Plataforma para guias turisticas virtuales
basadas en teléfonos moéviles

Juan José Molinero Horno

Febrero de 2012

Agradecimientos

En vista de que este ya es el segundo intento y como en el primero ya
agradeci su participacién a los sospechosos habituales, supongo que en esta
ocasién el mayor agradecimiento tiene que ser para Ana Cris, quien es po-
siblemente la mayor culpable de que este PFC se haya terminado (incluso
més que el propio autor). Asi pues gracias a ti por haber sido, ademés de
directora del proyecto, amiga durante estos meses y haberme dado el conazo
suficiente para que al final, lo haya terminado despues de ocho anos.

... Y ya que estamos, gracias también a los componentes de la empresa
Disline, por haberme permitido participar en un proyecto con ellos. Espero
que tengais mucho éxito con la aplicacion y con todos los proyectos que
emprendais en el futuro.

Resumen

El negocio de la gestién de contenidos turisticos se ha vuelto muy compe-
titivo en estos ultimos tiempos. Desde la apariciéon de los dispositivos méviles
de ultima generacién o smartphones, los usuarios demandan la obtencion de
este tipo de servicios en cualquier lugar usando su conexiéon a Internet. La
empresa Disline, dedicada a este tipo de productos, propuso la realizacion de
un sistema de publicaciéon de contenidos de interés turistico que se adecuara
a las necesidades impuestas desde el mercado.

Durante el presente proyecto se ha desarrollado un sistema que se com-
pone de dos aplicaciones. Una parte llamada gestor web, desde la cual la
empresa de creacion de contenidos puede introducir informacion referente a
los puntos de interés de un determinado entorno turistico. Una vez se ha
introducido toda la informacion deseada, se genera una base de datos con los
contenidos que puede ser usada en la segunda parte del sistema, la aplicacion
movil. Esta aplicacién muestra, usando la informacién que obtiene de la base
de datos generada anteriormente, los puntos de interés deseados en forma de
guia turistica de forma que resulte 1util para el usuario. En este proyecto se
ha realizado una versién de la aplicacion moévil para el sistema iOS.

Ademaés del desarrollo de las aplicaciones mencionadas anteriormente,
se ha realizado un estudio sobre las técnicas de reconocimiento de objetos
mediante vision por computador que son mas adecuadas en el ambito del
proyecto. Aunque las técnicas que se basan en el reconocimiento del objeto
sin utilizar ningin marcador adicional muestran grandes posibilidades, para
la realizaciéon de un producto comercial las técnicas de reconocimiento de
objetos mediante marcadores (cédigos QR) son las que se encuentran mas
maduras actualmente y por ello se ha decidido implementar estas dentro de
la aplicacién.

Finalmente, durante el desarrollo del proyecto, otras caracteristicas in-
teresantes para el sistema han sido identificadas en colaboracion con la em-
presa para desarrollar en otros proyectos en paralelo o futuros que anadan
dichas funcionalidades dentro del sistema.

Indice general

1. Introduccion y definicion del problema

1.1.
1.2.
1.3.
1.4.

Motivacion
Trabajos previos
Objetivos y entorno de trabajo
Resumen del contenido de la memoria

2. Diseno y desarrollo de la aplicacion de turismo en el moévil

2.1.

2.2.
2.3.

Sistemas y librerias de reconocimiento de c6édigos de barras y
similares L
Requisitos del cliente y decisiones de disenio adoptadas
Arquitectura, disefio y pruebas de la aplicacion cliente

2.3.1. Arquitectura y modulos de la aplicacion
2.3.2. Interfaz de usuario
2.3.3. Plande pruebas

3. Diseno y desarrollo del gestor web

3.1.
3.2.

Requisitos del cliente y decisiones de disenio adoptadas

Arquitectura, disefio y pruebas del gestor web
3.2.1. Interconexioén del cliente con el servidor
3.2.2. Basededatos
3.2.3. Arquiterctura de la aplicacién

3.2.4. Interfaz de usuario
3.25. Plandepruebas
4. Conclusiones y trabajo futuro
Bibliografia
Apéndices

A. Diagrama temporal de desarrollo

8

12
14
15
16
20

22
22
23
23
24
25
26
27

30

33

36

36

B. Metodologias de desarrollo agiles
C. Plataforma de desarrollo iOS
D. Plataforma de desarrollo Ruby on Rails

E. Control de versiones con Mercurial

11

38

40

45

49

Indice de figuras

1.1.
1.2.

2.1.
2.2.
2.3.
2.4.
2.5.

2.6.

2.7.
2.8.
2.9.

3.1.
3.2.
3.3.
3.4.

Al
C.1.

C.2.
C.3.
C.4.

E.1.

Diferentes modelos de dispositivos smartphones
Cuota de mercado de los diferentes sistemas operativos para
teléfonos moévileso

Ejemplo de c6digo QR.o
Arquitectura de la aplicacion cliente - Patréon MVC
Diagrama de modulos de la aplicacion movil
Diagrama de flujo de la interfaz de usuario
Pantalla principal de la aplicacién cliente y sus diferentes pes-

tafias.
Pantallas de detalle de punto de interés y visualizaciéon mul-

timedia
Ruta desde la localizaciéon actual al punto de interés elegido. .
Pestana de mapa.
Pantalla de filtro por categoria

Tablas principales de la base de datos
Diagrama de médulos del gestor web.
Interfaz de usuario web (I).
Interfaz de usuario web (II).

Diagrama temporal del desarrollo

Entorno de desarrollo Xcode (Inteface Builder, editor de cé-

digo, App Store, dispositivo).
Esquema de la workspace window.
Xcode mostrando un error y sus posibles soluciones.
Aplicacion corriendo en el simulador de iOS.

Salida de la orden hg sin ningin argumento.

Capitulo 1

Introduccién y definicion del
problema

El uso de dispositivos moéviles se esta haciendo cada vez méas comun para
todo tipo de gente y todo tipo de tareas. Desde la aparicién de los llamados
smartphones que integran una serie de hardware no disponible en dispositivos
anteriores como WIFI, GPS, camaras de ultima generacion, sistemas de pago
NFC !, ... se han aumentado las posibilidades ofrecidas por estos dispositivos
de manera exponencial. Sin embargo, lo que hace verdaderamente diferente
a este tipo de dispositivos de los que se podia disponer anteriormente es la
posibilidad de instalar aplicaciones en ellos desarrolladas por terceras partes.

Otra caracteristica que ha ayudado a la expansién del mercado de dis-
positivos méviles es la posibilidad por parte de los usuarios de disponer de
conexion a Internet de banda ancha en casi cualquier sitio en el que se encuen-
tren. Esto hace que algunos de estos aparatos tengan un poder casi adictivo
que hace que los usuarios pasen una gran cantidad de tiempo usandolos.

Hasta hace relativamente poco tiempo (aparicién del App Store de Apple
en Julio de 2008) el desarrollo de una aplicaciéon para un dispositivo mé-
vil era un trabajo tedioso tanto para el desarrollador (falta de herramientas
de calidad para el desarrollo, poca integracién de las API’s existentes con
la plataforma hardware, excesiva segmentaciéon de modelos de los fabrican-
tes, ...) como para el usuario (falta de un lugar donde buscar aplicaciones
que se adaptaran a una necesidad, dificultad a la hora de instalar una apli-
cacién, ...). Desde la aparicién del App Store (y subsiguientes repositorios
de aplicaciones por parte de otras empresas de sistemas operativos méviles)
todos los problemas anteriores se han ido solucionando o al menos mitigando
de forma que hasta los usuarios menos avanzados son capaces de encontrar

Thttp://es.wikipedia.org/wiki/Near Field Communication

Figura 1.1: Diferentes modelos de dispositivos smartphones

aplicaciones que se adapten a sus necesidades (aunque han aparecido nue-
vos problemas como la aparicion de un niimero excesivo de aplicaciones para
cada tarea que hacen dificil ser capaz de encontrar la mejor solucién).
Entre las diferentes plataformas maviles sobre las que desarrollar apli-
caciones hay tres que estan teniendo un éxito superior al resto: Android,
Blackberry e iOS. Todas ellas han sido capaces de concentrar la mayor par-
te de la atencion por parte de desarrolladores de aplicaciones y usuarios de
dispositivos moviles de forma que entre ambas. En el caso de Blackberry sin
embargo el nimero de aplicaciones desarrolladas por terceras partes y des-
cargadas por los usuarios es mucho menor ya que parece ser que los usuarios
de estos dispositivos tienden a usar mayoritariamente las aplicaciones que
viene por defecto en el dispositivo. Con estos datos, podemos concluir que
las mejores plataformas tanto para el desarrollo de aplicaciones como para la

distribucién de las mismas al mayor niimero posible de clientes, son Android
e iOS.

1.1. Motivacion

En este proyecto, se decidi6 usar la plataforma de desarrollo iOS (aunque
hay planes para portarlo tambien a Android, y si hubiera demanda también
a otras plataformas) debido a que los datos que se tienen en este momento
indican que el nimero de aplicaciones que compran y descargan los usuarios
de esta plataforma es mayor que el cualquier otra platforma. Ademads, el

Smartphone market share
arch "1, 1 Maobile Insights, Mational

Palm / WebOS Symbian OS
2%

3% \
Microsoft Windows
Mobile / WPT

10%

Android OS
37%

Apple iOS
27%

RIM BlackBerry OS
22%

Source: The Niclsen Comyary. nielsen

Figura 1.2: Cuota de mercado de los diferentes sistemas operativos para te-
léfonos moéviles

tiempo de desarrollo por aplicacion es menor debido a que esta plataforma
proporciona herramientas de desarrollo mas maduras.

Lo que se pretende durante el desarrollo del mismo es la creaciéon de una
herramienta que permita la creaciéon semi-automatica de guias multimedia
adaptadas sobre todo al turismo rural. Mas concretamente, se ha desarrollado
una aplicacion movil para la plataforma iOS base, que puede ser parametri-
zada mediante los datos obtenidos de una herramienta web de forma que
cambie el contenido y el disefio de la misma y la intervencion del equipo de
desarrollo sea la minima posible en futuras aplicaciones.

