

Trabajo de fin de máster

Máster en Ingeniería de Sistemas e Informática

Diseño e implementación de un jugador
artificial de Reversi sobre una FPGA

Director: Javier Resano Ezcaray
Autor: Javier Olivito del Ser

Programa oficial de posgrado Curso 2010-2011
 en Ingeniería Informática Diciembre 2011

Departamento de informática
e ingeniería de sistemas

Escuela de Ingeniería y
Arquitectura

Grupo de Arquitectura de
Computadores de

Zaragoza

2

….………………………………………………………………………….

……………………………………………………………………..
……………………………………………………….

………………………………………………………………………….
………………………………………………………………………….

……………………………………………………
………………………………………………………………

………………………………………
…………………………………………………………………….

……………………………..……………………………………………….
…….…………………………………………

……………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….

……………………………………………
…………………………………………………………………………….

…………………………...………………………..
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
…………………………………...…………………………………….

.……………………………………..
………………………………………………………………………….

…………………………………………….……..
………

...……………………………………………………………………

……………………………………………………………………

…………………………………………………………………….

………………………………………………………………………

Índice

Resumen

1. Introducción
1.1. ¿Qué es el Reversi?
1.2. ¿Qué es una FPGA?
1.3. Especificaciones del concurso
1.4. Trabajo relacionado

2. Inteligencia artificial implementada en el procesador

2.1. Consideraciones generales
2.2. Algoritmo de búsqueda

2.2.1. Poda alfa-beta
2.2.2. Búsqueda en profundidad iterativa
2.2.3. Ordenación dinámica de nodos

2.3. Función de evaluación

3. Implementación Hardware
3.1. Arquitectura del procesador

3.1.1. Movimientos Posibles
3.1.2. Volteador
3.1.3. Casillas consolidadas
3.1.4. Tabla de aperturas
3.1.5. Árbol

3.2. Recursos utilizados

4. Resultados
4.1. Rendimiento

4.1.1. Versus SW de referencia
4.1.2. Versus diseños finalistas
4.1.3. Versus SW equivalente
4.1.4. Versus SW profesional

4.2. Consumo energético
4.3. Tiempo de desarrollo

5. Conclusiones

6. Trabajo futuro

7. Planificación

8. Referencias
Anexo I: Artículo publicado en las actas del FTP '10

5

6
6
7
8
9

10
10
10
11
11
12
12

14
14
15
15
19
21
22
25

26
26
26
28
28
29
30
32

33

34

35

36

3

7

7

11

14

15

16

19

20

21

22

24

25

30

31

32

 36

………….…..

……………………………….…………
….………………………………………………………………………….

……………………………………………………………
…………………………………………………….

……………………………………………..
…………………………………….
……………………………………..

………………………….

………………………………………………………………………….
………………………………………………………………………….

………………………………………………
………………………….

………………………………………………………………………….
……………………………..

………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….

…………………………………………………………………….
………………………………………………………

…………………………………….………………………………………
………………………

………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….

……………………………………………………………………………

……………………………………………………………….

Índice de figuras

Figura 1: Disposición inicial de las fichas al comienzo de la partida

Figura 2: Estructura típica de una FPGA

Figura 3: Poda alfa-beta

Figura 4: Arquitectura del procesador

Figura 5: Interfaz del módulo Move Checker

Figura 6: Ejemplo de funcionamiento de la red iterativa del Disc Flipper

Figura 7: Arquitectura e interfaz de una celda de la red iterativa del Disc Flipper

Figura 8: Arquitectura del módulo de cálculo de las casillas estables

Figura 9: Interfaz del módulo Stable Discs Evaluator

Figura 10: Arquitectura del módulo de gestión de aperturas

Figura 11: Máquina de estados del módulo Árbol

Figura 12: Arquitectura del módulo de ordenación dinámica de nodos

Figura 13: Montaje para la medida de consumo mediante un vatímetro Yokogawa

WT210

Figura 14: Consumo de potencia del PC corriendo el SW equivalente durante el

trascurso de una partida de Reversi

Figura 15: Consumo de potencia de la FPGA durante el trascurso de una partida de

Reversi

Figura 16: Distribución del tiempo invertido en cada tarea del trabajo

4

17

18

25

27

27

28

28

…………………….…..
….………………………………………………………………………….

……………………………………………………………………..

……………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….

…………………………………………..
………………………………………………………………………….
………………………………………………………………………….

…………………………………………………………………
…………………………………………………………..

………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….

…………………………………….………………………………………

………………………

………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….
………………………………………………………………………….

……………………………………………………………………

……………………………………………………………………………

Índice de tablas

Tabla 1: Propagación de patrones para el volteo de fichas

Tabla 2: Propagación de señal de flip a partir de la casilla donde se ha colocado

ficha

Tabla 3: Recursos de la FPGA utilizados

Tabla 4: Resultados de la confrontación SW de referencia vs FPGA con tiempo de

cómputo limitado a 1 segundo

Tabla 5: Resultados de la confrontación SW de referencia vs FPGA con tiempo de

cómputo limitado a 0,1 segundos

Tabla 6: Resultados de la confrontación SW de referencia vs FPGA con tiempo de

cómputo limitado a 3,2 * 10-5 segundos

Tabla 7: Resultados de la confrontación SW equivalente vs FPGA

5

Diseño e implementación de un jugador artificial de Reversi
sobre una FPGA

Resumen

 El Field-Programmable Technology Design Competition es un concurso de
diseño hardware internacional enmarcado en el International Conference on Field-
Programmable Technology, congreso internacional de la región asiática sobre
hardware reconfigurable. En su edición de 2010 propuso el desarrollo de un
procesador específico para jugar al Reversi sobre una FPGA.

Partiendo de conocimientos nulos acerca de la estrategia subyacente al
juego, diseñamos e implementamos en 4 meses un procesador muy superior al
software de referencia que suministraba la organización del concurso. El
procesador implementa el algoritmo MinMax con poda alfa-beta, búsqueda en
profundidad iterativa y ordenación dinámica de nodos para la exploración del
espacio de búsqueda, y una evaluación de nodos basada en conceptos
fuertemente ligados a la estrategia del juego, tales como movilidad, captura de
esquinas o casillas estables.

Posteriormente, desarrollamos una versión software algorítmicamente
equivalente con el propósito de establecer comparativas de rendimiento y de
consumo FPGA/PC. Los resultados muestran un mayor rendimiento del diseño
hardware, fruto principalmente de la explotación del paralelismo y del diseño de
una arquitectura a medida, y un consumo sustancialmente inferior, debido
principalmente a que el procesador desarrollado trabaja a una frecuencia dos
órdenes de magnitud inferior al PC. Como contrapartida, el tiempo de desarrollo
del diseño hardware fue claramente superior que el del diseño software
equivalente.

