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Diseño e implementación de un jugador artificial de Reversi 
sobre una FPGA  

Resumen 
 

 El Field-Programmable Technology Design Competition es un concurso de 
diseño hardware internacional enmarcado en el International Conference on Field-
Programmable Technology, congreso internacional de la región asiática sobre 
hardware reconfigurable. En su edición de 2010 propuso el desarrollo de un 
procesador específico para jugar al Reversi sobre una FPGA. 

Partiendo de conocimientos nulos acerca de la estrategia subyacente al 
juego, diseñamos e implementamos en 4 meses un procesador muy superior al 
software de referencia que suministraba la organización del concurso. El 
procesador implementa el algoritmo MinMax con poda alfa-beta, búsqueda en 
profundidad iterativa y ordenación dinámica de nodos para la exploración del 
espacio de búsqueda, y una evaluación de nodos basada en conceptos 
fuertemente ligados a la estrategia del juego, tales como movilidad, captura de 
esquinas o casillas estables. 

Posteriormente, desarrollamos una versión software algorítmicamente 
equivalente con el propósito de establecer comparativas de rendimiento y de 
consumo FPGA/PC. Los resultados muestran un mayor rendimiento del diseño 
hardware, fruto principalmente de la explotación del paralelismo y del diseño de 
una arquitectura a medida, y un consumo sustancialmente inferior, debido 
principalmente a que el procesador desarrollado trabaja a una frecuencia dos 
órdenes de magnitud inferior al PC. Como contrapartida, el tiempo de desarrollo 
del diseño hardware fue claramente superior que el del diseño software 
equivalente. 

El diseño presentado en la sesión del congreso dedicada a la competición 
fue capaz de batir al resto de finalistas, y por ello fuimos galardonados con el 
primer premio de la competición. Además, el artículo describiendo el diseño fue 
publicado en las actas del congreso, siendo accesible a la comunidad científica a 
través del IEEExplore. 
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1. Introducción 
 

 El FPT Design Competition (en adelante, concurso) es un concurso 
internacional de diseño hardware que se celebra anualmente como parte del 
International Conference Field-Programmable Technology, congreso internacional 
de la región asiática sobre hardware reconfigurable. En su edición de 2010 
propuso el diseño e implementación de un jugador artificial de Reversi sobre una 
FPGA. 
Este trabajo tiene los siguientes objetivos: 

- Participar en el FPT Design Competition 2010 
- Profundizar en el diseño hardware avanzado 
- Crear un benchmark de soluciones hardware-software algorítmicamente 

equivalentes e instrumentadas para un posterior estudio comparativo de 
rendimiento y consumo energético 

- Introducirse en las medidas de consumo energético de distintas 
plataformas de computación 
 

El resto de la memoria sigue la siguiente estructura de contenidos: 
  
La sección 2 describe la inteligencia artificial implementada en el procesador. 
La sección 3 detalla la implementación hardware que se ha llevado a cabo. 
La sección 4 muestra los resultados en términos de rendimiento y consumo. 
La sección 5 expone las conclusiones obtenidas a raíz del trabajo realizado. 
La sección 6 contempla las posibles líneas de trabajo futuro. 
La sección 7 ilustra la distribución temporal de tareas a lo largo del trabajo. 
La sección 8 contiene las referencias más relevantes utilizadas en este trabajo. 
Finalmente, el anexo I contiene el artículo que se publicó en el concurso. 
 
 
1.1 ¿Qué es el Reversi? 

 
 Reversi [1] (también conocido como Othello) es un juego de tablero que 
enfrenta a dos jugadores. Se desarrolla sobre un tablero de 8x8 y con 64 fichas, 
cuatro de ellas inicialmente colocadas como se muestra en la figura 1. El juego 
comienza moviendo negras y alternando entre ambos jugadores hasta que 
ninguno pueda realizar un movimiento legal. Un movimiento legal consiste en 
colocar una ficha del color propio en una casilla vacía, de manera que se 
flanqueen una o más fichas del color contrario en cualquiera de las direcciones 
(horizontal, vertical, diagonal). Aquellas fichas flanqueadas pasan a ser del color 
del jugador que hizo el movimiento. 
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El objetivo del juego es tener más fichas que el rival al final de la partida. 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.2 ¿Qué es una FPGA? 
 

 Una FPGA (Field Programmable Gate Array) es un circuito integrado que 
contiene bloques de lógica, elementos de memoria e interconexiones, todos ellos 
programables, así como bloques específicos de E/S (figura 2). La configuración de 
la FPGA mediante la interconexión de los bloques lógicos y la funcionalidad de los 
mismos, permite generar el sistema lógico deseado. 
 

 
 
 

 
 
 

Fig. 1. Disposición inicial de fichas al comienzo de la partida 

Fig. 2. Estructura típica de una FPGA con bloques de lógica 
rodeados de elementos de interconexión y celdas de 

entrada/salida rodeando el chip 
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La descripción del sistema lógico que se desea diseñar se suele realizar 
mediante el uso de un lenguaje de descripción de hardware, siendo los más 
usados VHDL (acrónimo de VHSIC HDL, Very High Speed Integrated Circuit 
Hardware Description Language) y Verilog.  

 
 

1.3 Especificaciones del concurso 
 

Las especificaciones detalladas más relevantes son: 

 Se dispone de un segundo para realizar un movimiento.  
 

 El diseño se evaluará inicialmente contra un software proporcionado por el 
concurso. Dicho software dispone de tanto tiempo como precise para 
realizar un movimiento y posee siete niveles de dificultad. 

 
 Las métricas para evaluar el diseño contra el software son:  

- Número de fichas logradas al finalizar la partida para cada nivel de 
dificultad 

- Número de movimientos realizados para cada nivel de dificultad. 
 

 Los tres mejores diseños evaluados según lo anterior disputarán la final. La 
final consiste en un torneo round-robin que enfrenta FPGA vs FPGA con un 
referee de por medio Este torneo se realizará en una de las sesiones del 
congreso. 

