
Proyecto Final de Carrera

Ingenieŕıa Informática

Curso 2011-2012

Desarrollo de Funcionalidades, Plugins y

Herramientas

para Software de Neuroterapia

Sergio Serrano Sánchez

Diciembre de 2011

Director: Javier Mı́nguez Zafra

Departamento de Informática e Ingenieŕıa de Sistemas
Centro Politécnico Superior
Universidad de Zaragoza

ii

El dolor es inevitable,
el sufrimiento, opcional.

iv

Agradecimientos

A mis compañeros de clase, por las tardes y noches de laboratorio.

A mis amigos, por ser ellos.

A Sergio y Ana, por darle luz a mis noches.

A Fernando, por enseñarme lo que es un gradiente, y por sus ”terrorismos”.

A los BBTs, por aceptarme con mis defectos y virtudes, por ayudarme en los momentos
más dificiles.

A la sección de deportes San Agust́ın, por permitirme aprender de ellos tantos años.

A Carlos Sebastián, por enseñarme que, la lucha por llegar, nos hace fuertes.

A Maŕıa, por compartir sus metas conmigo, y darme la oportunidad de trabajar cada
d́ıa, por un mañana distinto.

A Javier, por dirigir este PFC y por su incansable esfuerzo en convertir todo lo que nos
rodea en algo mejor.

A mis t́ıos, por sus llamadas furtivas, por tener siempre una palabra de aliento.

A mis padres, por celebrar mis triunfos, pero sobre todo por estar a mi lado en mis
derrotas.

A mi hermano y a Eva, por mostrarme el camino de regreso.

A mis abuelos, por enseñarme que no hay nada imposible.

Y como no a Merche, por guiarme , por entenderme, por re-escribir el presente, por
hacerme soñar con el futuro.

v

vi

Resumen

Desarrollo de Funcionalidades, Plugins y Herramientas

para un Software de Neuroterapia

El objetivo de este proyecto es el análisis, diseño e implementación de diversas herra-
mientas que proporcionan funcionalidades para un software de neuroterapia por medio de
tecnoloǵıa BCI (Interfaz Cerebro Computador).

El contexto de este proyecto es utilizar BCI como herramienta adicional para el trata-
miento de diversas patoloǵıas (TDA, accidente cerebro-vascular, depresión, fibromialgia)
o incluso como herramienta orientada a la mejora de las capacidades cognitivas.

La forma mas básica de aplicación de la tecnoloǵıa BCI para trabajar con cualquier
tipo de caracteŕıstica o trastorno ha sido denominada neurofeedback, el cual es una forma
de biofeedback ligado a aspectos espećıficos de la actividad eléctrica del cerebro, los cuales
se sabe que están relacionados con aspectos cognitivos humanos que se desea potenciar.
Se espera que una mejora en estos derive en una mejora de las capacidades cognitivas
asociadas.

En concreto los objetivos del proyecto son:

Analizar, diseñar e implementar plugins y funcionalidades necesarias dentro del
software de neuroterapia.

Analizar, diseñar e implementar una herramienta de comprobación de defectos de
montaje, teniendo en cuenta aspectos de usabilidad y facilidad de manejo.

Analizar, diseñar e implementar funcionalidades adscritas a la instalación del soft-
ware BrainUp.

Colaborar en las diversas etapas de ingenieŕıa del software BrainUp desde su fase
más temprana.

vii

viii

Índice

1. Introducción 1

1.1. Alcance del proyecto . 2

2. Contexto 5

2.1. Conceptos sobre Neurofeedback . 5

2.2. Arquitectura BZI . 9

2.3. BrainUp : Construya su propia Neuroterapia 12

2.3.1. Paso 1: Gestión de Usuarios . 12

2.3.2. Paso 2: Gestión de Terapia . 13

2.3.3. Paso 3: Comprobación de defectos de montaje 14

2.3.4. Paso 4: Calibración de Ritmos . 15

2.3.5. Paso 5: Terapia . 16

3. Desarrollo 17

3.1. Herramienta de comprobación de defectos de montaje 18

3.1.1. Introducción . 18

3.1.2. Análisis . 18

3.1.3. Diseño . 20

3.1.4. Implementación . 25

3.1.5. Pruebas . 25

3.2. Unidad de detección de defectos de montaje 27

ix

3.2.1. Introducción . 27

3.2.2. Análisis . 28

3.2.3. Diseño . 29

3.2.4. Implementación . 31

3.2.5. Pruebas . 32

3.3. Informe de resultados . 35

3.3.1. Introducción . 35

3.3.2. Análisis . 35

3.3.3. Diseño . 37

3.3.4. Implementación . 43

3.3.5. Pruebas . 43

3.4. Plugin de visualización de actividad cerebral 44

3.4.1. Introducción . 44

3.4.2. Análisis . 44

3.4.3. Diseño . 46

3.4.4. Implementación . 51

3.4.5. Pruebas . 51

4. Localización del software 53

5. Instalador 57

5.1. Descripción . 57

5.2. Análisis . 58

5.3. Diseño . 60

5.4. Implementación . 61

5.5. Pruebas . 62

6. Aspectos relevantes 65

7. Conclusiones y trabajo futuro 67

x

7.1. Trabajo futuro . 67

Bibliograf́ıa 69

A. Desarrollo 73

A.1. Distribución temporal y esfuerzo realizado 74

A.2. Documentos de diseño . 78

A.2.1. Herramienta de comprobación de defectos de montaje 78

A.2.2. Unidad de detección de electrodos erróneos 83

A.2.3. Informe . 84

A.2.4. Instalador . 85

A.3. Documentos de implementación . 87

A.3.1. Herramienta de comprobación de defectos de montaje 87

A.3.2. Unidad de detección de electrodos erróneos 90

A.3.3. Informe . 92

B. Manual de usuario 98

B.1. Interfaz de comprobación de defectos de montaje 98

B.2. Plugin de comprobación de montaje . 100

B.3. Informe . 101

B.4. Instalador . 103

C. Pruebas 106

C.1. Herramienta de comprobación de montaje 106

C.2. Unidad de detección de electrodos erróneos 111

C.3. Informe . 116

C.4. Plugin visualizador de actividad cerebral 120

C.5. Instalador . 122

xi

xii

1. Introducción

El presente proyecto fin de carrera se ha realizado en estrecha colaboración tanto con
el Grupo de Robótica, Percepción y Tiempo Real del Departamento de Informática e
Ingenieŕıa de Sistemas del Centro Politécnico Superior de la Universidad de Zaragoza,
dentro del equipo de investigación de Interfaces Cerebro-Computador, aśı como BitBrain
Technologies, spin-off de la Universidad de Zaragoza, empresa pionera en la investigación,
diseño e implementación de Interfaces Cerebro-Computador.

El objetivo de este proyecto es realizar el análisis, diseño e implementación de diversas
herramientas y funcionalidades tanto visuales como matemáticas, necesarias dentro de
un sistema de gestión para Neurofeedback basado en tecnoloǵıa de interfaces cerebro
computador (BCI, del inglés Brain Computer Interface), y desarrollado por BitBrain
Technologies.

Una interfaz cerebro computador o BCI[1] es un sistema basado en la adquisición
de señal cerebral, la cual, pasa a ser inmediatamente procesada, con el fin de extraer
actividades o patrones destacables conforme a ciertos ritmos cerebrales. Existen diversos
medios encargados de la adquisición de esta señal cerebral, divididos en métodos invasivos
y no invasivos dependiendo de su nivel de intrusión en el usuario/paciente. En el caso que
nos ocupa, se utiliza un montaje de electroencefalograma (basado en la colocación de
electrodos-sensores), ya que supone una solución con un tiempo de procesado aceptable,
barata, no invasiva y cuyo coste de adaptación al usuario final es inferior al de otras
soluciones.

Debido a que la señal de encefalograma (EEG[2]) es muy débil (baja amplitud, del
orden de los microvoltios), necesita ser amplificada durante el periodo de adquisición, este
proceso provoca del mismo modo un incremento en la amplitud de perturbaciones ajenas al
montaje contaminando de este modo la señal. Éstas perturbaciones, denominadas también
artefactos pueden ser de dos tipos, fisiológicas (parpadeos, movimientos musculares) o
eléctricas (fluctuaciones de corriente), siendo en cualquier caso varios órdenes de magnitud
superiores a la señal EEG. Es por ello por lo que han de implementarse métodos de filtrado
y comprobación de artefactos y defectos del montaje.

Los patrones y actividades extráıdos después del proceso de adquisición y procesado
son utilizados con distintos objetivos, desde la tele-operación de veh́ıculos no tripulados[3],
control de interfaces en personas con movilidad reducida[4], rehabilitación de pacientes

1

1. Introducción 1.1 Alcance del proyecto

con lesiones medulares o neurológicas[5], hasta aplicaciones basadas en neuromarketing o
como en el caso que nos ocupa, neurofeedback.

El neurofeedback (NFB)[6], también conocido como neuroterapia, se basa en la ca-
pacidad por parte del usuario/paciente de adquirir auto control sobre ciertos patrones
cerebrales mediante el condicionamiento operante. El entrenamiento sobre éstos refleja
rendimiento cognitivo, como mejoras en memoria de trabajo, disminución del tiempo de
respuesta ante un est́ımulo aleatorio, progreso asociado a habilidades motoras o trastornos
depresivos, entre otros.

En la actualidad comienzan a adoptarse técnicas basadas en neurofeedback con el fin de
tratar enfermedades como la epilepsia, deficit de atención[7][8][9], desordenes adictivos[10],
depresión, o fibromialgia[11]. También es utilizado cada vez con mas frecuencia con fines
no estrictamente médicos, como su presencia en entornos lúdicos (videojuegos[12], con-
troladores musicales[13], robótica de consumo[14]), o en procesos de toma de decisión.

Con el objetivo de dar soporte a estos sistemas nace BrainUp, concebido como un soft-
ware de creación, configuración y ejecución de terapias, orientado a usuarios/terapeutas
sin conocimientos previos en materia de señal EEG, rápido y usable. En la actualidad,
BrainUp y por consiguiente las tareas realizadas en este PFC son utilizadas en varios
ensayos cĺınicos relacionados con trastornos depresivos y fibromialgia en colaboración con
el Hospital Miguel Servet de Zaragoza, aśı como en sendos estudios de mercado (neuro-
marketing), se espera su lanzamiento al mercado en un plazo máximo de 3 semanas.

1.1. Alcance del proyecto

Las tareas desarrolladas en este PFC comprenden el análisis, diseño, implementación e
integración de herramientas o interfaces de usuario completas, funcionalidades matemáti-
cas y visuales dentro de BrainUp.

A continuación se detallan las tareas en el que se han estructurado este PFC. Pa-
ra conocer su desarrollo temporal debe consultarse el diagrama de Gantt del producto,
presente en la sección A.1.

Herramientas: Encargadas de dotar a la aplicación de una determinada funcionali-
dad.

1. Herramienta de comprobación de defectos de montaje: interfaz de usuario
dedicada a la detección y notificación de los defectos detectados en un montaje de
EEG (electrodos erróneos), tanto antes del entrenamiento, como durante el mismo,
protegiendo aśı la integridad de la terapia.

2. Localización del software: algoritmo de adaptación y localización lingǘıstica para
BrainUp.

2

1. Introducción 1.1 Alcance del proyecto

3. Instalador: interfaz de usuario dedicada a la instalación y configuración de la apli-
cación a las diferentes arquitecturas y sistemas operativos soportados.

Funcionalidades Matemáticas: Encargadas del procesado de señal EEG.

1. Unidad de detección de defectos de montaje: relacionada con la herramienta
de comprobación de defectos de montaje antes descrita, realiza la operatoria ma-
temática que reside bajo la misma, siendo la herramienta de comprobación una
representación visual de sus resultados.

Funcionalidades Visuales: Encargadas de la representación gráfica dentro de las
diferentes interfaces de usuario.

1. Plugin de visualización de actividad cerebral: representación espacial inter-
polada de la actividad cerebral en tiempo real, puede hacer las veces de feedback
visual, aśı como ser utilizada como herramienta de calibración y comprobación.

2. Informe: representación visual resultados de neuroterapia, número de sesión en la
que nos encontramos, datos relativos al paciente, gráficas de evolución entre fases,
entre otros.