Debido a la gran cantidad de plataformas méviles disponibles y a la di-
versidad de entornos sobre los que se desarrolla para ellas, en ocasiones es
posible que el coste de realizar una serie de aplicaciones para las mismas pue-
da acabar siendo demasiado elevado, tanto en tiempo como en dinero. Por
ello, en la realizacién de este proyecto se ha intentado dotar a la empresa
de mas flexibilidad y autonomia a la hora de generar nuevas guias. Para ello
se ha decidido generar un sistema en el que el coste de crear nuevas guias
turisticas sea practimante marginal (al menos la parte de desarrollo de soft-
ware) y Unicamente haya que gastar tiempo y dinero en la parte de creacién
de contenidos que es en realidad el negocio basico de la empresa para la que
estamos realizando el trabajo.

1.2. Trabajos previos

Debido a la gran cantidad de aplicaciones disponibles para la plataforma
en la que estamos desarrollando, es imposible que no haya disponibles varias
aplicaciones que se dediquen a lo mismo que se esta desarrollando. Sin em-
bargo, la aplicacion que vamos a desarrollar tiene la ventaja sobre todas ellas
de que nuevas versiones de la aplicacién para diferentes entornos (otros pue-
blos, museos, ...) se crearan de forma semiautomatica por parte de personal
no cualificado técnicamente de la empresa.

Por otra parte, el resto de las aplicaciones de turismo y guias de viaje
(Lonely Planet, Tripwolf, ..) son bastante similares y ofrecen una serie de
posibilidades bastante parecidas:

= Introduccion.
» Listado de monumentos y puntos de interés.

= Descripcion de los monumentos y puntos de interés con posibilidad de
acceder a material multimedia e interactivo.

= Mapa con la posicion de los diferentes elementos.

Nuestra aplicacion ademas de todo esto, serd capaz de soportar también
el uso de marcadores de posicion que puedan ser reconocidos de forma auto-
matica por la camara del dispositivo de forma que se pueda localizar puntos
de interés mediante una fotografia del usuario al codigo correspondiente. Es-
to puede ser de utilidad en zonas con poca precision del GPS o en interiores,
donde se pierde la cobertura casi totalmente.

1.3. Objetivos y entorno de trabajo

Objetivos

Recientemente ha habido una gran explosién de nuevas aplicaciones, fun-
cionalidades y servicios asociadas al desarrollo de aplicaciones sobre moviles
de ultima generacién o smartphones. La tendencia de los usuarios a llevarlos
siempre encima y las posibilidades que ofrecen los elementos hardware de
estos dispositivos (cdmara, acelerémetros, GPS, conexion WIFI, ..) ofrecen
grandes posibilidades a los desarrolladores.

El objetivo principal de este proyecto es la realizaciéon de un sistema in-
formativo que permita la creacion y mantenimiento de guias turisticas adap-
tadas a dispositivos moviles. El sistema constara de diferentes formas de

localizacién e identificacion de elementos de interés de forma que se adapten
a los diferentes tipos de entorno donde se pueden realizar visitas turisticas.
Por ejemplo, se distinguira entre exteriores donde el usuario se puede guiar
usando la localizacién por GPS e interiores, donde al no poder usar el GPS,
usaremos algun tipo de sistema de reconocimiento de cédigos de barras o
similares.

El sistema constara de dos partes, una apliacion servidor que serda donde
se cree las guias por parte de la empresa de creaciéon de contenidos, y una
aplicacion cliente desarrollada en un teléfono (para la primera versién hemos
elegido el iPhone e iOS como sistema para el prototipo), que podra descar-
garse las guias del servidor y asistird al usuario en sus visitas a lugares de
interés.

Los objetivos o tareas a realizar en este proyecto en mas detalle son:

= Obtencién de requisitos por parte de la empresa Disline ?(empresa de-
dicada a los servicios de promocién de la cultura y el turismo). El
prototipo sera utilizado en la empresa interesada.

» Familiarizacién con la arquitectura de la plataforma iPhone, el entorno
de desarrollo XCode y el lenguaje Objective-C y las librerias compati-
bles para visién por computador (reconocimiento de c6digos).

» Familiarizacion con el entorno de desarrollo web a utilzar para la parte

del servidor (Ruby on Rails).

= Disenio y desarrollo de la aplicaciéon web servidor que permita la crea-
ciéon y mantenimiento de guias.

= Diseno y desarrollo de la aplicaciéon movil cliente que permita la lo-
calizacién en un mapa (usando Google Maps) de puntos de interés y
el reconocimiento de algin tipo de cédigo de barras para identificar
objetos.

También se ha investigado la posibilidad de anadir a la aplicaciéon mejoras
para hacerla mas general e innovadora:

= Reconocimiento de objetos sin el uso de codigos de barras o similares,
usando técnicas de visién por computador.

» Localizacion de puntos de interés en mapas cargados en el dispositi-
vo movil sin necesidad de conexién a Internet, solamente mediante el
acceso a la informacion del GPS.

http://www.disline.es

Entorno

Como ya se ha comentado previamente, este PFC se ha realizado en cola-
boracién con la empresa Disline. Esto ha hecho que haya habido un periodo
de adaptacién a los sistemas de trabajo de ambas partes. Mas adelante se
explicard un poco la metodologia de trabajo empleada para la realizaciéon de
los diferentes elementos que componen el proyecto asi como una pequena
explicacion de porque se ha elegido la misma.

Para la parte del desarrollo del cliente mévil se ha usado como entorno de
programacion el Xcode de Apple (asi como algunas herramientas adicionales
como por ejemplo el Menial Base para accesos a la base de datos Sqlite
utilizada o el sistema de control de versiones Mercurial) debido a que es
basicamente la tinica forma de realizar aplicaciones para el sistema operativo
iOS de una forma mas o menos sencilla. El lenguaje de programacion exigido
por este entorno es Objective-C, por lo que a parte de algunas pocas lineas
en SQL para la creacion y mantenimiento de la base de datos ha sido el tnico
lenguaje empleado en la parte del cliente.

En cuanto al desarrollo del servidor, despues de estudiar diferentes fra-
meworks y lenguajes de programacion, se ha decidido utilizar el lenguaje de
programaciéon Ruby y el entorno Ruby on Rails 3. Se ha elegido debido a la
gran popularidad que esta empezando a tener en el prototipado y desarrollo
rapido de aplicaciones web. Este entorno, unido al editor de texto Emacs 4
y el plugin Rinari ® facilita en gran medida el poder realizar cambios rela-
tivamente grandes en el sistema de forma comoda lo que dado la forma de
trabajar que se utilizo con la empresa resulté de gran ayuda.

1.4. Resumen del contenido de la memoria

En el resto de la memoria se detalla, en el capitulo 2, las técnicas y
librerias de vision por computador que se han estudiado para la parte del
reconocimiento de codigos de barras o similares en la parte del cliente movil,
asi mismo se explicara el diseno e implementacién del cliente realizado en
iOS. El capitulo 3 resume la arquitectura y diseno del gestor de contenidos
de las guias turisticas asi como las decisiones de disefio que se han tomado
para adaptarlo a las necesidades del cliente. El capitulo 4 concluye la memoria
con la descripcién de posibles ideas a implementar en un futuro (algunas de
las cuales se comenzaron a desarrollar en paralelo a este proyecto).

3http:/ /www.rubyonrails.org
4http:/ /www.gnu.org/software/emacs/
®http://rinari.rubyforge.org/

Capitulo 2

Diseno y desarrollo de la
aplicacion de turismo en el
movil

Después de las reuniones iniciales con la empresa se decidié que lo mejor
para que el desarrollo del proyecto fuera lo mas agil posible era empezar con
la aplicacion moévil. De esta forma, se estimarian mejor las necesidades que
el gestor web deberia satisfacer.

El trabajo necesario para el desarrollo de dicha aplicacion se dividié en
tres partes:

= En primer lugar, un estudio de las técnicas de visién por computador
para reconocimiento de objetos, de forma que se pudiera decidir cual
es la que mejor se adaptaba a las necesidades del cliente.

= Seguidamente, se llevaron a cabo una serie de reuniones conjuntas con
la empresa en las cuales se decidieron las caracteristicas principales del
sistema, y se aclararon las posibles dudas que hubiera de cara a que el
desarrollo fuera lo mas sencillo posible.

= En tercer lugar se procedio al disefio, implementacion y pruebas de la
aplicacion.

En los siguientes apartados, se hace una pequena descripcion de todo
el proceso. En el apéndice A se incluye una descripcion temporal de las
distintas partes del proyecto.

2.1. Sistemas y librerias de reconocimiento de
coédigos de barras y similares

Una de las tareas estipuladas al principio del proyecto, era la de analizar
y estudiar que técnicas de visiéon por computador podrian ser las mas ade-
cuadas para integrar directamente en el prototipo inicial del cliente de forma
que se pudieran reconocer objetos descritos en la guia con la camara del dis-
positivo mévil. Esta seccién presenta primero un pequeno analisis de trabajos
relacionados (tanto comerciales como de investigacién) y después describe en
més detalle la opcién elegida para incorporar en el prototipo (reconocimiento
mediante el uso de cédigos QR).

Reconocimiento visual con la cAmara de un moévil

Debido a ciertas caracteristicas de estos dispositivos, a la hora de desa-
rrollar técnicas de vision por computador para los mismos se presentan una
serie de desafios que tienen que ser superados cuidadosamente para que el
resultado pueda ser eficiente. Hay algunos obstaculos tradicionales que con
el avance de la tecnologia se van superando, como el tamafo, peso y poten-
cia de los disposivos, mientras que otros siguen todavia vigentes, como por
ejemplo la duracion de la bateria. Otro de los problemas a tener en cuenta,
que no solo afecta al entorno de las aplicaciones moviles, es el hecho de que
el campo de la visién por computador involucra elementos de percepcion e
inteligencia artificial que todavia no estan completamente resueltos a la hora
de hacer aplicaciones que se ejecuten en maquinas de escritorio, con lo que
mucho menos se puede esperar que funcionen perfectamente en los, por el
momento, menos potentes dispositivos moviles. El reconocimiento de objetos
es un campo de investigacion muy activo en el area de visiéon por computador
[1] [2], con grandes avances en los tltimos anos. Por ello, pese a los proble-
mas todavia sin resolver, ya hay algunas aplicaciones que estan empezando
a tener cierto éxito en el mercado. Por ejemplo podemos nombrar:

» Google Googles': Una aplicacién de la empresa Google en la cual
se pueden usar imagenes tomadas con la camara del dispositivo mévil
para buscar la web.

