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Quver the course of the years
there is just one thing to fear,
a fragile courage without will

proclaiming terror as its king.

A lo largo de la vida
hay tan solo que temer
a una fragil valentia

que convierta al miedo en rey.

David Arnas
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Introduction

The use of satellites provide countless possibilities including a great variety of missions such as
Earth and space observation, telecommunications or global positioning systems. Moreover, many
missions require multiple satellites working cooperatively to achieve a common mission, that is, a
satellite constellation. In that sense, in the last years an increasing number of space missions have
benefit from the advantages that satellite constellations provide, such as the improvement on the
performance of the system, or the reduction of the costs associated with the mission. Examples
of such missions are GPS, Galileo, Glonass, Iridium, A-train [1] or X-Tandem [2]. However, the
simultaneous study of multiple satellites, and more importantly, the relations that appear in the
internal structure of the constellation, increases the complexity of the problem to solve, but it also
enhances the use of the available satellites, and the ability to expand the possibilities of design at
our disposal.

Satellite constellation design has been since its beginning a process that required a high number
of iterations due to the lack of established models for the generation and study of constellations.
This situation resulted in the necessity of specific studies for each particular mission, being unable
of extrapolate the results from one mission to another.

Fortunately, in the last decades, several satellite constellation design methodologies have appeared,
such as Walker Constellations [3] for circular orbits or the design of Draim [4] for elliptic orbits.
Later, in 2004, Mortari introduced the Flower Constellation Theory [5, 6, 7], which includes in its
formulation both circular and elliptic orbits, and contains the former designs of Walker and Draim.
The theory was later improved by Avendanio and Davis in the 2D Lattice [8] and 3D Lattice [9]
theories which simplifies the formulation and makes the configuration independent of any reference
frame. Other more recent examples of satellite constellation design include the Helix constellation [2]
for very safe formation flying, polar constellations for discontinuous coverage [10] or the definition
of constellations in clusters [11].

However, although being an interesting subject both academically and from the point of view of the
industry, satellite constellation design has not been treated extensively in the literature. This has
been caused, in most cases, by the high inversion required to position constellations with a large
number of satellites in orbit. Nevertheless, this is a situation that is highly probable to change in the
short term due to the interest of an increasing number of companies to position large constellations
in orbit, with missions for Earth observation and telecommunications. Additionally, each passing
year, more and more universities, research centers and companies are beginning to launch their first
missions using the concept of micro and nano satellites. This kind of mission allows to deploy small
spacecrafts requiring a very low budget, which has widen the possibilities of the use of the space
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for scientific and commercial purposes. For these reasons, the advancement in satellite constellation
design can be a key factor in this near future, allowing to reduce the costs of future missions and
simplify the design process.

In that regard, and compared to other satellite constellation designs, Flower Constellations have
had a more in depth treatment from very different perspectives. This includes the study of the
relations that appeared in the configuration of the constellation [12, 13|, the application of Flower
Constellations to global positioning [14], or the evaluation and design of this constellations under
orbital perturbations and its posterior station keeping [15, 16].

As a whole, Flower Constellations present very interesting properties. First of all, they can be
defined in any rotating frame of reference. This can seem a very simple statement, but, in reality
it leads to a lot of freedom in the design of constellations, being able to take advantage of the
configuration that the constellation presents in one reference frame and applied it to the design
of the constellation. An example of this is the ability to generate constellations where there is no
possible collision between the satellites. This can be easily done by finding a reference frame in
which the track of the satellites has no intersections. However, for many applications, the Earth
Fixed is considered due to its advantages for many missions, specially for Earth observation. In
this reference system, the resultant orbits acquire a shape that reminds the one of the petals of a
flower, which is the reason why these constellations take their name.

Other extremely important property of Flower Constellations is the uniformity of the distribution.
That way, and with the introduction of Lattice Flower Constellations, a general methodology was
presented for the generation of all possible uniform distributions that a set of satellites can acquire.
In fact, this uniform distributions introduce a new element in design: the existence of inherent
structures in the constellation that are maintained over time, a property that is interesting for
Earth observation and telecommunications. These structures are caused by the high number of
symmetries that the constellations present, which is also one of the primary characteristics of the
Lattice Flower Constellation theory.

Lattice Flower Constellations have deep foundations in Number Theory, that is, the relations that
appear between integer numbers. This, at first glance, may seem an unnatural manner to perform
distribution in a real space, the orbits. However, this is far for true. The reality is that since we
have an integer number of satellites that is positioned in an integer number of orbits, these integer
relations appear naturally, which makes the Lattice Flower constellations the proper tool to deal
with the problem of satellite distribution.

However, in a Lattice Flower Constellation, the possible configurations that the theory provides is
proportional to the number of satellites in the constellation, and thus, it imposes a great limitation
in the design of small constellations. In order to solve this limitation, Casanova introduced the
concept of necklace for the 2D Lattice formulation [17, 18] where the condition for maintaining the
uniformity and symmetries of the configurations was presented. A necklace is just the selection of
a subset of elements from a set of available positions. This modification of the theory allowed to
expand the possibilities of design of Lattice Flower Constellations. However, necklaces were not
included directly in the formulation of the constellation and its computation was difficult to handle
in a computer. This resulted in the impossibility to automatize the computation of the different
configurations, and the requirement to calculate all the available positions instead of just the real
locations of the satellites. Thus, a new design framework was required to solve these difficulties.
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In that respect, and in order to solve all these previous difficulties, this work introduces the
Necklace Flower Constellation Theory. This new design framework constitutes the generalization
of the methodology presented in 2D Lattice Flower Constellations using necklaces [17, 18] and the
Lattice Flower Constellations themselves, and includes in its definition all the former Lattice Flower
Constellations. This methodology allows to define constellations based on a fictitious constellation
that has the only purpose to increase the configuration space in which we can search for uniform and
symmetric distributions. In addition, and contrary to what happened in previous works, necklaces
are part of the formulation, which allows to expand the fictitious constellation as much as we desire
since we are not longer require to compute the positions of all the fictitious satellites. This provides
a powerful tool for optimization problems, since it speeds the process significantly [19, 20, 21].
Furthermore, The Necklace Flower Constellations theory not only allows to generate uniform
distributions in an early design of the constellation, but also allows the study of other problems of
great interest in celestial mechanics. Examples of that are the sequence of launches for constellation
building, or the determination of the possible reconfigurations available in case of failure of some
satellites of the distribution.

Unfortunately, Lattice and Necklace Flower Constellations perform their design in the inertial frame
of reference, not providing a clear process to control their design in the Earth Fixed frame of
reference. This is an issue in some missions, especially Earth observation, telecommunications and
global positioning, since having control of the design in the Earth Fixed frame of reference is, in
many cases, of great importance. Thus, in order to overcome this problem, the Ground-Track
Constellations are introduced in addition to the Flower Constellation methodology.

Ground-Track Constellations [22, 23] are a new methodology of design where the distribution of the
constellation is performed directly in the Earth Fixed frame of reference (although it can be in any
other reference system). In particular, the constellation is distributed in a set of previously defined
ground-tracks that contain the satellites of the constellation at a given instant. Moreover, instead
of using classical elements to define the constellation, time is selected as the distribution parameter,
providing a simple manner to define the time of pass between two satellites over particular regions
of the Earth. Thus, Ground-Track Constellations provide an alternative design methodology that
complements the Flower Constellation theory.

On the other hand, and in order to improve the long term maintenance of the constellation defined,
an alternative definition of Ground-Track Constellations is presented, which allows to include the
effects of orbital perturbations directly in the definition of the constellation. In particular, all
orbital parameters must be modified in the initial design of the orbit to minimize the effect of
orbital perturbations [24, 25, 26, 27, 28]. However, since the along track and across track distance
between satellites is selected as design parameter, the definition and the study of the evolution of
the constellation structure is simplified. In that respect, a general methodology to define repeating
ground-track constellations under perturbations is presented. This methodology allows to improve
the maintenance of the structure of the constellation and is especially devised for the use alongside
the Ground-Track Constellations methodology.

This work is structured as follows. The first chapter includes an introduction to celestial mechanics
and the orbital parameters. Then, a summary of the 2D and 3D Lattice Flower Constellation
theory is presented, showing an example of application for each formulation. Once this introduction
is done, the concept of necklace is introduced and with it, the 2D Lattice Flower Constellations
using necklaces. The chapter finishes with the description of Burnside’s lemma which is used in
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some parts of this work for counting the number of possibilities of design that the Necklace Flower
Constellations can create.

The second chapter focuses on the study of the 2D Necklace Flower Constellations, a generalization
of the 2D Lattice Flower Constellations using necklaces. This chapter includes the complete
formulation of this design methodology as well as a set of theorems that allows to count the number
of different possibilities of design that the 2D Necklace Flower Constellations provide.

The third chapter includes the 3D Necklace Flower Constellations, which is a generalization of all
the previous Lattice Flower Constellations. This chapter also introduces the concept of generating
necklaces in several variables at the same time and how they affect to the distribution generated.

The forth chapter first introduces the 4D Lattice Flower Constellations, a generalization of the
2D and 3D Lattice Flower Constellations where the semi-major axis of the orbits is included as a
distribution parameter for the constellation. As it will be seen, the inclusion of the semi-major axis
as a variable has deeper implications in the constellation design. Then, the 4D Necklace Flower
Constellations is presented as the furthermost generalization of the Lattice and Necklace Flower
Constellations theory.

The fifth chapter presents the n-dimensional congruent lattices using necklaces. This methodology
allows to generate uniform and congruent distribution in a n-dimensional space subjected to modular
arithmetic in all its variables. This theory represents the foundations in which the Lattice and
Necklace Flower Constellations are based. In that respect, the chapter includes the proof of
existence and uniqueness of the distributions obtained, providing the constraints in the parameters
of distribution that allows to avoid duplicities in the design. Moreover, the theory includes counting
theorems for the most interesting cases of study of this kind of distributions.

The sixth chapter deals with the alternative formulation of the Ground-Track Constellations. This
design methodology allows to define constellations in a given number of ground-tracks, each one
with a set of satellites. In particular, two definitions of this methodology are presented, one devised
for a keplerian formulation and the other for a perturbed motion of the constellation. In addition,
several examples of this new design technique are presented in order to show in a clearer way the
methodology and also provide examples of design possibilities.

The seventh chapter includes a general and simple methodology for the design of repeating ground-
track constellations under the effects of orbital perturbations. In that regard, the Earth gravitational
potential is treated with special interest, since it is the most important perturbation for the majority
of Earth space missions. This methodology is specially useful when dealing with constellations
defined with the Ground-Track Constellations methodology.

The eighth and final chapter introduces the formulation to transform 2D Necklace Flower
Constellations into Ground-Track Constellations. This allows to perform the constellation design
using the two formulations at the same time, providing information of the distribution in both
the inertial and Earth Fixed frames of reference. Additionally, this chapter includes a complete
example of satellite constellation design based on three different payloads, which allows to show the
possibilities and potential that the theory presented in this work provides. This example includes
the definition of the nominal orbits of the constellation, two possible launching strategies and the
control strategy for the mission.



Introduccion

El uso de satélites proporciona un nimero incontable de posibilidades que incluyen una gran variedad
de misiones, como la observaciéon de la Tierra y el espacio, las telecomunicaciones o los sistemas
de posicionamiento global. Ademés, muchas misiones requieren de varios satélites trabajando
conjuntamente para alcanzar una misién comun, esto es, una constelaciéon de satélites. En ese
sentido, en los ultimos anos, un ntmero creciente de misiones espaciales se han beneficiado de las
ventajas que las constelaciones de satélites proporcionan, tales como la mejora del comportamiento
del sistema, o la reduccién de los costes asociados con la misién. Ejemplos de estas misiones son
GPS, Galileo, Glonass, Iridium, A-train [1] o X-Tandem [2]. Sin embargo, el estudio simultdneo de
multiples satélites, y de forma més importante, las relaciones que aparecen en la estructura interna
de la constelacién, aumenta la complejidad del problema tratado, aunque también permite un mejor
aprovechamiento de los satélites disponibles, y la habilidad de expandir las posibilidades de disefio
a nuestro alcance.

El diseno de constelaciones de satélites ha sido desde sus inicios un proceso que requeria un gran
numero de iteraciones debido a la falta de modelos establecidos para la generaciéon y estudio de
constelaciones. Esta situacién generaba la necesidad de estudios especificos para cada misién
particular, no pudiendo extrapolar los resultados de una misién a otra.

Afortunadamente, en las tultimas décadas, han aparecido varias metodologias de diseno de
constelaciones, tales como las Walker Constellations [3] para orbitas circulares, o el disenio de
Draim [4] para Orbitas elipticas. Mads tarde, en 2004, Mortari presenté la teorfa de las Flower
Constellations [5, 6, 7] que inclufa en su formulacién tanto 6rbitas circulares y elipticas, y que
contenia los anteriores disefios de Walker y Draim. La teoria fue posteriormente mejorada por
Avendano y Davis con las teorfas de las 2D Lattice [8] y 3D Lattice [9], que simplificaron la
formulaciéon e hicieron la configuraciéon independiente de ningun sistema de referencia. Otros
ejemplos mds recientes de disefio de constelaciones de satélites incluyen la constelacién tipo Helix [2]
para formaciones de vuelo muy seguras, constelaciones polares para cobertura discontinua [10], o la
definicién de constelaciones en cimulos [11].

Sin embargo, aunque el tema es interesante desde un punto de vista académico e industrial, el diseno
de constelaciones de satélites no ha sido tratado extensamente en la literatura. Esto ha sido debido
en muchos casos a la gran inversién requerida para inyectar constelaciones con un gran nimero de
satélites en 6rbita. No obstante, esta situacién tiene una gran probabilidad de cambio a corto plazo
dado el interés de un creciente niimero de empresas de posicionar grandes constelaciones en érbita,
con misiones para la observacién de la Tierra y las telecomunicaciones. Ademas, cada ano que pasa,
un mayor numero de universidades, centros de investigacién y companias estan empezando a lanzar
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sus primeras misiones utilizando los conceptos de micro y nano satélites. Este tipo de misiones
permite el despliegue de pequenos satélites los cuales tienen unos costes muy reducidos, lo que ha
incrementado las posibilidades de uso del espacio para fines cientificos y comerciales. Por estas
ragones, el avance en el diseno de constelaciones puede ser un factor de gran importancia en este
futuro cercano, consiguiendo reducir los costes de las futuras misiones y simplificando el proceso de
diseno.