El diseño presentado en la sesión del congreso dedicada a la competición
fue capaz de batir al resto de finalistas, y por ello fuimos galardonados con el
primer premio de la competición. Además, el artículo describiendo el diseño fue
publicado en las actas del congreso, siendo accesible a la comunidad científica a
través del IEEExplore.

6

1. Introducción

 El FPT Design Competition (en adelante, concurso) es un concurso
internacional de diseño hardware que se celebra anualmente como parte del
International Conference Field-Programmable Technology, congreso internacional
de la región asiática sobre hardware reconfigurable. En su edición de 2010
propuso el diseño e implementación de un jugador artificial de Reversi sobre una
FPGA.
Este trabajo tiene los siguientes objetivos:

- Participar en el FPT Design Competition 2010
- Profundizar en el diseño hardware avanzado
- Crear un benchmark de soluciones hardware-software algorítmicamente

equivalentes e instrumentadas para un posterior estudio comparativo de
rendimiento y consumo energético

- Introducirse en las medidas de consumo energético de distintas
plataformas de computación

El resto de la memoria sigue la siguiente estructura de contenidos:

La sección 2 describe la inteligencia artificial implementada en el procesador.
La sección 3 detalla la implementación hardware que se ha llevado a cabo.
La sección 4 muestra los resultados en términos de rendimiento y consumo.
La sección 5 expone las conclusiones obtenidas a raíz del trabajo realizado.
La sección 6 contempla las posibles líneas de trabajo futuro.
La sección 7 ilustra la distribución temporal de tareas a lo largo del trabajo.
La sección 8 contiene las referencias más relevantes utilizadas en este trabajo.
Finalmente, el anexo I contiene el artículo que se publicó en el concurso.

1.1 ¿Qué es el Reversi?

 Reversi [1] (también conocido como Othello) es un juego de tablero que
enfrenta a dos jugadores. Se desarrolla sobre un tablero de 8x8 y con 64 fichas,
cuatro de ellas inicialmente colocadas como se muestra en la figura 1. El juego
comienza moviendo negras y alternando entre ambos jugadores hasta que
ninguno pueda realizar un movimiento legal. Un movimiento legal consiste en
colocar una ficha del color propio en una casilla vacía, de manera que se
flanqueen una o más fichas del color contrario en cualquiera de las direcciones
(horizontal, vertical, diagonal). Aquellas fichas flanqueadas pasan a ser del color
del jugador que hizo el movimiento.

7

El objetivo del juego es tener más fichas que el rival al final de la partida.

1.2 ¿Qué es una FPGA?

 Una FPGA (Field Programmable Gate Array) es un circuito integrado que
contiene bloques de lógica, elementos de memoria e interconexiones, todos ellos
programables, así como bloques específicos de E/S (figura 2). La configuración de
la FPGA mediante la interconexión de los bloques lógicos y la funcionalidad de los
mismos, permite generar el sistema lógico deseado.

Fig. 1. Disposición inicial de fichas al comienzo de la partida

Fig. 2. Estructura típica de una FPGA con bloques de lógica
rodeados de elementos de interconexión y celdas de

entrada/salida rodeando el chip

8

La descripción del sistema lógico que se desea diseñar se suele realizar
mediante el uso de un lenguaje de descripción de hardware, siendo los más
usados VHDL (acrónimo de VHSIC HDL, Very High Speed Integrated Circuit
Hardware Description Language) y Verilog.

1.3 Especificaciones del concurso

Las especificaciones detalladas más relevantes son:

 Se dispone de un segundo para realizar un movimiento.

 El diseño se evaluará inicialmente contra un software proporcionado por el
concurso. Dicho software dispone de tanto tiempo como precise para
realizar un movimiento y posee siete niveles de dificultad.

 Las métricas para evaluar el diseño contra el software son:

- Número de fichas logradas al finalizar la partida para cada nivel de
dificultad

- Número de movimientos realizados para cada nivel de dificultad.

 Los tres mejores diseños evaluados según lo anterior disputarán la final. La
final consiste en un torneo round-robin que enfrenta FPGA vs FPGA con un
referee de por medio Este torneo se realizará en una de las sesiones del
congreso.

 La comunicación de los movimientos se realizará mediante RS-232. Cada

envío consta de dos caracteres ASCII de acuerdo a las siguientes
convenciones:

- El juego comienza con el envío por parte del referee de los
caracteres “YY” a la FPGA que mueva negras.

- Un movimiento se comunica indicando la columna y fila del
movimiento realizado de acuerdo con la notación utilizada en el
tablero de la figura 1.

- Si no posible mover en algún punto de la partida, se debe enviar
“VV” al referee. Si es cierto, el referee lo notificará al oponente
enviándole “RR”.

- Si un jugador realiza un movimiento inválido, el referee le enviará “II”
indicándole que ha perdido la partida, y además enviará al rival “XX”
notificándole que ha ganado la partida.

9

 La FPGA sobre la que se implementará el diseño debe ser una de las
siguientes:

- DE2 Development and Education Board
- XUP Virtex-II Pro Development System
- Xtreme DSP Starter Platform – Spartan-3A DSP 1800A Edition
- DE2-70 Development and Education Board
- Altium NanoBoard 3000

Nuestro diseño ha sido implementado sobre la XUP Virtex-II Pro
Development System (en adelante, FPGA).

1.4 Trabajo relacionado

El Reversi se ha estudiado en diversos trabajos científicos. Destaca
especialmente el trabajo realizado por Michael Buro [2] [3] [4] en el área de
inteligencia artificial aplicada a juegos de tablero.

En cuanto al desarrollo de un procesador específico para jugar al Reversi,

cuando empezamos este trabajo solamente existía una contribución en un
congreso del área [5], este trabajo ere interesante por ser la primera vez que se
hacía algo así, pero podemos decir que presenta un procesador muy simple,
incapaz de realizar un juego avanzado.

En el mismo congreso en el que se presentó nuestro procesador, se

presentaron también nuestros dos rivales. De ellos, el trabajo presentado en [6]
presenta una aproximación basada en la utilización de procesadores dentro de la
FPGA que proporciona un diseño rápido de realizar, pero no muy eficiente. En
cuanto al trabajo presentado en [7] es una aproximación probabilística basada en
Monte-Carlo que proporciona un rendimiento mejor que el primer rival, pero
claramente inferior a nuestro diseño.