» Kooaba?: Una empresa que se dedica a hacer aplicaciones de visién
por computador para teléfonos moviles. Como ejemplo podemos citar

thttp:/ /www.google.com/mobile/goggles
2http://www.kooaba.com/

Shortcut, una aplicaciéon que permite escanear noticias de publicaciones
y que te conecta con contenido relacionado con las mismas en Internet.

Analisis de las diferentes opciones

En la comunidad internacional de investigadores de visién por compu-
tador y procesamiento de imagenes, encontramos multiples librerias de co6-
digo abierto que facilitan la investigacion en los mismos. Incluso también
han empezado a aparecer algunas librerias que facilitan todo el proceso de
llevar la visiéon por computador a los dispositivos moéviles, como por ejemplo
la portabilidad de la libreria OpenCV ? a la plataforma iOS . Haciendo uso
de estas librerias, se realizaron unas pruebas iniciales para las posibilidades
de incluir técnicas bien establecidas de visién por computador en el prototi-
po a disenar. En particular, se decidi6 probar el reconocimiento de objetos
basado en descriptores de imagen muy conocidos y utilizados en estas tareas,
SURF [referencia extraccion SURF). Estos descriptores de imagen capturan
los puntos mas distintivos en una imagen, y han sido presentados en apli-
caciones similares a nuestros objetivos [3] [4]. Al final se decidié buscar una
alternativa mas madura en productos comerciales que el uso de esta técnica,
para el reconocimiento de puntos de interés, debido a dos problemas:

= Se consigui6 implementar y ejecutar los elementos basicos del proceso
(deteccién y procesado de los puntos SURF descritos) en el teléfono
movil, pero el tiempo de ejecucién de los métodos mas estandar es muy
elevado para la aplicaciéon deseada.

= Ademas, para el uso de este tipo de técnicas, hay que entrenar al sistema
para obtener los parametros adecuados para cada una de los objetos
a reconocer, esto implica que los empleados de la empresa deberian
utilizar un tiempo mayor en la creacion de contenidos del que se emplea
ahora (obtencién de fotos desde diferentes angulos, introduccién de
fotos en el sistema, ...).

Por lo tanto se estimé no implementar este tipo de reconocimiento de
objetos en este proyecto, debido a que requiere una tarea de investigacion mas
larga que se pospuso como una tarea independiente de este proyecto, para
desarrollar en trabajos futuros. Este tipo de técnicas seria muy interesante
por ejemplo en lugares en los que no sea posible manipular el entorno para
poner codigos que identifiquen a las piezas o elementos de interés que tengan

3http://opencv.willowgarage.com/
4http:/ /www.eosgarden.com /en/opensource/opency-ios/overview/

10

algun tipo de movilidad y por lo tanto sea mas dificil etiquetarlos. Por lo
tanto, es posible que en un futuro se puedan implementar dentro del sistema,
ya sea sustituyendo a los codigos QR o como complemento de los mismos.

Después de analizar varias técnicas mas maduras en el ambito del reco-
nocimiento visual de objetos, se decidié que lo mas robusto y flexible de cara
a las necesidades de la empresa es el reconocimiento de codigos de barras
y similares. En concreto se decidié utilizar los coédigos QR que permiten la
codificacion de mas informacion que otro tipo de técnicas.

Implementacion y detalle de la técnica elegida

Los codigos QR (del inglés Quick Response Code, cdigo de respuesta
rapida) es un tipo de c6digo de dos dimensiones en el cual se puede codificar
hasta 4200 caracteres. El codigo consiste en un patrén de cuadrados negros
sobre un fondo blanco. Fue inventado por Toyota en 1994 para realizar un
seguimiento de sus vehiculos y se ha convertido en uno de los c6digos mas
utilizados debido a la velocidad con la que se puede decodificar.

Figura 2.1: Ejemplo de codigo QR.
Entre sus caracteristicas principales se encuentran:

s Alta de velocidad de descodificacion.

= Gran capacidad de almacenaje.

11

= Posibilidad de encriptacion.

» Correccién de errores.

En la actualidad este tipo de codigos se estan introduciendo en un gran
tipo de aplicaciones diferentes como puede ser publicidad, realidad aumenta-
da, inventarios, ... Para mas informacién sobre este tipo de cddigos se puede
consultar el estdndar ISO que lo describe [5].

Para este proyecto se ha utilizado la libreria ZBarSDK ° que es un soft-
ware de cddigo libre para la decodificacion de varios tipos de codigos de dos
dimensiones.

2.2. Requisitos del cliente y decisiones de di-
seno adoptadas

Como se ha mencionado anteriormente, durante las reuniones mantenidas
con la empresa Disline, se especificaron los requisitos basicos que deberia
cumplir la aplicacién. Para ello, gente de la empresa aporto su conocimiento
del modelo de negocio y del tipo de clientes con los que habitualmente tratan.
Estos requisitos estan basados tanto en la interaccion que los clientes van a
tener con la aplicacién como en la relacion que esta debe tener con el gestor
web. Asi mismo, también se decidié durante estas reuniones la plataforma de
desarrollo del primer prototipo.

El primer punto que se acordé fué que la interfaz de usuario debia ser lo
mas sencilla posible, ya que por experiencia propia las funcionalidades mas
complejas de las aplicaciones tienden a ser utilizadas por un nimero muy
pequenio de usuarios con lo que el tiempo que se tarda en desarrollarlas no
suele resultar rentable para la empresa. Por ello, se redujo la funcionalidad
al minimo posible de forma que en un futuro, y si los usuarios lo demandan,
se pudiera ir anadiendo nuevas funcionalidades. Al final, la lista de funciona-
lidades que va a tener la aplicaciéon puede ser resumida en:

» Listados e informacién detallada (texto, imagenes y videos informati-
vos) de puntos de interés clasificados en diferentes categorias para una
busqueda mas facil de los mismos.

= Mapa con todos los puntos de interés en el que el usuario vea también
su propia posicion para poder comprobar cuales son los puntos mas
cercanos a si mismo. Este mapa se ha de poder filtrar de forma que en

Shttp://zbar.sourceforge.net /iphone/sdkdoc/

12

lugares donde haya muchos puntos de interés concentrados, el usuario
pueda encontrar aquellos en los que este interesado (e.g. restaurantes
si es la hora de la comida). La base de este mapa sera el entorno y
estilo de "google maps”, ya que mucha gente estd habituado a ellos y
resultan comodos y faciles de usar.

s Escaner de cédigos QR, de forma que si el usuario encuentra alguno
de estos codigos mientras esta realizando turismo en alguna localidad
pueda obtener mas informacién sobre el elemento de la guia asociado
a dicho punto. Esta caracteristica deberd estar presente tnicamente
en algunas guias, con lo que debera ser posible esconderla de forma
paramétrica.

Otro de los puntos importantes que se acordd es que deberia ser muy
facil para la empresa el crear una nueva guia para otro de sus clientes de
forma que no se necesitara mucho tiempo ni dinero para la creacién de un
nuevo producto. Para ello, se estim6 que lo mejor seria que la aplicacion
fuera parametrizable basandose en la informacién contenida en una base de
datos situada en el mismo teléfono y con la cual se podria configurar la
aplicacion completamente, no solo el contenido turistico en si, sino también
el color basico de las ventanas, los iconos, ... Ademas el hecho de tener toda
la informacién de apariencia y contenido dentro de una base de datos (en
oposicién a codificada directamente) hace que sea més facil la portabilidad
a otras plataformas con el mismo contenido y apariencia similar.

Plataforma y metodologia de desarrollo

Se decidi6 que la mejor plataforma para empezar con el prototipo seria
Apple iOS, ya que a parte de tener una cuota de mercado considerable, las
herramientas de desarrollo de las que dispone son de mayor calidad a la del
resto de plataformas. En el Apéndice C se describird en mayor profundidad
la plataforma de desarrollo.

En cuanto a la metodologia de desarrollo, y debido principalmente a que
la empresa con la que se colabora no tenia muy claro todas las caracteristicas
que esperaba de la aplicacion, se estimé que lo mejor seria usar algo parecido
a las metodologias agiles de desarrollo. Se decidié hacer periodos de trabajo
cortos (en torno a las dos semanas en este caso) tras los cuales se realiza-
rian breves demostraciones de lo que estuviera desarrollado en ese momento.
Debido a esto, se tuvieron que acomodar cada una de las funcionalidades a
desarrollar como un conjunto cerrado. En el apéndice B se explica un poco
mas en que consisten las metodologias de diseno agiles.

13

2.3. Arquitectura, diseno y pruebas de la apli-
cacion cliente

Modelo-vista-controlador (MVC)

Debido al uso de la plataforma iOS para el desarrollo de la aplicacion
cliente, la arquitectura basica para la aplicacion se basa en el patron de
disefio MVC (modelo-vista-controlador) . En esta arquitectura la aplicacién
se divide en tres partes que interactuan entre si para obtener los inputs del
usuario y mostrarle los datos que este haya pedido.

Modelo Controlador Vista

USUARIO '

Figura 2.2: Arquitectura de la aplicacion cliente - Patron MVC

El usuario actia directamente contra los diferentes elementos que se han
codificado como wvistas, en este caso las vistas son las pantallas que se han
disenado usando la aplicacién Interface Builder de Xcode. La vista a su vez
envia los datos al controlador, que son las clases que se encargan de organizar
el trabajo dentro de la aplicacion y de decidir que parte del modelo (clases
dedicadas al almacenamiento y tratamiento de los datos) ha de ser utilizado
para obtener los datos que el usuario ha solicitado. Una vez el controlador
ha obtenido los datos necesarios, elige la siguiente vista que se mostrara al
usuario y le pasa los datos para que a su vez esta sea la que los organice en
una nueva pantalla que sera la que el usuario pueda visualizar.

Shttps://developer.apple.com/library /mac/#documentation/General /Conceptual /DevPedia-
CocoaCore/MVC.html

14

2.3.1. Arquitectura y moédulos de la aplicaciéon

A parte de esta organizaciéon de los diferentes elementos de la aplicacion,
estos se pueden clasificar también de forma que los elementos que trabajen
juntos para realizar una determinada funcién, esten agrupados.

