
 
 

  



 
 

 

 

RECUPERACIÓN AUTOMÁTICA DE 

INFORMACIÓN EN DOCUMENTOS 

DE AUDIO MEDIANTE UNA 

ARQUITECTURA DISTRIBUIDA 

 

 

Autor:  Raquel Malo González 

Director: Alfonso Ortega Giménez 

 

Dpto de Ingeniería Electrónica y Comunicaciones 

Escuela de Ingeniería y Arquitectura 

Universidad de Zaragoza 

 

 

 

INGENIERÍA DE TELECOMUNICACIONES 

CURSO 2011-2012 

 

 

Marzo de 2012 

 



 
 

 

  



 
 

 

 

 

 

 

 

 

 

 

Gracias a don Alfonso Ortega, sin cuya orientación y ayuda no habría podido 

llevar a cabo este proyecto.   

A mis compañeros de carrera, por los buenos momentos vividos, las dudas 

resueltas y el trabajo en equipo.  

 A Quique, desarrollador de la arquitectura, sin él no habría avanzado tan 

pronto cuando surgieron los problemas.   

Y por último, gracias a mis amigos y a mis padres por confiar siempre en mí y 

mostrarme su apoyo incondicional. 

  



 
 

 

 

RECUPERACIÓN AUTOMÁTICA DE INFORMACIÓN EN 

DOCUMENTOS DE AUDIO MEDIANTE UNA 

ARQUITECTURA DISTRIBUIDA. 

 

 

RESUMEN 

Gran parte de los documentos de origen reciente (entrevistas, declaraciones, 

discursos, etc.) que se encuentran en la red tienen un formato multimedia y, por su 

importancia y relevancia, deben ser preservados y puestos a disposición de los 

investigadores, los estudiosos y la ciudadanía en general. 

El objetivo de este proyecto ha sido dotar de accesibilidad a estos grandes archivos 

multimedia, ya que, hoy por hoy, el acceso a determinadas grabaciones se convierte 

en una labor larga y tediosa y, en multitud de ocasiones, el acceso al fragmento 

específico de la grabación es en la práctica imposible. 

Uno de estos ejemplos, en el que nos hemos basado, es el fondo documental de 

Aragón Radio, puesto a disposición del grupo de investigación para su uso con fines 

científicos y educativos.  El acceso a un fragmento concreto de forma sencilla requiere 

de un etiquetado automático de cada archivo de audio con su contenido.  Para la 

indexación de la información, se cuenta con una serie de herramientas previamente 

desarrolladas que permiten la segmentación y clasificación de los archivos de audio, la 

distinción de los fragmentos de voz de los de música o silencio y la transcripción 

automática que proporciona las correspondientes etiquetas con el texto asociado.  A 

partir de ahí, la Base de Datos queda conformada por un conjunto de archivos de 

lenguajes de marcas, que contienen el texto y las etiquetas correspondientes 

vinculadas al documento de audio. 

El proyecto consta de dos partes: la primera de ellas es el desarrollo de la 

aplicación que permite al usuario recuperar los documentos indexados a través de un 

motor de búsqueda (MG [1]), que se comunica con el usuario mediante una interfaz 

web.  La segunda parte avanza en la creación de la plataforma que permite obtener de 

forma automática las etiquetas relevantes a partir del audio, realizando así la ingesta 

de nuevos documentos al archivo.  Todo ello se ha llevado a cabo haciendo uso de 

una arquitectura distribuida (EDECAN [2]) para dotar de la máxima versatilidad al 

sistema final. 

  



 
 

ÍNDICE DE CONTENIDOS 

1 Introducción ......................................................................................................... 1 

1.1 Objetivos generales .......................................................................................... 1 

1.2 Organización de la memoria ............................................................................ 3 

2 Arquitectura EDECAN .......................................................................................... 4 

3 Módulos ............................................................................................................... 6 

3.1 Audio ................................................................................................................ 6 

3.2 Parametrizador ................................................................................................. 6 

3.3 Módulo de detección de actividad vocal ........................................................... 7 

3.3.1 Decision module ........................................................................................ 8 

3.3.2 Decision smoothing ................................................................................... 9 

3.4 Segmentador .................................................................................................... 9 

3.5 Reconocedor automático del habla ................................................................ 12 

3.5.1 Dificultades .............................................................................................. 12 

3.5.2 Principios básicos ................................................................................... 13 

3.5.3 Arquitectura de un sistema RAH ............................................................. 13 

3.6 Consola de control ......................................................................................... 15 

4 Sistema .............................................................................................................. 16 

4.1 La ingesta del audio ....................................................................................... 16 

4.2 El buscador web ............................................................................................. 18 

4.2.1 Motor de búsqueda ................................................................................. 19 

4.2.2 Interfaz web ............................................................................................. 20 

4.2.3 Servicio web ............................................................................................ 21 

5 Resultados ......................................................................................................... 22 

5.1 Funcionamiento del VAD y el segmentador ................................................... 22 

5.2 Funcionamiento del reconocedor ................................................................... 27 

5.3 Interfaz de usuario .......................................................................................... 28 

6 Conclusiones ..................................................................................................... 31 

6.1 Revisión final de todo el PFC ......................................................................... 31 

6.2 Trabajo futuro ................................................................................................. 32 

Bibliografía .................................................................................................................... 33 

Lista de figuras ............................................................................................................. 35 

Anexo I.  Arquitectura EDECAN: Componentes y ficheros de configuración. .............. 36 

 



1 Introducción 

1 
 

1 Introducción 

Ante la gran cantidad de material multimedia y la expansión de la información 

disponible, así como de los avances tecnológicos incluyendo el rápido crecimiento de 

la capacidad de almacenamiento de datos, la necesidad de una búsqueda y 

recuperación automática y eficiente de la información ha llegado a ser muy importante. 

Hoy en día, son admirables los avances en la recuperación de información basada 

en texto y numerosos motores de búsqueda comerciales están accesibles online, 

permitiendo encontrar el artículo favorito dentro de una vasta colección.  Pero cada 

vez más, la demanda y el interés se centran en tareas más complicadas que permitan 

recuperar de forma automática la información de los abundantes archivos multimedia: 

audios, imágenes, vídeos, música.  

La rápida expansión de las colecciones multimedia incluye grabaciones de 

documentos hablados, emisiones de radio y emisiones de televisión (este proyecto se 

centra en archivos de voz: radio y documentos hablados).  Por eso los estudios 

actuales centran su atención en el campo de búsqueda conocido como Spoken 

Document Retrieval (SDR [3]) o recuperación de documentos hablados (Figura 1.1).  

Su importancia es clara.  Entre los motivos de su desarrollo se encuentran: (i) los 

documentos hablados contienen más información además de la mera transcripción, (ii) 

la necesidad de tratar la amplia información multimedia disponible, ya que cada vez 

más, toda la información accesible es de este tipo, (iii) método de búsqueda eficiente 

para poder navegar por un corpus de discursos de gran tamaño tales como los 

contenidos en el Digital Voice Library (DVL), emisiones de noticias, lecturas y archivos 

encontrados, y (iv) el progreso reciente en tecnologías de procesado y reconocimiento 

de voz han permitido el uso de indexación automática de documentos hablados. [4] 

No obstante, pese a los avances en este campo, la complejidad de la tarea hace 

que todavía quede camino por recorrer hasta conseguir la finura obtenida en la 

recuperación de textos.  Además, siempre tendremos la restricción en el tamaño de las 

bases de datos, ahora mucho mayores que si solo se tratase de archivos de texto. 

 

1.1 Objetivos generales 

El objetivo principal de este proyecto ha sido diseñar un sistema de búsqueda para los 

archivos de voz que disponíamos (en un principio el fondo documental de Aragón 

Radio, aunque puede ser extensible a otros córpora).  Este sistema se basa en un 

software modular (EDECAN [2]) al que se pueden añadir o quitar componentes, o 

incluso cambiarlos por otros.  Esta modularidad le da versatilidad al diseño y permite 

cómodamente añadir módulos funcionales que tengamos ya diseñados para el 

tratamiento del audio.   

El diseño de este sistema de búsqueda se ha estructurado en dos partes: la primera 

en el desarrollo de una interfaz web que permite la interacción con el usuario, y gracias 



1 Introducción 

2 
 

a un motor de búsqueda (MG [1]), devuelve de la base de datos la información 

correspondiente a la petición del usuario. La segunda, es el tratamiento o análisis del 

audio (voz) necesario para realizar la indexación que buscamos.   

Esta segunda parte es en realidad la primera fase en la construcción del sistema.  

Consta a su vez de varios módulos representados por la segmentación del audio, la 

generación de la transcripción y la construcción de metadatos.  Finalizada esta primera 

fase (inscripción o ingesta del audio), el material de audio estará disponible a través 

del motor de búsqueda online de la parte I.   

 
Figura 1.1: Esquema de un sistema SDR completo 

Para el tratamiento de la voz en la parte II del sistema, se integran varios módulos 

necesarios para conseguir el resultado final (transcripción más etiquetas).  Son el 

detector de actividad vocal, el segmentador y el reconocedor.  El detector de voz es un 

módulo previo a la segmentación que clasifica el audio en voz, música, silencio…  El 

segmentador nos permitirá dividir el archivo de audio entrante en segmentos 

correspondientes a cada hablante, que posteriormente serán transcritos con el 

reconocedor y almacenados en la base de datos como documentos independientes.  

