Repeticion positiva (el estado mental se ha mantenido por encima de la media)
@ Repeticion negativa (el estado mental se ha mantenido por debajo de la media)

Porcentaje temporal Feedback proporcionado

Evolucion de las 3 ultimas sesiones:

2 ma\ P
' popgdigmOw D e
° - Repeticion negativa

SESION 3

SESION 1 SESION 2

Comentarios:
Sesion de calibracion:

Sesion de entrenamiento:

Figura 3.22: Prototipo del informe de resultados.

42

3. Desarrollo 3.3 Informe de resultados

3.3.4. Implementacién

Aquellas tareas relacionadas con la gestion y edicion de los elementos a representar en
el informe se desarrollaron con el framework (f, mientras que las graficas incluidas en el
mismo se realizaron con el framework grafico Quwt, compatible a todos los efectos con Qt.

Debido a la necesidad de imprimir el documento en formato PDF' se utilizé una reso-
lucion de pantalla similar en dimensiones al A/, provocando que no fuera posible observar
por pantalla el informe en su totalidad. A fin de que pudiera observarse el mismo antes
de ser impreso se incluyé el objeto QQScrollArea, permitiendo asi desplazarse con libertad.

Asi mismo hubo que definir los ppp (puntos por pulgada) a los que el documento seria
impreso, siendo seleccionada una resolucién de 300 ppp, por su excelente compromiso
calidad-tiempo tanto en labores de creacion y visualizacion, como de impresion.

3.3.5. Pruebas

Se realizaron pruebas con semantica diferencial a 10 sujetos, con el fin de conocer
el grado de aceptacion del informe, asi como su calificacién en materia de usabilidad,
claridad y facilidad de uso, obteniendo los siguientes resultados:

Pregunta Respuesta
3210-1-2-3

En general el informe de resultados Me gusta 2.4
El informe me parece Intuitivo 2.1
La gréafica de rendimiento me parece Claro 2.2

La grafica de tiempo me parece Claro 2

La grafica de las tres tltimas sesiones me parece Claro 2.4

En términos generales el funcionamiento me parece | Claro 2.3

Tabla 3.10: Resultados globales de la evaluacién del informe.

Se encuentran disponibles en el anexo de pruebas los resultados detallados para cada
uno de los usuarios.

43

3. Desarrollo 3.4 Plugin de visualizacién de actividad cerebral

3.4. Plugin de visualizaciéon de actividad cerebral

3.4.1. Introduccion

i BZI USER INTERFACE :
g -t N b I T I 1

E i MODULO E E MODULO : E SCREEN?1 ! i SCREEN2 ! E SCREEN3 ! _h E

i E EE E E i i |:||:| i E i —> | Informe E

| i T om0
'

__

__

Figura 3.23: Visualizador de actividad.

En todo interfaz de usuario orientado a la usabilidad, deben existir tanto herramientas
encargadas de la comprobacién (representacién visual del montaje, notificacién modo
texto) de manera intuitiva, como otras encargadas de la representacién en tiempo real de
cierto tipo de datos (EEG, FFT). En el caso que nos ocupa y como tarea dentro de este
PFC, se ha desarrollado un plugin de visualizacion espacial, cuya misién es mostrar la
actividad cerebral en tiempo real del usuario/paciente mediante un mapa de calor, donde
el color rojo corresponderd a la cota superior y el azul a la inferior.

3.4.2. Analisis

La tabla 3.11 corresponde a la secuencia de acciones que satisfacen el caso de uso 3.24.
El usuario ejecuta la interfaz donde se encuentra contenido el plugin de visualizacion, ésta
procede a la creacién del objeto visualizador y a la distribucion de los datos pertinentes
mientras se continte adquiriendo senal o la interfaz se encuentre activa. Como resultado
de esta secuencia el usuario observa la actividad correctamente.

La tabla 3.12 representa la extraccién de requisitos funcionales y no funcionales reali-
zada al caso de uso 3.11.

44

3. Desarrollo 3.4 Plugin de visualizacién de actividad cerebral

Nombre Caso de uso 1

Actores que intervienen | Usuario/Terapeuta

Descripcién Visualizacion de la actividad cerebral.

Precondicién El terapeuta se encuentra en la interfaz de usuario.
donde se encuentra el visualizador.

Secuencia de acciones 1. A través del plugin visualiza la actividad cerebral.

Resultados El usuario/terapeuta ha visualizado la actividad cerebral.

Tabla 3.11: Caso de uso correspondiente a la visualizacién de la actividad cerebral.

Cddigo | Descripcién

RF-0 El plugin debe ofrecer un sistema de visualizacion

espacial de la actividad cerebral.

RNF-0 | Se debe poder incluir facilmente en cualquier interfaz de usuario.
RNF-1 | Se aproximaran el resto de elementos a visualizar

conforme a los valores obtenidos del montaje.

RNF-2 | Debe tener un tiempo de ejecucién reducido

y funcionar en tiempo real.

Tabla 3.12: Requisitos del plugin de visualizacién de actividad cerebral.

()

Visualizar
Actividad
cerebral

A

Usuario

Figura 3.24: Gréfico de caso de uso correspondiente al Plugin de visualizacion de actividad cerebral.

