i Universidad
A0 Zaragoza

1542

Trabajo de fin de master

Master en Ingenieria de Sistemas e Informatica

Diseno e implementacion de un jugador
artificial de Reversi sobre una FPGA

Director: Javier Resano Ezcaray
Autor: Javier Olivito del Ser

.x.h' Escuela de
\ Ingenieria y Arquitectura
1542 Universidad Zaragoza

Departamento de informatica Grupo de Arquitectura de Escuela de Ingenieria y
e ingenieria de sistemas Computadores de Arquitectura
Zaragoza
Programa oficial de posgrado Curso 2010-2011

en Ingenieria Informatica Diciembre 2011

Indice

RESUMEN .o e 5
L INtrodUCCION ..ot e 6
L.1. ;Qué es el ReVersi?c.oiuiiiiiiiiii i 6

1.2. (Quéesuna FPGA? ..o 7

1.3. Especificaciones del CONCUIrSocoevueiiiiiininiiiiiiiiiininiineinen, 8

1.4. Trabajo relacionado ooueiiiiitiiiii i 9

2. Inteligencia artificial implementada en el procesador ..., 10
2.1. Consideraciones generales ooevueieiieiiininniieiiininieeanenn. 10

2.2. Algoritmo de busqueda ooiiiiiiii e 10

2.2.1. Podaalfa-betacoooiiiiiii i 11

2.2.2. Busqueda en profundidad iterativaoo 11

2.2.3. Ordenacién dindmica de nodos —cooeeiviiiiiiiiininnn, 12

2.3. Funcidn de evaluacioncoooiiiiiiiiiiiiiiiii i 12

3. Implementacion Hardwarec.ooooiiiiiiiiiiiiiiii i 14
3.1. Arquitectura del procesadorciiiiiiiiiiii 14

3.1.1. Movimientos Posiblescc.ocoiiiiiiiiiiii 15

3.1.2. Volteador ...oooneiiiiiiii i e 15

3.1.3. Casillas consolidadas cooiiiiiiiiiiiiiii 19

3.1.4. Tablade aperturasccooeevuiiiiiiiiiiiiiiiiiiiieneenen. 21

3150 ATDOL i 22

3.2. Recursos utilizados —oooneiiniii i 25

4. ReSUIAAOS evieeit ittt 26
4.1 Rendimientooueiniintii e 26

4.1.1. Versus SW de referenciacooeviviiiiiiiiiiiiiiinnnn... 26

4.1.2. Versus disefios finalistascoooiiiiiiiiiiiiiiiiiii, 28

4.1.3. Versus SW equivalentec.cooiiiiiiiiiiiiiiiiiiinn... 28

4.1.4. Versus SW profesionalcooiiiiiiiiiiiiiiiiiiiiin 29

4.2. CONSUMO ENETEETICO «.uvunrinttnt ettt ettt et ene e 30

4.3. Tiempo de desarrollo oiuerniiieiiii e 32

S CONCIUSIONES weetntett ettt et ettt et ettt e e 33
0. Trabajo fULUIO ..ot 34
7. PIanificacion oouoiiiitii i 35
Q. RETEIENCIAS + v vvvrrrrrrrneneaeaneneneneeeeeeueneneneereteseneneesesesesensesenesenensasennns 36

Anexo I: Articulo publicado en las actas del FTP '10

Indice de figuras

Figura 1: Disposicion inicial de las fichas al comienzo de la partida 7
Figura 2: Estructura tipica de una FPGA ... 7
Figura 3: Poda alfa-beta ... 11
Figura 4: Arquitectura del procesador —cooiiiiiiiiiiiiiiiiii 14
Figura 5: Interfaz del médulo Move Checker ..., 15
Figura 6: Ejemplo de funcionamiento de la red iterativa del Disc Flipper 16
Figura 7: Arquitectura e interfaz de una celda de la red iterativa del Disc Flipper 19
Figura 8: Arquitectura del médulo de calculo de las casillas estables — 20
Figura 9: Interfaz del mddulo Stable Discs Evaluator ... 21
Figura 10: Arquitectura del mdodulo de gestion de aperturas ooooini.n. 22
Figura 11: Maquina de estados del modulo Arbolcccccoviiiiiiiiiiiinainns, 24
Figura 12: Arquitectura del modulo de ordenacion dindmica de nodos 25

Figura 13: Montaje para la medida de consumo mediante un vatimetro Yokogawa

W T 210 o 30

Figura 14: Consumo de potencia del PC corriendo el SW equivalente durante el

trascurso de una partida de Reversi cooiiiiiiiiiii 31

Figura 15: Consumo de potencia de la FPGA durante el trascurso de una partida de

ROV TS oottt e e e e e s 32

Figura 16: Distribucion del tiempo invertido en cada tarea del trabajo 36

Tabla 1:

Tabla 2:

Tabla 3:

Tabla 4:

Tabla 5:

Tabla 6:

Tabla 7:

Indice de tablas

Propagacion de patrones para el volteo de fichas ol 17

Propagacion de sefial de flip a partir de la casilla donde se ha colocado
o) 18

Recursos de 1a FPGA utilizados — coooevieiiiiiiii 25

Resultados de la confrontacion SW de referencia vs FPGA con tiempo de
computo limitado a 1 segundo oooiiiiiii 27

Resultados de la confrontacion SW de referencia vs FPGA con tiempo de
computo limitado a 0,1 segundoscooviiiiiiiiiiii 27

Resultados de la confrontacion SW de referencia vs FPGA con tiempo de
computo limitado a 3,2 * 107 segundOS .eevvvvvvrnneeeriiiiiieeeeeeiiiinnn, 28

Resultados de la confrontacion SW equivalente vs FPGA 28

Disefio e implementacion de un jugador artificial de Reversi
sobre una FPGA

Resumen

El Field-Programmable Technology Design Competition es un concurso de
disefio hardware internacional enmarcado en el International Conference on Field-
Programmable Technology, congreso internacional de la region asiatica sobre
hardware reconfigurable. En su edicién de 2010 propuso el desarrollo de un
procesador especifico para jugar al Reversi sobre una FPGA.

Partiendo de conocimientos nulos acerca de la estrategia subyacente al
juego, disefiamos e implementamos en 4 meses un procesador muy superior al
software de referencia que suministraba la organizacion del concurso. El
procesador implementa el algoritmo MinMax con poda alfa-beta, busqueda en
profundidad iterativa y ordenacion dinamica de nodos para la exploracion del
espacio de busqueda, y una evaluacibn de nodos basada en conceptos
fuertemente ligados a la estrategia del juego, tales como movilidad, captura de
esquinas o casillas estables.

Posteriormente, desarrollamos una version software algoritmicamente
equivalente con el propdsito de establecer comparativas de rendimiento y de
consumo FPGA/PC. Los resultados muestran un mayor rendimiento del disefo
hardware, fruto principalmente de la explotacién del paralelismo y del disefio de
una arquitectura a medida, y un consumo sustancialmente inferior, debido
principalmente a que el procesador desarrollado trabaja a una frecuencia dos
ordenes de magnitud inferior al PC. Como contrapartida, el tiempo de desarrollo
del disefio hardware fue claramente superior que el del disefio software
equivalente.