Estos documentos contendrán, además de la transcripción, una serie de etiquetas 

(metadatos) que ayudarán a la búsqueda y localización del clip de audio dentro del 

archivo sonoro, como son tiempo de inicio (begin) y fin (end), el nombre del audio y el 

identificador del hablante (spk_id). 

El análisis del audio puede mejorarse añadiendo más módulos al sistema, como 

sería el de identificador del hablante que nos proporcionaría el nombre del locutor.   

Pero también pueden colocarse antes del reconocedor otros extractores de 

características (entorno, estado de ánimo) para que, junto al segmentador y el 

reconocimiento del hablante, permitan un mejor funcionamiento de éste al usar 

modelos acústicos adaptados a cada locutor y entorno. 



1 Introducción 

3 
 

Para lograr un sistema de búsqueda efectivo, hay que conseguir extraer del audio la 

máxima información posible de modo fiable.  Cuánto más precisión logremos en el 

segmentado, la transcripción, el reconocimiento del hablante…,  mejores serán los 

resultados y más fácil encontrar el archivo deseado.  Por ese motivo, el precio a pagar 

en el diseño de los módulos ha sido el tiempo de procesado.  El trabajo previo de 

análisis de la voz tardará bastante pero no influirá en el tiempo de respuesta de la 

petición de usuario. 

La labor principal ha sido adaptar los diversos módulos a la arquitectura empleada, 

haciendo uso de alguno de los desarrollados por el equipo de trabajo de la 

universidad, como el reconocedor.  No va a realizarse un análisis comparativo entre 

las distintas técnicas de segmentación, p. ej., ya que el objetivo, más allá de ajustar los 

parámetros para su buen funcionamiento, es exclusivamente el montar el sistema y no 

estudiar todas las posibles técnicas del mercado. 

 

1.2 Organización de la memoria 

Se ha estructurado en seis partes.  Tras la introducción que muestra la descripción 

general del proyecto y el contexto en que se realiza, explicaremos la arquitectura que 

rige todo el proyecto: su funcionamiento, estructura, componentes que la integran, 

ficheros de configuración, etc., dejando claro cómo opera el envío de paquetes 

(comunicación entre módulos), cuestión importante a la hora de adaptarlos a la 

arquitectura.  En el punto 3 se describen todos los módulos del sistema por separado, 

indicando cuál es su función dentro del procesado para, en el apartado 4, pasar a 

relatar cómo se integran y se entrelazan en el sistema final.  Ahí se detallará la 

interrelación que guardan y qué tipo de paquetes recibe cada uno de los servicios o 

módulos.  Por último, contamos con un apartado de resultados, dónde ilustraremos lo 

conseguido en cada parte del proceso, y otro de conclusiones, dónde se indicará el 

posible trabajo futuro y las modificaciones para mejorar este sistema inicial, así como 

la valoración personal del trabajo. 

El único anexo incorporado explica con detalle los componentes y funcionamiento 

de la arquitectura EDECAN, y se muestran los archivos de configuración que rigen 

nuestro sistema. 

 

 

  



2  Arquitectura EDECAN 

4 
 

2 Arquitectura EDECAN 

Antes de empezar a explicar cada módulo de la aplicación, comenzaremos 

describiendo el funcionamiento de esta arquitectura diseñada por la propia Universidad 

de Zaragoza en colaboración con otras universidades españolas para su expansión. 

La interfaz de comunicaciones EDECAN [2] puede considerarse un middleware 

multiplataforma para el desarrollo de sistemas distribuidos sobre IP capaz de soportar 

cualquier tipo de servicios en los sistemas operativos Windows y Linux.  Esta 

arquitectura permite la creación de nuevos módulos con nuevas funcionalidades a 

través del uso de un conjunto de librerías, protocolos y herramientas.  El objetivo de su 

desarrollo ha sido facilitar la implementación de sistemas distribuidos a través de un 

proceso sencillo y en la medida de lo posible, independientemente de la plataforma 

hardware elegida o del sistema operativo empleado.   

Siguiendo un esquema de comunicaciones “cliente-servidor”, aparece definido 

como “cliente” un gestor de comunicaciones (gestor.exe), que tiene la función de 

iniciar los servicios y actuar como enrutador de paquetes entre ellos.  Por otra parte 

existe un súper-servidor (super_server.exe) que acepta las conexiones entrantes del 

gestor y lanza cada uno de los servicios en un nuevo proceso, dejando la 

responsabilidad de la conexión al propio servicio.  Finalmente, aparece un servicio 

genérico (service.exe) sobre el que se puede implementar cualquier tipo de servicio 

capaz de enviar y recibir datos.  Es decir, mientras super_server.exe gestiona la 

conexión inicial, service.exe envía los paquetes y los recibe directamente del gestor de 

comunicaciones. 

Además, el gestor de comunicaciones deberá ser manejado con otro módulo del 

sistema llamado controlador (controlador_edecan.exe), el cual se conecta a él como 

un cliente y le envía comandos para realizar modificaciones sobre el sistema montado, 

como conectar servicios, desconectarlos, dar de alta nuevos servicios, o modificar la 

tabla de rutas del sistema.  Este programa se conecta al gestor mediante sockets [5] 

(métodos de comunicación definidos por una dirección IP, un protocolo de transporte y 

un número de puerto que permiten intercambiar cualquier flujo de datos de manera 

fiable y ordenada entre procesos, ubicados o no en computadoras distintas) y se 

encarga de montar el sistema. 

Los servicios disponibles, que consultará service.exe, aparecen en un fichero de 

configuración (services.xml).  Además, cada servicio o módulo se define a partir de 

una librería dinámica (.dll o .so) y de un archivo de configuración que define su 

comportamiento frente a los diferentes eventos que puedan producirse.  Esto permite 

montar un servicio sin utilizar librerías de comunicaciones propias del sistema 

operativo y del lenguaje de programación; para enviar/recibir datos únicamente hay 

que escribir/leer en una dirección de memoria.  En el anexo se amplía la información 

sobre los componentes básicos de la arquitectura y cómo es el contenido de los 

archivos de configuración. 



2  Arquitectura EDECAN 

5 
 

La topología de red está centralizada a partir del gestor de comunicaciones.  Todos 

los paquetes que envíe algún servicio serán recibidos por el gestor y reencaminados 

hacia el servicio indicado.  Por defecto, el gestor enrutará los paquetes hacia uno o 

varios destinos según la tabla de enrutamiento estática definida cuando el controlador 

web montó el sistema.  Sin embargo, es posible definir una cabecera especial para un 

paquete, de manera que éste llevará un destino forzado hacia el servicio que indique 

dicha cabecera.  Para eso el servicio que genere el paquete tiene que incluir los 

atributos „from y to‟ en la raíz, así se enviará hacia el destino indicado por „to‟. 

Hay definidos dos modos en el envío de paquetes: binario (seguía la tabla de rutas 

estática) y XML (tabla de rutas o destinos forzados).  Estos dos tipos de paquetes se 

identificaban por el primer bit de su cabecera: 0 – paquete binario, 1 – paquete XML.  

El problema que presentaba esta configuración es que obligaba a mandar los envíos 

binarios a todos los servicios conectados e interesaba que, igual que pasaba con los 

paquetes de texto (XML), se pudiese diferenciar qué información generada por un 

servicio se enviaba a cada destino.  Por eso se implementó la Conmutación de 

Paquetes en Modo Circuito Virtual para aumentar la eficiencia, estableciendo un 

circuito virtual para paquetes binarios.   

El controlador es el encargado de mandar el paquete XML de establecimiento que  

indica el comando que se ejecutará en el servicio destino para los paquetes binarios.  

Transmitidos estos, se liberará el circuito virtual. 

Para identificar los paquetes tendremos ahora 8 bits quedando la tabla de 

enrutamiento del gestor así: 0 broadcast, 1 XML, 2-255 binarios por circuito virtual. 

 
Figura 2.1: Estructura de un sistema de diálogo hablado basado en la Arquitectura 

EDECAN



3  Módulos 

6 
 

3 Módulos 

A continuación vamos a describir los principales módulos del sistema, que coinciden 

con los que integran la parte de ingesta del audio.  Los módulos puente y servicio 

texto, que forman parte de la aplicación del buscador web, serán descritos en el 

siguiente apartado (sistema). 

Son seis módulos: el de audio, que suministrará las muestras crudas del fichero; el 

parametrizador, que extrae las características necesarias para el resto de módulos; el 

detector de actividad vocal, que separa el ruido de fondo de la voz; el segmentador, 

que establece barreras entre los distintos hablantes; el reconocedor, que suministrará 

la transcripción del audio y, por último, la consola de control, a través de la cual el 

usuario podrá manejar el sistema indicando el nombre del archivo que desea procesar. 

 

3.1 Audio 

Este servicio genérico, ya implementado, se encarga de controlar (play, stop, pause) 

los archivos de audio, abrirlos, cerrarlos y extraer la información que necesitamos. 