45

3. Desarrollo 3.4 Plugin de visualizacién de actividad cerebral

3.4.3. Diseno

sd Secuencia de visualizacién de actividad)

| |

1: visualizarActividad()
P 1.1: new Topoplot()

PP - —

loop |[4 .dquisition==true])

1.2: setValues()

T
ml

|

I

|

P
PGP S — H

|

|

|

1

|

|

Actividad mostrada
< ___________

——
—_— =

Figura 3.25: Diagrama de secuencia correspondiente la visualizacién de la actividad cerebral

La figura 3.25 corresponde a la secuencia de acciones que satisfacen el caso de uso 3.24.
El usuario ejecuta la interfaz donde se encuentra contenido el plugin de visualizacién. Esta
procede a la creacion del objeto visualizador y a la distribucién de los datos a representar,
repitiéndose cada ciclo mientras se contintie adquiriendo senal o la interfaz se encuentre
activa. Como resultado de esta secuencia el usuario visualiza la actividad correctamente.

La distribucion de los datos de los electrodos se realiza mediante un método publi-
co, que a su vez invoca al algoritmo de representaciéon visual de la actividad. Este tipo
de estructura confiere versatilidad al plugin de visualizacién, convirtiéndolo en una uni-
dad independiente del contexto y permitiendo que sea instanciado en cualquiera de las
interfaces de usuario disponibles.

46

3. Desarrollo 3.4 Plugin de visualizacién de actividad cerebral

La aproximacion del resto de puntos a representar es obtenida mediante interpolacién,
en concreto mediante el método inverse distance weighting donde cada uno de los datos
interpolados u(z) responde al sumatorio del inverso de cada una de las distancias a los
electrodos, entre el total de las mismas w;(x)

donde

La eleccion de esta técnica frente a otras se basa en dos aspectos importantes:

= Disponibilidad: La mayoria de los métodos de interpolacién utilizados habitual-
mente (Bilinear,Spline, Bezier) tienen como precondicién que la distribucién espacial
de los datos sea regular, sin embargo, los montajes no responden a una estructu-
ra de este tipo quedando reducido el abanico de métodos a unos pocos, muchos
de ellos incompatibles con una ejecucién en tiempo real (Krigging). Existen imple-
mentaciones Bilinear,Spline donde se convierte el montaje en un mallado regular,
interpolando a posteriori, se desecharon estas modificaciones debido a la mas que
destacable pérdida de precision.

» Eficiencia: Se trata de un plugin que debe ejecutarse en tiempo real (aproxima-
damente 30 ms), luego necesita que el tiempo maximo de procesamiento durante
la interpolacion sea menor que éste. Esta restriccion favorece la eleccion de inverse
distance weighting frente a otros métodos con resultados similares pero un tiempo
de procesamiento mucho mayor. Con el fin de agilizar su representacién atin mas,
se realizd una evaluacion y almacenado de las distancias a los diferentes sensores
(w;(x)), evitando tener que computar de nuevo valores (distancia entre sensores) que
permanecen constantes iteracion tras iteracion, y reduciendo su ciclo de ejecucién
de 210 ms a 2.18 ms.

47

3. Desarrollo 3.4 Plugin de visualizacién de actividad cerebral

sd Creacion y Funcionamiento)

GUI Topoplot

1: visualizaActividaw
>

2: new Topoplot()

A\

3: loadFile()

1

4: computeRadio()

1

5: computeDistances()

1

6: createPath()

1

7: createColorMap()

1

loop [Addu iﬁnn::true])

8: setValues()
'} 8.1: repaint()

2

Actividad mostrada

Figura 3.26: Diagrama de secuencia correspondiente a la creacion del plugin de visualizacion de actividad
cerebral.

Tras la ejecucion del interfaz, se procede a la creacién del visualizador (figura 3.26), en
éste se cargard tanto la distribucién de sensores presentes en el montaje (loadFile), como
aquellos objetos donde se realizard la representacion (createPath,createColorMap).

48

3. Desarrollo 3.4 Plugin de visualizacién de actividad cerebral

sd Sencuencia de pintado por ciclo)

|

1: paintValues() n. |
D>

1.1: drawMap()

Figura 3.27: Diagrama de secuencia correspondiente al proceso de pintado del plugin de visualizacién de
actividad cerebral.

Se representara la actividad cerebral tras cada adquisicién pues funciona en tiempo
real, en el diagrama de secuencia 3.27 se detalla que acciones se realizardn en cada ciclo
de representacion. Se procedera al pintado del montaje ”base” (contorno + electrodos)
para posteriormente proceder al pintado de los distintos valores interpolados.

Tras esta fase obtenemos un primer prototipo de la herramienta (Figura 3.8)

49

3. Desarrollo 3.4 Plugin de visualizacién de actividad cerebral

pkg

Topoplot

- mPathHead : std::vector<QPointF>

- mPathSensor : std::vector<QPointF>
- mPenHead : QPen

- mPenSensor : QPen

-mSensors : std::vector<QPointF>
-mSensorsR : std::vector<QPointF>

- mPixmapColorMap : std::vector<QPixmap>
-mSensorDist : std::vector<float>

- mElemsPerVoxel : int

- mNumVoxels : int

- mCustomX : float

- mCustomY : float

- mCustomWeight : float

- mCUstomHeight : float

- mColorMax : float

- mColorMin : float

- mRadio : float

-mPValue : int

- mValues: std: : vector<float>

+ Topoplot(cx : float, cy : float, cw : float, ch : float) : void
+~Topoplot() : void

+ setScale(minScale : float, maxScale : float) : void

+ paintValues(input : *float) : void

- loadElocFile(fileName : std::string&) : std:vector<QPointF>
- computeErSensors() : void

- computeRadio() : void

- createColormap() : void

- paintEvent(e : QPaintEvent*) : void

- drawMap(p : QPainter*) : void

- drawHeadSensor(p : QPainter*) : void

- createPath() : void

- euclideanDist(x1 : int, y1 : int, x2 : int, y2 : int) : float

- valueToColormap(value : float) : int

Figura 3.28: Diagrama de clases correspondiente al visualizador.