El disefio presentado en la sesion del congreso dedicada a la competicidon
fue capaz de batir al resto de finalistas, y por ello fuimos galardonados con el
primer premio de la competicion. Ademas, el articulo describiendo el disefio fue
publicado en las actas del congreso, siendo accesible a la comunidad cientifica a
través del IEEExplore.

1. Introduccién

El FPT Design Competition (en adelante, concurso) es un concurso
internacional de disefio hardware que se celebra anualmente como parte del
International Conference Field-Programmable Technology, congreso internacional
de la regidon asiatica sobre hardware reconfigurable. En su edicién de 2010
propuso el disefio e implementacion de un jugador artificial de Reversi sobre una
FPGA.

Este trabajo tiene los siguientes objetivos:

- Participar en el FPT Design Competition 2010

- Profundizar en el disefio hardware avanzado

- Crear un benchmark de soluciones hardware-software algoritmicamente
equivalentes e instrumentadas para un posterior estudio comparativo de
rendimiento y consumo energético

- Introducirse en las medidas de consumo energético de distintas
plataformas de computacion

El resto de la memoria sigue la siguiente estructura de contenidos:

La seccion 2 describe la inteligencia artificial implementada en el procesador.
La seccion 3 detalla la implementacion hardware que se ha llevado a cabo.

La seccion 4 muestra los resultados en términos de rendimiento y consumo.
La seccion 5 expone las conclusiones obtenidas a raiz del trabajo realizado.
La seccion 6 contempla las posibles lineas de trabajo futuro.

La seccion 7 ilustra la distribucion temporal de tareas a lo largo del trabajo.

La seccion 8 contiene las referencias mas relevantes utilizadas en este trabajo.
Finalmente, el anexo | contiene el articulo que se publicd en el concurso.

1.1 ;Queé es el Reversi?

Reversi [1] (también conocido como Othello) es un juego de tablero que
enfrenta a dos jugadores. Se desarrolla sobre un tablero de 8x8 y con 64 fichas,
cuatro de ellas inicialmente colocadas como se muestra en la figura 1. El juego
comienza moviendo negras y alternando entre ambos jugadores hasta que
ninguno pueda realizar un movimiento legal. Un movimiento legal consiste en
colocar una ficha del color propio en una casilla vacia, de manera que se
flanqueen una o mas fichas del color contrario en cualquiera de las direcciones
(horizontal, vertical, diagonal). Aquellas fichas flanqueadas pasan a ser del color
del jugador que hizo el movimiento.

El objetivo del juego es tener mas fichas que el rival al final de la partida.

A B C D F G H

E
|
e

Fig. 1. Disposicion inicial de fichas al comienzo de la partida

1.2 (Qué es una FPGA?

Una FPGA (Field Programmable Gate Array) es un circuito integrado que
contiene bloques de logica, elementos de memoria e interconexiones, todos ellos
programables, asi como bloques especificos de E/S (figura 2). La configuracion de
la FPGA mediante la interconexion de los bloques logicos y la funcionalidad de los
mismos, permite generar el sistema légico deseado.

/NN N ..
|/ E.
N Hmm -
N Hmm -

Fig. 2. Estructura tipica de una FPGA con bloques de légica
rodeados de elementos de interconexién y celdas de
entrada/salida rodeando el chip

La descripcion del sistema l6gico que se desea disefiar se suele realizar

mediante el uso de un lenguaje de descripcidon de hardware, siendo los mas
usados VHDL (acrénimo de VHSIC HDL, Very High Speed Integrated Circuit
Hardware Description Language) y Verilog.

1.3

Especificaciones del concurso

Las especificaciones detalladas mas relevantes son:

Se dispone de un segundo para realizar un movimiento.

El disefio se evaluara inicialmente contra un software proporcionado por el
concurso. Dicho software dispone de tanto tiempo como precise para
realizar un movimiento y posee siete niveles de dificultad.

Las métricas para evaluar el disefio contra el software son:
- Numero de fichas logradas al finalizar la partida para cada nivel de
dificultad
- Numero de movimientos realizados para cada nivel de dificultad.

Los tres mejores disefios evaluados segun lo anterior disputaran la final. La
final consiste en un torneo round-robin que enfrenta FPGA vs FPGA con un
referee de por medio Este torneo se realizara en una de las sesiones del
congreso.

La comunicacion de los movimientos se realizard mediante RS-232. Cada
envio consta de dos caracteres ASCIl de acuerdo a las siguientes
convenciones:

- El juego comienza con el envio por parte del referee de los
caracteres “YY” a la FPGA que mueva negras.

- Un movimiento se comunica indicando la columna y fila del
movimiento realizado de acuerdo con la notacién utilizada en el
tablero de la figura 1.

- Si no posible mover en algun punto de la partida, se debe enviar
“WV” al referee. Si es cierto, el referee lo notificara al oponente
enviandole “RR”.

- Siun jugador realiza un movimiento invalido, el referee le enviara “II”
indicandole que ha perdido la partida, y ademas enviara al rival “XX”
notificandole que ha ganado la partida.

= La FPGA sobre la que se implementara el disefio debe ser una de las
siguientes:

- DEZ2 Development and Education Board

- XUP Virtex-Il Pro Development System

- Xtreme DSP Starter Platform — Spartan-3A DSP 1800A Edition
- DE2-70 Development and Education Board

- Altium NanoBoard 3000

Nuestro disefio ha sido implementado sobre la XUP Virtex-ll Pro
Development System (en adelante, FPGA).

1.4 Trabajo relacionado

El Reversi se ha estudiado en diversos trabajos cientificos. Destaca
especialmente el trabajo realizado por Michael Buro [2] [3] [4] en el area de
inteligencia artificial aplicada a juegos de tablero.

En cuanto al desarrollo de un procesador especifico para jugar al Reversi,
cuando empezamos este trabajo solamente existia una contribucion en un
congreso del area [5], este trabajo ere interesante por ser la primera vez que se
hacia algo asi, pero podemos decir que presenta un procesador muy simple,
incapaz de realizar un juego avanzado.

En el mismo congreso en el que se presentd nuestro procesador, se
presentaron también nuestros dos rivales. De ellos, el trabajo presentado en [6]
presenta una aproximacion basada en la utilizacion de procesadores dentro de la
FPGA que proporciona un disefio rapido de realizar, pero no muy eficiente. En
cuanto al trabajo presentado en [7] es una aproximacién probabilistica basada en
Monte-Carlo que proporciona un rendimiento mejor que el primer rival, pero
claramente inferior a nuestro disefio.

