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Abstract

In this paper new one-step methods that combine Runge–Kutta
(RK) formulae with a suitable projection after the step are proposed
for the numerical solution of Initial Value Problems. The aim of this
projection is to preserve some first integral in the numerical integra-
tion. In contrast with standard orthogonal projection, the direction of
the projection at each step is obtained from another suitable embedded
formula so that the overall method is affine invariant. A study of the
local errors of these projection methods is carried out, showing that by
choosing proper embedded formulae the order can be increased for the
harmonic oscillator. Particular embedded formulae for the third order
method by Bogacki and Shampine (BS3) are provided. Some criteria
to get appropriate dynamical directions for general problems as well
as sufficient conditions that ensure the existence of RK methods em-
bedded in BS3 according to them are given. Finally, some numerical
experiments to test the behaviour of the new projection methods are
presented.
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1 Introduction.

We consider autonomous systems of ordinary differential equations

y′(t) = f(y(t)), (1)

with a sufficiently smooth N -dimensional vector field f : D ⊆ RN → RN ,
having a scalar invariant G(y).

As it is well known [16, pp. 93], a scalar function G : D̂ ⊆ RN → R of

class C(1)(D̂), D̂ ⊆ D, is a first integral in D̂ (also called strong invariant or
conserved quantity) of (1) iff

∇G(y) · f(y) = 0, ∀y ∈ D̂,

which implies that every solution y(t) contained in D̂ of (1) satisfies

G(y(t)) = G(y(t0)) ∀t.

In this case, for all y0 ∈ D̂, the solution y = y(t) of (1) satisfying y(t0) = y0
is contained in the hypersurface

My0 = {y ∈ RN |G(y) = G(y0)}. (2)

For problems possessing a first integral, it is natural to ask whether or
not a numerical method provides approximate solutions that stay in the
hypersurface as the true solution does.

Energy-preserving Runge–Kutta methods for polynomial Hamiltonian dy-
namical systems were given in [21] and [19]. Hamiltonian Boundary Value
Methods [4, 5] and the methods presented in [20] preserve the energy also
for polynomial Hamiltonians. In [10], [15] and [23], energy preserving meth-
ods for general Hamiltonian systems were proposed. The preservation of the
energy for Poisson systems was studied also in [2] and [11].

Quispel and Capel [22] proposed discrete algorithms to preserve exactly
general first integrals. On the other hand, Line Integral Methods, where the
key idea of imposing energy conservation through a line integral has been
extended to any invariant and to any conservative problem, were introduced
in [3].

All these preserving methods are in general implicit. Explicit RK methods
are able to preserve only linear first integrals even though quadratic invariants
can be approximated very accurately by pseudo symplectic methods [8]. A
natural way to obtain one-step numerical methods that preserve a given
invariant based on explicit methods is to start with a standard scheme and
add a suitable projection. Projection methods can also be used to preserve
monotonicity of Lyapunov functions [9, 14].

Let y(t) be the solution of (1) satisfying y(t0) = y0. In order to obtain
numerical methods that preserve first integrals of (1), projection methods
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provide, with a step size h, approximations yn to y(tn), with tn = t0 + nh, of
the form

yn+1 = ỹn+1 + λnwn, n = 0, 1, 2, . . . (3)

where

• ỹn+1 is the numerical approximation to y(tn+1) given by a standard
(non-preserving) method.

• wn ∈ RN is the vector (depending on yn and the step size h) that
defines the direction of the projection.

• λn is a real parameter which, once determined the direction vector wn,
will be calculated so that yn+1 is the projection of ỹn+1 onto the variety
(2). So, denoting g(y) := G(y) − G(y0), λn will be computed at each
step so that

g(yn+1) = g(ỹn+1 + λnwn) = 0.

In this paper we will focus on projection methods applied to Runge–Kutta
(RK) schemes. This means that ỹn+1 is the approximation provided by an

s-stage explicit RK method with coefficients (A, b̃), with A = (aij) ∈ Rs×s,

and b̃ = (̃bi) ∈ Rs.
Standard orthogonal projection methods [16, p. 106] are of the form (3)

with wn = ∇g(yn+1). In [16], this vector wn is replaced by wn = ∇g(ỹn+1)
to reduce the computational cost. One drawback of these projection tech-
niques is that, whereas RK methods preserve linear first integrals [12], after
applying either standard or simplified orthogonal projection, this does not
hold. Another inconvenience is that the projected method obtained with
orthogonal projections is not affine invariant like the basic RK formula is.
Thus, the behaviour of the numerical method integrating linear differential
systems y′ = Ly, with L diagonalizable, is not equivalent to the behaviour
when the diagonal system is integrated.

In [7], the authors propose to search for a dynamical direction wn at each
step so that the projected method is also a RK method. In order to do that,
they take

wn = ŷn+1 − ỹn+1, (4)

where ŷn+1 is given by an explicit RK method with coefficients (A, b̂), b̂ =

(̂bi) ∈ Rs, embedded to the RK method that gives the approximation ỹn+1.
Then,

yn+1 = (1− λn)ỹn+1 + λnŷn+1, (5)

and yn+1 is a convex linear combination of RK approximations and so, it is
also a RK method. Such a projected RK method yn+1 with direction vector
based on an embedded RK pair preserves all linear first integrals and it is
also affine invariant [7].
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The best way to choose the embedded method (A, b̂) is, to our knowledge,
an open question, and this paper tries to gain some insight into this problem.
The orthogonal projection chooses the direction looking for the approxima-
tion into the manifold yn+1 ∈ My0 closest to the approximation ỹn+1, that
is, it minimizes the distance ‖ỹn+1− yn+1‖. However, this criterion, which is
usual in projection techniques, might not be the best one in our problem. It
would be more convenient to minimize the distance with respect to the true
solution ‖y(tn+1)− yn+1‖. Unfortunately, the true solution is not known.