Permite analizar distintos tipos y adaptarlos para el posterior procesado, extrayendo de 

los diferentes formatos (.wav, .mp3) las muestras crudas de audio (.raw) que va 

enviando, debido a un buffer de 4096 bytes que tiene y a la frecuencia de análisis (16 

KHz) a la que remuestrea la señal, en paquetes de 25 tramas o frames.   

El uso de este módulo da mayor versatilidad al sistema que si se hubiese integrado 

en el servicio consola de control.  A la salida, tendremos las muestras crudas 

correspondientes a la frecuencia de muestreo tanto para audios de entrada monos 

como estéreos.  Para esto es útil la información que, a través de los paquetes de 

control, el módulo audio envía al resto de módulos conectados según la tabla de rutas, 

antes del envío de los paquetes de audio.  Según el número de canales procederemos 

a calcular los parámetros.  El extractor de parámetros simplemente se queda con las 

muestras de un canal en caso de audio estéreo (análisis mono). 

 

3.2 Parametrizador 

El param_extractor es un módulo básico en el proceso de análisis de la voz.  A él 

llegan en primer lugar las muestras de audio para calcular todos los parámetros 

necesarios en los módulos posteriores.  Así se obtienen los coeficientes FFT, MFCC y 

las derivadas y derivadas segundas a partir de los frames de voz, analizando ventanas 

de 25 ms de longitud con un desplazamiento de 10 ms.  La frecuencia de muestreo 

(fm) es configurable y se ha fijado en 16 KHz. 

El parametrizador es pues un extractor de características que se encargará de 

enviar a cada módulo los parámetros que éste necesita para su correcto 



3  Módulos 

7 
 

funcionamiento.  Así, en primer lugar calcula la transformada rápida de Fourier (FFT) 

útil para la detección de actividad vocal, enviándose 256 coeficientes por trama, ya 

que de los 512 que tiene la transformada, por simetría, la otra mitad es redundante. 

Para la segmentación, la representación de la voz está basada en los MFCC (Mel 

Frequency Cepstrum Coefficients [6], [7]).  Es una parametrización robusta consistente 

en coeficientes cepstrales en escala frecuencial Mel, siendo el Cepstrum la anti-

transformada de Fourier del espectro de la señal en escala logarítmica.  El que las 

bandas de frecuencia estén situadas logarítmicamente (según escala Mel), modela la 

respuesta auditiva humana mucho mejor que si las bandas estuvieran espaciadas 

linealmente como pasaba en la FTT.  Esto permite un procesado de datos más 

eficiente.  

La señal de voz, muestreada a 16 KHz, es segmentada en tramas (de 25 ms cada 

10 ms como ya hemos visto) y cada trama es representada por un vector de 

características que contiene un coeficiente de energía (logarítmica) y 12 coeficientes 

cepstrales.  Los 12 coeficientes cepstrales (MFCC) son los que mandamos al 

segmentador, el vector de características que necesitará el algoritmo de segmentación 

Bayesian Information Criterion. 

Estos MFCC se utilizarán también para el reconocedor, cuyo vector de 

características se compone de 39 coeficientes: los 12 coeficientes MFCC más el 

término de energía logarítmica (13), junto a sus derivadas y derivadas segundas. 

El parametrizador es el primer bloque de las funciones de detección vocal, 

segmentación y reconocimiento del habla que, en esta arquitectura por comodidad y 

versatilidad, se ha implementado externamente como módulo común compartido por 

todos ellos. 

 

3.3 Módulo de detección de actividad vocal 

El primer paso del proceso, una vez preparadas las muestras de audio con sus 

características calculadas, es el VAD (Voice Activity Detection).  Este módulo identifica 

qué muestras son de voz y cuáles no, y supone un pre-procesado para el 

segmentador.  Es importante para las siguientes etapas tener en cuenta solo la voz y 

no procesar ruido, por eso se pasa la salida del VAD consistente en una ristra de unos 

y ceros que indican qué muestra es voz (1) y cuál no (0).  Las muestras con VAD a 0 

no serán tenidas en cuenta el resto del análisis. 

Para determinar los periodos de voz/no voz se emplea un test de hipótesis.  La 

decisión se basa en un vector de observación llamado vector de características, el cual 

sirve como entrada a la regla de decisión que asigna un vector de muestras a una de 

las clases dadas. 



3  Módulos 

8 
 

La selección de un adecuado vector de características para la detección de la señal 

y una robusta regla de decisión, es un desafiante problema que afecta el desarrollo de 

VADs  trabajando bajo condiciones ruidosas [8]. 

Para evitar que en condiciones muy ruidosas (SNR muy baja) se produzcan 

muchos errores, se utiliza un detector robusto, que presenta dos hipótesis de decisión:  

H0 :  x=n   H1 :  x=n+s 

H0 significa que la señal detectada es solo ruido, y H1 que la señal se compone de 

ruido y voz.  Por eso es preciso estimar las estadísticas del ruido obtenido. 

Existen diferentes métodos VAD: umbrales de energía, detección del tono, análisis 

espectral, tasa de cruce por cero, medida de la periodicidad, estadísticas de orden 

superior o combinaciones de diferentes características.  En nuestro caso emplearemos 

el análisis espectral, a través de la FFT, para identificar las muestras de voz/no voz. 

El diagrama de bloques de un VAD es mostrado en la siguiente figura.  Consiste en 

un proceso de extracción de características (visto en el apartado anterior), un módulo 

de decisión, y una etapa de alisado con la que se pretende pulir la decisión anterior 

(Decision smoothing). 

 
Figura 3.1: Diagrama de bloques de un VAD 

3.3.1 Decision module 

El módulo de decisión define la regla (LTSD [9], [10]) o método para asignar una clase 

al vector de características x (FFT).  Para que el VAD funcione correctamente, hemos 

de tener el vector de características, por eso se almacenan primero los parámetros del 

audio antes de pasarlos por este decisor, ya que el parametrizador los calcula y envía 

por cada paquete de audio recibido (compuesto por unos 25 frames). 

El método considera un test de dos hipótesis, donde la regla de decisión óptima que 

minimiza la probabilidad de error es el clasificador de Bayes.  Dado un vector de 

observación para ser clasificado, el problema se reduce a seleccionar la clase H0 o H1 

con mayor probabilidad a posteriori. 

           
  

  
           



3  Módulos 

9 
 

La FFT de la voz limpia y la del ruido son asintóticamente variables gaussianas 

aleatorias independientes, por eso los diversos métodos se fundamentan en medidas 

de distancia.  En concreto, el algoritmo de detección propuesto para este VAD robusto 

se basa en la estimación de los mayores términos de la envolvente espectral (LTSE) y 

la medida de la divergencia espectral (LTSD) entre la señal de voz y el ruido.  Asume 

que la información más importante para detectar la actividad de voz sobre una señal 

ruidosa radica en la variación temporal de la magnitud de su espectro.   

La señal de voz ruidosa x(n) es segmentada en tramas solapadas y X(k,l) es su 

amplitud espectral para la banda k-ésima en la trama l, definiendo LTSE de orden N: 

                             
     

 

La regla de decisión VAD queda formulada mediante el LTSD (Long-Term Spectral 

Divergence) de orden N, definida como la desviación del LTSE (Long-Term Spectral 

Envelope) respecto al promedio de la magnitud espectral del ruido N(k) para la banda 

k, con k= 0, 1, …, NFFT-1. 

                   
 

    
  

     
       

      

       

   

  

 
 
   

 
   
  

   

El umbral de decisión (η) es un parámetro fijado inicialmente que se va actualizando 

con las muestras recibidas.  El VAD está diseñado para ser adaptativo a las 

variaciones temporales del ruido ambiental, por eso presenta un algoritmo para la 

actualización del espectro del ruido durante los periodos de no-voz. 

3.3.2 Decision smoothing 

Permite recuperar periodos de voz que han sido enmascarados por ruido acústico 

debido a la reducida energía de la señal en las palabras iniciales y finales.  Así, las 

llamadas estrategias de hang-over extienden y suavizan la decisión VAD, retardando 

la clasificación.  Estos algoritmos se desactivan para SNR altas, de este modo mejora 

también la detección de no voz en bajas condiciones de ruido.   

 

3.4  Segmentador 

El objetivo de la segmentación y clasificación del audio es la partición y el etiquetado 

del flujo de audio entrante en voz, música, anuncios, ruido de fondo ambiental u otras 

condiciones acústicas no homogéneas.  Esta etapa preliminar es necesaria para 

recuperar información de audio como la transcripción de forma efectiva, ya que solo 

nos interesaría la voz. 

Los segmentos de voz y no voz tienen diferente distribución de características tanto 

en el dominio del tiempo como en el de la frecuencia y en otros dominios (cepstral).  

Así que la clasificación basada en rasgos característicos es generalmente un método 

efectivo.  



3  Módulos 

10 
 

En este proyecto se va a utilizar la segmentación para detectar el cambio de 

hablante, ya que gracias al VAD hemos aislado los sonidos de fondo de lo que 

presenta mayor energía (principalmente voz, aunque también puede ser música o 

ruidos fuertes).  El segmentador simplemente establece barreras entre fragmentos 

heterogéneos de audio. 