Figura 1.1: Alcance de las tareas.

3

1. Introducción 1.1 Alcance del proyecto

4

2. Contexto

2.1. Conceptos sobre Neurofeedback

Figura 2.1: Esquema general del neurofeedback.

Una aplicación basada en neurofeedback, responde a la estructura básica de una in-
terfaz cerebro-computador (Figura 2.1). En sucesivas secciones se concretará el diseño y
funcionamiento particular de una terapia de neurofeedback, comenzaremos en ésta expli-
cando qué elementos posee en común con cualquier interfaz cerebro-computador (BCI):

1. Adquisición: Se lleva a cabo mediante un gorro EEG (montaje), unido a un ampli-
ficador operacional encargado de amplificar la señal. En la actualidad comienzan a
proliferar, sistemas hardware ”secos” (sin necesidad de aplicar gel conductor), de
fácil montaje y coste inferior a un equipo de EEG tradicional.

2. Procesado: Realizado con dos objetivos, por un lado la búsqueda de patrones rele-
vantes de los que deseamos mejora y escogidos dentro del entrenamiento que nos
ocupe (Upper Alpha, Lower Alpha) y por otro, la gestión de la señal necesaria para
tales fines, ya sea filtrando, editando o almacenando la misma.

3. Aplicación: Parte esencial del sistema, pues proporciona al usuario feedback (vi-
sual/auditivo/táctil) dependiendo de su corrección/fallo en la realización de la ta-
rea (control sobre ritmos determinados), consiguiendo aśı un mayor control en el
usuario/paciente gracias al aprendizaje por refuerzo.

5

2. Contexto 2.1 Conceptos sobre Neurofeedback

Como ya hemos comentado anteriormente el propósito general de una terapia basada
en neurofeedback, es conseguir que el usuario adquiera gracias al condicionamiento ope-
rante cierto grado de auto-control sobre bandas o ritmos determinados que se considera
reflejan rendimiento cognitivo, como por ejemplo la memoria de trabajo [15][16][17].

Definición de Banda: Existen diversas bandas o ritmos presentes en la actividad
cerebral (Figura 2.2), pudiendo realizarse terapias/entrenamientos de neurofeedback en
cualquiera de éstas y extrayendo mejoras cognitivas diferentes dependiendo de la banda
o ritmo seleccionado. En el caso que nos ocupa, tanto por la experiencia acumulada por
BitBrain Technologies como por la Universidad de Zaragoza, se escoge la banda Alpha
como objeto de estudio.

Figura 2.2: Bandas de trabajo de una neuroterapia.

Las terapias basadas en neurofeedback desarrolladas hasta la fecha se realizaban sobre
una banda Alpha fija, sin embargo, la existencia de problemas derivados de una metodo-
loǵıa de banda fija, como por ejemplo, su ineficacia en grupos con importantes variaciones
”inter-usuario”, aśı como el desconocimiento de qué aspectos cognitivos eran mejorados
realmente si se optaba por metodoloǵıas de banda completa[17][18], desembocaron en la
aparición de nuevas metodoloǵıas de neurofeedback.

Como respuesta a este tipo de limitaciones, se introduce el concepto de Individual
Alpha Frequency (IAF), definido como punto de anclaje distintivo entre dos sub-bandas
independientes, upper-alpha (UA) y lower-alpha (LA) y calculado de manera individual
para cada sujeto permitiendo de este modo tener en cuenta variaciones ”inter-usuario”.
Dichas sub-bandas han demostrado comportarse de manera distinta ante distintos tipos
de tareas, siendo la banda UA la que parece más relacionada con mejoras cognitivas[18].

Su localización en cada sujeto requiere de la realización de tareas previas al entrena-
miento. En nuestro caso, una tarea pasiva y una activa, con el fin de localizar la posición y
potencia del IAF dentro de la totalidad de la banda Alpha, estas tareas, también conocidas
como calibración de ritmos, se verán detalladas en secciones posteriores.

6

2. Contexto 2.1 Conceptos sobre Neurofeedback

Figura 2.3: Esquema de una neuroterapia.

Concepto de terapia: Los interfaces cerebro-computador basados en neurofeedback
se estructuran en terapias (Figura 2.3), una terapia se compone de una o varias sesiones,
pudiendo realizarse en un espacio temporal reducido o bien dilatarse en el tiempo (d́ıas,
semanas o meses).

Cada una de estas sesiones se encuentra estructurada en fases, siendo posible realizar
trabajo común o espećıfico (tabla 2.1), dotando aśı de versatilidad a la terapia. Tienen
una duración aproximada de entre 10 y 30 minutos, contando con el tiempo programado
de descanso entre fases.

Ejemplo Protocolo para pacientes de depresión
Fase 1: Mejora cognitiva.
Fase 2: Refuerzo emocional.

Tabla 2.1: Ejemplo de diferencia entre fases.

Cada una de las fases esta compuesta por :

1. Tarea Pasiva: Realizada únicamente al inicio de la sesión, su duración aproximada
es de 2 minutos, donde el usuario/paciente debe estar relajado y permanecer con
los ojos cerrados, procurando aislarse en la manera de lo posible del exterior.

2. Tarea Activa: Realizada únicamente al inicio de la sesión, su duración aproximada
es de unos 2 minutos, donde el usuario/paciente debe realizar una determinada

7

2. Contexto 2.1 Conceptos sobre Neurofeedback

actividad, por ejemplo contar cambios de tonalidad dentro de una gama de colores
ofrecida por pantalla, se trata de una tarea activa si bien todav́ıa no forma parte
del entrenamiento.

Como hemos comentado, la presencia de artefactos puede perturbar la señal dejándo-
la inservible, es por ello por lo que durante la tarea activa también es realizada la
calibración del filtro ICA cuyo objetivo es el filtrado automático de este tipo de
componentes.

3. Trial: También llamados repeticiones, tras la ejecución de las tareas pasivas y ac-
tivas, se procede a realizar tandas de entrenamiento, correspondientes al aspecto a
reforzar en la fase (entrenamiento de memoria, de atención), el usuario recibe feed-
back positivo en caso de alcanzar el estado mental adecuado, y feeedback negativo
en caso contrario, ya sea de tipo visual, auditivo o táctil. Todos los trials deben
reforzar el mismo aspecto cognitivo, pues pertenecen a la misma fase.

El paciente no es informado en ningún instante de la estrategia a seguir para alcanzar
el estado mental adecuado, se ha demostrado que no existe una única correcta[16], sino
varias, y que a su vez, la búsqueda por parte del usuario/paciente de estrategias propias
e individuales podŕıa enriquecer y potenciar el entrenamiento frente a usuarios/pacientes
informados con anterioridad.

La decisión de proporcionar feedback positivo o negativo es tomada en torno a un valor
denominado baseline, valor de referencia al inicio de la sesión (calibración de ritmos). De
esta forma nuestra terapia se convierte en un proceso dinámico, donde los resultados
obtenidos en el d́ıa n estarán relacionados con los progresos particulares del sujeto en
cuestión, adaptándose a éstos de forma transparente.

Validación: La validación de la terapia se realizó con 50 sujetos sanos, repartidos en
semanas completas de experimentación y distribuidos bajo los siguientes roles:

1. Grupo de pacientes: Realizan una bateŕıa de test el primer d́ıa de entrenamiento
y otra el último, con el fin de medir su evolución tras la terapia/entrenamiento.

2. Grupo de control: Realizan los mismos test pero sin recibir ningún tipo de en-
trenamiento, gracias a esto podemos estimar la capacidad de adaptación al test por
parte de los sujetos, y con ello definir la mejora real del grupo de pacientes.

Los resultados arrojaron mejoras de entorno al 10% en el grupo de pacientes.

Por último cabŕıa destacar que nos movemos en un terreno de gran complejidad, una
terapia o protocolo de neurofeedback es el resultado de un intenso trabajo multidisciplinar
y, si bien las fases de adquisición, procesado y aplicación son comunes a todos los interfaces
BCI, la configuración y diseño de una terapia presenta unos niveles de heterogeneidad
elevados, a esta y otras cuestiones pretende dar respuesta el software desarrollado por
BitBrain Technologies de nombre BrainUp.

8

2. Contexto 2.2 Arquitectura BZI

BrainUp: Quizás la mejor manera de explicar de qué se compone BrainUp, es remon-
tarnos a la definición de interfaz cerebro computador dada en el caṕıtulo anterior, donde
quedaba dividida en tres fases bien diferenciadas, enriqueciéndolas ahora con nuevas nece-
sidades como la creación y edición de una terapia, o la realización de tareas de localización
del IAF y de filtrado automático de artefactos (ICA).

BrainUp se encuentra dividido en dos grandes bloques, por un lado la arquitectura
BZI, encargada de las tareas de gestión de la señal cerebral, por otro la interfaz de usuario,
encargada de la edición, configuración y ejecución de la terapia.

1. Adquisición: Realizada directamente por la arquitectura BZI proveniente del am-
plificador operacional.

2. Procesado: Realizado por la arquitectura BZI, encargada de las diferentes tareas
de gestión de la señal, extracción de caracteŕısticas y clasificación.

3. Aplicación: Realizado tanto por la arquitectura BZI, como la interfaz de usuario
contenida en BrainUp

a) Arquitectura BZI: Encargada de la visualización del feedback de usuario,
conforme a la realización del entrenamiento por parte del sujeto

b) Interfaz de Usuario: Monitorización y edición del entrenamiento, ya sea
pausándolo, repitiéndolo o modificándolo.

2.2. Arquitectura BZI

Esta sección proporciona una descripción mas detallada de la plataforma para desa-
rrollo de sistemas BCI proporcionada por BitBrain Technologies en colaboración con la
Universidad de Zaragoza, y de nombre BZI.

Esta arquitectura responde al esquema general comentado anteriormente, donde pue-
de observarse de manera diferenciada, módulos de adquisición en tiempo real, módulos
correspondientes a procesado, aśı como elementos de visualización que asisten y propor-
cionan feedback al usuario o paciente.

9

2. Contexto 2.2 Arquitectura BZI

Figura 2.4: Esquema que describe la arquitectura de la plataforma BZI.

La arquitectura BZI contiene una serie de componentes básicos: módulos y un manager
de propósito general (Figura 2.4).

Figura 2.5: Esquema de un módulo dentro de la plataforma BZI.

Los módulos pueden ser de adquisición, procesamiento o aplicación final, y se encuen-
tran comunicados mediante protocolos TCP/IP, es necesario aclarar que no existe comu-
nicación entre ellos, sino que cada módulo adquiere y deposita la información pertinente
en el manager, mediante mecanismos de suscripción (Figura 2.5).

10

2. Contexto 2.2 Arquitectura BZI

Figura 2.6: Esquema del manager dentro de la plataforma BZI.

Los módulos se encuentran formados por unidades de procesamiento, son unidades
encargadas de realizar algún tipo de procesamiento de datos espećıfico. Pueden ser enca-
denadas construyendo un tratamiento secuencial sobre la señal (Filtro paso banda + FFT
+ Detección de máximo). Al igual que en los módulos, no poseen comunicación directa
entre ellas haciendo uso de un repositorio común, el control viene dado por la estructura
que engloba varias unidades de procesamiento, dicese el módulo.

El manager ya mencionado, hace las veces tanto de concentrador de la información
presente en el proceso, como labores de control, gestión y coordinación del proceso de
neurofeedback, especial relevancia poseen las entradas y salidas del sistema, puesto que
ademas de aquellas estándar del sistema definidas anteriormente, también podemos en-
contramos elementos de control y configuración capaces de adoptar este tipo de roles
(Figura 2.6).

La dinámica de un sistema BCI desarrollado sobre BZI está dirigida por el flujo de
datos, todos los módulos del sistema BCI y el manager se implementan como procesos
que están dormidos hasta la llegada de los mismos.

El flujo de datos se inicia con la adquisición de señal de EEG, dicha señal es amplificada
y muestreada a una frecuencia determinada (pre-procesado de señal en el hardware de
adquisición). La señal digitalizada llega al módulo de adquisición, este módulo procesa
el EEG para obtener un conjunto de muestras (bloque) que son almacenadas (disco y
almacenadas en el manager).

