
Plataforma para guías turísticas virtuales
basadas en teléfonos móviles

Juan José Molinero Horno

Febrero de 2012

Agradecimientos

En vista de que este ya es el segundo intento y como en el primero ya
agradecí su participación a los sospechosos habituales, supongo que en esta
ocasión el mayor agradecimiento tiene que ser para Ana Cris, quien es po-
siblemente la mayor culpable de que este PFC se haya terminado (incluso
más que el propio autor). Así pues gracias a tí por haber sido, además de
directora del proyecto, amiga durante estos meses y haberme dado el coñazo
suficiente para que al final, lo haya terminado despues de ocho años.

... y ya que estamos, gracias también a los componentes de la empresa
Disline, por haberme permitido participar en un proyecto con ellos. Espero
que tengáis mucho éxito con la aplicación y con todos los proyectos que
emprendáis en el futuro.

Resumen

El negocio de la gestión de contenidos turísticos se ha vuelto muy compe-
titivo en estos últimos tiempos. Desde la aparición de los dispositivos móviles
de última generación o smartphones, los usuarios demandan la obtención de
este tipo de servicios en cualquier lugar usando su conexión a Internet. La
empresa Disline, dedicada a este tipo de productos, propuso la realización de
un sistema de publicación de contenidos de interés turístico que se adecuara
a las necesidades impuestas desde el mercado.

Durante el presente proyecto se ha desarrollado un sistema que se com-
pone de dos aplicaciones. Una parte llamada gestor web, desde la cual la
empresa de creación de contenidos puede introducir información referente a
los puntos de interés de un determinado entorno turístico. Una vez se ha
introducido toda la información deseada, se generá una base de datos con los
contenidos que puede ser usada en la segunda parte del sistema, la aplicación
móvil. Esta aplicación muestra, usando la información que obtiene de la base
de datos generada anteriormente, los puntos de interés deseados en forma de
guía turística de forma que resulte útil para el usuario. En este proyecto se
ha realizado una versión de la aplicación móvil para el sistema iOS.

Además del desarrollo de las aplicaciones mencionadas anteriormente,
se ha realizado un estudio sobre las técnicas de reconocimiento de objetos
mediante visión por computador que son más adecuadas en el ámbito del
proyecto. Aunque las técnicas que se basan en el reconocimiento del objeto
sin utilizar ningún marcador adicional muestran grandes posibilidades, para
la realización de un producto comercial las técnicas de reconocimiento de
objetos mediante marcadores (códigos QR) son las que se encuentran más
maduras actualmente y por ello se ha decidido implementar estas dentro de
la aplicación.

Finalmente, durante el desarrollo del proyecto, otras características in-
teresantes para el sistema han sido identificadas en colaboración con la em-
presa para desarrollar en otros proyectos en paralelo o futuros que añadan
dichas funcionalidades dentro del sistema.

Índice general

1. Introducción y definición del problema 2
1.1. Motivación . 3
1.2. Trabajos previos . 5
1.3. Objetivos y entorno de trabajo 5
1.4. Resumen del contenido de la memoria 7

2. Diseño y desarrollo de la aplicación de turismo en el móvil 8
2.1. Sistemas y librerías de reconocimiento de códigos de barras y

similares . 9
2.2. Requisitos del cliente y decisiones de diseño adoptadas 12
2.3. Arquitectura, diseño y pruebas de la aplicación cliente 14

2.3.1. Arquitectura y módulos de la aplicación 15
2.3.2. Interfaz de usuario . 16
2.3.3. Plan de pruebas . 20

3. Diseño y desarrollo del gestor web 22
3.1. Requisitos del cliente y decisiones de diseño adoptadas 22
3.2. Arquitectura, diseño y pruebas del gestor web 23

3.2.1. Interconexión del cliente con el servidor 23
3.2.2. Base de datos . 24
3.2.3. Arquiterctura de la aplicación 25
3.2.4. Interfaz de usuario . 26
3.2.5. Plan de pruebas . 27

4. Conclusiones y trabajo futuro 30

Bibliografía 33

Apéndices 36

A. Diagrama temporal de desarrollo 36

i

B. Metodologías de desarrollo ágiles 38

C. Plataforma de desarrollo iOS 40

D. Plataforma de desarrollo Ruby on Rails 45

E. Control de versiones con Mercurial 49

ii

Índice de figuras

1.1. Diferentes modelos de dispositivos smartphones 3
1.2. Cuota de mercado de los diferentes sistemas operativos para

teléfonos móviles . 4

2.1. Ejemplo de código QR. 11
2.2. Arquitectura de la aplicación cliente - Patrón MVC 14
2.3. Diagrama de módulos de la aplicación móvil 15
2.4. Diagrama de flujo de la interfaz de usuario 17
2.5. Pantalla principal de la aplicación cliente y sus diferentes pes-

tañas. 18
2.6. Pantallas de detalle de punto de interés y visualización mul-

timedia . 19
2.7. Ruta desde la localización actual al punto de interés elegido. . 19
2.8. Pestaña de mapa. 20
2.9. Pantalla de filtro por categoría 20

3.1. Tablas principales de la base de datos 24
3.2. Diagrama de módulos del gestor web. 25
3.3. Interfaz de usuario web (I). 28
3.4. Interfaz de usuario web (II). 29

A.1. Diagrama temporal del desarrollo 37

C.1. Entorno de desarrollo Xcode (Inteface Builder, editor de có-
digo, App Store, dispositivo). 40

C.2. Esquema de la workspace window. 41
C.3. Xcode mostrando un error y sus posibles soluciones. 42
C.4. Aplicación corriendo en el simulador de iOS. 44

E.1. Salida de la orden hg sin ningún argumento. 49

1

Capítulo 1

Introducción y definición del
problema

El uso de dispositivos móviles se está haciendo cada vez más común para
todo tipo de gente y todo tipo de tareas. Desde la aparición de los llamados
smartphones que integran una serie de hardware no disponible en dispositivos
anteriores como WIFI, GPS, cámaras de última generación, sistemas de pago
NFC 1, ... se han aumentado las posibilidades ofrecidas por estos dispositivos
de manera exponencial. Sin embargo, lo que hace verdaderamente diferente
a este tipo de dispositivos de los que se podía disponer anteriormente es la
posibilidad de instalar aplicaciones en ellos desarrolladas por terceras partes.

Otra característica que ha ayudado a la expansión del mercado de dis-
positivos móviles es la posibilidad por parte de los usuarios de disponer de
conexión a Internet de banda ancha en casi cualquier sitio en el que se encuen-
tren. Esto hace que algunos de estos aparatos tengan un poder casi adictivo
que hace que los usuarios pasen una gran cantidad de tiempo usandolos.

Hasta hace relativamente poco tiempo (aparición del App Store de Apple
en Julio de 2008) el desarrollo de una aplicación para un dispositivo mó-
vil era un trabajo tedioso tanto para el desarrollador (falta de herramientas
de calidad para el desarrollo, poca integración de las API’s existentes con
la plataforma hardware, excesiva segmentación de modelos de los fabrican-
tes, ...) como para el usuario (falta de un lugar donde buscar aplicaciones
que se adaptaran a una necesidad, dificultad a la hora de instalar una apli-
cación, ...). Desde la aparición del App Store (y subsiguientes repositorios
de aplicaciones por parte de otras empresas de sistemas operativos móviles)
todos los problemas anteriores se han ido solucionando o al menos mitigando
de forma que hasta los usuarios menos avanzados son capaces de encontrar

1http://es.wikipedia.org/wiki/Near_Field_Communication

2

Figura 1.1: Diferentes modelos de dispositivos smartphones

aplicaciones que se adapten a sus necesidades (aunque han aparecido nue-
vos problemas como la aparición de un número excesivo de aplicaciones para
cada tarea que hacen difícil ser capaz de encontrar la mejor solución).

Entre las diferentes plataformas móviles sobre las que desarrollar apli-
caciones hay tres que están teniendo un éxito superior al resto: Android,
Blackberry e iOS. Todas ellas han sido capaces de concentrar la mayor par-
te de la atención por parte de desarrolladores de aplicaciones y usuarios de
dispositivos móviles de forma que entre ambas. En el caso de Blackberry sin
embargo el número de aplicaciones desarrolladas por terceras partes y des-
cargadas por los usuarios es mucho menor ya que parece ser que los usuarios
de estos dispositivos tienden a usar mayoritariamente las aplicaciones que
viene por defecto en el dispositivo. Con estos datos, podemos concluir que
las mejores plataformas tanto para el desarrollo de aplicaciones como para la
distribución de las mismas al mayor número posible de clientes, son Android
e iOS.

1.1. Motivación
En este proyecto, se decidió usar la plataforma de desarrollo iOS (aunque

hay planes para portarlo tambien a Android, y si hubiera demanda también
a otras plataformas) debido a que los datos que se tienen en este momento
indican que el número de aplicaciones que compran y descargan los usuarios
de esta plataforma es mayor que el cualquier otra platforma. Además, el

3

Figura 1.2: Cuota de mercado de los diferentes sistemas operativos para te-
léfonos móviles

tiempo de desarrollo por aplicación es menor debido a que esta plataforma
proporciona herramientas de desarrollo más maduras.