Finalmente es interesante destacar que ningun trabajo previo ha realizado
una comparacion rigurosa del rendimiento y del consumo de un disefio de este
tipo implementado en una FPGA comparado con el obtenido con una
aproximacion basada en un ordenador de sobremesa convencional. En ese
sentido consideramos que este trabajo puede resultar muy interesante para la
comunidad cientifica, dado que la ejecucidon de juegos nunca se ha considerado
como una de las posibles aplicaciones de las FPGAs, y sin embargo, tal y como se
vera en los resultados experimentales, para este problema en concreto las FPGAs
proporcionan un rendimiento y un consumo muy interesantes.

2. Inteligencia artificial implementada en el procesador

2.1 Consideraciones generales

La inteligencia artificial en los juegos de tablero se basa en tratar de
explorar estados futuros y evaluarlos de acuerdo a su calidad (esto es, cuantificar
lo ventajoso de un tablero para lograr un final ganador).

Este proceso involucra a dos elementos:

1) Algoritmo de busqueda
2) Funcién de evaluacién

El primero trata de explorar el espacio de estados futuros (arbol de juego) en base
a ciertas consideraciones (ver seccion 2.2).

El segundo es el estimador que utiliza el algoritmo de busqueda para elegir cada
movimiento (ver seccion 2.3).

2.2 Algoritmo de busqueda

El algoritmo elegido para explorar el arbol de juego es MinMax [8]. La idea
subyacente es buscar nuestro mejor movimiento suponiendo que el rival escogera
el mas ventajoso para él. El algoritmo realiza una busqueda primero en
profundidad, en la que se evaluan los nodos terminales (aquellos que son nodos
fin de partida, o nodos cuya profundidad es la maxima para el arbol en
construccion), y el valor se propaga a niveles superiores de manera que en los
niveles pares se maximiza la utilidad (elegir el mayor valor de los nodos hijos), y
en los niveles impares se minimiza la utilidad (elegir el menor valor de los nodos
hijos).

Esta estrategia se topa con el problema de la complejidad computacional
del Reversi: el arbol de juego completo consta de ~10° nodos. Es inviable por
tanto explorarlo por completo. Esto obliga a limitar la busqueda a cierta
profundidad (ver seccién 2.2.2). Por otro lado la metodologia del algoritmo MinMax
abre las puertas a una potente mejora, llamada poda alfa-beta, que evita explorar
estados sin variar por ello el resultado de la busqueda. La seccion 2.2.1 la
describe con mayor detalle.

10

2.2.1 Poda alfa-beta

Sea a el valor mas alto encontrado hasta el momento en un nivel MIN sin
cerrar, y sea [el valor mas bajo encontrado hasta el momento en un nivel MAX
sin cerrar. La poda alfa-beta [9] evitara explorar aquellos nodos de un nivel MIN
que conduzcan a un valor menor o igual a a, y aquellos nodos de un nivel MAX
que conduzcan a un valor mayor o igual a 8.

La eficacia de la poda alfa-beta depende del orden en el que se generen los
sucesores (cuanto antes se generen los mejores sucesores, mayor sera la eficacia
de la poda). En el mejor de los casos, se consigue una reduccion del espacio de
estados explorados de O(b% a O(b¥?), donde b es el factor de ramificacion y d la
profundidad del arbol. O lo que es lo mismo, se alcanza el doble de profundidad en
el mismo tiempo.

MAX

4 5 1 MIN

41 (12| |7 10[15| |6 123 MAX

Fig. 3. Poda alfa-beta. Los nodos con marcas rojas no se
exploraran

2.2.2 Busqueda en profundidad iterativa

Tal y como se indica en las especificaciones del concurso, el tiempo
maximo para procesar un movimiento es un segundo. Dado que no se conoce a
priori el nivel maximo que puede alcanzar una busqueda para un tiempo maximo
prefijado, ya que depende del momento de la partida (esto es, del numero de
nodos a explorar. En las fases iniciales de la partida el nUmero de sucesores es
mayor que en las fases finales, ya que el numero de movimientos legales al
principio es mayor que al final), una buena aproximacion para este problema

11

consiste en generar arboles de juego de profundidad incremental [10], y devolver
como mejor movimiento el del arbol de mayor nivel maximo completamente
generado en el momento en el que llegue el timeout.

Esta estrategia permite alcanzar la maxima profundidad de busqueda que
permitan las condiciones particulares en cada momento.
La aparente desventaja que supone invertir tiempo en la generacién de arboles de
profundidad maxima menor al mas profundo generado finalmente, no lo es debido
a que las busquedas en los arboles menores sirven de guia a los de mayor
profundidad, mejorando la eficacia de la poda alfa-beta.

2.2.3 Ordenacion dinamica de nodos

La eficacia de la poda alfa-beta depende fuertemente de la ordenacién de
los nodos. Cuanto antes se generen los que a posteriori seran los mejores
movimientos, mayor sera la eficacia de la poda. En nuestro disefio llevamos a
cabo dos tipos de ordenacion:

a) Independiente del problema: aprovechamos el conocimiento que se
infiere de la generacion de arboles de profundidad incremental: el mejor
movimiento hallado en el arbol limitado a profundidad d, sera el primero
en ser explorado en el arbol limitado a profundidad d+1.

b) Dependiente del problema: Puesto que los movimientos en casillas de
las esquinas son a priori movimientos prometedores, mientras que
movimientos en casillas X (aquellas adyacentes a las esquinas en las
diagonales), son a priori malos movimientos, realizamos la siguiente
ordenacion de sucesores:

| A1 | H1 | A8 | H8 | resto de casillas | B2 | G2 | B7 | G7 |

Esto es, exploramos en primer lugar los movimientos en casillas de las
esquinas, y en ultimo lugar los movimientos en casillas de tipo X.

2.3 Funcidn de evaluacidon

Las métricas (o heuristicas) utilizadas para evaluar la calidad de un tablero
se definen a continuacion. Distinguimos la evaluacion de nodos en los que la
partida no ha finalizado y aquellos en los que si ha finalizado.

12

1) Evaluacion de nodos intermedios:

a)

Movilidad: hace referencia a cuantos movimientos legales tiene cada
jugador en un momento dado. Cuanto mayor sea la movilidad de un
jugador, mas probable es que pueda colocar en posiciones
ventajosas. La estrategia basica de este juego consiste en obligar a
tu rival a colocar una ficha donde él no quiere. Esto se consigue
reduciendo su movilidad, por ello esta métrica es tan importante.

Esquinas y casillas de tipo X: Las esquinas son posiciones muy
ventajosas, dado que no pueden ser volteadas, y permiten al jugador
que las domine crear una region segura que el rival no puede atacar.
Por otro lado, las casillas X son movimientos no deseables, ya que
permiten que el rival consiga de forma sencilla la esquina adyacente.

Casillas _consolidadas: Son aquellas posiciones que no pueden ser
volteadas por el rival. Una casilla estd consolidada si sus vecinas
inmediatas en al menos un sentido de cada una de las direcciones
estan consolidadas, dando lugar a la siguiente definicion recursiva
mutua:

Ci; sii (Cij1 V Cije1) A (Citj V Cirrj) A (Cigjer V Cirrja) A (Ciajr V G 1)

Donde C;; significa que la casilla de la fila i y columna j esta
consolidada.