Listado de puntos de interés Mapa

S

Escdner de cédigos QR

Figura 2.3: Diagrama de modulos de la aplicacion maévil

Desde el punto de vista de la funcionalidad, se puede dividir la aplicacion
en tres modulos principales. Estos se corresponden con las tres principales
acciones que se pueden realizar en el aplicacion:

= Listado de puntos de interés: este es el médulo dedicado a la obten-
cion de una lista de los puntos de interés solicitados por el usuario
(segtn estan englobados en una categoria determinada) y mostrarselos
al usuario, a su vez si el usuario selecciona un punto en particular le
mostrara informacién sobre el mismo.

= Mapa de puntos de interés: este es el médulo dedicado a mostrar en un
mapa de los proporcionados por Google Maps® el listado completo de
puntos de interés. Ademas ofrece la posibilidad de filtrar todos estos
puntos de forma que el usuario solo vea aquellos que corresponden a
unas determinadas categorias. También permite mostrar informacion
de un punto determinado si es seleccionado por el usuario en la interfaz
tactil, ademas de mostrar la posiciéon del usuario en el mapa para que
este pueda estimar cuales con los puntos mas cercanos a la misma.

"http://maps.google.com

15

s Escaner de cddigos QR: Este modulo se encarga de obtener una imagen
de la cdmara del dispositivo mévil y analizarla en busca de codigos QR
que pudieran tener informacion relevante de la aplicacion. Si se encuen-
tra un codigo de este tipo, muestra cierta informaciéon por pantalla y
permite ademas obtener una informacién més detallada del punto de
interés (la misma a la que accederiamos pinchando en el elemento co-
rrespondiente desde el listado de elementos de la aplicacién) incluyendo
contenido multimedia y una descripcion del mismo.

En cada uno de estos médulos, su puede apreciar a su vez la division
entre los moddelos, controladores y vistas que se ha explicado en parrafos
anteriores. Debido al solapamiento entre algunas de estas funcionalidades
(e.g. visualizacion de los datos detallados de los puntos de interés), alguno
de los elementos esta compartido entre varios médulos.

2.3.2. Interfaz de usuario

Como ya se ha comentado anteriormente, una de las principales caracte-
risticas en las que debia estar basado el sistema, es la sencillez de la interfaz
de usuario. Para ello, (basdndonos en las en la guia de interaccién persona-
ordenador publicadas por Apple &, se agrupé cada uno de los médulos que
se han descrito con anterioridad en una pestana de la aplicacion visibles de
manera constante que manejan la navegacién principal por la aplicacion (Fig.
2.5).

La figura 2.4 incluye el diagrama de navegacién de toda la aplicacion,
en ella se pueden ver las pantallas mas importantes de la misma, asi como la
forma de llegar a ellas.

8https://developer.apple.com/library /ios/#documentation/UserExperience/Conceptual /MobileHIG

16

- AR i) ¥ - b T 115 o

il O hEeetn Lo eeetn [l

&l Avertamienia) 2 o

il 'giesia oo Santa Maria e o : [PR—— o
B Balcon de Toros H T~ a

mhmﬂhnﬂnu ¥ I 3 e

i Caans Nobilisins » T

“muuuwmu ¥ ? ‘_: m
[s sanpere o r— rrepr—

w

ybeaia b Saina klaiia

En s P o9 ks Fesns 50
fermanta ls bpieatn o Sants Marts,
0 TN D

Figura 2.4: Diagrama de flujo de la interfaz de usuario

17

A continuacién describimos en mas detalle los elementos principales de
los componentes de la aplicacion, Guia, Mapa, FEsciner:

|l movistar = 13:59 o 64% F

VIANA CUIA D& ViaJe

Como llegar ~ Presentacién Monumentos

o &

Donde dormir Donde comer Fiestas

Figura 2.5: Pantalla principal de la aplicacion cliente y sus diferentes pesta-
nas.

Pestana Guia

Cuando abres la aplicacion, se encuentra seleccionada por defecto la pes-
tana de Guia (Fig. 2.5), en esta pantalla encontramos un ment con las
principales categorias de la guia turistica que una vez seleccionadas nos lle-
van a una lista de los puntos de interés para dicha categoria. Debido a que
no caben todas las categorias existentes en la pantalla, se ha creado un botén
de Otros que te lleva a una lista con las categorias menos importantes.

Una vez seleccionado un punto de interés (Fig. 2.6), es posible acceder a
la informacién multimedia asociada a este usando el boton Ver video asociado
a este. Desde esta pantalla, es posible ademas abrir la aplicacién de mapas
del dispositivo para que esta nos de una ruta desde el punto en el que nos
encontramos al punto de interés (Fig. 2.7).

Pestana Mapa

La segunda pestana en la que contiene el mapa en el que se localizan los
puntos de interés como se puede ver en la figura 2.8. Si se pulsa en cada
uno de los puntos de interés, se da la posibilidad de acceder a informacién
més detallada sobre el mismo (la misma a la que se accedia en la pestana

18

mi_movistar 3G 22:13 69 % =

Iglesia

de Santa Maria-

Iglesia de Santa Maria

En la Plaza de los Fueros se
levanta la Iglesia de Santa Maria,
un imponente templo declarado
Monumento Nacional en junio de

a0

" l« 1 »
—‘

Figura 2.6: Pantallas de detalle de punto de interés y visualizacién multimedia

i movistar = 13:27 o 49% =
= ol
= TR

1st of 3 Suggested Routes

Calle del Marques de la Cadena
15 minutes - 7.5 km

Academia
Jusibol General Mitar

San
Gregoria,
Montafia

Figura 2.7: Ruta desde la localizacién actual al punto de interés elegido.

anterior). Ademés es posible el filtrar los puntos de interés por categorias
para ver solo aquellos que nos interesen.

Pestana Escaner

En la dltima pestana (esta es opcional y no aparece en todas las guias) se
encuentra el escaner de cdédigos QR. Una vez pulsado el boton de escanear,
podremos ver en pantalla la imagen de la camara, y si aparece dentro de su
rango algin codigo QR, se extraera la informaciéon contenida en el mismo
sin necesidad de pulsar ningtin botén. Una vez que hayamos obtenido la
informacion de un cédigo correspondiente al sistema, usando el botén de
Mas informacion se obtiene la misma informacién sobre el punto de interés
que en anteriores ocasiones.

19

,,,,, movistar 3G 22:13 o 70% ="

()Seelon

NNNNNN

Figura 2.8: Pestana de mapa.

wi_movistar 3G 22:13 7 70% =%
(JSeeln
Monumentos v
Donde dormir v
Donde comer

Fiestas

Farmacias v
Centros de salud v
Cines v
Cajeros automaticos v
Varios v

Figura 2.9: Pantalla de filtro por categoria

2.3.3. Plan de pruebas

En las reuniones en las que se definieron los requisitos que deberia tener
la aplicacion, asi como el calendario de hitos de la misma, se definié6 ademas
un plan de pruebas que obligara a ambas partes a revisar la aplicacion de
forma periddica con el fin de tener el menor ntimero de errores posible.

Para ello se definieron tres pasos fundamentales a seguir antes de cada
demostracion:

» La parte del negocio de la aplicacién (la correspondiente al modelo
en la arquitectura MVC) se testeo usando la técnica conocida como
unit testing. Para ellos se disenaron una serie de test que pueden ser
ejecutados de forma automatica cada vez que se realiza un cambio en
esta parte. Se utilizé la herramienta Google Toolbox for Mac ? para la

9http://code.google.com/p/google-toolbox-for-mac/wiki/iPhoneUnit Testing

20

realizacion de estas pruebas.

Antes de entregar una versién para la realizaciéon de una demonstra-
cion el desarrollador se hacia responsable de la realizaciéon de una serie
de pruebas que cubrieran los casos estandares que un usuario podria
realizar con la aplicacion.

Un testeo més en profundidad del uso habitual de la misma, debia
ser realizado por la empresa una vez terminada la demostracion de
modo que si se encontraban errores en la aplicacion, estos pudieran ser
reparados antes de la siguiente reunion.

21

Capitulo 3

Diseno y desarrollo del gestor
web

Una vez finalizada la aplicacién mévil, se consiguié una idea mas exacta
de lo que hacia falta para la parte del gestor web. La aportacion de la empresa
durante estas reuniones fue especialmente importante, ya que es la parte del
sistema con la que ellos van a trabajar dia a dia y era fundamental que se
encontraran comodos con ella.

En los siguientes apartados se describe de forma detallada todo el proceso
llevado a cabo para el desarrollo del gestor web. Esto incluye tanto la toma de
decisiones, como el disefio de la aplicacion y la implementacién de la misma.
Durante todo el proceso ademas, se fueron intercalando periodos de pruebas
de la aplicacién.

3.1. Requisitos del cliente y decisiones de di-
seno adoptadas

Como ya sucedi6é con el diseno de la aplicaciéon moévil, una de las princi-
pales caracteristicas que se plantearon fue la necesidad de que la interfaz de
usuario fuera lo mas sencilla y autoexplicativa posible. Esto deberia servir
para que la curva de aprendizaje de los empleados / usuarios fuera menor y
fueran realmente productivos desde un principio.

Asi mismo, se incidi6 en que el sistema mévil deberia ser lo mas confi-
gurable posible desde esta plataforma, haciendo posible el hecho de no tener
que cambiar nada de forma manual en el codigo de la aplicacion maévil, a la
hora de crear una nueva guia.

También se decidié que a pesar de que las guias debian ser multilenguaje,
no era practico el hecho de tener una aplicacion con los cuatro idiomas que

22

se deseaban (espanol, alemén, francés e inglés) dentro de su base de datos
interna, debido principalmente a que el tamano de los elementos multimedia
de una guia suele ser bastante elevado, con lo que si lo multiplicamos por
cuatro (uno para cada idioma), esto hace que la guia alcance un tamano
prohibitivo (hay que recordar que la mayoria de las aplicaciones de este tipo
son descargadas directamente en el dispositivo desde una tienda virtual, con
lo que el tamano de las mismas puede ser un factor a considerar por los
usuarios a la hora de descargarse una aplicacion o no). Esto incidia en el
disenio que era necesario para el gestor web.

Desarrollo web. Se decidié6 por Ruby on Rails * como plataforma de
desarrollo web debido a su flexibilidad, facilidad de programacion y popu-
laridad (las plataformas méas populares, generan una comunidad mayor a
su alrededor que hace que sea mas facil encontrar respuestas a los posibles
problemas que se créen durante el desarrollo. Ademas existe una posibilidad
mayor de que ya existan librerias desarrolladas que hagan que algunas tareas
puedan ser abstraidas).