Lo que se pretende durante el desarrollo del mismo es la creación de una
herramienta que permita la creación semi-automática de guías multimedia
adaptadas sobre todo al turismo rural. Más concretamente, se ha desarrollado
una aplicacion móvil para la plataforma iOS base, que puede ser parametri-
zada mediante los datos obtenidos de una herramienta web de forma que
cambie el contenido y el diseño de la misma y la intervención del equipo de
desarrollo sea la mínima posible en futuras aplicaciones.

Debido a la gran cantidad de plataformas móviles disponibles y a la di-
versidad de entornos sobre los que se desarrolla para ellas, en ocasiones es
posible que el coste de realizar una serie de aplicaciones para las mismas pue-
da acabar siendo demasiado elevado, tanto en tiempo como en dinero. Por
ello, en la realización de este proyecto se ha intentado dotar a la empresa
de más flexibilidad y autonomía a la hora de generar nuevas guías. Para ello
se ha decidido generar un sistema en el que el coste de crear nuevas guias
turisticas sea practimante marginal (al menos la parte de desarrollo de soft-
ware) y únicamente haya que gastar tiempo y dinero en la parte de creación
de contenidos que es en realidad el negocio básico de la empresa para la que
estamos realizando el trabajo.

4

1.2. Trabajos previos
Debido a la gran cantidad de aplicaciones disponibles para la plataforma

en la que estamos desarrollando, es imposible que no haya disponibles varias
aplicaciones que se dediquen a lo mismo que se esta desarrollando. Sin em-
bargo, la aplicación que vamos a desarrollar tiene la ventaja sobre todas ellas
de que nuevas versiones de la aplicación para diferentes entornos (otros pue-
blos, museos, ...) se crearán de forma semiautomatica por parte de personal
no cualificado técnicamente de la empresa.

Por otra parte, el resto de las aplicaciones de turismo y guias de viaje
(Lonely Planet, Tripwolf, ..) son bastante similares y ofrecen una serie de
posibilidades bastante parecidas:

Introducción.

Listado de monumentos y puntos de interés.

Descripción de los monumentos y puntos de interés con posibilidad de
acceder a material multimedia e interactivo.

Mapa con la posición de los diferentes elementos.

Nuestra aplicación ademas de todo esto, será capaz de soportar también
el uso de marcadores de posición que puedan ser reconocidos de forma auto-
mática por la cámara del dispositivo de forma que se pueda localizar puntos
de interés mediante una fotografía del usuario al codigo correspondiente. Es-
to puede ser de utilidad en zonas con poca precision del GPS o en interiores,
donde se pierde la cobertura casi totalmente.

1.3. Objetivos y entorno de trabajo
Objetivos

Recientemente ha habido una gran explosión de nuevas aplicaciones, fun-
cionalidades y servicios asociadas al desarrollo de aplicaciones sobre moviles
de ultima generación o smartphones. La tendencia de los usuarios a llevarlos
siempre encima y las posibilidades que ofrecen los elementos hardware de
estos dispositivos (cámara, acelerómetros, GPS, conexión WIFI, ..) ofrecen
grandes posibilidades a los desarrolladores.

El objetivo principal de este proyecto es la realización de un sistema in-
formativo que permita la creación y mantenimiento de guias turisticas adap-
tadas a dispositivos moviles. El sistema constara de diferentes formas de

5

localización e identificación de elementos de interés de forma que se adapten
a los diferentes tipos de entorno donde se pueden realizar visitas turisticas.
Por ejemplo, se distinguira entre exteriores donde el usuario se puede guiar
usando la localización por GPS e interiores, donde al no poder usar el GPS,
usaremos algun tipo de sistema de reconocimiento de códigos de barras o
similares.

El sistema constará de dos partes, una apliacion servidor que será donde
se cree las guías por parte de la empresa de creación de contenidos, y una
aplicación cliente desarrollada en un teléfono (para la primera versión hemos
elegido el iPhone e iOS como sistema para el prototipo), que podrá descar-
garse las guias del servidor y asistirá al usuario en sus visitas a lugares de
interés.

Los objetivos o tareas a realizar en este proyecto en más detalle son:

Obtención de requisitos por parte de la empresa Disline 2(empresa de-
dicada a los servicios de promoción de la cultura y el turismo). El
prototipo será utilizado en la empresa interesada.

Familiarización con la arquitectura de la plataforma iPhone, el entorno
de desarrollo XCode y el lenguaje Objective-C y las librerías compati-
bles para visión por computador (reconocimiento de códigos).

Familiarización con el entorno de desarrollo web a utilzar para la parte
del servidor (Ruby on Rails).

Diseño y desarrollo de la aplicación web servidor que permita la crea-
ción y mantenimiento de guías.

Diseño y desarrollo de la aplicación móvil cliente que permita la lo-
calización en un mapa (usando Google Maps) de puntos de interés y
el reconocimiento de algún tipo de código de barras para identificar
objetos.

También se ha investigado la posibilidad de añadir a la aplicación mejoras
para hacerla más general e innovadora:

Reconocimiento de objetos sin el uso de códigos de barras o similares,
usando técnicas de visión por computador.

Localización de puntos de interés en mapas cargados en el dispositi-
vo móvil sin necesidad de conexión a Internet, solamente mediante el
acceso a la información del GPS.

2http://www.disline.es

6

Entorno

Como ya se ha comentado previamente, este PFC se ha realizado en cola-
boración con la empresa Disline. Esto ha hecho que haya habido un periodo
de adaptación a los sistemas de trabajo de ambas partes. Más adelante se
explicará un poco la metodología de trabajo empleada para la realización de
los diferentes elementos que componen el proyecto así como una pequeña
explicación de porque se ha elegido la misma.

Para la parte del desarrollo del cliente móvil se ha usado como entorno de
programación el Xcode de Apple (así como algunas herramientas adicionales
como por ejemplo el Menial Base para accesos a la base de datos Sqlite
utilizada o el sistema de control de versiones Mercurial) debido a que es
básicamente la única forma de realizar aplicaciones para el sistema operativo
iOS de una forma más o menos sencilla. El lenguaje de programación exigido
por este entorno es Objective-C, por lo que a parte de algunas pocas líneas
en SQL para la creación y mantenimiento de la base de datos ha sido el único
lenguaje empleado en la parte del cliente.

En cuanto al desarrollo del servidor, despues de estudiar diferentes fra-
meworks y lenguajes de programación, se ha decidido utilizar el lenguaje de
programación Ruby y el entorno Ruby on Rails 3. Se ha elegido debido a la
gran popularidad que esta empezando a tener en el prototipado y desarrollo
rápido de aplicaciones web. Este entorno, unido al editor de texto Emacs 4

y el plugin Rinari 5 facilita en gran medida el poder realizar cambios rela-
tivamente grandes en el sistema de forma comoda lo que dado la forma de
trabajar que se utilizo con la empresa resultó de gran ayuda.

1.4. Resumen del contenido de la memoria
En el resto de la memoria se detalla, en el capítulo 2, las técnicas y

librerías de visión por computador que se han estudiado para la parte del
reconocimiento de códigos de barras o similares en la parte del cliente móvil,
así mismo se explicará el diseño e implementación del cliente realizado en
iOS. El capítulo 3 resume la arquitectura y diseño del gestor de contenidos
de las guias turisticas así como las decisiones de diseño que se han tomado
para adaptarlo a las necesidades del cliente. El capítulo 4 concluye la memoria
con la descripción de posibles ideas a implementar en un futuro (algunas de
las cuales se comenzaron a desarrollar en paralelo a este proyecto).

3http://www.rubyonrails.org
4http://www.gnu.org/software/emacs/
5http://rinari.rubyforge.org/

7

Capítulo 2

Diseño y desarrollo de la
aplicación de turismo en el
móvil

Después de las reuniones iniciales con la empresa se decidió que lo mejor
para que el desarrollo del proyecto fuera lo más ágil posible era empezar con
la aplicación móvil. De esta forma, se estimarían mejor las necesidades que
el gestor web debería satisfacer.

El trabajo necesario para el desarrollo de dicha aplicación se dividió en
tres partes:

En primer lugar, un estudio de las técnicas de visión por computador
para reconocimiento de objetos, de forma que se pudiera decidir cual
es la que mejor se adaptaba a las necesidades del cliente.

Seguidamente, se llevaron a cabo una serie de reuniones conjuntas con
la empresa en las cuales se decidieron las caracteristicas principales del
sistema, y se aclararon las posibles dudas que hubiera de cara a que el
desarrollo fuera lo más sencillo posible.

En tercer lugar se procedió al diseño, implementación y pruebas de la
aplicación.

En los siguientes apartados, se hace una pequeña descripción de todo
el proceso. En el apéndice A se incluye una descripción temporal de las
distintas partes del proyecto.

8

2.1. Sistemas y librerías de reconocimiento de
códigos de barras y similares

Una de las tareas estipuladas al principio del proyecto, era la de analizar
y estudiar que técnicas de visión por computador podrían ser las más ade-
cuadas para integrar directamente en el prototipo inicial del cliente de forma
que se pudieran reconocer objetos descritos en la guía con la cámara del dis-
positivo móvil. Esta sección presenta primero un pequeño análisis de trabajos
relacionados (tanto comerciales como de investigación) y después describe en
más detalle la opción elegida para incorporar en el prototipo (reconocimiento
mediante el uso de códigos QR).

