

Información del Plan Docente

Año académico 2016/17

Centro académico 110 - Escuela de Ingeniería y Arquitectura

Titulación 534 - Máster Universitario en Ingeniería Informática

Créditos 6.0

Curso

Periodo de impartición Primer Semestre

Clase de asignatura Obligatoria

Módulo ---

1.Información Básica

1.1.Recomendaciones para cursar esta asignatura

Conocimientos básicos de diseño con microprocesadores, programación y redes.

1.2. Actividades y fechas clave de la asignatura

El calendario de clases, prácticas y exámenes, así como las fechas de entrega de trabajos de evaluación, se anunciará con suficiente antelación.

2.Inicio

2.1. Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Conoce, comprende y aplica modelos de calidad y buenas prácticas en el ámbito de los servicios TI.

Es capaz de especificar un servicio TI de acuerdo a alguno de los modelos de calidad y marcos de buenas prácticas aprendidos.

Conoce, comprende y aplica modelos de calidad en el ámbito del desarrollo de software.

Conoce, comprende y aplica elementos normativos, de certificación y garantía de seguridad en el tratamiento y acceso más relevantes que rigen el diseño y operación de infraestructuras de cálculo y almacenamiento.

Es capaz de elaborar el diseño básico de una infraestructura de cálculo y almacenamiento de acuerdo a las normativas aprendidas.

2.2.Introducción

Breve presentación de la asignatura

En esta asignatura se revisarán conceptos y ejemplos relacionados con los estándares de calidad en el diseño de

servicios, software e infraestructuras de computación y almacenamiento. El ámbito de aplicación de las metodologías, procedimientos y buenas prácticas que se abordarán cubre la mayoría de empresas o administraciones con un soporte importante en las tecnologías de la información (TI).

3. Contexto y competencias

3.1.Objetivos

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Al cursar esta asignatura los estudiantes conocerán los principios, estándares, marcos de buenas prácticas y procesos de certificación y auditoría relativos a la calidad de las infraestructuras, los desarrollos software y los servicios. Además, serán capaces de aplicarlos en las fases de definición de la estrategia, diseño, implementación, operación y mantenimiento y mejora.

3.2.Contexto y sentido de la asignatura en la titulación

Esta asignatura aborda un aspecto fundamental de la ingeniería, la calidad y su certificación, competencias necesarias para abordar cualquier proyecto de ingeniería en general, y en particular los relativos a TI.

3.3.Competencias

Al superar la asignatura, el estudiante será más competente para...

Afrontar con éxito los siguientes desempeños relacionados con la Ingeniería Informática:

- Asegurar, gestionar, auditar y certificar la calidad de los desarrollos, procesos, sistemas, servicios, aplicaciones y productos informáticos.
- 2. Diseñar, desarrollar, gestionar y evaluar mecanismos de certificación y garantía de seguridad en el tratamiento y acceso a la información en un sistema de procesamiento local o distribuido.
- 3. Modelar, diseñar, definir la arquitectura, implantar, gestionar, operar, administrar y mantener aplicaciones, redes, sistemas, servicios y contenidos informáticos.

Esta asignatura colabora con otras de la titulación para conseguir alumnos competentes para:

- 1. Proyectar, calcular y diseñar productos, procesos e instalaciones en todos los ámbitos de la ingeniería informática.
- 2. Dirección de obras e instalaciones de sistemas informáticos, cumpliendo la normativa vigente y asegurando la calidad del servicio.
- 3. Elaboración, planificación estratégica, dirección, coordinación y gestión técnica y económica de proyectos en todos los ámbitos de la Ingeniería en Informática siguiendo criterios de calidad y medioambientales.
- 4. Comprender y aplicar la responsabilidad ética, la legislación y la deontología profesional de la actividad de la profesión de Ingeniero en Informática.
- 5. Dirección general, dirección técnica y dirección de proyectos de investigación, desarrollo e innovación, en empresas y centros tecnológicos, en el ámbito de la Ingeniería Informática.
- 6. Aplicar los principios de la economía y de la gestión de recursos humanos y proyectos, así como la legislación, regulación y normalización de la informática.
- 7. La puesta en marcha, dirección y gestión de procesos de fabricación de equipos informáticos, con garantía de la seguridad para las personas y bienes, la calidad final de los productos y su homologación.

Afrontar con éxito los siguientes desempeños transversales:

- Adquirir conocimientos avanzados y demostrado, en un contexto de investigación científica y tecnológica o altamente especializado, una comprensión detallada y fundamentada de los aspectos teóricos y prácticos y de la metodología de trabajo en uno o más campos de estudio.
- 2. Evaluar y seleccionar la teoría científica adecuada y la metodología precisa de sus campos de estudio para formular juicios a partir de información incompleta o limitada incluyendo, cuando sea preciso y pertinente, una

reflexión sobre la responsabilidad social o ética ligada a la solución que se proponga en cada caso.