2) Evaluacion de nodos fin de partida:

a)

Numero de fichas: el objetivo del juego es tener mayor numero de

fichas propias al finalizar la partida, por tanto en este caso tan solo

es necesario contar las fichas de cada color.

Partiendo de estas métricas, realizamos un ajuste de los pesos en base a la
relevancia de cada métrica, asi como al feedback experimental, resultando la
siguiente funcion de evaluacion:

- Nodos intermedios:

Non-terminalNodeey = 4*(Cornersrpea — Cornersopponent) +

*

2*(XSquaresrpca— XSquareSopponent) ~ +
2*(Mobilityrpea — Mobilityopponent) +
1*(Stablesrpga — Stablesopponent)

- Nodos fin de partida:

TerminalNodeey = Discsrpea — DisCSopponent

13

3 Implementacion Hardware

La implementacion del disefio se lleva a cabo mediante el lenguaje VHDL
dentro de entorno Xilinx ISE 10.1.3 [11]. A continuacion se muestra la arquitectura
del procesador desarrollado y se describe en detalle la implementacion de los
distintos modulos que lo componen. Todos los médulos se han realizado desde
cero con excepcion del médulo E/S RS-232 que pudo ser parcialmente reutilizado
de un disefo anterior.

3.1 Arquitectura del procesador

El procesador consta de un modulo de busqueda de mejor movimiento en
una tabla de aperturas (Openings module), un modulo de busqueda de mejor
movimiento mediante busqueda en el arbol de juego MinMax (MinMax move
search) y un modulo de entrada/salida para comunicarse con el oponente (E/S
RS-232).

El médulo MinMax move search es el mas complejo y se divide a su vez en varios
submodulos:

1) Volteador (Disc flipper)

2) Movimientos posibles (Move checker)

3) Casillas consolidadas (Stable discs evaluator)
4) Evaluador (Evaluator)

5) Arbol (Tree tables BRAMs + Tree data registers)

Tree tables | .| Disc |, Current
BRAMs [~ "l fipper | table
Main
B&W B&W Control
move stable discs v unit
checkers evaluators)]
| | £ Openings
vyVY V v module
c
: O
Evaluator MinMax S
control =% FPGA best move
unit Q
o
A 4
Tree data . E/S
regisiers MinMax move Rs232 € I/0
search

A
FPGA best move

Fig. 4. Arquitectura del procesador

14

A continuacion, se describen los modulos principales con mayor detalle.

3.1.1 Movimientos Posibles (Move checker)

Este mddulo se encarga de hallar los movimientos legales dado un tablero y
un color. Toma como entradas el tablero actual codificado en 128 bits, el turno
actual codificado con 1 bit, y devuelve como salida un vector de movimientos
legales de 64 bits. Se ha implementado de manera puramente combinacional,
implementando una funcidn logica para cada casilla para averiguar si es un
movimiento legal. Una casilla es un movimiento legal si cumple:

1) Esta vacia

2) En al menos una direccion, a partir de la casilla que se esta analizando
existe el siguiente patrén: una o mas fichas contiguas rivales seguidas
de una ficha propia.

128
board —4»] Move

64
turn ——> Checker —~<—> legal moves

Fig. 5. Interfaz del médulo MoveChecker

Dado que en los nodos terminales se necesita conocer la movilidad de
ambos jugadores, este modulo esta replicado para poder calcular en paralelo los
movimientos legales de cada jugador.

3.1.2 Volteador (Disc flipper)

Recibe como entradas el tablero actual, el turno, y el movimiento realizado,
y calcula el nuevo tablero resultante. Este médulo se ha implementado mediante
una red iterativa matricial bidireccional donde la informacién se mueve
simultaneamente en 4 direcciones (y dos sentidos por direccion). Con esta
implementacién obtenemos un moddulo puramente combinacional capaz de
calcular un nuevo tablero en un solo ciclo de reloj. La ventaja de disefar una
solucion basada en redes iterativas es que nos permite solucionar un problema
muy complejo, casi imposible de formular de forma directa, dividiéndolo en
subproblemas mucho mas sencillos (en este caso cada casilla es un
subproblema). Otra ventaja adicional, a la que aqui no se ha sacado partido, es

15

que este disefio se puede aplicar de forma directa a cualquier tamafo de tablero,
dado que es tan sencillo como instanciar el numero de modulos necesario y
conectarlos convenientemente.

La figura 7 muestra la arquitectura de una celda de la red. Para cada
casilla, se calcula en cada direccién el nuevo patron a propagar en funcién del
patrén recibido y del contenido de la casilla (ver tabla 1). Asi mismo, en caso de
que se haya encontrado un patron que implique una operacion de volteo, sera la
casilla donde se ha colocado ficha la que dara la orden de que se realicen los
volteos correspondientes. Para ello analizara todos los patrones que le lleguen, y
propagara una sefial de flip en aquellas direcciones que haya que voltear. El valor
de esta sefal sera igual al numero de fichas que hay que voltear en dicha
direccion (ver tabla 2). Este valor se decrementara en cada propagacion hasta
llegar a cero. La figura 6 ilustra con un ejemplo el funcionamiento de la red.

™ oo d
T

Output

Fig. 6. Ejemplo de funcionamiento de la red iterativa del Disc
Flipper en uno de las 8 direcciones de flujo de informacién. La
casilla marcada con una ‘X’ es aquella donde colocamos la ficha

16

Patron recibido

Contenido

Patrén propagado

Nada

casilla

o

Nada

®

Nada

Nada

Nada

Nada

Nada

Nada

Tabla 1. Propagacién de patrones para el volteo de fichas
moviendo negras. Para blancas es equivalente.

17

Salida
Flip

1

Patron recibido

2

090000

Tabla 2. Propagacidn de sefial de flip a partir de la casilla donde
se ha colocado ficha. Para blancas es equivalente.

LI
L]
I
L]
LI
L]
DDDHDDDD
ENEONEEN

e ————
- -~
- =~

1 7 g ‘g‘ ~
-, ! ~
L7 A = 5 N s
7 & o o Q,/
7%, %o L L Yoos N
// ¢’,<:° \,%/ & oa ‘é(q ; &’ \\
’ My, Y% & L’
, 2 A I
, % PR
’ V\ 4 L 4
’
' o] lee]) (L] o] | L]]
II Propagator Propagator Propagator
! \
1 .
h PP&FP_W_in Disc Flipper » PP&FP_E_out \
: ; \
! PP&FP_W_out— Fropagator | Pasiccell [Groimar PP&FP_E_in 1
1 1
1 1
\ .
\ by| Propagator Propagator Propagator "
\\ x \‘,o !
3 2,
!
\ & 0\»\‘/ v 2 Ko /
\ LT £ s Foy R ’
QY Q U NQ, /7
\ < ((q ’ D \‘%\ 2%
\ Q o | % 4
\ < L B 4
o L,
\ o o3 4
\ o o 4
AN & 4
N = v
R Pattern propagator L’
N
S~ = Flip propagator »7
~o Phe
~ -
~ - -

~ -
-~ -
S~ - -

Fig. 7. Arquitectura e interfaz de una celda de la red iterativa del
Disc Flipper.