 
 La comunicación de los movimientos se realizará mediante RS-232. Cada 

envío consta de dos caracteres ASCII de acuerdo a las siguientes 
convenciones: 

- El juego comienza con el envío por parte del referee de los 
caracteres “YY” a la FPGA que mueva negras. 

- Un movimiento se comunica indicando la columna y fila del 
movimiento realizado de acuerdo con la notación utilizada en el 
tablero de la figura 1. 

- Si no posible mover en algún punto de la partida, se debe enviar 
“VV” al referee. Si es cierto, el referee lo notificará al oponente 
enviándole “RR”. 

- Si un jugador realiza un movimiento inválido, el referee le enviará “II” 
indicándole que ha perdido la partida, y además enviará al rival “XX” 
notificándole que ha ganado la partida. 
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 La FPGA sobre la que se implementará el diseño debe ser una de las 
siguientes: 
 

- DE2 Development and Education Board 
- XUP Virtex-II Pro Development System 
- Xtreme DSP Starter Platform – Spartan-3A DSP 1800A Edition 
- DE2-70 Development and Education Board 
- Altium NanoBoard 3000 

Nuestro diseño ha sido implementado sobre la XUP Virtex-II Pro 
Development System (en adelante, FPGA). 

 

1.4 Trabajo relacionado 
 

El Reversi se ha estudiado en diversos trabajos científicos. Destaca 
especialmente el trabajo realizado por Michael Buro [2] [3] [4] en el área de 
inteligencia artificial aplicada a juegos de tablero. 

 
En cuanto al desarrollo de un procesador específico para jugar al Reversi, 

cuando empezamos este trabajo solamente existía una contribución en un 
congreso del área [5], este trabajo ere interesante por ser la primera vez que se 
hacía algo así, pero podemos decir que presenta un procesador muy  simple, 
incapaz de realizar un juego avanzado. 

 
En el mismo congreso en el que se presentó nuestro procesador, se 

presentaron también nuestros dos rivales. De ellos, el trabajo presentado en [6] 
presenta una aproximación basada en la utilización de procesadores dentro de la 
FPGA que proporciona un diseño rápido de realizar, pero no muy eficiente. En 
cuanto al trabajo presentado en [7] es una aproximación probabilística basada en 
Monte-Carlo que proporciona un rendimiento mejor que el primer rival, pero 
claramente inferior a nuestro diseño. 

  
Finalmente es interesante destacar que ningún trabajo previo ha realizado 

una comparación rigurosa del rendimiento y del consumo de un diseño de este 
tipo implementado en una FPGA comparado con el obtenido con una 
aproximación basada en un ordenador de sobremesa convencional. En ese 
sentido consideramos que este trabajo puede resultar muy interesante para la 
comunidad científica, dado que la ejecución de juegos nunca se ha considerado 
como una de las posibles aplicaciones de las FPGAs, y sin embargo, tal y como se 
verá en los resultados experimentales, para este problema en concreto las FPGAs 
proporcionan un rendimiento y un consumo muy interesantes.   
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2. Inteligencia artificial implementada en el procesador  
 

2.1 Consideraciones generales 
 

La inteligencia artificial en los juegos de tablero se basa en tratar de 
explorar estados futuros y evaluarlos de acuerdo a su calidad (esto es, cuantificar 
lo ventajoso de un tablero para lograr un final ganador). 
Este proceso involucra a dos elementos: 

1) Algoritmo de búsqueda 
2) Función de evaluación 

 
El primero trata de explorar el espacio de estados futuros (árbol de juego) en base 
a ciertas consideraciones (ver sección 2.2). 
El segundo es el estimador que utiliza el algoritmo de búsqueda para elegir cada 
movimiento (ver sección 2.3). 
 

 
2.2 Algoritmo de búsqueda 

 
El algoritmo elegido para explorar el árbol de juego es MinMax [8]. La idea 

subyacente es buscar nuestro mejor movimiento suponiendo que el rival escogerá 
el más ventajoso para él. El algoritmo realiza una búsqueda primero en 
profundidad, en la que se evalúan los nodos terminales (aquellos que son nodos 
fin de partida, o nodos cuya profundidad es la máxima para el árbol en 
construcción), y el valor se propaga a niveles superiores de manera que en los 
niveles pares se maximiza la utilidad (elegir el mayor valor de los nodos hijos), y 
en los niveles impares se minimiza la utilidad (elegir el menor valor de los nodos 
hijos). 
 

Esta estrategia se topa con el problema de la complejidad computacional 
del Reversi: el árbol de juego completo consta de ≈1058 nodos. Es inviable por 
tanto explorarlo por completo. Esto obliga a limitar la búsqueda a cierta 
profundidad (ver sección 2.2.2). Por otro lado la metodología del algoritmo MinMax 
abre las puertas a una potente mejora, llamada poda alfa-beta, que evita explorar 
estados sin variar por ello el resultado de la búsqueda. La sección 2.2.1 la 
describe con mayor detalle. 
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2.2.1 Poda alfa-beta 
 
Sea α el valor más alto encontrado hasta el momento en un nivel MIN sin 

cerrar, y sea β el valor más bajo encontrado hasta el momento en un nivel MAX 
sin cerrar. La poda alfa-beta [9] evitará explorar aquellos nodos de un nivel MIN 
que conduzcan a un valor menor o igual a α, y aquellos nodos de un nivel MAX 
que conduzcan a un valor mayor o igual a β. 

 
La eficacia de la poda alfa-beta depende del orden en el que se generen los 

sucesores (cuanto antes se generen los mejores sucesores, mayor será la eficacia 
de la poda). En el mejor de los casos, se consigue una reducción del espacio de 
estados explorados de O(bd) a O(bd/2), donde b es el factor de ramificación y d la 
profundidad del árbol. O lo que es lo mismo, se alcanza el doble de profundidad en 
el mismo tiempo. 