Tras la adquisición el manager env́ıa los datos al siguiente proceso en el flujo de
ejecución: el módulo de procesado de señal, en este módulo se lleva a cabo la extracción
de caracteŕısticas y clasificación, dicha tarea es realizada en las unidades de proceso,cada
una de las cuales implementa algún tipo de filtro de señal.

Finalmente el flujo de datos pasa al módulo de aplicación que aplica reglas y transforma
los datos para emitir la respuesta del sistema.

11

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

2.3. BrainUp : Construya su propia Neuroterapia

BrainUp surge para dar respuesta a todas aquellas necesidades expuestas a lo largo
de las secciones anteriores, se trata de un software de gestión de neuroterapia, donde el
usuario/terapeuta, puede crear, gestionar y desarrollar las terapias o entrenamientos que
considere adecuadas para su usuario/paciente.

A lo largo de esta sección, desglosaremos los elementos que componen el sistema de
gestión de neuroterapia desarrollado por BitBrain Technologies, de nombre BrainUp.

2.3.1. Paso 1: Gestión de Usuarios

Figura 2.7: Aspecto de la interfaz de usuario correspondiente a la gestión y edición de usuarios.

Como se puede observar en la figura 2.7 se trata de la interfaz encargada del al-
ta/edición de los usuarios dentro de BrainUp, muestra de manera clara los datos nece-
sarios para el alta de un nuevo usuario, permitiendo también la búsqueda de aquellos

12

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

registrados anteriormente.

Todos los datos de usuario surgidos durante el proceso de terapia, aśı como los datos
generados durante el proceso de alta, serán almacenados en una base de datos, cumpliendo
además con los protocolos de protección de datos en vigor.

2.3.2. Paso 2: Gestión de Terapia

Figura 2.8: Aspecto de la interfaz de usuario correspondiente a la gestión y edición de la terapia.

Una vez seleccionado o creado el usuario destino del entrenamiento, realizaremos tareas
de edición y configuración de la sesión en curso de la terapia (Figura 2.8), pudiendo
modificar en ésta tanto el número de fases/repeticiones, como la duración de las mismas.
También permite ejecutar la configuración de sesión por defecto del sistema.

La selección personalizada del número de fases o repeticiones correspondientes a la
sesión en curso, nos permitirá personalizar la terapia a petición del usuario final, ade-
cuándolo a sus necesidades. Por otro lado, la opción por defecto suministrada por BrainUp

13

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

responderá a los parámetros óptimos para la terapia.

2.3.3. Paso 3: Comprobación de defectos de montaje

Tras la edición, se deberán realizar comprobaciones acerca del estado del montaje,
puesto que una mala colocación de los sensores, llevaŕıa de manera unilateral a una errónea
realización del entrenamiento.

Figura 2.9: Aspecto de la interfaz de usuario correspondiente a la calibración de artefactos.

Conseguiremos la correcta colocación de los sensores de EEG de una manera fácil, usa-
ble e intuitiva, dejando en un segundo plano complejas técnicas basadas en la observación
de señal EEG no filtrada en búsqueda de errores relevantes (Figura 2.9).

La detección de uno o varios sensores erróneos será notificada, tanto en la reproducción
por pantalla del montaje, como en un área de texto anexa al montaje y habilitada para
tales efectos.

14

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

2.3.4. Paso 4: Calibración de Ritmos

Figura 2.10: Aspecto de la interfaz de usuario correspondiente a la calibración de ritmos.

Si bien como hemos comentado anteriormente, la elección del IAF, permit́ıa a BrainUp
gozar de ciertos beneficios frente a otro tipo de aplicaciones, esta elección conlleva el
obligado cumplimiento de una serie de tareas, recogidas en esta interfaz.

La localización del IAF necesita de la correcta realización de ambas tareas (Figura
2.10), aśı mismo, durante el proceso de tarea activa se realizará la calibración del filtro
ICA.

En ocasiones, y debido a diversos factores como puede ser el cansancio o una errónea
realización/ejecución de las tareas puede resultar imposible calcular IAF, en ese caso,
seŕıa aplicado el valor obtenido en sesiones anteriores, en caso de no haberlo, se aplicaŕıa
uno por defecto.

En el caso del filtro ICA, no existe un filtro por defecto, luego en caso de resultar
imposible su cálculo, la señal quedaŕıa sin filtrar.

15

2. Contexto 2.3 BrainUp : Construya su propia Neuroterapia

Una vez aplicados ambos parámetros, puede realizarse la terapia con total normalidad.

2.3.5. Paso 5: Terapia

Figura 2.11: Aspecto de la interfaz de usuario correspondiente a la fase en curso.

Interfaz de usuario destinada al control del entrenamiento, posee a su vez herramientas
de notificación de error, de manera que el terapeuta tenga conocimiento en todo momento
de cualquier anomaĺıa surgida durante la terapia.

Permite la pausa/cancelación de la sesión en ejecución (Figura 2.11), ya sea a petición
del usuario (descanso), o bien a juicio del terapeuta (aparición de artefactos inesperados,
insatisfacción con la sesión diseñada).

16

3. Desarrollo

La metodoloǵıa utilizada a lo largo de esta fase ha sido el proceso unificado de desarrollo
software, caracterizado por estar dirigido por los casos de uso, encontrarse centrado en la
arquitectura, ser iterativo e incremental, constando de las siguientes fases:

1. Análisis: Fase cuyo objetivo es producir las tablas de requisitos del sistema previa
identificación y generación de los casos de uso, describiendo la interacción del usuario
con el sistema y pudiendo aśı evaluar sus necesidades.

Los requisitos resultantes de esta fase se encuentran divididos en dos grandes grupos:

a) Requisitos funcionales: Aquellos relativos a como serán satisfechos los casos
de uso en el futuro sistema (RF-X).

b) Requisitos No funcionales: Generalmente establecidos por el analista, re-
presentan caracteŕısticas requeridas por el sistema, o el proceso de desarrollo,
no producen efecto alguno sobre el actor del sistema (RNF-X).

2. Diseño: Consistente en presentar un modelo que permita satisfacer todos los requi-
sitos funcionales y no funcionales recogidos durante la fase anterior, reflejados de
manera estática por los diagramas de clase y de manera dinámica gracias a los dia-
gramas de secuencia, actividad o estado. A la finalización de esta fase se realizará un
prototipado de ventanas.

3. Implementación: Donde se procede a la codificación de las clases extráıdas en el
diagrama de clases, debiendo satisfacer a su vez la dinámica descrita en los diagramas
de secuencia, actividad o estado.

4. Pruebas: Separadas en pruebas individuales, de integración y de usabilidad, reali-
zadas a fin de certificar el correcto funcionamiento de la solución implementada.

Como hemos comentado, se trata de un proceso iterativo, donde tras la fase de
implementación se obtendrá una primera versión, la cual puede ser incluida de nuevo
en el proceso con el fin de enriquecer sus funcionalidades.

17

3. Desarrollo 3.1 Herramienta de comprobación de defectos de montaje

3.1. Herramienta de comprobación de defectos de

montaje

3.1.1. Introducción

Figura 3.1: Herramienta de comprobación.

Se trata de una interfaz de usuario dedicada en exclusiva a la comprobación del estado
del montaje previa al entrenamiento, como vimos, cualquier tipo de perturbación durante
el mismo produciŕıa resultados incongruentes con la actividad real del usuario/paciente,
es por ello, por lo que se impide continuar la ejecución mientras no queden resueltos estos
defectos.

El usuario/terapeuta puede realizar las comprobaciones pertinentes visualizando cual-
quiera de los siguientes indicadores:

1. Representación visual del montaje.

2. Notificación del error en cada uno de los sensores (modo texto).

3. Indicador general de estado.

La secciones B.1 y 2.3.3 detallan el funcionamiento de la herramienta de comprobación,
desde el punto de vista del usuario/terapeuta.

3.1.2. Análisis

Definimos el caso de uso relativo a la comprobación de defectos en el montaje, proce-
diendo a la posterior extracción de requisitos funcionales y no funcionales.

18

3. Desarrollo 3.1 Herramienta de comprobación de defectos de montaje

Nombre Caso de uso 1
Actores que intervienen Usuario/Terapeuta
Descripción Comprobación del estado del montaje.
Precondición El terapeuta se encuentra en la

herramienta de comprobación.
Secuencia de acciones 1. Comprueba el estado del montaje en el indicador central.

2. Revisa qué electrodos/sensores se encuentran erróneos y en
qué posición se encuentran.
3. Visualiza el texto correspondiente a la causa de los errores.

Resultados El usuario/terapeuta ha comprobado el montaje.

Tabla 3.1: Caso de uso correspondiente a la comprobación del estado del montaje.

Figura 3.2: Gráfico de caso de uso correspondiente a la comprobación del montaje.

Obteniendo los siguientes requisitos a satisfacer:

19

3. Desarrollo 3.1 Herramienta de comprobación de defectos de montaje

Código Descripción

RF-0 El sistema debe ofrecer una herramienta de comprobación del montaje
RF-1 La herramienta debe tener un indicador central de estado del montaje.
RF-2 El sistema debe tener una representación visual del montaje.
RF-3 El sistema debe ofrecer la causa de error de los diferentes sensores.
RNF-1 Debe ser intuitiva.
RNF-2 Debe ser muy eficiente y funcionar en tiempo real.
RNF-3 Debe estar disponible en diferentes idiomas.

Tabla 3.2: Requisitos de la herramienta de comprobación de defectos de montaje.

3.1.3. Diseño

Figura 3.3: Diagrama de clase base GenericCalibration.

Como hemos comentado anteriormente, se trata de un sistema completo dentro de las
interfaces de usuario presentes en BrainUp (figura 2.9), a tal efecto, deberá integrarse y
adaptarse a la estructura diseñada para la aplicación.

Comenzaremos nuestro diseño definiendo la clase base de nuestra herramienta Ge-
nericCalibration, cuya misión es aglutinar elementos comunes a futuros diseños o espe-
cializaciones de la misma. En nuestro caso, cualquier calibración poseerá al menos dos
elementos básicos:

20

3. Desarrollo 3.1 Herramienta de comprobación de defectos de montaje

1. Un objeto Data, contenedor de valores genéricos y encargado de dotar a cualquier
especialización de esta clase de métodos de adquisición y distribución de datos.

2. Un indicador de estado general del montaje centralizado e independiente de las
herramientas de visualización incluidas.

Figura 3.4: Diagrama de clase de la herramienta de comprobación de defectos de montaje

De la clase base definida anteriormente hereda CalibrationGUI, interfaz de usuario en-
cargado de la comprobación del montaje acorde con los requisitos extráıdos anteriormente.
Deberá encontrarse debidamente comunicado con el resto de interfaces de BrainUp.

Entre sus componentes se encuentra:

Montage: Se trata de la clase más importante dentro de nuestra herramienta. Actúa
como almacén central de información entre la unidad de detección de electrodos
erróneos (BZI) y el interfaz de usuario en el que nos encontramos, evitando aśı la
necesidad de instanciar un contenedor de datos para cada uno de ellos.

Al tratarse de un elemento común a ambas partes del sistema es creado por una
instancia superior dentro de BrainUp llamada InterfaceController y ajena a este
PFC, su misión es la creación y gestión de los diferentes interfaces de usuario,
aśı como aquellos elementos compartidos con BZI.

Head: Representación visual del montaje realizado, obtiene los datos necesarios
para su representación del objeto Montage.

CommentsFrame: Cuya misión es la creación y gestión de una o varias zonas de
notificación en modo texto.

NonEssentialComment: Representa el área de notificación de defectos de montaje
(modo texto), aśı como sus operaciones de pintado. Adquiere sus datos del objeto
Montage.

21

3. Desarrollo 3.1 Herramienta de comprobación de defectos de montaje

StateMontage: Fruto de la herencia con la clase base, hace las veces de indicador
central e ineqúıvoco del estado del montaje. Este objeto tomará especial relevan-
cia en futuras implementaciones, donde existirán diferentes niveles de error y por
consiguiente, diferentes tipos de notificación.

Figura 3.5: Secuencia de comprobación de defectos de montaje.

La adquisición/distribución de los valores dentro de CalibrationGUI se realiza a través
del mecanismo heredado de GenericCalibration, gracias a este tipo de operaciones conse-
guimos operar los datos de forma genérica.