Topoplot

Figura 3.29: Prototipo del visualizador de actividad cerebral.

50

3. Desarrollo 3.4 Plugin de visualizacién de actividad cerebral

3.4.4. Implementacién

Procedemos a la implementacién de la solucién resultante de la fase de diseno, bajo el
framework Qt. Se realizé un extenso proceso de documentacién en busca de los elementos
de representaciéon mas eficientes disponibles dentro de Qt, tratando de minimizar las
penalizaciones temporales producidas por una mala planificacion del proceso de pintado.

La mayor parte de los elementos graficos incluidos en BrainUp se encuentran desarro-
llados en Qut, libreria grafica C++ compatible con @, sin embargo, la inexistencia de
objetos similares a los requerimientos de usuario expuestos en la seccion 3.4.2 provoco su
rechazo en favor de una implementacién en Q.

3.4.5. Pruebas

Se realizaron diversas pruebas:

» Pruebas de funcionamiento: Realizadas entre nuestra solucion y el visor distri-
buido por Matlab, se procesaron 5 ficheros de EEG con resultados similares, con-
cluyendo que las ligeras diferencias encontradas entre ambas soluciones se debian a
la utilizacion de diferentes algoritmos de interpolacién, aunque como se observa en
la figura 3.4.5 no afectaban a la correcta visualizacion de la actividad cerebral.

(a) Real (b) Matlab

Figura 3.30: Prueba con 8 electrodos

= Pruebas de rendimiento: Realizadas con diferentes configuraciones de electro-
dos (16 electrodos, 32 electrodos,62 electrodos y 64) comprobando que el ciclo de
ejecucion resultante es aceptable en todos los casos.

Concluimos asi que la implementacion realizada en este PFC se mantiene dentro de
unos parametros aceptables, pues no sobrepasa en ninguno de los casos el tiempo

o1

3. Desarrollo 3.4 Plugin de visualizacién de actividad cerebral

Comparacion de tiempo de ejecucion

180
160
140 /'/’.7
120 >
100
“
E =0
60 ==Visualizador Matlab
= Visualizador PFC
40
20
- - o * N
o . 4 . 4
8 16 32 62 64
‘Visualizador Matlab 2,189 2,63 3,216 5,016 5,149
‘Visualizador PFC 107,1 111,23 139,4 152,69 157,12

Electrodos

Figura 3.31: Comparacién visualizador Matlab vs PFC.

de ciclo (30 ms) manteniéndose en un intervalo de 2-6 ms. La solucién ofrecida por
Matlab sin embargo posee un tiempo de ejecucion minimo de 107,1 ms.

El resto de pruebas de funcionamiento, y una prueba individual del visualizador, se
encuentran presentes en el anexo C, secciéon C.4.

52

4. Localizacion del software

A la hora de desarrollar una solucién informética de cualquier tipo, especialmente
en fases tempranas de andlisis o desarrollo, surgen inevitablemente cuestiones referidas
al diseno, la eficiencia, o incluso a la usabilidad de la misma, sin embargo ;Qué ocurre
con la localizacién del software?, ;Qué idioma acompana por defecto a la aplicacion?
. Qué lenguas posibilitamos? y sobre todo ;Cémo las incluimos?

Las limitaciones producidas por una incorrecta localizacion software pueden llegar a
imposibilitar la utilizaciéon del mismo, disminuir su atractivo en ciertos entornos comer-
ciales e incluso relegarla a un segundo plano frente a aplicaciones inferiores técnicamente,
pero localizadas adecuadamente. En casos extremos una mala localizacién puede desembo-
car en una pésima o equivoca valoracién del producto final(p.ej : Nissan Moco, Volkswagen
Jetta).

Como tarea dentro de este PFC, se realizé la localizacion de BrainUp, atendiendo a
su vez al requisito no funcional presente en todos los apartados anteriores (”Debe estar
disponible en diferentes idiomas”). El idioma seleccionado por defecto para la aplicacién
es el inglés,; se trata de una de las lenguas mas habladas y estudiadas del planeta, ademas
de su ubicua presencia en los entornos de divulgacién cientifica, y puesto que nuestro
software se encuentra enmarcado dentro de un ambito cientifico-técnico, convenimos que
el inglés era el mas adecuado a las necesidades del usuario final.

La localizacién y gestién de idiomas se realizé conforme al proceso descrito en la API
de Qt Qt Linguist[24], gracias a este método conseguimos generalizar y desacoplar la
localizaciéon software, haciéndola accesible incluso a personal no habituado a entornos de
desarrollo software, como los lingiiistas.

53

4. Localizacion del software

o i lupdate
Codigo P archivos .Is

fuente E— ﬂ

+

QTranslator

Exe -

archivos .qm

Irelease

Figura 4.1: Esquema del proceso de localizacién.

El proceso como podra observar en la figura 4.1 consta de las siguientes fases:

1. Trabajo previo: Dentro del documento de normas de programacion, de obligado
cumplimiento por parte de los ingenieros de BitBrain Technologies, incluimos una
norma acerca de la necesaria utilizacién de la funcién ”tr” previa cualquier cadena
de texto que se desea mostrar por pantalla (p.ej. tr(”mitexto”)), permitiendo de este
modo la correcta localizacién de cualquier aplicacion generada ahora o en el futuro
por la compania.