In section 2 we give some results about the order that the projected
method (5) achieves depending on how the direction wn given in (4) is chosen.
Section 3 is focused on oscillatory problems, showing that it is possible to
get zero-dissipative RK projected methods with high order for the harmonic
oscillator. In particular, the orders of some projection methods based on the
third order Bogacki–Shampine RK method (BS3) are studied. In Section 4 we
establish some criteria to get appropriate directions wn for general problems,
and we give some conditions under which those criteria are satisfied when BS3
is projected. Finally, in Section 5 we present some numerical experiments to
check the theoretical results and to show the efficiency of the new projection
methods.

2 The local error of RK projection methods

The properties of the projected solution yn+1 in (3) depend on the direction
wn, and in the case of a Runge–Kutta projection this direction vector depends
on the embedded method ŷn+1. We are interested in the best way of choosing

the free coefficients b̂i so that the projected solution is as close to the true
solution as possible.

One can ask if it is possible to select the free parameters of the embedded
method so that the projected solution increases the order with respect to
the non-projected solution, or it has at least a leading term with smaller
coefficients. Let us first analyze the local error of the projected solution.

Let us suppose that the non-projected method has order p and the em-
bedded method has order q < p, and their local errors admit expansions

y(tn + h; tn, yn)− ỹn+1 = hp+1ϕ̃p+1(yn) + hp+2ϕ̃p+2(yn) +O(hp+3),

y(tn + h; tn, yn)− ŷn+1 = hq+1ϕ̂q+1(yn) + hq+2ϕ̂q+2(yn) +O(hq+3),

where y(t; tn, yn) represents the local solution of the differential system that
satisfies y(tn; tn, yn) = yn.

The direction of projection wn = ŷn+1−ỹn+1 = O(hq+1) admits an asymp-
totic expansion

wn = hq+1ψq+1 + hq+2ψq+2 +O(hq+3),

with ψq+1 = −ϕ̂q+1.

4



We can state the following

Theorem 2.1. Let ỹn+1 be the approximation provided by a one-step method
of order p and leading term of the local error hp+1ϕ̃p+1. Let us suppose that we
are computing a projected solution using a direction wn = hq+1ψq+1+O(hq+2)
with q < p and ∇G(yn) · ψq+1 6= 0. Then, the projected solution yn+1 =
ỹn+1 + λnwn, with λn such that G(yn+1) = G(yn) has order ≥ p + 1 if and
only if the vectors ϕ̃p+1 and ψq+1 are parallel.

Proof. By Theorem 4.1 of [7], there exists a unique λn such that G(yn+1) =
G(ỹn+1 + λnwn) = G(yn) with λn = σp−qh

p−q + σp−q+1h
p−q+1 + O(hp−q+2).

Therefore, the expansion of the local error of the projected solution will be
given by

y(tn + h; tn, yn)− yn+1 = y(tn + h; tn, yn)− (ỹn+1 + λnwn)

= hp+1ϕ̃p+1 + hp+2ϕ̃p+2 +O(hp+3)
−(σp−qh

p−q + σp−q+1h
p−q+1)(hq+1ψq+1 + hq+2ψq+2) +O(hp+3)

= hp+1(ϕ̃p+1 − σp−qψq+1)
+hp+2(ϕ̃p+2 − σp−qψq+2 − σp−q+1ψq+1) +O(hp+3).

On the other hand

0 = G(yn+1)−G(yn) = G
(
y(tn+1; tn, yn) + yn+1 − y(tn+1; tn, yn)

)
−G(yn)

= G(y(tn+1; tn, yn))−G(yn)− hp+1∇G(y(tn+1; tn, yn)).(ϕ̃p+1 − σp−qψq+1) +O(hp+2)

= −hp+1∇G(yn).(ϕ̃p+1 − σp−qψq+1) +O(hp+2),

which means that
∇G(yn).(ϕ̃p+1 − σp−qψq+1) = 0.

Denoting by u = ∇G(yn), we can decompose ϕ̃p+1 = αu+ṽ and ψq+1 = βu+v
with ṽ and v vectors orthogonal to u and β 6= 0. Therefore

σp−q = α/β,

and ϕ̃p+1 − σp−qψq+1 = ṽ − (α/β)v. Now, since ϕ̃p+1 and ψq+1 are parallel if
and only if ṽ = (α/β)v = σp−qv, ϕ̃p+1−σp−qψq+1 vanishes if and only if ϕ̃p+1

and ψq+1 are parallel.

Notice that the above result depends neither on how the direction wn is
obtained nor on the order q (q < p). Then if we had an asymptotically correct
estimation of the direction of the leading error term ϕ̃p+1 of the solution of
order p, we could construct a projection method that provides a higher order
approximation.

On the other hand, the vectors must be parallel for all n, that is at
any step. This makes this property very dependent on the problem being
integrated and it is unlikely to find projectors that gain an order. A simple
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example of such a problem is the harmonic oscillator z′′ = −ω2z. It can be
expressed as the linear system of first order

y′ = ωJy, J =

(
0 1
−1 0

)
.

and it has the first integral G(y) = y21 + y22 = yTy, with y = (y1, y2)
T .