Reconocimiento visual con la cámara de un móvil

Debido a ciertas características de estos dispositivos, a la hora de desa-
rrollar técnicas de visión por computador para los mismos se presentan una
seríe de desafíos que tienen que ser superados cuidadosamente para que el
resultado pueda ser eficiente. Hay algunos obstáculos tradicionales que con
el avance de la tecnología se van superando, como el tamaño, peso y poten-
cia de los disposivos, mientras que otros siguen todavía vigentes, como por
ejemplo la duración de la batería. Otro de los problemas a tener en cuenta,
que no solo afecta al entorno de las aplicaciones móviles, es el hecho de que
el campo de la visión por computador involucra elementos de percepción e
inteligencia artificial que todavía no estan completamente resueltos a la hora
de hacer aplicaciones que se ejecuten en máquinas de escritorio, con lo que
mucho menos se puede esperar que funcionen perfectamente en los, por el
momento, menos potentes dispositivos móviles. El reconocimiento de objetos
es un campo de investigación muy activo en el área de visión por computador
[1] [2], con grandes avances en los últimos años. Por ello, pese a los proble-
mas todavía sin resolver, ya hay algunas aplicaciones que estan empezando
a tener cierto éxito en el mercado. Por ejemplo podemos nombrar:

Google Googles1: Una aplicación de la empresa Google en la cual
se pueden usar imágenes tomadas con la camara del dispositivo móvil
para buscar la web.

Kooaba2: Una empresa que se dedica a hacer aplicaciones de visión
por computador para teléfonos móviles. Como ejemplo podemos citar

1http://www.google.com/mobile/goggles
2http://www.kooaba.com/

9

Shortcut, una aplicación que permite escanear noticias de publicaciones
y que te conecta con contenido relacionado con las mismas en Internet.

Análisis de las diferentes opciones

En la comunidad internacional de investigadores de visión por compu-
tador y procesamiento de imágenes, encontramos múltiples librerías de có-
digo abierto que facilitan la investigación en los mismos. Incluso también
han empezado a aparecer algunas librerías que facilitan todo el proceso de
llevar la visión por computador a los dispositivos móviles, como por ejemplo
la portabilidad de la librería OpenCV 3 a la plataforma iOS 4. Haciendo uso
de estas librerías, se realizaron unas pruebas iniciales para las posibilidades
de incluir técnicas bien establecidas de visión por computador en el prototi-
po a diseñar. En particular, se decidió probar el reconocimiento de objetos
basado en descriptores de imágen muy conocidos y utilizados en estas tareas,
SURF [referencia extracción SURF). Estos descriptores de imágen capturan
los puntos más distintivos en una imagen, y han sido presentados en apli-
caciones similares a nuestros objetivos [3] [4]. Al final se decidió buscar una
alternativa más madura en productos comerciales que el uso de esta técnica,
para el reconocimiento de puntos de interés, debido a dos problemas:

Se consiguió implementar y ejecutar los elementos básicos del proceso
(detección y procesado de los puntos SURF descritos) en el teléfono
móvil, pero el tiempo de ejecución de los métodos más estandar es muy
elevado para la aplicación deseada.

Además, para el uso de este tipo de técnicas, hay que entrenar al sistema
para obtener los parametros adecuados para cada una de los objetos
a reconocer, esto implica que los empleados de la empresa deberían
utilizar un tiempo mayor en la creación de contenidos del que se emplea
ahora (obtención de fotos desde diferentes ángulos, introducción de
fotos en el sistema, ...).

Por lo tanto se estimó no implementar este tipo de reconocimiento de
objetos en este proyecto, debido a que requiere una tarea de investigación más
larga que se pospuso como una tarea independiente de este proyecto, para
desarrollar en trabajos futuros. Este tipo de técnicas sería muy interesante
por ejemplo en lugares en los que no sea posible manipular el entorno para
poner códigos que identifiquen a las piezas o elementos de interés que tengan

3http://opencv.willowgarage.com/
4http://www.eosgarden.com/en/opensource/opencv-ios/overview/

10

algun tipo de movilidad y por lo tanto sea más difícil etiquetarlos. Por lo
tanto, es posible que en un futuro se puedan implementar dentro del sistema,
ya sea sustituyendo a los códigos QR o como complemento de los mismos.

Después de analizar varias técnicas más maduras en el ámbito del reco-
nocimiento visual de objetos, se decidió que lo más robusto y flexible de cara
a las necesidades de la empresa es el reconocimiento de códigos de barras
y similares. En concreto se decidió utilizar los códigos QR que permiten la
codificación de más información que otro tipo de técnicas.

Implementación y detalle de la técnica elegida

Los códigos QR (del inglés Quick Response Code, código de respuesta
rápida) es un tipo de código de dos dimensiones en el cual se puede codificar
hasta 4200 carácteres. El código consiste en un patrón de cuadrados negros
sobre un fondo blanco. Fue inventado por Toyota en 1994 para realizar un
seguimiento de sus vehiculos y se ha convertido en uno de los códigos más
utilizados debido a la velocidad con la que se puede decodificar.

Figura 2.1: Ejemplo de código QR.

Entre sus características principales se encuentran:

Alta de velocidad de descodificación.

Gran capacidad de almacenaje.

11

Posibilidad de encriptación.

Corrección de errores.

En la actualidad este tipo de códigos se están introduciendo en un gran
tipo de aplicaciones diferentes como puede ser publicidad, realidad aumenta-
da, inventarios, ... Para más información sobre este tipo de códigos se puede
consultar el estándar ISO que lo describe [5].

Para este proyecto se ha utilizado la librería ZBarSDK 5 que es un soft-
ware de código libre para la decodificación de varios tipos de códigos de dos
dimensiones.

2.2. Requisitos del cliente y decisiones de di-
seño adoptadas

Como se ha mencionado anteriormente, durante las reuniones mantenidas
con la empresa Disline, se especificaron los requisitos básicos que debería
cumplir la aplicación. Para ello, gente de la empresa aporto su conocimiento
del modelo de negocio y del tipo de clientes con los que habitualmente tratan.
Estos requisitos están basados tanto en la interacción que los clientes van a
tener con la aplicación como en la relación que esta debe tener con el gestor
web. Así mismo, también se decidió durante estas reuniones la plataforma de
desarrollo del primer prototipo.

El primer punto que se acordó fué que la interfaz de usuario debía ser lo
más sencilla posible, ya que por experiencia propia las funcionalidades más
complejas de las aplicaciones tienden a ser utilizadas por un número muy
pequeño de usuarios con lo que el tiempo que se tarda en desarrollarlas no
suele resultar rentable para la empresa. Por ello, se redujo la funcionalidad
al minimo posible de forma que en un futuro, y si los usuarios lo demandan,
se pudiera ir añadiendo nuevas funcionalidades. Al final, la lista de funciona-
lidades que va a tener la aplicación puede ser resumida en:

Listados e información detallada (texto, imágenes y videos informati-
vos) de puntos de interés clasificados en diferentes categorías para una
búsqueda más facil de los mismos.

Mapa con todos los puntos de interés en el que el usuario vea también
su propia posición para poder comprobar cuales son los puntos más
cercanos a si mismo. Este mapa se ha de poder filtrar de forma que en

5http://zbar.sourceforge.net/iphone/sdkdoc/

12

lugares donde haya muchos puntos de interés concentrados, el usuario
pueda encontrar aquellos en los que este interesado (e.g. restaurantes
si es la hora de la comida). La base de este mapa será el entorno y
estilo de ”google maps”, ya que mucha gente está habituado a ellos y
resultan cómodos y fáciles de usar.

Escaner de códigos QR, de forma que si el usuario encuentra alguno
de estos códigos mientras esta realizando turismo en alguna localidad
pueda obtener más información sobre el elemento de la guía asociado
a dicho punto. Esta característica deberá estar presente únicamente
en algunas guías, con lo que deberá ser posible esconderla de forma
paramétrica.

Otro de los puntos importantes que se acordó es que debería ser muy
fácil para la empresa el crear una nueva guía para otro de sus clientes de
forma que no se necesitará mucho tiempo ni dinero para la creación de un
nuevo producto. Para ello, se estimó que lo mejor sería que la aplicación
fuera parametrizable basandose en la información contenida en una base de
datos situada en el mismo teléfono y con la cual se podría configurar la
aplicación completamente, no solo el contenido turístico en si, sino también
el color básico de las ventanas, los iconos, ... Además el hecho de tener toda
la información de apariencia y contenido dentro de una base de datos (en
oposición a codificada directamente) hace que sea más fácil la portabilidad
a otras plataformas con el mismo contenido y apariencia similar.

Plataforma y metodología de desarrollo

Se decidió que la mejor plataforma para empezar con el prototipo sería
Apple iOS, ya que a parte de tener una cuota de mercado considerable, las
herramientas de desarrollo de las que dispone son de mayor calidad a la del
resto de plataformas. En el Apéndice C se describirá en mayor profundidad
la plataforma de desarrollo.

En cuanto a la metodología de desarrollo, y debido principalmente a que
la empresa con la que se colabora no tenía muy claro todas las características
que esperaba de la aplicación, se estimó que lo mejor sería usar algo parecido
a las metodologías ágiles de desarrollo. Se decidió hacer periodos de trabajo
cortos (en torno a las dos semanas en este caso) tras los cuales se realiza-
rían breves demostraciones de lo que estuviera desarrollado en ese momento.
Debido a esto, se tuvieron que acomodar cada una de las funcionalidades a
desarrollar como un conjunto cerrado. En el apéndice B se explica un poco
más en que consisten las metodologías de diseño ágiles.