 

 
 
 
 
 
 

2.2.2 Búsqueda en profundidad iterativa 
 
Tal y como se indica en las especificaciones del concurso, el tiempo 

máximo para procesar un movimiento es un segundo. Dado que no se conoce a 
priori el nivel máximo que puede alcanzar una búsqueda para un tiempo máximo 
prefijado, ya que depende del momento de la partida (esto es, del número de 
nodos a explorar. En las fases iniciales de la partida el número de sucesores es 
mayor que en las fases finales, ya que el número de movimientos legales al 
principio es mayor que al final), una buena aproximación para este problema 

Fig. 3. Poda alfa-beta. Los nodos con marcas rojas no se 
explorarán 
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consiste en generar árboles de juego de profundidad incremental [10], y devolver 
como mejor movimiento el del árbol de mayor nivel máximo completamente 
generado en el momento en el que llegue el timeout. 

 
Esta estrategia permite alcanzar la máxima profundidad de búsqueda que 

permitan las condiciones particulares en cada momento.  
La aparente desventaja que supone invertir tiempo en la generación de árboles de 
profundidad máxima menor al más profundo generado finalmente, no lo es debido 
a que las búsquedas en los árboles menores sirven de guía a los de mayor 
profundidad, mejorando la eficacia de la poda alfa-beta.  
 
 
 
2.2.3 Ordenación dinámica de nodos 

 
La eficacia de la poda alfa-beta depende fuertemente de la ordenación de 

los nodos. Cuanto antes se generen los que a posteriori serán los mejores 
movimientos, mayor será la eficacia de la poda. En nuestro diseño llevamos a 
cabo dos tipos de ordenación: 

 
a) Independiente del problema: aprovechamos el conocimiento que se 

infiere de la generación de árboles de profundidad incremental: el mejor 
movimiento hallado en el árbol limitado a profundidad d, será el primero 
en ser explorado en el árbol limitado a profundidad d+1. 
 

b) Dependiente del problema: Puesto que los movimientos en casillas de 
las esquinas son a priori movimientos prometedores, mientras que 
movimientos en casillas X (aquellas adyacentes a las esquinas en las 
diagonales), son a priori malos movimientos, realizamos la siguiente 
ordenación de sucesores: 

 
A1 H1 A8 H8 resto de casillas B2 G2 B7 G7 

 
Esto es, exploramos en primer lugar los movimientos en casillas de las 
esquinas, y en último lugar los movimientos en casillas de tipo X. 

 
 
 

2.3 Función de evaluación 
 
Las métricas (o heurísticas) utilizadas para evaluar la calidad de un tablero 

se definen a continuación. Distinguimos la evaluación de nodos en los que la 
partida no ha finalizado y aquellos en los que sí ha finalizado. 
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1) Evaluación de nodos intermedios: 
a) Movilidad: hace referencia a cuantos movimientos legales tiene cada 

jugador en un momento dado. Cuanto mayor sea la movilidad de un 
jugador, más probable es que pueda colocar en posiciones 
ventajosas. La estrategia básica de este juego consiste en obligar a 
tu rival a colocar una ficha dónde él no quiere. Esto se consigue 
reduciendo su movilidad, por ello esta métrica es tan importante. 
 

b) Esquinas y casillas de tipo X: Las esquinas son posiciones muy 
ventajosas, dado que no pueden ser volteadas, y permiten al jugador 
que las domine crear una región segura que el rival no puede atacar. 
Por otro lado, las casillas X son movimientos no deseables, ya que 
permiten que el rival consiga de forma sencilla la esquina adyacente. 
 

c) Casillas consolidadas: Son aquellas posiciones que no pueden ser 
volteadas por el rival. Una casilla está consolidada si sus vecinas 
inmediatas en al menos un sentido de cada una de las direcciones 
están consolidadas, dando lugar a la siguiente definición recursiva 
mutua:  
Ci,j sii (Ci,j-1 ˅ Ci,j+1) ˄ (Ci-1,j ˅ Ci+1,j) ˄ (Ci-1,j+1 ˅ Ci+1,j-1) ˄ (Ci-1,j-1 ˅ Ci+1,j+1) 
 
Donde Ci,j significa que la casilla de la fila i y columna j está 
consolidada. 

 
2) Evaluación de nodos fin de partida: 

a) Número de fichas: el objetivo del juego es tener mayor número de 
fichas propias al finalizar la partida, por tanto en este caso tan solo 
es necesario contar las fichas de cada color. 

 
Partiendo de estas métricas, realizamos un ajuste de los pesos en base a la 
relevancia de cada métrica, así  como al feedback experimental, resultando la 
siguiente función de evaluación: 

- Nodos intermedios: 
 
Non-terminalNodeev = 4*(CornersFPGA – Cornersopponent)           +  

         2*(XSquaresFPGA – XSquaresopponent)    + 
         2*(MobilityFPGA – Mobilityopponent)   +  
         1*(StablesFPGA – Stablesopponent) 

 
- Nodos fin de partida: 

TerminalNodeev = DiscsFPGA – Discsopponent 
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3 Implementación Hardware 
 

La implementación del diseño se lleva a cabo mediante el lenguaje VHDL 
dentro de entorno Xilinx ISE 10.1.3 [11]. A continuación se muestra la arquitectura 
del procesador desarrollado y se describe en detalle la implementación de los 
distintos módulos que lo componen. Todos los módulos se han realizado desde 
cero con excepción del módulo E/S RS-232 que pudo ser parcialmente reutilizado 
de un diseño anterior. 