For this problem it is easy to see that all the elementary differentials
vanish except those corresponding to the one-branch trees, and they have
the form f ′ · · · f ′f(y). Therefore, for any Runge–Kutta method of order p
the vector ϕ̃p+1(yn) will be parallel to the vector yn if p is odd, and parallel
to the vector Jyn if p is even.

Then we have the following

Corollary 2.1. Let us consider a Runge–Kutta method of odd order p. For
the harmonic oscillator we have:

• The order of the simplified orthogonal projection is at least p+ 1.

• The order of the RK projected solution is at least p + 1 if and only if
the embedded method has order q odd (q < p).

Proof. The gradient of the invariant is ∇G(y) = 2yT . Therefore, if the non-
projected solution is ỹn+1, the direction vector for the simplified orthogonal
projection is ∇G(ỹn+1)

T = 2yn + O(h) which is asymptotically parallel to
the vector yn. Since p is odd, the vector ϕ̃p+1 is parallel to the vector yn, and
therefore the projected solution will have order at least p+ 1.

For a Runge–Kutta projection, based on a embedded formula, the vector
wn will be parallel to yn if q is odd and in this case the order of the projected
solution will be at least p+ 1.

However, if q is even, wn will be asymptotically parallel to Jyn, that is,
orthogonal to yn, which is the direction of ϕ̃p+1, and according to Theorem
2.1, the order of the projected solution is at most p. Notice that in this case,
the order p can not be guaranteed.

From Theorem 2.1 it is also seen that the leading term of the local error
of the projected approximation of order p depends only on the vector ϕ̃p+1

and the direction determined by ψq+1 and not on the magnitude of this last
vector. Notice that the vector coefficient of the leading term of the local error
is (ϕ̃p+1 − σp−qψq+1). But if we scale the vector ψq+1 by a factor k 6= 0, then
the scalar σp−q will be scaled by 1/k. Therefore, all the embedded methods
that give the same direction ψq+1 provide projected approximations with the
same leading term. This allows us to give the following

Theorem 2.2. All the RK projection methods based on a RK formula of
order p and an embedded formula of order q = 1, have the same leading
term of the local error, assumed that it has order p, but not (p + 1). If the
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embedded formula has order q > 1, there is at most an (r − 1)-parameter
family of projected methods with different leading terms of the local error, r
being the number of elementary differentials of order (q + 1).

Proof. If the embedded method has order q = 1,

ŷn+1 − ỹn+1 = −h
2

2
(1− 2 b̂T c)f ′f(yn) +O(h3).

Then, the vector ψ2 is always parallel to the elementary differential f ′f and
the leading term of the local error of the projected solution is always the
same.

If the embedded method has order q = 2 < p,

ŷn+1− ỹn+1 = −h
3

6

[
(1−3 b̂T c2)f ′′(f, f)(yn)+(1−6 b̂TAc)f ′f ′f(yn)

]
+O(h4).

In this case, the possible directions for the vector ψ3 are those obtained by
a linear combination of the two elementary differentials of order 3, that are
of the form f ′f ′f(yn) or f ′′(f, f)(yn) + γf ′f ′f(yn), with γ as free parameter.
The generalization for order q < p is straightforward.

3 RK projection methods for oscillatory prob-

lems

The harmonic oscillator is the simplest test problem when solving oscillatory
problems. From Corollary 2.1 we know that for RK projected methods ap-
plied to these linear equations, the order of the approximation is p + 1 if p
and q are odd. Next, we will see that the order can be higher if the embedded
formula is chosen appropriately.

For this class of problems it is usual to decompose the error of the numer-
ical methods in two parts: the dissipation and the dispersion errors. Thus,
we consider the complex scalar test equation

y′ = iωy, y(0) = y0 ∈ C,

where i =
√
−1, and ω is a real constant. The solution is the complex

exponential y(t) = y0e
iωt, and it has the invariant G(y) = |y|2.

The numerical solution provided by a RK method (A, b) satisfies

yn+1 = R(iν)yn, (6)

where ν = hω, and

R(iν) = 1 + iνbT (I − iνA)−1e,
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with e = (1, . . . , 1)T ∈ Rs. Thus, a comparison of (6) with y(tn+1) = eiνy(tn),
leads to decompose the error into the dispersion and dissipation errors, de-
fined [6, 17, 18] as the errors in phase and modulus respectively

φ(ν) := ν − arg(R(iν)) = ν − arctan

(
Im(R(iν))

Re(R(iν))

)
,

d(ν) := 1− |R(iν)|.

In addition, if the dispersion (resp. dissipation) error is O(νr+1), the RK
method is said to be dispersive (resp. dissipative) of order r. In the following,
to simplify calculations, we will refer to the dissipation error as d(ν) :=
1 − |R(iν)|2. This last definition is equivalent to the previous one in the
sense that it leads to the same dissipation order.

Let us suppose that we are using a RK formula of order p with stability

function R̃(z) as the main integrator and another scheme of order q < p with

stability function R̂(z). The projected method will have as stability function

R(z) = (1− λn)R̃(z) + λnR̂(z), where the coefficient λn is computed so that

|R(iν)|2 = |(1− λn)R̃(iν) + λnR̂(iν)|2 = 1, (7)

This implies that for any direction w, the projected method is zero dis-
sipative, and the error reduces to the dispersion error. Next, we will study
the order of projection methods based on the third order scheme of Bogacki
and Shampine.