El objetivo de una efectiva segmentación por hablante difiere de la meta de un 

reconocimiento automático de voz (ASR).  Los procesos y modelos que son útiles para 

ASR, no necesariamente son apropiados para segmentación.  Las características 

usadas para reconocimiento del habla intentan minimizar las diferencias entre los 

hablantes y las distintas acústicas ambientales, y maximizar las diferencias entre 

fonemas; mientras que en la segmentación por hablante es preferible maximizar los 

rasgos del locutor y minimizar la varianza de los fonemas simultáneamente para 

producir segmentos que contienen un único evento acústico o hablante.  

Si los segmentos con un único hablante obtenidos son más largos que 5 s, el 

criterio de información bayesiana (BIC) y muchas aproximaciones basadas en la 

medida de distancias pueden hacer realizable el desarrollo de la segmentación.  Sin 

embargo, estos métodos son insuficientes cuando tenemos segmentos más cortos 

(menores de 5 s).  Se propone pues el uso de una nueva métrica de distancia, el T2-

mean [11], para tratar este problema, además de desarrollar una rutina de 

compensación de falsa alarma dentro del esquema de segmentación que se conoce 

como clustering.  El algoritmo es un método de segmentación compuesto (CompSeg 

[12]) que se muestra en la figura 3.2.  

Las estadísticas T2 son usadas para preseleccionar los límites candidatos de 

segmentación, seguidas por el BIC para ejecutar la decisión de segmentación.  El 

algoritmo propuesto también incorpora un esquema de ventana de tamaño variable 

que se va incrementando.  

 
Figura 3.2: Diagrama de bloques del algoritmo CompSeg 

El BIC (Bayesian Information Criterion [13]) supone que cada bloque de voz 

homogéneo acústicamente puede ser modelado por un proceso gaussiano 

multivariable X ~ N (µ, Σ), quedando la segmentación como un problema de selección 

de modelo entre los siguientes dos modelos anidados: 

 



3  Módulos 

11 
 

M1: X = x1, x2, …, xN ~ N (µ, Σ)  y 

M2: X = x1, x2, …, xb ~ N (µ1, Σ1); 

 xb+1, xb+2, ..., xN ~ N (µ2, Σ2). 

 

El primer modelo asume que todas las muestras son independientes e 

idénticamente distribuidas a una única gaussiana, mientras el segundo considera una 

frontera en la trama b, de forma que las b primeras muestras pertenecen a una 

gaussiana y las últimas N – b a otra.  Denotamos con X = xi Є Rd, i = 1, 2, …, N la 

secuencia de vectores cepstrales basados en tramas extraídos del audio.   

La diferencia entre los dos modelos vistos puede ser calculada como función del 

punto de corte b: ∆BIC(b) = BIC(M2) – BIC(M1).  Según la regla BIC, la segmentación 

del audio en dos partes en la trama b será aceptada si ∆BIC(b) > 0.  BIC(M1,2) se 

calcula gracias a los valores de las medias, las variancias, el número de muestras, la 

dimensión del vector de características cepstral y un factor de penalización debido a la 

complejidad del modelo.  De forma genérica puede verse que 

BIC(Mi) = log P(D1, D2, …, DN | Mi) - 
 

 
 di log N 

donde di es el número independiente de parámetros y P(D1, D2, …, DN | Mi) es la 

probabilidad de datos maximizada para el modelo dado.  El término (1/2) di log N es 

substraído de la probabilidad logarítmica para penalizar por la complejidad del modelo.  

Esta penalización es necesaria porque el modelo M1 (un único hablante) va a ir 

siempre con detrimento respecto a M2 (dos hablantes) debido al menor número de 

parámetros implicados en la estimación (el segundo modelo tiene doble de parámetros 

al suponer dos gaussianas). 

Para flujos de audio que contienen múltiples puntos de segmentación (varios 

hablantes), se aplica un algoritmo de detección secuencial en una ventana móvil que 

barre todo el flujo de audio.  La ventana comienza desde el inicio del audio con un 

tamaño de 1s.  Dentro de la actual ventana, el test BIC visto (∆BIC(b)) es evaluado 

para cada 1 < b < N para determinar si existe un cambio.  La ventana se dobla si 

ninguna frontera es encontrada, o una nueva de 1s comienza desde la división 

detectada como la siguiente ventana. 

El modelo gaussiano es ampliamente usado para modelar observaciones con 

función de densidad de probabilidad desconocida.  La idea de usar estadísticas T2 

asume que las covariancias de N (µ1, Σ1) y N (µ2, Σ2) son iguales pero desconocidas, 

de forma que la única diferencia entre ellas es la media.  Bajo esta presunción, se 

pueden usar más datos para estimar la covarianza y reducir el efecto de borde que se 

produce con fragmentos de 5s o menos debido a la insuficiencia de datos para la 

estimación solo con BIC.  Aunque para ventanas menores de 2s, incluso la covariancia 

global es insuficiente, por eso se usa la distancia media ponderada. 

El módulo segmentador del sistema EDECAN se compone de dos funciones 

principales: segment y cluster.  Segment realiza el proceso de segmentación ya 



3  Módulos 

12 
 

explicado y cluster se encargará de agrupar los fragmentos pertenecientes al mismo 

hablante p.ej. en una entrevista.  Esta agrupación consistirá únicamente en una 

compensación de falsa alarma, es decir, que si dos nodos fusionables son segmentos 

adyacentes en la rutina de agrupación del audio, ha habido un error en segmentación 

que puede ser corregido.   

Conceptualmente, la compensación de falsa alarma es similar a la clasificación.  

Aquí, la distancia entre dos segmentos adyacentes es calculada y si la distancia está 

por debajo de un umbral, entonces ambos pertenecen a la misma clase (un falso punto 

de corte es encontrado), de lo contrario pertenecen a clases diferentes.  Al igual que la 

segmentación, se aplica la métrica de distancias medias ponderadas mediante pesos 

para segmentos cortos y el T2 para segmentos más largos.  

 

3.5 Reconocedor automático del habla 

El último paso para tener lista la información del audio en un archivo es obtener su 

transcripción gracias a un Reconocedor Automático del Habla (RAH [14]), de forma 

que tendremos el texto de cada segmento anterior.  La complejidad de este módulo es 

elevada ya que hay varios factores a tener en cuenta para llevar a cabo esta tarea: 

acústica, fonética, fonológica, léxica y sintáctica.  La dificultad está en hacer cooperar 

todas estas áreas de conocimiento para la obtención de la correcta transcripción.  

Debe ser capaz de reconocer las unidades acústicas de entre un conjunto de 

observaciones acústicas recibidas, y combinarlas para formar las palabras 

pronunciadas. 

3.5.1 Dificultades 

Existen muchos factores que influyen en la dificultad del proceso de RAH y por tanto 

en su rendimiento, pero entre todos ellos destaca la variabilidad.  La variabilidad de la 

señal de voz depende tanto de factores intrínsecos al fenómeno de producción de voz 

como a factores externos al mismo.  Dentro de los factores intrínsecos destacan los 

siguientes: acentos o formas de hablar de cada persona, distintas velocidades de 

producción, coarticulación, inclusión de ruidos (apertura y cierre de labios, respiración, 

sonidos de duda, p.ej., eh, uuh), condiciones acústicas, contexto de la conversación, 

estado anímico, etc.  Entre los factores externos destacan: variabilidad en la cadena 

de conversión y transmisión de la señal eléctrica, debido a las diferencias entre las 

características de los micrófonos, líneas telefónicas, etc. y variabilidad en el ruido 

captado con la señal de voz, debido a la existencia en las proximidades del micrófono 

de otras fuentes sonoras. 

A estos factores de variabilidad acústica habrá que añadir otros factores de 

variabilidad lingüística relacionados con las distintas formas dialécticas de un idioma, 

la utilización de palabras no contempladas en el vocabulario de la aplicación, la 

construcción de frases no permitidas por la gramática del lenguaje, la utilización de 

abreviaturas, los escenarios semánticos de las palabras, etc.  Todo ello hace que el 



3  Módulos 

13 
 

reconocimiento automático del habla por parte de una máquina no sea un problema 

trivial.  

3.5.2 Principios básicos 

Básicamente, el reconocimiento del habla es un proceso de clasificación de patrones, 

cuyo objetivo es clasificar la señal de entrada (onda acústica) en una secuencia de 

patrones previamente aprendidos y almacenados en unos diccionarios de modelos 

acústicos y de lenguaje.  Este proceso de clasificación supone, en primer lugar que la 

señal de voz puede ser analizada en segmentos de corta duración y representar cada 

uno de los segmentos mediante su contenido frecuencial de forma análoga al 

funcionamiento del oído, en segundo lugar que mediante un proceso de clasificación 

podemos asignar a cada segmento o conjuntos consecutivos de segmentos una 

unidad con significado lingüístico y finalmente, en tercer lugar, que mediante un 

procesador lingüístico podemos dar significado a las secuencias de unidades.  Este 

último paso del sistema supone incorporar al sistema de RAH conocimiento acerca de 

la estructura acústica, léxica y sintáctica del lenguaje. 