3.1.3 Casillas consolidadas (Stable discs evaluator)
Como se ha indicado en la seccidon 2.3.c, el calculo de las casillas

consolidadas se realiza mediante una funcidn recursiva mutua. Una
implementacion puramente combinacional deriva por tanto en bucles

19

combinacionales que conllevan una reduccién drastica de la frecuencia maxima
del procesador. Por este motivo, este médulo ha sido implementado mediante una
red iterativa matricial bidireccional secuencializada mediante la inclusion de un
biestable en cada celda de la red (salvo en las casillas del contorno).

Esta red, al igual que el volteador, trabaja simultaneamente en las 4
direcciones, y en los dos sentidos de cada direccion. Las casillas correspondientes
al contorno se calculan combinacionalmente mediante funciones logicas. El resto
del tablero se secuencializa por capas tal y como muestra la figura 8, la
informacion generada en cada capa se almacena en un conjunto de biestables. El
modulo resultante calcula las casillas en un numero de ciclos variable, y por ello el
modulo posee una salida done, tal y como se puede ver en la figura 9. Esta senal
se activara cuando ningun biestable cambie con respecto al ciclo anterior. Dado
que esta operacion es algo mas costosa que el resto de operaciones para evaluar
un nodo terminal, se anadié una sencilla l6gica adicional que comprueba si todas
las esquinas estan vacias, en cuyo caso no es posible que haya casillas
consolidadas, y por tanto se omite el calculo de las mismas.

1

1

: Stable
o, Discs

i Evaluator
1
I

|:| = Latched bidirectional 8-dim cells

|:| = Combinatorial cells

Fig. 8. Arquitectura del mddulo de calculo de las casillas estables.

El moédulo contiene ademas un sumador en arbol de 64 bits que devuelve el
numero de casillas consolidadas. La interfaz del Stable Discs Evaluator se
muestra en la figura 9.

20

clk —»

> ——> done
rst Stable Discs
128

Evaluator 7
board —~4 —<— stable discs count

turn —»

Fig. 9. Interfaz del m6dulo Stable Discs Evaluator

Dado que en los nodos terminales se necesita conocer el numero de
casillas estables de ambos jugadores, este modulo esta replicado para poder
calcular ambos en paralelo.

3.1.4 Tabla de aperturas (Openings table)

En los juegos de tablero es habitual guiar el juego en su fase inicial por
secuencias de movimientos que, si bien pueden no ser 6ptimos, si sabemos que
son buenos movimientos en base a la experiencia y al conocimiento de los
conceptos referentes a la estrategia del juego.

En el procesador se hizo uso de una tabla de 51 aperturas. Dada la simetria
horizontal y vertical del tablero, se calcularon las correspondientes aperturas
simétricas en cada direccion, resultando un total de 204 aperturas.

Para la confeccién del médulo de gestién de las aperturas se han utilizado 4
BRAMs de doble puerto y ancho del bus de datos de 9 bits. En la figura 10 se
muestra la arquitectura del médulo.

21

Move Opening
#
Counter Counter

@ BRAMs
Openings
(0-63)

Y

\ 4 @ BRAMs
Openings
= (64-127)

Y

Calculator

—» opening move

A 4

@ BRAMs
Openings
(128-191)

Y

@ BRAMs
Openings
(192-203)

I SR B

Fig. 10. Arquitectura del médulo de gestion de aperturas

Al comenzar el juego se sigue siempre la primera apertura encontrada que
se adapte a la situacion actual. Cuando la situacion de la partida no se adapte a
ninguna de las aperturas este médulo dejara de utilizarse. Por lo general, esto
ocurre tras 4 o 5 movimientos.

3.1.5 Arbol

La implementacion hardware del arbol de juego consta de los siguientes
submodulos:

a) Almacenes del arbol

b) Maquina de estados

c) Mddulo de ordenacion dinamica de nodos

El médulo del arbol de juego ha sido dimensionado para alcanzar una
profundidad maxima de 16 niveles. A continuacion se describen en detalle los
submodulos:

a) Almacenes del arbol

- Es necesario almacenar el tablero abierto por cada nivel del arbol.
Cada tablero se codifica con 128 bits (2 bits por casilla). Esto

22

requiere un total de 128 bits/tablero x 16 niveles x 1 tablero/nivel =
2048 bits.

Para que la lectura de un tablero se realice en un ciclo de reloj, se
han utilizado 4 BRAMs de 36 bits de ancho en paralelo, resultando
una memoria con un ancho de datos de 144 bits.

- La informacioén relativa al algoritmo MinMax con poda alfa-beta se
almacena en un banco de registros disefiado a medida que consta
de lo siguiente:

1) 16 registros de 6 bits que almacenan el ultimo movimiento
explorado en cada nivel abierto

2) 16 registros de 9 bits que almacenan los valores a - 3 de
cada nivel abierto

3) Un registro de 6 bits que almacena el mejor movimiento
que ha encontrado el algoritmo para el nivel de
profundidad maximo actual

4) Un registro de 6 bits que almacena el mejor movimiento
que ha encontrado el algoritmo en el arbol de mayor
profundidad completado

b) Maquina de estados

La generacion de nodos se ha dividido en dos etapas para alcanzar
una mayor frecuencia de trabajo. La primera etapa se corresponde con el
estado “Estado Genera Nodo 17, y en ella se calculan los movimientos
legales y se elige el siguiente movimiento legal a explorar. La segunda
etapa se corresponde con el estado “Estado Genera Nodo 27, y en ella se
genera el nuevo tablero correspondiente a realizar el movimiento legal
elegido en la etapa previa y voltear las fichas que proceda.

23

nodo
terminal
o
nivel
cerrado

timeout

Estado
Genera
Nodo 1

Estado
Comprueba
MNodo

Estado
Genera
Nodo 2

Fig. 11. Maquina de estados del médulo Arbol

¢) Modulo de ordenacion dinamica de nodos

Aplicamos una modificacion a la salida del modulo Movimientos
Posibles para reordenar los movimientos segun lo descrito en la seccion
2.2.3, esta reordenacion la realizan los modulos de la figura 12, Mapping y
Last move mapping. Una vez reordenados los movimientos posibles,
seleccionamos el siguiente movimiento a explorar. Para ello se utiliza un
codificador con prioridad enmascarado. La mascara se aplica en funcion del
ultimo movimiento explorado. De esta forma la salida de este médulo es el
movimiento mas prioritario segun nuestra reordenacién que todavia no
hemos explorado. Finalmente un mapeado inverso traduce el movimiento
elegido en el vector reordenado al correspondiente movimiento en su orden
natural.