2. Modificacién archivo .pro: Este tipo de archivo es basico dentro de la creacién
de soluciones basadas en Qt, se trata de un meta-makefile en el que quedan definidas
las librerias a incluir, las dependencias, asi como el cédigo fuente y cabeceras que
se implementaran en el entorno de desarrollo elegido (en nuestro caso Visual Studio
2008), debemos modificarlo anadiendo los idiomas que deseamos generar y completar
a posteriori, como por ejemplo:

Translations:
bUp-es_ES.ts
bUp-fr_FR.ts
bUp-de_DFE.ts
bUp-ja_JP.ts
bUp-pt_PT.ts

o4

4. Localizacion del software

866 S [Users/msmith /depot/qt-45 /translations/linguist_pl.ts - Qt Linguist =
7 w sl

Bm L s &R% &

Context Sources and Forms @ n
7 Context Items m_source = new FormWidget(tr("Source text"), false); -
& <unnamed co... 11 m_source->setHideWhenEmpty(true); m
«/ AboutDialog 1/1 m_source->setWhatsThis(tr("This area shows the source text."));
7 BatchTranslat... 17/17 connect(m_source, SIGNAL(selectionChanged()), SLOT(selectionChanged());
« DataModel 5/5 .
o7 ErrorsView 77 m_pluralSource = new FormWidget(tr{'Source text (Plural)"), false); v
« FindDialog 19/19 | i 1
o LRelease 2/2 suings e

? MainWindow 210/217 | f Sourcetext

./ MessageEditor 18/18 o %1 translation

«¥ MessageModel 4/4 o %1 translator comments

& MsgEdit 11 |Im
«/ PhraseBookBox 21/21 «” This whole panel allows you to view and edit the translation of some source text.

«/ PhraseModel 3/3 of K1 Line: %2 +
o’ PhraseView 4/4

«# QObject 14/14 Source text

o’ SourceCodeVi... 3/3 .

o Statistics 8/8 This-area-shows-the-source-text.

o TrWindow 1/1 Polish t lati

« TranslateDialog 14/14 olish transiation

« TranslationSe... 6/6 .1 W-tym-obszarze-wyswietlany-jest-tekst-zrodtowy.

Polish translator comments

Phrases and guesses @ 0
Source phrase Translation Definition
This area shows the source text. W tym obszarze wySwietlany jest tekst zrodtowy. Guess (1) m
[This area shows the plural form of the source text. W tym obszarze wyswistlana jest forma mnoga r..._Guess (32) I
Source texts are searched when checked. Jesli zaznaczone przeszukuje takze teksty zrodio... Guess (823)]
This panel lists the source contexts. Ten panel pokazuie liste kontekstéw. Guess (3£4) 1

" Warnings | Phrases and guesses

359/366

Figura 4.2: Aspecto del editor de lenguajes.

3. Lupdate: Invocacion correspondiente a la API de Qt Linguist y realizada por linea
de comando, su principal funcién es recorrer los diferentes archivos correspondientes
al c6digo fuente, en busca de cadenas de tipo “tr(cadena)” y sensibles de ser tra-
ducidas, generando los ficheros .ts adecuados a los idiomas definidos en el archivo
.pro.

4. Traduccién: Una vez generados los ficheros .ts para los distintos idiomas, proce-
demos a su traduccion gracias a la herramienta de edicién proporcionada por Qt,
aunque también pueden ser modificados de manera directa, pues se trata simple-
mente de un fichero en formato .zml.

Como se puede observar en la figura 4.2 el programa dispone de tres zonas princi-
pales:

a) Zona 1: Seleccién de objeto cuyos elementos deseamos traducir.
b) Zona 2: Seleccién de elemento a traducir dentro de un objeto.

¢) Zona 3:Realizacién de la traduccion.

5. Lrelease: Invocacion correspondiente a la API de Qt Linguist y realizada por linea
de comando, su principal funcién es generar los diferentes archivos .gm correspon-

35

4. Localizacion del software

dientes a la traduccién de las secuencias tr(”mitexto”), estos seran cargados de
manera dinamica por el ejecutable traduciendo el texto por pantalla.

Translations:
bUp-es_ES.qm
bUp-fr_FR.qm
bUp-de_DE.qm
bUp-ja_JP.qm
bUp-pt_PT.qm
6. QTranslator: Una vez confeccionado el fichero de traduccién y generados los ar-
chivos .gm, debemos instanciar un objeto de tipo @ Translator en nuestro proce-
dimiento principal, de manera que nuestra aplicacién cargue automaticamente el

idioma adecuado de acuerdo a nuestra configuracion regional, en caso de que este
no esté disponible, se hara uso del idioma por defecto.

a) QString locale = QLocale::system().name(); : Almacenamos gracias a esta invo-
cacién bajo qué cédigo regional operamos (p.ej. es_ES fr_ FR) el primero codifica
la lengua en formato ISO 639, mientras el segundo codifica el pais en ISO 3166,

pudiendo asi distinguir por ejemplo, entre inglés britdnico o americano (en-GB
en_US).

b) QTranslator translator; : Instanciamos un objeto de tipo QTranslator.

¢) QString name = bUp’+ locale; : Construimos una string en la que almacena-
remos el idioma adecuado a nuestra region.

d) translator.load(name,”../”) : Cargamos el fichero correspondiente, en caso de
no ser encontrado, se hara uso del idioma por defecto (en nuestro caso inglés).

e) app.installTranslator(translator); : El traductor queda completamente opera-
tivo en nuestro ejecutable.