 

El funcionamiento del reconocedor se basa en dos módulos: modelo acústico y 

modelo de lenguaje.  Consta de un vocabulario de decenas de miles de palabras 

apropiadas para un reconocedor de radio como es el caso (para otras aplicaciones 

como cine el listado de palabras es menor) y solo podrá procesar el léxico que se haya 

definido previamente junto a su transcripción fonética.  El modelo acústico se basa en 

tri-fonemas; es un modelo fonético que tiene en cuenta el fonema vecino de la 

izquierda y de la derecha.  Si dos fonemas tienen la misma identidad pero diferente 

contexto del de la izquierda y/o del de la derecha, entonces, son considerados tri-

fonemas distintos.  Los modelos basados en tri-fonemas son potentes porque capturan 

los efectos más importantes de la coarticulación, y son generalmente más consistentes 

que los modelos fonéticos independientes del contexto. 

El conocimiento de las propiedades acústicas de los sonidos permite determinar 

qué fonema forma parte de la cadena de entrada y en un golpe determinado haremos 

una extracción de parámetros que nos segmentará la cadena sonora en diferentes 

fonemas que serán transcritos posteriormente.  En los sistemas que se basan en 

modelos de fonética acústica, podemos distinguir tres etapas que analizan la entrada 

sonora y las frecuencias de los formantes que pueden variar según el trato vocal, 

velocidad de elocución, etc.  Tras identificar los sonidos que pertenecen a la cadena 

de entrada, se realiza el reconocimiento lingüístico (identificación de palabras y 

frases).  Para llevarlo a cabo, el sistema incorpora un diccionario de palabras posibles 

y un modelo de lenguaje que codifica la frecuencia de aparición de las diferentes 

palabras y su relación. 

3.5.3 Arquitectura de un sistema RAH 

Matemáticamente, el problema del reconocimiento automático del habla se puede 

formular desde un punto de vista estadístico.  Para ello supongamos que O representa 

una secuencia de T medidas de la señal de voz (datos acústicos) y W es una 

secuencia de N palabras que pertenecen a un vocabulario conocido. La probabilidad 



3  Módulos 

14 
 

condicional P(W|O) es la probabilidad de que la secuencia de palabras W se haya 

pronunciado dada la observación de los datos acústicos O.  El sistema de 

reconocimiento debe decidir en favor de la secuencia de palabras W que maximice la 

probabilidad P(W|O): 

W=argmax P(W|O) 

W 

Utilizando la fórmula de Bayes podemos reescribir la probabilidad condicionada  

 

donde: 

P(W) es la probabilidad de la secuencia de palabras W. 

P(O|W) es la probabilidad de observar la secuencia de datos acústicos O cuando se 

pronuncia la secuencia de palabras W. 

P(O) es la probabilidad de la secuencia de datos acústicos O. 

Sin embargo, como la probabilidad de la secuencia de datos acústicos P(O) es la 

misma independientemente de la secuencia de palabras pronunciada, ésta puede ser 

eliminada en el proceso de maximización (la secuencia de palabras que da el máximo 

no varía).  De esta forma obtenemos la fórmula fundamental del reconocimiento 

automático del habla: 

 

La secuencia de palabras reconocida es aquella que maximiza el producto de dos 

probabilidades, una P(O|W) que relaciona los datos acústicos con la secuencia de 

palabras y que denominaremos modelo acústico y P(W) que únicamente depende de 

la secuencia de palabras y que denominaremos modelo de lenguaje. 

El modelo acústico se basa en los modelos ocultos de Markov.  Un Modelo Oculto 

de Markov (HMM: Hidden Markov Model) es un proceso doblemente estocástico que 

encierra un proceso estocástico fundamental que no es observable (es oculto), pero se 

puede descubrir a través de otro conjunto de procesos estocásticos que producen la 

secuencia de símbolos observados. 

La figura 3.3 muestra los bloques básicos de un sistema de reconocimiento automático 

del habla basado en la anterior fórmula.  En la figura se distinguen dos procesos 

diferenciados: 



3  Módulos 

15 
 

1. Entrenamiento: Fase en la que el sistema aprende, a partir de muestras de 

voz y texto, los modelos acústicos P(O|W) y los modelos de lenguaje P(W). 

2. Reconocimiento: Fase propiamente dicha de reconocimiento automático del 

habla en la que la señal acústica es transcrita en una secuencia de palabras de 

acuerdo con la fórmula fundamental del RAH. 

 

 
Figura 3.3: Bloques básicos de un sistema de reconocimiento automático del habla 

Esta segunda fase es la que tenemos implementada en el proyecto, haciendo uso 

de los modelos ya aprendidos.  El compromiso que se establece es calidad frente a 

tiempo de procesado.  Como éste es offline, lo importante es obtener la mejor 

transcripción posible. 

 

3.6 Consola de control 

Es el módulo inicial del sistema, el que interactúa con el usuario gracias a un hilo, 

creado en dicho servicio, que permanece esperando los datos de entrada (comando 

audio exec con el nombre del fichero, el protocolo y la frecuencia de muestreo que se 

van a usar).  Desde ahí lanzaremos el resto de módulos (envío de paquetes de control 

indicando que pueden empezar a ejecutarse) y presentaremos los resultados.   

Este interfaz en modo consola guarda el .vad y .raw del archivo de audio y muestra 

por pantalla el texto transcrito.  Una mejora sería usar un interfaz gráfico (GUI) que 

hiciese más atractiva la aplicación. 

 



4  Sistema 

16 
 

4 Sistema 

El sistema de recuperación de información completo se estructura en dos partes.  

Cada una corresponde a un subsistema montado sobre la arquitectura EDECAN que 

se relacionan entre sí de modo que la salida del primero es la entrada del segundo.  

Estas partes son la ingesta del audio y el buscador web. 

La ingesta del audio es el núcleo o parte principal del proyecto.  Los diversos 

módulos que lo componen hacen paso a paso todo el procesado que necesita el audio 

para su etiquetado y posterior ingesta en la base de datos, obteniéndose así, en un 

mismo documento de texto, las transcripciones de todos los audios junto a otros datos 

relevantes para su recuperación: tiempo de inicio y fin, identificador del hablante, 

nombre del audio.  Finalizada esta etapa, el fichero de salida es subido a la Base de 

Datos (BD), lo que hace que la ingesta de los documentos al archivo sea offline.   

La parte del buscador web accede a esa información generada en la fase anterior 

mediante un motor de búsqueda.  Es lo que hemos llamado Query & Retrieval 

(consulta y recuperación) en la figura. 

 
Figura 4.1: Visión general de la arquitectura de un sistema de búsqueda de voz 

 

4.1 La ingesta del audio 

El gestor de comunicaciones es el nodo central (hub) de la aplicación y está controlado 

mediante línea de comandos por un servicio de circuito virtual que permite establecer 



4  Sistema 

17 
 

el envío de paquetes binarios desde el parametrizador hasta el VAD, el segmentador y 

el reconocedor a través de los circuitos virtuales creados.  Por el circuito virtual 2 se 

envían las FFT al VAD, por el 3 los MFCC al BIC y por último, el circuito 4 permite el 

envío de MFCC+Δ+ΔΔ al RAH.   

La consola de control permanece a la espera de que el usuario introduzca el 

comando con el audio que desea analizar y, una vez enviado, inicializa los módulos 

audio y param_extractor.  Dichos comandos son empaquetados en XML y llevan 

destino forzado, con lo cual llegarían al módulo adecuado aún cuando no apareciesen 

conectados al servicio consola en la tabla de rutas estática.  Aquí hacemos uso de un 

encaminamiento dinámico, ya que diferentes comandos despiertan los distintos 

servicios de la arquitectura.   

El servicio audio comenzará abriendo el fichero y enviando las muestras crudas 

tanto a la consola de control (donde se escriben en un archivo) como al 

parametrizador, que irá calculando todos los parámetros paquete a paquete.  Todos 

sus envíos son broadcast. 

Cuando ya tenemos todo el audio leído y sus parámetros calculados, es a través de 

la consola como se indica al VAD que todo el audio ha sido analizado y que puede 

empezar a calcular los unos y ceros según detecte voz o no.  El resultado del VAD es 

pasado al segmentador, que lo usará como entrada junto a los coeficientes MFCC de 

las tramas para obtener las fronteras del audio y el número de hablantes.   

Los resultados del VAD y el RAH son empaquetados hacia la consola de control 

para ser representados o guardados en su correspondiente fichero. 

A este sistema podría incorporarse un módulo adicional tras el segmentador que se 

encargase de identificar al locutor (spk_id) de tener un registro de voces.  Este 

reconocimiento del hablante permitiría tener un nombre en el identificador en vez del 

número obtenido con el segmentador.   

Un sistema de reconocimiento automático del locutor permite al SDR identificar a la 

persona que ha emitido la señal.  Para ello hay que entrenar al sistema introduciendo 

muestras de voz para que éste pueda crear una serie de patrones.  Hecho esto, el 

sistema estará listo para reconocerlo y el RAH no podrá empezar a funcionar hasta 

que tenga la salida de ambos módulos (segmentador e identificador de hablante). 

La figura 4.2 muestra todos los caminos lógicos establecidos en el sistema, sin 

olvidar que todo paquete pasa de un servicio a otro a través del gestor de 

comunicaciones. 