13

2.3. Arquitectura, diseño y pruebas de la apli-
cación cliente

Modelo-vista-controlador (MVC)

Debido al uso de la plataforma iOS para el desarrollo de la aplicación
cliente, la arquitectura básica para la aplicación se basa en el patrón de
diseño MVC (modelo-vista-controlador) 6. En esta arquitectura la aplicación
se divide en tres partes que interactuan entre sí para obtener los inputs del
usuario y mostrarle los datos que este haya pedido.

Figura 2.2: Arquitectura de la aplicación cliente - Patrón MVC

El usuario actúa directamente contra los diferentes elementos que se han
codificado como vistas, en este caso las vistas son las pantallas que se han
diseñado usando la aplicación Interface Builder de Xcode. La vista a su vez
envía los datos al controlador, que son las clases que se encargan de organizar
el trabajo dentro de la aplicación y de decidir que parte del modelo (clases
dedicadas al almacenamiento y tratamiento de los datos) ha de ser utilizado
para obtener los datos que el usuario ha solicitado. Una vez el controlador
ha obtenido los datos necesarios, elige la siguiente vista que se mostrará al
usuario y le pasa los datos para que a su vez esta sea la que los organice en
una nueva pantalla que será la que el usuario pueda visualizar.

6https://developer.apple.com/library/mac/#documentation/General/Conceptual/DevPedia-
CocoaCore/MVC.html

14

2.3.1. Arquitectura y módulos de la aplicación
A parte de esta organización de los diferentes elementos de la aplicación,

estos se pueden clasificar también de forma que los elementos que trabajen
juntos para realizar una determinada función, esten agrupados.

Figura 2.3: Diagrama de módulos de la aplicación móvil

Desde el punto de vista de la funcionalidad, se puede dividir la aplicación
en tres módulos principales. Estos se corresponden con las tres principales
acciones que se pueden realizar en el aplicación:

Listado de puntos de interés: este es el módulo dedicado a la obten-
ción de una lista de los puntos de interés solicitados por el usuario
(según estan englobados en una categoría determinada) y mostrarselos
al usuario, a su vez si el usuario selecciona un punto en particular le
mostrará información sobre el mismo.

Mapa de puntos de interés: este es el módulo dedicado a mostrar en un
mapa de los proporcionados por Google Maps7 el listado completo de
puntos de interés. Además ofrece la posibilidad de filtrar todos estos
puntos de forma que el usuario solo vea aquellos que corresponden a
unas determinadas categorías. También permite mostrar información
de un punto determinado si es seleccionado por el usuario en la interfaz
táctil, además de mostrar la posición del usuario en el mapa para que
este pueda estimar cuales con los puntos más cercanos a la misma.

7http://maps.google.com

15

Escáner de códigos QR: Este módulo se encarga de obtener una imagen
de la cámara del dispositivo móvil y analizarla en busca de códigos QR
que pudieran tener información relevante de la aplicación. Si se encuen-
tra un código de este tipo, muestra cierta información por pantalla y
permite ademas obtener una información más detallada del punto de
interés (la misma a la que accederíamos pinchando en el elemento co-
rrespondiente desde el listado de elementos de la aplicación) incluyendo
contenido multimedia y una descripción del mismo.

En cada uno de estos módulos, su puede apreciar a su vez la división
entre los módelos, controladores y vistas que se ha explicado en parrafos
anteriores. Debido al solapamiento entre algunas de estas funcionalidades
(e.g. visualización de los datos detallados de los puntos de interés), alguno
de los elementos está compartido entre varios módulos.

2.3.2. Interfaz de usuario
Como ya se ha comentado anteriormente, una de las principales caracte-

rísticas en las que debía estar basado el sistema, es la sencillez de la interfaz
de usuario. Para ello, (basándonos en las en la guía de interacción persona-
ordenador publicadas por Apple 8, se agrupó cada uno de los módulos que
se han descrito con anterioridad en una pestaña de la aplicación visibles de
manera constante que manejan la navegación principal por la aplicación (Fig.
2.5).

La figura 2.4 incluye el diagrama de navegación de toda la aplicación,
en ella se pueden ver las pantallas más importantes de la misma, así como la
forma de llegar a ellas.

8https://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG

16

Figura 2.4: Diagrama de flujo de la interfaz de usuario

17

A continuación describimos en mas detalle los elementos principales de
los componentes de la aplicación, Guía, Mapa, Escáner:

Figura 2.5: Pantalla principal de la aplicación cliente y sus diferentes pesta-
ñas.

Pestaña Guía

Cuando abres la aplicación, se encuentra seleccionada por defecto la pes-
taña de Guía (Fig. 2.5), en esta pantalla encontramos un menú con las
principales categorías de la guía turística que una vez seleccionadas nos lle-
van a una lista de los puntos de interés para dicha categoría. Debido a que
no caben todas las categorías existentes en la pantalla, se ha creado un botón
de Otros que te lleva a una lista con las categorías menos importantes.

Una vez seleccionado un punto de interés (Fig. 2.6), es posible acceder a
la información multimedia asociada a este usando el boton Ver video asociado
a este. Desde esta pantalla, es posible además abrir la aplicación de mapas
del dispositivo para que esta nos de una ruta desde el punto en el que nos
encontramos al punto de interés (Fig. 2.7).

Pestaña Mapa

La segunda pestaña en la que contiene el mapa en el que se localizan los
puntos de interés como se puede ver en la figura 2.8. Si se pulsa en cada
uno de los puntos de interés, se da la posibilidad de acceder a información
más detallada sobre el mismo (la misma a la que se accedía en la pestaña

18

Figura 2.6: Pantallas de detalle de punto de interés y visualización multimedia

Figura 2.7: Ruta desde la localización actual al punto de interés elegido.

anterior). Además es posible el filtrar los puntos de interés por categorías
para ver solo aquellos que nos interesen.

Pestaña Escáner

En la última pestaña (esta es opcional y no aparece en todas las guías) se
encuentra el escaner de códigos QR. Una vez pulsado el botón de escanear,
podremos ver en pantalla la imagen de la camara, y si aparece dentro de su
rango algún código QR, se extraerá la información contenida en el mismo
sin necesidad de pulsar ningún botón. Una vez que hayamos obtenido la
información de un código correspondiente al sistema, usando el botón de
Más información se obtiene la misma información sobre el punto de interés
que en anteriores ocasiones.

19

Figura 2.8: Pestaña de mapa.

Figura 2.9: Pantalla de filtro por categoría

2.3.3. Plan de pruebas
En las reuniones en las que se definieron los requisitos que debería tener

la aplicación, así como el calendario de hitos de la misma, se definió además
un plan de pruebas que obligara a ambas partes a revisar la aplicación de
forma periódica con el fin de tener el menor número de errores posible.

Para ello se definieron tres pasos fundamentales a seguir antes de cada
demostración:

La parte del negocio de la aplicación (la correspondiente al modelo
en la arquitectura MVC) se testeo usando la técnica conocida como
unit testing. Para ellos se diseñaron una serie de test que pueden ser
ejecutados de forma automática cada vez que se realiza un cambio en
esta parte. Se utilizó la herramienta Google Toolbox for Mac 9 para la

9http://code.google.com/p/google-toolbox-for-mac/wiki/iPhoneUnitTesting

20

realización de estas pruebas.

Antes de entregar una versión para la realización de una demonstra-
ción el desarrollador se hacía responsable de la realización de una serie
de pruebas que cubrieran los casos estandares que un usuario podría
realizar con la aplicación.

Un testeo más en profundidad del uso habitual de la misma, debía
ser realizado por la empresa una vez terminada la demostración de
modo que si se encontraban errores en la aplicación, estos pudieran ser
reparados antes de la siguiente reunión.

21

Capítulo 3

Diseño y desarrollo del gestor
web

Una vez finalizada la aplicación móvil, se consiguió una idea más exacta
de lo que hacía falta para la parte del gestor web. La aportación de la empresa
durante estas reuniones fue especialmente importante, ya que es la parte del
sistema con la que ellos van a trabajar día a día y era fundamental que se
encontraran cómodos con ella.

En los siguientes apartados se describe de forma detallada todo el proceso
llevado a cabo para el desarrollo del gestor web. Esto incluye tanto la toma de
decisiónes, como el diseño de la aplicación y la implementación de la misma.
Durante todo el proceso además, se fueron intercalando periodos de pruebas
de la aplicación.

3.1. Requisitos del cliente y decisiones de di-
seño adoptadas

Como ya sucedió con el diseño de la aplicación móvil, una de las princi-
pales características que se plantearon fue la necesidad de que la interfaz de
usuario fuera lo más sencilla y autoexplicativa posible. Esto debería servir
para que la curva de aprendizaje de los empleados / usuarios fuera menor y
fueran realmente productivos desde un principio.

Así mismo, se incidió en que el sistema móvil debería ser lo más confi-
gurable posible desde esta plataforma, haciendo posible el hecho de no tener
que cambiar nada de forma manual en el código de la aplicación móvil, a la
hora de crear una nueva guía.