3.1 Projection method based on Bogacki–Shampine RK
method

Let us take as basic method the 3-stage RK method of order 3 derived by

Bogacki and Shampine in [1], with coefficients (A, b̃T ). This is a well known
explicit RK formula used in the Matlab ODE suite package [24]. To get

the projected solution we have to choose the coefficients b̂i, i = 1, 2, of
ŷn+1, consistent RK method embedded to ỹn+1. Thus, the coefficients of this
embedded RK pair are given by the Butcher’s tableau:

c A

b̃T

b̂T

=

0

1/2 1/2

3/4 0 3/4

2/9 1/3 4/9

b̂1 b̂2 1− b̂1 − b̂2

(8)
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For the Bogacki–Shampine method,

R̃(z) = 1 + z +
z2

2
+
z3

6
, (z = iν),

φ̃(ν) = − 1

30
ν5 +

1

252
ν7 +O(ν9),

d̃(ν) =
1

12
ν4 − 1

36
ν6,

so it is dispersive of order 4 and dissipative of order 3.

3.1.1 Embedded formulas of order one

The 3-stage method ŷn+1 embedded to ỹn+1, has strict order one if −1+3b̂1+

b̂2 6= 0. In this case

R̂(z) = 1 + z +
1

4
(3− 3b̂1 − b̂2)z2 +

3

8
(1− b̂1 − b̂2)z3, (z = iν),

φ̂(ν) =
1

24
(−1 + 9b̂1 − 3b̂2)ν

3 +O(ν5),

d̂(ν) =
1

2
(1− 3b̂1 − b̂2)ν2 +

1

16
(3 + 6b̂1 − 9b̂21 − 6b̂2 − 6b̂1b̂2 − b̂22)ν4 −

9

64
(1− b̂1 − b̂2)2ν6.

Solving (7) in λn and taking the solution that gives rise to the lowest
dispersion error for the projected approximation yn+1 given in (5), we obtain:

φ(ν) =
19− 27b̂1 − 39b̂2

720(−1 + 3b̂1 + b̂2)
ν5 +O(ν7).

So, since −1 + 3b̂1 + b̂2 6= 0, the approximation yn+1 is dispersive of order
four, and this order is six if and only if

19− 27b̂1 − 39b̂2 = 0,

and in this case,

φ(ν) =
1

12600
ν7 +O(ν9).

We have therefore a one-parameter family of embedded methods of order
one that give a projected zero-dissipative solution of dispersion order six, and
consequently of order six for the linear test equation. Nevertheless, according
to Theorem 2.2, since q = 1, all these methods give projected solutions with
the same leading local error term for general problems. Consequently, all of
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them are asymptotically equivalent. Even more, for these embedded methods
the expansion of wn = ŷn+1 − ỹn+1 is

ŷn+1 − ỹn+1 = 5(2− 9b̂1)h
2f ′f(yn)/78 +

(2− 9b̂1)h
3
[
3f ′′(f, f)(yn) + 2f ′f ′f(yn)

]
/156 +O(h4)

and not only the direction of ψ2 is the same for all the methods of the family,
but also the direction of the vector ψ3.

3.1.2 Embedded formulas of order two

The 3-stage method ŷn+1 embedded to ỹn+1, has order two if −1+3b̂1+b̂2 = 0

and b̂1 6= 2/9. It results

R̂(z) = 1 + z +
1

2
z2 +

3

4
b̂1z

3, (z = iν),

φ̂(ν) =
1

12
(9b̂1 − 2)ν3 +O(ν5),

d̂(ν) =
1

4
(6b̂1 − 1)ν4 − 9

16
b̂21ν

6

Solving (7) in λn and taking the solution that gives rise to the lowest
dispersion error for the projected approximation yn+1, we obtain:

φ(ν) = − 1

24
ν3 +O(ν5).

So, the value yn+1 is dispersive of order 2. Note that in this case, the gradient
of the invariant ∇G(yn), and the vector wn are orthogonal, and this is the
reason why the projected approximation loses an order with respect to the
underlying RK scheme for the harmonic oscillator.

We have therefore a one-parameter family of embedded methods of order
two that give a projected solution of order three in general, but of order two
for the linear test equation. In addition, for these embedded methods the
expansion of wn = ŷn+1 − ỹn+1 is

ŷn+1 − ỹn+1 = (9b̂1 − 2)
[
f ′′(f, f)(yn) + 4f ′f ′f(yn)

]
h3/48 +O(h4)

and the direction of ψ3 is the same for all the methods of the family. Ac-
cording to Theorem 2.1, all these methods give the same leading term of the
local error for general problems. All of them are asymptotically equivalent.
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4 RK projection methods for general prob-

lems

For general problems we will consider, for small enough stepsize h, the fol-
lowing two criteria:

(C1) If ỹn+1 advances the phase with respect to y(tn+1; tn, yn), then ŷn+1

must delay it, and conversely.

(C2) g(ỹn+1) and g(ŷn+1) have opposite signs.

The idea is on one side to ensure the existence of the scalar parameter λn
in each step, since by (C2) there exists λn, 0 < λn < 1, such that g(yn+1) = 0.
On the other hand, (C1) together with (C2) may contribute to reduce the
global errors |y(tn)− yn| of the projected method.