4  Sistema 

18 
 

 
Figura 4.2: Esquema del sistema Módulo análisis voz 

 

4.2 El buscador web 

La interacción con el usuario se lleva a cabo a través de páginas web.  Buscador.html 

solicita al usuario que introduzca la descripción del audio que desea escuchar.  Es lo 

que llamamos query.  Dicha query es recogida por Resultados.php que se encargará 

mediante un servlet de acceder a nuestro sistema EDECAN montado sobre el clúster 

de voz.  Este sistema se conoce como webservice_texto y se compone de dos 

módulos: el puente y el servicio texto.  El puente hace de intermediario en la conexión 

entre las dos máquinas y se conecta como servidor tanto con el gestor de 

comunicaciones como con el servlet lanzado por la web.  El servicio texto, por su 

parte, se encarga de procesar la query y llamar al MG para que devuelva el texto 

correspondiente a la petición (transcripciones y etiquetas).  La respuesta del MG será 

empaquetada por el servicio texto y enviada al puente a través del cual llegará como 

variable a Resultados.php que se encargará de filtrar las etiquetas para representarla 

adecuadamente. 



4  Sistema 

19 
 

 
Figura 4.3: Esquema del sistema webservice 

A continuación, se explica con detalle el funcionamiento de cada uno de los 

elementos que lo integran. 

4.2.1 Motor de búsqueda 

Esta herramienta permite la compresión e indexación de los textos a los que se 

accede con cada petición de usuario gracias a un comando que construye la Base de 

Datos a partir del archivo XML de salida de la ingesta automática del audio, donde 

cada párrafo corresponde a la transcripción con sus etiquetas de un segmento de 

audio detectado por el BIC.  Este archivo queda subdividido en párrafos, de forma que 

cada uno es un documento y es lo que se visualizará como resultado. 

El motor utilizado ha sido el MG (Managing Gigabytes [1]), un software libre 

disponible en la red que trabaja bajo el sistema operativo Unix.  Esta potente 

herramienta tiene en cuenta solo las raíces gramaticales de las palabras (lexemas) a 

la hora de realizar la búsqueda.  Es lo que se conoce como stemming [15].  Además 

elimina las palabras vacías de las consultas (stop words), proceso que descarta los 

términos carentes de contenido semántico discriminativo (artículos, preposiciones, 

conjunciones, adverbios, demostrativos, posesivos, algunos pronombres, verbos 

auxiliares (ser, estar, haber) y verbos muletilla como tener) y reduce drásticamente el 

vocabulario de la colección. 

 

El reducir cada término restante a su raíz morfológica, disminuye aún más el 

vocabulario.  Palabras con el mismo lexema (unidad mínima con significado), aunque 

pudiendo contener morfemas (sufijos o prefijos – ud. mín. de análisis gramatical), se 

representan con idéntica raíz morfológica.  

El stemmer es pues un analizador morfológico que agrupa palabras relacionadas 

bajo un mismo concepto y usa una lista de stopwords.  El utilizado por MG era Lovins 



4  Sistema 

20 
 

C, un conocido stemmer en inglés que ha sido reemplazado por la versión española de 

Snowball [16].  

El archivo de configuración de MG permite establecer cómo representar la 

respuesta del buscador: texto del documento completo o solo cabeceras (primeros 50 

carácteres), número máximo de documentos a mostrar (fijado a 10), etc.; y el tipo de 

query entrante, en nuestro caso ranked (lista de palabras). 

El funcionamiento del motor de búsqueda es sencillo.  Con la petición de usuario se 

accede a los documentos creados al montar la base de datos y busca similitudes 

(cantidad de veces que aparece cada una de las palabras que figuran en la query, sin 

tener en cuenta las stop words y fijándonos solo en la raíz, con lo cual buscamos 

textos que contengan palabras de la misma familia léxica).  MG calcula así un factor 

de similitud y se representarán en orden, de mayor a menor relevancia, tantos 

documentos como se haya fijado o que presenten un factor de similitud no nulo (al 

menos aparece una vez alguna de las palabras escritas por el usuario). 

4.2.2 Interfaz web 

Es la aplicación que utilizará el usuario, lo único que éste verá de todo el sistema SDR 

montado.  Se trata de una ventana de búsqueda, con un espacio para que el usuario 

escriba la palabra o palabras clave del audio que desea encontrar.  Tras dar al botón 

buscar se visualizará una página de resultados, con los distintos documentos que 

hacen referencia a esa petición del usuario.  Aparecerá la transcripción del fragmento 

de audio al que está vinculado y se podrá escuchar haciendo clic en el botón play. 

Además se incluye el identificador del hablante, que estará linkado a la URL de su 

página web, en caso de tenerla, o al buscador web por excelencia con los parámetros 

de búsqueda indicados (nombre del locutor).  De esta forma podemos acceder 

cómodamente a la información web que haya acerca de los hablantes del archivo 

sonoro. 

Este interfaz está montado sobre una aplicación Cliente-Servidor.  Aquí se opera 

bajo Apache Tomcat: Apache es el servidor web y Tomcat el contenedor de servlets.  

Un servlet [17] es un programa que corre en el servidor y permite la creación de 

páginas dinámicas a partir de los parámetros de la petición que envíe el navegador 

web.  Su ciclo de vida es el siguiente: 

1. El cliente (usuario) solicita una petición al servidor vía URL. 

2. El servidor recibe la petición.  Si es la primera se utiliza el motor de Servlets 

para cargarlo.  Si ya está iniciado, toda petición se convierte en un nuevo hilo. 

3. Se llama al método service() para procesar la petición devolviendo el resultado 

al cliente.   

4. El motor de un Servlet se apaga y se liberan los recursos abiertos. 

 

Para el desarrollo de las páginas web, se han utilizado los siguientes lenguajes de 

programación: HTML, PHP y SMIL.  HTML es el lenguaje de marcado predominante 

para la elaboración de páginas web y es usado para describir la estructura y el 

contenido en forma de texto (atributos, líneas en blanco, etc.).  PHP nos permite la 



4  Sistema 

21 
 

creación de páginas dinámicas, como es el caso de la web de resultados.  Además de 

ejecutar programas externos (lanza el servlet), permite trabajar con funciones y 

variables, p.ej., se hace uso de distintas funciones string para el filtrado de las 

etiquetas que aparecen en la respuesta y su correcta representación.  SMIL es el 

acrónimo de Synchronized Multimedia Integration Language (lenguaje de integración 

multimedia sincronizada) y es un estándar del World Wide Web Consortium (W3C) 

para presentaciones multimedia.  Permite integrar audio, vídeo, imágenes, texto o 

cualquier otro contenido multimedia y, gracias a él, podemos especificar el fragmento a 

reproducir (tiempo de inicio y fin), ya que partimos de audios de 15 min de duración. 

4.2.3 Servicio web 

Montado sobre la arquitectura EDECAN en el clúster de computación, donde reside el 

motor de búsqueda y la base de datos, este sistema suministra la respuesta requerida 

por la página web.  La base de datos y el servidor web están alojados en terminales 

diferentes, por eso es necesario una herramienta que enlace y permita trasladar la 

información de un lado a otro.  Esto se consigue mediante un servlet.  Este programa 

crea un hilo de conexión con la máquina de voz (IP y puerto especificados en la 

definición del servlet) y cada vez que llega una consulta de usuario inicia un servicio: el 

puente_texto de la arquitectura.  

Tras lanzar el gestor de comunicaciones el puente_texto, éste inicializa los sockets 

que le permiten comunicarse tanto con el servidor como con el servicio y crea un hilo 

(únicamente se aceptará una conexión por puente) que espera la llegada de una 

conexión entrante o query. Mientras dure esta conexión, recibirá los paquetes 

procedentes del servidor web que enviará a través del gestor al servicio principal: el 

ejemplo_texto.  Una vez enviada la petición al otro módulo del sistema, esperará la 

respuesta de la máquina que recogerá posteriormente el servlet.  El puente es 

necesario porque permite, sin modificar la estructura y la filosofía EDECAN, la 

conexión con el servidor web, que actúa como cliente.   

El ejemplo_texto escribe la query de usuario en el fichero de entrada del MG, 

ejecuta el programa y recoge en una variable el contenido del fichero de salida, la 

respuesta que se visualizará en la página de resultados. 

 

 

 



5  Resultados 

22 
 

5 Resultados 

A continuación mostraremos a título ilustrativo, no exhaustivo, el funcionamiento paso 

a paso de cada uno de los módulos de la arquitectura, la salida de los principales 

bloques que componen el sistema de análisis de la voz (procesado del audio).  

Después se visualizará la parte interactiva (buscador y web de resultados) con la que 

el usuario puede solicitar el archivo de audio que desee encontrar. 

 

5.1 Funcionamiento del VAD y el segmentador 

Ya hemos visto que el primer paso del análisis consiste en clasificar los fragmentos de 

audio como voz o no voz, y esta clasificación se completa a continuación con el 

segmentador, que establece fronteras entre los distintos hablantes. 