También se decidió que a pesar de que las guías debían ser multilenguaje,
no era práctico el hecho de tener una aplicación con los cuatro idiomas que

22

se deseaban (español, alemán, francés e inglés) dentro de su base de datos
interna, debido principalmente a que el tamaño de los elementos multimedia
de una guía suele ser bastante elevado, con lo que si lo multiplicamos por
cuatro (uno para cada idioma), esto hace que la guía alcance un tamaño
prohibitivo (hay que recordar que la mayoría de las aplicaciones de este tipo
son descargadas directamente en el dispositivo desde una tienda virtual, con
lo que el tamaño de las mismas puede ser un factor a considerar por los
usuarios a la hora de descargarse una aplicación o no). Esto incidía en el
diseño que era necesario para el gestor web.

Desarrollo web. Se decidió por Ruby on Rails 1 como plataforma de
desarrollo web debido a su flexibilidad, facilidad de programación y popu-
laridad (las plataformas más populares, generan una comunidad mayor a
su alrededor que hace que sea más fácil encontrar respuestas a los posibles
problemas que se créen durante el desarrollo. Además existe una posibilidad
mayor de que ya existan librerías desarrolladas que hagan que algunas tareas
puedan ser abstraidas).

Base de datos. En cuanto a la base de datos donde almacenar la confi-
guración e información específica de una guía, y debido a que el número de
personas que van a usar la aplicación dentro de la empresa es reducido, se
decidió usar un sistema de menor potencia del que es habitual en este tipo de
sistemas (normalmente se usan sistemas como MySQL 2 o PostgreSQL 3, de
gran potencia pero más difíciles de mantener) como es SQLite 4. Durante las
pruebas efectuadas, se estimó que SQLite puede soportar de sobra la carga
a la que va a ser sometido desde la empresa.

3.2. Arquitectura, diseño y pruebas del ges-
tor web

A lo largo de esta sección se va a explicar el diseño adoptado para el
gestor web y la interfaz de usuario que se ha implementado para el mismo.

3.2.1. Interconexión del cliente con el servidor
A la hora de conectar los datos introducidos en el servidor con la aplica-

ción cliente se pensó en dos posibilidades:
1http://www.rubyonrails.org
2http://www.mysql.com/
3http://www.postgresql.org/
4http://www.sqlite.org/

23

El servidor puede servir los datos a través de Internet mediante servicios
web. La aplicación obtendrá estos datos cada vez que se inicie.

Creación de una base de datos en el servidor con todos los datos de una
guía. El fichero que contenga la base de datos debe ser introducido antes
de compilar la aplicación cliente para cargar todos los datos necesarios
y generar la aplicación de móvil correspondiente.

Se descartó la primera opción debido a que, a pesar de la ventaja que
supone el hecho de tener siempre los datos actualizados cada vez que se inicia
la aplicación, la posibilidad de que la conexión a Internet sea insuficiente para
poder descargarlos a una velocidad aceptable es bastante frecuente y por lo
tanto hay entornos en los que es posible que la aplicación quede totalmente
inutilizada.

3.2.2. Base de datos

Figura 3.1: Tablas principales de la base de datos

Como se puede ver en la figura 3.1 el esquema de la base de datos
utilizado es muy sencillo. En primer lugar tenemos una tabla Guides en la
que encuentran todas y cada una de las guías generadas con el gestor web.
En esta tabla encontramos campos como el nombre y descripción de la guía,
además del lenguaje de la misma.

Existe también una tabla Categories en la que se almacenan las diferentes
categorías de puntos de interés que existe en está guía en particular. Esta
tabla tiene campos para el nombre y una imagen para la categoría y esta
relacionada con la tabla de guías.

Los puntos de interés de una guía se almacenan dentro de la tabla Pla-
ces. Esta tabla esta relacionada con la categoría y la guía a la que pertenece

24

y además tiene campos para almacenar los principales valores de un pun-
to de interés como son nombre, descripcion, imagen, elementos multimedia,
geoposicion, ...

Finalmente, existe una tabla llamada Preferences que almacena pares
clave-valor con las preferencias que hacen que cambie la apariencia de la
aplicación (color de las ventanas, existencia de escáner de códigos QR, ...)

3.2.3. Arquiterctura de la aplicación
Las aplicaciones web hechas en Ruby on Rails (y en general la mayoría de

las aplicaciones web) se basan en el mismo patrón que hemos explicado antes
para la aplicación móvil, el cual se conoce como modelo-vista-controlador
(MVC). En este caso, tiene la ventaja de que es muy fácil el cambio de la
interfaz de usuario sin tener que tocar la parte del código que describe la
lógica de negocio.

Figura 3.2: Diagrama de módulos del gestor web.

Dentro del módulo de vistas nos encontramos con todas los elementos
que se encuentran en la carpeta views de la aplicación. Estos consisten en
archivos de plantilla eRuby que son páginas HTML a las que se puede añadir
cierto componente dinámico (en el apéndice D se explica un poco mejor su
funcionamiento). Hay aproximadamente una plantilla (archivo RHTML) por
cada una de las pantallas del gestor web.

En el módulo de controladores hay una clase por cada grupo de pantallas
que se encuentran relacionadas, como se puede ver en la figura 3.2 estas

25

son una para cada uno de los elementos principales, ademas de uno para la
pantalla inicial (HomeController) y otro del cual extienden el resto que sirve
para implementar las funciones comunes a todos (ApplicationController):

ApplicationController

CategoryController

GuideController

HomeController

PlaceController

En cuanto al módulo de modelos, al ser estas clases que se identifican de
forma principal con las tablas de la base de datos, esta compuesto de una
clase por cada tabla de la base de datos en la que hay aparte de cada uno de
los datos de dicho elemento, aquellas funciones que manipulan estos datos:

Category

Guide

Language

Place

Preference

3.2.4. Interfaz de usuario
Durante esta sección, se va a describir la interfaz de usuario que se ha

desarrollado para el gestor web. En las figuras 3.3 y 3.4 se puede ver el
diagrama de flujo entre las pantallas principales y como se mueve el usuario
entre unas y otras. A continuación se describe en más detalle los distintos
componentes/pantallas de la interfaz resumidos en dichas figuras:

Cuando el usuario entra en la aplicación, le aparece una lista de las
guías que se han creado hasta el momento en la aplicación y botón
para crear una nueva guía (pantalla número 1 de Fig. 3.3). Una vez
seleccionada la guía con la que quiere trabajar, le aparece una pantalla
con varias pestañas entre las que podrá elegir para ver y editar los
diferentes elementos de la guía.

26

La primera de estas pestañas es la de los datos generales de la guía
(pantalla número 2) donde se puede editar el nombre y la descripción
de la guía.

En la segunda pestaña, la que tiene por título Categorías (pantalla
número 3), se pueden crear y editar las diferentes categorías de la apli-
cación. Para cada una de ellas se puede dar tanto un nombre como una
imagen que será la que aparezca en la aplicación móvil. Para editar una
categoría, se usa la pantalla número 6.

La pantalla número 4 corresponde con la lista de lugares pertenecientes
a la guía. Junto con la pantalla número 7 se usan para crear y editar
nuevos puntos de interés de la guía. Para un lugar se pueden editar una
serie de datos como nombre, descripción, geolocalización, imagen que
aparecerá en pantalla, ... También existe el botón de Código QR que
genera la imagen de un código con los datos del lugar que podrá ser
utilizado después con el escáner de la aplicación móvil.

La última pantalla que aparece es la pantalla de las preferencias de
la aplicación (pantalla número 5). En esta pantalla se pueden modifi-
car ciertas configuraciones de la aplicación móvil como el icono de la
aplicación, el fondo de pantalla, ...

3.2.5. Plan de pruebas
Al tener ya experiencia en el trabajo con la empresa en la parte de la

aplicación móvil y debido a que el sistema de pruebas adoptado había fun-
cionado bastante bien, se decidió el usar un acercamiento parecido para las
pruebas de esta parte del sistema:

Pruebas unitarias para la parte de negocio (modelo) de la aplicación.
Es este caso no hubo que utilizar ninguna librería externa, ya que Ruby
on Rails cuenta con soporte integrado para la realización de este tipo
de tests 5.

Pruebas estándares por parte del desarrollador antes de cada reunión.

Pruebas más exhaustivas por parte de la empresa después de cada
reunión con el objetivo de tener solucionados los errores antes del pró-
ximo ciclo.

5http://guides.rubyonrails.org/testing.html

27

Figura 3.3: Interfaz de usuario web (I).

28

Figura 3.4: Interfaz de usuario web (II).

29

Capítulo 4

Conclusiones y trabajo futuro

Como se ha comentado anteriormente este proyecto se ha desarrollado
junto a la empresa Disline. Sus principales objetivos al comienzo del proyec-
to eran la realización de una plataforma software que les permitiera entrar en
un nuevo mercado dentro de su negocio orientado al turismo y realización de
guías turísticas. Dicha plataforma debe ser de fácil uso por parte de sus em-
pleados y flexible (de forma que no hubiera que ser totalmente dependiente
del desarrollador inicial a la hora de crear nuevas guías turísticas). Por otro
lado, la solución aportada debía ser lo suficientemente potente para que pu-
diera acomodar diferentes tipos de guías que pudieran interesar a diferentes
clientes (guías orientadas a monumentos en exteriores, guías para interiores,
...).

En una primera fase de estudio sobre cómo son las aplicaciones similares
disponibles se decidió que técnicas se iban a incluir en este trabajo (reco-
nocimiento con QR, autolocalización con GPS, ...) y cuales definen posibles
líneas de trabajo futuro (detalladas al final de esta sección).