En este sentido, y comparado con otros disenos de constelaciones de satélites, las Flower
Constellations han tenido un tratamiento mas exhaustivo desde muy diferentes perspectivas. Esto
incluye el estudio de las relaciones que aparecen en la configuracién de la constelacién [12, 13], la
aplicacién de las Flower Constellations para posicionamiento global [14], o la evaluacién y disefio
de estas constelaciones bajo perturbaciones orbitales y su posteior mantenimiento [15, 16].

En su conjunto, las Flower Constellations presentan propiedades muy interesantes. Primero de todo,
pueden ser definidas en cualquier sistema de referencia. Esto puede parecer una propiedad muy
simple, pero en realidad, proporciona una gran libertad en el diseno de constelaciones, permitiendo
beneficiarse de la configuracién que la constelacion presenta en un sistema de referencia, y aplicarlo
al diseno general de la constelaciéon. Un ejemplo de ello es la posibilidad de definir constelaciones
donde no hay colisiones posibles entre los satélites. Esto puede realizarse facilmente encontrando
un sistema de referencia donde la trayectoria de los satellites no tenga intersecciones. Sin embargo,
en muchas aplicaciones, el sistema de referencia sujeto a Tierra es seleccionado dadas sus ventajas
en muchas misiones, especialmente en observacion de la Tierra. En este sistema de referencia, las
orbitas resultantes adquieren una forma que recuerda a las de los pétalos de una flor, que es de
donde proviene el nombre de estas constelaciones.

Otra propiedad muy importante de las Flower Constellations es la uniformidad en la distribucién. De
esta forma, y con la introduccién de las Lattice Flower Constellations, se presenté una metodologia
general para la generacion de todas las posibles distribuciones uniformes que un conjunto de satélites
pueden adquirir. De hecho, estas distribuciones uniformes introducen un nuevo elemento en el
diseno: la existencia de estructuras inherentes en la constelacion que son mantenidas en el tiempo,
una propiedad que es interesante para la observacién de la Tierra y telecomunicaciones. Estas
estructuras estdn causadas por el gran nimero de simetrias que las constelaciones presentan, que es
también una de las principales caracteristicas de la teoria de las Lattice Flower Constellations.

La base de las Lattice Flower Constellations tiene profundas raices en la Teoria de Ntumeros, esto
es, en las relaciones que aparecen entre los nimeros enteros. Esto, en un primer vistazo, puede
parecer una manera antinatural de realizar una distribucién en el espacio real, las érbitas. Sin
embargo, esto estd lejos de la realidad. En verdad, dado que se tiene un niimero entero de satélites
que estan posicionados en un nimero entero de Orbitas, estas relaciones entre enteros aparecen de
forma natural, lo que hace de las Lattice Flower Constellations la herramienta adecuada para tratar
con el problema de distribucién de satélites.

No obstante, en una Lattice Flower Constellation, las posibles configuraciones que la teoria puede
proporcionar son proporcionales al nimero de satélites en la constelacién, y por tanto, impone una
gran limitacién en el diseno de constelaciones pequenas. Para resolver estas limitaciones, el concepto
de necklace fue introducido por Casanova para la formulacién de las 2D Lattice [17, 18], donde la
condicion para el mantenimiento de la uniformidad y simetria de la configuracion fue presentado. Un
necklace es simplemente la seleccién de un subconjunto de elementos de un conjunto de posiciones
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admisibles. Esta modificacién de la teoria permite expandir las posibilidades de disefio de las
Lattice Flower Constellations. Sin embargo, los necklaces no estaban incluidos directamente en la
formulacion de la constelacion y su computacion era dificil de manejar por un ordenador. Esto
resulté en la imposibilidad de automatizar la computacién de las diferentes configuraciones, y la
necesidad de calcular todas las posiciones admisibles en vez de sélo las posiciones reales de los
satélites. Es por ello que un nuevo marco de diseno era requerido para resolver estas dificultades.

A ese respecto, y con objeto de solventar los anteriores problemas, este trabajo introduce la teoria
de las Necklace Flower Constellations. Este nuevo marco de diseno constituye la generalizacién
de la metodologia presentada en las 2D Lattice Flower Constellations using necklaces’ [17, 18]
y las mismas Lattice Flower Constellations, e incluye en su definicién todas las Lattice Flower
Constellations anteriores.  Esta metodologia permite definir constelaciones basadas en una
constelacion ficticia que tiene como Unico propédsito incrementar el espacio de configuracion en el
que se pueden buscar distribuciones simétricas y uniformes. Adicionalmente, y contrariamente a lo
que ocurria en trabajos anteriores, los necklaces son parte de la formulacién, lo que permite expandir
la constelacion ficticia tanto como deseemos dado que ya no se requiere el calculo de las posiciones
de todos los satélites ficticios. Esto proporciona una herramienta muy potente para problemas
de optimizacién, dado que incrementa la velocidad del proceso significativamente [19, 20, 21].
Ademas, la teoria de las Necklace Flower Constellations no solo genera distribuciones uniformes
en un primer diseno de la constelacion, sino que también permite el estudio de otros problemas
de gran interés en mecanica celeste. Ejemplos de ello son la secuencia de lanzamientos para la
formacion de constelaciones o la determinacién de las posibles reconfiguraciones disponibles en caso
de fallo de algiin satélite de la distribucién.

Desafortunadamente, las Lattice y Necklace Flower Constellations realizan su disefio en el sistema
de referencia inercial, no proporcionando un proceso claro con el que controlar su diseno en el
sistema de referencia Earth Fixed. Esto es un problema en determinadas misiones, especialmente
en observacién de la Tierra, telecomunicaciones y posicionamiento global, dado que tener control
en el sistema de referencia Earth Fixed durante el disenio es, en muchos casos, de extrema
importancia. Por tanto, y para superar este problema, las Ground-Track Constellations son
introducidas complementariamente a la metodologia de las Flower Constellations.

Las Ground-Track Constellations [22, 23] son una nueva metodologia de disefio donde la distribucién
de la constelacion se realiza directamente en el sistema de referencia Earth Fixed (aunque puede
hacerse en cualquier otro sistema de referencia). En particular, la constelacién se distribuye en
un conjunto de trazas previamente definidas que contienen los satélites de la constelacién en un
momento dado. Ademads, en lugar de utilizar elementos clasicos para definir la constelacién, el
tiempo se selecciona como el parametro de distribucién, proporcionando una forma sencilla de
definir el tiempo de paso entre dos satélites sobre determinadas regiones de la Tierra. Por tanto, las
Ground-Track Constellations proporcionan una metodologia de diseno alternativo que complementa
a la teoria de las Flower Constellations.

Por otro lado, y para mejorar el mantenimiento a largo plazo de las constelaciones definidas, se
presentta una definicion alternativa de las Ground-Track Constellations, que permite incluir los
efectos de perturbaciones orbitales directamente en la definicién de la constelacion. En particular,
todos los parametros orbitales han de ser modificados en el diseno inicial de la érbita para minimizar
el efecto de las perturbaciones orbitales [24, 25, 26, 27, 28]. Sin embargo, dado que la distancia a
lo largo y a través de la traza es seleccionada como parametro de disefio, la definicién y el estudio
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de la evolucién de la estructura de la constelacion se simplifica. A este respecto, se presenta una
metodologia general para la definicién de constelaciones de repeticion de traza. Esta metodologia
permite mejorar el mantenimiento de la estructura de la constelacién y esta especialmente disiiada
para su uso conjunto con la metodologia de las Ground-Track Constellations.

Este trabajo esta estructurado como sigue. El primer capitulo incluye una introduccién a la mecanica
celeste y a los pardmetros orbitales. Después, se presenta un resumen de las teorias de las 2D y
3D Lattice Flower Constellations, mostrando ejemplos de aplicaciéon de cada formulacién. Una
vez hecha esta introduccion, el concepto de necklace se introduce y con él, las 2D Lattice Flower
Constellations utilizando necklaces. El capitulo termina con la descripcion del lema de Burnside, el
cudl es utilizado en algunas partes de este trabajo para contar el niimero de posibilidades de disefio
que las Necklace Flower Constellations pueden generar.

El segundo capitulo se centra en el estudio de las 2D Necklace Flower Constellations, que son la
generalizacién de las 2D Lattice Flower Constellations usando necklaces. Este capitulo incluye la
completa formulacién de esta metodologia de diseno ademéas de un conjunto de teoremas para el
conteo del nimero de diferentes posibilidades de disefio que las 2D Necklace Flower Constellations
proporcionan.

El tercer capitulo incluye las 3D Necklace Flower Constellations, que es una generalizacién de
las anteriores Lattice Flower Constellations. Este capitulo también introduce el concepto de la
generacién de necklaces en varias variables al mismo tiempo y cémo afecta esto a la distribucion
generada.

El cuarto capitulo introduce por primera vez las 4D Lattice Flower Constellations, una
generalizacion de las 2D y 3D Lattice Flower Constellations en donde el semieje mayor de las
orbitas es incluido como parametro de distribuicon para la constelacion. Tal y como se vera, la
inclusién del semieje mayor como variable tiene unas implicaciones mas profundas en el diseno de
constelaciones. Después, las 4D Necklace Flower Constellations son presentadas como la tltima
generalizacion de la teorfa de las Lattice and Necklace Flower Constellations.

El quinto capitulo presenta los n-dimensional congruent lattices using necklaces. Esta metodologia
permite la generacién de distribuciones uniformes y congruentes en un espacio n-dimensional sujeto
a aritmética modular en todas sus variables. Esta teoria representa los cimientos en los que las
Lattice y Necklace Flower Constellations estdn basadas. A ese respecto, el capitulo incluye las
demostraciones de existencia y unicidad de las distribuciones obtenidas, proporcionando los limites
que presentan los parametros de ditribucién y que evitan las duplicidades en el disefio. Ademas,
la teoria incluye teoremas de conteo para los casos mas interesantes de estudio de este tipo de
distribuciones.

El sexto capitulo trata la formulacién alternativa de las Ground-Track Constellations. Esta
metodologia de disefio permite la definiciéon de constelaciones en un conjunto dado de trazas, cada
una con un conjunto de satélites. En concreto, se presentan dos definiciones para esta metodologia,
una pensada para una formulacion kepleriana, y la otra para constelaciones en las que se considera un
movimiento perturbado. Ademds, se presentan varios ejemplos de aplicacién de esta nueva técnica
de disefio en el que se muesta claramente la metodologia asi como las posibilidades de disefio que
permite.
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El séptimo capitulo incluye una metodologia simple y general para el disefio de constelaciones
de repeticién de traza bajo los efectos de perturbaciones orbitales. En este sentido, el potencial
gravitatorio terrestre es tratado con especial interés, dado que es la perturbacién més importante
para la mayoria de misiones espaciales. Esta metodologia es especialmente 1til para su uso junto a
la metodologia de las Ground-Track Constellations.

El octavo y ultimo capitulo introduce la formulacién que permite transformar las 2D Necklace Flower
Constellations en las Ground-Track Constellations. Esto permite generar el disenio de constelaciones
simultdneamente en el sistema de referencia inercial y rotante. Adicionalmente, este capitulo incluye
un ejemplo completo de diseno de una constelacién de satélites basado en tres cargas de pago
diferentes, lo que permite mostrar las posibilidades y el potencial que la teoria presentada en este
trabajo proporciona. Este ejemplo incluye la definicién de las 6rbitas nominales de la constelacion,
dos posibles estrategias de lanzamiento, y la estrategia de control para la misién.
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Chapter 1

Preliminaries

This first chapter serves as a initial point from which the research presented in this work departs.
It contains the basic concepts and theories that will be used extensively during this work. First,
an introduction in orbital mechanics is done, starting with the derivation of the equations in the
Kepler’s problem, and the presentation of the classical formulation. Then, a summary of the
perturbation theory is introduced in order to add the effects of orbital perturbations to the classical
formulation, being the Earth oblateness the most important perturbation to consider. That way,
the foundations of orbital mechanics are shown as a reference of the entire document.

Second, the Lattice Flower Constellation Theory is summarized, including the formulation of the
2D and 3D Lattice Flower Constellations. In addition, the necklace problem is introduced, and the
2D Lattice Flower Constellations using necklaces is presented.

Finally, Burnside’s Lemma is shown, as it is used in several theorems introduced in this work. In
particular, Burnside’s Lemma is required for the determination of the number of possibilities of
design that the Necklace Flower Constellation theory can provide.

1.1 Kepler’s problem: Classical Formulation

The keplerian movement is the basic physic model in celestial mechanics and constitutes the first
order approximation to the real problem. This model only considers the interaction between two
massive bodies, treated as material points with isotropic density and whose sizes are negligible
compared with the distances of the problem. Although this is a set of very restrictive hypothesis
for the problem, it is extremely close to reality as the sizes of celestial bodies are much smaller than
the distances between them.

The classical formulation of Kepler’s problem is based on Newton’s laws applied to the gravitational
force. It departs from the observation that two mass bodies suffer, between them, an attractive
force that is directly proportional to their masses and inversely proportional to the square of the
distance between them, that is:

. mimsg Ty — T2
mixr, = —G B s
| @1 — a2 |? || @1 — 2 ||
m2532 = -G e T2 mh (1.1)

| o — a1 |2 ]| 22 — 21 ||
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where G is the universal gravitational constant, mq and msy are the masses of the two particles and
x1, T2, 1 y &9 are the positions and accelerations of the particles in an inertial frame of reference.

As it can be seen, the acceleration experienced by a point positioned in the center of masses of the
system is zero because there is no external force perturbing the system and as such, the system is
inertial with respect of this center of masses. Moreover, if the mass of one of the bodies is much
bigger than the other (such as the planets orbiting the Sun or satellites in the gravitational field
of another celestial body), the center of masses of the system can be approximated by the one of
the heaviest body (the primary body). Thus, the origin of the inertial frame of reference can be
positioned in the center of masses of the primary body, and then using Equation (1.1), we obtain
the following expression:

.. r

where © = G(Mg +mz2) =~ GMg and Mg are the primary body gravitational constant and its mass,
whilst 7 is the radio-vector from the origin of the inertial frame to the particle that is being studied.

1.1.1 Constants of motion

One important property presented in Equation (1.2) is that the force always points to the origin
of the frame of reference, a property that is called central force. Particles moving under a central
force have some interesting properties.

First, the angular momentum of the particle is constant. Let h be the angular momentum of a
particle defined as:
h=rxr7r, (1.3)

where r is the position and 7 is the velocity of the particle. It is easy to prove that h is constant
over time:

h:i'xi'+rx}-:rxr'-—rﬂ3(rxr)20, (1.4)

where r =|| 7 ||. Moreover, we can observe that h-r = 0 and h - v = 0. This implies that, the
movement lays in a plane that contains the origin of the reference frame, and that h is perpendicular
both to the position r and the velocity 7 of the particle in each instant.