 
3.1 Arquitectura del procesador 

 
El procesador consta de un módulo de búsqueda de mejor movimiento en 

una tabla de aperturas (Openings module), un módulo de búsqueda de mejor 
movimiento mediante búsqueda en el árbol de juego MinMax (MinMax move 
search) y un módulo de entrada/salida para comunicarse con el oponente (E/S 
RS-232).  
El módulo MinMax move search es el más complejo y se divide a su vez en varios 
submódulos: 
  

1) Volteador (Disc flipper) 
2) Movimientos posibles (Move checker) 
3) Casillas consolidadas (Stable discs evaluator) 
4) Evaluador (Evaluator) 
5) Árbol (Tree tables BRAMs + Tree data registers) 
 
 

 
 
 Fig. 4. Arquitectura del procesador 
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A continuación, se describen los módulos principales con mayor detalle. 

 
 

3.1.1 Movimientos Posibles (Move checker) 
 
Este módulo se encarga de hallar los movimientos legales dado un tablero y 

un color. Toma como entradas el tablero actual codificado en 128 bits, el turno 
actual codificado con 1 bit, y devuelve como salida un vector de movimientos 
legales de 64 bits. Se ha implementado de manera puramente combinacional, 
implementando una función lógica para cada casilla  para averiguar si es un 
movimiento legal. Una casilla es un movimiento legal si cumple: 

 
1) Está vacía 
2) En al menos una dirección, a partir de la casilla que se está analizando 

existe el siguiente patrón: una o más fichas contiguas rivales seguidas 
de una ficha propia. 

 
 

 
 
 
 
 
 
Dado que en los nodos terminales se necesita conocer la movilidad de 

ambos jugadores, este módulo está replicado para poder calcular en paralelo los 
movimientos legales de cada jugador. 

 
 
3.1.2 Volteador (Disc flipper) 

 
Recibe como entradas el tablero actual, el turno, y el movimiento realizado, 

y calcula el nuevo tablero resultante. Este módulo se ha implementado mediante 
una red iterativa matricial bidireccional donde la información se mueve 
simultáneamente en 4 direcciones (y dos sentidos por dirección). Con esta 
implementación obtenemos un módulo puramente combinacional capaz de 
calcular un nuevo tablero en un solo ciclo de reloj. La ventaja de diseñar una 
solución basada en redes iterativas es que nos permite solucionar un problema 
muy complejo, casi imposible de formular de forma directa, dividiéndolo en 
subproblemas mucho más sencillos (en este caso cada casilla es un 
subproblema). Otra ventaja adicional, a la que aquí no se ha sacado partido, es 

Fig. 5. Interfaz del módulo MoveChecker 
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que este diseño se puede aplicar de forma directa a cualquier tamaño de tablero, 
dado que es tan sencillo como instanciar el número de módulos necesario y 
conectarlos convenientemente.  

 
La figura 7 muestra la arquitectura de una celda de la red. Para cada 

casilla, se calcula en cada dirección el nuevo patrón a propagar en función del 
patrón recibido y del contenido de la casilla (ver tabla 1). Así mismo, en caso de 
que se haya encontrado un patrón que implique una operación de volteo, será la 
casilla donde se ha colocado ficha la que dará la orden de que se realicen los 
volteos correspondientes. Para ello analizará todos los patrones que le lleguen, y 
propagará una señal de flip en aquellas direcciones que haya que voltear. El valor 
de esta señal será igual al número de fichas que hay que voltear en dicha 
dirección (ver tabla 2). Este valor se decrementará en cada propagación hasta 
llegar a cero. La figura 6 ilustra con un ejemplo el funcionamiento de la red. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Ejemplo de funcionamiento de la red iterativa del Disc 
Flipper en uno de las 8 direcciones de flujo de información. La 
casilla marcada con una ‘X’ es aquella donde colocamos la ficha 
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Patrón recibido Contenido 
casilla Patrón propagado 

Nada 

       ó Nada 

  

  Nada 

  

  

  Nada 

  

  

  Nada 

  

  

  Nada 

  

  

  Nada 

  

  

        ó Nada 

  

 
 
 
 
 
 

Tabla 1. Propagación de patrones para el volteo de fichas 
moviendo negras. Para blancas es equivalente. 



18 
 

Patrón recibido Salida  
Flip 

 1 

 2 

 3 

 4 

 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Tabla 2. Propagación de señal de flip a partir de la casilla donde 
se ha colocado ficha. Para blancas es equivalente. 
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3.1.3 Casillas consolidadas (Stable discs evaluator) 
 
Como se ha indicado en la sección 2.3.c, el cálculo de las casillas 

consolidadas se realiza mediante una función recursiva mutua. Una 
implementación puramente combinacional deriva por tanto en bucles 

Fig. 7. Arquitectura e interfaz de una celda de la red iterativa del 
Disc Flipper.  
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combinacionales que conllevan una reducción drástica de la frecuencia máxima 
del procesador. Por este motivo, este módulo ha sido implementado mediante una 
red iterativa matricial bidireccional secuencializada mediante la inclusión de un 
biestable en cada celda de la red (salvo en las casillas del contorno). 

 
Esta red, al igual que el volteador, trabaja simultáneamente en las 4 

direcciones, y en los dos sentidos de cada dirección. Las casillas correspondientes 
al contorno se calculan combinacionalmente mediante funciones lógicas. El resto 
del tablero se secuencializa por capas tal y como muestra la figura 8, la 
información generada en cada capa se almacena en un conjunto de biestables. El 
módulo resultante calcula las casillas en un número de ciclos variable, y por ello el 
módulo posee una salida done, tal y como se puede ver en la figura 9. Esta señal 
se activará cuando ningún biestable cambie con respecto al ciclo anterior. Dado 
que esta operación es algo más costosa que el resto de operaciones para evaluar 
un nodo terminal, se añadió una sencilla lógica adicional que comprueba si todas 
las esquinas están vacías, en cuyo caso no es posible que haya casillas 
consolidadas, y por tanto se omite el cálculo de las mismas. 

 
 
 

 
 
 
 

 
El módulo contiene además un sumador en árbol de 64 bits que devuelve el 

número de casillas consolidadas. La interfaz del Stable Discs Evaluator se 
muestra en la figura 9. 

