

60066 - Methodologies for the toxicity and ecotoxicity evaluation of the nanomaterials

Información del Plan Docente

Academic Year	2016/17
Academic center	100 - Facultad de Ciencias
Degree	544 - Master's in Environmental Nanotechnology
ECTS	6.0
Course	1
Period	Annual
Subject Type	Compulsory
Module	
1.Basic info	
1.1.Recommendations to take this course	
1.2.Activities and key dates for the course	
2.Initiation	
2.1.Learning outcomes that define the subject	

- 2.2.Introduction
- 3.Context and competences
- 3.1.Goals
- 3.2.Context and meaning of the subject in the degree
- 3.3.Competences
- 3.4.Importance of learning outcomes
- 4.Evaluation
- 5. Activities and resources
- 5.1.General methodological presentation
- 5.2.Learning activities
- 5.3.Program
- Program

1. and 2. The dose response curve as a basic working tool standard and no standard methods

60066 - Methodologies for the toxicity and ecotoxicity evaluation of the nanomaterials

- 3. Experimental design and working hypotheses
- 4. Exposure scenario: contact, ingestion, inhalation, and foods
- 5. Experimentation organisms
- 6. Data analysis and interpretation (introduction to free software R)

7. Methods and parameters for assessing the biological impact of nanomaterials: in vitro, in vivo, molecular, physiological, cellular, reproductive organism level and population

8. Use of organisms as biomarkers

5.4. Planning and scheduling

5.5.Bibliography and recomended resources