Second, a central force generates a conservative field. We know that a force is conservative if its
curl is zero. Let u,, u, and u, be the unitary vectors of the inertial frame of reference. Then,
using Equation (1.2):

. Yz Yz Tz Tz Ty i
V X § = <3,u,r—5 — 3;17“*5) Uy + (3/147?5 - 3/1«7?5) Uy + (3/~LT75 - 3/17,75) u, =0, (1.5)

and thus, the gravitational force is conservative and there exists a potential associated with the
force. Let V be the specific potential of a particle defined as:

V:/%-dr:—u/ %dr:—%. (1.6)

oo o0
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As the force is conservative, the mechanical energy &, sum of the potential and kinetic energies, is

constant, and thus:

’1)2

527_

. (1.7)

S I=

In addition, by computing the derivative of the unit vector that points the particle of study, we
obtain:

d (r rx(rxr) #xh d[(iFxh
_ J— — = = — 1.
dt(r) r3 L dt( 1 )’ (1.8)

which leads us to the definition of another constant of the movement, the eccentricity:

» x h
e=eu, = rx —z, (1.9)
W r

which is a vector contained in the plane of the movement and perpendicular to h.

As it can be seen, there exist six degrees of freedom in the problem (three positions and three
velocities) and we have obtained seven first integrals (constants in the movement). Thus, it is
logical to think that these constants are not independent.

By computing the scalar product between the eccentricity and the angular momentum, we obtain
that the product is always zero:
e-h=0, (1.10)

which means that there is a relation between both vectors and, to be more precise, they are
perpendicular to each other.

|
I
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Figure 1.1: Orbital elements and reference systems.
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On the other hand, as we said before, the movement is planar and thus, it is possible to define
the dynamic of the particle in an inertial frame of reference fixed to that plane. Let u,, ug and
uy, be the unit vectors of this frame of reference (the orbital reference system) where u, always
points towards the particle, uy, is perpendicular to the orbital plane (where up, = h/ || h ||) and
ug = up, X u, (see Figure 1.1). Thus, the position, velocity and acceleration of the particle can be
defined in polar coordinates (r,0) as:

r o= TU,
= ru, —i—r@u@,
T o= (7“ - 92r> u, + (Hr + 297’“) ug, (1.11)

Now, we apply these expressions to the angular momentum:

) .
h = huj, = r20u;, — 0 = 5 (1.12)
r
in order to obtain the variation of 6 as a function of the radius of the orbit. Then, calculating the
eccentricity with Equation (1.11):

e= (M — 1) u, — @u@, (1.13)
,u

we can find a relation between the modulus of the eccentricity (e) and the energy of the orbit ().
Using Equations (1.7), (1.12) and (1.13) we obtain:

2 2
§= (62};)“ (1.14)

being this expression the second relation between the first integrals defined at the beginning.

Equations (1.10) and (1.14) reduce the number of first integrals to five (seven conditions minus
two relations), which leaves only one degree of freedom in the movement as the number of initial
degrees of freedom is six and the number of first integrals is five. Thus, the complete dynamic of
the particle can be defined by the use of just one parameter, being the other five constants. This is
the basic concept behind the classical formulation.

1.1.2 Classical variables

The objective now is to define the classical variables of the problem. The most common variables
used are the classical orbital elements, which have a clear physical and geometrical meaning that
helps to understand the problem that we are treating.

First, as the movement is planar, we define the orientation of the orbital plane with respect of
the inertial frame of reference. Two angles are required, the right ascension of the ascending node
(©) and the inclination (i) (see Figure 1.1). The inclination is the angle between the angular
momentum and the z axis, whilst the right ascension of the ascending node is the angle between
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the passing of the particle over the equator (in the direction South-North) and the x inertial axis.
Their mathematical expressions related to the angular momentum are:

cos(i) = TRl
(u, X h) - uy
Q) = — 1.1
cos(Q2) TR (1.15)

where ¢ € [0,7) and Q € [0,27). Thus, in order to obtain the precise value of the right ascension of
the ascending node, we have to determine in which half of the space the angle is located.

Once the plane is fixed, the orientation inside it is required. As seen before, the eccentricity vector
is constant and contained in the orbital plane thus, it provides the information on the orientation
of the orbit in the plane. That way, the argument of perigee (w) is introduced as the angle between
the eccentricity (with direction u.) and w,, = u, X uy (see Figure 1.1):

(u, x h)-e

cos(w) = T xhe

(1.16)

where w € [0,27) and thus the determination of the half of the space in which the angle is located
is required.

These parameters (€2, i and w) are fixed angles that orientate the orbit in space but they do not
provide information about the energy of the trajectory or the position of the particle. The position
of the particle can be related with the angle, in the orbital plane, between the position and the
eccentricity. Let the true anomaly v be that angle, which is defined as:

T-e

= 1.17
cos(v) o (1.17)
and using Equations (1.9) and (1.12), we obtain:
p
= — 1.1
Ty ecos(v)’ (1.18)

where p = h?/pu is the semilatus rectum of the orbit. This expression provides the information of
the curve that the particle describes in its movement. Substituting in Equation (1.18) 72 = x% + yf,
and x, = rcos(v), where z;, and y, are the coordinates of the satellite in the perifocal frame of
reference defined by the directions (we, up = (up, X ue), up), the following equation is derived:

(1 —62)$]23+yg+2epxp —p* =0, (1.19)

which is the expression of a conic curve in Cartesian coordinates, where one of the focus of the conic
is positioned in the center of the frame of reference.

As the orbit is a conic, the eccentricity e is used in order to define the shape of the conic and the
semi-major axis a to establish its size. Using basic geometry, the semi-major axis can be calculated
using the periapsis (rper) and apoapsis (rqpo) of the orbit:

azrper”apo:??( LI >: P (1.20)

2 2\1+e 1-—c¢ 1 —e?
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The objective now is to associate the semi-major axis with the energy of the system. In order to do
that, we perform the derivative of the radius:

. D . .
r=-——"———esin(v)v, 1.21
(1+ ecos(v))? 2 (121)
where we can realize that the derivative is zero when the particle is in the periapsis or the apoapsis
of the orbit (sin(v) = 0). Using this property and Equation(1.11), we conclude that the square of
the velocity in these points is:
h2

I 7= "5, (1.22)

and applying the expression for the mechanical energy, Equation (1.7), in the periapsis of the orbit,

we obtain: ) ( 2)
1h n 1 (I1—e 7
€= 54— Lo =g =

and thus, the size of the orbit (the semi-major axis) has been related to the energy of the system.

(1.23)

Thus, all six classical elements have been defined: the semi-major axis a, the eccentricity e, the
inclination 4, the right ascension of the ascending node 2, the argument of perigee w and the
true anomaly v. These orbital elements present some singularities. Examples of that are circular,
equatorial and parabolic orbits, where complementary variables have to be defined.

1.1.3 Elliptic movement

As the aim of this work is the study of satellite constellations, we only deal with elliptic orbits,
which are the only ones that shows a periodic behavior. This implies that the semi-major axis of
the orbit is positive and the mechanical energy of the system is negative.

Let E be the eccentric anomaly, which is the angle between the direction of the eccentricity vector
and the position of the particle from the center of the ellipse. Applying the Pythagoras’ theorem:

r? = a?(1 — €?)sin?(E) + (ae — acos(E))?, (1.24)

and working with the expression, a relation between the radius and the eccentric anomaly can be

obtained:
r=a(l —ecos(F)). (1.25)

Then, as the semi-major axis and the eccentricity are constant, the derivative of Equation (1.25) is
calculated:
7 = aesin(E)E. (1.26)

From Equations (1.11) and (1.7), the square of the modulus of the velocity can be computed and
matched between both equations:

h\? 2
7;2+<> e (1.27)
T r a

obtaining the value of 7 by the application of the semilatus rectum and Equation (1.20):

7;2:/1(2_1_(1—62)) (1.28)

a \r r2
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Using Equations (1.25), (1.26) and (1.28), a differential equation on E is achieved:

£ (1 —ecos(E))E, (1.29)

ad

which can be integrated, obtaining the evolution of the eccentric anomaly over time:

M =E —esin(E) = /%At. (1.30)

where Equation (1.30) is the Kepler’s equation for elliptic orbits and M is the mean anomaly, a
variable that has a linear evolution with respect time. Moreover, related to the derivative of M, we
define the mean motion n as the rate of change of M:

n=4/5, (1.31)

which is a constant value in the unperturbed problem. Kepler’s equation is the basic expression
that provides the first order approximation of the dynamic of the particle along its movement.

From Equation (1.30) we can derive the period of the orbit, which is the time that the particle
requires to return to the same initial position. Using the mean anomaly as the parameter of
movement, the time that it takes to move from M =0 to M = 27 is:

T=2m| L, (1.32)
1

where T is the period of the orbit. As it can be seen, it only depends on the semi-major axis of the
orbit (which is equivalent to the energy of the orbit) and the primary body of the problem (due to
the gravitational constant of the Earth p).

Kepler’s formulation allows to perform the first order design and study of an orbit. However, in
order to improve the accuracy of the model used, orbital perturbations must be included. This
makes the problem more complex, but it also provides a better prediction on the problem studied.

1.2 Perturbation theory

Keplerian formulation is ideal, where it considers the bodies as points with no size subjected to
just the gravitational force existing between them. Although simple, this model is very useful, as
it provides the first order approximation to the real problem. To be more precise, and for objects
orbiting the Earth, the biggest perturbation is provoked by the non spherical shape of the Earth
Jo, and this term is three orders of magnitude lower than the keplerian term.

However, the keplerian formulation does not predict with enough accuracy the positions and
velocities of objects orbiting the Earth. Note that, experiencing small accelerations due to
perturbations does not mean negligible effects. In fact, as time passes, these small perturbations
can have a big impact on the long term dynamics of satellites. These are the reason why more
elaborated models are required in order to improve the accuracy of the predictions generated.
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Orbital perturbations can have very different origins and nature. Examples of that are the ones
provoked by the Earth, the Sun, the cosmic radiation or the general relativity. However, for satellites
orbiting in a near to Earth environment, the most relevant orbital perturbations are:

- The Earth gravitational potential: it is generated by a non uniform distribution of the mass
of the Earth. Its greatest effect is the Jo perturbation, which is related to the non spherical
shape of the Earth (in particular its oblateness). The effect of this perturbation decreases
with the distance of satellites to the Earth surface.

- The Sun and Moon as third bodies: other massive bodies such as the Sun or the Moon modify
the trajectories of satellites. This perturbation is bigger the farther the satellite is from Earth.

- The atmospheric drag: although the atmospheric pressure in space environments is extremely
low, its effect can be important as satellites move at high speed related to the atmosphere.
The importance of this perturbation increases drastically when in very low orbits.

- The solar radiation pressure (SRP): the Sun generates radiation that in contact with the
surfaces of satellites, produces an acceleration on them. The intensity of this effect is nearly
independent from the distance to the Earth.

- The albedo: it is the sum of two effects, the thermal radiation that the Earth produces for
being hotter than deep space, and the reflexion of the Sun radiation in the Earth surface.
This effect increases the closer satellites are to the Earth surface.

I ‘ | | | |
R " Sjm = 0.001m?/kg

KEPLERIAN TERM ———/m = 0.01m2/kg

Acceleration (km/s 2)

ATMOSPHERIC DRAG
meen ATMOSPHERIC DRAG

10 | | | | |
0 0.5 1 15 2 25 3 35 4 45

Altitude (km) x10*

Figure 1.2: Orders of magnitude (in logarithmic scale) of orbital perturbations with the altitude of
the orbits.

In order to show the importance of each perturbation, we create a force model consisting on the
gravitational potential of the Earth [29] up to 4th order zonal terms (J2, J3, J1), the Sun and Moon
as disturbing third bodies [30], the solar radiation pressure [31] and the atmospheric drag (Harris-
Priester [32, 33] model). The results of computing the acceleration (in logarithmic scale) provoked
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by each perturbation with respect of the altitude are presented in Figure 1.2. There, it can be
clearly seen that the primary term, the keplerian problem, is three orders of magnitude bigger than
the most important of the orbital perturbations, the Js. Moreover, as the acceleration that the
satellites suffer due to the solar radiation pressure and the atmospheric drag depends on the ratio
incident surface S with mass m, two different values have been included, S/m = 0.001m?/kg and
S/m = 0.01m?/kg, which represent the typical design boundary of common satellites.

On the other hand, and related to the effects that these perturbations generate in the orbital
variables in study, two different kind of variations can be defined, the secular variations and the
periodic variations [34], which are represented schematically in Figure 1.3. In that respect, the
secular effect is the mean variation that the variables suffer over time, while, on the other hand, the
periodic variations (also known as variations of long and short period) are related to the periodic
behavior of the variables around the mean secular variation of the variable.

A

oion
yall
Long and short v ver
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Variable

Initial mean
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Time

Figure 1.3: Secular, long and short effects of the orbital perturbation.

Once orbital perturbations are described, it is time to introduce the perturbation theory. The
perturbation theory consist of the definition of the problem as the sum of two components: the
keplerian problem and the effects of perturbations. That way, the acceleration of a particle can be
represented as:

. r
=, (1.33)

where - is the resultant acceleration provoked by orbital perturbations. There are many
methodologies to deal with perturbations, being the most common ones, Lagrange planetary
equations and Gauss planetary equations.