Base de datos. En cuanto a la base de datos donde almacenar la confi-
guracion e informacion especifica de una guia, y debido a que el nimero de
personas que van a usar la aplicaciéon dentro de la empresa es reducido, se
decidi6 usar un sistema de menor potencia del que es habitual en este tipo de
sistemas (normalmente se usan sistemas como MySQL 2 o PostgreSQL 3, de
gran potencia pero m4s dificiles de mantener) como es SQLite 4. Durante las
pruebas efectuadas, se estimé que SQLite puede soportar de sobra la carga
a la que va a ser sometido desde la empresa.

1

3.2. Arquitectura, diseno y pruebas del ges-
tor web

A lo largo de esta seccion se va a explicar el diseio adoptado para el
gestor web y la interfaz de usuario que se ha implementado para el mismo.

3.2.1. Interconexiéon del cliente con el servidor

A la hora de conectar los datos introducidos en el servidor con la aplica-
cion cliente se pensé en dos posibilidades:

thttp:/ /www.rubyonrails.org
http://www.mysql.com/
3http:/ /www.postgresql.org/
4http:/ /www.sqlite.org/

23

= El servidor puede servir los datos a través de Internet mediante servicios
web. La aplicacion obtendra estos datos cada vez que se inicie.

= Creacion de una base de datos en el servidor con todos los datos de una
guia. El fichero que contenga la base de datos debe ser introducido antes
de compilar la aplicacion cliente para cargar todos los datos necesarios
y generar la aplicacion de moévil correspondiente.

Se descartd la primera opcién debido a que, a pesar de la ventaja que
supone el hecho de tener siempre los datos actualizados cada vez que se inicia
la aplicacién, la posibilidad de que la conexién a Internet sea insuficiente para
poder descargarlos a una velocidad aceptable es bastante frecuente y por lo
tanto hay entornos en los que es posible que la aplicacion quede totalmente
inutilizada.

3.2.2. Base de datos

Guides

Preferences

Categories |—— Places

Figura 3.1: Tablas principales de la base de datos

Como se puede ver en la figura 3.1 el esquema de la base de datos
utilizado es muy sencillo. En primer lugar tenemos una tabla Guides en la
que encuentran todas y cada una de las guias generadas con el gestor web.
En esta tabla encontramos campos como el nombre y descripcion de la guia,
ademas del lenguaje de la misma.

Existe también una tabla Categories en la que se almacenan las diferentes
categorias de puntos de interés que existe en esta guia en particular. Esta
tabla tiene campos para el nombre y una imagen para la categoria y esta
relacionada con la tabla de guias.

Los puntos de interés de una guia se almacenan dentro de la tabla Pla-
ces. Esta tabla esta relacionada con la categoria y la guia a la que pertenece

24

y ademas tiene campos para almacenar los principales valores de un pun-
to de interés como son nombre, descripcion, imagen, elementos multimedia,
geoposicion, ...

Finalmente, existe una tabla llamada Preferences que almacena pares
clave-valor con las preferencias que hacen que cambie la apariencia de la
aplicacién (color de las ventanas, existencia de escaner de cédigos QR, ...)

3.2.3. Arquiterctura de la aplicaciéon

Las aplicaciones web hechas en Ruby on Rails (y en general la mayoria de
las aplicaciones web) se basan en el mismo patrén que hemos explicado antes
para la aplicaciéon movil, el cual se conoce como modelo-vista-controlador
(MVC). En este caso, tiene la ventaja de que es muy facil el cambio de la
interfaz de usuario sin tener que tocar la parte del cédigo que describe la
logica de negocio.

™ N
Vistas Controladores

category/index.html.erb
guide/index.html.erb

home findex.html.erb
layout/application.html.erb
place/index.html.erb

ApplicationController
CategoryController
GuideController
HomeController
PlaceController

b o v
' !
Modelos
Category
Guide
Language
Place
Preference
L o

Figura 3.2: Diagrama de moédulos del gestor web.

Dentro del médulo de vistas nos encontramos con todas los elementos
que se encuentran en la carpeta wviews de la aplicacion. Estos consisten en
archivos de plantilla eRuby que son paginas HT'ML a las que se puede anadir
cierto componente dindmico (en el apéndice D se explica un poco mejor su
funcionamiento). Hay aproximadamente una plantilla (archivo RHTML) por
cada una de las pantallas del gestor web.

En el médulo de controladores hay una clase por cada grupo de pantallas
que se encuentran relacionadas, como se puede ver en la figura 3.2 estas

25

son una para cada uno de los elementos principales, ademas de uno para la
pantalla inicial (HomeController) y otro del cual extienden el resto que sirve
para implementar las funciones comunes a todos (ApplicationController):

ApplicationController

CategoryController

GuideController

» HomeController

PlaceController

En cuanto al modulo de modelos, al ser estas clases que se identifican de
forma principal con las tablas de la base de datos, esta compuesto de una
clase por cada tabla de la base de datos en la que hay aparte de cada uno de
los datos de dicho elemento, aquellas funciones que manipulan estos datos:

Category
Guide

= Language

Place

Preference

3.2.4. Interfaz de usuario

Durante esta seccién, se va a describir la interfaz de usuario que se ha
desarrollado para el gestor web. En las figuras 3.3 y 3.4 se puede ver el
diagrama de flujo entre las pantallas principales y como se mueve el usuario
entre unas y otras. A continuaciéon se describe en mas detalle los distintos
componentes/pantallas de la interfaz resumidos en dichas figuras:

= Cuando el usuario entra en la aplicacién, le aparece una lista de las
guias que se han creado hasta el momento en la aplicacién y botén
para crear una nueva guia (pantalla numero 1 de Fig. 3.3). Una vez
seleccionada la guia con la que quiere trabajar, le aparece una pantalla
con varias pestafas entre las que podra elegir para ver y editar los
diferentes elementos de la guia.

26

= La primera de estas pestanas es la de los datos generales de la guia
(pantalla niimero 2) donde se puede editar el nombre y la descripcién
de la guia.

» En la segunda pestana, la que tiene por titulo Categorias (pantalla
ndimero 3), se pueden crear y editar las diferentes categorias de la apli-
cacion. Para cada una de ellas se puede dar tanto un nombre como una
imagen que serd la que aparezca en la aplicacion mévil. Para editar una
categoria, se usa la pantalla ntiimero 6.

= La pantalla nimero 4 corresponde con la lista de lugares pertenecientes
a la guia. Junto con la pantalla nimero 7 se usan para crear y editar
nuevos puntos de interés de la guia. Para un lugar se pueden editar una
serie de datos como nombre, descripcién, geolocalizacion, imagen que
aparecera en pantalla, ... También existe el boton de Cddigo QR que
genera la imagen de un cédigo con los datos del lugar que podréa ser
utilizado después con el escaner de la aplicaciéon mévil.

= La ultima pantalla que aparece es la pantalla de las preferencias de
la aplicacion (pantalla nimero 5). En esta pantalla se pueden modifi-
car ciertas configuraciones de la aplicacién moévil como el icono de la
aplicacion, el fondo de pantalla, ...

3.2.5. Plan de pruebas

Al tener ya experiencia en el trabajo con la empresa en la parte de la
aplicacion moévil y debido a que el sistema de pruebas adoptado habia fun-
cionado bastante bien, se decidi6 el usar un acercamiento parecido para las
pruebas de esta parte del sistema:

» Pruebas unitarias para la parte de negocio (modelo) de la aplicacion.
Es este caso no hubo que utilizar ninguna libreria externa, ya que Ruby
on Rails cuenta con soporte integrado para la realizacion de este tipo
de tests °.

= Pruebas estandares por parte del desarrollador antes de cada reunion.

= Pruebas mas exhaustivas por parte de la empresa después de cada
reunion con el objetivo de tener solucionados los errores antes del pré-
ximo ciclo.

Shttp://guides.rubyonrails.org/testing.html

27

FeeGewebano
i i e Taragean

F——=—y—F=11
Crmcwe b e d

Figura 3.3: Interfaz de usuario web (I).

28

Srwrardn | i

Sna-ﬂowobappe

PmgE | Pl D P g s

[]
Ciem
Giassrdar Carnpwiir
Seno wabapp
Fiammgrria. s sagas
[——
Ly
roa
-
N 2
e

Ecarde Edalieis T,

Figura 3.4: Interfaz de usuario web (II).

29

Capitulo 4

Conclusiones y trabajo futuro

Como se ha comentado anteriormente este proyecto se ha desarrollado
junto a la empresa Disline. Sus principales objetivos al comienzo del proyec-
to eran la realizacion de una plataforma software que les permitiera entrar en
un nuevo mercado dentro de su negocio orientado al turismo y realizacién de
guias turisticas. Dicha plataforma debe ser de facil uso por parte de sus em-
pleados y flexible (de forma que no hubiera que ser totalmente dependiente
del desarrollador inicial a la hora de crear nuevas guias turisticas). Por otro
lado, la solucién aportada debia ser lo suficientemente potente para que pu-
diera acomodar diferentes tipos de guias que pudieran interesar a diferentes
clientes (guias orientadas a monumentos en exteriores, guias para interiores,

En una primera fase de estudio sobre cémo son las aplicaciones similares
disponibles se decidi6 que técnicas se iban a incluir en este trabajo (reco-
nocimiento con QR, autolocalizacién con GPS, ...) y cuales definen posibles
lineas de trabajo futuro (detalladas al final de esta seccién).

Para cumplir el primer requisito, la parte que tiene que ser manipulada
por los empleados de la empresa se baséd en una plataforma web muy sencilla,
en la que los empleados practicamente ni necesiten hacer uso de un manual
de usuario. Al estar la mayoria de las personas ya habituadas a trabajar
con aplicaciones web en su dia a dia (Gmail, Facebook, ...) la transicién a
introducir los datos de los puntos de interés de esta forma resulta bastante
facil.

En cuanto a la flexibilidad de la plataforma, se ha creado un sistema
que permite que inicamente haya que sustituir un archivo perteneciente a la
base de datos (generado automatico desde la platarforma web) y adjuntar los
ficheros multimedia correspondientes (videos y fotografias de los elementos
de la guia) para tener una nueva guia. Es verdad que hay que compilar la
nueva aplicacion antes de subirla al mercado de aplicaciones correspondiente,

30

pero este es un trabajo facilmente realizable por cualquier profesional del
desarrollo de aplicaciones informaticas y que apenas conlleva tiempo por lo
que hace que la empresa no sea dependiente de nadie externo a la misma.