Finalmente es interesante destacar que ningún trabajo previo ha realizado

una comparación rigurosa del rendimiento y del consumo de un diseño de este
tipo implementado en una FPGA comparado con el obtenido con una
aproximación basada en un ordenador de sobremesa convencional. En ese
sentido consideramos que este trabajo puede resultar muy interesante para la
comunidad científica, dado que la ejecución de juegos nunca se ha considerado
como una de las posibles aplicaciones de las FPGAs, y sin embargo, tal y como se
verá en los resultados experimentales, para este problema en concreto las FPGAs
proporcionan un rendimiento y un consumo muy interesantes.

10

2. Inteligencia artificial implementada en el procesador

2.1 Consideraciones generales

La inteligencia artificial en los juegos de tablero se basa en tratar de
explorar estados futuros y evaluarlos de acuerdo a su calidad (esto es, cuantificar
lo ventajoso de un tablero para lograr un final ganador).
Este proceso involucra a dos elementos:

1) Algoritmo de búsqueda
2) Función de evaluación

El primero trata de explorar el espacio de estados futuros (árbol de juego) en base
a ciertas consideraciones (ver sección 2.2).
El segundo es el estimador que utiliza el algoritmo de búsqueda para elegir cada
movimiento (ver sección 2.3).

2.2 Algoritmo de búsqueda

El algoritmo elegido para explorar el árbol de juego es MinMax [8]. La idea

subyacente es buscar nuestro mejor movimiento suponiendo que el rival escogerá
el más ventajoso para él. El algoritmo realiza una búsqueda primero en
profundidad, en la que se evalúan los nodos terminales (aquellos que son nodos
fin de partida, o nodos cuya profundidad es la máxima para el árbol en
construcción), y el valor se propaga a niveles superiores de manera que en los
niveles pares se maximiza la utilidad (elegir el mayor valor de los nodos hijos), y
en los niveles impares se minimiza la utilidad (elegir el menor valor de los nodos
hijos).

Esta estrategia se topa con el problema de la complejidad computacional
del Reversi: el árbol de juego completo consta de ≈1058 nodos. Es inviable por
tanto explorarlo por completo. Esto obliga a limitar la búsqueda a cierta
profundidad (ver sección 2.2.2). Por otro lado la metodología del algoritmo MinMax
abre las puertas a una potente mejora, llamada poda alfa-beta, que evita explorar
estados sin variar por ello el resultado de la búsqueda. La sección 2.2.1 la
describe con mayor detalle.

11

2.2.1 Poda alfa-beta

Sea α el valor más alto encontrado hasta el momento en un nivel MIN sin

cerrar, y sea β el valor más bajo encontrado hasta el momento en un nivel MAX
sin cerrar. La poda alfa-beta [9] evitará explorar aquellos nodos de un nivel MIN
que conduzcan a un valor menor o igual a α, y aquellos nodos de un nivel MAX
que conduzcan a un valor mayor o igual a β.

La eficacia de la poda alfa-beta depende del orden en el que se generen los

sucesores (cuanto antes se generen los mejores sucesores, mayor será la eficacia
de la poda). En el mejor de los casos, se consigue una reducción del espacio de
estados explorados de O(bd) a O(bd/2), donde b es el factor de ramificación y d la
profundidad del árbol. O lo que es lo mismo, se alcanza el doble de profundidad en
el mismo tiempo.

2.2.2 Búsqueda en profundidad iterativa

Tal y como se indica en las especificaciones del concurso, el tiempo

máximo para procesar un movimiento es un segundo. Dado que no se conoce a
priori el nivel máximo que puede alcanzar una búsqueda para un tiempo máximo
prefijado, ya que depende del momento de la partida (esto es, del número de
nodos a explorar. En las fases iniciales de la partida el número de sucesores es
mayor que en las fases finales, ya que el número de movimientos legales al
principio es mayor que al final), una buena aproximación para este problema

Fig. 3. Poda alfa-beta. Los nodos con marcas rojas no se
explorarán

12

consiste en generar árboles de juego de profundidad incremental [10], y devolver
como mejor movimiento el del árbol de mayor nivel máximo completamente
generado en el momento en el que llegue el timeout.

Esta estrategia permite alcanzar la máxima profundidad de búsqueda que

permitan las condiciones particulares en cada momento.
La aparente desventaja que supone invertir tiempo en la generación de árboles de
profundidad máxima menor al más profundo generado finalmente, no lo es debido
a que las búsquedas en los árboles menores sirven de guía a los de mayor
profundidad, mejorando la eficacia de la poda alfa-beta.

2.2.3 Ordenación dinámica de nodos

La eficacia de la poda alfa-beta depende fuertemente de la ordenación de

los nodos. Cuanto antes se generen los que a posteriori serán los mejores
movimientos, mayor será la eficacia de la poda. En nuestro diseño llevamos a
cabo dos tipos de ordenación:

a) Independiente del problema: aprovechamos el conocimiento que se

infiere de la generación de árboles de profundidad incremental: el mejor
movimiento hallado en el árbol limitado a profundidad d, será el primero
en ser explorado en el árbol limitado a profundidad d+1.

b) Dependiente del problema: Puesto que los movimientos en casillas de
las esquinas son a priori movimientos prometedores, mientras que
movimientos en casillas X (aquellas adyacentes a las esquinas en las
diagonales), son a priori malos movimientos, realizamos la siguiente
ordenación de sucesores:

A1 H1 A8 H8 resto de casillas B2 G2 B7 G7

Esto es, exploramos en primer lugar los movimientos en casillas de las
esquinas, y en último lugar los movimientos en casillas de tipo X.

2.3 Función de evaluación

Las métricas (o heurísticas) utilizadas para evaluar la calidad de un tablero

se definen a continuación. Distinguimos la evaluación de nodos en los que la
partida no ha finalizado y aquellos en los que sí ha finalizado.