Lagrange planetary equations are used with conservative perturbations such as the effect of the non
uniform gravitational potential of the Earth. In order to use them, we first have to express the
Hamiltonian of the system (#) as a function of the time t:

= —2£ — R(a, e, i, w, Q, M, t), (1.34)
a

where R is the resultant of the generalized potential of the disturbing forces affecting the problem,
expressed by means of the classical elements. That way, it is possible to express the derivatives of
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the orbital elements using Lagrange planetary equations:

da 2 OR
dt ~ nadM’
de 1—-e20R V1-—e20R
dt ~ na?e OM  nale Ow’
di cos 1 OR 1 OR
dt  na2V1—eZsini OM  na2y/1— e2sini 09’
dw V1—¢e20R cos 1 OR
dt na’e de na%/ﬁsinia7
i 1 OR
dt  na2v1-— e2sini 0i
dM 2 OR 1-¢€?0R
g = n—%%—mg (1.35)

However, in many situations, it is of interest the study of the problem with just the Jo perturbation
included, since it is the most important perturbation in many applications. In those cases, Lagrange
planetary equations can be used in order to analytically obtain the secular variation of the orbital
elements. In particular, the disturbing potential generated by Jo can be expressed as [30]:

R= —3‘2‘7{2 (RT@)Q (sin2(i) sin?(w + v) — ;) : (1.36)

where Rg is the Equatorial radius of the Earth and Jy = 0.001082 is the value of the second zonal
harmonic coefficient. This potential can be averaged for one orbital revolution, in order to remove
the periodic effects of the perturbation, and expressed by means of the classical elements [35]:

e (8 (0 Y (ty). o

and then, by applying Lagrange planetary equations to this averaged potential, the secular variations
of the classical elements are obtained:
dsec 0
ésec = 0,
lsec = 0

. _ 3 REB 2 27
Wsec = 4J2(a(1—62)> TL(4—5SH1 (Z)),

B 3 REB 2 .
Qsee = —=o| —— ,
2J2<a(1—62)> n cos(7)
1% 3 R@ 2
) = —_— —_ —_— - 1 2 ) - 2
Mgee ’/a3 1+4J2<a(1_62)> (2 — 3sin?(i)) V1 — €2 |, (1.38)

where agec, €sec, isec, Wsee Qsec and M, sec are the secular variations of the orbital parameters under
Ja perturbation. Equation (1.38) represents the second order approximation to the problem and
are extensively used in orbit design. Moreover, it is important to note that when sin?(i) = 4/5,
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the secular variation of the argument of perigee is equal to ws.. = 0, and thus, orbits do not rotate
during their dynamic (a property of great importance in many missions). The inclination that
allows this result is called the critical inclination and has an approximated value of i = 63.43°.

On the other hand, when perturbations are non conservative, Gauss planetary equations are used
to compute the variation of the orbital parameters. This set of equations require to express the
perturbing accelerations in the orbital reference system (w,., ug, up) where the origin of the reference
system is centered in the satellite of study. Let ~., 79 and 7 be the projection of the resultant
acceleration in the former reference system. Then, the evolution of the orbital parameters over time
can be calculated using the following expressions [35]:

2

) 2a . p
@ = — (e sin(v)y, + ;7@) ,
1
¢ = T (psin()+ ((p+r)cos(v) +re) 7).
M r
= g cos(w + )y,
. rsin(w + v)
G — [Ty
h  sin(i) o
A | . rsin(w + v)
b = op(peos + o+ )sin@)) + 5 L,
. NS )
M = n+ Te ((pcos(v) — 2re)y, — (p+r)sin(v)yy) . (1.39)

That way, the set of expressions shown in Equations (1.35) and (1.39) allow to obtain the
instantaneous values of the orbital parameters over time for a dynamic under orbital perturbations.

Sections 1.1 and 1.2 are a summary of the basic orbital mechanics. In the next pages, we introduce
the concept of satellite constellation, focusing on the Lattice Flower Constellation Theory. Moreover,
we introduce the theory of necklaces for the case of 2D Lattice Flower Constellations as well as
Burnside’s Lemma.

1.3 The Flower Constellation Theory

Satellite constellations are groups of satellites that work cooperatively in order to achieve a common
task or mission, and allow to optimize the performance of the system, reducing the costs of the
mission. However, the study of several satellites at the same time, and more importantly, the
relations that appear in the internal structure of the constellation, increases the complexity of the
problem to solve, but also expands the possibilities in the design.

Satellite constellation design is a complex process that require in general a high number of iterations
and the necessity of specific studies for each particular mission. This situation is worsen by the lack
of established models for the generation and study of constellations. However, in the last decades,
several satellite constellation design methodologies have appeared such as Walker Constellations [3]
for circular orbits or the design of Draim [4] for elliptic orbits. In 2004, the Flower Constellation
Theory [5, 6, 7] was presented, including in its formulation circular and elliptic orbits and containing
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the former designs of Walker and Draim. The theory was later improved by the 2D Lattice [8] and
3D Lattice [9] theories which simplified the formulation and made the configuration independent
of any reference frame. In particular, if observed from a rotating frame of reference, the orbits of
Flower Constellations acquire a shape that reminds the petals of a flower. That is the reason why
Flower Constellations take their name.

The most important property of Flower Constellations (and more specifically Lattice Flower
Constellations) is that the distributions generated present a high number of symmetries, which
makes this design methodology very interesting for many applications, especially global coverage
and global positioning.

1.3.1 2D Lattice Flower Constellations

A 2D Lattice Flower Constellation [8] (2D-LFC) is described by nine parameters: three integers and
six continuous parameters. The first three parameters are the number of inertial orbits (N,), the
number of satellites per orbit (N,) and the configuration number (NNV.), which is a parameter that
satisfies N. € [0, N, — 1] and governs the phasing of the constellation. In particular, the location
of the satellites in a 2D-LFC corresponds to a lattice in the (£, M)-space [12], that is, a space
generated in the orbital variables right ascension of the ascending node 2 and mean anomaly M of
all the satellites of the constellation in a given instant. The (€2, M)-space can be also regarded as
a 2D torus (both axes, Q and M, are modulo 27) where the points represented coincide with the
solutions of the following system of equations:

N, 0 Ay i—1
=om | , (1.40)
Nc Nso AM’L] J— 1

wherei =1,--- Ny, j=1,---, Ny, and N, € [0, N,—1], and AQ;; and AM;; represent the satellite
distribution in the right ascension of the ascending node and the mean anomaly with respect to a
reference satellite. Indexes (7, j) represent the j-th satellite on the i-th orbital plane. Note that this
system of equations is derived from the Hermite Normal Form of the lattice, which is the minimum
representation of a lattice in a 2D distribution [8].

On the other hand, the other six parameters are the semi-major axis (a), the eccentricity (e), the
inclination (7) and the argument of perigee (w) (which are the same for all the satellites of the
constellation), and the longitude of the ascending node and the initial mean anomaly of the first
satellite of the constellation, that is, 211 and M7; (and which define a reference for the constellation).

As an example of this kind of design, we choose a constellation made of 15 satellites that are

distributed in 5 inertial orbits (N, = 5), each one containing 3 satellites of the constellation
(Nso = 3). Moreover, the constellation has semi-major axis a = 14419,944 km, inclination
i = 63.435°, eccentricity e = 0, configuration number N, = 3 and, without losing generality,

we position the reference satellite in 217 = 0 and M;; = 0.

The representation of the lattice of this distribution in the (€2, M)-space can be seen in Figure 1.4.
A (Q, M)-space is a graphical representation of the constellation where each filled circle represents
a satellite of the configuration. In the example shown, two properties can be observed. First,
the configuration number performs a shift with the right ascension of the ascending node in the
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Figure 1.4: Representation of the initial positions of the satellites in the (€2, M)-space.

distribution of satellites with respect the first orbit (where 2 = 0). Second, the distribution is
congruent in ) and M, which means that the distribution is the same no matter the satellite
selected as the reference of the constellation. In fact, both properties are representing a 2D torus
in a 3D space as it can be seen in Figure 1.5. Moreover, this two properties are very important, as
they provide the symmetric behavior to Lattice Flower Constellations.

Figure 1.5: Representation of the initial positions of the satellites in the (£, M)-torus.

On the other hand, in Figure 1.6, the initial distribution of the constellation in the ECI (Earth
Centered Inertial) frame of reference is presented. As it can be seen, the satellites form three
pentagons in the polar view in the initial instant. The interesting property of this constellation is
that this three pentagons are maintained during the motion of the constellation, creating a rigid

structure.
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w10t

Figure 1.6: Initial distribution of the constellation in the ECI frame of reference.

1.3.2 3D Lattice Flower Constellations

The 3D Lattice Flower Constellation Theory is a satellite constellation design methodology in which
satellites are distributed in several inertial orbits, where each satellite has a different value of its
mean anomaly, argument of perigee and right ascension of the ascending node. Furthermore, the
satellites of the constellation have the same semi-major axis, eccentricity and inclination. That way,
we provide an additional degree of freedom to orbit design compared to the 2D formulation, the
argument of perigee. Moreover, as in the case of 2D Lattice Flower constellations, the distributions
present symmetric configurations in their lattices that are maintained over time.

Following Ref. [9], a 3D Lattice Flower Constellation can be described by the use of the Hermite
Normal Form. In this case, the Hermite Normal Form is composed by six integers, three in the
diagonal of the matrix and the other three in the inferior part of the matrix. The integers in the
diagonal are the number of orbital planes of the constellation (IN,), the number of different argument
of perigees in each orbital plane (IV,,), and the number of satellites in each orbit (Ns,). The other
three parameters are configuration numbers (N, , Ne,, N¢,) defined as follows: N, € [0, N, — 1],
N, € [0, N, — 1] and N, € [0, N, — 1].

The expression that summarizes the distribution of the satellites in a 3D Lattice Flower Constellation
is:

N, 0 0 AQyj i—1
Ney Ny O Awyr, | =271 k-1 |; (1.41)
Ncl NCQ Nso Aszk ] -1

where AS);j;, is the distribution in the right ascension of the ascending node of the constellation,
Awji, is the distribution of the argument of perigee, and AM;;j is the distribution of the mean
anomaly with respect to a reference satellite of the constellation with parameters 2111, w11 and
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Mji11. Moreover, the sub-indexes i = 1,--- ,Ny; j =1,--+ | Ngo; and k = 1,--- , Ny, represent the
position of a satellite in the orbital plane i, with the argument of perigee k and the mean anomaly
J. Note also that the values of Q;;, w;;jr and M;j;, represent three angles and thus are defined in
the range [0, 27] (and thus, they show a modular behavior).

The distribution shown in Equation (1.41) can be represented as a set of points that are situated
over the surface of a three dimensional torus in a four dimensional space (a representation that is non
practical from a graphical point of view). However, the same distribution can also be represented
by three different two dimensional tori in a three dimensional space.

As an example of that, a constellation is created with parameters: N, = 5, N, = 3, Ng = 3,
Ng, = 3, N,, = 2 and N,, = 4, which generates the following Hermite Normal Form using
Equation (1.41):

50 0 AQ; i—1
4 3 0 Awijk =27 kE—1 5 (142)
3 2 3 AM;j; j-1

where the constellation is made by N,N, N, = 45 satellites. The tori representation of this
constellation can be seen in Figure 1.7, where each point is represented by two coordinates, a
polar longitude (toroidal direction), and the angle between the perpendicular to the torus surface
in the point and the horizontal plane (poloidal direction). It is important to note that the figure
represents all the satellites of the constellation, and as such, the points only show the different values
of each variable in the constellation. That leads to N,N,N,, = 45 different combinations in the first
and second tori, and N,Ns, = 9 in the third one, since all the configuration numbers (N, , Ne,, Ne,)
are different to zero, and N, and N, are co-primes. On the other hand, the figure clearly shows
that the points are situated generating closed lines in the tori, the lattice of the constellation.

Q-MTORUS ® - M TORUS Q-0 TORUS

Figure 1.7: Graphical representation of the initial positions of the satellites of the constellation in
three different torus.

Another useful representation of this distribution can be seen in Figure 1.8, where the (2, w, M)-
space for this particular configuration is shown. As it can be seen on this representation, the satellites
are distributed in several planes in this space and these planes are not parallel with respect to the
axis. This is caused by the configuration numbers (N.,, N, and N.,) which produce this effect in
the distribution. As it will be seen later, this property has deep implications in the development of
the necklace theory, and the definition of congruence in systems where necklaces are introduced in
a distribution.
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Figure 1.8: Graphical representation of the initial positions of the satellites of the constellation in
the (2, w, M)-space.

Using the distribution shown in the example, we build a constellation with orbital parameters
a = 11522,451 km, e = 0.25 and 7 = 63.435°. Figure 1.9 shows the inertial distribution of this
constellation in an isometric view (left) and a polar view (right). Note that from the polar view,
it is possible to see some of the symmetries that appear in the distribution (for example the ones
that are generated with respect to the plane y = 0).

Vel
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x(km)

Figure 1.9: Initial distribution of the constellation in the ECI frame of reference.
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1.4 2D Lattice Flower Constellations using Necklaces

The theories of 2D and 3D Lattice Flower Constellations always generate symmetric configurations.
However, provided a set of satellites, the number of possible different configurations is limited by the
possible combinations between the integer parameters that constitute the Hermite Normal Form,
and thus, bigger constellations generate a larger number of possible configurations. In order to solve
this issue and allow more possible configurations in small constellations, the concept of necklaces
was introduced for the 2D Lattice Flower Constellations [17, 36].

1.4.1 Definition of a Necklace

A necklace is a subset of points selected from a set of n available positions that present modular
arithmetic, that is, location 1 in the available positions is the same as location n 4+ 1. They are
represented by the subset G C Z,, = {1,...,n}.

As an example, if we have a configuration in which four positions are available, a necklace consisting
in three points can be created as seen in Figure 1.10. In the figure, we have occupied three positions
(the colored circles) form an available set of four positions, forming a necklace that is represented
as G ={1,2,4} C Zy4.

®

Figure 1.10: Example of necklace.

However, this is not the only representation that corresponds to this particular necklace. To be
more precise, all the distributions that are obtained from a rotation of the whole configuration are
considered identical. That is, two necklaces (G; and Gy) are considered to be equivalent, that is, an
equivalence relation =, if they fulfill the following expression:

G120y <= 35:G1 =Ga+s mod (n), (1.43)

where s is an integer that belongs to the group Z,. Taking as an example the necklace from
Figure 1.10 and varying the parameter s, all these configurations can be obtained:

G = {1,2,4} = {1,2,3) = {2,3,4} = {1,3,4}; (1.44)
which correspond to the graphical representation shown in Figure 1.11. As it can be seen, the

difference between them is just a rotation in the circular loop, not changing the distribution in the
process.
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{1,2,4} {1,2,3} {2,3,4} {1,3.4}

Figure 1.11: Identical necklaces.

1.4.1.1 Symmetry of a Necklace

The symmetry of a necklace is a parameter that provides information on how uniform the necklace
distribution is [37, 38]. This is done by counting the minimum number of times that the configuration
can be rotated in the available positions in order to obtain the same necklace in the modular
arithmetic.

Let K(n) be the set of equivalence classes of necklaces modulo the relation defined by =:
K (n) = {necklaces C Z, }/ =, (1.45)

and let G be a necklace such that G C Z,,. The symmetry of a necklace (Sym(G)) is defined as the
smallest value of r € Z,, such that G +r = G in Z,:

Sym(G) =min{l <r<n:G+r=g in Zp}. (1.46)

This means that r is the smallest value that the configuration has to be rotated in order to obtain
the same initial configuration. In other words, if G; = Go, then Sym(G;) = Sym(G2) and thus, the
symmetry can be defined over an equivalence class:

Sym: K(n) —
G — Sym(G). (1.47)
Equivalent classes defined in this manner can be also regarded as the orbits that different symmetries

of a necklace (seen as an action) generate in the group of possible combinations of elements taken
from the available positions.