Debido a que el mercado principal de la empresa son las guias turisticas
para pequenos municipios y aquellas destinadas museos que se encuentran
es dichas localidades, se ha disenado un sistema de identificacién de puntos
de interés que pueda ser util tanto en interiores como en exteriores. Para la
localizacién de puntos de interés en exteriores, se ha usado un mapa en el
cual el usuario se puede mover e ir buscando lo que le interesa. Para cuando
el usuario se encuentra en interiores sin embargo, la creacién y lectura de
c6digos QR, hace que el usuario pueda saber ante lo que se encuentra con
facilidad y conseguir la informacién deseada sobre ello.

Debido a todo lo expuesto anteriormente, se puede concluir que se han
conseguido implementar los requisitos, expuestos al principio del proyecto
por la empresa, de forma satisfactoria y que la aplicacion sera de gran ayuda
para un mayor desarrollo del negocio en el que se encuentran inmersos. A lo
largo del proyecto también se han estudiado las posibles mejoras que podrian
ser interesantes en trabajos o estudios futuros. A continuacién se describen
las tres lineas principales de trabajo futuro analizadas:

Reconocimiento de objetos mediante técnicas de visién por compu-
tador sin marcadores artificiales

Se dejé como trabajo futuro o complementario, el desarrollo prototipos
para reconocimiento de objetos (cuadros, monumentos,...) sin necesidad de
utilizar marcadores. Estas técnicas tienen la ventaja de no necesitar una
instalacion anadida a lo ya existente con el correspondiente gasto y mante-
nimiento que ello supone. Ademas, permitirian que mediante actualizaciones
de software se puedan anadir nuevos objetos al catdlogo de la aplicacion,
mientras que si usamos algun tipo de marcador artificial (como los c6digos
QR por los que se ha optado finalmente en este trabajo) para cada uno de los
objetos que se quieran anadir, hay que realizar algin tipo de instalacién en
el mundo real con lo que no es tan inmediato. Sin embargo este tipo de desa-
rrollo implicaba un trabajo de investigacion y desarrollo de nuevas técnicas,
equivalente a un proyecto completo. Por ello, para este prototipo comercial
se opto por la opcion de reconocimiento visual mas madura y robusta dispo-
nible (los cédigos QR), dejando la opcién descrita como trabajos futuros y
de investigacion.

31

Localizacién de puntos de interés sin necesidad de conexién a In-
ternet

Otra posible mejora de la solucién presentada, consiste en el desarrollo
de un sistema de localizacién que no requiera de la conexién a Internet,
para permitir guiado y localizaciéon de puntos de interés en entornos donde
es dificil obtener una conexién a Internet de buena calidad. La localizacion
de puntos de interés usando los mapas de Google Maps que es totalmente
adecuado dentro de nucleos urbanos, se torna inusable en entornos remotos
o de montana: a pesar de poder obtener la localizacién GPS del usuario, la
licencia de uso de los mapas de Google impide la descarga de estos en el
dispositivo mévil para su posterior uso sin conexion.

La solucién mas evidente a este problema es anadir a la aplicacion movil
la posibilidad de usar otro tipo de mapas que puedan se accesibles de forma
offtine. Para ello y después de pensar las diferentes posibilidades, se pensé que
la solucién mas general y que mayor facilidad de uso aportaria a la empresa es
la posibilidad de cargar en el dispositivo una imagen con el mapa y ademas
anadir como informacién a la guia las coordenadas de localizaciéon de dos
puntos de la misma (un par de esquinas de la imagen es posiblemente lo mas
comodo). De este modo, se pueden interpolar el resto de las localizaciones
que se quieran poner en dicho mapa y el usuario no tendra ningin problema
cuando transite por lugares en los que la conexién no sea del todo buena.

Portabilidad de la aplicacién a otras plataformas

Una de las principales caracteristicas que se deseaba que tuviera el sistema
cuando se iniciaron las reuniones que se realizo la toma de requisitos, era que
el sistema fuera accesible por el mayor nimero de personas posibles. Esto pasa
principalmente porque el cliente movil se pueda utilizar en el mayor ntimero
de plataformas méviles en el que sea posible. En la practica, esto se reduce a
las cuatro pincipales que copan aproximadamente hasta un 95 % de la cuota
de mercado como son Apple iOS, Google Android, RIM Blackberry OS y
Microsoft Windows Mobile. Debido a que la portabilidad de la aplicacién
excede las posibilidades de un PFC, se decidi6 inicialmente la creaciéon del
cliente para una de las mas populares (Apple iOS) dejdndose para un futuro
la realizaciéon del cliente en el resto de plataformas.

Durante las fases finales del proyecto y en paralelo a la creacion del ges-
tor web, el autor de este proyecto ha estado dando apoyo necesario a otro
desarrollador que se encargara de la portabilidad a Android para que sea to-
talmente compatible con todo lo desarrollado a lo largo de estos meses. En el
momento de redactar la memoria de este PFC el desarrollo de la portabilidad

32

estaba practicamente terminado con lo que seguramente ambas plataformas
llegaran al mercado al mismo tiempo.

En cuanto a las dos plataformas restantes (Blackberry y Windows Mo-
bile), en el futuro se seguira con detenimiento la evolucién de ambas plata-
formas (asi como otras que pudieran aparecer con el tiempo y alcanzar una
buena posicién en el mercado), para comprobar si es factible y rentable para
la empresa el expandir su oferta con nuevos desarrollos software.

33

Bibliografia

[1]

2]

Yue Liu, Ju Yang, Mingjun Liu, Recognition of QR Code with mobile
phones Control and Decision Conference, pags. 203 - 206, 2008

Yu-Hsuan Chang, Chung-Hua Chu, Ming-Syan Chen, A General Sche-
me for Extracting QR Code from a Non-uniform Background in Camera

Phones and Applications, Ninth IEEE International Symposium on Mul-
timedia, pags. 123 - 130, 2007

Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, SURF:
Speeded Up Robust Features, Computer Vision and Image Understanding
(CVIU), Vol. 110, No. 3, pp. 346-359, 2008

Herbert Bay, Beat Fasel, Luc Van Gool, Interactive Museum Guide: Fast
and Robust Recognition of Museum Objects, 2006

International Organization for Standardization.; International Electro-
technical Commission, Information technology — automatic identification
and data capture techniques — bar code symbology — QR code, 2000

Bryan O’Sullivan, Mercurial: The Definitive Guide, O’Reilly Media, 2009

Roy Thomas Fielding, Architectural Styles and the Design of Network-
based Software Architectures, Univeristy of California (Irvine), 2000

Robert C. Martin, Agile Software Development, Principles, Patterns, and
Practices, 2002

Alistair Cockburn, Agile Software Development: The Cooperative Game,
2nd Edition, 2006

[10] Sam Ruby, Dave Thomas, David Heinemeier Hansson, Agile Web Deve-

lopment with Rails (Pragmatic Programmers), 4th Edition, 2011

[11] Obie Fernandez, The Rails 3 Way, 2nd Edition, 2010

34

Apéndices

35

Apéndice A

Diagrama temporal de
desarrollo

Como se ha ido explicando a lo largo de este documento el trabajo en
este proyecto se ha dividié en tres partes (cuyo desarrollo temporal se puede
ver en la figura A.1):

= Primero se realizaron una serie de estudios sobre las técnologias a uti-
lizar, tanto de desarrollo como de reconocimiento de objetos mediante
técnicas de vision por computador.

= Después de los estudios, se realizo la aplicacion mévil, empezando por
la toma de requisitos y el disefio de la aplicaciéon y finalizando con la
implementacion que se realizo junto con las pruebas del sistema.

= En tercer lugar se desarroll el gestor web. Este desarrollo tuvo apro-
ximadamente los mismos pasos que el anterior.

36

‘0l AoN 190 des coBy Inp cunp AN uqy UB "ged "eul

segenid
uoroeusLIB|dw|
uoioeo||de | 8p oussig
solsinbal ap Bwo|
gem Jo1sey)

seqgenig
uoioelUsLLa|dLL|
ugioeolde g| op oussiq
soysinbal ep ewo]
lIAQL UOJoED||dY

solaald solpnisy
seaie|

Figura A.1: Diagrama temporal del desarrollo

37

Apéndice B

Metodologias de desarrollo
agiles

Las metodolgias de desarrollo agiles esta compuestas por una serie de
conceptos que nacieron como contraprestacion a la forma de desarrollo tra-
dicional empleada, conocida como desarrollo en cascada. En el desarrollo en
cascada, todo el disefio se hace al principio del proyecto de forma que se
planifica hasta el tltimo detalle del mismo con la intenciéon de hacer toda la
implementacion en una sola iteracion. Por contra, en las metodologias agiles,
se entiende que los requisitos del producto a desarrollar van a ir cambiando
a lo largo del tiempo y que por lo tanto no es posible conocer con antela-
cion lo que el cliente espera del producto o no sera posible que el cliente nos
transmita dicho conocimiento de forma eficaz sin ir viendo antes partes del
producto ya terminado.

Es por todo lo anterior que las metodologias agiles proponen una inter-
accién mayor entre clientes (entendiendo estos como los usuarios finales del
producto) y desarrolladores. Para ello, se hacen ciclos de desarrollo més cor-
tos y demostraciones al cliente al final de cada ciclo de forma que se puedan
ir haciendo las modificaciones que se estimen adecuadas para que el producto
cumpla con la funcionalidad deseada por el cliente de una forma mas eficaz.

Otra de las diferencias bésicas se encuentra en la forma de probar los
productos. Mientras que en la forma de desarrollo clasica, se reservaba un
espacio practicamente al final del proyecto en el cual se hacia un testeo com-
pleto de la aplicacién, en estas nuevas metodologias se va testeando conforme
se va desarrollando (incluso hay veces que se crean tests automatizados antes
incluso de la implementacion de una determinada funcionalidad, ejerciendo
estos como especificacién de dicha funcionalidad. Esto es conocido como Test
Driven Development (TDD).