 
 
 

Fig. 8. Arquitectura del módulo de cálculo de las casillas estables.  



21 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

Dado que en los nodos terminales se necesita conocer el número de 
casillas estables de ambos jugadores, este módulo está replicado para poder 
calcular ambos en paralelo. 

 
 
 
3.1.4 Tabla de aperturas (Openings table) 

 
En los juegos de tablero es habitual guiar el juego en su fase inicial por 

secuencias de movimientos que, si bien pueden no ser óptimos, sí sabemos que 
son buenos movimientos en base a la experiencia y al conocimiento de los 
conceptos referentes a la estrategia del juego. 

En el procesador se hizo uso de una tabla de 51 aperturas. Dada la simetría 
horizontal y vertical del tablero, se calcularon las correspondientes aperturas 
simétricas en cada dirección, resultando un total de 204 aperturas. 
Para la confección del módulo de gestión de las aperturas se han utilizado 4 
BRAMs de doble puerto y ancho del bus de datos de 9 bits. En la figura 10 se 
muestra la arquitectura del módulo. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 9. Interfaz del módulo Stable Discs Evaluator  
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Al comenzar el juego se sigue siempre la primera apertura encontrada que 
se adapte a la situación actual. Cuando la situación de la partida no se adapte a 
ninguna de las aperturas este módulo dejará de utilizarse. Por lo general, esto 
ocurre tras 4 o 5 movimientos. 

 
 
3.1.5 Árbol 

 
La implementación hardware del árbol de juego consta de los siguientes 

submódulos: 
a) Almacenes del árbol 
b) Máquina de estados 
c) Módulo de ordenación dinámica de nodos 

 
El módulo del árbol de juego ha sido dimensionado para alcanzar una 

profundidad máxima de 16 niveles. A continuación se describen en detalle los 
submódulos: 

 
a) Almacenes del árbol 

 
- Es necesario almacenar el tablero abierto por cada nivel del árbol. 

Cada tablero se codifica con 128  bits (2 bits por casilla). Esto 

Fig. 10. Arquitectura del módulo de gestión de aperturas  
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requiere un total de 128 bits/tablero x 16 niveles x 1 tablero/nivel = 
2048 bits. 
Para que la lectura de un tablero se realice en un ciclo de reloj, se 
han utilizado 4 BRAMs de 36 bits de ancho en paralelo, resultando 
una memoria con un ancho de datos de 144 bits. 
 

- La información relativa al algoritmo MinMax con poda alfa-beta se 
almacena en un banco de registros diseñado a medida que consta 
de lo siguiente: 

1) 16 registros de 6 bits que almacenan el último movimiento 
explorado en cada nivel abierto 

2) 16 registros de 9 bits que almacenan los valores α - β de 
cada nivel abierto 

3) Un registro de 6 bits que almacena el mejor movimiento 
que ha encontrado el algoritmo para el nivel de 
profundidad máximo actual 

4) Un registro de 6 bits que almacena el mejor movimiento 
que ha encontrado el algoritmo en el árbol de mayor 
profundidad completado 
 

b) Máquina de estados 
 

La generación de nodos se ha dividido en dos etapas para alcanzar 
una mayor frecuencia de trabajo. La primera etapa se corresponde con el 
estado “Estado Genera Nodo 1”, y en ella se calculan los movimientos 
legales y se elige el siguiente movimiento legal a explorar. La segunda 
etapa se corresponde con el estado “Estado Genera Nodo 2”, y en ella se 
genera el nuevo tablero correspondiente a realizar el movimiento legal 
elegido en la etapa previa y voltear las fichas que proceda. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



24 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) Módulo de ordenación dinámica de nodos 
 

Aplicamos una modificación a la salida del módulo Movimientos 
Posibles para reordenar los movimientos según lo descrito en la sección 
2.2.3, esta reordenación la realizan los módulos de la figura 12, Mapping y 
Last move mapping. Una vez reordenados los movimientos posibles, 
seleccionamos el siguiente movimiento a explorar. Para ello se utiliza un 
codificador con prioridad enmascarado. La máscara se aplica en función del 
último movimiento explorado. De esta forma la salida de este módulo es el 
movimiento más prioritario según nuestra reordenación que todavía no 
hemos explorado. Finalmente un mapeado inverso traduce el movimiento 
elegido en el vector reordenado al correspondiente movimiento en su orden 
natural. 

 
 
 
 
 
 

Fig. 11. Máquina de estados del módulo Árbol 
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3.2 Recursos utilizados 
 
El diseño ha sido implementado sobre una Virtex II-Pro (XC2VP30-FF896). 

Este modelo dispone de un total de 13.696 slices y 2.448 Kb de BRAM. La tabla 3 
muestra los recursos utilizados por la implementación del procesador. Como se 
puede ver utilizamos menos de la mitad de los recursos de la FPGA, a pesar de 
que es una FPGA relativamente antigua (de hace unos 10 años), mucho más 
pequeña que las FPGAs de altas prestaciones actuales. Por tanto nuestro diseño 
tiene un coste hardware muy razonable. 
La frecuencia de trabajo del procesador es de 32 MHz. Esta FPGA está pensada 
para trabajar a 100 MHz, sin embargo en este diseño hemos apostado por hacer 
redes iterativas capaces de hacer operaciones muy complejas en tan sólo un ciclo 
de reloj. Estas redes son las que limitan la frecuencia de reloj del sistema. Sin 
embargo también son las que nos proporcionan nuestro buen rendimiento, por lo 
que, tal y como se verá más adelante, la perdida de frecuencia de reloj es 
completamente aceptable. 