We assume for ŷn+1 the consistence condition, so b̂ = (̂b1, b̂2, . . . , b̂s−1, 1−∑s−1
i=1 b̂i)

T , and we have s− 1 free parameters.
Note that for the linear test equation condition (C1) reduces to

φ̃(ν) φ̂(ν) < 0, (9)

for ν ∈ R small enough, whereas condition (C2) means

d̃(ν) d̂(ν) < 0. (10)

In relation with (C2), our first task is how to approximate g(ŷn+1). If
ỹn+1 and ŷn+1 have orders p and q, respectively, p > q, we can write

g(ŷn+1) = g(ỹn+1 + (ŷn+1 − ỹn+1))

= g(ỹn+1) +∇g(ỹn+1) · (ŷn+1 − ỹn+1) +O(h2(q+1)).

Since g(ỹn+1) = O(hp+1) and ∇g(ỹn+1) · (ŷn+1 − ỹn+1) = O(hq+1), the domi-
nant term in g(ŷn+1) is

∇g(ỹn+1) · (ŷn+1 − ỹn+1) = h
s∑
i=1

(̂bi − b̃i)∇g(ỹn+1) · gi = h
s∑
i=1

(̂bi − b̃i)ki,

where gi = f(yn + h
∑i−1

j=1 aijgj), i = 1, 2, . . . , s, are the stages of the embed-
ded pair, and we have introduced the scalars

ki = ∇g(ỹn+1) · gi, i = 1, . . . , s. (11)

Since g(ỹn+1) is known, we will approximate

g(ŷn+1) ≈ ĝ(ŷn+1) := g(ỹn+1) + h

s∑
i=1

(̂bi − b̃i)ki,
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and we will choose in each step appropriate coefficients b̂i so that

g(ỹn+1) ĝ(ŷn+1) < 0. (12)

Obviously, (C2) can be applied if g(ỹn+1) 6= 0. If g(ỹn+1) = 0, we do not
need to project and we will simply take yn+1 = ỹn+1. In addition, because of
the consistency of both methods, we have

s∑
i=1

(̂bi − b̃i)ki =
s−1∑
i=1

(ki − ks)̂bi +
s−1∑
i=1

(ks − ki)̃bi,

and so, if ki = kj ∀i 6= j, which is unlikely, then (C2) represented by (12)
does not make any sense since, in this case, ĝ(ŷn+1) = g(ỹn+1).

Regarding condition (C1), we must fix the meaning of “advance the
phase”. A possibility is to consider the angle formed by the vectors yn and
yn+1. We can say that the numerical solution advances the phase if it is
greater than the angle formed by yn and the local solution y(tn + h; tn, yn),
that is,

yTn yn+1

‖yn‖‖yn+1‖
>

yTn y(tn + h; tn, yn)

‖yn‖‖y(tn + h; tn, yn)‖
.

Assuming that ‖y(tn+1)‖ ' ‖yn+1‖, this condition can be approximated by

yTn (yn+1 − y(tn + h; tn, yn)) > 0

If we had a good estimation of the direction of the local error yn+1 − y(tn +
h; tn, yn), we could estimate the above condition, but in general, this is not
possible. In the following, we will consider the phase determined by the linear
test equation.

4.1 Projection method based on Bogacki–Shampine RK
method

In this section we will study how to get appropriate embedded RK methods

(A, b̂) with coefficients given in (8) according to the ideas exposed before.
For that purpose, in what follows we will assume that we are looking for
approximations ŷn+1 of order one, which are dispersive of order two and
dissipative of order one, according to section 3.1.1.

The next result establishes conditions to get approximations ŷn+1 satisfy-
ing (C1) for the harmonic oscillator, (C2) for general problems and such that
the projected method is zero dissipative with the highest dispersion order
possible.

Theorem 4.1. There exist embedded RK methods (A, b̂T ) given in (8), sat-
isfying (9), (10) and (12), such that the projected solution yn+1 obtained
according to (5) has order 6 for the harmonic oscillator, if and only if
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sign g(ỹn+1) = −sign(13k1 − 9k2 − 4k3),

with ki, i = 1, 2, 3 given in (11). In such a case, the coefficients of the
embedded methods must satisfy

b̂1 >
2

9
− 13g(ỹn+1)

h(13k1 − 9k2 − 4k3)
, b̂2 =

19

39
− 9

13
b̂1.

Proof. Let ŷn+1 be the approximation provided by the embedded method.

From section 3.1.1 we know that, if ŷn+1 has order one, i.e., −1+3b̂1+ b̂2 6= 0,
the projected solution is dispersive of order 6 if and only if

19− 27b̂1 − 39b̂2 = 0,

that is,

b̂2 =
19

39
− 9

13
b̂1, (13)

and, under this condition, (9)–(10) are equivalent to

b̂1 >
2

9
. (14)

After substituting the value for b̂2 obtained in (13) and the coefficients b̃i,
i = 1, 2, 3, into ĝ(ŷn+1), it is obtained that

ĝ(ŷn+1) = g(ỹn+1) +
h

117
(9b̂1 − 2)(13k1 − 9k2 − 4k3),

where 9b̂1−2 > 0. Then, if either 13k1−9k2−4k3 = 0 or else sign g(ỹn+1) =
sign (13k1 − 9k2 − 4k3), it is clear that (12) is not satisfied. Otherwise, i.e.

if sign g(ỹn+1) = −sign (13k1 − 9k2 − 4k3), the values for b̂1 satisfying (12)
are given by

b̂1 >
2

9
− 13g(ỹn+1)

h(13k1 − 9k2 − 4k3)
>

2

9
,

which completes the proof.