{1,3,5} {2.4,6} {1,3,5}
Original r=1 r=2

Figure 1.12: Symmetry of a necklace.

As an example of this concept, let assume that a configuration with six available positions is
generated (n = 6), where a necklace G = {1,3,5} C Zg is defined. The representation of this
example can be seen in Figure 1.12.
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For this particular case, Sym(G) = 2 because {1,3,5} = {3,5,7} mod (6). Note that, in this
example, although {2,4, 6} is an equivalent necklace with respect to G, as defined in Equation (1.43),
it does not fulfill the definition of symmetry of a necklace.

1.4.1.2 The Necklace problem

The necklace problem is a combinatorial problem that studies the number of different arrangements
of n elements in a circular loop that can be generated assuming that each element comes in one of
k different colors. In this definition, two arrangements are considered to be equivalent if they only
differ by a rotation inside the loop (see Equation (1.43)). The number of different arrangements is
given by the application of Burnside’s counting theorem, which, applied to this particular case, can
be summarized by the following formula[39]:

Ni(n) = % > p(d)km?, (1.48)
dn

where the sum is taken over all the divisors d of n, and ¢(d) is called the Euler’s totient function
of d, an arithmetic function that counts the number of positive integers less than or equal to d that
are coprime with d. It is important to note that the number of different arrangements of pearls
provided by Equation (1.48) is also representing the number of equivalent classes (that is, orbits)
defined by the group and actions considered.

The case of study is a simplification of the general necklace problem, since only two different states
for each position are possible, the first one having the position occupied, and the second, the case
in which it is not. Thus, for this particular case, the number of colors is k = 2.

However, the question of why using a representation in which the positions are distributed in a
circular loop still remains. 2D Lattice Flower Constellations generate a distribution related to a
reference satellite, which means that we are interested in the relative positions of the satellites (AQ;;
and AM;;), and not the absolute positions. In fact, having two configurations with shifted positions
in M only means that the same constellation is observed at a different time, while a shifting in
represents a rotation of the full constellation. Both shifting movements generate the same structure,
and thus, there is no point in considering all combinations of parameters. Moreover, A€};; and AM;;
have modular arithmetic nature, which translates into the representation as a circular loop in the
necklace.

1.4.2 Admissible pairs

Let G be a necklace generated in the variable mean anomaly. We know from Equation (1.40) that
the values of the mean anomaly depend on the values of the right ascension of the ascending node.
Thus, we define k£ € {1,...,Sym(G) — 1} as the shifting parameter of the necklace, which is an
constant integer that represents the additional movement required by the necklace each time that
we change the position in the variable AS2 in order to obtain a symmetric configuration.

Expanding Equation (1.40) and computing the variation of the mean anomaly between two
consecutive values of the right ascension of the ascending node, we obtain the AM-Shifting, which



20 Preliminaries

is defined as:

2 I 21w N,

AM = Y
NSO NSONO

(1.49)

where k is the shifting parameter. Moreover, imposing that the value of the mean anomaly is
invariant under the addition of N,AM, we can obtain the relation that must be fulfilled by all
admissible pairs:

Sym(G) | kN, — Ng, (1.50)

which reads Sym(G) divides kN, — N.. Equation (1.50) provides all possible admissible pairs given
the values of the symmetry of the necklace Sym(G), the number of orbits N, and the configuration
number N..

As an example, let G = {1,2} be a necklace in the mean anomaly where the number of available
positions Ng, = 4. From the definition of symmetry of the necklace (Equation (1.46)), we obtain
Sym(G) = 4. In addition, the number of orbits is N, = 6 and the configuration number is N, = 2.
Thus, initially, we have a distribution as shown in Figure 1.13, where the circles represent available
positions and the filled circles are the position of the necklace in the first orbit. Now, we have to
find the possible values of k that allow us to obtain the same configuration when A2 = 27 following
Equation (1.40).
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Figure 1.13: Available positions and initial necklace in the first orbit.
Using Equation (1.50) applied to the values of the example:
4|6k —2, (1.51)

where we can obtain the two values of the sifting parameter k£ = {1,3} that fulfills that expression.
The representation of both configurations can be observed in Figure 1.14. As it can be seen, both
distributions are completely different and maintain the properties of symmetry that we were looking
for.
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Figure 1.14: Admissible configurations.
1.5 Burnside’s Lemma

Since we introduce some counting theorems that rely of Burnside’s Lemma in this work, we have
included a summary of it in this introductory chapter. This is done also for completeness, presenting
in the same document all the concepts and formulation used in this work.

Let G be a group, and let + be an action of this group over a set X, that is, an application defined
as:
+: GGxX — X
(9,2) +— g+uz, (1.52)

such that:

at(g+z) = (g1+g2)+z

Vg,20€ G,z € X (1.53)
lg+x = =z

In addition, let an orbit (orbit(z)) be the set of elements that can be obtained from x by the
application of the action (+), in other words:

orbit(z) ={g+z|g€ G} C X; (1.54)

and let the fix of g (Fix(g)) be the elements of X that are invariant under the multiplication by g,
that is:
Fix(g) ={r € X |g+ 2 ==z}. (1.55)

The action partitions the set X into orbits, since if y = g + z, then orbit(y)=orbit(x). Thus, the
number of orbits induced by the action + is given by the Burnside’s Lemma:

1 :
@ Z’le(g)\, (1.56)
geG
where we denote |Y| to the number of elements of the set Y.

With Burnside’s Lemma we finish this introductory chapter, where the basic background of the
research presented in this work is shown. In the next chapters the most relevant results from
the research done are presented, including examples of application of the new concepts and
methodologies introduced.
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Chapter 2

2D Necklace Flower Constellations

In a Lattice Flower Constellation, the number of possible configurations that the theory provides is
proportional to the number of satellites in the constellation, and thus, it imposes a great limitation
in the design of constellations composed by a small number of satellites. In order to solve this issue,
the concept of necklace was introduced for the 2D Lattice formulation [17], where the condition for
maintaining the uniformity and symmetries of the configurations was presented. However, necklaces
were not included directly in the formulation of the constellation and its computation was difficult
to handle in a computer. This resulted in the impossibility to automatize the computation of
the different configurations and the requirement to calculate all the available positions instead of
just the real locations of the satellites. Thus, a new design framework was required to solve these
difficulties.

In this chapter we introduce the formulation of the 2D Necklace Flower Constellations. This
design framework constitutes the generalization of the methodology presented in 2D Lattice Flower
Constellations using necklaces [17, 18] and includes in its definition all the former 2D lattice
configurations. As it will be seen, 2D Lattice Flower Constellations are defined as a subset of
solutions from the 2D Necklace Flower Constellations, where the satellites occupy all the available
positions.

2D Necklace Flower Constellations are based on the idea of defining a fictitious constellation that is
bigger than the one we want to obtain. Then, the necklace theory is applied in order to obtained the
subsets of the positions generated that maintain the properties of uniformity and symmetry in the
configuration. One of the most important advantages of this formulation is that during the process,
it is no longer required to generate all the fictitious constellation, since the formulation allows
to obtain the configuration of the real satellites directly. Moreover, this methodology of design
also allows to study the sequence of launches for constellation building (for instance, being the
final constellation the fictitious constellation of this problem), as well as the evaluation of possible
reconfigurations available in case of failure of some satellites of the distribution.

In addition, three counting theorems are included, which allow to know beforehand the number
of configurations obtained using this theory for the cases of fixed fictitious constellation, fixed
symmetries of the configuration, and fixed number of satellites. This formulation is able to not only
define the symmetries, but also to provide a methodology to easily define constellations, which will
be used in future work for optimization, station-keeping [16], constellation reconfiguration [20] and
launching schedule studies for satellites of a constellation.
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2.1 2D Necklace Flower Constellation

We begin the Necklace Flower Constellation Theory with the case of a 2D Lattice. This is chosen in
order to introduce in a clear way the new formulation that is carried out during the Necklace Flower
Constellation Theory, as well as to serve as a common link between old and new formulations. In
addition, this new formulation allows to have a better control in the design, since the necklace
definition is performed directly in the formulation.

A 2D lattice can be generated in the same way as shown in Equation (1.40):

Lo 0 AQy; i1
“ Yo =on , (2.1)
Lya L AM;; i1

where we denote Lg to the number of orbital planes, Lj; to the number of satellites per orbit
and Ljsq to the combination number between the right ascension of the ascending node and the
mean anomaly. Moreover, Equation (2.1) can be expanded in order to obtain the distribution as a
function of the integers i € {1,..., Lo} and j € {1,..., La}:
AQ; = Z(i—n,
2r . 21w Lo

1) — 2 G, (2.2)

AM; = L (-
LM(J ) T Lo

where this equation corresponds to a complete configuration. Now, instead of considering all
the admissible locations, we select a set of satellites that maintain the properties of uniformity
and symmetry of the former configuration, that is, the same distribution can be observed with
independence on the orbital plane chosen. In order to do that, we define a necklace in the mean
anomaly Gys as a subset of Zy,, of cardinality Njy; which contains the positions occupied by the
necklace (and that also corresponds to the number of real satellites per orbit). A necklace is a
subset G,y of the set of admissible locations:

Gu C{1,...,Lub, (2.3)

such that |Gas| = Nas is the number of elements of the necklace Gyr. On the other hand, and in
order to simplify the notation used, we assume that:

I = {9u(1), -, Gu(G7), -+, G (Nar)}, (2.4)

with
1§QM(1)<---<QM(j*)<---<QM(NM)§LM, (2.5)
where the index j* names each element of the necklace Gp; and it is represented by an integer

modulo Ny, that is, 7% 4+ Ny is the same index as j*. This allows to interpret necklaces as injective
functions:

Gum: LN, — Zry
it o Gum(5"). (2.6)
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For this reason, it makes sense to refer to Gps(j*), where the integer parameter j* € {1,..., Ny}
represents the movement inside the necklace defined. In addition, and for simplicity of notation, we
denote mod(a,b) = a mod (b). Thus, due to the modular arithmetic inside the necklace:

Gm(j*) = Grr(mod (5 + Nar, Nr)), (2.7)

which corresponds to a complete loop in the available positions in the mean anomaly. It is important
to note that this rotation is equivalent to a movement in the admissible locations defined by:

j=3+ Ly mod (LM), (28)

as both represent the same movement of the necklace, one using the parametrization of the necklace
and the other using the parametrization of the fictitious constellation.

On the other hand, we require a parameter (the shifting parameter) that is able to modify the mean
anomaly with respect to the change in the right ascension of the ascending node. Let Sy € Z
be that parameter. Thus, it is possible to define an application (T1) between the positions in the
necklace necklace and the overall available positions:

Tl: (Zp, xZn,,) — (Zr, xZr,,)
(i,57) — (i,7), (2.9)
where the integer j is described as:
J=6m0") + Smali—1). (2.10)

In order to agree with the formulation introduced in Equation (2.1), one unit is subtracted from
the previous expression leading to:

J=1=0Gu(") =1+ Sua(i—1). (2.11)

However, there is a modular behavior between the necklace and the available positions in the mean
anomaly. Using the definition of symmetry of a necklace provided by Equation (1.46):

Gy =Gm + Sym(Gy) in Zy,,, (2.12)
and thus, the movement in j is described as:
j—1=mod (Gpy(5*) — 1+ Sya(i — 1), Sym(Gur)) . (2.13)

Introducing this expression in the original distribution shown in Equation (2.2), we obtain:

2r .
27 " . 2 Lyq .
AM;jp = o (mod (Gar(5%) = 14+ Sya(i — 1), Sym(Gar))) — T I (i—1), (2.14)
M M Q

which describes all possible movements that the necklace Gys can perform in the space generated.
Using this formulation, ¢ represents the movement of the necklace in the right ascension of the
ascending node while j* defines the positions inside the necklace. One important thing to notice
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is that, although the shifting parameter Sy;q can present any integer value, we only consider
Sya € {0,...,Sym(Gar) — 1}, since other values generate equivalent configurations due to the
arithmetic nature of the problem in Sym/(Gas).

Now, we impose the condition of symmetry, that is, a complete rotation in either variable, the right
ascension of the ascending node or the mean anomaly, provides the same initial configuration. This
definition is equivalent to:

A = Ay nyy),s

AMije = AMignyy)s

Rotation in M:

Rotation in : (2.15)

where all relations must be fulfilled at the same time. From the first rotation in M, there is no
effect on the right ascension of the ascending node:

2T . 2T .
L—Q(z—l):—(z—l), (2.16)

while focusing on the mean anomaly, it must satisfy that:

mod (Gar(5%) — 1+ Spa(i — 1), Sym(Gm)) =
= mod (Gar(mod(5* + Nasy, Nar)) — 1+ Sy (i — 1), Sym(Gur)) - (2.17)
This relation is achieved without imposing further conditions since Gp/(j*) = Gar(mod(j* +

Ny, Nar)) (see also Equation (3.6)). On the other hand, in the rotation of the right ascension
of the ascending node, the first relation is automatically achieved:

2 2

Ia (1—1)= Ia (Lo+i—1) mod (Lg), (2.18)
while the second relation is not. Imposing the condition:
Ly Ly

provides the following expression:

mod (Gar(5*) — 1+ Sya(Lao + i —1), Sym(Gum)) — LL]‘? (Lo+i—1)=
= mod (Gun(j*) — 1+ Swma(i — 1), Sym(Gur)) — LLJ‘iQ (i—1). (2.20)

Then, by the properties of modular arithmetics, there exists A € Z such that the former expression
can be transformed into:

Gu(G*) — 14 Sua(i—1) + ASym(Gar) = G () — 1+ Sua(La +i— 1) — Ly, (2.21)

and finally, the terms that are equal in both sides of the equation can be simplified, providing the
expression:

ASym(Gm) = SmaLa — Lua, (2.22)
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which relates the shifting parameter (Sy;q) with both the necklace (Gas) and the fictitious orbit
(Lo and Lysq). Equation (2.22) can also be represented as:

Sym(Gum) | SmaLa — Ly, (2.23)

which reads, Sym(Gys) divides (SyoLo — Laq) and constitutes a Diophantine equation that is
also subjected to modular arithmetic. It is important to note that Equation (2.23) is equivalent to
Equation (1.50). However, the new formulation allows to show an alternative proof to the relation
proposed in [17] as well as present a methodology that can be used for optimization since only the
real positions of the satellites of the constellation have to be computed.