13

1) Evaluación de nodos intermedios:
a) Movilidad: hace referencia a cuantos movimientos legales tiene cada

jugador en un momento dado. Cuanto mayor sea la movilidad de un
jugador, más probable es que pueda colocar en posiciones
ventajosas. La estrategia básica de este juego consiste en obligar a
tu rival a colocar una ficha dónde él no quiere. Esto se consigue
reduciendo su movilidad, por ello esta métrica es tan importante.

b) Esquinas y casillas de tipo X: Las esquinas son posiciones muy
ventajosas, dado que no pueden ser volteadas, y permiten al jugador
que las domine crear una región segura que el rival no puede atacar.
Por otro lado, las casillas X son movimientos no deseables, ya que
permiten que el rival consiga de forma sencilla la esquina adyacente.

c) Casillas consolidadas: Son aquellas posiciones que no pueden ser
volteadas por el rival. Una casilla está consolidada si sus vecinas
inmediatas en al menos un sentido de cada una de las direcciones
están consolidadas, dando lugar a la siguiente definición recursiva
mutua:
Ci,j sii (Ci,j-1 ˅ Ci,j+1) ˄ (Ci-1,j ˅ Ci+1,j) ˄ (Ci-1,j+1 ˅ Ci+1,j-1) ˄ (Ci-1,j-1 ˅ Ci+1,j+1)

Donde Ci,j significa que la casilla de la fila i y columna j está
consolidada.

2) Evaluación de nodos fin de partida:

a) Número de fichas: el objetivo del juego es tener mayor número de
fichas propias al finalizar la partida, por tanto en este caso tan solo
es necesario contar las fichas de cada color.

Partiendo de estas métricas, realizamos un ajuste de los pesos en base a la
relevancia de cada métrica, así como al feedback experimental, resultando la
siguiente función de evaluación:

- Nodos intermedios:

Non-terminalNodeev = 4*(CornersFPGA – Cornersopponent) +

 2*(XSquaresFPGA – XSquaresopponent) +
 2*(MobilityFPGA – Mobilityopponent) +
 1*(StablesFPGA – Stablesopponent)

- Nodos fin de partida:

TerminalNodeev = DiscsFPGA – Discsopponent

14

3 Implementación Hardware

La implementación del diseño se lleva a cabo mediante el lenguaje VHDL
dentro de entorno Xilinx ISE 10.1.3 [11]. A continuación se muestra la arquitectura
del procesador desarrollado y se describe en detalle la implementación de los
distintos módulos que lo componen. Todos los módulos se han realizado desde
cero con excepción del módulo E/S RS-232 que pudo ser parcialmente reutilizado
de un diseño anterior.

3.1 Arquitectura del procesador

El procesador consta de un módulo de búsqueda de mejor movimiento en

una tabla de aperturas (Openings module), un módulo de búsqueda de mejor
movimiento mediante búsqueda en el árbol de juego MinMax (MinMax move
search) y un módulo de entrada/salida para comunicarse con el oponente (E/S
RS-232).
El módulo MinMax move search es el más complejo y se divide a su vez en varios
submódulos:

1) Volteador (Disc flipper)
2) Movimientos posibles (Move checker)
3) Casillas consolidadas (Stable discs evaluator)
4) Evaluador (Evaluator)
5) Árbol (Tree tables BRAMs + Tree data registers)

 Fig. 4. Arquitectura del procesador

15

A continuación, se describen los módulos principales con mayor detalle.

3.1.1 Movimientos Posibles (Move checker)

Este módulo se encarga de hallar los movimientos legales dado un tablero y

un color. Toma como entradas el tablero actual codificado en 128 bits, el turno
actual codificado con 1 bit, y devuelve como salida un vector de movimientos
legales de 64 bits. Se ha implementado de manera puramente combinacional,
implementando una función lógica para cada casilla para averiguar si es un
movimiento legal. Una casilla es un movimiento legal si cumple:

1) Está vacía
2) En al menos una dirección, a partir de la casilla que se está analizando

existe el siguiente patrón: una o más fichas contiguas rivales seguidas
de una ficha propia.

Dado que en los nodos terminales se necesita conocer la movilidad de

ambos jugadores, este módulo está replicado para poder calcular en paralelo los
movimientos legales de cada jugador.

3.1.2 Volteador (Disc flipper)

Recibe como entradas el tablero actual, el turno, y el movimiento realizado,

y calcula el nuevo tablero resultante. Este módulo se ha implementado mediante
una red iterativa matricial bidireccional donde la información se mueve
simultáneamente en 4 direcciones (y dos sentidos por dirección). Con esta
implementación obtenemos un módulo puramente combinacional capaz de
calcular un nuevo tablero en un solo ciclo de reloj. La ventaja de diseñar una
solución basada en redes iterativas es que nos permite solucionar un problema
muy complejo, casi imposible de formular de forma directa, dividiéndolo en
subproblemas mucho más sencillos (en este caso cada casilla es un
subproblema). Otra ventaja adicional, a la que aquí no se ha sacado partido, es

Fig. 5. Interfaz del módulo MoveChecker

16

que este diseño se puede aplicar de forma directa a cualquier tamaño de tablero,
dado que es tan sencillo como instanciar el número de módulos necesario y
conectarlos convenientemente.

La figura 7 muestra la arquitectura de una celda de la red. Para cada

casilla, se calcula en cada dirección el nuevo patrón a propagar en función del
patrón recibido y del contenido de la casilla (ver tabla 1). Así mismo, en caso de
que se haya encontrado un patrón que implique una operación de volteo, será la
casilla donde se ha colocado ficha la que dará la orden de que se realicen los
volteos correspondientes. Para ello analizará todos los patrones que le lleguen, y
propagará una señal de flip en aquellas direcciones que haya que voltear. El valor
de esta señal será igual al número de fichas que hay que voltear en dicha
dirección (ver tabla 2). Este valor se decrementará en cada propagación hasta
llegar a cero. La figura 6 ilustra con un ejemplo el funcionamiento de la red.

Fig. 6. Ejemplo de funcionamiento de la red iterativa del Disc
Flipper en uno de las 8 direcciones de flujo de información. La
casilla marcada con una ‘X’ es aquella donde colocamos la ficha

17

Patrón recibido Contenido
casilla Patrón propagado

Nada

 ó Nada

 Nada

 Nada

 Nada

 Nada

 Nada

 ó Nada

Tabla 1. Propagación de patrones para el volteo de fichas
moviendo negras. Para blancas es equivalente.

18

Patrón recibido Salida
Flip

 1

 2

 3

 4

 5

Tabla 2. Propagación de señal de flip a partir de la casilla donde
se ha colocado ficha. Para blancas es equivalente.

19

3.1.3 Casillas consolidadas (Stable discs evaluator)

Como se ha indicado en la sección 2.3.c, el cálculo de las casillas

consolidadas se realiza mediante una función recursiva mutua. Una
implementación puramente combinacional deriva por tanto en bucles

Fig. 7. Arquitectura e interfaz de una celda de la red iterativa del
Disc Flipper.