 
 

Versión BRAMs Slices 
Finalistas 4 (2%) 5.325 (38%) 

Ganadores 8 (5%) 5.830 (42%) 

 
 
 
 

Tabla 3. Recursos de la FPGA utilizados. La versión Finalistas es la 
que nos clasificó para la final. La versión Ganadores fue la 

presentada en la final del concurso 

Fig. 12. Arquitectura del módulo de ordenación dinámica de 
nodos 
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4 Resultados 
 

Para evaluar nuestro diseño se han realizado diversas mediciones y 
comparaciones estudiando tanto su rendimiento, su consumo de energía, y el 
tiempo de desarrollo.  

  
4.1 Rendimiento 

El rendimiento se ha comparado con cuatro rivales: 
1) SW de referencia proporcionado por el concurso 
2) Diseños realizados por los otros dos equipos de finalistas 
3) SW equivalente que aplica exactamente las mismas técnicas 
4) SW profesional de Reversi WZebra, considerado uno de los mejores 

SW de Reversi existentes y desarrollado y entrenado por maestros 
del juego 
 

4.1.1 Versus SW de referencia 
 
La organización del concurso proporcionó un software contra el cual testar y 

evaluar los diseños participantes. Este software tiene las siguientes 
características: 

 
- Algoritmo de búsqueda MinMax con poda alfa-beta 
- Evaluación de nodos terminales basada en número de fichas y 

puntuaciones estáticas de las casillas del tablero 
- 7 niveles de dificultad, que se corresponden con la profundidad 

alcanzada en el árbol de juego 
- Tiempo de cómputo variable: el necesario para construir y evaluar el 

árbol correspondiente al nivel de dificultad elegido 
 

Los resultados de la confrontación del diseño implementado en la FPGA 
con este software se muestran en la tabla 4. El software fue ejecutado en un PC 
equipado con un procesador Intel i7-2600 @ 3,4GHz y 8 GB de memoria RAM. 
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Nivel de  
dificultad SW 

FPGA mueve negras SW mueve negras 

Puntuación 
partida 

(HW-SW) 

Movimientos Puntuación 
partida 

(HW-SW) 

Movimientos 

HW SW HW SW 

1 63-1 32+0 31+3 63-0 31+0 31+3 
2 64-0 33+0 32+5 60-4 31+0 31+2 
3 64-0 31+0 30+1 64-0 33+0 33+6 
4 64-0 31+0 30+1 63-0 31+0 31+3 
5 64-0 33+0 32+5 64-0 30+0 30+0 
6 64-0 31+0 30+1 63-0 31+0 31+3 
7 64-0 33+0 32+5 64-0 32+0 32+4 

 
 
 
 

 
Se aprecia una gran superioridad del jugador artificial implementado sobre 

la FPGA sobre el SW de referencia. 
 
Adicionalmente, testeamos nuestro diseño de manera más agresiva 

limitándole el tiempo de cómputo para ver qué resultados obteníamos contra el 
SW de referencia. La tabla 5 muestra los resultados para un tiempo de cómputo 
limitado a 0,1 segundos, y la tabla 6 para un tiempo de cómputo limitado a 3,2 * 
10-5 segundos (1024 ciclos de reloj). 

 
 

Nivel de  
dificultad SW 

FPGA mueve negras SW mueve negras 

Puntuación 
partida 

(HW-SW) 

Puntuación 
partida 

(HW-SW) 
1 57-7 64-0 
2 64-0 60-0 
3 64-0 64-0 
4 64-0 59-4 
5 64-0 61-1 
6 64-0 59-4 
7 60-3 59-5 

 
 
 
 
 

Tabla 4. Resultados de la confrontación SW de referencia vs FPGA 
con tiempo de cómputo limitado a 1 segundo 

Tabla 5. Resultados de la confrontación SW de referencia vs FPGA 
con tiempo de cómputo limitado a 0,1 segundos  
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Nivel de  
dificultad SW 

FPGA mueve negras SW mueve negras 

Puntuación 
partida 

(HW-SW) 

Puntuación 
partida 

(HW-SW) 
1 42-22 51-3 
2 52-12 44-20 
3 42-22 54-10 
4 60-0 38-26 
5 63-0 47-17 
6 63-1 38-26 
7 63-0 * 

 

  * El SW realizó un movimiento inválido 
 
 
 
 
 

A la vista de los resultados de las tablas 5 y 6, se puede apreciar cómo 
incluso para un tiempo de cómputo realmente restrictivo (3,2 * 10-5 segundos), 
nuestro diseño es capaz de ganar en todos los casos.  
 
 
4.1.2 Versus diseños finalistas 
 

En la final disputada en una sesión del congreso, nuestro diseño se 
enfrentó a los otros dos diseños finalistas (FPGA vs FPGA) en formato de 
competición round-robin. Jugamos un total de cuatro partidas, dos contra un 
equipo de una universidad griega, y dos contra un equipo de una universidad 
japonesa, resultando ganadores en todas ellas, por lo que obtuvimos el primer 
premio del concurso. 

 
4.1.3 Versus SW equivalente 
 

Desarrollamos una solución software algorítmicamente equivalente al 
diseño hardware. Ha sido desarrollada en C, y consta de 2 hilos de ejecución, uno 
para el programa principal y otro para la gestión del timeout. 

 
 

FPGA mueve negras SW mueve negras 

Puntuación 
partida 

(HW-SW) 

Nivel máximo  
promedio 

Puntuación 
partida 

(HW-SW) 

Nivel máximo  
promedio 

HW SW HW SW 

42-22 9,64 7,63 52-12 9,85 8,16 
 

Tabla 7. Resultados de la confrontación SW equivalente vs FPGA.  

Tabla 6. Resultados de la confrontación SW de referencia vs FPGA 
con tiempo de cómputo limitado a 3,2 * 10-5 segundos  
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Los resultados de la confrontación del diseño implementado en la FPGA 
con este software se muestran en la tabla 7. El software fue ejecutado en un PC 
equipado con un procesador Intel i7-2600 @ 3,4GHz y 8 GB de memoria RAM. 
 