Aunque hay veces que se acusa a las metodologias agiles de ser totalmente

38

anarquicas, en realidad estas usan una serie de metodos formales para, por
ejemplo, medir la velocidad de desarrollo del equipo del proyecto. De esta
forma se puede estimar el coste en tiempo de las futuras funcionalidades
a desarrollar de una forma mas certera no teniendo que hacer conjeturas
al principio del proyecto sobre como va a funcionar el equipo, ya que la
comunicacion entre los diferentes miembros del equipo (una de las cosas que
enfatizan este tipo de metodologias) es muy importante de cara a no perder
tiempo de desarrollo debido a malentendidos entre dos o méas miembros.
Hay una serie de métodos ya establecidos como por ejemplo:

Extreme Programming (XP).

Scrum.

Kanban.

Agile Unified Process (AUP).

aunque en la practica, la mayoria de equipos de desarrollo acaban im-
plementando una mezcla de todos ellos (hecho conocido como tailoring) de
forma que obtengan las caracteristicas con las que se encuentren mas co-
modos de cada uno. Alguno de estos métodos (e.g. Extreme Programming)
incluso incluyen el tailoring como parte del método en si mismo, con lo que
fomentan la practica del mismo.

Para mas informacion sobre este tema, existen multitud de libros y ar-
ticulos entre los que se incluyen:

» Agile Software Development, Principles, Patterns, and Practices [8].

» Agile Software Development: The Cooperative Game [9)].

39

Apéndice C
Plataforma de desarrollo i0OS

iOS es el sistema operativo que se encuentra dentro de los dispositivos
iPhone, iPod Touch e iPad. Esta plataforma esta fuertemente influenciada
por el sistema de desarrollo de OSX al ser ambos pertenecientes a la misma
compaiia.

Para desarrollar aplicaciénes para iOS, se usa entorno de desarrollo (IDE)
Xcode, el cual provée de todas las herramientas necesarias para el diseno de
la interfaz de la aplicacion y para escribir codigo para la misma. En este
apéndice se va a explicar las herramientas de desarrollo béasicas de las que se
compone el entorno. Para mas informacion sobre el desarrollo de aplicaciones
el mejor lugar es la pagina del desarrollador de Apple .

Figura C.1: Entorno de desarrollo Xcode (Inteface Builder, editor de codigo,
App Store, dispositivo).

Thttps://developer.apple.com/iphone

40

Entorno de desarrollo

Para el desarrollo de una aplicacién iOS, se empieza creando un proyecto
en la aplicaciéon Xcode. Un proyecto gestiona toda la informacién asociada
con la aplicacién, incluyendo los archivos de cédigo fuente, los disefios de
la interfaz y todas aquellas preferencias y propiedades necesarias para cons-
truir la aplicacion. El trabajo en el proyecto se hace a traves de la llamada
workspace window, la cual provee acceso rapido para todos los elementos que
componen la aplicacién (Fig. C.2).

Toolbar
Mavigator Inspector
selector bar selector bar
Breakpoint gutter —smmsll | | “ISSESIET e || e i i i | S RS
point g — Inspector pane
Focus ribbon
Library
selector bar
— Library pang
iy | [e e ||
e area [P V e | ey
(=] A bemierplEs. 5 =
Filter bar Debug bar

Figura C.2: Esquema de la workspace window.

Esta ventana de trabajo esta dividia en cuatro areas principales: el area
de navegacion, el area de edicion, el area de debug y el area de utilidades.

= Fl drea de navegacion es donde se gestionan los archivos del proyecto,
y otra informacién como simbolos, breakpoints, hilos de la aplicacion,
pilas de ejecucion, errores y logs de las actividades efectuadas por el
usuario.

» Fl drea de edicion es donde el usuario edita los archivos del proyecto,
disenia la interfaz, configura las propiedades del proyecto y ve todo tipo
de informacién acerca del proyecto.

41

» FEl drea de debug se utiliza cuando el usuario esta probando la aplicacién
(bien sea en un simulador o directamente en un dispositivo). Se utiliza
para ver el contenido de las variables de la aplicacion y la salida por
consola de la misma. Es posible introducir ordenes del debugger en esta
area.

= Fl drea de utilidad se utiliza para configurar las propiedades de un
objeto o archivo de la aplicacion. También es posible ver es este area
los recursos asignados al proyecto.

Xcode ademas provée ayuda contextual de forma que se puede acceder a
ella desde el elemento para el cual se necesita ayuda.

Ediciéon de archivos de cédigo fuente

alala) [Hello - HelloView.m —
Xeade

| = ®@ A = = @ me| 4+ | [qHello ;[|Hello » [HelloView.m : Mo Selection [
Hella i £f
¥ 23 1 rarger, Mse 05 X SDK 10.6 1| #f HelloView.m
— H
¥ [] Hello J ﬁ g
'hl HellaView,h %
TR Py & #import "HelloView.h®
) MellaAzaDelegate.h
m HelloAppDelegate.m ¥ @inplementation HelloView
B MainMenu_xib 18
A . il = {idhinitWithFrame: (NSRect) frame {
r[_.Sup il 12 self = [super initWithFrame:frame];
* || Framewarks 1 if [self) {
» | Preducts 14 ¢ Initialization code here,
1% 1]

14
17 return salf;
18
19
= {woidldealloc {
[super deallec];

L Incompatible pointer types initializing "WS5aring *' with an expression of type 'char [14]

N55tring +Hello = @"Hello, World!";
i poines bypes. initializing WEString = with an expression of oype ‘char [L4]° &

I . gend
+ Q@G = SR en

Figura C.3: Xcode mostrando un error y sus posibles soluciones.

Para facilitar al usuario el trabajo con el cddigo fuente, este implementa
caracteristicas como las sugerencias de codigo, indentacion automatica de-
pendiendo del contexto, plegado de c6digo (ocultacién de partes del cédigo
de forma temporal). Ademéas provée informacién de todos los simbolos del
codigo directamente en el mismo.

42

Ademas Xcode va analizando el c6digo conforme se escribe de forma que
es capaz de detectar errores y realizar sugerencias sobre como solucionar los
mismos.

Diseno de la interfaz de usuario

La herramienta Interface Builder se encuentra disponible dentro del en-
torno para la creacion y edicion de la interfaz de usuario de la aplicacion
usando objetos predeterminados. Estos objetos incluyen ventanas, controles
(campos de texto, botones, ...) y vistas (agrupaciones reutilizables de otros
elementos) que se usan para representar la informacién de la aplicacién.

Con este editor se posicionan los objetos, configuran sus propiedades y se
establecen relaciones entre los mismos y con los archivos de codigo fuente de
forma que el flujo de la aplicacién sea el correcto.

El editor guarda los disefios en unos documentos llamados archivos nib,
que contienen toda la informacién que el sistema operativo necesita para re-
construir la aplicacion en tiempo de ejecucion. El hecho de que estos archivos
se puedan editar de forma visual hace que el usuario pueda ver en todo mo-
mento como va quedando la interfaz sin necesidad de recurrir a probar la
aplicacion.

Probar la aplicacion

Xcode proporciona dos formas de probar la aplicacién y eliminar erro-
res, el simulador iOS y directamente dentro de un dispositivo. Usando el
simulador, el desarrollador se puede hacer una idea de como funciona la apli-
cacion y solucionar errores de forma rapida. Una vez que se este satisfecho del
funcionamiento basico de la aplicaciéon se puede probar la aplicaciéon en un
dispositivo conectado a Xcode, de esta forma se pueden detectar problemas
relacionados con la memoria consumida por la aplicaciéon y otros mas sutiles
como la forma en la que se maneja la aplicacion en la pantalla tactil.

Mejorar el rendimiento de la aplicacion

Una vez que el desarrollador ha visto que no hay problemas que impidan
el funcionamiento normal de la aplicacion el siguiente paso en el desarrollo de
una aplicacién para iOS es el uso de la aplicacién Instruments para asegurarse
que la aplicacién no tiene elementos que hagan que se ejecute de forma mas
lenta de lo necesario. Manejando la aplicacion en un dispositivo conectado a
Instruments hace que podamos ver graficas que nos resumen el consumo de
recursos de nuestra aplicacién (uso de memoria, actividad de disco, actividad

de red, ...).

43

P () Metroncme | #hone . - |
= e ensizrt
C - - = 4 & [s
By Thosad By Qe
gy T 1
e o
e
e e At R e
}
P T —
. o
LB mais
PP
B Thrwad 7 gl
i newTPad
B Thorwad 3 rereitPan =
B Thread 4 Wb Thesad s
B Thoraad % ATt
B Thread &
Fhoraad T I LELLTE
" & ik
i Thread 8
- o
i Thread 8 =
* [ael - Mt *
i Thenad 18
e 1 el = et ol _beiecioe =) 8
e -
T
e wemighitua e - L
o= ylatatsn = GG 414

1 | Metrgngemy ;[N Thessd §

STEEIEE
i 11

Tasre

Eloa o ©

Lo Vs

[

- rgenrn w1 el atg e g e

\,,,_ y

Figura C.4: Aplicacién corriendo en el simulador de iOS.

Distribucion de la aplicacion

Xcode sirve ademas para empaquetar la aplicacion de forma que sea facil
publicarla tanto para los posibles probadores externos que tengamos en el
equipo de desarrollo como en el App Store (tienda virtual donde se distribuyen
y venden aplicaciénes para dispositivos i0S). Entre otras cosas Xcode hace
una serie de pruebas para determinar que no falta ningiin elemento necesario
para la publicacién de la aplicacién (iconos, propiedades, ...).

44

Apéndice D

Plataforma de desarrollo Ruby
on Rails

Rails es un framework de desarrollo de aplicaciones web escrito en el
lenguaje de programacién Ruby. Esta disenado para facilitar el desarrollo de
aplicaciones haciendo suposisiones sobre lo que el desarrollador puede estar
pensando en cada momento. Con esto se consigue que el desarrollador escriba
menos codigo dedicado a encajar la aplicacién con el entorno de desarrollo y
mas sobre la funcionalidad de la aplicaciéon en si misma.

Este framework entra dentro de lo que se conoce como software de opinion.
Esto quiere decir que Rails asume que hay una manera que es la mejor para
hacer cierto tipo de cosas y por ello intenta obligar al desarrollador a hacerlo
de esta forma. Para ello hace que intentar hacerlo de otra forma suponga un
trabajo extra que haga que los desarrolladores no esten dispuestos a asumirlo.
La filosofia Rails incluye varios principios:

» Don’t Repeat Yourself (DRY) implica que escribir el mismo cédigo una
y otra vez es un mal habito.