The combination of Equations (2.14) and (2.23) allows to compute all possible symmetric
configurations for a particular necklace Gy and a fictitious expanded constellation. In the following
sections, an example of application is shown and then, the number of possible configurations that
the 2D Necklace Flower Constellations can provide is studied.

2.1.1 Example of application

As an example of a 2D Necklace Flower Constellation, we design a constellation made of 14 satellites
in circular orbits e = 0, with semi-major axis a = 14420 km and inclination ¢ = 63.435°. The
satellites are distributed in seven inertial orbits (Lg = 7), which means that there are two satellites
per orbit (Nj; = 2). The number of possible configurations that we can obtain using the Lattice
Flower Constellation Theory in this case is given by the possible values of the combination number
N.={0,...,6}, which is seven different distributions. However, the Necklace Flower Constellation
Theory can be used to increase this number of possibilities.

Let Ljys = 20 be the number of available positions in the mean anomaly that are defined in order to
create a fictitious constellation composed by LgLjs = 140 satellites. In this fictitious constellation
we look for the configurations with Nj; = 2 that are symmetric in the sense of Equation (2.15). That
way, we obtain 70 different distributions, ten times the former number of possible constellations.

In order to describe a simple example, we select only the distributions where Gy = {1,2} C Zgy and
Ly = 6 from the set obtained. This implies that the symmetry of the necklace is Sym(Gyr) = 20,
since {1,2} = {1,2} + 20 mod (20). Then, using Equation (2.23):

Sym(gM) | SvaLlo — Ly = 20 ’ 7Sva — 6, (2.24)

which leads to Sy;q = 18. Figure 2.1 shows the distribution of the constellation in the (€2, M)-space,
where, without losing generalization, we have chosen €217 = Mj; = 0 as the initial position of the
reference satellite of the constellation. As it can be seen, the distribution when 2 = 0 and when
Q) = 27 is the same, and thus, the properties of symmetry of the constellation are maintained from
the original lattice in Lo and L.

On the other hand, in Figure 2.2, the (€, M)-torus representation of the constellation is shown.
There, it can be observed clearer how the satellites are positioned following two closed lines (as
Njr = 2) around the surface of the torus, not having any satellite outside this configuration.

Finally, Figure 2.3 shows the inertial orbits of the constellation from an isometric view (left) and
a polar view (right). This constellation presents two curious properties. First, all the satellites of
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Figure 2.1: Representation of the initial positions of the satellites in the (€2, M)-space.
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Figure 2.2: Representation of the initial positions of the satellites in the (2, M)-torus.

the constellation are always positioned in an interval of Earth longitudes smaller than 90°. This
means, that they fly as a formation over the same regions of the Earth. Second, from the polar view,
we observe that the constellation generates two heptagons of satellites that are bounded. In fact,
during the motion of the constellation, these heptagons are maintained, from a polar perspective,
creating a rigid structure that is rotating with no collisions between both structures.

As it can be seen, using this new formulation (see Equations (2.14) and (2.23)), we can expand
the searching space as much as required without having to compute all available positions in the
fictitious constellation generated. This allows to considerably reduce the amount of computations
required, as only the real positions are calculated, a property that will be used in the future in
optimization problems using this new design methodology.
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Figure 2.3: Initial distribution of the constellation in the ECI frame of reference.

2.2 Number of symmetric configurations in a 2D Necklace Flower
Constellation

During this section, we deal with the computation of the number of configurations that the Necklace
Flower Constellation Theory provides. In that respect, we consider three cases of interest which
have different applications.

2.2.1 Fixing the necklace G,; and the Hermite Normal Form

In this case we focus on the study of the number of possibilities given a necklace Gp; and the
complete Hermite Normal Form for the fictitious constellation. By doing this, the available positions
are fixed (they cannot shift), and thus, this methodology provides the number of symmetric
configurations that follow a particular distribution given by the Hermite Normal Form. This is
equivalent to compute the number of possible values that the shifting parameter Sy;q can present
in Equation (2.23).

Theorem 1. Given a necklace in the mean anomaly Gyr and a fizred Hermite Normal Form, there

exists symmetric distributions in the constellation if and only if gcd(Sym(Gar), La) | Laq, being
the number of different configurations in that case:

ged(Sym(Gnr), La). (2.25)

Proof. Equation (2.22) can be written as:

ASym(Gm) + LoSua = Lue, (2.26)
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where A is a unknown integer. If we select A and Sy;q as the variables of study, the expression
becomes a linear Diophantine equation where, by the use of Bézout’s identity, we can conclude that
there exist solution if and only if:

ged(Sym(Gu), La) | Lua- (2.27)

In the case the former expression is fulfilled, there are an infinite number of solutions of
Equation (2.26) that have the form:

Sym(Gu)

S = (Swq)o+AAL  with Al= ,
(Sara)a (Sma)o w ged(Sym(Gar), La)

Lo

(A = Ao = A g Gym@n Ia)

(2.28)

where (Sirq)o and (A)p is a known pair of solutions, and A is an integer number.

However, the variables and parameters from Equation (2.26) have some constraints due to the
modular nature of the problem, in particular:

Sym(Gn) € {1,...,Lum},
Lua € {0,....Lq—1}, (2.29)

and thus, there are a finite number of different solutions to this problem. From the second boundary,
we can derive that the difference between the maximum and the minimum value of Sy;q is, at most,
ASyra = (Sym(Gar) — 1). Now, we are interested to know the number of different values of A that
allows Equation (2.28) to be inside this constraints. Thus, we first count the number of integer
sections of length Al that lay in the interval ASysq, that is:

{ASMQ J B {(Sym(gM) - 1)gcd(Sym(GM),LQ>J _
Al N Sym(Gar) B
- {gcdwym(gm,m)—ng(‘Zyy”;((%’LQ)J, (2.30)

where |z] is the round down integer of x.

It is elemental that ged(Sym(Gar), Lq) is an integer, so Equation (2.30) can be expressed as:

ged(Sym(Gur), LQ)}
Sym(Gr) ’

ged(Sym(Gar), La) — [ (2.31)

where [z] is the round up integer of . On the other hand, we know that ged(Sym(Gy), La) €
[1, Sym(Gar)] by the definition of greatest common divisor, thus:

ged(Sym(Gu ), La)
Sym(Gum)

and applying this result we derive that the number of intervals is:

€(0,1], (2.32)

ged(Sym(Gar), La) — 1. (2.33)
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Finally, the number of intervals defines a set of different elements inside the interval ASy;q equal
to the number of intervals plus one. Consequently, the number of different values that (Syrq)a can
take is:

which is the number of solutions of Equation (2.26) provided that the number of orbital planes Lq,
the combination number Lj;q, and the symmetry of the necklace Sym(Gyy) are fixed. Note that this
number of solutions only applies if the condition of existence of solution provided by Equation (2.27)
is achieved.

O]

2.2.2 Fixing the necklace G,;, Lg and L,

On the other hand, in this second case, we fix the necklace Gy; and the size of the extended space,
that is, the parameters Lg and L s from the Hermite Normal Form. This provides the information of
how many different distributions can be created with a given set of satellites (through the parameter
Sym(Gar)). This problem is equivalent to compute the amount of pairs {Snyq, Lyma} that are
solution of Equation (2.23).

Theorem 2. Given a necklace in the mean anomaly Gy and a size of the fictitious constellation
(La and Ly ), the number of different symmetric constellation configurations is Lgq.

Proof. Equation (2.22) can be reordered as:
LoSya — 1Lyq = ASym(Gu), (2.35)

where the parameters have the constraints shown in Equation (2.29). In this expression, we consider
Sy and Ljsq the variables of the problem, and thus, the equation has solution only and only if:

ged (Lo, 1) [ ASym(Gum), (2.36)

which is always true as ged(Lg,1) = 1 and ASym(Gys) is an integer value. This provides an
important result: given a symmetry of the necklace Sym(Gy), and a number of orbital planes Lq,
there is always at least one solution to the equation. The objective now is to compute the number
of solutions that this result represents.

Equation (2.35) is a linear Diophantine equation whose solutions are provided by the following
relation:

(Sma)x = (Sma)o+ A,
(Lma)y = (Lma)o — ALg, (2.37)

where (Sya)o and (Laq)o are a pair of possible solutions of Equation (2.35) and A is an integer.
From Equation (2.37), we can derive that there is only one solution for a fixed ASym(Gar), since
Ly € {0,...,Lg — 1}. Thus, the number of possible solutions is provided by the number of
different equations in the form of Equation (2.37) (which is equivalent to the number of possible
values of the integer A).
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From Equation (2.35), the maximum and minimum values of ASym(Gys) can be obtained:

min (ASym(Gyr)) = —(La—1),
max (ASym(Gy)) = (Sym(Gm) —1)Lq. (2.38)

Then, we derive the maximum variation of the parameter ASym(Gys):
A (ASym(Gur)) = max (ASym(Gar)) — min (ASym(Gu)) = LaSym(Gu) — 1. (2.39)
Moreover, Sym(Gar) is constant in this variation, thus:
A (ASym(Gn)) = AASym(Gum), (2.40)

where we can conclude that the admissible values of A lay in an interval of amplitude:

1

Ad=la-g G

(2.41)
Now, we are interested in the number of complete intervals of amplitude 1 that are inside AA

(remember that A is an integer number), since this number plus one defines the number of possible
values of A. The number of complete intervals is:

IAA] = {LQ - Syml(QM)J —Lo- [Syml(gM)—‘ . (2.42)

Moreover, since [Sym(Gy)~] € (0,1], the number of complete intervals is (Lg — 1), which define
Lq different values that the parameter A can take in Equation (2.37). The different values of A
are providing the number of possible different equations that we can obtain from Equation (2.37).
Furthermore, we already know that each equation has only one solution. Thus, the total number of
solutions of Equation (2.37) is Lq.

O]

One important thing to notice is that the number of solutions provided by Theorem 5 requires to
set a particular symmetry of the necklace Sym(Gys). If the symmetry of the necklace is not fixed,
and instead only the size of the fictitious constellation is fixed, that is, Lo and Ljs, we have to
use the Burnside’s counting theorem applied to this particular case in addition to the methodology
presented in this section. That way, the number of possible solutions that a fictitious constellation
distributed in Lg orbital planes, with Lj; available positions in each orbit is:

Lo o(d)2bm /e, (2.43)
M d| Ly

where the sum is taken over all the divisors d of Ly, and ¢(d) is the Euler’s totient function of d.
Equation (2.43) represents a combinatorial problem where the number of possible combinations of
necklaces is given by Burnside’s counting theorem while the number of pairs { Ly, Spq} are given
by Theorem 5. This combination can be freely performed since the number of pairs { Ly, Sya}t
does not depend on the symmetry of the necklace (the only parameter that is changing in Burnside’s
counting theorem).
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2.2.3 Fixing Ny, Lo and Ly,

This case is an interesting variation of the previous counting methodology, where now, the real
satellites per orbit, that is, Nas = |Gas|, is fixed instead of the necklace. Thus, it provides information
on the number of possibilities of design that are available with a set of satellites and a size of a
fictitious constellation. It is important to note that, in this case, the sizes of both the real and the
fictitious constellations are fixed.

Theorem 3. Given a number of satellites per orbit Ny, and a size of fictitious constellation (Lq
and Lyy ), the number of different symmetric constellation configurations is:

Lo L '
— > |Fia(g)|, (2.44)

where Fix(g) is the number of elements contained in the Fix of a given symmetry g, and can be
computed using the following recursive function:

Ly 9 = q
|Fiz(g)| = — Ny - 7 | Fia(g')| (2.45)
g —gq T M
L 9 fl
g'lg
L Lg]\//j ‘NA/[ _

Proof. The process followed in this case is based on applying Burnside’s Lemma to count the number
of different solutions. In order to use it, we require to set first a particular symmetry of a necklace
and compute the Fix in the space of all possible configurations under that symmetry. Second, we
remove the configurations that were considered in other symmetries before. Third, the number
of orbits for a particular symmetry is computed using Burnside’s Lemma. And finally, the total
number of solutions is obtained as a sum of all the possible symmetries.

Let + Zp,, be the possible actions that are considered in this problem, which correspond to the
possible different rotations that a necklace Gys can perform in the modulo Zr,,. In addition,
G = Zr,, is the group of possible actions that can apply to any necklace defined in Ly, available
positions. That way, the map ¢ can be defined as:

p: GxX — X

(g,2) — x+g mod (Ly). (2.46)

The objective is to apply the Burnside’s Lemma to this application, and thus, we have to compute
|Fix(g)| (see Equation (1.56)). The Fix of a given action is the set of elements that remain unaltered
under the application of that action. In that respect, from the definition of symmetry of a necklace
(see Equation (1.46)), we know that the only possible values of g € G that have elements in the
Fix(X) are the ones that presents symmetries, that is, when an element fulfills ¢ = Sym/(Gas). This
means that only the values such that g|Ly; and LTM|N M contribute to the elements of the Fix.
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First, we focus in a particular value of symmetry of the necklace g = Sym(Gys) and its Fix (Fix(g)).
As there exists symmetry in the necklace, the configuration can be regarded as a pattern comprised
of g available positions that is repeated Ljs/g times in the L), available positions. In this pattern,
there must be Njsg/Lys elements from the necklace since all the patterns must have the same
number of elements. Thus, the number of possible combinations that exists in a pattern of size g
(PC(g)) is:
g
PC(g)=| Ny . (2.47)
Tor g
M

On the other hand, each pattern can rotate Ljs/g possible times in the Ly, available positions while
maintaining the same configuration (due to the symmetry that we are imposing). Thus, the number
of combinations of Njs elements in L available positions that present a given symmetry g is:

L L g
Mpcg) =" N, |- (2.48)
g g —gq
Ly

However, this counting also includes some elements that belong to other symmetries, and thus, they
must be removed from this set of combinations in order to avoid duplicities in the counting process.
For instance, if Ly; =4 and Nj; = 2 and we consider g = 4 as the symmetry in study, the number
of combinations that we compute with Equation (2.47) include combinations of elements that also
present symmetry of g = 2: {1,3} and {2,4}; and thus, we could count them twice if we are not
careful in the counting process. In order to avoid these cases, we only consider g as the smallest
symmetry that a combination of elements can present.