24

6
last move ,_JLast move y

mapping mapped last
move
\ 4
64 64 - 6 6
/| Mapping £ . Priority p " Rever.se /
encoder mapping
legal moves reordered mapped choosen move
legal moves choosen move

Fig. 12. Arquitectura del médulo de ordenacion dindmica de
nodos

3.2 Recursos utilizados

El disefio ha sido implementado sobre una Virtex 1I-Pro (XC2VP30-FF896).
Este modelo dispone de un total de 13.696 slices y 2.448 Kb de BRAM. La tabla 3
muestra los recursos utilizados por la implementacién del procesador. Como se
puede ver utilizamos menos de la mitad de los recursos de la FPGA, a pesar de
que es una FPGA relativamente antigua (de hace unos 10 afos), mucho mas
pequena que las FPGAs de altas prestaciones actuales. Por tanto nuestro disefio
tiene un coste hardware muy razonable.

La frecuencia de trabajo del procesador es de 32 MHz. Esta FPGA esta pensada
para trabajar a 100 MHz, sin embargo en este disefio hemos apostado por hacer
redes iterativas capaces de hacer operaciones muy complejas en tan sélo un ciclo
de reloj. Estas redes son las que limitan la frecuencia de reloj del sistema. Sin
embargo también son las que nos proporcionan nuestro buen rendimiento, por lo
que, tal y como se vera mas adelante, la perdida de frecuencia de reloj es
completamente aceptable.

Versién BRAMs Slices
Finalistas | 4 (2%) | 5.325 (38%)
Ganadores | 8 (5%) | 5.830 (42%)

Tabla 3. Recursos de la FPGA utilizados. La version Finalistas es la
que nos clasificé para la final. La version Ganadores fue la
presentada en la final del concurso

25

4 Resultados

Para evaluar nuestro diseiio se han realizado diversas mediciones y
comparaciones estudiando tanto su rendimiento, su consumo de energia, y el
tiempo de desarrollo.

4.1 Rendimiento
El rendimiento se ha comparado con cuatro rivales:

1) SW de referencia proporcionado por el concurso

2) Disefios realizados por los otros dos equipos de finalistas

3) SW equivalente que aplica exactamente las mismas técnicas

4) SW profesional de Reversi WZebra, considerado uno de los mejores
SW de Reversi existentes y desarrollado y entrenado por maestros
del juego

4.1.1 Versus SW de referencia

La organizacién del concurso proporcioné un software contra el cual testar y
evaluar los disefios participantes. Este software tiene las siguientes
caracteristicas:

- Algoritmo de busqueda MinMax con poda alfa-beta

- Evaluacion de nodos terminales basada en numero de fichas y
puntuaciones estaticas de las casillas del tablero

- 7 niveles de dificultad, que se corresponden con la profundidad
alcanzada en el arbol de juego

- Tiempo de coémputo variable: el necesario para construir y evaluar el
arbol correspondiente al nivel de dificultad elegido

Los resultados de la confrontacion del disefio implementado en la FPGA

con este software se muestran en la tabla 4. El software fue ejecutado en un PC
equipado con un procesador Intel i7-2600 @ 3,4GHz y 8 GB de memoria RAM.

26

FPGA mueve negras SW mueve negras
Nivel de . _ ., _
dificultad SW Purl)qattrjtiadc;on Movimientos Pu;attr{dadc;on Movimientos
(HW-SW) (HW-SW)
HW SW HW SwW
1 63-1 32+0 | 31+3 63-0 31+0 | 31+3
2 64-0 33+0 | 32+5 60-4 31+0 | 31+2
3 64-0 31+0 | 30+1 64-0 33+0 | 33+6
4 64-0 31+0 | 30+1 63-0 31+0 | 31+3
5 64-0 33+0 | 32+5 64-0 30+0 | 30+0
6 64-0 31+0 | 30+1 63-0 31+0 | 31+3
7 64-0 33+0 | 32+5 64-0 32+0 | 32+4

Tabla 4. Resultados de la confrontacion SW de referencia vs FPGA
con tiempo de computo limitado a 1 segundo

Se aprecia una gran superioridad del jugador artificial implementado sobre

la FPGA sobre el SW de referencia.

Adicionalmente, testeamos nuestro disefio de manera mas agresiva
limitandole el tiempo de computo para ver qué resultados obteniamos contra el
SW de referencia. La tabla 5 muestra los resultados para un tiempo de cémputo
limitado a 0,1 segundos, y la tabla 6 para un tiempo de computo limitado a 3,2 *

10" segundos (1024 ciclos de reloj).

FPGA mueve negras | SW mueve negras
Nivel de ;- <
dificultad SW P“p”;‘,ft?d"f” P“;a“;t?dcf”
(HW-SW) (HW-SW)
1 57-7 64-0
2 64-0 60-0
3 64-0 64-0
4 64-0 59-4
5 64-0 61-1
6 64-0 59-4
7 60-3 59-5

Tabla 5. Resultados de la confrontaciéon SW de referencia vs FPGA
con tiempo de computo limitado a 0,1 segundos

27

FPGA mueve negras | SW mueve negras
Nivel de ;- 2
dificultad SW P“p”;‘,ft?d“f” P“;atﬁt?;:’”
(HW-SW) (HW-SW)

1 42-22 51-3

2 52-12 44-20

3 42-22 54-10

4 60-0 38-26

5 63-0 47-17

6 63-1 38-26

7 63-0 *

* El SW realizé un movimiento invalido

Tabla 6. Resultados de la confrontaciéon SW de referencia vs FPGA
con tiempo de computo limitado a 3,2 * 10-5> segundos

A la vista de los resultados de las tablas 5 y 6, se puede apreciar como
incluso para un tiempo de computo realmente restrictivo (3,2 * 10 segundos),
nuestro disefio es capaz de ganar en todos los casos.

4.1.2 Versus disenios finalistas

En la final disputada en una sesion del congreso, nuestro disefio se
enfrentd a los otros dos disenos finalistas (FPGA vs FPGA) en formato de
competicion round-robin. Jugamos un total de cuatro partidas, dos contra un
equipo de una universidad griega, y dos contra un equipo de una universidad
japonesa, resultando ganadores en todas ellas, por lo que obtuvimos el primer
premio del concurso.

4.1.3 Versus SW equivalente

Desarrollamos una solucidon software algoritmicamente equivalente al
disefio hardware. Ha sido desarrollada en C, y consta de 2 hilos de ejecucion, uno
para el programa principal y otro para la gestion del timeout.

FPGA mueve negras SW mueve negras
Puntuacion Nivel maximo Puntuacién Nivel maximo
partida promedio partida promedio
(HW-SW) HW S (HW-SW) HW Sw

42-22 9,64 7,63 52-12 9,85 8,16

Tabla 7. Resultados de la confrontacion SW equivalente vs FPGA.
28

Los resultados de la confrontacién del disefio implementado en la FPGA
con este software se muestran en la tabla 7. El software fue ejecutado en un PC
equipado con un procesador Intel i7-2600 @ 3,4GHz y 8 GB de memoria RAM.

La FPGA gana al SW, tal y como se puede apreciar, debido a que es capaz de
alcanzar mayor profundidad en el arbol de juego para un mismo tiempo de
computo.