En la figura 3.5 y 3.6 podemos observar la secuencia de acciones relativa al caso de
uso 3.2 donde un usuario que desea comprobar el estado del montaje accede al interfaz de
usuario, previa creación del objeto montaje y de la interfaz de comprobación de defectos
del montaje. Tras la comunicación por parte de BZI de qué electrodos se encuentran
erróneos (realizada a InterfacesControl v́ıa TCP/IP) procederemos a actualizar el objeto
montaje y a repintar todos los elementos en pantalla. Estas dos últimas operaciones se
realizarán de manera iterativa mientras se siga adquiriendo señal y procesando electrodos,
o mientras alguno de los objetos de comprobación de montaje se encuentre instanciado
en los interfaces de usuario.

Como puede observarse en la figura 3.6, es InterfacesControl el encargado de la crea-
ción del objeto CalibrationGUI, el objeto Montage y dos vectores de datos, un vector
correspondiente a los electrodos erróneos y otro a los electrodos borrados. Tras esta ope-
ración, el interfaz queda a la espera de ser visualizado a petición del usuario.

22

3. Desarrollo 3.1 Herramienta de comprobación de defectos de montaje

Por último en la figura 3.7 definimos la secuencia de acciones a realizar para la repre-
sentación visual de los electrodos erróneos, en primera instancia y tras la llegada desde
BZI de los datos, procederemos a actualizar el montaje que como recordaremos almacena
la información referenciada por todos las clases. Tras esto distribuiremos los datos entre
los objetos de representación y procederemos a actualizar la representación cada uno de
los indicadores visuales.

Las secuencias espećıficas de repintado de los elementos por pantalla se encuentran
detalladas en al anexo A.

Tras esta fase obtenemos un primer prototipo de la herramienta (Figura 3.8)

Figura 3.6: Prototipo de la herramienta de comprobación de defectos del montaje.

23

3. Desarrollo 3.1 Herramienta de comprobación de defectos de montaje

Figura 3.7: Secuencia de representación de electrodo erróneo

24

3. Desarrollo 3.1 Herramienta de comprobación de defectos de montaje

Figura 3.8: Secuencia de creación de la herramienta de comprobación.

3.1.4. Implementación

Realizada en C++ bajo el framework Qt [19], en el que se encuentran implementados
todos las interfaces de usuario de BrainUp.

Debido a que la operación de representación/pintado es muy costosa en Qt, se utilizo
para Head un tipo especial de elemento gráfico de nombre QPainterPath[20], donde en
lugar de dibujar cada elemento individualmente, se permite agrupar gran cantidad de
éstos en una única capa y dibujarla de manera atómica tantas veces como sea necesario.

En el caso que nos ocupa, donde la mayoŕıa de los electrodos no van a modificar
su estado en largos periodos de tiempo, y teniendo un tiempo de ciclo reducido, resulta
más eficiente añadir elementos comunes (electrodos correctos o erróneos) en una variable
QPainterPath que dibujarlos individualmente[21] en cada iteración de adquisición, tarea
que resultaba cŕıtica.

3.1.5. Pruebas

Las pruebas se realizaron en Matlab, comparando los electrodos erróneos provenientes
de la unidad de detección de defectos de montaje (la cual explicaremos en la próxima
sección) con los errores presentes en el objeto Montage en el instante previo a la invo-
cación a repaint(). De esta manera somos capaces de asegurar que los datos generados

25

3. Desarrollo 3.1 Herramienta de comprobación de defectos de montaje

por la unidad de detección y los datos preparados para su pintado son iguales, y que por
consiguiente la representación visual es correcta.

Las pruebas 3.3 fueron realizadas con cuatro ficheros de EEG grabados con anteriori-
dad, y se encuentran disponibles en el anexo C.

Fichero: testS00R004.bzi
Precondición: El interfaz de comprobación y la unidad han procesado fichero.
Datos de entrada: unitChannelsS00R004 : contiene los canales detectados como

erróneos calculadas por la unidad.
interfaceChannelsS00R004 : contiene los canales detectados como
erróneos presentes en el interfaz.
A = loadF ile(interfaceChannelsS00R004)
B = loadF ile(matlabChannelsS00R004)
ans = A− B

Resultado: ans = 0 Los canales detectados como erróneos son iguales
tanto en cuáles son detectados, como en qué instante temporal.

Tabla 3.3: Prueba 1 de la herramienta de comprobación de defectos de montaje.

A su vez, se realizaron pruebas con semántica diferencial con el fin de conocer el
grado de aceptación de la herramienta, aśı como su calificación en materia de usabilidad,
claridad y facilidad de uso. Estas pruebas, cuyo resultado puede observarse en la tabla 3.4
les fueron realizadas a 10 sujetos y se encuentran disponibles por cada uno de los usuarios
en el anexo C.

La técnica se desarrolla proponiendo dos adjetivos al sujeto, que se han de relacionar
con los conceptos propuestos siendo presentados de forma bipolar, mediando entre ambos
extremos una serie de valores intermedios.
El sujeto procede puntuando aśı : Bueno 3 2 1 0 -1 -2 -3 Malo.

Pregunta Respuesta
3 2 1 0 -1 -2 -3

En general el interfaz de comprobación de montaje Me gusta 2.3

El interfaz me parece Intuitivo 2.9

El notificador de estado del montaje Claro 2.6

La representación visual del montaje Claro 2.8

La representación tipo texto de los errores Claro 1.9

En términos generales el funcionamiento me parece Claro 2.7

Tabla 3.4: Resultados globales de la evaluación.

26

3. Desarrollo 3.2 Unidad de detección de defectos de montaje

3.2. Unidad de detección de defectos de montaje

3.2.1. Introducción

Figura 3.9: Unidad de comprobación.

Como en todo sistema de comprobación y chequeo, el apartado visual solo representa
una pequeña parte de la herramienta, siendo necesario un algoritmo de procesamiento
capaz de proveer datos a esta interfaz de usuario. En nuestro caso, versiones anteriores
se limitaban a proporcionar EEG no filtrado como mecanismo de chequeo mediante ins-
pección visual, resultando altamente ineficiente pues requeŕıa de conocimientos previos en
material de señal.

Son estos conocimientos en materia de señal los que han permitido a BitBrain Tech-
nologies desarrollar un método de procesamiento donde como entrada tendremos la señal
EEG tradicional, y como salida qué electrodos del montaje se encuentran erróneos aśı co-
mo su causa. Gracias a este tipo de algoritmos somos capaces de ofrecer una interfaz
usable e intuitiva al usuario/terapeuta, sin necesidad de que éste posea conocimientos
previos sobre encefalograf́ıa.

El método de forma genérica consta de lo siguientes pasos:

1. Subsampleo: Debido a que necesitamos una ventana temporal de n segundos, pero
no deseamos procesar la totalidad de la información, por ello elegimos un factor de
subsampleo m, según el cual serán adquiridos 1 de cada m samples.

2. Cálculo de medias: Tras subsamplear la señal procedente de la fase de adquisición
se procederá al calculo de las medias por cada canal (sensor) para cualquier instante
de tiempo y en valor absoluto, procediendo en última instancia a su ordenación de
menor a mayor.

3. Regresión: Calcularemos la recta de regresión conforme a las num primeras medias
anteriormente calculadas.

27

3. Desarrollo 3.2 Unidad de detección de defectos de montaje

4. Lógica: Tras el cálculo de la recta de regresión se procede a aplicar lógica de decisión
sobre la distancia de cada una de las medias a la recta, y en comparación con un
threshold definido previamente. Si la distancia supera el threshold, se considera que
en ese sensor y en ese instante temporal (sample) se ha producido popping.

Un electrodo puede producir error por las siguientes razones:

Ausencia de gel: Para el correcto funcionamiento de los electrodos del montaje
debe aplicarse en cada uno de ellos un gel conductor evitando aśı los problemas de
medición producidos por el tejido epitelial o el cuero cabelludo.

Electrodo suelto (Popping): Es el problema más común en un montaje de EEG,
se produce cuando un electrodo pierde el contacto durante momentos puntuales del
entrenamiento/terapia perturbando la señal.

Ruido: Aumentando sustancialmente la frecuencia y amplitud de la señal, puede
ser provocado por artefactos de tipo muscular (tensión involuntaria en la frente,
pulso) o de tipo eléctrico (acoplamiento, electricidad estática).

Puente (Bridge): Evidencia de interconexión en el gel aplicado en dos sensores
próximos en el espacio, provocando un cortocirtuito y obteniendo en ambos la misma
señal eléctrica.

El método expuesto anteriormente, permite la detección de popping de forma robusta,
su eficacia ha sido probada en el entorno matemático Matlab con resultados satisfactorios.
El procesamiento del resto de defectos de montaje se encuentra en fase de desarrollo.

3.2.2. Análisis

En este caso no existen nuevos casos de uso, pues ya han sido definidos para la herra-
mienta de comprobación de defectos de montaje en la sección 3.1.2, sin embargo, como
fruto del análisis, en esta sección si es generado un nuevo requisito no funcional la ne-
cesidad de implementar una unidad de detección de defectos de montaje dentro de la
arquitectura BZI.

28

3. Desarrollo 3.2 Unidad de detección de defectos de montaje

Código Descripción

RF-0 El sistema debe ofrecer una herramienta de comprobación del montaje
RF-1 La herramienta debe ofrecer un indicador de estado del montaje.
RF-2 El sistema debe contener una representación visual del montaje.
RF-3 El sistema debe ofrecer la causa de error de los diferentes sensores.
RNF-1 Debe procesarse la información con una unidad de BZI

para obtener los sensores erróneos y poder representarlos.

RNF-2 Debe ser intuitiva.
RNF-3 Debe ser muy eficiente y funcionar en tiempo real.
RNF-4 Debe estar disponible en diferentes idiomas.

Tabla 3.5: Requisitos completos de la herramienta de comprobación de defectos de montaje.

3.2.3. Diseño

Figura 3.10: Estructura de la clase base GenericUnit

Comenzaremos comentando la estructura de clase base proporcionada por BZI para
la creación de unidades de procesamiento (figura 3.10), como podemos observar se dota
a cualquier especialización de ésta de mecanismos de inicialización, procesado y reseteo,
aśı como acceso a la estructura de repositorio y compartición de datos presente en BZI.

29

3. Desarrollo 3.2 Unidad de detección de defectos de montaje

Mientas los procedimientos de inicialización (Initialize) y reseteo (Reset) se encuentran
definidos en la clase base, el mecanismo de procesado (process) es virtual puro, luego
deberá ser reimplementado en cualquier de las especialización de la clase base, como en
el caso que nos ocupa.

Como una especialización de GenericUnit y haciendo uso del mecanismo de herencia,
definimos MontageChecker (Figura 3.11), unidad encargada de realizar el procesamiento
descrito en la sección 3.2.1. Compuesta de un objeto Subsampler encargado del subsampleo
de la señal y de ElectrodeChecker donde se realizará tanto el procesado, como la lógica de
decisión.

Figura 3.11: Diagrama de clase de MontageChecker

El diagrama 3.12 responde a la secuencia de acciones a realizar por la unidad de
detección de electrodos erróneos. Tras la invocación a Initialize, se procede a subsamplear
la señal mientras el criterio de parada de la ventana/buffer de recepción aśı lo indique,
este criterio de parada ofrece dos vertientes:

Tamaño de ventana: Es necesario completar una latencia inicial, el tiempo que
tardará la ventana en llenarse de datos.

Frecuencia de refresco: Tras completar esta latencia inicial, se lanzará un primer
chequeo de electrodos, para posteriormente lanzar uno cada frecuenciaDeRefresco
samples.

Tras la invocación a la comprobación de electrodos y en caso de encontrarse electrodos
erróneos, estos serán distribuidos a NetModule, módulo de red TCP/IP que posteriormente

30

3. Desarrollo 3.2 Unidad de detección de defectos de montaje

los comunicará alManager de BZI, quien por último informará al interfaz de comprobación
de defectos de montaje, descrito en la sección 3.1.2.

La secuencia completa de comprobación de defectos de montaje, tanto por parte de
BZI, como por parte de los interfaces de usuario, se encuentra presente en el anexo A
(Figura A.10).