In particular, if k1 = k2 = k3 and so, condition (12) can not be satisfied,

we will choose the coefficients b̂1, b̂2 according to (13) and (14), i.e. satisfying
the rest of conditions imposed in the previous theorem.

Theorem 4.1 shows that it is not always possible to find ŷn+1 satisfying
all the conditions imposed there. Next, we are going to weaken them so that
the attainment of appropriate approximations ŷn+1 is always assured. Thus,
concerning the criterium (C2), and more specifically, the condition (12), we
have
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Theorem 4.2. The RK method (A, b̂T ) whose coefficients are given in (8),
satisfies (12) if and only if one of these four situations holds:

a) {
sign g(ỹn+1) = sign (k2 − k3),
b̂1 arbitrary, b̂2 < α(̂b1),

b) {
sign g(ỹn+1) = −sign(k2 − k3),
b̂1 arbitrary, b̂2 > α(̂b1),

c) {
k2 = k3, sign g(ỹn+1) = sign(k1 − k3),
b̂1 < β, b̂2 arbitrary,

d) {
k2 = k3, sign g(ỹn+1) = −sign(k1 − k3),
b̂1 > β, b̂2 arbitrary,

where ki, i = 1, 2, 3 are given in (11), and

α(̂b1) =
k3 − k1
k2 − k3

b̂1 +
2k1 + 3k2 − 5k3

9(k2 − k3)
− g(ỹn+1)

h(k2 − k3)
, (k2 6= k3),

β =
2

9
− g(ỹn+1)

h(k1 − k3)
, (k1 6= k3).

(15)

Proof. The substitution of the coefficients b̃i, i = 1, 2, 3, according to (8) into
ĝ(ŷn+1) gives rise to

ĝ(ŷn+1) = g(ỹn+1) + h
[
(k1 − k3)̂b1 + (k2 − k3)̂b2 −

2k1 + 3k2 − 5k3
9

]
.

If k1 = k2 = k3, then clearly (12) is not satisfied. Otherwise, ĝ(ŷn+1) < 0
is equivalent to 

b̂2 < α(̂b1), if k2 − k3 > 0;

b̂2 > α(̂b1), if k2 − k3 < 0;

b̂1 < β, if k2 = k3 & k1 − k3 > 0;

b̂1 > β, if k2 = k3 & k1 − k3 < 0;

14



and ĝ(ŷn+1) > 0 is equivalent to
b̂2 < α(̂b1), if k2 − k3 < 0;

b̂2 > α(̂b1), if k2 − k3 > 0;

b̂1 < β, if k2 = k3 & k1 − k3 < 0;

b̂1 > β, if k2 = k3 & k1 − k3 > 0;

The proof follows from the above inequalities.

Therefore, for the embedded RK pair constructed from the Bogacki–
Shampine method, if (C2) can be applied, i.e. if g(ỹn+1) 6= 0, there always

exist coefficients b̂1, b̂2 satisfying (12) unless k1 = k2 = k3, in which case (12)
does not make any sense as commented before.

Next, we will study when the combination of the criterium (C1) for the
harmonic oscillator and (C2) is possible.

Theorem 4.3. The RK method ŷn+1 with coefficients (A, b̂T ) given in (8)
satisfies (9) and also (12) if and only if one of these four situations happens:

a)  sign g(ỹn+1) = sign(k2 − k3),

b̂1 arbitrary, b̂2 < min
{
− 1

3
+ 3b̂1, α(̂b1)

}
.

b) 
sign g(ỹn+1) = −sign(k2 − k3),

b̂1

{
< γ, if sign (k2 − k3)=−sign (k1 + 3k2 − 4k3),
> γ, if sign (k2 − k3)=sign (k1 + 3k2 − 4k3),

b̂2 3 α(̂b1) < b̂2 < −
1

3
+ 3b̂1.

c) 
k2 = k3, sign g(ỹn+1) = sign(k1 − k3),

b̂2 < −
1

3
+ 3β, b̂1 3

1

9
+
b̂2
3
< b̂1 < β.

d) 
k2 = k3, sign g(ỹn+1) = −sign(k1 − k3),

b̂2 arbitrary, b̂1 > max{β, 1

9
+
b̂2
3
}.

15



where ki, i = 1, 2, 3 are given in (11), α(̂b1) and β in (15) and

γ =
2

9
− g(ỹn+1)

h(k1 + 3k2 − 4k3)
, (k1 + 3k2 − 4k3 6= 0).

Proof. Taking into account the principal term of the dispersion error φ̃(ν)

and φ̂(ν), condition (9) is equivalent to

−1 + 9b̂1 − 3b̂2 > 0. (16)

Item a) is a direct consequence of (16) and item a) in Theorem 4.2. Condition

(16) together with item b) in Theorem 4.2 lead to coefficients b̂1, b̂2 satisfying

α(̂b1) < b̂2 < −
1

3
+ 3b̂1.

In particular, b̂1 must be such that α(̂b1) < −1
3

+ 3b̂1, which is equivalent to

k1 + 3k2 − 4k3
k2 − k3

b̂1 >
2(k1 + 3k2 − 4k3)

9(k2 − k3)
− g(ỹn+1)

h(k2 − k3)
.

Here, k1 + 3k2 − 4k3 6= 0, since otherwise the above expression would be

equivalent to g(ỹn+1)
k2−k3 > 0, which is not true in this case. So, from that

expression we obtain item b).

Condition (16) and the restriction for b̂1 in item c) in Theorem 4.2 conduce
to

1

9
+
b̂2
3
< b̂1 < β,

and so we have the actual item c). Finally, it is clear that (16) together with
item d) in Theorem 4.2 give rise to item d) in the present Theorem.