Es importante mencionar que durante la realizacion de este software se
aplicaron los conocimientos adquiridos en la asignatura del master “Programacion
orientada a prestaciones”. Para ello, la version SW inicial fue analizada con el
programa de profiling de Intel, “VTune”, en busca de los hotspots.

En este analisis se constaté que la funcion que haya los movimientos legales
(legalMoves) es el principal hotspot de la aplicacion, suponiendo un 81% del total
de tiempo de computo de movimientos.

En base a este resultado, se optimizé dicha funcién ahadiendo una cache de
movimientos legales, que evita recalcularlos para cada movimiento de un nodo
abierto. La aplicacion se compild con la versiéon 4.1.2 del compilador GCC,
aplicando el flag “-O3”. También se intento la paralelizacién automatica, si bien el
compilador no fue capaz de sacar partido a esta posibilidad.

En todo caso, estamos en proceso de paralelizar manualmente la funcidn
legalMoves mediante directivas OpenMP, si bien en el momento de redaccién de
este documento no se ha concluido la tarea.

4.1.4 Versus SW profesional (WZebra)

Consideramos interesante evaluar a nuestro disefio contra un software

profesional de Reversi. Elegimos el WZebra [12], dado que es gratuito y esta
considerado como uno de los mas potentes creados hasta el momento.
WZebra implementa MultiProb-Cut, un sofisticado algoritmo de busqueda superior
a MinMax, una extensa tabla de aperturas, capaz de generar nuevas variantes en
base al conocimiento adquirido en las partidas que disputa, y una funcién de
evaluacion basada en inspeccion de patrones de distintas zonas del tablero.

Todo esto le convierte en un rival extremadamente fuerte, y como tal, es
superior a nuestro disefio, si bien para profundidades de busqueda bajas (menor
de 4 niveles), nuestro disefio gana casi todas las partidas, y para niveles medios
(4-6) de WZebra, nuestro disefio es capaz de batirle en ciertas ocasiones. WZebra
exhibe un comportamiento no determinista, y de un total de 22 partidas disputadas
contra él, nuestro diseno fue capaz de batirle en 9 ocasiones (=40%). A partir del
nivel 7 WZebra gand a nuestro disefio todas las partidas que disputamos.

29

4.2 Consumo energetico

Actualmente, el problema de la disipacién de calor es un factor critico en el
disefio de procesadores. La capacidad de calculo de muchos sistemas se ve
necesariamente coartada por este factor, especialmente en los sistemas
empotrados.

Para la evaluacion utilizamos como instrumento de medida un vatimetro
Yokogawa WT210 [13]. El esquema de medida del consumo de la FPGA y del PC
se muestra en la figura 13.

Y

Power
meter

FPGA or PC

A

Adaptor Vv

Y

measured
data

Monitoring
EE

Figura 13. Montaje para la medida de consumo mediante un
vatimetro Yokogawa WT210

El vatimetro viene acompafado de un software que procesa el muestreo de
las medidas y ofrece graficas de una gran variedad de magnitudes de medida. En
nuestro caso, nos interesa mostrar la potencia instantanea en funcién del tiempo.
La figura 14 muestra, para una partida FPGA vs SW equivalente, la
correspondiente grafica de consumo para el PC, y la figura 15 para el consumo de
la FPGA. Los picos que se observan en las graficas se corresponden a los
intervalos de procesamiento/espera propios del juego dado que tanto el PC como
la FPGA alternan periodos de actividad, en los que tienen que decidir qué
movimiento quieren realizar, con periodos de inactividad, en los que estan
esperando a que el rival mueva. En el caso del PC, realiza una espera activa con
lo que sigue ejecutando instrucciones y disipando potencia.

30

80

Potencia (W)

00:00 01:10
Tiempo (mm:ss)

Figura 14. Consumo de potencia del PC corriendo el SW equivalente
durante el trascurso de una partida de Reversi

En la figura 14 se puede ver como el consumo del PC en reposo ronda los
45 W. Durante la ejecucion del SW equivalente, se distinguen los tramos de
tiempo en los que el SW espera el movimiento del rival, con un consumo en torno
alos 70 W, y los tramos en los que el SW esta calculando su proximo movimiento,
lo cual eleve el consumo a cerca de 80 W. El promedio de potencia durante la
ejecucion del SW es de casi 75 W.

31

Potencia (W)

00:00 01:10

Tiempo (mm:ss)

Figura 15. Consumo de potencia de la FPGA durante el trascurso de
una partida de Reversi

En la figura 15 se aprecia cdmo el consumo de la FPGA en reposo ronda
los 4,25 W. Durante el transcurso de la partida, la FPGA consume en torno a 4,6
W en los tramos donde calcula su préximo movimiento, y en torno a 4,3 W en los
tramos donde espera el movimiento del rival.

El promedio de potencia durante la partida se situa en unos 4,45 W, unas
17 veces menos que el PC.

4.3 Tiempo de desarrollo

Como se vera en la seccion 7, el tiempo de desarrollo del disefio HW ha
sido sustancialmente superior al del disefio SW. Esto es debido principalmente a
dos motivos:

- El tiempo de disefio HW incluy6 también la afinacion de los pesos de
la funcién de evaluacién, para obtener mejores resultados contra el
SW de referencia

- El tiempo de desarrollo de una solucion HW es superior al del
desarrollo de una solucidon equivalente SW, debido a que, si bien el

32

disefio y la implementacion puedan suponer tiempos relativamente
similares, la depuracién de desarrollos HW es mucho mas laboriosa
que a la de desarrollos SW, teniendo un gran impacto en el tiempo
total necesario para su desarrollo.

5. Conclusiones

Los distintos resultados obtenidos y la experiencia adquirida durante el
desarrollo del disefio expuesto en este trabajo permiten extraer las siguientes
conclusiones:

Alto rendimiento del disefio hardware:

Los resultados expuestos en la seccion 4.1.3 muestran como el disefio HW
es capaz de procesar un mayor numero de nodos por unidad de tiempo que un
SW equivalente que aplica los mismos algoritmos y las mismas optimizaciones. En
promedio, el disefio HW es capaz de alcanzar casi 2 niveles mas de profundidad
en el arbol de juego. Esto supone una gran diferencia, ya que el numero de nodos
a explorar crece exponencialmente con la profundidad alcanzada.

El principal motivo de esta sustancial diferencia se encuentra en el paralelismo. El
calculo de los movimientos legales de un tablero posee un alto grado de
paralelismo, ya que es posible calcular en paralelo cada casilla del tablero.

El Move Checker del disefio HW en efecto calcula en paralelo todas las casillas
del tablero. No asi la solucién SW, que ejecuta el mismo algoritmo pero de manera
secuencial, casilla a casilla.

Es importante sefalar ademas que estamos enfrentando a tecnologias con
un importante desfase temporal: La FPGA sobre la que ha sido implementado el
disefo data de 2002, mientras que el procesador sobre el cual corre la solucion
SW equivalente data de 2011. Por tanto el procesador que se ha desarrollado en
este proyecto implementado en una FPGA que ya esta casi obsoleta trabajando a
32 MHz es capaz de proporcionar un rendimiento muy superior que un PC actual.
La razon es que este disefio HW ha sido optimizado para sacar el maximo partido
al paralelismo de los distintos problemas a tratar.