20

combinacionales que conllevan una reducción drástica de la frecuencia máxima
del procesador. Por este motivo, este módulo ha sido implementado mediante una
red iterativa matricial bidireccional secuencializada mediante la inclusión de un
biestable en cada celda de la red (salvo en las casillas del contorno).

Esta red, al igual que el volteador, trabaja simultáneamente en las 4

direcciones, y en los dos sentidos de cada dirección. Las casillas correspondientes
al contorno se calculan combinacionalmente mediante funciones lógicas. El resto
del tablero se secuencializa por capas tal y como muestra la figura 8, la
información generada en cada capa se almacena en un conjunto de biestables. El
módulo resultante calcula las casillas en un número de ciclos variable, y por ello el
módulo posee una salida done, tal y como se puede ver en la figura 9. Esta señal
se activará cuando ningún biestable cambie con respecto al ciclo anterior. Dado
que esta operación es algo más costosa que el resto de operaciones para evaluar
un nodo terminal, se añadió una sencilla lógica adicional que comprueba si todas
las esquinas están vacías, en cuyo caso no es posible que haya casillas
consolidadas, y por tanto se omite el cálculo de las mismas.

El módulo contiene además un sumador en árbol de 64 bits que devuelve el

número de casillas consolidadas. La interfaz del Stable Discs Evaluator se
muestra en la figura 9.

Fig. 8. Arquitectura del módulo de cálculo de las casillas estables.

21

Dado que en los nodos terminales se necesita conocer el número de
casillas estables de ambos jugadores, este módulo está replicado para poder
calcular ambos en paralelo.

3.1.4 Tabla de aperturas (Openings table)

En los juegos de tablero es habitual guiar el juego en su fase inicial por

secuencias de movimientos que, si bien pueden no ser óptimos, sí sabemos que
son buenos movimientos en base a la experiencia y al conocimiento de los
conceptos referentes a la estrategia del juego.

En el procesador se hizo uso de una tabla de 51 aperturas. Dada la simetría
horizontal y vertical del tablero, se calcularon las correspondientes aperturas
simétricas en cada dirección, resultando un total de 204 aperturas.
Para la confección del módulo de gestión de las aperturas se han utilizado 4
BRAMs de doble puerto y ancho del bus de datos de 9 bits. En la figura 10 se
muestra la arquitectura del módulo.

Fig. 9. Interfaz del módulo Stable Discs Evaluator

22

Al comenzar el juego se sigue siempre la primera apertura encontrada que
se adapte a la situación actual. Cuando la situación de la partida no se adapte a
ninguna de las aperturas este módulo dejará de utilizarse. Por lo general, esto
ocurre tras 4 o 5 movimientos.

3.1.5 Árbol

La implementación hardware del árbol de juego consta de los siguientes

submódulos:
a) Almacenes del árbol
b) Máquina de estados
c) Módulo de ordenación dinámica de nodos

El módulo del árbol de juego ha sido dimensionado para alcanzar una

profundidad máxima de 16 niveles. A continuación se describen en detalle los
submódulos:

a) Almacenes del árbol

- Es necesario almacenar el tablero abierto por cada nivel del árbol.

Cada tablero se codifica con 128 bits (2 bits por casilla). Esto

Fig. 10. Arquitectura del módulo de gestión de aperturas

23

requiere un total de 128 bits/tablero x 16 niveles x 1 tablero/nivel =
2048 bits.
Para que la lectura de un tablero se realice en un ciclo de reloj, se
han utilizado 4 BRAMs de 36 bits de ancho en paralelo, resultando
una memoria con un ancho de datos de 144 bits.

- La información relativa al algoritmo MinMax con poda alfa-beta se
almacena en un banco de registros diseñado a medida que consta
de lo siguiente:

1) 16 registros de 6 bits que almacenan el último movimiento
explorado en cada nivel abierto

2) 16 registros de 9 bits que almacenan los valores α - β de
cada nivel abierto

3) Un registro de 6 bits que almacena el mejor movimiento
que ha encontrado el algoritmo para el nivel de
profundidad máximo actual

4) Un registro de 6 bits que almacena el mejor movimiento
que ha encontrado el algoritmo en el árbol de mayor
profundidad completado

b) Máquina de estados

La generación de nodos se ha dividido en dos etapas para alcanzar
una mayor frecuencia de trabajo. La primera etapa se corresponde con el
estado “Estado Genera Nodo 1”, y en ella se calculan los movimientos
legales y se elige el siguiente movimiento legal a explorar. La segunda
etapa se corresponde con el estado “Estado Genera Nodo 2”, y en ella se
genera el nuevo tablero correspondiente a realizar el movimiento legal
elegido en la etapa previa y voltear las fichas que proceda.

24

c) Módulo de ordenación dinámica de nodos

Aplicamos una modificación a la salida del módulo Movimientos
Posibles para reordenar los movimientos según lo descrito en la sección
2.2.3, esta reordenación la realizan los módulos de la figura 12, Mapping y
Last move mapping. Una vez reordenados los movimientos posibles,
seleccionamos el siguiente movimiento a explorar. Para ello se utiliza un
codificador con prioridad enmascarado. La máscara se aplica en función del
último movimiento explorado. De esta forma la salida de este módulo es el
movimiento más prioritario según nuestra reordenación que todavía no
hemos explorado. Finalmente un mapeado inverso traduce el movimiento
elegido en el vector reordenado al correspondiente movimiento en su orden
natural.

Fig. 11. Máquina de estados del módulo Árbol

25

3.2 Recursos utilizados

El diseño ha sido implementado sobre una Virtex II-Pro (XC2VP30-FF896).

Este modelo dispone de un total de 13.696 slices y 2.448 Kb de BRAM. La tabla 3
muestra los recursos utilizados por la implementación del procesador. Como se
puede ver utilizamos menos de la mitad de los recursos de la FPGA, a pesar de
que es una FPGA relativamente antigua (de hace unos 10 años), mucho más
pequeña que las FPGAs de altas prestaciones actuales. Por tanto nuestro diseño
tiene un coste hardware muy razonable.
La frecuencia de trabajo del procesador es de 32 MHz. Esta FPGA está pensada
para trabajar a 100 MHz, sin embargo en este diseño hemos apostado por hacer
redes iterativas capaces de hacer operaciones muy complejas en tan sólo un ciclo
de reloj. Estas redes son las que limitan la frecuencia de reloj del sistema. Sin
embargo también son las que nos proporcionan nuestro buen rendimiento, por lo
que, tal y como se verá más adelante, la perdida de frecuencia de reloj es
completamente aceptable.