Therefore, if (C2) can be applied (i.e. g(ỹn+1) 6= 0) and its application
from (12) makes sense (i.e. k1 = k2 = k3 does not happen), we have proved

that there always exist coefficients b̂1, b̂2 for the RK method ŷn+1 given in
(8) satisfying both criteria (C1) and (C2), unless in this case:

sign g(ỹn+1) = −sign (k2 − k3), (k2 6= k3), k1 + 3k2 − 4k3 = 0.

If these two conditions are satisfied, which is quite unlikely, we wonder if

there exist coefficients b̂1, b̂2 of ŷn+1, dispersive of order 2, satisfying

φ̃(ν)φ̂(ν) > 0, (ν → 0), (17)

g(ỹn+1)ĝ(ŷn+1) > 0. (18)
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From (17) we obtain b̂2 > −1
3

+ 3b̂1. After substituting k1 = 4k3 − 3k2 into
ĝ(ŷn+1), we have

ĝ(ŷn+1) = g(ỹn+1) + h(k2 − k3)
(
− 3b̂1 + b̂2 +

1

3

)
,

and since sign g(ỹn+1) = −sign (k2 − k3), condition (18) conduces to

b̂2 < 3b̂1 −
1

3
− g(ỹn+1)

h(k2 − k3)
.

Therefore, b̂2 must be such that

−1

3
+ 3b̂1 < b̂2 < 3b̂1 −

1

3
− g(ỹn+1)

h(k2 − k3)
.

There is no restriction now for b̂1.
In practice, if a parameter is lower (resp. greater) than a given value,

e.g. b̂1 < γ (resp. b̂1 > γ), we will take b̂1 = γ − ε (resp. b̂1 = γ + ε) for
some ε > 0. In addition, if a parameter must be between two given values,
we will take it as the average of both values. Thus, taking into account the
previous results, we are going to give an algorithm to obtain in each step an
appropriate approximation ŷn+1 embedded to the Bogacki–Shampine method
ỹn+1. The algorithm procedes as follows:

Algorithm to obtain b̂1 and b̂2 in (8)

1. If g(ỹn+1) = 0, then we do not project, and we take yn+1 = ỹn+1.

2. If k1 = k2 = k3, then:

b̂1 =
2

9
+ ε, b̂2 =

19

39
− 9

13
b̂1.

3. Else if sign g(ỹn+1) = −sign(13k1 − 9k2 − 4k3), then:

b̂1 =
2

9
− 13g(ỹn+1)

h(13k1 − 9k2 − 4k3)
+ ε, b̂2 =

19

39
− 9

13
b̂1.

We have in this case a projection method that satisfies (9), (10) and
(12), and it has order 6 for the harmonic oscillator.

4. Else if sign g(ỹn+1) = sign (k2 − k3), then:

b̂1 arbitrary, b̂2 = min
{
− 1

3
+ 3b̂1, α(̂b1)

}
− ε.
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5. Else if sign g(ỹn+1) = −sign(k2 − k3) = sign (k1 + 3k2 − 4k3), then:

b̂1 = γ − ε, b̂2 =
α(̂b1)

2
− 1

6
+

3

2
b̂1.

6. Else if sign g(ỹn+1) = −sign(k2 − k3) = −sign (k1 + 3k2 − 4k3), then:

b̂1 = γ + ε, b̂2 =
α(̂b1)

2
− 1

6
+

3

2
b̂1.

7. Else if (k2 = k3) and sign g(ỹn+1) = sign(k1 − k3), then:

b̂2 = −1

3
+ 3β − ε, b̂1 = β − ε

6
.

8. Else if (k2 = k3) and sign g(ỹn+1) = −sign(k1 − k3), then:

b̂2 arbitrary, b̂1 = max
{
β,

1

9
+
b̂2
3

}
+ ε.

9. Else if (k1 + 3k2 − 4k3 = 0) and sign g(ỹn+1) = −sign(k2 − k3), then:

b̂1 arbitrary, b̂2 = −1

3
+ 3b̂1 −

g(ỹn+1)

2h(k2 − k3)
.

Once obtained ŷn+1, we will obtain the direction of the projection (4),
and then, we will calculate the projected approximation yn+1 according to
(3).

5 Numerical experiments

In this section, we are going to check the behaviour of the numerical method
obtained in this paper projecting the 3rd-order Bogacki and Shampine RK
method. We will apply it, together with the non projected method and the
simplified standard projection, to some test problems. Thus:

• BS3 will denote the 3-stage 3rd-order RK method derived by Bogacki

and Shampine, whose coefficients (A, b̃T ) are given in (8).

• pstBS3 will represent the projection method (3) obtained from the
numerical solution ỹn+1 provided by BS3 by using simplified standard
projection [16], which takes wn = ∇g(ỹn+1) as direction vector.
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• pBS3 will denote the projection method (3) obtained from BS3 by
following the results obtained in this paper. The direction of the pro-
jection wn is taken according to (4), where the coefficients of the RK
method ŷn+1, embedded to ỹn+1, are calculated following the algorithm
listed in the previous section. The free parameters in that algorithm
have been taken equal to zero, and ε = 0.1.

We have implemented these three methods with fixed step size. For the
projection methods, the real parameter λn in (3) has been calculated by
applying Newton iteration to the non linear equation

g(ỹn+1 + λnwn) = 0,

where g(y) := G(y) − G(y0), and G(y) is a first integral of the differential
system. All the figures in this paper are represented in a log-log scale.