La FPGA gana al SW, tal y como se puede apreciar, debido a que es capaz de 
alcanzar mayor profundidad en el árbol de juego para un mismo tiempo de 
cómputo. 
 
 Es importante mencionar que durante la realización de este software se 
aplicaron los conocimientos adquiridos en la asignatura del máster “Programación 
orientada a prestaciones”. Para ello, la versión SW inicial fue analizada con el 
programa de profiling de Intel, “VTune”, en busca de los hotspots. 
En este análisis se constató que la función que haya los movimientos legales 
(legalMoves) es el principal hotspot de la aplicación, suponiendo un 81% del total 
de tiempo de cómputo de movimientos. 
En base a este resultado, se optimizó dicha función añadiendo una cache de 
movimientos legales, que evita recalcularlos para cada movimiento de un nodo 
abierto. La aplicación se compiló con la versión 4.1.2 del compilador GCC, 
aplicando el flag “-O3”. También se intentó la paralelización automática, si bien el 
compilador no fue capaz de sacar partido a esta posibilidad. 
En todo caso, estamos en proceso de paralelizar manualmente la función 
legalMoves mediante directivas OpenMP, si bien en el momento de redacción de 
este documento no se ha concluido la tarea. 
 

 
4.1.4 Versus SW profesional (WZebra) 
 

Consideramos interesante evaluar a nuestro diseño contra un software 
profesional de Reversi. Elegimos el WZebra [12], dado que es gratuito y está 
considerado como uno de los más potentes creados hasta el momento.  
WZebra implementa MultiProb-Cut, un sofisticado algoritmo de búsqueda superior 
a MinMax, una extensa tabla de aperturas, capaz de generar nuevas variantes en 
base al conocimiento adquirido en las partidas que disputa, y una función de 
evaluación basada en inspección de patrones de distintas zonas del tablero. 

 
Todo esto le convierte en un rival extremadamente fuerte, y como tal, es 

superior a nuestro diseño, si bien para profundidades de búsqueda bajas (menor 
de 4 niveles), nuestro diseño gana casi todas las partidas, y para niveles medios 
(4-6) de WZebra, nuestro diseño es capaz de batirle en ciertas ocasiones. WZebra 
exhibe un comportamiento no determinista, y de un total de 22 partidas disputadas 
contra él, nuestro diseño fue capaz de batirle en 9 ocasiones (≈40%). A partir del 
nivel 7 WZebra ganó a nuestro diseño todas las partidas que disputamos.   
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4.2 Consumo energético 
 
Actualmente, el problema de la disipación de calor es un factor crítico en el 

diseño de procesadores. La capacidad de cálculo de muchos sistemas se ve 
necesariamente coartada por este factor, especialmente en los sistemas 
empotrados. 

Para la evaluación utilizamos como instrumento de medida un vatímetro 
Yokogawa WT210 [13]. El esquema de medida del consumo de la FPGA y del PC 
se muestra en la figura 13. 

 

 

 
 
 

El vatímetro viene acompañado de un software que procesa el muestreo de 
las medidas y ofrece gráficas de una gran variedad de magnitudes de medida. En 
nuestro caso, nos interesa mostrar la potencia instantánea en función del tiempo. 
La figura 14 muestra, para una partida FPGA vs SW equivalente, la 
correspondiente gráfica de consumo para el PC, y la figura 15 para el consumo de 
la FPGA. Los picos que se observan en las gráficas se corresponden a los 
intervalos de procesamiento/espera propios del juego dado que tanto el PC como 
la FPGA alternan periodos de actividad, en los que tienen que decidir qué 
movimiento quieren realizar, con periodos de inactividad, en los que están 
esperando a que el rival mueva. En el caso del PC, realiza una espera activa con 
lo que sigue ejecutando instrucciones y disipando potencia. 

 

Figura 13. Montaje para la medida de consumo mediante un 
vatímetro Yokogawa WT210 
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En la figura 14 se puede ver cómo el consumo del PC en reposo ronda los 

45 W. Durante la ejecución del SW equivalente, se distinguen los tramos de 
tiempo en los que el SW espera el movimiento del rival, con un consumo en torno 
a los 70 W, y los tramos en los que el SW está calculando su próximo movimiento, 
lo cual eleve el consumo a cerca de 80 W. El promedio de potencia durante la 
ejecución del SW es de casi 75 W. 

 
 
 
 
 

Figura 14. Consumo de potencia del PC corriendo el SW equivalente 
durante el trascurso de una partida de Reversi 

80 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

40 
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En la figura 15 se aprecia cómo el consumo de la FPGA en reposo ronda 

los 4,25 W. Durante el transcurso de la partida, la FPGA consume en torno a 4,6 
W en los tramos donde calcula su próximo movimiento, y en torno a 4,3 W en los 
tramos donde espera el movimiento del rival. 

El promedio de potencia durante la partida se sitúa en unos 4,45 W, unas 
17 veces menos que el PC. 
 

4.3 Tiempo de desarrollo 
 
Como se verá en la sección 7, el tiempo de desarrollo del diseño HW ha 

sido sustancialmente superior al del diseño SW. Esto es debido principalmente a 
dos motivos: 

- El tiempo de diseño HW incluyó también la afinación de los pesos de 
la función de evaluación, para obtener mejores resultados contra el 
SW de referencia 

- El tiempo de desarrollo de una solución HW es superior al del 
desarrollo de una solución equivalente SW, debido a que, si bien el 

Figura 15. Consumo de potencia de la FPGA durante el trascurso de 
una partida de Reversi 

 

5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 
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diseño y la implementación puedan suponer tiempos relativamente 
similares, la depuración de desarrollos HW es mucho más laboriosa 
que a la de desarrollos SW, teniendo un gran impacto en el tiempo 
total necesario para su desarrollo.  