Bajo consumo del diseho hardware:

El incremento de consumo de potencia del PC ejecutando la solucion SW
equivalente es dos érdenes de magnitud superior al correspondiente incremento
de consumo de la FPGA. Dado que ambas trabajan el mismo tiempo, el consumo
de energia también seria dos 6rdenes mayor para el PC. Pero en realidad, si

33

realizase el mismo trabajo (explorar el mismo numero de nodos), el consumo de
energia seria todavia mayor en el PC dado que el PC en el mismo tiempo explora
menos niveles.

Inteligencia artificial en el Reversi:

El Reversi actualmente es un juego no resuelto (en tamafo 8x8). Por lo
tanto, es necesario utilizar heuristicas que evaluen con la mayor fidelidad posible
la calidad de los tableros.

El software proporcionado por el concurso implementa una primera aproximacion
consiste en evaluar a partir de valores estaticos para las casillas y del numero de
fichas.

Nuestro disefio implementa un segundo paradigma basado en conceptos tales
como la movilidad, casillas estables y captura de las esquinas.

Finalmente, existe un tercer paradigma fundamentado en la inspeccion de
patrones en el tablero. Programas profesionales de Reversi tales como WZebra,
implementan este paradigma.

Los distintos enfrentamientos entre los 3 paradigmas evidencian que la
estrategia de evaluacion implementada en el disefio HW es claramente superior a
la implementada en el software proporcionado por el concurso, pero se ve
ampliamente superada por la inspeccion de patrones implementada en WZebra.

6. Trabajo futuro

Los objetivos iniciales del proyecto se han alcanzado en su totalidad por lo
que podria parecer que este es un trabajo cerrado. Sin embargo quedan algunas
tareas interesantes por realizar.

En primer lugar queremos buscar la forma de realizar un analisis de consumo mas
detallado, siendo capaces de ver no solo el consumo total sino también el
consumo interno de cada parte de nuestro procesador, asi como de la version SW
equivalente. De esta forma podremos identificar que partes de nuestro procesador
son mas eficientes.

Por otro lado hemos seguido trabajando en el disefio de otro procesador para otro
juego (en este caso el Connect-6 [14]), y planeamos hacer un analisis conjunto de
los resultados y enviarlo a una revista cientifica. Consideramos que este analisis
resultaria muy interesante para la comunidad cientifica dado que muy pocas veces
se han realizado comparaciones HW/SW rigurosas vy justificadas que incluyan el

34

consumo de potencia y energia. Ademas, la utilizacion de FPGAs para acelerar la
ejecucion de juegos de tablero es un campo practicamente inexplorado.

Por ultimo, para que nuestro analisis sea mas interesante planeamos ampliarlo a
otras plataformas. En concreto nos gustaria incluir plataformas para sistemas
moviles, y plataformas tipo GPGPU (General-Purpose Computing on Graphics
Processing Units).

7. Planificacion

Comenzamos el trabajo el 25 de Junio de 2010, y el deadline del concurso,
15 de Octubre de 2010, limitaba el tiempo del que inicialmente disponiamos.

En este espacio de tiempo desarrollamos el disefio HW que evaluamos contra el
SW de referencia, descrito en [15].

Posteriormente, la organizacion habilitoé a los finalistas a mejorar sus disefios para
la final que se celebrd el 10 de Diciembre de 2010. En este periodo incorporamos
dos optimizaciones adicionales al disefio HW: tabla de aperturas y ordenacion
dinamica de nodos independiente del problema.

Mas adelante, del 5 de Junio de 2011 al 11 de Agosto de 2011, desarrollamos la
solucion SW equivalente e instrumentada, y realizamos el profiling y la
optimizacién de la misma.

Finalmente, en el mes de Octubre de 2011, se puso en marcha la plataforma de
medicion de consumo de potencia, y se realizaron las medidas oportunas.

El total de horas empleadas en el trabajo es de 810. La figura 16 muestra la
distribucion de las mismas.

Es importante mencionar que la tarea “Disefio e implementacion HW” incluye el
disefio y ajuste de la inteligencia artificial incorporada al disefio, facilitando de
manera importante el desarrollo de la versién SW.

35

[Andlisis Consumo

O Disefio e implementacion
HW
M Implementacion SW
60%

O Documentacién

Figura 16. Distribucion del tiempo invertido en cada tarea del
trabajo

8. Referencias

[1] Brian Rose (2005) Othello: A Minute to Learn... A Lifetime to Master.
http://othellogateway.com/

[2] M. Buro (1999) How Machines have Learned to Play Othello, IEEE Intelligent
Systems J. Vol 14(6), pag: 12-14

[3] M. Buro (2000) Experiments with Multi-ProbCut and a New High-Quality
Evaluation Function for Othello, Games in Al Research, ISBN: 90-621-6416-1

[4] M. Buro (2003) The Evolution of Strong Othello Programs. Entertainment
Computing - Technology and Applications, Kluwer, pag. 81-88

[5] Wong, C.K.; Lo, KK.; Leong, P.HW. (2004) An FPGA-based Othello
Endgame Solver. Proceedings IEEE International Conference on Field-
Progammable Technology (FPT 2004), pag: 81-88.

[6] Mabuchi, T.; Watanabe, T.; Moriwaki, R.; Aoyama, Y.; Gundjalam, A.; Yamaji,
Y.; Nakada, H.; Watanabe, M. (2010) Othello Solver based on a soft-core MIMD
processor array. Proceedings IEEE International Conference on Field-
Progammable Technology (FPT 2010), pag: 511-514.

[7] Smerdis, M.; Malakonakis, P.; Dollas, A. (2010) CarlOthello : An FPGA-Based
Monte Carlo Othello player. Proceedings IEEE International Conference on Field-
Progammable Technology (FPT 2010), pag: 515-518.

36

[8] Minimax, Wikipedia: The Free Encyclopedia,
http://en.wikipedia.org/wiki/Minimax

[9] Alpha-Beta pruning, Wikipedia: The Free Encyclopedia,
http://en.wikipedia.org/wiki/Alpha-beta_pruning

[10] Iterative deepening depth-first search, Wikipedia: The Free Encyclopedia,
http://en.wikipedia.org/wiki/lterative_deepening_depth-first_search

[11] Xilinx Inc., http://www.xilinx.com
[12] Gunnar Andersson Othello Website, http://radagast.se/othello/
[13] Yokogawa Electric Corporation Website, http://www.yokogawa.com/

[14] Connect-6, Wikipedia: The Free Encyclopedia,
http://en.wikipedia.org/wiki/Connect6

[15] Olivito, J.; Gonzalez, C.; Resano, J. (2010) FPGA Implementation of a Strong
Reversi Player. Proceedings IEEE International Conference on Field-Progammable
Technology (FPT 2010), pag: 507-510.

37

