

Información del Plan Docente

Año académico 2016/17

Centro académico 100 - Facultad de Ciencias

Titulación 540 - Máster Universitario en Química Industrial

Créditos 6.0

Curso

Periodo de impartición Segundo Semestre

Clase de asignatura Obligatoria

Módulo ---

1.Información Básica

1.1.Recomendaciones para cursar esta asignatura

Se recomienda dominar el inglés científico y dominar los conceptos fundamentales de Electroquímica y Fotoquímica.

1.2. Actividades y fechas clave de la asignatura

El calendario y horarios correspondientes al curso así como las fechas e hitos clave de la asignatura se pueden consultar en la siguiente página de web de la Facultad de Ciencias: http://ciencias.unizar.es/web/horarios.do

2.Inicio

2.1. Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Distinguir los parámetros más relevantes en los procesos de síntesis electroquímica o fotoquímica y de electrodeposición de metales.

Resolver problemas que requieran el uso de las leyes y ecuaciones que gobiernan los procesos de síntesis electroquímica o fotoquímica, la electrodeposición de metales y la corrosión.

Explicar los métodos y describir los equipos que se emplean en los procesos de síntesis electroquímica o fotoquímica y en la electrodeposición de metales y valorar su rango de aplicación, justificando los adecuados a cada caso.

Explicar los métodos que se emplean en la medida y prevención de la corrosión y valorar su rango de aplicación, justificando los adecuados a cada caso.

Describir los procesos electroquímicos y fotoquímicos industriales más importantes.

Analizar las principales consecuencias medioambientales de los procesos electroquímicos o fotoquímicos.

Conocer los principales convertidores electroquímicos y explicar su funcionamiento.

Utilizar técnicas y equipamientos para el estudio de procesos electroquímicos y fotoquímicos.

Elaborar informes sobre los resultados de las actividades.

Realizar un trabajo escrito sobre un tema concreto relacionado con la asignatura y defenderlo de forma oral.

2.2.Introducción

Breve presentación de la asignatura

La asignatura tiene como objetivo principal proporcionar a los alumnos una formación avanzada sobre las aplicaciones más importantes de los conceptos y métodos de la Electroquímica y la Fotoquímica a la producción industrial.

En esta asignatura se pretende que el estudiante tome conciencia de la importancia de procesos fotoquímicos y electroquímicos orientados a la preservación del medioambiente y que sea capaz de conocer las ventajas e inconvenientes de cara a su implantación en la industria. Para ello deberá conocer los fundamentos de las aplicaciones industriales de los procesos electroquímicos y fotoquímicos de síntesis orgánica e inorgánica, de electrodepósito de metales y otros tratamientos electroquímicos de superficies, de los convertidores electroquímicos de energía (pilas, baterías recargables y pilas de combustible), corrosión y procesos para la eliminación de contaminantes y remediación ambiental.

3. Contexto y competencias

3.1.Objetivos

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Los objetivos que se plantean en esta asignatura corresponden a una intensificación de los conocimientos y habilidades relacionadas con lo que es la aplicación dentro de la Industria Química de dos campos específicos del área de Química Física: i) la Electroquímica y ii) la Fotoquímica.

Se busca que el alumno alcance conocimientos avanzados sobre cómo aplicar los conceptos y métodos de la Electroquímica y de la Fotoquímica a la síntesis de productos y a otros procesos de interés práctico tales como el electrodepósito de metales, la corrosión y la fabricación de convertidores electroquímicos de energía (pilas, baterías y celdas de combustible). Asimismo, se pretende que el alumno pueda analizar las principales consecuencias medioambientales de los procesos electroquímicos o fotoquímicos y las posibilidades y ventajas de la vía electroquímica o fotoquímica para la síntesis industrial de productos. Adicionalmente, a lo largo del proceso formativo el estudiante alcanzará competencias transversales relacionadas con el trabajo en el laboratorio, la elaboración de informes y su defensa oral.

3.2.Contexto y sentido de la asignatura en la titulación

La asignatura obligatoria "Electroquímica y Fotoquímica para la industria" se halla integrada en el primer cuatrimestre y tiene una carga docente de 6 créditos ECTS siendo el 58% de las actividades presenciales teóricas y el 42% de carácter práctico. Dentro de las actividades prácticas a realizar por el alumno se encuentra la preparación de un trabajo individual que posteriormente se expondrá en clase.

