000069462 001__ 69462
000069462 005__ 20210820090342.0
000069462 0247_ $$2doi$$a10.3390/mi9020060
000069462 0248_ $$2sideral$$a104605
000069462 037__ $$aART-2018-104605
000069462 041__ $$aeng
000069462 100__ $$0(orcid)0000-0003-2660-3726$$aLafuente, M.
000069462 245__ $$a3D fractals as SERS active platforms: Preparation and evaluation for gas phase detection of G-nerve agents
000069462 260__ $$c2018
000069462 5060_ $$aAccess copy available to the general public$$fUnrestricted
000069462 5203_ $$aOne of the main limitations of the technique surface-enhanced Raman scattering (SERS) for chemical detection relies on the homogeneity, reproducibility and reusability of the substrates. In this work, SERS active platforms based on 3D-fractal microstructures is developed by combining corner lithography and anisotropic wet etching of silicon, to extend the SERS-active area into 3D, with electrostatically driven Au@citrate nanoparticles (NPs) assembly, to ensure homogeneous coating of SERS active NPs over the entire microstructured platforms. Strong SERS intensities are achieved using 3D-fractal structures compared to 2D-planar structures; leading to SERS enhancement factors for R6G superior than those merely predicted by the enlarged area effect. The SERS performance of Au monolayer-over-mirror configuration is demonstrated for the label-free real-time gas phase detection of 1.2 ppmV of dimethyl methylphosphonate (DMMP), a common surrogate of G-nerve agents. Thanks to the hot spot accumulation on the corners and tips of the 3D-fractal microstructures, the main vibrational modes of DMMP are clearly identified underlying the spectral selectivity of the SERS technique. The Raman acquisition conditions for SERS detection in gas phase have to be carefully chosen to avoid photo-thermal effects on the irradiated area.
000069462 536__ $$9info:eu-repo/grantAgreement/ES/ISCIII/CIBER-BBN$$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2013-49068-C2-1-R$$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2016-79419-R
000069462 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000069462 590__ $$a2.426$$b2018
000069462 591__ $$aINSTRUMENTS & INSTRUMENTATION$$b25 / 61 = 0.41$$c2018$$dQ2$$eT2
000069462 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b55 / 94 = 0.585$$c2018$$dQ3$$eT2
000069462 592__ $$a0.536$$b2018
000069462 593__ $$aControl and Systems Engineering$$c2018$$dQ2
000069462 593__ $$aMechanical Engineering$$c2018$$dQ2
000069462 593__ $$aElectrical and Electronic Engineering$$c2018$$dQ2
000069462 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000069462 700__ $$aBerenschot, E.J.W.
000069462 700__ $$aTiggelaar, R.M.
000069462 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000069462 700__ $$aTas, N.R.
000069462 700__ $$0(orcid)0000-0001-9897-6527$$aPina, M.P.$$uUniversidad de Zaragoza
000069462 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000069462 773__ $$g9, 2 (2018), 60 [14 pp]$$pMicromachines (Basel)$$tMICROMACHINES$$x2072-666X
000069462 8564_ $$s1173948$$uhttps://zaguan.unizar.es/record/69462/files/texto_completo.pdf$$yVersión publicada
000069462 8564_ $$s103441$$uhttps://zaguan.unizar.es/record/69462/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000069462 909CO $$ooai:zaguan.unizar.es:69462$$particulos$$pdriver
000069462 951__ $$a2021-08-20-08:35:57
000069462 980__ $$aARTICLE