From the definition of Fix, we know that the number of possible combinations of Nj; elements with
a particular symmetry ¢ is the |Fix(g)| itself. In addition, the possible combinations of elements
must have been generated based on patters of size g (as in Equation (2.47)). Thus, the number of
different patterns that exist for a particular symmetry ¢’ is:

PC(g") = Lg]:/f [Fix(q')| . (2.49)

Then, we can remove from the counting process, of the different pattern generators with symmetry
g, all the elements that belong to a different symmetry such that ¢’ < g:

9 Ly

g .
PC(g) = Ny - Z m ‘FlX(gl)‘ ) (2.50)
dlg
LIYI|NM

g

where the sum is performed in all the symmetries ¢’ such that ¢'|¢g and Lgl,” | Ny since ¢’ must also
fulfill the conditions for symmetry.
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Once the number of pattern combinations is
Equation (2.50), leading to:

computed, the |Fix(g)| can be obtained using

Ly 9 s q
Fix(g) === || My | = 2. - IFix(d)]|, (2.51)
/) e
M ;
g'lg
i LgJV [Nt ]

which is a recursive function that can be easily computed. Equation (2.51) allows to obtain the
number of different necklaces under a given symmetry g. This is done by the direct application of
Burnside’s Lemma (Equation (1.56)), where G = Zr,,, as pointed out before. That way, we can
derive Corollary 1.

Corollary 1. The number of different necklaces with a given symmetry g that can be obtained with
Ny elements taken from Lys available positions is:

g 92‘1
g —yg 1
L 9=
L9 lg
i N

/

9
Ly,

‘Fix(g/)‘

(2.52)

where |Fiz(g')| is provided by Equation (2.51).

In addition, if we fix the necklace, we obtain the same conditions as in Theorem 2, which implies
that the number of possible different configurations that each necklace can provide is Lg. Thus,
and for a given symmetry g, the number of possible configurations is:

Lq 9 ~
) Ny Z Ly ‘Fix(g’)‘ (2:53)
L/
dlg
L Lgly |NA/I .

Finally, since we already know the number of possible configurations that each symmetry can
provide, we can sum all the contributions from the different symmetries to obtain the total number
of configurations of a 2D Necklace Flower Constellation:

LM LQ g g_l gl
. /
> o Ny - > - Fix(¢)|] . (2.54)
g=1 glzl
Lg‘LM Ln g'lg
2Ny i ML Nag |
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which can be rewritten as:

Lo Ly
— Fix , 2.55
Ly Y ) (2.55)
gi
glLa
LJW‘N
g

where |Fix(g)| is provided by Equation (2.51).
O

The set of equations given by Theorem 3 are the general expressions to calculate the number of
possible combinations that the 2D Necklace Flower Constellation methodology provides for a given
number of satellites and a given size of the fictitious constellation. It also allows to fix the cost of
the mission (the number of satellites and their general distribution), while providing information
of the design possibilities available before starting the computation. That way, it is possible to
decrease or increase the size of the fictitious constellation to adapt the number of possibilities to
the memory and time available.

2.3 Generalizing into a double necklace

In Section 2.1 a necklace in the mean anomaly was introduced and then in Section 2.2 the number
of possible configurations was assessed. In this section we introduce the formulation for a double
necklace in the satellite distribution. This means that two necklaces are generated, one in the mean
anomaly Gys and the other in the right ascension of the ascending node Ggq.

Let Ng and Lo be the real and fictitious number of orbital planes in which the constellation is
distributed. That way, the necklace in the right ascension of the ascending node can be defined as
the subset:

Ga CA{1,...,La}, (2.56)

such that |G| = Nq. In addition we define the index i* as the parameter of distribution inside the
necklace Go. That way:
gQ(’L*) = gg(mod(z* + Nq, NQ)), (2.57)

which is equivalent to:
1= mod(i + Lq, LQ). (2.58)

Now, an application between i and ¢* can be defined using the necklace Gg:
i = Ga(i"), (2.59)

and introducing this expression into Equation (2.14), we obtain:

AQjsjr = ZZ (Ga(i*) = 1),
AMyy = 1 (nod (G () ~ 1+ SualGai') — 1), Sym(Gur)) -
_ 2m Lue (Ga(i*) — 1), (2.60)

Ly Lo
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which is the general expression that allows to generate all the possible configurations when two
necklaces are included. On the other hand the symmetric configurations of this formulation are still
given by Equation (2.23) since the rotations in this new necklace does not modify the behavior of
the system.

One important thing to notice is that this formulation represents the removal of complete orbital
planes from the original configuration given by Equation (2.14). This means that, unless the necklace
Gq presents a symmetry, the configuration will lose the property of having an uniform distribution
no matter the orbital plane observed. However, the resultant configuration still presents a structure
related to the original distribution.

2.4 Generation of all the configurations

In this section, we present a general scheme in order to generate all the possible constellation
configurations that the 2D Necklace theory can provide. In that respect, Figure 2.4 shows the
summary of the process.

No, Ny | Ga, Gu Sym(Gu) | SmaLa — Lua
N\ J
O f—i—\

Lq, Ly Sma, Ly
- T
O

. AQi*j*

0/7 67 Z7 w — 2DNFC < AMZ*]*

~ @@

Figure 2.4: Flowchart of the 2D Necklace Flower Constellation generation process

First, the general classic elements for the whole constellation are defined, namely, the semi-major
axis a, the eccentricity e, the inclination 7 and the argument of perigee w. Second, the sizes of the real
and fictitious constellations are set (Ng, Ny for the real and Lq, Ly for the expanded distributions).
Then, using these sizes, all the possible necklaces are generated using a generation algorithm [40, 41].
With the results obtained, we apply Equation (2.23) to generate the shifting parameters Syq
and the configuration numbers Lj;q that correspond to each combination of necklaces. Finally,
the distribution in the right ascension of the ascending node (A;+;+) and in the mean anomaly
(AM;«;+) is computed, and thus, in combination with the classical elements already defined, the
configuration of the whole 2D Necklace Flower Constellation is defined.

This process can be parallelized in the generation of necklaces, the solution of the Diophantine
equation and the generation of the distributions, allowing to generate and study a large number of
configurations in a small amount of time. On the other hand, as the number of parameters required
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to define a constellation is very low, it is easy to store in memory all the possible combinations for
later study in other applications.

2.5 Conclusion

This chapter presents a new methodology of satellite constellation design, the 2D Necklace Flower
Constellations. This methodology allows to overcome the limitation on the number of possibilities of
design that the original 2D Lattice Flower Constellations presented while maintaining the number of
satellites of the configuration. This is achieved by an expansion of the configuration into a fictitious
constellation in which a set of satellites that maintain the properties of uniformity and symmetry are
selected. Other applications of this design framework are the definition of the sequence of launches
for large constellations, the study of possible reconfiguration strategies of a given constellation with
very little fuel consumption, or the assessment of the effect of failure in satellites of the configuration.

Compared to previous formulations, the main advantage of 2D Necklace Flower Constellations is
that it introduces the concept of necklaces directly into its formulation, which allows to have closed
expressions of the distributions that a constellation can present. This is especially interesting for
design since it provides more control in the process, and for optimization techniques, since it is
possible to generate any configuration that the theory can provide in a fast and easy procedure.

In addition, three counting theorems are presented, which allow to predict the number of possible
combinations that the 2D Necklace Flower Constellations theory can provide. The first covers the
number of constellation configurations where a particular distribution is fixed. The second theorem
provides the information of the number of possibilities that a particular symmetry generates in the
design methodology. On the other hand, the third theorem allows to compute the total number of
configurations that a set of satellites can provide for a particular size of fictitious constellation.

Finally, it is important to notice that the number of possibilities obtained using this methodology
depends on the size of the fictitious constellation, and thus, it can be increased as much as required.
This property is very interesting from a design point of view, since it allows to optimize the
methodology to the computational resources available.



Chapter 3

3D Necklace Flower Constellations

We continue the development of the Necklace Flower Constellation theory with the generalization
of the 3D Lattice Flower Constellations theory. This is done by an expansion of the configuration
space of the 3D Lattice Flower Constellations consisting on generating a fictitious constellation with
more satellites than the real constellation sought. 3D Necklace Flower Constellations constitutes
a generalization of the 2D and 3D Lattice Flower Constellations, and contains as a subset, all the
former Lattice Flower Constellations. This includes the 2D and 3D Lattice Flower Constellations
as well as the 2D Necklace Flower Constellations.

The formulation developed for the 3D Necklace Flower Constellations allows to include the concept
of necklace in any of the variables of distribution of a 3D Lattice Flower Constellation, that is,
the right ascension of the ascending node, the argument of perigee and the mean anomaly. This
allows to expand the possibilities of design, not limiting the generation of necklaces to the mean
anomaly as done in previous works [17, 18]. Moreover, as all the former Lattice and Necklace Flower
Constellations, all the constellations generated preserve the properties of uniformity and symmetry,
which are of importance for many space missions, such as global positioning, telecommunications
or Earth observation.

This chapter is organized as follows. First, a new methodology is introduced that includes necklaces
directly into the formulation of the distribution in a 3D Lattice Flower Constellation. This provides
a clearer formulation and moreover, allows a faster computation of the real constellation, since only
the real positions of the satellites are calculated. Second, the expansion of the searching space is
introduced, which allows to generate as many different possibilities in design as required. This two
properties are especially interesting in optimization problems, where the time spent and the design
possibilities are controlled using the size of the fictitious constellation. Third, the conditions to
generate distributions that maintain the properties of symmetry and uniformity of the configuration
(characteristic of the Lattice Flower Constellations) are presented. This allows to create structures
in the constellation that are maintained during its movement. Finally, an example of application
of this new formulation is presented, where the possibilities that this new methodology can provide
in the design of satellite constellations are shown.
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3.1 The 3D Necklace Flower Constellations Theory

As it can be seen in Equation (1.41), a 3D Lattice Flower Constellation can be described by the use
of the Hermite Normal Form. The Hermite Normal Form is composed by six integers, three in the
diagonal of the matrix and the other three in the lower triangular part of the matrix. The integers
in the diagonal are the number of orbital planes of the constellation (Lg), the number of different
argument of perigees in each orbital plane (L, ), and the number of satellites in each orbit (Lpys).
The other three parameters are the configuration numbers (Lasq, Law, Loo) defined as follows:
Ly €0,Lg — 1], Ly € [0, Ly — 1] and Lo € [0, Lo — 1]. The expression that summarizes the
distribution of the satellites in a 3D Lattice Flower Constellation is:

Lo 0 0 AQy i—1
Loo Ly, 0 Awijk =2m k-1 ) (31)
Lyo Lye Lum AM;jp, J—1

where A€ is the distribution in the right ascension of the ascending node of the constellation,
Aw;ji, is the distribution of the argument of perigee, and AM;j;, is the initial distribution of
the mean anomaly with respect a reference satellite of the constellation with orbital elements
{Q000, woo0, Mooo}- Moreover, the list (7,7, k) represents the position of a satellite in the orbital
plane i € [1, Lg|, with the argument of perigee k € [1, L,,] and the mean anomaly j € [1, Ljs]. Note
also that the values of Q;;1, w;;jr and M;;, represent three angles and thus, they are defined in the
range [0, 27].

Equation (3.1) defines the distribution of a 3D Lattice Flower Constellation. This distribution has
the particularity of presenting a symmetric configuration in the lattice of the constellation with
respect to all its variables, the right ascension of the ascending node, the argument of perigee and
the mean anomaly. The objective now is to introduce the concept of necklaces in the formulation,
but preserving the symmetries of the initial configuration.

In order to introduce the necklaces, Equation (3.1) must be expanded:

2
27 21 Loa .
Awijy = S(k—1)— T2
wZ]k) Lw ( ) Lw LQ (7’ )7
2 21 L, 2r (Lyva  Lvw Lo .
AMypy = =X (j—1)- =5 k—1)— —= = ~1 3.2

where this configuration corresponds to a fictitious constellation that is used to define the available
positions in which the real satellites of the constellation are located.

From Equation (3.2), it can be observed that the value of Aw;jy, is different for i = 1 and i = Lo +1,
and thus, moving in ¢ € [1, Lo + 1] does not close the configuration in the torus for a particular
value of k. This means that in general Aw;jr # Aw(iyrq) - In the 3D Lattice formulation this has
no effect since all the positions are filled and consequently, the configuration is complete. However,
with the use of necklaces, this effect has to be taken into account in order to generate symmetric
configurations. The same consideration has to be made in the expression of the mean anomaly.
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In that sense, a complete rotation in the right ascension of the ascending node or the argument of
perigee does not generate in general the same value on the mean anomaly since AM;jx # AM (i, 1.4)jk
and AM’L]k‘ ;é AM’L](k-}—Lw)

Two different necklaces can be defined in a 3D Lattice Flower Constellation, one in the mean
anomaly, and the other in the argument of perigee. It is possible to generate necklaces in the right
ascension of the ascending node with the 3D Lattice Flower Constellation configuration. However
this is equivalent to generate the distribution and keeping just the orbital planes that we are
interested in. For this reason, we do not consider this case, since the use of necklaces is trivial in
these kind of configurations.

Let Gps be a necklace defined in the mean anomaly with a number of elements equal to Ny = |G|
and such that Gy C Zr,,,. This represents Ny, satellites taken from a set of L available positions
defined in a particular orbit. The necklace in the mean anomaly G;; is represented as a vector of
dimension N;:

with
1<Gu(1) < <Gu(i*) < <Gu(Num) < L, (3.4)
and where the index j* represents an integer modulo Ny, that is, j* + Ny is the same index as

j*. This allows to define an application (T1) that points to the positions occupied by the necklace
from the available positions:

T1: ZNM — ZLM
75— Gu(5Y). (3.5)
Thus, it makes sense to refer to Gys(5*), where the integer parameter j* € {1,---, Nas} represents

the position inside the necklace defined. In addition, and for simplicity of notation, we denote
mod(a,b) = a mod (b). Thus, due to the modular arithmetic inside the necklace:

Gu (%) = Gaur(mod(j* + Nag, Nar)), (3.6)

which corresponds to a complete loop in the available positions in the mean anomaly. It is important
to note that this rotation is equivalent to a movement in the admissible locations defined by:

j=J+ Ly mod (LM), (37)

as both represent the same movement of the necklace, one using the parametrization of the necklace
and the other using the parametrization of the fictitious constellation.

On the other hand, let G,, be a necklace defined in the argument of perigee with a number of elements
equal to N, = |G|, the number of real orbits per plane and a number of available positions equal
to L, which correspond to the size of the space of this variable in the fictitious constellation. This
necklace is defined as a vector in the same way as G;:

gw = (gw(1)7 T 7gw(k*)7 T 7gw(Nw))7 (38)

with
1<G,(1) <+ < Gu(k*) < <Gu(N,) < Ly, (3.9)
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where the index k* is an integer modulo N,,. This allows to define an application (T2) that points
to the positions occupied by the necklace from the available positions:

T2 : ZNW — ZLW
E* —  Gu(kY), (3.10)
which is used to refer to G, (k*), where the integer parameter k* € {1,---,N,} represents the

movement inside the necklace defined. Moreover, the necklace represents a ring of integers, thus,
there exist a modular arithmetic inside the necklace:

Gu(k*) = Gu(mod(k* + N, N,)), (3.11)
which is equivalent to a complete loop in the available positions in the argument of perigee:
k=k+ L, mod (L), (3.12)

as both are two formulations for the same movement, one using the parametrization of the necklace
and the other using the parametrization of the fictitious constellation.