Pese a su carácter fundamental, la temática que aborda resulta imprescindible para el desarrollo de una Química Industrial moderna en la que cada vez es más frecuente la búsqueda de procesos alternativos que no sean perjudiciales

para el medio ambiente. En este marco cabe reseñar procesos de síntesis de compuestos por vía electroquímica y fotoquímica, la fabricación de transformadores electroquímicos de alto rendimiento energético, la lucha contra la corrosión y los procedimientos electroquímicos y fotoquímicos para la remediación y destrucción de contaminantes. Así, la asignatura queda perfectamente integrada dentro de los objetivos de la titulación y sirve de complemento para asignaturas obligatorias como "Química Industrial", "Química Medioambiental" y resulta, además, imprescindible para la comprensión de otras asignaturas optativas como "Materias primas renovables", "Química Orgánica Aplicada" y "Materiales Inorgánicos Avanzados".

3.3.Competencias

Al superar la asignatura, el estudiante será más competente para...

Conocer con profundidad la fisicoquímica de los procesos industriales estudiados.

Describir y proponer aplicaciones de diversas metodologías avanzadas en la industria química.

Reconocer el impacto de los productos y procesos químicos en el Medioambiente y proponer métodos para evaluarlo y reducirlo.

Identificar, analizar y definir los elementos principales de un problema para resolverlo con rigor en el entorno de la Química Industrial.

Desarrollar un trabajo complejo en el entorno de la Química Industrial, participando en las etapas de búsqueda bibliográfica, planificación, obtención de resultados e interpretación y difusión de los mismos.

Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación

Saber aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

Ser capaz de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.

Saber comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.

Poseer las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Gestionar, discriminar y seleccionar las fuentes de información bibliográfica.

Utilizar de forma efectiva las tecnologías de la información y la comunicación como herramienta de trabajo.

Utilizar inglés científico tanto para la obtención de información como para la transferencia de la misma.

Aplicar los fundamentos físico-químicos de la Fotoquímica y de la Electroquímica para la implementación de procesos industriales.

Identificar los parámetros más relevantes en procesos de síntesis electroquímica o fotoquímica y en procesos de electrodeposición de metales y corrosión.

Seleccionar los métodos y equipamientos más adecuados para la implementación de procesos concretos electroquímicos o fotoquímicos de interés industrial.

Diseñar metodologías para determinar la velocidad de corrosión y definir estrategias de prevención de la corrosión.

3.4.Importancia de los resultados de aprendizaje

Los resultados de aprendizaje correspondientes a la asignatura "Electroquímica y Fotoquímica para la Industria" permitirán al alumno comprender las potencialidades de la luz y la electricidad para una síntesis más limpia de productos o para la eliminación de contaminantes. Asimismo, el alumno estará en disposición de plantear procesos de reacción en condiciones suaves de temperatura similares a las que se dan en la naturaleza. El alumno conocerá el uso de la luz como energía renovable al servicio de la Química Industrial, las principales aplicaciones industriales de la Fotoquímica y los desarrollos más actuales. En cuanto a la Electroquímica, el alumno estará en disposición de aplicar las ventajas del electrón como reactivo para llevar a cabo reacciones sostenibles. El estudiante habrá alcanzado una base sólida para la aplicación de los métodos electroquímicos en el tratamiento de materiales y su ahorro (lucha contra la corrosión) y para la obtención de convertidores electroquímicos (pilas, baterías recargables, celdas de combustible) de mayor rendimiento.

4. Evaluación

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Prueba escrita que contemplará aspectos teóricos y/o prácticos: 60% de la nota final

Resolución de problemas y casos prácticos: 15% de la nota final

Realización y exposición de trabajos e informes: 25% de la nota final

La realización de la prueba escrita es obligatoria, así como la asistencia a las clases prácticas y la entrega de los informes y trabajos solicitados dentro del plazo establecido por el profesor.

El número de convocatorias oficiales de examen a las que la matrícula da derecho (2 por matrícula) así como el consumo de dichas convocatorias se ajustará al Reglamento de permanencia en títulos oficiales adaptados al Espacio Europeo de Educación Superior en la Universidad de Zaragoza y al Reglamento de Normas de Evaluación del Aprendizaje de la Universidad de Zaragoza . A este último reglamento también se ajustarán los criterios generales de diseño de las pruebas y sistema de calificación y, de acuerdo a la misma, se hará público el horario, lugar y fecha en que se celebrará la revisión al publicar las calificaciones.