Los resultados del VAD y de la segmentación obtenidos para 8 y 16 KHz 

(frecuencias de estudio en el desarrollo del proyecto) con un fragmento de audio 

extraído del Archivo Sonoro de Aragón Radio, que hace referencia a la preocupación 

por las obras de la expo una semana antes de la inauguración debido a la crecida del 

Ebro (muestra3.wav), son los siguientes: 

Con 8 KHz: 

 
Figura 5.1: Detección de voz de una señal de audio 



5  Resultados 

23 
 

 
Figura 5.2: Segmentación del mismo fragmento de audio 

Breaks:     250   2940         

Spkids:   1      2          1     

Los breaks (puntos de rotura o cambio) indican numéricamente el frame en que se 

pasa de un hablante a otro.  En este ejemplo, se corresponde bastante con la realidad, 

donde primero habla el locutor, luego el invitado y de nuevo el locutor.  Los puntos 

exactos de break son: 260,  3000. 

Con 16 KHz: 



5  Resultados 

24 
 

 
Figura 5.3: VAD para fm= 16 KHz 

 

16 KHz es la frecuencia de operación del RAH, ya que fue entrenado para esa 

frecuencia de muestreo (fm).  Es por tanto la frecuencia final que nos va a interesar.  

Aquí comparamos ambas fm para ver cuál es el precio a pagar en estos primeros 

módulos por usar un RAH entrenado a 16 KHz. 

 



5  Resultados 

25 
 

 
Figura 5.4: Segmentación para fm=16KHz 

Con 16 KHz marca a priori más breaks que se corrigen con el clustering, algo que 

no pasa con 8 KHz pues a esta frecuencia VAD y segmentador son más exactos.  No 

obstante, al final nos quedamos con los breaks adecuados y el número preciso de 

hablantes.   

Breaks:    240   2940        

Spkids:  1       2        1 

 

Respecto al VAD, no se aprecia diferencia en este ejemplo, aunque de haberlas 

suelen ser pequeñas. 

Para el audio accidente ferroviario, del que transcribiremos a continuación un 

fragmento, obtenemos el siguiente segmentado (el VAD es igual pero marca siempre 1 

donde hay voz mientras la segmentación indica 1, 2, 3… dependiendo de quién habla): 

Breaks:    940     2840   4410    4950    5830   6360    6850 

Spkids: 1 2 3 4  5  6  4  3 

 

Los breaks reales corresponden a los frames 970, 2830, 4400, 4950, 5830, 6350 y 

6865.  Mientras los hablantes eran: primero el locutor, luego la ministra de fomento, 

otra vez el locutor, y a continuación los testimonios de dos mujeres, un hombre y otra 

mujer, para finalizar con el locutor de nuevo.  La mujer 3 y la mujer 1, aunque 

posiblemente sean personas distintas, es cierto que se parecen bastante en la voz, por 



5  Resultados 

26 
 

eso es normal que el segmentador se equivoque al identificarlas y les asigne el mismo 

identificador (4).   

 
Figura 5.5: Segmentado de accidente_ferroviario.wav (fm=16 KHz) 

 

El que la frecuencia de trabajo sea finalmente 16 KHz y no 8 KHz empeora 

ligeramente estos resultados, ya que pueden salir breaks de más o no detectar 

algunos.  O como pasa en este caso, los breaks son correctos pero los spkids difieren 

ligeramente del óptimo, pues tras la ministra de fomento (spkid 2), vuelve a hablar el 

locutor y lo confunde con un nuevo hablante. 

Con 1 denominamos siempre al primer locutor que encontramos, con 2 al siguiente 

y así sucesivamente.  Si algún locutor se repite, volverá a marcarlo con el mismo 

identificador. 

El resultado no es igual si partimos del audio original y se remuestrea a 16 KHz con 

el módulo audio de nuestro sistema, que si desde el wavesurfer ya lo transformamos a 

16 KHz mono para mayor rapidez en el análisis.  Es mejor no transformarlo y procesar 

directamente el audio original, como se haría en realidad. 



5  Resultados 

27 
 

5.2 Funcionamiento del reconocedor 

De momento, para que el reconocedor funcione adecuadamente, solo es posible 

analizar fragmentos muy pequeños, ya que la complejidad aumenta con el mayor 

tamaño de los audios a tratar.  Por ese motivo, hemos seleccionado un fragmento 

(muestra4.wav) del archivo accidente_ferroviario.wav, correspondiente a la primera 

frase que dice el locutor, para ver su transcripción. 

Primero hemos comprobado que al estar entrenado con fs=16KHz, el reconocedor 

no funciona para nada con 8K, no es capaz de capturar las palabras a esta frecuencia.  

Solo se reconoce howard: 

<recognized> 

<text>  howard  </text> 

<word  time=‟4.55‟>  howard  </word> 

</recognized> 

Sin embargo a 16KHz, aunque no tenemos reconocimiento perfecto, si que más o 

menos captura todas las palabras pronunciadas: 

 
Figura 5.6: Resultado del reconocedor 

La transcripción original es la siguiente:  



5  Resultados 

28 
 

“Se espera que en un plazo aproximado de 48 horas se conozcan todos los detalles 

del siniestro y que pueda restablecerse mañana el operativo del servicio ferroviario.  

Magdalena Álvarez es la ministra de fomento.” 

La transcripción con la temporización es la salida final del sistema completo, lo que 

usaremos como BD.  Al texto pueden añadirse más etiquetas de tener, como ya se ha 

comentado, un reconocedor del hablante. 

El MG coge los documentos de esta Base de Datos y solo podrá encontrar las 

transcripciones que hayan sido subidas al archivo, tras el análisis del audio 

correspondiente.  Para la búsqueda de archivos sonoros, hemos confeccionado una 

BD de prueba con transcripciones de las noticias que se emitieron en el informativo del 

mediodía el 22/08/2006. 

 

5.3 Interfaz de usuario 

 

Figura 5.7: Buscador.html 



5  Resultados 

29 
 

El interfaz de usuario es un interfaz web muy sencillo (ver fig. 5.7 y 5.8) consistente en 

un buscador, donde se introduce el texto clave que describe el audio a localizar, y la 

página de audios encontrados, resultante de la acción buscar. 

El buscador se compone de dos categorías: búsqueda por texto y por locutor.  En el 

primer recuadro indicamos qué se dice y en el segundo quién lo dice.  De modo que si 

queremos buscar todos los audios de tal locutor, pondremos su nombre en el cajetín 

correspondiente de búsqueda (solo se muestran los 10 primeros, límite configurado en 

el MG).  Si no indicamos locutor, se muestran todos los audios sobre el tema puesto 

en la descripción; y si indicamos ambos, tendremos en cuenta solo los resultados que 

cumplen ambas restricciones.   

Para escuchar los audios basta con hacer clic en play.  Pero no cualquier 

navegador es compatible con el código SMIL, utilizado para reproducir fragmentos de 

los clips de audio disponibles.  Por eso la solución final adaptada ha sido utilizar 

simplemente javascript para el control del audio.  

 

Figura 5.8: Resultados.php 



5  Resultados 

30 
 

Además, la solución inicial presentaba otro pequeño inconveniente que en modo 

local de pruebas no se apreciaba, y es que si el servidor está en otra máquina (algo 

habitual), la reproducción tardaba en iniciarse ya que primero se cargaba todo el 

fichero y después se reproducía el fragmento indicado.  Para evitarlo, se ha 

confeccionado un script en Linux, donde se encuentra la base de datos, que fragmenta 

los audios originales en los segmentos resultantes del análisis. 

La página de resultados muestra entre paréntesis el locutor que narra la noticia.  Si 

hacemos clic encima del nombre, se abre una nueva ventana con la información que 

de ellos hay en Internet.  Los locutores principales tienen su página de presentación 

dentro de la web de Aragón Radio.  Los reporteros eventuales, que trabajaron 

temporalmente, carecen de esta información pero pulsando sobre el nombre 

accedemos directamente a su búsqueda en la red. 

  



5   

31 
 

 

6 Conclusiones 

Para finalizar, vamos a enumerar las conclusiones extraídas de la ejecución del 

proyecto.  Repasaremos las dificultades encontradas y las soluciones dadas, las 

aplicaciones de la herramienta desarrollada y su importancia, así como las 

ampliaciones y mejoras que puede experimentar en un trabajo futuro. 

 

6.1 Revisión final de todo el PFC 

El objetivo a cumplir era montar la estructura de un sistema de búsqueda de 

documentos hablados e ilustrar con un ejemplo.  La clave estaba en conseguir la 

ingesta del audio que permitiese la creación de una adecuada Base de Datos donde 

poder fácilmente encontrar los archivos buscados.  La problemática inicial era la 

siguiente: en la actualidad se disponía de buscadores de texto bastante precisos pero 

se carecía de herramientas que extendieran esa búsqueda a todo tipo de archivos 

multimedia.   

Para solventar este problema, se ha llevado a cabo un análisis del audio que 

permite reducir toda su información relevante a un documento de texto y así poder 

aplicar cualquiera de los motores de búsqueda desarrollados para la implementación 

del buscador web. 

Al final, el resultado son pequeños fragmentos, con cada una de las intervenciones 

de un locutor, transcritos y con las etiquetas temporales de inicio de cada palabra.  

Pero los archivos a analizar no pueden ser los que de entrada se disponen. 

El Archivo Sonoro con el que contamos se compone de audios de 15 min cada uno, 

cuyo contenido es la emisión de radio del día y hora que marca el nombre del archivo.  