Figura 3.12: Diagrama de secuencia de detección de electrodos erroneos.

3.2.4. Implementación

Realizada respetando la estructura básica de toda unidad BZI , facilitando aśı su
integración en la arquitectura y su implantación en el resto del sistema. Esta modularidad
le permite aśı mismo estar abierta a futuras implementaciones, como la detección de ruido
en la señal, sin que la dinámica del resto del sistema se vea comprometida.

Se encuentra implementada en Qt, siendo asistida por el framework matemático Ar-

31

3. Desarrollo 3.2 Unidad de detección de defectos de montaje

madillo[22] en labores como la ordenación del vector de medias o la localización de la
posición de las mismas tras el cálculo de la recta de regresión (componente 1 corresponde
a canal 3(FP1)), evitando aśı tener que recurrir a una estructura de tipo Map para la
indexación de las mismas.

Durante la fase de implementación se debe proceder a ajustar los parámetros de pro-
cesamiento convenientemente (ventana, refresco) puesto que una mala elección de los
mismos podŕıa desembocar en un mal funcionamiento de la unidad. Se debe gestionar a
su vez la cadencia con la que la unidad de detección de defectos de montaje debe informar
a los interfaces de usuario de la presencia de popping (Ej : no informar mientras no se
produzcan cambios en el estado, o en qué electrodos producen popping).

3.2.5. Pruebas

En este caso, y al igual que con la herramienta de comprobación de defectos de montaje
se realizaron pruebas de funcionamiento de la unidad, comparando los resultados obteni-
dos por la misma, con los resultados obtenidos tras la ejecución del mismo algoritmo en
Matlab. Se diseñaron en dos fases, una primera donde se comprobó el valor de las medias,
y otra donde se comprobó los electrodos erróneos resultantes.

En la tabla 3.6 y la figura 3.13 se observan las medias obtenidas por la unidad de
detección, aśı como las resultantes del algoritmo de procesamiento codificado en Matlab.

Fichero: testS00R0015.bzi
Precondición: Matlab y la unidad han procesado el fichero.
Datos de entrada: unitMeansS00R0015 : contiene las medias calculadas por la unidad.

matlabMeansS00R0015 : contiene las medias calculadas por matlab.
A = loadF ile(unitMeansS00R0015)
B = loadF ile(matlabMeansS00R0015)
ans = A− B

Resultado: ans = 0 Las medias calculadas son iguales en ambos casos.

Tabla 3.6: Prueba de unidad de detección de electrodos medias 4.

En la tabla 3.7 y la figura 3.14 se observan los valores obtenidos por la unidad de
detección, aśı como los resultantes del procesamiento con el mismo algoritmo en Matlab,
aquellos bloques de señal donde se ha producido popping son marcados con una ĺınea
horizontal.

32

3. Desarrollo 3.2 Unidad de detección de defectos de montaje

Figura 3.13: Comprobación de medias en fichero testS00R015.bzi.

Fichero: testS00R0015.bzi
Precondición: Matlab y la unidad han procesado el fichero.
Datos de entrada: unitChannelsS00R0015 : contiene los canales detectados como

erróneos calculadas por la unidad.
matlabChannelsS00R0015 : contiene los canales detectados como
erróneos calculadas por matlab.
A = loadF ile(unitChannelsS00R0015)
B = loadF ile(matlabChannelsS00R0015)
ans = A− B

Resultado: ans = 0 Los canales detectados como erróneos son iguales
tanto en cuales son detectados, como en que momento temporal.

Tabla 3.7: Prueba de unidad de detección de electrodos 4.

33

3. Desarrollo 3.2 Unidad de detección de defectos de montaje

(a) Unidad (b) Matlab

Figura 3.14: Comparación de popping en fichero testS00R015.bzi

34

3. Desarrollo 3.3 Informe de resultados

3.3. Informe de resultados

3.3.1. Introducción

Figura 3.15: Informe de resultados.

Toda terapia necesita dejar constancia de sus resultados, ya sea con el fin de dimensio-
nar el progreso, informar convenientemente al usuario/paciente o verificar su corrección.
En este PFC se desarrolló el informe de resultados para BrainUp, tanto en su faceta vi-
sual, encuadrado dentro de las interfaces de usuario como impreso v́ıa PDF, constando
de los siguientes elementos:

Cabecera de datos de paciente: Contiene los datos de usuario/paciente, el núme-
ro de sesión en la que nos encontramos, su nombre y la fecha de realización.

Datos de terapia: Contiene los datos de calibración de ritmos (descritas ante-
riormente ICA+IAF), la duración total del entrenamiento/terapia y la de cada
repetición realizada.

Gráfica de rendimiento: Representa la evolución del usuario/paciente en cada
repetición con respecto al baseline tomado al inicio de la sesión.

Gráfica de permanencia temporal: Muestra cuánto tiempo se ha ofrecido feed-
back positivo al usuario/paciente en cada repetición, tomando como valor de refe-
rencia duracionEnSegundosDelTrial/2

Gráfica de tres últimas sesiones: Muestra la evolución en el usuario/paciente
durante las tres últimas sesiones normalizado al valor del baseline de la primera
sesión representada.

3.3.2. Análisis

Definimos en primera instancia el caso de uso relativo a la visualización del infor-
me de resultados, para proceder a la posterior extracción de requisitos funcionales y no

35

3. Desarrollo 3.3 Informe de resultados

Nombre Caso de uso 1
Actores que intervienen Usuario/Terapeuta
Descripción Comprobación del estado del montaje.
Precondición El terapeuta se encuentra en un interfaz de usuario.
Secuencia de acciones 1. Visualiza el número de sesión y los datos del paciente.

2. Visualiza los datos de calibración de ritmos.
3. Visualiza la gráfica de progreso.
4. Visualiza la gráfica de tiempo.
5. Visualiza la gráfica de las tres últimas sesiones.
6. El usuario/terapeuta obtiene el informe en PDF.

Resultados El usuario/terapeuta ha visualizado y obtenido el informe.

Tabla 3.8: Caso de uso correspondiente a visualización y impresión del informe.

funcionales del sistema.

Figura 3.16: Gráfico de caso de uso correspondiente al informe.

Obteniendo los siguientes requisitos a satisfacer:

36

3. Desarrollo 3.3 Informe de resultados

Código Descripción

RF-0 Debe ofrecer el número de sesión y los datos de paciente
RF-1 Debe contener la duración de la terapia y de las repeticiones.

aśı como la de la calibración de ritmos.
RF-2 Debe ofrecer una representación gráfica del progreso (rendimiento).
RF-3 Debe ofrecer una representación gráfica del progreso (tiempo).
RF-4 Debe contener una comparación de las tres últimas sesiones.
RF-4 El informe debe poder imprimirse.
RNF-1 Debe ser intuitivo.
RNF-2 Debe guardarse en PDF.
RNF-3 Debe estar disponible en diferentes idiomas.

Tabla 3.9: Requisitos del informe.

3.3.3. Diseño

Figura 3.17: Diagrama de clase base GenericUnit

Comenzaremos diseñando la clase base de nombre GenericGraph, puesto que se debe
permitir de cara a futuras implementaciones, un amplio espectro de representaciones
gráficas (diagramas de barras, puntos, o funciones interpoladas), aśı como diferentes
formatos, colores o estilos de ĺınea.

37

3. Desarrollo 3.3 Informe de resultados

Es por ello, por lo que además de disponer de los habituales métodos de adquisi-
ción/distribución de datos, contiene los siguientes elementos:

1. QwtPlotCurve: Perteneciente a Qwt (framework de representación gráfica x-y en
C++ [23]), y cuya misión es proveer soporte matemático a la representación gráfica,
cada objeto QwtPlotCurve representa una f(x) diferente.

2. QwtPlot: Clase Qwt encargada de las labores de visualización, le pueden ser trans-
mitidas de 1 a n QwtPlotCurve gracias al procedimiento Attach(). Una vez añadidas
al objeto, pueden ser representadas invocando a la función show() de manera similar
al resto de componentes de los diferentes interfaces de usuario, permitiendo además
editar su estilo y su escala.

3. QColor: Debe contener todos aquellos colores que deseemos incluir en la represen-
tación gráfica.

4. QMap: Relaciona cada color incluido en QColor con una QwtPlotCurve diferen-
te, de manera que podamos representar todos aquellos puntos pertenecientes a un
determinado color con una única QwtPlotCurve Ej: [1,3,5] Rojo; [2,4,6] Azul; Esti-
lo=’Barras’.

5. ReportLegend: Proporciona la leyenda de la gráfica, su posición en la misma es
configurable gracias a un atributo enumerado (Above, Below, Left, Right).

ReportGraph se define como una especialización de GenericGraph, donde deberá im-
plementarse la lógica de decisión de qué puntos del eje x corresponden a qué colores,
aśı como qué estilo debe ser aplicado (puntos,barras,ĺıneas).

Contemplaremos dos casos:

Caso 1: Los valores en el eje x representarán repeticiones/trials, y los del eje y potencia
media de todos los canales por cada repetición/trial. Aquellos puntos por encima del
baseline inicial se representarán en rojo, mientras que aquellos que se encuentren por
debajo, se representarán en azul, el baseline será representado con una ĺınea amarilla
horizontal (Estilo=’Barras’).

Caso 2: Los valores en el eje x representarán repeticiones/trials, y los del eje y el
tiempo que ha permanecido el usuario/paciente por encima del baseline en cada repeti-
ción/trial. Aquellos puntos por encima de duracionEnSegundosDelTrial/2 se represen-
tarán en rojo, mientras que aquellos que se encuentren por debajo, se representarán en
azul, duracionEnSegundosDelTrial/2 será representado con una ĺınea amarilla horizon-
tal (Estilo=’Barras’).

ThreeSessionGraph se diseña también como una especialización de GenericGraph bajo
la siguiente premisa:

38

3. Desarrollo 3.3 Informe de resultados

Caso 1: Los valores en el eje x representarán repeticiones/trials de las tres últimas
sesiones, y los del eje y potencia media de todos los canales por cada repetición/trial en
las tres últimas sesiones. Aquellos puntos por encima del baseline de cada sesión se repre-
sentarán en rojo, mientras que aquellos que se encuentren por debajo, se representarán en
azul, el baseline será representado como un punto en x adicional pero en color amarillo,
todos los valores se encontrarán normalizados al baselinede la primera sesión representada
(Estilo=’Puntos’).

Figura 3.18: Diagrama de clases del informe de resultados.

La figura 3.19 ilustra la estructura del objeto principal NtpReport, compuesto a su vez
de QScrollArea (necesario para desplazarnos dentro del documento formato A4 generado),
ReportTopWidget (encabezado donde aparecerán el número de sesión y los datos del
usuario/paciente), y un objeto de tipo MainReport que contiene el informe en śı.

MainReport se compone de dos objetos de tipo ReportGraph (gráfica de rendimiento
y de tiempo) y uno de tipo ThreeSessionGraph (gráfica de tres ultimas sesiones).

39

3. Desarrollo 3.3 Informe de resultados

Figura 3.19: Diagrama de clases del informe de resultados.

Figura 3.20: Diagrama de secuencia de representación del informe.

Como podemos observar en la figura 3.20 y 3.21 la estrategia utilizada para el informe
de resultados es similar a la utilizada en apartado anteriores. Tras la petición por parte
del usuario de ”Siguiente pantalla”, InterfaceController procede a servir a cada uno de
los objetos mencionados los datos necesarios para su correcta representación, una vez
visualizado el informe se procede a su impresión en formato PDF.

40

3. Desarrollo 3.3 Informe de resultados

Figura 3.21: Diagrama de secuencia de llegada de datos y representación del informe.

El diagrama de secuencia correspondiente a la representación gráfica de ReportGraph
se encuentra disponible en el anexo A, figura A.11.

Tras esta fase obtenemos un primer prototipo de la herramienta (Figura 3.22).

41

3. Desarrollo 3.3 Informe de resultados

 7


    












    
    
    
    





































 

 

Figura 3.22: Prototipo del informe de resultados.

42

3. Desarrollo 3.3 Informe de resultados

3.3.4. Implementación

Aquellas tareas relacionadas con la gestión y edición de los elementos a representar en
el informe se desarrollaron con el framework Qt, mientras que las gráficas incluidas en el
mismo se realizaron con el framework gráfico Qwt, compatible a todos los efectos con Qt.