Versión BRAMs Slices
Finalistas 4 (2%) 5.325 (38%)

Ganadores 8 (5%) 5.830 (42%)

Tabla 3. Recursos de la FPGA utilizados. La versión Finalistas es la
que nos clasificó para la final. La versión Ganadores fue la

presentada en la final del concurso

Fig. 12. Arquitectura del módulo de ordenación dinámica de
nodos

26

4 Resultados

Para evaluar nuestro diseño se han realizado diversas mediciones y
comparaciones estudiando tanto su rendimiento, su consumo de energía, y el
tiempo de desarrollo.

4.1 Rendimiento

El rendimiento se ha comparado con cuatro rivales:
1) SW de referencia proporcionado por el concurso
2) Diseños realizados por los otros dos equipos de finalistas
3) SW equivalente que aplica exactamente las mismas técnicas
4) SW profesional de Reversi WZebra, considerado uno de los mejores

SW de Reversi existentes y desarrollado y entrenado por maestros
del juego

4.1.1 Versus SW de referencia

La organización del concurso proporcionó un software contra el cual testar y

evaluar los diseños participantes. Este software tiene las siguientes
características:

- Algoritmo de búsqueda MinMax con poda alfa-beta
- Evaluación de nodos terminales basada en número de fichas y

puntuaciones estáticas de las casillas del tablero
- 7 niveles de dificultad, que se corresponden con la profundidad

alcanzada en el árbol de juego
- Tiempo de cómputo variable: el necesario para construir y evaluar el

árbol correspondiente al nivel de dificultad elegido

Los resultados de la confrontación del diseño implementado en la FPGA
con este software se muestran en la tabla 4. El software fue ejecutado en un PC
equipado con un procesador Intel i7-2600 @ 3,4GHz y 8 GB de memoria RAM.

27

Nivel de
dificultad SW

FPGA mueve negras SW mueve negras

Puntuación
partida

(HW-SW)

Movimientos Puntuación
partida

(HW-SW)

Movimientos

HW SW HW SW

1 63-1 32+0 31+3 63-0 31+0 31+3
2 64-0 33+0 32+5 60-4 31+0 31+2
3 64-0 31+0 30+1 64-0 33+0 33+6
4 64-0 31+0 30+1 63-0 31+0 31+3
5 64-0 33+0 32+5 64-0 30+0 30+0
6 64-0 31+0 30+1 63-0 31+0 31+3
7 64-0 33+0 32+5 64-0 32+0 32+4

Se aprecia una gran superioridad del jugador artificial implementado sobre

la FPGA sobre el SW de referencia.

Adicionalmente, testeamos nuestro diseño de manera más agresiva

limitándole el tiempo de cómputo para ver qué resultados obteníamos contra el
SW de referencia. La tabla 5 muestra los resultados para un tiempo de cómputo
limitado a 0,1 segundos, y la tabla 6 para un tiempo de cómputo limitado a 3,2 *
10-5 segundos (1024 ciclos de reloj).

Nivel de
dificultad SW

FPGA mueve negras SW mueve negras

Puntuación
partida

(HW-SW)

Puntuación
partida

(HW-SW)
1 57-7 64-0
2 64-0 60-0
3 64-0 64-0
4 64-0 59-4
5 64-0 61-1
6 64-0 59-4
7 60-3 59-5

Tabla 4. Resultados de la confrontación SW de referencia vs FPGA
con tiempo de cómputo limitado a 1 segundo

Tabla 5. Resultados de la confrontación SW de referencia vs FPGA
con tiempo de cómputo limitado a 0,1 segundos

28

Nivel de
dificultad SW

FPGA mueve negras SW mueve negras

Puntuación
partida

(HW-SW)

Puntuación
partida

(HW-SW)
1 42-22 51-3
2 52-12 44-20
3 42-22 54-10
4 60-0 38-26
5 63-0 47-17
6 63-1 38-26
7 63-0 *

 * El SW realizó un movimiento inválido

A la vista de los resultados de las tablas 5 y 6, se puede apreciar cómo
incluso para un tiempo de cómputo realmente restrictivo (3,2 * 10-5 segundos),
nuestro diseño es capaz de ganar en todos los casos.

4.1.2 Versus diseños finalistas

En la final disputada en una sesión del congreso, nuestro diseño se
enfrentó a los otros dos diseños finalistas (FPGA vs FPGA) en formato de
competición round-robin. Jugamos un total de cuatro partidas, dos contra un
equipo de una universidad griega, y dos contra un equipo de una universidad
japonesa, resultando ganadores en todas ellas, por lo que obtuvimos el primer
premio del concurso.

4.1.3 Versus SW equivalente

Desarrollamos una solución software algorítmicamente equivalente al
diseño hardware. Ha sido desarrollada en C, y consta de 2 hilos de ejecución, uno
para el programa principal y otro para la gestión del timeout.

FPGA mueve negras SW mueve negras

Puntuación
partida

(HW-SW)

Nivel máximo
promedio

Puntuación
partida

(HW-SW)

Nivel máximo
promedio

HW SW HW SW

42-22 9,64 7,63 52-12 9,85 8,16

Tabla 7. Resultados de la confrontación SW equivalente vs FPGA.

Tabla 6. Resultados de la confrontación SW de referencia vs FPGA
con tiempo de cómputo limitado a 3,2 * 10-5 segundos

29

Los resultados de la confrontación del diseño implementado en la FPGA
con este software se muestran en la tabla 7. El software fue ejecutado en un PC
equipado con un procesador Intel i7-2600 @ 3,4GHz y 8 GB de memoria RAM.

La FPGA gana al SW, tal y como se puede apreciar, debido a que es capaz de
alcanzar mayor profundidad en el árbol de juego para un mismo tiempo de
cómputo.

 Es importante mencionar que durante la realización de este software se
aplicaron los conocimientos adquiridos en la asignatura del máster “Programación
orientada a prestaciones”. Para ello, la versión SW inicial fue analizada con el
programa de profiling de Intel, “VTune”, en busca de los hotspots.
En este análisis se constató que la función que haya los movimientos legales
(legalMoves) es el principal hotspot de la aplicación, suponiendo un 81% del total
de tiempo de cómputo de movimientos.
En base a este resultado, se optimizó dicha función añadiendo una cache de
movimientos legales, que evita recalcularlos para cada movimiento de un nodo
abierto. La aplicación se compiló con la versión 4.1.2 del compilador GCC,
aplicando el flag “-O3”. También se intentó la paralelización automática, si bien el
compilador no fue capaz de sacar partido a esta posibilidad.
En todo caso, estamos en proceso de paralelizar manualmente la función
legalMoves mediante directivas OpenMP, si bien en el momento de redacción de
este documento no se ha concluido la tarea.