Según el <u>Reglamento de Normas de Evaluación del Aprendizaje de la Universidad de Zaragoza</u>, el estudiante tendrá derecho a una prueba global en la que se evaluarán las competencias desarrolladas en la asignatura. Esta prueba global se realizará en la fecha prevista por el calendario de exámenes de la Facultad de Ciencias.

5. Actividades y recursos

5.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en la combinación de actividades de información o conceptuales con las de evaluación y resolución de casos prácticos y próximos a la realidad. Las actividades de tipo conceptual se combinarán de forma estratégica con las de tipo práctico asistencial y de trabajo autónomo para permitir un máximo aprovechamiento.

En concreto se realizarán las siguientes actividades presenciales:

Clases Magistrales (36 h) - Resolución de problemas y casos (12 h) - Prácticas de Laboratorio (8 h) - Presentación de Trabajos Docentes (4 h)

Las clases magistrales serán expositivas, y en ellas se desarrollarán los aspectos fundamentales de la asignatura mediante la utilización de los medios audiovisuales necesarios. En las clases de problemas y casos se fomentará y valorará la participación activa del alumno.

En las clases prácticas de laboratorio se pondrá especial atención al correcto manejo del instrumental, las técnicas para la obtención de datos experimentales y su validación y posterior uso en el cálculo de magnitudes de interés. La atención se realizará de forma individualizada y en grupos reducidos, para una mejor comprensión de la materia.

Se propondrá la realización de un trabajo, que el alumno deberá elaborar individualmente y exponer en clase.

5.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

Clases magistrales

Resolución de Problemas y Casos/Prácticas de Laboratorio

Contenido de las sesiones:

Resolución individualizada en clase pequeña de problemas avanzados de Electroquímica relacionados con la electrosíntesis, electrodepósitos, corrosión, convertidores electroquímicos de energía, reacciones y procesos fotoquímicos y fotoquímica ambiental.- Demostración de las técnicas experimentales de trabajo con reactores electroquímicos y fotoquímicos

Estudio y realización de trabajos

Trabajo autónomo del estudiante para la realización de los trabajos, ejercicios o informes solicitados.

5.3. Programa

1.‐ Fundamentos de síntesis electroquímica.

Conceptos básicos en síntesis electroquímica. Aspectos termodinámicos. La doble capa eléctrica. Cinética de los procesos electródicos. Fenómenos de transporte. Adsorción y electrocatálisis. Componentes del voltaje de celda.

2.‐ El reactor electroqu í mico. Componentes y Operación.

Componentes básicos de un reactor electroquímico. Propiedades quimicofísicas de los disolventes comunes y la selección del disolvente. El electrólito soporte. Tipos de electrodos y criterios para su elección. Principales materiales para ánodos y cátodos. Contraelectrodos. Nuevos desarrollos en materiales electródicos.

Transferencia de materia en el reactor electroquímico. Distribuciones de corriente y potencial. Geometría del reactor. Conexiones eléctricas. Distribución hidráulica. Eliminación de calor. Tipos de reactor y criterios para su selección.

3.‐ Aplicaciones industriales tradicionales de la s í ntesis electroqu í mica.

La industria cloro 48208; álcali. Producción de flúor. El proceso Hall 48208; Heroult para la producción de aluminio. La fabricación de clorato sódico.

4.‐ Aplicaciones industriales modernas de la s í ntesis electroqu í mica.

La obtención de adiponitrilo, un producto clave para la obtención del nylon 6,6. Producción de anisaldehido (perfumería). Producción de L‐ cisteína. Producción de maltol. Electrosíntesis en la industria farmacéutica.

5.‐ Síntesis electroquímica y medioambiente.

Ventajas intrínsecas de la síntesis electroquímica en relación al medioambiente. Procesos verdes. Eliminación electroquímica de contaminantes.

6.‐ Electrodep ó sito de metales y otras aplicaciones electroquímicas relacionadas.

Aspectos generales en el electrdepósito de metales. Etapas en el proceso de electrodepósito. Estructura cristalina de los depósitos. Parámetros que afectan al proceso. Aditivos (abrillantadores, nivelantes, tensoactivos y ductilizantes).

Recubrimientos metálicos industriales de Zn, Sn, latón, Cu, Ni y Cr. Electrodepósitos modernos de oro y plata.

Otras aplicaciones electroquímicas: electroconformado, electroobtención y electrorefinado de metales,

electromecanizado y electropulido.

7.- Corrosión y su prevención

Los efectos de la corrosión. Tipos de corrosión.