Debido a la necesidad de imprimir el documento en formato PDF se utilizó una reso-
lución de pantalla similar en dimensiones al A4, provocando que no fuera posible observar
por pantalla el informe en su totalidad. A fin de que pudiera observarse el mismo antes
de ser impreso se incluyó el objeto QScrollArea, permitiendo aśı desplazarse con libertad.

Aśı mismo hubo que definir los ppp (puntos por pulgada) a los que el documento seŕıa
impreso, siendo seleccionada una resolución de 300 ppp, por su excelente compromiso
calidad-tiempo tanto en labores de creación y visualización, como de impresión.

3.3.5. Pruebas

Se realizaron pruebas con semántica diferencial a 10 sujetos, con el fin de conocer
el grado de aceptación del informe, aśı como su calificación en materia de usabilidad,
claridad y facilidad de uso, obteniendo los siguientes resultados:

Pregunta Respuesta
3 2 1 0 -1 -2 -3

En general el informe de resultados Me gusta 2.4

El informe me parece Intuitivo 2.1

La gráfica de rendimiento me parece Claro 2.2

La gráfica de tiempo me parece Claro 2

La gráfica de las tres últimas sesiones me parece Claro 2.4

En términos generales el funcionamiento me parece Claro 2.3

Tabla 3.10: Resultados globales de la evaluación del informe.

Se encuentran disponibles en el anexo de pruebas los resultados detallados para cada
uno de los usuarios.

43

3. Desarrollo 3.4 Plugin de visualización de actividad cerebral

3.4. Plugin de visualización de actividad cerebral

3.4.1. Introducción

Figura 3.23: Visualizador de actividad.

En todo interfaz de usuario orientado a la usabilidad, deben existir tanto herramientas
encargadas de la comprobación (representación visual del montaje, notificación modo
texto) de manera intuitiva, como otras encargadas de la representación en tiempo real de
cierto tipo de datos (EEG, FFT). En el caso que nos ocupa y como tarea dentro de este
PFC, se ha desarrollado un plugin de visualización espacial, cuya misión es mostrar la
actividad cerebral en tiempo real del usuario/paciente mediante un mapa de calor, donde
el color rojo corresponderá a la cota superior y el azul a la inferior.

3.4.2. Análisis

La tabla 3.11 corresponde a la secuencia de acciones que satisfacen el caso de uso 3.24.
El usuario ejecuta la interfaz donde se encuentra contenido el plugin de visualización, ésta
procede a la creación del objeto visualizador y a la distribución de los datos pertinentes
mientras se continúe adquiriendo señal o la interfaz se encuentre activa. Como resultado
de esta secuencia el usuario observa la actividad correctamente.

La tabla 3.12 representa la extracción de requisitos funcionales y no funcionales reali-
zada al caso de uso 3.11.

44

3. Desarrollo 3.4 Plugin de visualización de actividad cerebral

Nombre Caso de uso 1
Actores que intervienen Usuario/Terapeuta
Descripción Visualización de la actividad cerebral.
Precondición El terapeuta se encuentra en la interfaz de usuario.

donde se encuentra el visualizador.
Secuencia de acciones 1. A través del plugin visualiza la actividad cerebral.
Resultados El usuario/terapeuta ha visualizado la actividad cerebral.

Tabla 3.11: Caso de uso correspondiente a la visualización de la actividad cerebral.

Código Descripción

RF-0 El plugin debe ofrecer un sistema de visualización
espacial de la actividad cerebral.

RNF-0 Se debe poder incluir fácilmente en cualquier interfaz de usuario.
RNF-1 Se aproximarán el resto de elementos a visualizar

conforme a los valores obtenidos del montaje.
RNF-2 Debe tener un tiempo de ejecución reducido

y funcionar en tiempo real.

Tabla 3.12: Requisitos del plugin de visualización de actividad cerebral.

Figura 3.24: Gráfico de caso de uso correspondiente al Plugin de visualización de actividad cerebral.

45

3. Desarrollo 3.4 Plugin de visualización de actividad cerebral

3.4.3. Diseño

Figura 3.25: Diagrama de secuencia correspondiente la visualización de la actividad cerebral

La figura 3.25 corresponde a la secuencia de acciones que satisfacen el caso de uso 3.24.
El usuario ejecuta la interfaz donde se encuentra contenido el plugin de visualización. Esta
procede a la creación del objeto visualizador y a la distribución de los datos a representar,
repitiéndose cada ciclo mientras se continúe adquiriendo señal o la interfaz se encuentre
activa. Como resultado de esta secuencia el usuario visualiza la actividad correctamente.

La distribución de los datos de los electrodos se realiza mediante un método publi-
co, que a su vez invoca al algoritmo de representación visual de la actividad. Este tipo
de estructura confiere versatilidad al plugin de visualización, convirtiéndolo en una uni-
dad independiente del contexto y permitiendo que sea instanciado en cualquiera de las
interfaces de usuario disponibles.

46

3. Desarrollo 3.4 Plugin de visualización de actividad cerebral

La aproximación del resto de puntos a representar es obtenida mediante interpolación,
en concreto mediante el método inverse distance weighting donde cada uno de los datos
interpolados u(x) responde al sumatorio del inverso de cada una de las distancias a los
electrodos, entre el total de las mismas wi(x)

u(x) =
N�

i=0

wi(x)ui�N
j=0 wj(x)

donde

wi(x) =
1

(.x, xi)p

.

La elección de esta técnica frente a otras se basa en dos aspectos importantes:

Disponibilidad: La mayoŕıa de los métodos de interpolación utilizados habitual-
mente (Bilinear,Spline,Bezier) tienen como precondición que la distribución espacial
de los datos sea regular, sin embargo, los montajes no responden a una estructu-
ra de este tipo quedando reducido el abanico de métodos a unos pocos, muchos
de ellos incompatibles con una ejecución en tiempo real (Krigging). Existen imple-
mentaciones Bilinear,Spline donde se convierte el montaje en un mallado regular,
interpolando a posteriori, se desecharon estas modificaciones debido a la mas que
destacable pérdida de precisión.

Eficiencia: Se trata de un plugin que debe ejecutarse en tiempo real (aproxima-
damente 30 ms), luego necesita que el tiempo máximo de procesamiento durante
la interpolación sea menor que éste. Esta restricción favorece la elección de inverse
distance weighting frente a otros métodos con resultados similares pero un tiempo
de procesamiento mucho mayor. Con el fin de agilizar su representación aún mas,
se realizó una evaluación y almacenado de las distancias a los diferentes sensores
(wi(x)), evitando tener que computar de nuevo valores (distancia entre sensores) que
permanecen constantes iteración tras iteración, y reduciendo su ciclo de ejecución
de 210 ms a 2.18 ms.

47

3. Desarrollo 3.4 Plugin de visualización de actividad cerebral

Figura 3.26: Diagrama de secuencia correspondiente a la creación del plugin de visualización de actividad

cerebral.

Tras la ejecución del interfaz, se procede a la creación del visualizador (figura 3.26), en
éste se cargará tanto la distribución de sensores presentes en el montaje (loadFile), como
aquellos objetos donde se realizará la representación (createPath,createColorMap).

48

3. Desarrollo 3.4 Plugin de visualización de actividad cerebral

Figura 3.27: Diagrama de secuencia correspondiente al proceso de pintado del plugin de visualización de

actividad cerebral.

Se representará la actividad cerebral tras cada adquisición pues funciona en tiempo
real, en el diagrama de secuencia 3.27 se detalla que acciones se realizarán en cada ciclo
de representación. Se procederá al pintado del montaje ”base” (contorno + electrodos)
para posteriormente proceder al pintado de los distintos valores interpolados.

Tras esta fase obtenemos un primer prototipo de la herramienta (Figura 3.8)

49

3. Desarrollo 3.4 Plugin de visualización de actividad cerebral

Figura 3.28: Diagrama de clases correspondiente al visualizador.

Figura 3.29: Prototipo del visualizador de actividad cerebral.

50

3. Desarrollo 3.4 Plugin de visualización de actividad cerebral

3.4.4. Implementación

Procedemos a la implementación de la solución resultante de la fase de diseño, bajo el
framework Qt. Se realizó un extenso proceso de documentación en busca de los elementos
de representación mas eficientes disponibles dentro de Qt, tratando de minimizar las
penalizaciones temporales producidas por una mala planificación del proceso de pintado.

La mayor parte de los elementos gráficos incluidos en BrainUp se encuentran desarro-
llados en Qwt, libreŕıa gráfica C++ compatible con Qt, sin embargo, la inexistencia de
objetos similares a los requerimientos de usuario expuestos en la sección 3.4.2 provocó su
rechazo en favor de una implementación en Qt.

3.4.5. Pruebas

Se realizaron diversas pruebas:

Pruebas de funcionamiento: Realizadas entre nuestra solución y el visor distri-
buido por Matlab, se procesaron 5 ficheros de EEG con resultados similares, con-
cluyendo que las ligeras diferencias encontradas entre ambas soluciones se deb́ıan a
la utilización de diferentes algoritmos de interpolación, aunque como se observa en
la figura 3.4.5 no afectaban a la correcta visualización de la actividad cerebral.

(a) Real (b) Matlab

Figura 3.30: Prueba con 8 electrodos

Pruebas de rendimiento: Realizadas con diferentes configuraciones de electro-
dos (16 electrodos, 32 electrodos,62 electrodos y 64) comprobando que el ciclo de
ejecución resultante es aceptable en todos los casos.

Concluimos aśı que la implementación realizada en este PFC se mantiene dentro de
unos parámetros aceptables, pues no sobrepasa en ninguno de los casos el tiempo

51

3. Desarrollo 3.4 Plugin de visualización de actividad cerebral

Figura 3.31: Comparación visualizador Matlab vs PFC.

de ciclo (30 ms) manteniéndose en un intervalo de 2-6 ms. La solución ofrecida por
Matlab sin embargo posee un tiempo de ejecución mı́nimo de 107,1 ms.

El resto de pruebas de funcionamiento, y una prueba individual del visualizador, se
encuentran presentes en el anexo C, sección C.4.

52

4. Localización del software

A la hora de desarrollar una solución informática de cualquier tipo, especialmente
en fases tempranas de análisis o desarrollo, surgen inevitablemente cuestiones referidas
al diseño, la eficiencia, o incluso a la usabilidad de la misma, sin embargo ¿Qué ocurre
con la localización del software?, ¿Qué idioma acompaña por defecto a la aplicación?
¿Qué lenguas posibilitamos? y sobre todo ¿Cómo las incluimos?

Las limitaciones producidas por una incorrecta localización software pueden llegar a
imposibilitar la utilización del mismo, disminuir su atractivo en ciertos entornos comer-
ciales e incluso relegarla a un segundo plano frente a aplicaciones inferiores técnicamente,
pero localizadas adecuadamente. En casos extremos una mala localización puede desembo-
car en una pésima o eqúıvoca valoración del producto final(p.ej : Nissan Moco, Volkswagen
Jetta).

Como tarea dentro de este PFC, se realizó la localización de BrainUp, atendiendo a
su vez al requisito no funcional presente en todos los apartados anteriores (”Debe estar
disponible en diferentes idiomas”). El idioma seleccionado por defecto para la aplicación
es el inglés, se trata de una de las lenguas mas habladas y estudiadas del planeta, además
de su ubicua presencia en los entornos de divulgación cient́ıfica, y puesto que nuestro
software se encuentra enmarcado dentro de un ámbito cient́ıfico-técnico, convenimos que
el inglés era el más adecuado a las necesidades del usuario final.

La localización y gestión de idiomas se realizó conforme al proceso descrito en la API
de Qt Qt Linguist [24], gracias a este método conseguimos generalizar y desacoplar la
localización software, haciéndola accesible incluso a personal no habituado a entornos de
desarrollo software, como los lingüistas.

53

4. Localización del software

Figura 4.1: Esquema del proceso de localización.

El proceso como podrá observar en la figura 4.1 consta de las siguientes fases:

1. Trabajo previo: Dentro del documento de normas de programación, de obligado
cumplimiento por parte de los ingenieros de BitBrain Technologies, incluimos una
norma acerca de la necesaria utilización de la función ”tr”previa cualquier cadena
de texto que se desea mostrar por pantalla (p.ej. tr(”mitexto”)), permitiendo de este
modo la correcta localización de cualquier aplicación generada ahora o en el futuro
por la compañia.