Conseguimos gracias a este método satisfacer los requisitos no funcionales antes ex-
puestos y generalizar la localizacién de nuestra aplicacién, de forma que la adicién de un
nuevo idioma a la misma no conlleve nuevos esfuerzos de implementacion sobre el nicleo.

56

5. Instalador

5.1. Descripcién

Tras varias iteraciones sobre el proceso unificado de desarrollo software descrito en
capitulos anteriores desembocamos en la primera version estable de la aplicacién, sin
embargo, quedan ain multitud de tareas a realizar hasta considerar a ésta como un
producto terminado.

Tareas por ejemplo relativas al empaquetado y distribucion de la aplicacion, al método
de obtencién del hardware que la acompana (amplificador operacional), a los manuales
que deben servir de guia a usuarios noveles, o a su método de instalacién y configuracion.

En el caso que nos ocupa, y dentro de las tareas realizadas en este PFC se procedio al
analisis diseno e implementacion de un instalador para la aplicacion BrainUp.

A pesar de que el framework sobre el que se implementa BrainUp es multiplataforma,
se desarrollé el instalador Unicamente para sistemas operativos Windows por tratarse
del sistema en el que es comercializado BrainUp en primera instancia, teniendo como
requisito minimo Windows XP y realizando distincién entre las versiones de 32 y 64 bits,
la motivacion de esta sera detallada en la seccion 6.

Durante este proceso también se realizara la instalacién del software correspondiente
a terceros, necesario para la correcta ejecucion de la aplicacion, como por ejemplo:

1. Drivers Gtec: Drivers del fabricante necesarios al tratarse de un dispositivo de
adquisicion conectado a nuestro ordenador por USB.

2. API Gtec: Librerias utilizadas por BZI para la correcta adquisicién de senal.
3. Base de datos PostgreSQL: Requerida para la gestion de datos relativos usuarios

y terapia.

También se ejecutaran scripts encargados de la creacion de una estructura de base
de datos adecuada para la terapia, asi como la insercién de las variables de entorno
en el path del sistema, una por cada una de las librerias requeridas por la aplicacion

(Qt, Qut, Armadillo).

o7

5. Instalador 5.2 An4lisis

Se implement6 paralelamente al instalador, el desinstalador pertinente, aunque no se
dotd a este ultimo de estrategias de reparacion o recuperacion en caso de una instalacion
incompleta.

5.2. Analisis

Siguiendo la metodologia expuesta en el capitulo 3 se definen dos casos de uso princi-
pales, iniciando asi la fase de extraccién de requisitos:

1. Instalacion de la aplicacion: El usuario procede a instalar y configurar BrainUp.

2. Desinstalacion de la aplicacion: El usuario procede a desinstalar BrainUp.

En las tablas 5.1 y 5.3 asi como en las graficas 5.1 y 5.3 pueden observarse los mismos.

Seleccionar
idioma

<<include>> - 7

Usuario
S~ <<include>>

Y
Reiniciar
equipo

Figura 5.1: Diagrama de caso de uso de instalacion.

58

5. Instalador

5.2 Analisis

Nombre Caso de uso 1

Actores que intervienen | Usuario

Descripcion Instalacién y configuracién de la aplicacion.
Precondicién El usuario posee el ejecutable de BrainUp.

Secuencia de acciones

1. Selecciona el idioma de instalacion

2. Acepta los términos de licencia.

3. Selecciona el directorio destino de la aplicacién.

4. Finalmente el usuario acepta y se reinicia el equipo.

Resultados Se ha instalado y configurado BrainUp correctamente.
Tabla 5.1: Caso de uso de instalacién.
Nombre Caso de uso 2
Actores que intervienen | Usuario
Descripcion Desinstalacion de la aplicacion.
Precondicion El usuario posee instalado BrainUp.
Secuencia de acciones 1. Selecciona el idioma de desinstalacién
2. Selecciona desintalar.
Resultados Se ha desinstalado BrainUp correctamente.
Tabla 5.2: Caso de uso de desinstalacién.
uc)

Usuario

Seleccionar
idioma

<<include>> -7

Figura 5.2: Diagrama de caso de uso de desinstalacion.

Gracias a los casos de uso descritos anteriormente, sintetizamos los requisitos funcio-
nales y no funcionales necesarios para el instalador.

39

5. Instalador 5.3 Disefio

Cédigo | Descripcién

RF-0 El instalador debe ofrecer seleccién de idioma.

RF-1 El instalador debe permitir la seleccion de la carpeta destino.
RF-2 El instalador debe obligar al reinicio del equipo tras la instalacion.
RNF-0 | Se debe detectar el sistema operativo destino de la aplicacién
copiando los archivos adecuados a cada version.

RNF-1 | Se debe realizar la instalacion de componentes o tareas
pertenecientes a terceros, de manera desatendida.

RNF-2 | Debe ser usable e intuitivo.

RNF-3 | Debe estar disponible en diferentes idiomas.

Tabla 5.3: Requisitos del instalador.

5.3. Diseno

Un diagrama de actividades es utilizado con el fin de modelar el comportamiento del
sistema o describir como un sistema implementa su propia funcionalidad, cada diagrama
representa una actividad, que a su vez puede estar formada por actividades mas pequenas,
ademas estan basados en redes de petri.