Métodos electroquímicos y no electroquímicos para la medida de la velocidad de corrosión

La prevención de la corrosión; medidas que afectan al metal y medidas que afectan al medio corrosivo (revestimientos inorgánicos y orgánicos, contol del pH, uso de inhibidores, protección catódica y anódica). Casos prácticos en la industria.

8.‐ Convertidores electroqu í micos de energ í a . Tipos de convertidores electroquímicos: pilas, baterías y pilas de combustible. Comportamiento electroquímico de las pilas primarias. Pila seca Leclanché, pilas alcalinas, pilas de óxido de plata (Zn‐Ag 2 O). Características de las baterías recargables usadas habitualmente (baterías de plomo, Ni‐Cd, Ni‐hidruro metálico, ión Li). Nuevos desarrollos en pilas de combustible.

9.‐ Fundamentos de fotogu í mica industrial.

Activación fotoquímica de moléculas y átomos. Procesos fotoquímicos primarios y secundarios. Mecanismos de desactivación. Rendimiento cuántico. La velocidad de las reacciones fotoquímicas. Efecto del disolvente. Sensibilización. Técnicas experimentales

Síntesis fotoquímica. Reactores fotoquímicos. Procesos fotoquímicos de síntesis en la industria.

10.‐ Otras aplicaciones y efectos de la luz. Fotoqu í mica y Medioambiente.

Iniciación fotoquímica de los procesos de polimerización. Reacciones fotoquímicas de despolimerización. Protectores solares. Fotocromismo.

Fotoquímica medioambiental. Origen fotoquímico de algunas especies reactivas en la troposfera. Cinética y mecanismo de las principales reacciones troposféricas. Cálculo de constantes de velocidad y tiempos de vida media para las reacciones en la atmósfera del radical HO∙ con moléculas orgánicas. Procesos fotoquímicos para el tratamiento de aguas.

5.4. Planificación y calendario

Calendario de sesiones presenciales y presentación de trabajos

Impartición Clases Magistrales de la asignatura*: febrero-mayo

Lugar: Facultad de Ciencias

Impartición problemas o prácticas asistidas*: marzo-mayo

Lugar: Facultad de Ciencias

Exposición de Trabajos*: abril-mayo

Lugar: Facultad de Ciencias

Entrega de materiales asociados a las actividades formativas*: febrero-mayo

Lugar: ADD

* Fechas orientativas en función de disponibilidades y compatibilidad de horarios con otras asignaturas del máster. Consultar https://ciencias.unizar.es/web/horarios.do

5.5.Bibliografía y recursos recomendados

- Bockris, John O'M.. Electroquímica moderna / John O'M. Bockris and Amulya K. N. Reddy; versión española por José Beltrán Barcelona [etc]: Reverté, D.L.1978-1980
- Bockris, John O. Modern Electrochemistry. 2A Fundamentals of Electrodics. Springer. 2000
- Hamann, Carl H.. Electrochemistry / Carl H. Hamann, Andrew Hamnett and Wolf Vielstich . 2nd completely rev. and updated ed. Weinheim : Wiley-VCH, cop. 2007
- Wayne, Carol E.. Photochemistry / Carol E. Wayne and Richard P. Wayne . Repr. with corr. Oxford [etc.]: Oxford University Press, 2002
- · Suppan, Paul. Chemistry and light / Paul Suppan Cambridge: Royal Society of Chemistry, cop. 1994
- Bockris, John O'M.. Modern electrochemistry. Vol. 2B, Electrodics in chemistry, engineering, biology and environmental science / John O'M. Bockris, Amulya K.N. Reddy . - 2nd ed. New York [etc.] : Kluwer Academics, 2000
- Ochoa Gómez, José Ramón. Electrosíntesis y electrodiálisis: fundamentos, aplicaciones tecnológicas y tendencias
 / José Ramón Ochoa Gómez Madrid [etc.]: McGraw-Hill, D.L.1996
- Coeuret, F.. Introducción a la ingeniería electroquímica / F. Coeuret; edición coordinada por J. Costa López Barcelona [etc.]: Reverté, D.L. 1992
- Corrosion mechanisms in theory and practice / edited by Philippe Marcus . 2nd ed., rev. and expanded New York [etc.]: Marcel Dekker, cop. 2002
- Kagan, J.. Organic photochemistry: Principles and Applications . Academic Press. 1993
- Albini, Angelo. Photochemistry. v.41 Royal Society of Chemistry. 2013
- Montalti, M.. Handbook of Photochemistry. 3^a CRC Press. 2013