Para cumplir el primer requisito, la parte que tiene que ser manipulada
por los empleados de la empresa se basó en una plataforma web muy sencilla,
en la que los empleados prácticamente ni necesiten hacer uso de un manual
de usuario. Al estar la mayoría de las personas ya habituadas a trabajar
con aplicaciones web en su día a día (Gmail, Facebook, ...) la transición a
introducir los datos de los puntos de interés de esta forma resulta bastante
fácil.

En cuanto a la flexibilidad de la plataforma, se ha creado un sistema
que permite que únicamente haya que sustituir un archivo perteneciente a la
base de datos (generado automático desde la platarforma web) y adjuntar los
ficheros multimedia correspondientes (vídeos y fotografías de los elementos
de la guía) para tener una nueva guía. Es verdad que hay que compilar la
nueva aplicación antes de subirla al mercado de aplicaciones correspondiente,

30

pero este es un trabajo fácilmente realizable por cualquier profesional del
desarrollo de aplicaciones informáticas y que apenas conlleva tiempo por lo
que hace que la empresa no sea dependiente de nadie externo a la misma.

Debido a que el mercado principal de la empresa son las guías turísticas
para pequeños municipios y aquellas destinadas museos que se encuentran
es dichas localidades, se ha diseñado un sistema de identificación de puntos
de interés que pueda ser útil tanto en interiores como en exteriores. Para la
localización de puntos de interés en exteriores, se ha usado un mapa en el
cual el usuario se puede mover e ir buscando lo que le interesa. Para cuando
el usuario se encuentra en interiores sin embargo, la creación y lectura de
códigos QR, hace que el usuario pueda saber ante lo que se encuentra con
facilidad y conseguir la información deseada sobre ello.

Debido a todo lo expuesto anteriormente, se puede concluir que se han
conseguido implementar los requisitos, expuestos al principio del proyecto
por la empresa, de forma satisfactoria y que la aplicación será de gran ayuda
para un mayor desarrollo del negocio en el que se encuentran inmersos. A lo
largo del proyecto también se han estudiado las posibles mejoras que podrían
ser interesantes en trabajos o estudios futuros. A continuación se describen
las tres lineas principales de trabajo futuro analizadas:

Reconocimiento de objetos mediante técnicas de visión por compu-
tador sin marcadores artificiales

Se dejó como trabajo futuro o complementario, el desarrollo prototipos
para reconocimiento de objetos (cuadros, monumentos,...) sin necesidad de
utilizar marcadores. Estas técnicas tienen la ventaja de no necesitar una
instalación añadida a lo ya existente con el correspondiente gasto y mante-
nimiento que ello supone. Ademas, permitirían que mediante actualizaciones
de software se puedan añadir nuevos objetos al catálogo de la aplicación,
mientras que si usamos algun tipo de marcador artificial (como los códigos
QR por los que se ha optado finalmente en este trabajo) para cada uno de los
objetos que se quieran añadir, hay que realizar algún tipo de instalación en
el mundo real con lo que no es tan inmediato. Sin embargo este tipo de desa-
rrollo implicaba un trabajo de investigación y desarrollo de nuevas técnicas,
equivalente a un proyecto completo. Por ello, para este prototipo comercial
se opto por la opción de reconocimiento visual mas madura y robusta dispo-
nible (los códigos QR), dejando la opción descrita como trabajos futuros y
de investigación.

31

Localización de puntos de interés sin necesidad de conexión a In-
ternet

Otra posible mejora de la solución presentada, consiste en el desarrollo
de un sistema de localización que no requiera de la conexión a Internet,
para permitir guiado y localización de puntos de interés en entornos donde
es difícil obtener una conexión a Internet de buena calidad. La localización
de puntos de interés usando los mapas de Google Maps que es totalmente
adecuado dentro de nucleos urbanos, se torna inusable en entornos remotos
o de montaña: a pesar de poder obtener la localización GPS del usuario, la
licencia de uso de los mapas de Google impide la descarga de estos en el
dispositivo móvil para su posterior uso sin conexión.

La solución más evidente a este problema es añadir a la aplicación móvil
la posibilidad de usar otro tipo de mapas que puedan se accesibles de forma
offline. Para ello y después de pensar las diferentes posibilidades, se pensó que
la solución más general y que mayor facilidad de uso aportaría a la empresa es
la posibilidad de cargar en el dispositivo una imagen con el mapa y además
añadir como información a la guía las coordenadas de localización de dos
puntos de la misma (un par de esquinas de la imagen es posiblemente lo más
comodo). De este modo, se pueden interpolar el resto de las localizaciones
que se quieran poner en dicho mapa y el usuario no tendra ningún problema
cuando transite por lugares en los que la conexión no sea del todo buena.

Portabilidad de la aplicación a otras plataformas

Una de las principales características que se deseaba que tuviera el sistema
cuando se iniciaron las reuniones que se realizo la toma de requisitos, era que
el sistema fuera accesible por el mayor número de personas posibles. Esto pasa
principalmente porque el cliente móvil se pueda utilizar en el mayor número
de plataformas móviles en el que sea posible. En la practica, esto se reduce a
las cuatro pincipales que copan aproximadamente hasta un 95 % de la cuota
de mercado como son Apple iOS, Google Android, RIM Blackberry OS y
Microsoft Windows Mobile. Debido a que la portabilidad de la aplicación
excede las posibilidades de un PFC, se decidió inicialmente la creación del
cliente para una de las más populares (Apple iOS) dejándose para un futuro
la realización del cliente en el resto de plataformas.

Durante las fases finales del proyecto y en paralelo a la creación del ges-
tor web, el autor de este proyecto ha estado dando apoyo necesario a otro
desarrollador que se encargará de la portabilidad a Android para que sea to-
talmente compatible con todo lo desarrollado a lo largo de estos meses. En el
momento de redactar la memoria de este PFC el desarrollo de la portabilidad

32

estaba practicamente terminado con lo que seguramente ambas plataformas
llegarán al mercado al mismo tiempo.

En cuanto a las dos plataformas restantes (Blackberry y Windows Mo-
bile), en el futuro se seguirá con detenimiento la evolución de ambas plata-
formas (así como otras que pudieran aparecer con el tiempo y alcanzar una
buena posición en el mercado), para comprobar si es factible y rentable para
la empresa el expandir su oferta con nuevos desarrollos software.

33

Bibliografía

[1] Yue Liu, Ju Yang, Mingjun Liu, Recognition of QR Code with mobile
phones Control and Decision Conference, pags. 203 - 206, 2008

[2] Yu-Hsuan Chang, Chung-Hua Chu, Ming-Syan Chen, A General Sche-
me for Extracting QR Code from a Non-uniform Background in Camera
Phones and Applications, Ninth IEEE International Symposium on Mul-
timedia, pags. 123 - 130, 2007

[3] Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool, SURF:
Speeded Up Robust Features, Computer Vision and Image Understanding
(CVIU), Vol. 110, No. 3, pp. 346–359, 2008

[4] Herbert Bay, Beat Fasel, Luc Van Gool, Interactive Museum Guide: Fast
and Robust Recognition of Museum Objects, 2006

[5] International Organization for Standardization.; International Electro-
technical Commission, Information technology – automatic identification
and data capture techniques – bar code symbology – QR code, 2000

[6] Bryan O’Sullivan, Mercurial: The Definitive Guide, O’Reilly Media, 2009

[7] Roy Thomas Fielding, Architectural Styles and the Design of Network-
based Software Architectures, Univeristy of California (Irvine), 2000

[8] Robert C. Martin, Agile Software Development, Principles, Patterns, and
Practices, 2002

[9] Alistair Cockburn, Agile Software Development: The Cooperative Game,
2nd Edition, 2006

[10] Sam Ruby, Dave Thomas, David Heinemeier Hansson, Agile Web Deve-
lopment with Rails (Pragmatic Programmers), 4th Edition, 2011

[11] Obie Fernandez, The Rails 3 Way, 2nd Edition, 2010

34

Apéndices

35

Apéndice A

Diagrama temporal de
desarrollo

Como se ha ido explicando a lo largo de este documento el trabajo en
este proyecto se ha dividió en tres partes (cuyo desarrollo temporal se puede
ver en la figura A.1):

Primero se realizaron una serie de estudios sobre las técnologías a uti-
lizar, tanto de desarrollo como de reconocimiento de objetos mediante
técnicas de visión por computador.

Después de los estudios, se realizó la aplicación móvil, empezando por
la toma de requisitos y el diseño de la aplicación y finalizando con la
implementación que se realizo junto con las pruebas del sistema.

En tercer lugar se desarrolló el gestor web. Este desarrollo tuvo apro-
ximadamente los mismos pasos que el anterior.

36

Figura A.1: Diagrama temporal del desarrollo

37

Apéndice B

Metodologías de desarrollo
ágiles

Las metodolgías de desarrollo ágiles está compuestas por una serie de
conceptos que nacieron como contraprestación a la forma de desarrollo tra-
dicional empleada, conocida como desarrollo en cascada. En el desarrollo en
cascada, todo el diseño se hace al principio del proyecto de forma que se
planifica hasta el último detalle del mismo con la intención de hacer toda la
implementación en una sola iteración. Por contra, en las metodologías ágiles,
se entiende que los requisitos del producto a desarrollar van a ir cambiando
a lo largo del tiempo y que por lo tanto no es posible conocer con antela-
ción lo que el cliente espera del producto o no será posible que el cliente nos
transmita dicho conocimiento de forma eficaz sin ir viendo antes partes del
producto ya terminado.