Mientras un diagrama de interaccién muestra como los objetos gestionan los mensajes,
uno de actividades muestra las operaciones ocurridas entre entidades de nuestro sistema,
sirven para modelar la dindmica de un conjunto de objetos, el flujo de control de una
operacién, caso de uso, o bien un hilo de trabajo (workflow).

En la figura 5.3 podemos observar el diagrama de actividades correspondiente al ins-
talador.

act Instalador J
Seleccion
idioma

Instalacion
completada:
reinicio

Aceptacion] \[Seleccién 1
licencia | “\ dedestino |

NO

SI
@

Figura 5.3: Diagrama de actividades del instalador.

Para finalizar el proceso de disenio se realizaron prototipos de las ventanas correspon-

60

5. Instalador 5.4 Implementacién

dientes al proceso de instalacién, incluidas en el anexo de desarrollo.

5.4. Implementacion

La implementacion fue realizada sobre NSIS[25], lenguaje de script de licencia open-
source y desarrollado por NullSoft, creadores del afamado Winamp. La popularidad de
éste ha crecido de forma exponencial en los iltimos anos, debido sobre todo a su versati-
lidad, el magnifico soporte ofrecido por una amplia comunidad de desarrolladores, y por
tratarse de una alternativa libre y gratuita frente a otras como InstallShield de elevado
coste.

Ademas de resultar una alternativa libre y gratuita, NSIS ofrece las siguientes funcio-
nalidades:

1. Reducido tamano: NSIS fue concebido para ser pequeno, rapido y eficiente, un
instalador basico completamente funcional tendria un tamano aproximado de 34
K B, muy inferior al resto de soluciones existentes.

2. Los ejecutables generados son compatibles con todas las versiones de Windows dis-
ponibles hasta la fecha, satisfaciendo asi uno de los requerimientos de nuestro ins-
talador.

3. Permite la ampliacién de sus funcionalidades mediante invocaciones C, C++ o Delp-
hi entre otros.

4. Al contrario que otras soluciones, genera ejecutables auto-contenidos, sin necesidad
de extracciéon alguna previa a la instalacion.

5. Posee soporte multilenguaje.

6. Como caracteristica mas destacada, las diferentes aportaciones realizadas por la
comunidad de desarrolladores, ya sea en la creacién de nuevos plugins o funciona-
lidades, como en la modificacién del nicleo de lenguaje, dotandolo asi de nuevas
capacidades.

NSIS requiere definir previamente cada una de las paginas de las que constard el
instalador, pagina de bienvenida, seleccion de ruta de destino, progreso de instalacion,
realizando una configuracién de las mismas previa a su invocacién (iconos a mostrar,
texto por pantalla, colores).

Dentro de las soluciones suministradas por la comunidad de desarrollo, tres fueron de
especial utilidad dentro de nuestra implementacion:

61

5. Instalador 5.5 Pruebas

» LogicLib.nsh[26] : Dota al lenguaje de sentencias ”if-then-else”, "case”, o "unless”,
permitiendo asi la utilizacion de estructuras de control y reduciendo ostensiblemente
la complejidad del cédigo fuente.

» 1264.nsh[27] : Capaz de detectar sobre qué versién de sistema operativo nos encon-
tramos (32-bit / 64-bit), facilitando asi la eleccién de que librerfas acompanaran al
ejecutable.

» EnvVarUpdate.nsh[28] : Permite anadir o borrar variables de entorno al path del
sistema operativo, ya sea a nivel de usuario o de administrador.

La invocacién " ExecWait” [29] nos permite lanzar ejecutables/scripts ajenos a nuestro
instalador, esperando a su correcta finalizacion para continuar, en el caso que nos ocupa,
esta llamada fue usada para instalar el software relativo a la base de datos, ejecutar los
scripts de configuracion de la misma, e instalar la API y drivers de Gtec.

FEj. ExecWait msiexec /passive /i "INSTDIR /g. USBamp /driver/qUSBampDriver.msi”

La instalacién de software ajeno a BitBrain Technologies se realiza de forma desaten-
dida, dicese sin ningun tipo de interacciéon por parte usuario.

5.5. Pruebas

El instalador fue probado en diferentes sistemas operativos, tanto el proceso de insta-
lacion, como el de desintalacién. Comprobando en ambos casos su correcta configuracion
y ejecucién dependiendo de la version instalada (Figura 5.4).

Sistema Operativo Instalacion
Windows XP 32-bit Correcta.
Windows Vista 32-bit | Correcta.
Windows Vista 64-bit | Correcta.
Windows 7 32-bit Correcta.
Windows 7 64-bit Correcta.

Tabla 5.4: Resultados de instalacion.

A su vez, se realizaron pruebas con semantica diferencial a 10 sujetos, evaluando el
instalador en materia de usabilidad. (Figura 5.5).

Se encuentran disponibles en el anexo de pruebas, los resultados detallados de cada
uno de los usuarios (Seccién C.5).

62

5. Instalador 5.5 Pruebas

Pregunta Respuesta
3210-1-2-3
En general el instalador Me gusta 2.7
El instalador me parece Intuitivo 2.9
La pantalla de seleccién de idioma me parece Clara 2.4
La aceptacion de términos de licencia me parece Clara 2.7
La seleccion de carpeta destino me parece Clara 2.8
En términos generales el funcionamiento me parece | Claro 2.8

Tabla 5.5: Resultados globales de la evaluacién del instalador.