First of all, we consider the harmonic oscillator, with frequency ω = 1,
to show numerically that, according to sections 3.1.1 and 3.1.2, the method
obtained projecting BS3 has order 6 or order 2 depending on the order of
the embedded method is q = 1 or q = 2, respectively. We have taken as
coefficients of the embedded method of order q = 1 those given in item 3 of
the algorithm described in section 4, and we have integrated the problem in
the interval [0, 624]. For the embedded method of order q = 2, we have taken

b̂1 = 0 and b̂2 = 1. Figure 1 shows clearly that the non projected method BS3
has order 3, whereas the projection pstBS3 has order 4, in agreement with
the results in Corollary 2.1. On the other side, when the embedded method
of order q = 2 is used in the projection, only order 2 is obtained, whereas
the projection based on the first order embedded method attains order 6, as
expected. Straight reference lines with slopes 6, 4, 3 and 2 have been drawn
to make clear these results.

Next, we consider the Euler problem, which describes the evolution in
time of the angular momentum y = (y1, y2, y3)

T of a free rigid body (see e.g.
[16, pp. 95]):

d

dt

 y1
y2
y3

 =

 0 c3y3 −c2y2
−c3y3 0 c1y1
c2y2 −c1y1 0

  y1
y2
y3

 , (19)

where c−1j = Ij > 0, j = 1, 2, 3, are the principal momenta of inertia. This is
a Poisson system which has two first integrals{

E(y) = (c1y
2
1 + c2y

2
2 + c3y

2
3)/2 (Kinetic energy),

L(y)2 = y21 + y22 + y23 (Modulus of angular momentum).
(20)

By supposing that c1 > c2 > c3, and given an initial value y(0) = y0,
the system (19) has a periodic solution with period T depending on the two
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Figure 1: Harmonic oscillator, global error against step size, log-log scale

quadratic first integrals (20). More precisely, it is given by the elliptic integral

T =
4

δ
K(k) =

4

δ

∫ π/2

0

dt√
1− k2 sin2 t

, (21)

with

k2 =
(c1 − c2)

(
2E(y0)− c3L(y0)

2
)

(c2 − c3)
(
c1L(y0)2 − 2E(y0)

) < 1,

δ =
[
(c2 − c3)

(
c1L(y0)

2 − 2E(y0)
)]1/2

.

In our numerical experiments we haven taken c1 = 1/0.345, c2 = 1/0.653,
c3 = 1, which correspond to the water molecule, as considered in [13] and
[25], together with the initial conditions y(0) = (0.5, 0.2,

√
1− 0.52 − 0.22).

We have applied the projection techniques for this problem so that the
function period given in (21) is preserved by the numerical solution. Figure 2
shows the global error obtained integrating over the interval [0, 1208] against
the step size for the Euler equations. Clearly, the two projection methods
perform better than the basic formula BS3, being our new method pBS3 the
most efficient of the three compared methods. It can be observed that, even
though it has order three, it behaves as a 4th-order method, whereas the other
two methods behave, as expected, as 3rd-order methods. Straight dash-dot
lines with slopes 4 and 3 have been drawn there to show that behaviour.
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Our last test problem is the non forced Duffing equation [16]:

y′′(t) + ω2y(t) = ky(t)3, k > 0.

The energy function

H(y, y′) = ω2y2 + y′2 − ky4/2,

is a first integral of this system, and we will only consider periodic solutions.
For this case, it is known that the period depends only on the energy H. For
a periodic motion, we solve for the smallest values in absolute value on the
trajectory with y′ = 0, i. e., H(y, 0) = cte., obtaining y+ > 0 and y− = −y+,
and the expression for the period is given by

T = 2

∫ y+

y−

1√
2(H − ω2u2/2 + ku4/4)

du.

In our numerical experiments we have taken the initial conditions y(0) = 0

and y′(0) = ω̂ =
√
ω2 − k/2, with the parameters w = 5, k = 0.1 and an

integration interval [0, 125]. With these values, the period is

T = 8

√
5

499
elK

(
1

499

)
= 1.258526506204981 . . . ,
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where elK(m) is the complete elliptic integral of the first kind. For this
problem, projections have been done preserving this first integral H.

Figure 3 shows the superior efficiency of the projected methods with re-
spect to the basic formula from which they come from. It can be observed in
the figure that the projected methods perform as 4th-order methods for this
problem. As in previous figures, discontinuous straight lines with slopes 3
and 4 have been drawn to make clear the order of the studied methods. The
best behaviour corresponds again to our projected method pBS3 that pro-
vides a much smaller global error, due to its special properties for oscillatory
problems.
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Figure 3: Duffing equation, global error against step size, log-log scale

6 Conclusions

In this paper we have analyzed the properties of the projections techniques
in connection with Runge-Kutta methods when the direction of projection is
obtained from suitable embedded Runge-Kutta schemes. We have obtained
conditions on the projection so that the projected approximation attains
higher order than the non projected solution. We have proved that by choos-
ing properly the embedded formulae, the order can be highly increased for the
harmonic oscillator. We have also given some criteria to select the embedded
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scheme for general, non linear, problems and we have obtained particular
projections for the third order method of Bogacki and Shampine. We have
finally shown by means of several numerical experiments that the new pro-
posed projection techniques are much more efficient than the standard, non
projected schemes, and even than the orthogonal projection, mainly when
problems with oscillatory behaviour are integrated.
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