2. Modificación archivo .pro: Este tipo de archivo es básico dentro de la creación
de soluciones basadas en Qt, se trata de un meta-makefile en el que quedan definidas
las libreŕıas a incluir, las dependencias, aśı como el código fuente y cabeceras que
se implementarán en el entorno de desarrollo elegido (en nuestro caso Visual Studio
2008), debemos modificarlo añadiendo los idiomas que deseamos generar y completar
a posteriori, como por ejemplo:

Translations:

bUp-es ES.ts

bUp-fr FR.ts

bUp-de DE.ts

bUp-ja JP.ts

bUp-pt PT.ts

54

4. Localización del software

Figura 4.2: Aspecto del editor de lenguajes.

3. Lupdate: Invocación correspondiente a la API de Qt Linguist y realizada por ĺınea
de comando, su principal función es recorrer los diferentes archivos correspondientes
al código fuente, en busca de cadenas de tipo ”tr(cadena)” y sensibles de ser tra-
ducidas, generando los ficheros .ts adecuados a los idiomas definidos en el archivo
.pro.

4. Traducción: Una vez generados los ficheros .ts para los distintos idiomas, proce-
demos a su traducción gracias a la herramienta de edición proporcionada por Qt,
aunque también pueden ser modificados de manera directa, pues se trata simple-
mente de un fichero en formato .xml.

Como se puede observar en la figura 4.2 el programa dispone de tres zonas princi-
pales:

a) Zona 1: Selección de objeto cuyos elementos deseamos traducir.

b) Zona 2: Selección de elemento a traducir dentro de un objeto.

c) Zona 3:Realización de la traducción.

5. Lrelease: Invocación correspondiente a la API de Qt Linguist y realizada por ĺınea
de comando, su principal función es generar los diferentes archivos .qm correspon-

55

4. Localización del software

dientes a la traducción de las secuencias tr(”mitexto”), estos serán cargados de
manera dinámica por el ejecutable traduciendo el texto por pantalla.

Translations:

bUp-es ES.qm

bUp-fr FR.qm

bUp-de DE.qm

bUp-ja JP.qm

bUp-pt PT.qm

6. QTranslator: Una vez confeccionado el fichero de traducción y generados los ar-
chivos .qm, debemos instanciar un objeto de tipo QTranslator en nuestro proce-
dimiento principal, de manera que nuestra aplicación cargue automáticamente el
idioma adecuado de acuerdo a nuestra configuración regional, en caso de que este
no esté disponible, se hará uso del idioma por defecto.

a) QString locale = QLocale::system().name(); : Almacenamos gracias a esta invo-
cación bajo qué código regional operamos (p.ej. es ES fr FR) el primero codifica
la lengua en formato ISO 639, mientras el segundo codifica el páıs en ISO 3166,
pudiendo aśı distinguir por ejemplo, entre inglés británico o americano (en GB
en US).

b) QTranslator translator; : Instanciamos un objeto de tipo QTranslator.

c) QString name = ’bUp’+ locale; : Construimos una string en la que almacena-
remos el idioma adecuado a nuestra región.

d) translator.load(name,”../”) : Cargamos el fichero correspondiente, en caso de
no ser encontrado, se hará uso del idioma por defecto (en nuestro caso inglés).

e) app.installTranslator(translator); : El traductor queda completamente opera-
tivo en nuestro ejecutable.

Conseguimos gracias a este método satisfacer los requisitos no funcionales antes ex-
puestos y generalizar la localización de nuestra aplicación, de forma que la adición de un
nuevo idioma a la misma no conlleve nuevos esfuerzos de implementación sobre el núcleo.

56

5. Instalador

5.1. Descripción

Tras varias iteraciones sobre el proceso unificado de desarrollo software descrito en
caṕıtulos anteriores desembocamos en la primera versión estable de la aplicación, sin
embargo, quedan aún multitud de tareas a realizar hasta considerar a ésta como un
producto terminado.

Tareas por ejemplo relativas al empaquetado y distribución de la aplicación, al método
de obtención del hardware que la acompaña (amplificador operacional), a los manuales
que deben servir de gúıa a usuarios noveles, o a su método de instalación y configuración.

En el caso que nos ocupa, y dentro de las tareas realizadas en este PFC se procedió al
análisis diseño e implementación de un instalador para la aplicación BrainUp.

A pesar de que el framework sobre el que se implementa BrainUp es multiplataforma,
se desarrolló el instalador únicamente para sistemas operativos Windows por tratarse
del sistema en el que es comercializado BrainUp en primera instancia, teniendo como
requisito mı́nimo Windows XP y realizando distinción entre las versiones de 32 y 64 bits,
la motivación de esta será detallada en la sección 6.

Durante este proceso también se realizará la instalación del software correspondiente
a terceros, necesario para la correcta ejecución de la aplicación, como por ejemplo:

1. Drivers Gtec: Drivers del fabricante necesarios al tratarse de un dispositivo de
adquisición conectado a nuestro ordenador por USB.

2. API Gtec: Libreŕıas utilizadas por BZI para la correcta adquisición de señal.

3. Base de datos PostgreSQL: Requerida para la gestión de datos relativos usuarios
y terapia.

También se ejecutarán scripts encargados de la creación de una estructura de base
de datos adecuada para la terapia, aśı como la inserción de las variables de entorno
en el path del sistema, una por cada una de las libreŕıas requeridas por la aplicación
(Qt,Qwt,Armadillo).

57

5. Instalador 5.2 Análisis

Se implementó paralelamente al instalador, el desinstalador pertinente, aunque no se
dotó a este último de estrategias de reparación o recuperación en caso de una instalación
incompleta.

5.2. Análisis

Siguiendo la metodoloǵıa expuesta en el caṕıtulo 3 se definen dos casos de uso princi-
pales, iniciando aśı la fase de extracción de requisitos:

1. Instalación de la aplicación: El usuario procede a instalar y configurar BrainUp.

2. Desinstalación de la aplicación: El usuario procede a desinstalar BrainUp.

En las tablas 5.1 y 5.3 aśı como en las gráficas 5.1 y 5.3 pueden observarse los mismos.

Figura 5.1: Diagrama de caso de uso de instalación.

58

5. Instalador 5.2 Análisis

Nombre Caso de uso 1
Actores que intervienen Usuario
Descripción Instalación y configuración de la aplicación.
Precondición El usuario posee el ejecutable de BrainUp.
Secuencia de acciones 1. Selecciona el idioma de instalación

2. Acepta los términos de licencia.
3. Selecciona el directorio destino de la aplicación.
4. Finalmente el usuario acepta y se reinicia el equipo.

Resultados Se ha instalado y configurado BrainUp correctamente.

Tabla 5.1: Caso de uso de instalación.

Nombre Caso de uso 2
Actores que intervienen Usuario
Descripción Desinstalación de la aplicación.
Precondición El usuario posee instalado BrainUp.
Secuencia de acciones 1. Selecciona el idioma de desinstalación

2. Selecciona desintalar.
Resultados Se ha desinstalado BrainUp correctamente.

Tabla 5.2: Caso de uso de desinstalación.

Figura 5.2: Diagrama de caso de uso de desinstalación.

Gracias a los casos de uso descritos anteriormente, sintetizamos los requisitos funcio-
nales y no funcionales necesarios para el instalador.

59

5. Instalador 5.3 Diseño

Código Descripción
RF-0 El instalador debe ofrecer selección de idioma.
RF-1 El instalador debe permitir la selección de la carpeta destino.
RF-2 El instalador debe obligar al reinicio del equipo tras la instalación.
RNF-0 Se debe detectar el sistema operativo destino de la aplicación

copiando los archivos adecuados a cada versión.
RNF-1 Se debe realizar la instalación de componentes o tareas

pertenecientes a terceros, de manera desatendida.
RNF-2 Debe ser usable e intuitivo.
RNF-3 Debe estar disponible en diferentes idiomas.

Tabla 5.3: Requisitos del instalador.

5.3. Diseño

Un diagrama de actividades es utilizado con el fin de modelar el comportamiento del
sistema o describir como un sistema implementa su propia funcionalidad, cada diagrama
representa una actividad, que a su vez puede estar formada por actividades más pequeñas,
además están basados en redes de petri.

Mientras un diagrama de interacción muestra como los objetos gestionan los mensajes,
uno de actividades muestra las operaciones ocurridas entre entidades de nuestro sistema,
sirven para modelar la dinámica de un conjunto de objetos, el flujo de control de una
operación, caso de uso, o bien un hilo de trabajo (workflow).

En la figura 5.3 podemos observar el diagrama de actividades correspondiente al ins-
talador.

Figura 5.3: Diagrama de actividades del instalador.

Para finalizar el proceso de diseño se realizaron prototipos de las ventanas correspon-

60

5. Instalador 5.4 Implementación

dientes al proceso de instalación, incluidas en el anexo de desarrollo.

5.4. Implementación

La implementación fue realizada sobre NSIS [25], lenguaje de script de licencia open-
source y desarrollado por NullSoft, creadores del afamado Winamp. La popularidad de
éste ha crecido de forma exponencial en los últimos años, debido sobre todo a su versati-
lidad, el magńıfico soporte ofrecido por una amplia comunidad de desarrolladores, y por
tratarse de una alternativa libre y gratuita frente a otras como InstallShield de elevado
coste.

Además de resultar una alternativa libre y gratuita, NSIS ofrece las siguientes funcio-
nalidades:

1. Reducido tamaño: NSIS fue concebido para ser pequeño, rápido y eficiente, un
instalador básico completamente funcional tendŕıa un tamaño aproximado de 34
KB, muy inferior al resto de soluciones existentes.

2. Los ejecutables generados son compatibles con todas las versiones de Windows dis-
ponibles hasta la fecha, satisfaciendo aśı uno de los requerimientos de nuestro ins-
talador.

3. Permite la ampliación de sus funcionalidades mediante invocaciones C, C++ o Delp-
hi entre otros.

4. Al contrario que otras soluciones, genera ejecutables auto-contenidos, sin necesidad
de extracción alguna previa a la instalación.

5. Posee soporte multilenguaje.

6. Como caracteŕıstica más destacada, las diferentes aportaciones realizadas por la
comunidad de desarrolladores, ya sea en la creación de nuevos plugins o funciona-
lidades, como en la modificación del núcleo de lenguaje, dotándolo aśı de nuevas
capacidades.

NSIS requiere definir previamente cada una de las páginas de las que constará el
instalador, página de bienvenida, selección de ruta de destino, progreso de instalación,
realizando una configuración de las mismas previa a su invocación (iconos a mostrar,
texto por pantalla, colores).

Dentro de las soluciones suministradas por la comunidad de desarrollo, tres fueron de
especial utilidad dentro de nuestra implementación:

61

5. Instalador 5.5 Pruebas

LogicLib.nsh[26] : Dota al lenguaje de sentencias ”if-then-else”, ”case”, o ”unless”,
permitiendo aśı la utilización de estructuras de control y reduciendo ostensiblemente
la complejidad del código fuente.

x64.nsh[27] : Capaz de detectar sobre qué versión de sistema operativo nos encon-
tramos (32-bit / 64-bit), facilitando aśı la elección de que libreŕıas acompañarán al
ejecutable.

EnvVarUpdate.nsh[28] : Permite añadir o borrar variables de entorno al path del
sistema operativo, ya sea a nivel de usuario o de administrador.

La invocación ”ExecWait”[29] nos permite lanzar ejecutables/scripts ajenos a nuestro
instalador, esperando a su correcta finalización para continuar, en el caso que nos ocupa,
esta llamada fue usada para instalar el software relativo a la base de datos, ejecutar los
scripts de configuración de la misma, e instalar la API y drivers de Gtec.

Ej. ExecWait msiexec /passive /i ”INSTDIR/g.USBamp/driver/gUSBampDriver.msi”

La instalación de software ajeno a BitBrain Technologies se realiza de forma desaten-
dida, d́ıcese sin ningún tipo de interacción por parte usuario.