4.1.4 Versus SW profesional (WZebra)

Consideramos interesante evaluar a nuestro diseño contra un software
profesional de Reversi. Elegimos el WZebra [12], dado que es gratuito y está
considerado como uno de los más potentes creados hasta el momento.
WZebra implementa MultiProb-Cut, un sofisticado algoritmo de búsqueda superior
a MinMax, una extensa tabla de aperturas, capaz de generar nuevas variantes en
base al conocimiento adquirido en las partidas que disputa, y una función de
evaluación basada en inspección de patrones de distintas zonas del tablero.

Todo esto le convierte en un rival extremadamente fuerte, y como tal, es

superior a nuestro diseño, si bien para profundidades de búsqueda bajas (menor
de 4 niveles), nuestro diseño gana casi todas las partidas, y para niveles medios
(4-6) de WZebra, nuestro diseño es capaz de batirle en ciertas ocasiones. WZebra
exhibe un comportamiento no determinista, y de un total de 22 partidas disputadas
contra él, nuestro diseño fue capaz de batirle en 9 ocasiones (≈40%). A partir del
nivel 7 WZebra ganó a nuestro diseño todas las partidas que disputamos.

30

4.2 Consumo energético

Actualmente, el problema de la disipación de calor es un factor crítico en el

diseño de procesadores. La capacidad de cálculo de muchos sistemas se ve
necesariamente coartada por este factor, especialmente en los sistemas
empotrados.

Para la evaluación utilizamos como instrumento de medida un vatímetro
Yokogawa WT210 [13]. El esquema de medida del consumo de la FPGA y del PC
se muestra en la figura 13.

El vatímetro viene acompañado de un software que procesa el muestreo de
las medidas y ofrece gráficas de una gran variedad de magnitudes de medida. En
nuestro caso, nos interesa mostrar la potencia instantánea en función del tiempo.
La figura 14 muestra, para una partida FPGA vs SW equivalente, la
correspondiente gráfica de consumo para el PC, y la figura 15 para el consumo de
la FPGA. Los picos que se observan en las gráficas se corresponden a los
intervalos de procesamiento/espera propios del juego dado que tanto el PC como
la FPGA alternan periodos de actividad, en los que tienen que decidir qué
movimiento quieren realizar, con periodos de inactividad, en los que están
esperando a que el rival mueva. En el caso del PC, realiza una espera activa con
lo que sigue ejecutando instrucciones y disipando potencia.

Figura 13. Montaje para la medida de consumo mediante un
vatímetro Yokogawa WT210

31

Po
te

nc
ia

 (W
)

 00:00 01:10

Tiempo (mm:ss)

En la figura 14 se puede ver cómo el consumo del PC en reposo ronda los

45 W. Durante la ejecución del SW equivalente, se distinguen los tramos de
tiempo en los que el SW espera el movimiento del rival, con un consumo en torno
a los 70 W, y los tramos en los que el SW está calculando su próximo movimiento,
lo cual eleve el consumo a cerca de 80 W. El promedio de potencia durante la
ejecución del SW es de casi 75 W.

Figura 14. Consumo de potencia del PC corriendo el SW equivalente
durante el trascurso de una partida de Reversi

80

40

32

Po
te

nc
ia

 (W
)

 00:00 01:10

Tiempo (mm:ss)

En la figura 15 se aprecia cómo el consumo de la FPGA en reposo ronda

los 4,25 W. Durante el transcurso de la partida, la FPGA consume en torno a 4,6
W en los tramos donde calcula su próximo movimiento, y en torno a 4,3 W en los
tramos donde espera el movimiento del rival.

El promedio de potencia durante la partida se sitúa en unos 4,45 W, unas
17 veces menos que el PC.

4.3 Tiempo de desarrollo

Como se verá en la sección 7, el tiempo de desarrollo del diseño HW ha

sido sustancialmente superior al del diseño SW. Esto es debido principalmente a
dos motivos:

- El tiempo de diseño HW incluyó también la afinación de los pesos de
la función de evaluación, para obtener mejores resultados contra el
SW de referencia

- El tiempo de desarrollo de una solución HW es superior al del
desarrollo de una solución equivalente SW, debido a que, si bien el

Figura 15. Consumo de potencia de la FPGA durante el trascurso de
una partida de Reversi

5

4

33

diseño y la implementación puedan suponer tiempos relativamente
similares, la depuración de desarrollos HW es mucho más laboriosa
que a la de desarrollos SW, teniendo un gran impacto en el tiempo
total necesario para su desarrollo.

5. Conclusiones

 Los distintos resultados obtenidos y la experiencia adquirida durante el
desarrollo del diseño expuesto en este trabajo permiten extraer las siguientes
conclusiones:

Alto rendimiento del diseño hardware:
 Los resultados expuestos en la sección 4.1.3 muestran cómo el diseño HW
es capaz de procesar un mayor número de nodos por unidad de tiempo que un
SW equivalente que aplica los mismos algoritmos y las mismas optimizaciones. En
promedio, el diseño HW es capaz de alcanzar casi 2 niveles más de profundidad
en el árbol de juego. Esto supone una gran diferencia, ya que el número de nodos
a explorar crece exponencialmente con la profundidad alcanzada.
El principal motivo de esta sustancial diferencia se encuentra en el paralelismo. El
cálculo de los movimientos legales de un tablero posee un alto grado de
paralelismo, ya que es posible calcular en paralelo cada casilla del tablero.
El Move Checker del diseño HW en efecto calcula en paralelo todas las casillas
del tablero. No así la solución SW, que ejecuta el mismo algoritmo pero de manera
secuencial, casilla a casilla.

Es importante señalar además que estamos enfrentando a tecnologías con
un importante desfase temporal: La FPGA sobre la que ha sido implementado el
diseño data de 2002, mientras que el procesador sobre el cual corre la solución
SW equivalente data de 2011. Por tanto el procesador que se ha desarrollado en
este proyecto implementado en una FPGA que ya está casi obsoleta trabajando a
32 MHz es capaz de proporcionar un rendimiento muy superior que un PC actual.
La razón es que este diseño HW ha sido optimizado para sacar el máximo partido
al paralelismo de los distintos problemas a tratar.