 
 

5. Conclusiones 
 
 Los distintos resultados obtenidos y la experiencia adquirida durante el 
desarrollo del diseño expuesto en este trabajo permiten extraer las siguientes 
conclusiones: 
 
Alto rendimiento del diseño hardware: 
 Los resultados expuestos en la sección 4.1.3 muestran cómo el diseño HW 
es capaz de procesar un mayor número de nodos por unidad de tiempo que un 
SW equivalente que aplica los mismos algoritmos y las mismas optimizaciones. En 
promedio, el diseño HW es capaz de alcanzar casi 2 niveles más de profundidad 
en el árbol de juego. Esto supone una gran diferencia, ya que el número de nodos 
a explorar crece exponencialmente con la profundidad alcanzada. 
El principal motivo de esta sustancial diferencia se encuentra en el paralelismo. El 
cálculo de los movimientos legales de un tablero posee un alto grado de 
paralelismo, ya que es posible calcular en paralelo cada casilla del tablero. 
El Move Checker del diseño HW en efecto calcula en paralelo todas las casillas 
del tablero. No así la solución SW, que ejecuta el mismo algoritmo pero de manera 
secuencial, casilla a casilla. 
 

Es importante señalar además que estamos enfrentando a tecnologías con 
un importante desfase temporal: La FPGA sobre la que ha sido implementado el 
diseño data de 2002, mientras que el procesador sobre el cual corre la solución 
SW equivalente data de 2011. Por tanto el procesador que se ha desarrollado en 
este proyecto implementado en una FPGA que ya está casi obsoleta trabajando a 
32 MHz es capaz de proporcionar un rendimiento muy superior que un PC actual. 
La razón es que este diseño HW ha sido optimizado para sacar el máximo partido 
al paralelismo de los distintos problemas a tratar. 
 
Bajo consumo del diseño hardware: 
 El incremento de consumo de potencia del PC ejecutando la solución SW 
equivalente es dos órdenes de magnitud superior al correspondiente incremento 
de consumo de la FPGA. Dado que ambas trabajan el mismo tiempo, el consumo 
de energía también seria dos órdenes mayor para el PC. Pero en realidad, si 
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realizase el mismo trabajo (explorar el mismo número de nodos), el consumo de 
energía sería todavía mayor en el PC dado que el PC en el mismo tiempo explora 
menos niveles. 
  
Inteligencia artificial en el Reversi: 
 El Reversi actualmente es un juego no resuelto (en tamaño 8x8). Por lo 
tanto, es necesario utilizar heurísticas que evalúen con la mayor fidelidad posible 
la calidad de los tableros. 
El software proporcionado por el concurso implementa una primera aproximación 
consiste en evaluar a partir de valores estáticos para las casillas y del número de 
fichas. 
Nuestro diseño implementa un segundo paradigma basado en conceptos tales 
como la movilidad, casillas estables y captura de las esquinas. 
Finalmente, existe un tercer paradigma fundamentado en la inspección de 
patrones en el tablero. Programas profesionales de Reversi tales como WZebra, 
implementan este paradigma. 
 

Los distintos enfrentamientos entre los 3 paradigmas evidencian que la 
estrategia de evaluación implementada en el diseño HW es claramente superior a 
la implementada en el software proporcionado por el concurso, pero se ve 
ampliamente superada por la inspección de patrones implementada en WZebra. 
 

 

6. Trabajo futuro 
 

Los objetivos iniciales del proyecto se han alcanzado en su totalidad por lo 
que podría parecer que este es un trabajo cerrado. Sin embargo quedan algunas 
tareas interesantes por realizar.  
En primer lugar queremos buscar la forma de realizar un análisis de consumo más 
detallado, siendo capaces de ver no sólo el consumo total sino también el 
consumo interno de cada parte de nuestro procesador, así como de la versión SW 
equivalente. De esta forma podremos identificar que partes de nuestro procesador 
son más eficientes.  
Por otro lado hemos seguido trabajando en el diseño de otro procesador para otro 
juego (en este caso el Connect-6 [14]), y  planeamos hacer un análisis conjunto de 
los resultados y enviarlo a una revista científica. Consideramos que este análisis 
resultaría muy interesante para la comunidad científica dado que muy pocas veces 
se han realizado comparaciones HW/SW rigurosas y justificadas que incluyan el 
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consumo de potencia y energía. Además, la utilización de FPGAs para acelerar la 
ejecución de juegos de tablero es un campo prácticamente inexplorado. 
Por último, para que nuestro análisis sea más interesante planeamos ampliarlo a 
otras plataformas. En concreto nos gustaría incluir plataformas para sistemas 
móviles, y plataformas tipo GPGPU (General-Purpose Computing on Graphics 
Processing Units). 

     
 
 

7. Planificación 
 
 Comenzamos el trabajo el 25 de Junio de 2010, y el deadline del concurso, 
15 de Octubre de 2010, limitaba el tiempo del que inicialmente disponíamos. 
En este espacio de tiempo desarrollamos el diseño HW que evaluamos contra el 
SW de referencia, descrito en [15]. 
Posteriormente, la organización habilitó a los finalistas a mejorar sus diseños para 
la final que se celebró el 10 de Diciembre de 2010. En este periodo incorporamos 
dos optimizaciones adicionales al diseño HW: tabla de aperturas y ordenación 
dinámica de nodos independiente del problema. 
Más adelante, del 5 de Junio de 2011 al 11 de Agosto de 2011, desarrollamos la 
solución SW equivalente e instrumentada, y realizamos el profiling y la 
optimización de la misma. 
Finalmente, en el mes de Octubre de 2011, se puso en marcha la plataforma de 
medición de consumo de potencia, y se realizaron las medidas oportunas. 
El total de horas empleadas en el trabajo es de 810. La figura 16 muestra la 
distribución de las mismas. 
Es importante mencionar que la tarea “Diseño e implementación HW” incluye el 
diseño y ajuste de la inteligencia artificial incorporada al diseño, facilitando de 
manera importante el desarrollo de la versión SW. 
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