5.5. Pruebas

El instalador fue probado en diferentes sistemas operativos, tanto el proceso de insta-
lación, como el de desintalación. Comprobando en ambos casos su correcta configuración
y ejecución dependiendo de la versión instalada (Figura 5.4).

Sistema Operativo Instalación
Windows XP 32-bit Correcta.
Windows Vista 32-bit Correcta.
Windows Vista 64-bit Correcta.
Windows 7 32-bit Correcta.
Windows 7 64-bit Correcta.

Tabla 5.4: Resultados de instalación.

A su vez, se realizaron pruebas con semántica diferencial a 10 sujetos, evaluando el
instalador en materia de usabilidad. (Figura 5.5).

Se encuentran disponibles en el anexo de pruebas, los resultados detallados de cada
uno de los usuarios (Sección C.5).

62

5. Instalador 5.5 Pruebas

Pregunta Respuesta
3 2 1 0 -1 -2 -3

En general el instalador Me gusta 2.7

El instalador me parece Intuitivo 2.9

La pantalla de selección de idioma me parece Clara 2.4

La aceptación de términos de licencia me parece Clara 2.7

La selección de carpeta destino me parece Clara 2.8

En términos generales el funcionamiento me parece Claro 2.8

Tabla 5.5: Resultados globales de la evaluación del instalador.

63

5. Instalador 5.5 Pruebas

64

6. Aspectos relevantes

Como comentamos en el caṕıtulo 5 existen aspectos relevantes dentro de la aplicación
desarrollada que conviene sean definidos en detalle, pues su presencia paso desapercibi-
da hasta fases tard́ıas del desarrollo y ha motivado la adición o modificación de ciertos
comportamientos dentro de BrainUp y de este PFC.

Armadillo: Libreŕıa matemática fortran utilizada durante el procesado de la señal
(FFT, cálculo filtro ICA), gran parte de sus beneficios se deben a las optimizaciones
a bajo nivel realizadas sobre esta, como modificaciones en el acceso a memoria cache,
o la gestión e indexación de elementos comunes en zonas contiguas de memoria, sin
embargo, este tipo de optimizaciones requieren un nivel de compromiso ”máquina”
elevado, desembocando por ejemplo en la necesidad de distinguir en qué versión de
sistema operativo nos encontramos.

Debemos compatibilizar la libreŕıa de Armadillo distribuida con la versión de sistema
operativo residente, ya que en caso contrario la aplicación no se ejecutará de manera
correcta, la detección realizada durante el proceso de instalación responde a esta
necesidad.

Armadillo distribuye únicamente versiones pre-compiladas para 32-bit, se nece-
sitó recompilar la libreŕıa para conseguir una versión de 64-bit compatible. Se des-
conoce en la actualidad la influencia de las diferentes arquitecturas hardware en su
funcionamiento.

Resolución: El framework de Qt, usado para la implementación de los interfaces
de usuario, posee una potente metodoloǵıa, encargada de la correcta colocación de
los elementos en pantalla de manera dinamica, sin embargo, en muchas ocasiones
adolece de una cierta incapacidad para distribuir correctamente los elementos en
bajas resoluciones, o en ratios diferentes a las establecidos previamente (16:9, 4:3).

Es por ello, por lo que se decidió limitar las interfaces de usuario a una serie de
resoluciones establecidas, cubriendo la mayor parte de los tamaños existentes en el
mercado y garantizando aśı su correcto visionado.

65

6. Aspectos relevantes

66

7. Conclusiones y trabajo futuro

Desarrollo de tareas: Concluimos que todos las tareas de este PFC se han desa-
rrollado siguiendo una metodoloǵıa de proceso unificado, resultando en sistemas que
satisfacen los requisitos fijados al inicio del mismo.

Eficiencia: Se trataba de uno de los puntos importantes al inicio de este PFC, todas
las herramientas, plugins o funcionalidades desarrolladas deb́ıan ser extremadamente
eficientes debido a lo reducido del ciclo de adquisición de señal (30 ms). Gracias a la
excelente documentación que acompaña al framework Qt, las soluciones resultantes
gozan de un tiempo de ejecución aceptable.

Usabilidad y diseño: Se ha puesto especial cuidado en aquellos aspectos relativos
a la usabilidad y el diseño, pues se pretende que BrainUp sea usado en entornos sin
conocimientos informáticos previos. Gracias al extenso proceso de prototipado reali-
zado por BitBrain Technologies, los elementos incluidos en este PFC y la aplicación
en general resultan muy usables aśı como atractivas al usuario.

Desarrollo software: Se ha podido estar presente en todas las fases del desarrollo
de un software comercial, desde los primeros análisis, hasta el empaquetado final,
actúando sobre muchas de ellas con las tareas de este PFC. A su vez, se ha podido
comprobar el correcto funcionamiento de las distintas funcionalidades implementa-
das en este proyecto en entornos profesionales (ensayos cĺınicos, demos, experimentos
con psicólogos) verificando que satisfacen en todo momento los requerimientos del
usuario final.

7.1. Trabajo futuro

1. Herramienta de comprobación de defectos de montaje: En la actualidad
adopta una postura meramente informativa, sin embargo futuras versiones reque-
rirán, por ejemplo, eliminar electrodos, o definir sensores esenciales (permitiendo
continuar la ejecución con errores en electrodos no-esenciales). A pesar de que es-
tos cambios han sido tenidos en cuenta en la implementación realizada, se debeŕıa
proceder a su adaptación y al desarrollo de las nuevas funcionalidades.

67

7. Conclusiones y trabajo futuro 7.1 Trabajo futuro

2. Unidad de detección de defectos de montaje: No todos los defectos o errores
presentes en un montaje poseen las mismas caracteŕısticas, ya sea en términos de
amplitud, frecuencia o rango temporal, luego su detección no conlleva el mismo
tipo de procesamiento. Como futura tarea queda la adición de nuevos métodos de
detección de defectos de montaje.

3. Plugin de visualización de actividad cerebral: Se trata de un plugin alta-
mente optimizado, la visualización en tiempo real de la actividad cerebral conlleva
el interpolado y representación de gran cantidad de puntos en cada uno de los ci-
clos de adquisición (30 ms), a tal efecto y como ya se ha comentado en secciones
anteriores, se fijó el tamaño del mismo con el fin de pre-calcular los coeficientes de
interpolación, disminuyendo aśı en gran medida el tiempo de cálculo y permitiendo
su ejecución en un tiempo estimado de entre 2 y 6 ms.

Es esta extrema especialización la que lo convierte en un plugin ŕıgido para ciertos
interfaces de usuario, quedando pues como trabajo futuro la implementación de una
solución intermedia, donde se sacrifique cierto tiempo de ejecución en pro de una
mayor flexibilidad.

4. Informe: Como comentamos en el caṕıtulo 2 las terapias basadas en neurofeedback
son el resultado de un intenso trabajo multidisciplinar, y como resultado, los avances
realizados en cada una de ellas influyen enormemente sobre el resto. Quedaŕıa pues
como trabajo en un futuro, la adaptación del report a estas nuevas exigencias,
inclusive su reimplementación.

5. Instalador: En su caso, futuras versiones deben implementarse sobre la estructura
proporcionada por ”Modern User Interface”[30] correspondiente también a NSIS,
pero más cercano visualmente a los interfaces modernos. Se trata entonces, de mo-
dificaciones en el aspecto y no en la estructura o funcionamiento del instalador.

68

Bibliograf́ıa

[1] J.R.Wolpaw, N.Birbaumer, D.J.McFarland, G.Pfurtscheller, and T.M.Vaughan.
Brain-computer interfaces for communication and control. Clinical Neurophysiology.,
113(6), 2002.

[2] T.H.Budzynski, H.K.Budzynski, J.R.Evans, and A.Abarbanel. Introduction to Quan-
titative EEG and Neurofeedback, Second Edition: Advanced Theory and Applications.
Academic Press, 1999.

[3] C.Escolano, J.Antelis, and J.Mı́nguez. Human Brain-Teleoperated Robot between
Remote Places. IEEE International Conference on Robotics and Automation., Sep-
tember 2009.

[4] I.Iturrate, J.Antelis, A.Kübler, and J.Mı́nguez. Non-Invasive Brain-Actuated Wheel-
chair based on a P300 Neurophysiological Protocol and Automated Navigation. IEEE
Transaction on Robotics, June 2009.

[5] T.Elbert, N.Birbaumer, P.Wolf, A.Duchting-Roth, M.Reker, I.Daum,
W.Lutzenberger, and J.Dichgans. Cortical sefl-regulation in patients with epi-
lepsies. Epilepsy res, 14:63–72, 1993.

[6] J.N. Demos. Getting started with neurofeedback. WW Norton, 2005.

[7] H.Gevensleben, B.Holl, and B.Albrecht. Is neurofeedback an efficacious treatment
for ADHD? A randomised controlled clinical trial. Journal of Child Psychology and
Psychiatry and Allied Disciplines., 50(7), 2009.

[8] M.Abikoff. Cognitive training in ADHD children: less to it than meets the eye.
Journal of Learning Disabilities, 24:205–209, 1991.

[9] U.Strehl. Self-regulation of Slow Cortical Potentials: A New Treatment for Children
With Attention-Deficit/Hyperactivity Disorder. Pediatrics, 2006.

[10] E.G.Peniston and P.J.Kulkosky. Alpha-theta brainwave training and beta-endorphin
levels in alcoholics. Alcolism: Clinical and Experimental Research, 13:271–279, 2007.

69

[11] Actualidad Económica. Sistema para hacer gimnasia mental en pacientes de
fibromialgia y depresión. http://bitbrain.es/wp-content/uploads/2011/09/
ActualidadEconomicaBBT.pdf, 2011.

[12] Neurosky. Brainwave sensors for everybody. http://www.neurosky.com/, 2010.

[13] B. Hamadicharef, Xu Mufeng, and S.Aditya. Brain-Computer Interface (BCI) Based
Musical Composition. Cyberworlds (CW), 2010 International Conference on , pages
282–286, 2010.

[14] Neurowear. Nekomimi. http://neurowear.com/, 2011.

[15] C.Escolano, M.Aguilar, and J.Mı́nguez. Effects of Upper Alpha Neurofeedback Trai-
ning on Working Memory Performance and on Electrophysiology. 33 rd Annual
International IEEE EMBS Conference, April 2011.

[16] B. Zoefel, R.J.Huster, and Christoph S.Herrmann. Neurofeedback training of the
upper alpha frequency band in EEG improves cognitive performance. NeuroImage,
August 2010.

[17] S. Hanslmayr, P. Sauseng, M. Doppelmayr, M. Schabus, and W. Klimesch. Increasing
individual upper alpha power by neurofeedback improves cognitive performance in
human subjects. Applied Psychophysiology and Biofeedback, 2005.

[18] W. Klimesch. EEG alpha and theta oscillations reflect cognitive and memory per-
formance: a review and analysis. Brain Research Reviews, 1999.

[19] Nokia. Qt libraries. http:/qt.nokia.com, 1992.

[20] Nokia. Qpainterpath library. http://doc.qt.nokia.com/latest/qpainterpath.
html, 1992.

[21] Nokia. Qpainter library. http://doc.qt.nokia.com/stable/qpainter.html, 1992.

[22] Conrad Sanderson. Armadillo libraries. http://arma.sourceforge.net/, 2007.

[23] Uwe Rathmann. Qwt libraries. http://qwt.sourceforge.net/, 1997.

[24] Nokia. Qt linguist. http://doc.qt.nokia.com/latest/linguist-manual.html,
1992.

[25] NullSoft. Nsis reference. http://nsis.sourceforge.net/Main_Page.html, 2001.

[26] Dselkirk and Eccles. Logiclib plugin. http://nsis.sourceforge.net/LogicLib.
html, 2004.

[27] NullSoft. x64 plugin. http://nsis.sourceforge.net/Include/x64.nsh, 2004.

[28] NullSoft. Environment path manipulation plugin. http://nsis.sourceforge.net/
Path_Manipulation.html, 2004.

70

[29] NullSoft. Script reference. http://nsis.sourceforge.net/Docs/Chapter4.html,
2004.

[30] NullSoft. Nsis mui reference. http://nsis.sourceforge.net/Docs/Modern%20UI/
Readme.html, 2007.

71

72