Es por todo lo anterior que las metodologías ágiles proponen una inter-
acción mayor entre clientes (entendiendo estos como los usuarios finales del
producto) y desarrolladores. Para ello, se hacen ciclos de desarrollo más cor-
tos y demostraciones al cliente al final de cada ciclo de forma que se puedan
ir haciendo las modificaciones que se estimen adecuadas para que el producto
cumpla con la funcionalidad deseada por el cliente de una forma más eficaz.

Otra de las diferencias básicas se encuentra en la forma de probar los
productos. Mientras que en la forma de desarrollo clásica, se reservaba un
espacio practicamente al final del proyecto en el cual se hacia un testeo com-
pleto de la aplicación, en estas nuevas metodologías se va testeando conforme
se va desarrollando (incluso hay veces que se crean tests automatizados antes
incluso de la implementación de una determinada funcionalidad, ejerciendo
estos como especificación de dicha funcionalidad. Esto es conocido como Test
Driven Development (TDD).

Aunque hay veces que se acusa a las metodologías ágiles de ser totalmente

38

anárquicas, en realidad estas usan una serie de metodos formales para, por
ejemplo, medir la velocidad de desarrollo del equipo del proyecto. De esta
forma se puede estimar el coste en tiempo de las futuras funcionalidades
a desarrollar de una forma mas certera no teniendo que hacer conjeturas
al principio del proyecto sobre como va a funcionar el equipo, ya que la
comunicación entre los diferentes miembros del equipo (una de las cosas que
enfatizan este tipo de metodologías) es muy importante de cara a no perder
tiempo de desarrollo debido a malentendidos entre dos o más miembros.

Hay una serie de métodos ya establecidos como por ejemplo:

Extreme Programming (XP).

Scrum.

Kanban.

Agile Unified Process (AUP).

aunque en la práctica, la mayoría de equipos de desarrollo acaban im-
plementando una mezcla de todos ellos (hecho conocido como tailoring) de
forma que obtengan las características con las que se encuentren más co-
modos de cada uno. Alguno de estos métodos (e.g. Extreme Programming)
incluso incluyen el tailoring como parte del método en si mismo, con lo que
fomentan la práctica del mismo.

Para más información sobre este tema, existen multitud de libros y ar-
tículos entre los que se incluyen:

Agile Software Development, Principles, Patterns, and Practices [8].

Agile Software Development: The Cooperative Game [9].

39

Apéndice C

Plataforma de desarrollo iOS

iOS es el sistema operativo que se encuentra dentro de los dispositivos
iPhone, iPod Touch e iPad. Esta plataforma esta fuertemente influenciada
por el sistema de desarrollo de OSX al ser ambos pertenecientes a la misma
compañía.

Para desarrollar aplicaciónes para iOS, se usa entorno de desarrollo (IDE)
Xcode, el cual provée de todas las herramientas necesarias para el diseño de
la interfaz de la aplicación y para escribir código para la misma. En este
apéndice se va a explicar las herramientas de desarrollo básicas de las que se
compone el entorno. Para más información sobre el desarrollo de aplicaciones
el mejor lugar es la página del desarrollador de Apple 1.

Figura C.1: Entorno de desarrollo Xcode (Inteface Builder, editor de código,
App Store, dispositivo).

1https://developer.apple.com/iphone

40

Entorno de desarrollo

Para el desarrollo de una aplicación iOS, se empieza creando un proyecto
en la aplicación Xcode. Un proyecto gestiona toda la información asociada
con la aplicación, incluyendo los archivos de código fuente, los diseños de
la interfaz y todas aquellas preferencias y propiedades necesarias para cons-
truir la aplicación. El trabajo en el proyecto se hace a traves de la llamada
workspace window, la cual provee acceso rápido para todos los elementos que
componen la aplicación (Fig. C.2).

Figura C.2: Esquema de la workspace window.

Esta ventana de trabajo esta dividia en cuatro áreas principales: el área
de navegación, el área de edición, el área de debug y el area de utilidades.

El área de navegación es donde se gestionan los archivos del proyecto,
y otra información como símbolos, breakpoints, hilos de la aplicación,
pilas de ejecución, errores y logs de las actividades efectuadas por el
usuario.

El área de edición es donde el usuario edita los archivos del proyecto,
diseña la interfaz, configura las propiedades del proyecto y ve todo tipo
de información acerca del proyecto.

41

El área de debug se utiliza cuando el usuario esta probando la aplicación
(bien sea en un simulador o directamente en un dispositivo). Se utiliza
para ver el contenido de las variables de la aplicación y la salida por
consola de la misma. Es posible introducir ordenes del debugger en esta
área.

El área de utilidad se utiliza para configurar las propiedades de un
objeto o archivo de la aplicación. También es posible ver es este area
los recursos asignados al proyecto.

Xcode además provée ayuda contextual de forma que se puede acceder a
ella desde el elemento para el cual se necesita ayuda.

Edición de archivos de código fuente

Figura C.3: Xcode mostrando un error y sus posibles soluciones.

Para facilitar al usuario el trabajo con el código fuente, este implementa
características como las sugerencias de código, indentación automática de-
pendiendo del contexto, plegado de código (ocultación de partes del código
de forma temporal). Además provée información de todos los símbolos del
código directamente en el mismo.

42

Además Xcode va analizando el código conforme se escribe de forma que
es capaz de detectar errores y realizar sugerencias sobre como solucionar los
mismos.

Diseño de la interfaz de usuario

La herramienta Interface Builder se encuentra disponible dentro del en-
torno para la creación y edición de la interfaz de usuario de la aplicación
usando objetos predeterminados. Estos objetos incluyen ventanas, controles
(campos de texto, botones, ...) y vistas (agrupaciones reutilizables de otros
elementos) que se usan para representar la información de la aplicación.

Con este editor se posicionan los objetos, configuran sus propiedades y se
establecen relaciones entre los mismos y con los archivos de código fuente de
forma que el flujo de la aplicación sea el correcto.

El editor guarda los diseños en unos documentos llamados archivos nib,
que contienen toda la información que el sistema operativo necesita para re-
construir la aplicación en tiempo de ejecución. El hecho de que estos archivos
se puedan editar de forma visual hace que el usuario pueda ver en todo mo-
mento como va quedando la interfaz sin necesidad de recurrir a probar la
aplicación.

Probar la aplicación

Xcode proporciona dos formas de probar la aplicación y eliminar erro-
res, el simulador iOS y directamente dentro de un dispositivo. Usando el
simulador, el desarrollador se puede hacer una idea de como funciona la apli-
cación y solucionar errores de forma rápida. Una vez que se este satisfecho del
funcionamiento básico de la aplicación se puede probar la aplicación en un
dispositivo conectado a Xcode, de esta forma se pueden detectar problemas
relacionados con la memoria consumida por la aplicación y otros más sutiles
como la forma en la que se maneja la aplicación en la pantalla táctil.

Mejorar el rendimiento de la aplicación

Una vez que el desarrollador ha visto que no hay problemas que impidan
el funcionamiento normal de la aplicación el siguiente paso en el desarrollo de
una aplicación para iOS es el uso de la aplicación Instruments para asegurarse
que la aplicación no tiene elementos que hagan que se ejecute de forma más
lenta de lo necesario. Manejando la aplicación en un dispositivo conectado a
Instruments hace que podamos ver gráficas que nos resumen el consumo de
recursos de nuestra aplicación (uso de memoria, actividad de disco, actividad
de red, ...).

43

Figura C.4: Aplicación corriendo en el simulador de iOS.

Distribución de la aplicación

Xcode sirve además para empaquetar la aplicación de forma que sea fácil
publicarla tanto para los posibles probadores externos que tengamos en el
equipo de desarrollo como en el App Store (tienda virtual donde se distribuyen
y venden aplicaciónes para dispositivos iOS). Entre otras cosas Xcode hace
una serie de pruebas para determinar que no falta ningún elemento necesario
para la publicación de la aplicación (iconos, propiedades, ...).

44

Apéndice D

Plataforma de desarrollo Ruby
on Rails

Rails es un framework de desarrollo de aplicaciones web escrito en el
lenguaje de programación Ruby. Esta diseñado para facilitar el desarrollo de
aplicaciones haciendo suposisiones sobre lo que el desarrollador puede estar
pensando en cada momento. Con esto se consigue que el desarrollador escriba
menos código dedicado a encajar la aplicación con el entorno de desarrollo y
más sobre la funcionalidad de la aplicación en si misma.

Este framework entra dentro de lo que se conoce como software de opinión.
Esto quiere decir que Rails asume que hay una manera que es la mejor para
hacer cierto tipo de cosas y por ello intenta obligar al desarrollador a hacerlo
de esta forma. Para ello hace que intentar hacerlo de otra forma suponga un
trabajo extra que haga que los desarrolladores no esten dispuestos a asumirlo.
La filosofía Rails incluye varios principios:

Don’t Repeat Yourself (DRY) implica que escribir el mismo código una
y otra vez es un mal hábito.