63

5. Instalador 5.5 Pruebas

64

6. Aspectos relevantes

Como comentamos en el capitulo 5 existen aspectos relevantes dentro de la aplicacién
desarrollada que conviene sean definidos en detalle, pues su presencia paso desapercibi-
da hasta fases tardias del desarrollo y ha motivado la adicién o modificacion de ciertos
comportamientos dentro de BrainUp y de este PFC.

= Armadillo: Libreria matematica fortran utilizada durante el procesado de la senal
(FF'T, célculo filtro ICA), gran parte de sus beneficios se deben a las optimizaciones
a bajo nivel realizadas sobre esta, como modificaciones en el acceso a memoria cache,
o la gestion e indexacion de elementos comunes en zonas contiguas de memoria, sin
embargo, este tipo de optimizaciones requieren un nivel de compromiso ”"maquina”
elevado, desembocando por ejemplo en la necesidad de distinguir en qué versién de
sistema operativo nos encontramos.

Debemos compatibilizar la libreria de Armadillo distribuida con la versién de sistema
operativo residente, ya que en caso contrario la aplicacion no se ejecutara de manera
correcta, la detecciéon realizada durante el proceso de instalacion responde a esta
necesidad.

Armadillo distribuye unicamente versiones pre-compiladas para 32-bit, se nece-
sité recompilar la libreria para conseguir una version de 64-bit compatible. Se des-
conoce en la actualidad la influencia de las diferentes arquitecturas hardware en su
funcionamiento.

= Resolucion: El framework de (¢, usado para la implementacion de los interfaces
de usuario, posee una potente metodologia, encargada de la correcta colocacién de
los elementos en pantalla de manera dinamica, sin embargo, en muchas ocasiones
adolece de una cierta incapacidad para distribuir correctamente los elementos en
bajas resoluciones, o en ratios diferentes a las establecidos previamente (16:9, 4:3).

Es por ello, por lo que se decidié limitar las interfaces de usuario a una serie de
resoluciones establecidas, cubriendo la mayor parte de los tamanos existentes en el
mercado y garantizando asi su correcto visionado.

65

6. Aspectos relevantes

66

7. Conclusiones y trabajo futuro

= Desarrollo de tareas: Concluimos que todos las tareas de este PFC se han desa-
rrollado siguiendo una metodologia de proceso unificado, resultando en sistemas que
satisfacen los requisitos fijados al inicio del mismo.

= Eficiencia: Se trataba de uno de los puntos importantes al inicio de este PFC, todas
las herramientas, plugins o funcionalidades desarrolladas debian ser extremadamente
eficientes debido a lo reducido del ciclo de adquisicién de senial (30 ms). Gracias a la
excelente documentacion que acompana al framework (¢, las soluciones resultantes
gozan de un tiempo de ejecucion aceptable.

= Usabilidad y diseno: Se ha puesto especial cuidado en aquellos aspectos relativos
a la usabilidad y el disenio, pues se pretende que BrainUp sea usado en entornos sin
conocimientos informéticos previos. Gracias al extenso proceso de prototipado reali-
zado por BitBrain Technologies, los elementos incluidos en este PFC y la aplicacion
en general resultan muy usables asi como atractivas al usuario.

= Desarrollo software: Se ha podido estar presente en todas las fases del desarrollo
de un software comercial, desde los primeros analisis, hasta el empaquetado final,
actiando sobre muchas de ellas con las tareas de este PFC. A su vez, se ha podido
comprobar el correcto funcionamiento de las distintas funcionalidades implementa-
das en este proyecto en entornos profesionales (ensayos clinicos, demos, experimentos
con psicdlogos) verificando que satisfacen en todo momento los requerimientos del
usuario final.

7.1. Trabajo futuro

1. Herramienta de comprobacion de defectos de montaje: FEn la actualidad
adopta una postura meramente informativa, sin embargo futuras versiones reque-
rirdn, por ejemplo, eliminar electrodos, o definir sensores esenciales (permitiendo
continuar la ejecucién con errores en electrodos no-esenciales). A pesar de que es-
tos cambios han sido tenidos en cuenta en la implementacion realizada, se deberia
proceder a su adaptacién y al desarrollo de las nuevas funcionalidades.

67

7. Conclusiones y trabajo futuro 7.1 Trabajo futuro

2. Unidad de deteccién de defectos de montaje: No todos los defectos o errores
presentes en un montaje poseen las mismas caracteristicas, ya sea en términos de
amplitud, frecuencia o rango temporal, luego su deteccion no conlleva el mismo
tipo de procesamiento. Como futura tarea queda la adicién de nuevos métodos de
deteccion de defectos de montaje.

3. Plugin de visualizacién de actividad cerebral: Se trata de un plugin alta-
mente optimizado, la visualizacion en tiempo real de la actividad cerebral conlleva
el interpolado y representacién de gran cantidad de puntos en cada uno de los ci-
clos de adquisicién (30 ms), a tal efecto y como ya se ha comentado en secciones
anteriores, se fijé el tamano del mismo con el fin de pre-calcular los coeficientes de
interpolacion, disminuyendo asi en gran medida el tiempo de célculo y permitiendo
su ejecuciéon en un tiempo estimado de entre 2 y 6 ms.

Es esta extrema especializacién la que lo convierte en un plugin rigido para ciertos
interfaces de usuario, quedando pues como trabajo futuro la implementacién de una
solucion intermedia, donde se sacrifique cierto tiempo de ejecucion en pro de una
mayor flexibilidad.