Bajo consumo del diseño hardware:
 El incremento de consumo de potencia del PC ejecutando la solución SW
equivalente es dos órdenes de magnitud superior al correspondiente incremento
de consumo de la FPGA. Dado que ambas trabajan el mismo tiempo, el consumo
de energía también seria dos órdenes mayor para el PC. Pero en realidad, si

34

realizase el mismo trabajo (explorar el mismo número de nodos), el consumo de
energía sería todavía mayor en el PC dado que el PC en el mismo tiempo explora
menos niveles.

Inteligencia artificial en el Reversi:
 El Reversi actualmente es un juego no resuelto (en tamaño 8x8). Por lo
tanto, es necesario utilizar heurísticas que evalúen con la mayor fidelidad posible
la calidad de los tableros.
El software proporcionado por el concurso implementa una primera aproximación
consiste en evaluar a partir de valores estáticos para las casillas y del número de
fichas.
Nuestro diseño implementa un segundo paradigma basado en conceptos tales
como la movilidad, casillas estables y captura de las esquinas.
Finalmente, existe un tercer paradigma fundamentado en la inspección de
patrones en el tablero. Programas profesionales de Reversi tales como WZebra,
implementan este paradigma.

Los distintos enfrentamientos entre los 3 paradigmas evidencian que la
estrategia de evaluación implementada en el diseño HW es claramente superior a
la implementada en el software proporcionado por el concurso, pero se ve
ampliamente superada por la inspección de patrones implementada en WZebra.

6. Trabajo futuro

Los objetivos iniciales del proyecto se han alcanzado en su totalidad por lo
que podría parecer que este es un trabajo cerrado. Sin embargo quedan algunas
tareas interesantes por realizar.
En primer lugar queremos buscar la forma de realizar un análisis de consumo más
detallado, siendo capaces de ver no sólo el consumo total sino también el
consumo interno de cada parte de nuestro procesador, así como de la versión SW
equivalente. De esta forma podremos identificar que partes de nuestro procesador
son más eficientes.
Por otro lado hemos seguido trabajando en el diseño de otro procesador para otro
juego (en este caso el Connect-6 [14]), y planeamos hacer un análisis conjunto de
los resultados y enviarlo a una revista científica. Consideramos que este análisis
resultaría muy interesante para la comunidad científica dado que muy pocas veces
se han realizado comparaciones HW/SW rigurosas y justificadas que incluyan el

35

consumo de potencia y energía. Además, la utilización de FPGAs para acelerar la
ejecución de juegos de tablero es un campo prácticamente inexplorado.
Por último, para que nuestro análisis sea más interesante planeamos ampliarlo a
otras plataformas. En concreto nos gustaría incluir plataformas para sistemas
móviles, y plataformas tipo GPGPU (General-Purpose Computing on Graphics
Processing Units).

7. Planificación

 Comenzamos el trabajo el 25 de Junio de 2010, y el deadline del concurso,
15 de Octubre de 2010, limitaba el tiempo del que inicialmente disponíamos.
En este espacio de tiempo desarrollamos el diseño HW que evaluamos contra el
SW de referencia, descrito en [15].
Posteriormente, la organización habilitó a los finalistas a mejorar sus diseños para
la final que se celebró el 10 de Diciembre de 2010. En este periodo incorporamos
dos optimizaciones adicionales al diseño HW: tabla de aperturas y ordenación
dinámica de nodos independiente del problema.
Más adelante, del 5 de Junio de 2011 al 11 de Agosto de 2011, desarrollamos la
solución SW equivalente e instrumentada, y realizamos el profiling y la
optimización de la misma.
Finalmente, en el mes de Octubre de 2011, se puso en marcha la plataforma de
medición de consumo de potencia, y se realizaron las medidas oportunas.
El total de horas empleadas en el trabajo es de 810. La figura 16 muestra la
distribución de las mismas.
Es importante mencionar que la tarea “Diseño e implementación HW” incluye el
diseño y ajuste de la inteligencia artificial incorporada al diseño, facilitando de
manera importante el desarrollo de la versión SW.

36

25%
60%

5%
10% Diseño e implementacion

HW
Implementación SW

Análisis Consumo

Documentación

8. Referencias

[1] Brian Rose (2005) Othello: A Minute to Learn… A Lifetime to Master.
http://othellogateway.com/
[2] M. Buro (1999) How Machines have Learned to Play Othello, IEEE Intelligent
Systems J. Vol 14(6), pag: 12-14
[3] M. Buro (2000) Experiments with Multi-ProbCut and a New High-Quality
Evaluation Function for Othello, Games in AI Research, ISBN: 90-621-6416-1
[4] M. Buro (2003) The Evolution of Strong Othello Programs. Entertainment
Computing - Technology and Applications, Kluwer, pag. 81-88
[5] Wong, C.K.; Lo, K.K.; Leong, P.H.W. (2004) An FPGA-based Othello
Endgame Solver. Proceedings IEEE International Conference on Field-
Progammable Technology (FPT 2004), pag: 81-88.
[6] Mabuchi, T.; Watanabe, T.; Moriwaki, R.; Aoyama, Y.; Gundjalam, A.; Yamaji,
Y.; Nakada, H.; Watanabe, M. (2010) Othello Solver based on a soft-core MIMD
processor array. Proceedings IEEE International Conference on Field-
Progammable Technology (FPT 2010), pag: 511-514.

[7] Smerdis, M.; Malakonakis, P.; Dollas, A. (2010) CarlOthello : An FPGA-Based
Monte Carlo Othello player. Proceedings IEEE International Conference on Field-
Progammable Technology (FPT 2010), pag: 515-518.

Figura 16. Distribución del tiempo invertido en cada tarea del
trabajo

37

[8] Minimax, Wikipedia: The Free Encyclopedia,
http://en.wikipedia.org/wiki/Minimax

[9] Alpha-Beta pruning, Wikipedia: The Free Encyclopedia,
http://en.wikipedia.org/wiki/Alpha-beta_pruning

[10] Iterative deepening depth-first search, Wikipedia: The Free Encyclopedia,
http://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search

[11] Xilinx Inc., http://www.xilinx.com

[12] Gunnar Andersson Othello Website, http://radagast.se/othello/

[13] Yokogawa Electric Corporation Website, http://www.yokogawa.com/

[14] Connect-6, Wikipedia: The Free Encyclopedia,
http://en.wikipedia.org/wiki/Connect6

[15] Olivito, J.; González, C.; Resano, J. (2010) FPGA Implementation of a Strong
Reversi Player. Proceedings IEEE International Conference on Field-Progammable
Technology (FPT 2010), pag: 507-510.