Esta extensión es demasiado grande para poder ser analizada, ya que aparte de un 

costosísimo tiempo de procesado es inviable: los módulos del sistema no tienen 

capacidad para tratar archivos tan grandes.  Es la gran limitación que presenta y viene 

dada por el reconocedor automático del habla.  Este es el módulo más restrictivo 

porque implica el mayor coste computacional. 

El problema radica en que el reconocedor utilizado es de pequeño/medio 

vocabulario, no preparado para la tarea.  El motivo de su elección fue precisamente su 

simplicidad y su estabilidad.  Mientras un reconocedor más complejo puede dar 

problemas (colgarse, fallo de fuera de memoria), este es sencillo y cómodo de utilizar y 

estaba ya listo para usarse aunque fuese limitado.  El reconocedor más potente que se 

desarrolla en el área, ha estado en continuo cambio durante la realización de este 

proyecto.  Además, no hay que olvidar que el objetivo principal era trabajar en la 

integración.  Una vez montada la estructura, puede cambiarse fácilmente un 

reconocedor por otro.  



6  Conclusiones 

32 
 

Con el RAH actual, no se pueden procesar audios de un minuto o más.  Tendremos 

que fragmentarlos cada 30s y transcribir frase a frase lo que dice cada locutor. 

Queda pendiente lograr potentes reconocedores que consigan, con una precisión 

aceptable, transcripciones de audios de mayor duración, pues tener que subdividir los 

audios en fragmentos tan pequeños resta rentabilidad al proyecto, y el coste de hacer 

la trascripción automática o a mano sería prácticamente el mismo.   

Este PFC es sólo una aproximación a la solución final que tendrá que tomarse, y 

que puede mejorarse añadiendo nuevos módulos de clasificación que tengan en 

cuenta los distintos entornos, hablantes e incluso estados de ánimo para que el RAH 

lleve a cabo un análisis más especializado y preciso. 

 

6.2 Trabajo futuro 

Este proyecto admite algunas mejoras que se pueden aplicar en un futuro:  

1. Inclusión del módulo speaker_id, junto a otros módulos adicionales, que sirven 

para clasificar con más detalle el audio analizado.  Cada segmento pertenece a 

un grupo (cj) y cada una de estas agrupaciones cj puede ser modelada con una 

distribución normal multivariable N(µj, Σj).  Conocer cuando un hablante dado 

está produciendo voz dentro de un stream, puede ayudar a dirigir un modelo de 

adaptación para el reconocimiento de voz más efectivo para un hablante en 

particular. 

 

2. Tener en cuenta la segmentación en el módulo RAH y obtener un formato de 

BD similar al utilizado de prueba, donde se indicaba el instante de inicio y fin del 

segmento transcrito dentro del clip de audio procesado.  El resultado del RAH 

ahora se escribe en las pantallas de dos servicios: el propio RAH y la consola de 

usuario.  La modificación a realizar sería, una vez implementada la estructura de 

la BD, que la consola escribiese en un documento todas las transcripciones con 

su marca temporal en vez de en pantalla, y esta transcripción más etiquetas 

sería el archivo a subir al clúster. 

 

3. Cambiar el reconocedor por uno de gran vocabulario adaptado para la 

tarea que permitirá obtener con mayor precisión la transcripción del audio 

entrante.  Esto, junto a pasarle el resultado de la segmentación, facilitará el 

análisis y eliminará el problema de tener que subdividir en fragmentos muy 

pequeños, pues transcribirá segmento a segmento.  La tecnología actual solo 

puede realizar sistemas RAH que trabajen con un error aceptable en entornos 

semánticos restringidos. 

El trabajo realizado se ha centrado en archivos de audio pero es extensible a 

cualquier archivo multimedia.  Es otro de los frentes del trabajo futuro: hacer un 

buscador para vídeos, etc. 



Bibliografía 

33 
 

Bibliografía 

[1] I. H. Witten, A. Moffat and T. C. Bell.  Managing Gigabytes: Compressing and 

Indexing Documents and Images.  San Francisco, CA: Morgan Kaufmann, 

second edition, 1999. 

[2] J. E. García y A. Ortega.  “Arquitectura EDECAN.  Jornada técnica sobre la 

arquitectura y los demostradores dentro del proyecto sd-team.”  Zaragoza, 

octubre de 2009. 

[3] J. H. L. Hansen, R. Huang, B. Zhou, M. Seadle, J. R. Deller, Jr., A. R. Gurijala, M. 

Kurimo and P. Angkititrakul.  “SpeechFind: Advances in Spoken Document 

Retrieval for a National Gallery of the Spoken Word”, IEEE Transactions on 

Speech and Audio Processing, vol. 13, no. 5, pp. 712–730; September 2005. 

[4] B. Zhou.  Audio parsing and rapid speaker adaptation in speech recognition for 

spoken document retrieval.  PhD Thesis, pp. 2–5; 2003. 

[5]  [Online]  Disponible en: http://es.wikipedia.org/wiki/Socket_de_Internet 

[6] S. Jothilakshmi, V. Ramalingam and S. Palanivel.  “Unsupervised speaker 

segmentation with residual phase and MFCC features”, Expert Systems with 

Applications, vol. 36, pp. 9800; 2009. 

[7] S. Lucas.  Proyecto Fin de Carrera (apdo. 2.1.2), Escuela Politécnica Superior, 

Universidad Autónoma de Madrid, septiembre de 2008. 

[8] J. Ramírez, J. M. Górriz and J. C. Segura.  “Voice Activity Detection.  Fundamentals 

and Speech Recognition System Robustness”, Robust Speech Recognition and 

Understanding, I-Tech, Vienna, Austria, June 2007. 

[9] J. Ramírez, J. C. Segura, C. Benítez, Á. de la Torre and A. Rubio.  “Efficient Voice 

Activity Detection Algorithms Using Long-Term Speech Information”, Speech 

Communication, vol. 42, no. 3-4, pp. 271–287; 2004. 

[10] J. Ramírez, J. C. Segura, C. Benítez, Á. de la Torre and A. Rubio.  “Voice Activity 

Detection with Noise Reduction and Long-Term Spectral Divergence Estimation”, 

ICASSP 2004, vol. 2, no. 29, pp. 1093–1096; Montreal, May 2004. 

[11] R. Huang and J. H. L. Hansen.  “Advances in Unsupervised Audio Segmentation 

for the Broadcast News and NGSW Corpora”, ICASSP 2004, vol. 1, no. 29, pp. 

141–144; Montreal, May 2004. 

[12] R. Huang and J. H. L. Hansen.  “Advances in Unsupervised Audio Classification 

and Segmentation for the Broadcast News and NGSW Corpora”, IEEE 

Transactions on Audio, Speech and Language Processing, vol. 14, no. 3, pp. 

907–919; May 2006. 

http://es.wikipedia.org/wiki/Socket_de_Internet


Bibliografía 

34 
 

[13] B. Zhou and J. H. L. Hansen.  “Efficient Audio Stream Segmentation via the 

Combined T2 Statistic and Bayesian Information Criterion”, IEEE Transactions on 

Speech and Audio Processing, vol. 13, no. 4, pp. 467–474; July 2005. 

[14] E. Lleida.  “Reconocimiento Automático del Habla”, octubre de 2000.  [Online] 

Disponible en: http://dihana.cps.unizar.es/investigacion/voz/rah.html 

[15] M. F. Porter.  “Snowball: A language for stemming algorithms”, October 2001.  

[Online]  Available: http://snowball.tartarus.org/texts/introduction.html 

[16] Snowball Project (1999).  “A Spanish Stemming Algorithm”.  [Online] Available at 

http://snowball.tartarus.org/algorithms/spanish/stemmer.html 

[17]  [Online]  Disponible en: http://es.wikipedia.org/wiki/Java_Servlet 

 

  

http://dihana.cps.unizar.es/investigacion/voz/rah.html
http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/algorithms/spanish/stemmer.html
http://es.wikipedia.org/wiki/Java_Servlet


Lista de figuras 

35 
 

Lista de figuras 

Figura 1.1: Esquema de un sistema SDR completo ....................................................... 2 

Figura 2.1: Estructura de un sistema de diálogo hablado basado en la Arquitectura 

EDECAN ...................................................................................................... 5 

Figura 3.1: Diagrama de bloques de un VAD ................................................................. 8 

Figura 3.2: Diagrama de bloques del algoritmo CompSeg ........................................... 10 

Figura 3.3: Bloques básicos de un sistema de reconocimiento automático del habla . 15 

Figura 4.1: Visión general de la arquitectura de un sistema de búsqueda de voz ....... 16 

Figura 4.2: Esquema del sistema Módulo análisis voz ................................................. 18 

Figura 4.3: Esquema del sistema webservice .............................................................. 19 

Figura 5.1: Detección de voz de una señal de audio .................................................... 22 

Figura 5.2: Segmentación del mismo fragmento de audio ........................................... 23 

Figura 5.3: VAD para fm= 16 KHz ................................................................................ 24 

Figura 5.4: Segmentación para fm=16KHz .................................................................. 25 

Figura 5.5: Segmentado de accidente_ferroviario.wav (fm=16 KHz) ........................... 26 

Figura 5.6: Resultado del reconocedor ......................................................................... 27 

Figura 5.7: Buscador.html ............................................................................................. 28 

Figura 5.8: Resultados.php ........................................................................................... 29 

 

  