Convenciones sobre configuraciones significa que el framework hace su-
posiciones sobre como se tienen que hacer las cosas en vez de dejar en
manos del desarrollador el hecho de usar múltiples archivos de configu-
ración.

REST es un patrón de diseño para aplicaciones web que usa los recursos
y los verbos HTTP (GET, POST) para organizar la aplicación.

Arquitectura MVC

Como ya se ha comentado en algun cápitulo de esta memoria, Rails esta
basado en una arquitectura llamada modelo-vista-controlador (MVC) cuyos

45

beneficios principales son:

Aislamiento de la lógica de negocio y la interfaz de usuario.

Facilidad del mantenimiento del código mediante el mencionado ante-
riormente DRY.

Dejar claro donde tiene que ir cada tipo de código haciendo que el
desarrollador tenga que tomar menos decisiones.

Modelos: Un modelo representa la información (datos) de la aplicación
y las reglas con las que es posible manipular estos datos. En el caso de Rails,
se usan principalmente para almacenar información en una base de datos y
para manipular dicha información. La mayoría de la lógica de negocio de la
aplicación debería estar dentro de estos elementos.

Vistas: Las vistas representan la interfaz de usuario de la aplicación.
Normalmente son páginas HTML con código Ruby incrustado para obtener
los datos que hemos recogido en el resto de la aplicación. La principal función
de estos elementos es la de proveer la información requerida por el usuario (u
otros tipos de agentes) y mostrarsela de forma que les resulte conveniente.

Controladores: Los controladores son el pegamento entre las vistas y los
modelos. Obtienen las peticiones del navegador web, interrogan a los modelos
para obtener los datos necesarios y devuelven los datos a las vistas de nuevo
para que la información sea mostrada al usuario.

Componentes de Rails

Rails en si mismo, tiene una arquitectura modular en la cual varios com-
ponentes que realizan tareas individuales (y que podrían ser usados de forma
aislada en otros sistemas informáticos) se juntan para componer el frame-
work. Estos componentes son:

Action Pack (Action Controller, Action Dispatch, Action View): Libre-
ría que contiene la parte VC de MVC. Convierte las plantillas de las
vistas en código HTML, redirecciona las peticiones HTTP al contro-
lador adecuado, extrae los parametros de las peticiones y gestiona las
sesiones de usuario.

Action Mailer: Librería para la construcción de servicios de correo elec-
trónico. Se puede utilizar para la recepción y manejo de correo entrante,
y también para el envío de correos basados en plantillas.

46

Active Model: Interfaz entre los servicios que provee Action Pack y los
datos que proporciona Active Record (libreria de objetos usada por
defecto en Rails). El uso de esta capa extra ayuda a usar otras librerías
de objetos si el desarrollador lo encuentra conveniente.

Active Record: Librería de objetos que provee independencia de la base
de datos utilizada, funcionalidad CRUD (crear, leer, actualizar, borrar),
multiples formas de búsqueda de objetos y relaciones entre los diferentes
objetos de la aplicación.

Active Resource: Librería para gestionar la conexión entre los objetos
de negocio y los servicios web REST, que facilita la creación de funcio-
nalidad CRUD basandose en verbos HTTP.

Active Support: Conjunto de clases y librerías de utilidad, que son usa-
das en diferentes puntos del framework.

Railties: Código que consigue juntar todos los componentes anteriores
de forma que el usuario los vea como un todo.

REST

La abreviatura REST quiere decir Representational State Transfer y son
los fundamentos básicos de lo que se conoce como arquitecturas RESTful.
Estas fueron descritas por primera vez en la tesis doctoral de Roy Fielding
[7] y que llevados al contexto de una aplicación Rails se pueden resumir en
dos principios:

Usar los identificadores de recursos HTTP (URLs) para identificar los
recursos (datos) de la aplicación.

Transferir cambios de estado de dichos recursos entre los componentes
del sistema.

Por ejemplo, la siguiente petición HTTP:
DELETE / photos /17

sería entendida por la aplicación como que hay que borrar el objeto photo
que tenga como identificador el numero 17. Para más información sobre este
tipo de arquitecturas, se puede leer el tutorial A Brief Introduction to REST
1 de Stefan Tilkov.

1http://www.infoq.com/articles/rest-introduction

47

Generación de código

Uno de los principios básicos sobre los que se contruye Rails y a lo que
debe una parte importante de su éxito es la generación de código y scaffol-
ding. Mediante una serie de ordenes de linea de comandos sencillas, es posible
contruir funcionalidad CRUD sin ningún tipo de trabajo adicional. Si esta
funcionalidad básica no se ajusta totalmente a las necesidades del desarro-
llador, es muy sencillo el personalizar el código generado resultando aun así
en un decrecimiento del tiempo de desarrollo.

Esta funcionalidad hace que sea muy fácil el hacer pruebas para compro-
bar el funcionamiento de la aplicación sin tener que esperar a que este todo
desarrollado.

Más información

Para más información sobre el framework de desarrollo Rails, se puede
visitar la documentación oficial 2 o leer alguno de los dos libros clásicos sobre
el tema:

Agile Web Development with Rails [10].

The Rails 3 Way [11].

2http://guides.rubyonrails.org/

48

Apéndice E

Control de versiones con
Mercurial

Figura E.1: Salida de la orden hg sin ningún argumento.

Mercurial es un sistema de control de versiones usado por los desarrolla-
dores para gestionar el código fuente de una aplicación. Sus dos principales
propositos son:

49

Conservar cada uno de los cambios realizados en versiones viejas de
cada archivo.

Unir diferentes versiones de un mismo código de forma que varios desa-
rrolladores puedan trabajar en paralelo en el código para despues mez-
clar sus cambios.

La forma de trabajo principal con Mercurial es a través de la linea de
comandos, la cual funciona en sistemas Windows, Unix y Mac. El comando
para Mercurial se llama hg.

Para obtener todas las ventajas de un sistema de control de versiones,
se necesita un repositorio. Un repositorio almacena todas las versiones an-
tiguas de cada uno de los archivos del código fuente. En realidad, para no
utilizar demasiado espacio, no almacena directamente estas versiones, sino
únicamente los cambios producidas sobre ellas.

En otros sistemas de control de versiones, se necesitaba de la instalación
del sistema en un servidor central, pero Mercurial es lo que se conoce como
sistema de control de versiones distribuido. Esto significa que en su versión
más básica solo es necesario instalarlo en tu propia máquina.

Para la creación de un repositorio, lo único que hay que hacer es ir al
directorio donde se almacena el código de la aplicación y usar la orden hg
init.
/home/ juanjo > cd Proyecto
/home/ juan jo / Proyecto> hg i n i t

Esta orden creará un nuevo directorio oculto llamado .hg en donde se
almacena toda la información del repositorio. El contenido de este directorio
no debe ser nunca manipulado de forma directa, únicamente a traves del
comando hg.

Para añadir nuevos archivos al repositorio y que Mercurial sepa sobre que
archivos tiene que guardar información, se usa la ordden hg add.
/home/ juan jo / Proyecto> hg add
adding Prueba . rb
adding . . .

Una vez que se han añadido los archivos a un repositorio hay que hacer
un commit de los cambios. La primera vez que lo hagamos, lo que hará se-
ra añadir el contenido de todos estos archivos (para Mercurial, al principio
los archivos carecían de contenido). Lo normal es usar el argumento -m pa-
ra añadir un mensaje a este grupo de cambios y sepamos de que estamos
hablando en el futuro.

50

/home/ juan jo / Proyecto> hg c i −m ‘ ‘ Commit i n i c i a l ’ ’

Una vez que ya tengamos algunos cambios, se puede usar la orden hg log
para ver el historial de cambios del repositorio en el que nos encontramos.
/home/ juan jo / Proyecto> hg l og
changese t : 0 : b9 fa4ebea246
tag : t i p
us e r : Juanjo Mol inero <j jmo l ine ro@gma i l . com>
date : Mon Feb 13 1 4 : 1 5 : 2 0 2012 +0100
summary : Commit i n i c i a l

Si realizamos un cambio en alguno de los archivos, podemos ver que cam-
bios hemos hecho usando la orden hg st.
/home/ juan jo / Proyecto> hg s t
M Prueba . rb

Si a pesar de haber hecho algunos cambios, no nos interesan (bien porque
nos hemos equivocado, porque eran una prueba, o porque otra persona ha
hecho unos cambios más adecuados) podemos volver a la versión anterior
usando la orden revert.
/home/ juan jo / Proyecto> hg r e v e r t −−a l l
r e v e r t i n g Prueba . rb

Si en lugar de eso, no estamos seguros de los cambios que hemos hecho,
podemos hacer una revisión de los mismos usando la orden hg diff.
/home/ juan jo / Proyecto> v i Prueba . rb
/home/ juan jo / Proyecto> hg s t
M Prueba . rb
/home/ juan jo / Proyecto> hg d i f f
d i f f −r b9fa4ebea246 Prueba . rb
−−− a/Prueba . rb Mon Feb 13 1 4 : 1 5 : 2 0 2012 +0100
+++ b/Prueba . rb Mon Feb 13 1 4 : 2 6 : 3 9 2012 +0100
@@ −0,0 +1 ,1 @@
+o t r o s cambios más

Para más información sobre Mercurial, se puede seguir el tutorial publi-
cado por Joel Spolsky 1 o el libro de referencia del sistema [6].

1http://hginit.com/

51