4. Informe: Como comentamos en el capitulo 2 las terapias basadas en neurofeedback
son el resultado de un intenso trabajo multidisciplinar, y como resultado, los avances
realizados en cada una de ellas influyen enormemente sobre el resto. Quedaria pues
como trabajo en un futuro, la adaptacién del report a estas nuevas exigencias,
inclusive su reimplementacion.

5. Instalador: En su caso, futuras versiones deben implementarse sobre la estructura
proporcionada por "Modern User Interface”[30] correspondiente también a NSIS,
pero mas cercano visualmente a los interfaces modernos. Se trata entonces, de mo-
dificaciones en el aspecto y no en la estructura o funcionamiento del instalador.

68

Bibliografia

[1] J.R.Wolpaw, N.Birbaumer, D.J.McFarland, G.Pfurtscheller, and T.M.Vaughan.
Brain-computer interfaces for communication and control. Clinical Neurophysiology.,
113(6), 2002.

[2] T.H.Budzynski, H.K.Budzynski, J.R.Evans, and A.Abarbanel. Introduction to Quan-
titative EEG and Neurofeedback, Second Edition: Advanced Theory and Applications.
Academic Press, 1999.

[3] C.Escolano, J.Antelis, and J.Minguez. Human Brain-Teleoperated Robot between
Remote Places. IEEFE International Conference on Robotics and Automation., Sep-
tember 2009.

[4] LIturrate, J.Antelis, A.Kiibler, and J.Minguez. Non-Invasive Brain-Actuated Wheel-
chair based on a P300 Neurophysiological Protocol and Automated Navigation. IEEE
Transaction on Robotics, June 2009.

[5] T.Elbert, N.Birbaumer, P.Wolf, A.Duchting-Roth, = M.Reker, [.Daum,
W.Lutzenberger, and J.Dichgans. Cortical sefl-regulation in patients with epi-
lepsies. Epilepsy res, 14:63-72, 1993.

[6] J.N. Demos. Getting started with neurofeedback. WW Norton, 2005.

[7] H.Gevensleben, B.Holl, and B.Albrecht. Is neurofeedback an efficacious treatment
for ADHD? A randomised controlled clinical trial. Journal of Child Psychology and
Psychiatry and Allied Disciplines., 50(7), 2009.

[8] M.Abikoff. Cognitive training in ADHD children: less to it than meets the eye.
Journal of Learning Disabilities, 24:205-209, 1991.

[9] U.Strehl. Self-regulation of Slow Cortical Potentials: A New Treatment for Children
With Attention-Deficit /Hyperactivity Disorder. Pediatrics, 2006.

[10] E.G.Peniston and P.J.Kulkosky. Alpha-theta brainwave training and beta-endorphin
levels in alcoholics. Alcolism: Clinical and Experimental Research, 13:271-279, 2007.

69

[11]

[12]
[13]

[14]
[15]

[17]

[18]

[19]
[20]

[21]
[22]
[23]
[24]

Actualidad Economica. Sistema para hacer gimnasia mental en pacientes de
fibromialgia y depresién. http://bitbrain.es/wp-content/uploads/2011/09/
ActualidadEconomicaBBT.pdf, 2011.

Neurosky. Brainwave sensors for everybody. http://www.neurosky.com/, 2010.

B. Hamadicharef, Xu Mufeng, and S.Aditya. Brain-Computer Interface (BCI) Based
Musical Composition. Cyberworlds (CW), 2010 International Conference on , pages
282-286, 2010.

Neurowear. Nekomimi. http://neurowear.com/, 2011.

C.Escolano, M.Aguilar, and J.Minguez. Effects of Upper Alpha Neurofeedback Trai-
ning on Working Memory Performance and on Electrophysiology. 33 rd Annual
International IEEE EMBS Conference, April 2011.

B. Zoefel, R.J.Huster, and Christoph S.Herrmann. Neurofeedback training of the
upper alpha frequency band in EEG improves cognitive performance. Neurolmage,
August 2010.

S. Hanslmayr, P. Sauseng, M. Doppelmayr, M. Schabus, and W. Klimesch. Increasing
individual upper alpha power by neurofeedback improves cognitive performance in
human subjects. Applied Psychophysiology and Biofeedback, 2005.

W. Klimesch. EEG alpha and theta oscillations reflect cognitive and memory per-
formance: a review and analysis. Brain Research Reviews, 1999.

Nokia. Qt libraries. http:/qt.nokia.com, 1992.

Nokia. Qpainterpath library. http://doc.qt.nokia.com/latest/qpainterpath.
html, 1992.

Nokia. Qpainter library. http://doc.qt.nokia.com/stable/qpainter.html, 1992.
Conrad Sanderson. Armadillo libraries. http://arma.sourceforge.net/, 2007.
Uwe Rathmann. Qwt libraries. http://qwt.sourceforge.net/, 1997.

Nokia. Qt linguist. http://doc.qt.nokia.com/latest/linguist-manual.html,
1992.

NullSoft. Nsis reference. http://nsis.sourceforge.net/Main_Page.html, 2001.

Dselkirk and Eccles. Logiclib plugin. http://nsis.sourceforge.net/LogicLib.
html, 2004.

NullSoft. x64 plugin. http://nsis.sourceforge.net/Include/x64.nsh, 2004.

NullSoft. Environment path manipulation plugin. http://nsis.sourceforge.net/
Path_Manipulation.html, 2004.

70

[29] NullSoft. Script reference. http://nsis.sourceforge.net/Docs/Chapterd.html,
2004.

[30] NullSoft. Nsis mui reference. http://nsis.sourceforge.net/Docs/Modern’,20UI/
Readme.html, 2007.

71

72