= Convenciones sobre configuraciones significa que el framework hace su-
posiciones sobre como se tienen que hacer las cosas en vez de dejar en
manos del desarrollador el hecho de usar miltiples archivos de configu-
racion.

= REST es un patron de diseno para aplicaciones web que usa los recursos
y los verbos HTTP (GET, POST) para organizar la aplicacion.

Arquitectura MVC

Como ya se ha comentado en algun capitulo de esta memoria, Rails esta
basado en una arquitectura llamada modelo-vista-controlador (MVC) cuyos

45

beneficios principales son:

= Aislamiento de la logica de negocio y la interfaz de usuario.

» Facilidad del mantenimiento del c6digo mediante el mencionado ante-
riormente DRY.

= Dejar claro donde tiene que ir cada tipo de coédigo haciendo que el
desarrollador tenga que tomar menos decisiones.

Modelos: Un modelo representa la informacion (datos) de la aplicaciéon
y las reglas con las que es posible manipular estos datos. En el caso de Rails,
se usan principalmente para almacenar informacién en una base de datos y
para manipular dicha informacién. La mayoria de la logica de negocio de la
aplicacion deberia estar dentro de estos elementos.

Vistas: Las vistas representan la interfaz de usuario de la aplicacion.
Normalmente son paginas HT'ML con cédigo Ruby incrustado para obtener
los datos que hemos recogido en el resto de la aplicacion. La principal funcién
de estos elementos es la de proveer la informacién requerida por el usuario (u
otros tipos de agentes) y mostrarsela de forma que les resulte conveniente.

Controladores: Los controladores son el pegamento entre las vistas y los
modelos. Obtienen las peticiones del navegador web, interrogan a los modelos
para obtener los datos necesarios y devuelven los datos a las vistas de nuevo
para que la informacién sea mostrada al usuario.

Componentes de Rails

Rails en si mismo, tiene una arquitectura modular en la cual varios com-
ponentes que realizan tareas individuales (y que podrian ser usados de forma
aislada en otros sistemas informdticos) se juntan para componer el frame-
work. Estos componentes son:

» Action Pack (Action Controller, Action Dispatch, Action View): Libre-
ria que contiene la parte VC' de MVC. Convierte las plantillas de las
vistas en cdédigo HTML, redirecciona las peticiones HTTP al contro-
lador adecuado, extrae los parametros de las peticiones y gestiona las
sesiones de usuario.

s Action Mailer: Libreria para la construccion de servicios de correo elec-
trénico. Se puede utilizar para la recepcion y manejo de correo entrante,
y también para el envio de correos basados en plantillas.

46

» Active Model: Interfaz entre los servicios que provee Action Pack y los
datos que proporciona Active Record (libreria de objetos usada por
defecto en Rails). El uso de esta capa extra ayuda a usar otras librerfas
de objetos si el desarrollador lo encuentra conveniente.

» Active Record: Libreria de objetos que provee independencia de la base
de datos utilizada, funcionalidad CRUD (crear, leer, actualizar, borrar),
multiples formas de biisqueda de objetos y relaciones entre los diferentes
objetos de la aplicacion.

s Active Resource: Libreria para gestionar la conexion entre los objetos
de negocio y los servicios web REST, que facilita la creacién de funcio-
nalidad CRUD basandose en verbos HTTP.

» Active Support: Conjunto de clases y librerias de utilidad, que son usa-
das en diferentes puntos del framewortk.

= Railties: Codigo que consigue juntar todos los componentes anteriores
de forma que el usuario los vea como un todo.

REST

La abreviatura REST quiere decir Representational State Transfer y son
los fundamentos basicos de lo que se conoce como arquitecturas RESTful.
Estas fueron descritas por primera vez en la tesis doctoral de Roy Fielding
[7] v que llevados al contexto de una aplicacién Rails se pueden resumir en
dos principios:

» Usar los identificadores de recursos HTTP (URLs) para identificar los
recursos (datos) de la aplicacion.

» Transferir cambios de estado de dichos recursos entre los componentes
del sistema.

Por ejemplo, la siguiente peticion HT'TP:

DELETE /photos/17

seria entendida por la aplicacién como que hay que borrar el objeto photo
que tenga como identificador el numero 17. Para mas informacion sobre este
tipo de arquitecturas, se puede leer el tutorial A Brief Introduction to REST
1 de Stefan Tilkov.

thttp://www.infoq.com/articles/rest-introduction

47

Generacion de coédigo

Uno de los principios bésicos sobre los que se contruye Rails y a lo que
debe una parte importante de su éxito es la generacion de cédigo y scaffol-
ding. Mediante una serie de ordenes de linea de comandos sencillas, es posible
contruir funcionalidad CRUD sin ningtn tipo de trabajo adicional. Si esta
funcionalidad béasica no se ajusta totalmente a las necesidades del desarro-
llador, es muy sencillo el personalizar el codigo generado resultando aun asi
en un decrecimiento del tiempo de desarrollo.

Esta funcionalidad hace que sea muy facil el hacer pruebas para compro-
bar el funcionamiento de la aplicacion sin tener que esperar a que este todo
desarrollado.

Mas informacién

Para mas informaciéon sobre el framework de desarrollo Rails, se puede
visitar la documentacién oficial 2 o leer alguno de los dos libros clasicos sobre
el tema:

» Agile Web Development with Rails [10].

» The Rails 3 Way [11].

2http://guides.rubyonrails.org/

48

Apéndice E

Control de versiones con
Mercurial

Command Prompt -0 l_[
=]

c:\hginit> hg

Mercurial Distributed SCM

basic commands:

add add the specified files on the next commit

annotate show changeset information by line for each file

clone make a copy of an existing repository

commit commit the specified files or all outstanding changes

diff diff repository (or selected files)

export dump the header and diffs for one or more changesets

forget forget the specified files on the next commit

init create a new repository in the given directory

log show revision history of entire repository or files

merge merge working directory with another revision

pull pull changes from the specified source

push push changes to the specified destination

remove remove the specified files on the next commit

serve export the repository via HTTP

status show changed files in the working directory

summary summarize working directory state

update update working directory

use "hg help” for the full list of commands or "hg -v" for details
¥
b

Figura E.1: Salida de la orden hg sin ningtin argumento.

Mercurial es un sistema de control de versiones usado por los desarrolla-
dores para gestionar el cédigo fuente de una aplicacién. Sus dos principales
propositos son:

49

= Conservar cada uno de los cambios realizados en versiones viejas de
cada archivo.

s Unir diferentes versiones de un mismo cédigo de forma que varios desa-
rrolladores puedan trabajar en paralelo en el cédigo para despues mez-
clar sus cambios.

La forma de trabajo principal con Mercurial es a través de la linea de
comandos, la cual funciona en sistemas Windows, Unix y Mac. El comando
para Mercurial se llama hg.

Para obtener todas las ventajas de un sistema de control de versiones,
se necesita un repositorio. Un repositorio almacena todas las versiones an-
tiguas de cada uno de los archivos del cédigo fuente. En realidad, para no
utilizar demasiado espacio, no almacena directamente estas versiones, sino
unicamente los cambios producidas sobre ellas.

En otros sistemas de control de versiones, se necesitaba de la instalacién
del sistema en un servidor central, pero Mercurial es lo que se conoce como
sistema de control de versiones distribuido. Esto significa que en su version
mas basica solo es necesario instalarlo en tu propia maquina.

Para la creaciéon de un repositorio, lo tinico que hay que hacer es ir al
directorio donde se almacena el codigo de la aplicaciéon y usar la orden hg
mnit.

/home/juanjo> cd Proyecto
/home/juanjo/Proyecto> hg init

Esta orden creard un nuevo directorio oculto llamado .hg en donde se
almacena toda la informacion del repositorio. El contenido de este directorio
no debe ser nunca manipulado de forma directa, inicamente a traves del
comando hg.

Para anadir nuevos archivos al repositorio y que Mercurial sepa sobre que
archivos tiene que guardar informacion, se usa la ordden hg add.

/home/juanjo/Proyecto> hg add
adding Prueba.rb
adding

Una vez que se han anadido los archivos a un repositorio hay que hacer
un commit de los cambios. La primera vez que lo hagamos, lo que hara se-
ra anadir el contenido de todos estos archivos (para Mercurial, al principio
los archivos carecian de contenido). Lo normal es usar el argumento -m pa-
ra anadir un mensaje a este grupo de cambios y sepamos de que estamos
hablando en el futuro.

30

/home/juanjo/Proyecto> hg c¢i —m ‘‘Commit inicial '’

Una vez que ya tengamos algunos cambios, se puede usar la orden hg log
para ver el historial de cambios del repositorio en el que nos encontramos.

/home/juanjo/Proyecto> hg log

changeset : 0:b9fadebea246

tag: tip

user : Juanjo Molinero <jjmolinero@gmail .com>
date: Mon Feb 13 14:15:20 2012 +0100

summary : Commit inicial

Si realizamos un cambio en alguno de los archivos, podemos ver que cam-
bios hemos hecho usando la orden hg st.

/home/juanjo/Proyecto> hg st
M Prueba.rb

Si a pesar de haber hecho algunos cambios, no nos interesan (bien porque
nos hemos equivocado, porque eran una prueba, o porque otra persona ha
hecho unos cambios méas adecuados) podemos volver a la versién anterior
usando la orden revert.

/home/juanjo/Proyecto> hg revert —all
reverting Prueba.rb

Si en lugar de eso, no estamos seguros de los cambios que hemos hecho,
podemos hacer una revisiéon de los mismos usando la orden hg diff.

/home/juanjo/Proyecto> vi Prueba.rb
/home/juanjo/Proyecto> hg st

M Prueba.rb

/home/juanjo/Proyecto> hg diff

diff —r b9fadebea246 Prueba.rb

—— a/Prueba.rb Mon Feb 13 14:15:20 2012 40100
+++ b/Prueba.rb Mon Feb 13 14:26:39 2012 +0100
@ —0,0 +1,1 @@

+otros cambios mas

Para mas informacion sobre Mercurial, se puede seguir el tutorial publi-
cado por Joel Spolsky ! o el libro de referencia del sistema [6].

Thttp://hginit.com/

o1