3. Predecir y controlar la evolución de situaciones complejas mediante el desarrollo de nuevas e innovadoras metodologías de trabajo adaptadas al ámbito científico/investigador, tecnológico o profesional concreto, en general multidisciplinar, en el que se desarrolle su actividad.

3.4.Importancia de los resultados de aprendizaje

Los egresados se encontrarán inmersos en una economía donde las TI van a tener un peso creciente, bien como factores críticos de diferenciación respecto de la competencia, bien como soporte esencial para el correcto desarrollo de los procesos de negocio. Las TI y los servicios basados en ellas están evolucionando a una velocidad vertiginosa debido a factores como el abaratamiento de los recursos de computación, la conectividad ubicua, el desarrollo de plataformas abiertas o el uso de *clouds* privadas o públicas. La transformación afecta tanto al sector privado (cuyas empresas deben mantener su competitividad en el mercado e identificar líneas de mejora y oportunidades estratégicas) como en el público (la calidad de cuyos servicios, desarrollos e infraestructuras debe poder defenderse razonadamente frente a los prestados por iniciativas privadas).

La existencia de estándares y guías de buenas prácticas permite establecer comparativas entre organismos y/o empresas, dar garantías sobre la calidad del servicio ofrecido y proporcionar orientaciones sobre su mejora. Entendemos que conocer la noción de calidad, desde diferentes puntos de vista, y los diversos estándares adoptados habitualmente en la industria, es muy importante para la los egresados de este máster, aumentando su empleabilidad en el mercado laboral.

4. Evaluación

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Prueba presencial. Prueba presencial abierta sobre casos prácticos propuestos por los profesores y el proyecto desarrollado por el alumno. [30%]. Resultados de aprendizaje: 1, 2, 3, 4 y 5

Ejercicios, trabajos y presentaciones . En los que se pondrá en práctica los conocimientos y habilidades adquiridos en la asignatura. [50%]. Resultados de aprendizaje: 2 y 5

El estudiante que no opte por el procedimiento de evaluación descrito anteiormente, no supere dichas pruebas durante el periodo docente o que quisiera mejorar su calificación tendrá derecho a realizar una prueba global que será programada dentro del periodo de exámenes correspondiente a la primera o segunda convocatoria.

5. Actividades y recursos

5.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

Las actividades de enseñanza y aprendizaje presenciales se basan en:

- Clase presencial. Exposición de contenidos mediante presentación o explicación por parte de un profesor (posiblemente incluyendo demostraciones).
- 2. **L'aboratorio** . Actividades desarrolladas en espacios especiales con equipamiento especializado (laboratorio, aulas informáticas).
- 3. **Tutoría** . Período de instrucción realizado por un tutor con el objetivo de revisar y discutir los materiales y temas presentados en las clases.
- 4. **Evaluación** . Conjunto de pruebas escritas, orales, prácticas, proyectos, trabajos, etc. utilizados en la evaluación del progreso del estudiante

Las actividades de enseñanza y aprendizaje no presenciales se basan en:

- 1. Trabajos prácticos. Preparación de actividades para exponer o entregar en las clases prácticas.
- 2. **Estudio teórico.** Estudio de contenidos relacionados con las "clases teóricas": incluye cualquier actividad de estudio que no se haya computado en el apartado anterior (estudiar exámenes, trabajo en biblioteca, lecturas complementarias, hacer problemas y ejercicios, etc.)

5.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

Trabajo del estudiante

La asignatura consta de 6 créditos ECTS que corresponden con 150 horas estimadas de trabajo del alumno (60 horas presenciales y 90 horas no presenciales) distribuidas del siguiente modo:

- 55 horas, aproximadamente, de actividades presenciales (clases magistrales incluyendo seminarios profesionales, resolución de problemas y casos, y prácticas de laboratorio).
- 45 horas de trabajo en grupo.
- 45 horas de trabajo y estudio individual efectivo.
- 5 horas dedicadas a distintas pruebas de evaluación

5.3. Programa

Contenidos a desarrollar

- 1. Diseño y operación de infraestructuras de cálculo y almacenamiento, elementos normativos, de certificación y garantía de seguridad en el tratamiento y acceso.
- 2. Gestión de servicios TI, modelos de calidad y buenas prácticas.
- 3. Calidad en el desarrollo de software.

5.4. Planificación y calendario

Calendario de sesiones presenciales y presentación de trabajos

La organización docente prevista de las sesiones presenciales en el campus Río Ebro es la siguiente:

- Clases magistrales y resolución de problemas y casos
- · Prácticas de laboratorio

Los horarios de todas las clases y fechas de las sesiones de prácticas se anunciarán con suficiente antelación a través de las webs del centro y de la asignatura.

5.5.Bibliografía y recursos recomendados