Now, an application (T3) has to be defined which relates the distribution indexes (7, j*, k*) from
the necklace, with the indexes of the available positions (i, j, k):

T3 : ZL X ZNM X ZNw — ZLQ X ZLM X ZLw

(4, 5% k) > (i,4, k), (3.13)

Q

where the effects of the possible movement with respect to the right ascension of the ascending
node and the argument of perigee are introduced in the formulation by the use of the three shifting
parameters, S, the shifting parameter that relates the argument of perigee with the right ascension
of the ascending node, Syrq the shifting parameter that relates the mean anomaly and the right
ascension of the ascending node, and Sy, the shifting parameter that relates the mean anomaly and
the argument of perigee. That way, the possible movements of the integers k and j are described
respectively by:

k= Gu(k*)+ Swa(i—1),
o= Gu(") + Smw(k — 1) + Suali —1). (3.14)
We now subtract one unit of each expression to relate to the original formulation provided by
Equation (3.2), obtaining:
E—1 = Gu(k*) =14 Sua(i—1),
j—1 = Gu(G") =14 Syw(k—1)+ Sya(i —1). (3.15)

Both expressions present modular arithmetic with respect to the symmetries of their necklaces,
thus:

k-1 = gw(k*) -1+ SwQ(’L - 1) mod Sym(gw),
j=1 = Gu(") — 1+ Suwlk — 1)+ Syali—1) mod Sym(Gu). (3.16)
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However, j depends on k, and we require a dependency over k*, consequently, a substitution of k is
performed in the second expression, leading to:

j=1 = Gu(") =1+ Syemod (Gu(k") — 1 + Sua(i — 1), Sym(G.)) +
+ Sma(i—1) mod Sym(Gn), (3.17)

where it can be seen that the movement in j depends also on the necklace in the argument of
perigee.

Once the distribution over each index is performed, we introduce Equations (3.16) and (3.17) into
Equation (3.2), resulting in:

2
AQij*k* = ?Z(Z )
27 % Lo
Awjjege = L— [mod (Gw(k*) — 14 Sua(i — 1), Sym(G,)) — TQ( — 1)]
AMjepe = {mod -1+ SMwmod(gw(k*) -1+
+ Sunli—1),Sym(G.)) + Suali — 1), Sym(Gu) ) -
L
= T mod (Gu(k") = 1+ Sl = 1), Sym(Gy)) -
Lo Ly Loo .
C (L), a5

which describes the possible movements of the two necklaces defined (Gps and G,) inside the
distribution created in the fictitious constellation.

Equation (3.18) allows, not only to make the distribution of the satellites in the lattice, but also
to find all symmetric configurations using the necklace theory. Note that, in the expression for
AM;j=+, the necklace in the argument of perigee appears, which means that properties in this
necklace are affecting the distribution of the constellation in the mean anomaly. This effect is also
seen in the conditions for the shifting parameters of the configuration as it will be seen later.

One important thing to notice regarding Equation (3.18) is that, since the shifting parameters
(Swa, Smw, Spq) are subjected to a modular arithmetic in the symmetry of the necklaces, duplicities
can appear if no boundaries are defined. In that sense, and in order to avoid these duplicities in
the formulation, we impose:

SwQ € [07 Sym(gw) 1]7
Sy € [0,Sym(Gar) — 1],
SMQ € [0, Sym QM 1], (3.19)

to the shifting parameters. That way, we can assure that all combinations of parameters generate
different constellation configurations, while we are still able to create all the different distributions
that this formulation can provide.
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3.1.1 Symmetry in the 3D Lattice Flower Constellations

In this section we impose the conditions of symmetry to the constellation configurations that can
be obtained using Equation (3.18). That way, a relation between the distribution and the shifting
parameters is obtained, which allows to define all the possible symmetric configurations that can
be generated inside a given fictitious constellation.

3.1.1.1 Symmetry with respect to the mean anomaly

The conditions for symmetry in the three variables when a complete rotation in the mean anomaly
is performed are:

AQZ]*k* = AQi(j*+N]\j)k*7
A(.dij*k* = Awi(j*+NM)k*, (320)
AMij*k* - AMi(j*+NIVI)k*7

where all expressions are automatically fulfilled as AQ;;«p+ and Aw;j«p+ do not depend on the

movement of the mean anomaly whilst AM;;«- is also achieved due to the modular arithmetic
nature of the problem seen in Equation (3.6).

3.1.1.2 Symmetry with respect to the argument of perigee

In order to have symmetry in the argument of perigee, the configuration of the constellation has to
fulfill the following conditions:

AQijrpe = AQyiae4n,),
where the first equation is always true as it does not depend on the movement in the argument of

perigee. On the other hand, the other two equations depend on k* and, as such, they have to be
studied.

Taking the condition in Aw;j«+, and from the equivalences in the definition between
Equations (3.11) and (3.12), we can conclude that the operation k* + NV, is equivalent to a full
rotation in the argument of perigee, that is:

Awij*k* + 27 = Awij*(k*—l—Nw)a (3.22)

which applied to the expression of the argument of perigee, leads to:

Z [mod (Gu (k) =14 Sua(i — 1), Sym(Gu)) — Lst?(i - 1)] i
- Z {mod (G (K™ + Ny) — 1+ Sua(i — 1), Sym(Gu)) — LL‘?(i B 1)]’ o
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from where a relation between the two modular operators can be established:

mod (G, (k* + Ny) — 1+ Sua(i — 1), Sym(G.,)) —
— mod (Gu(k*) — 1+ Sya(i — 1), Sym(Gy)) = Ly, (3.24)

where this equation will be used later in order to impose the condition of symmetry in the mean
anomaly with respect to the argument of perigee.

On the other hand, regarding the condition in AM;j«,+ from the system of Equations (3.21), and
using Equation (3.18), the following expression can be derived:

j—ﬂ {mod(gM(j*) — 14 Syemod (G, (k") — 1+
M

+  Sweal(i—1),Sym(G,)) + Smali— 1), Sy’m(gM>> -

- LLM“’mod (Gu(k*) =1+ Sua(i — 1), Sym(Gu)) —

Lyo  Lyw Lua ) . B
- - (-1 =
Lq L, Lg

= 2 {mod(gM(j*) -1+ SMwmod(gw(k* +N,) -1+
Ly

+ Soo(i—1),Sym(G.)) + Suali — 1), Sym(GM)) -

— Léwmed (gw(k* + Nw) -1 + SwQ(Z - 1)7 Sym(gw)) -

w

(LMQ L Lw9> (i 1)] ; (3.25)

Lq L, Lo

which can be simplified to:

mOd(QM(]*) — 1+ Spymod (gw(k*) -1+ Swﬂ(i - 1)a Sym(gw)) +

L, )
+ sMﬂa—l),Sym(gM))— 7omod (Gu (k) = 1+ Suali — 1), Sym(G.) =
= mod(Ga(5%) — 1 + Saremod (G (k* + N,) — 1+ Sua(i — 1), Sym(G.,)) +
LMw

+ Swma(i—1), Sym(QM)) -7 mod (G, (k" + N,,) — 1+ Swa(i — 1), Sym(Gy)) . (3.26)

w

Moreover, expanding the modular arithmetic in Sym(Gys) and using Equation (3.24) leads to:
Asym(gM) = Svwlw — Lyw; (327)

where A is an unknown integer number. This equation can be also represented with the following
expression:

Sym(Gur) | Smwle — Ly, (3.28)
which reads, Sym(Gyr) divides (SnyrwLw — Lyw)-

Equation (3.28) is the first condition for the shifting parameters of the configuration. As it can be
seen, it depends on the symmetry of the necklace, and some elements from the Hermite Normal
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Form. Note that the shifting parameter of the mean anomaly with respect to the argument of

perigee (Sr,) depends on the number of fictitious orbits per orbital plane and not the real number,
a property that increases the number of possibilities in the configuration.

3.1.1.3 Symmetry with respect to the right ascension of the ascending node
The conditions of symmetry that we have to impose with respect to the right ascension of the
ascending node are the following:

AQy o

= AQitLg)jke
Awj AW(itLa)j#+
AM;jep

(3.29)
AM(iyLg)k+-
where each one of these conditions is treated separately.

The condition in the right ascension of the ascending node is automatically fulfilled as
21 . 2 .
AQjjepr = — (1 —1) = — (i — 1) + 27 mod (27), (3.30)
Lq Lq
which is independent of any of the shifting parameters of the problem.

From the condition in the argument of perigee:

L,

L,
% Wij*k* = %Aw(i-ﬁ-[@)j*k*? (331)
that can be used to obtain the following expression:
* . LwQ .
mod (G, (k™) — 1+ S,a(i — 1), Sym(G,,)) — TQ(Z —-1)=
mod (G (k) =1+ Suali — 1) + SuaLa, Sym(G.)) = 7 —1) ~ Lug,  (3.32)
Q
which can be simplified, leading to:
mod (G, (k") — 1+ Swa(i — 1) + SuaLa, Sym(Gy)) —
mod (G, (k%) =1+ Sua(i — 1), Sym(G.)) = Lua, (3.33)
where Equation (3.33) is used later to solve the symmetries in the mean anomaly.
obtain:

Expanding now the modular arithmetic in Sym(G,) from Equation (3.33) and simplifying, we

BSym(G,) = SwalLa — Lug; (3.34)
where B is an unknown integer. This expression is equivalent to:

Sym(Gw) | Swala — Luo- (3.35)
Equation (3.35) is the second condition for the shifting parameters. As it can be observed, it relates

the shifting of the argument of perigee with respect to the right ascension of the ascending node
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Swa, with the symmetries of the necklace in the argument of perigee Sym(G,) and some elements
of the Hermite Normal Form (Lg and Lyq).

Once the problem of symmetry in the argument of perigee is solved, we impose the condition of
symmetry in the mean anomaly by the use of its condition from Equation (3.29):

Ly Ly
7AMlj*k* - ﬁAM(’H”LQ)j*k)” (336)

from where we can derive:

mod (gM(j*) 1+ Syromod (Gu(K*) — 1+ Swali — 1), Sym(G.,)) + Swrali — 1), Sym(gM)> _

Lmw . , Lyo  Lyvw Lo . B
~ mod (G (k )1+SWQ(11),Sym(gw))(LQ - LQ>(11)_

- mod(gM(j*) — 14 Syremod (G (K*) — 14 Soa(i — 1) + SuaLq, Sym(G.,)) +

L, N ,
+ Suali—1) + SuaLa, Sym(Gar) ) = —Hmod (G (k) = 1+ Suali — 1) + SuaLa, Sym(G.)) -
Lya Ly Lo . Ly Lo
— ( To L. LQ>(Z_1)_<LMQ_LUJ >, (3.37)

which, using Equation (3.33) can be simplified into:
mod (G (%) = 1+ Saromod (Gu(k*) — 1+ Suali - 1)+
+ SuaLa, Sym(G)) + Suali = 1) + SuaLa, Sym(Gur) ) -
- mod(QM(J'*) — 1+ Syemod (G (k%) — 14 Sua(i — 1), Sym(Gw,)) +
+ Suali = 1), Sym(Gu)) = Lara. (3.38)

Now, we expand the modular arithmetic in Sym(G,) and apply again the relation from
Equation (3.33) in order to obtain:

CSym(Gu) = Suala — (Lva — Svwles) (3.39)
where C' is an unknown integer. The former expression can be also written as:

Equation (3.40) is the third condition for the shifting parameters. As we can see, this relation has
a particularity, Sasq depends also on other shifting parameter, Sy, which generates a logical order
in the generation of the shifting parameters.
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3.1.1.4 Symmetric configurations

In this subsection the formulation of the theory is summarized in order to present all the
methodology in a more compact and clear way. All possible distributions of a particular necklace
G can be described by the set of expressions:

2
27 % Lo
Awjjrge = - {mod (Guw(E*) =14 Sua(i —1),Sym(G,)) — Tg( — 1)]
+ smu -1, Sym<gw>) + Suali — 1), Sym(Gar) ) -
Ly . .
- LM mod (G, (k*) — 1+ Sua(i — 1), Sym(G.,)) —
Ly Lyve Lo .
— ( Io L. Lo ) (2—1)]7 (3.41)

where the values of the shifting parameters S,q, S, and Sjs, have to fulfill the following relations
in order to obtain symmetric configurations:

Sym(G,) | SwaLa — Lua,
Sym(gM) | SMwLw - LMwa
Sym(Gum) | SmaLa — (Lya — SmwLwa) - (3.42)

As it can be seen, the set of Equations (3.41) and (3.42) leads to the 3D Lattice Flower Constellations
distributions if no necklace is defined, and to the 2D Lattice Flower Constellations [9] if additionally,
no distribution is performed in the argument of perigee. Regarding the 2D Lattice Flower
Constellations using necklaces [17], the shifting parameter in the mean anomaly was defined as:

Sym(G) | SmaLa — N, (3.43)

where G is a necklace in the mean anomaly and N, is the configuration number for the
2D Lattice Flower Constellations which corresponds to the Lj;q parameter in the 3D Lattice
Flower Constellations. This relation is equivalent to the last condition in Equation (3.42) when
the argument of perigee is not a variable of the configuration, thus, the 3D Necklace Flower
Constellations also includes the 2D Lattice Flower Constellations using necklaces.

Therefore, Equations (3.41) and (3.42) constitute the generalization of the necklace theory for the
3D Lattice Flower Constellations, which include all the former Lattice Flower Constellations: 2D
Lattice Flower Constellations, 2D Lattice Flower Constellations using necklaces, 3D Lattice Flower
Constellations and now 3D Lattice Flower Constellations using necklaces.

In the next section a detailed example is presented in order to show, in a clear manner, the
methodology to generate 3D Necklace Flower Constellations.
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3.1.2 Example of application

For this example, we assume that a constellation made of 42 satellites is chosen. Let suppose that
the constellation is required to be built in 7 orbital planes, thus, Lo = 7, and each plane contains
two orbits, that is, the number of real orbits per plane is IV, = 2. Moreover, the number of real
satellites per orbit is Ny; = 3.

Now, an expansion of the search space is done, choosing a fictitious constellation with parameters
L, =6 and Ly; = 9. This means that we are generating two different necklaces, one in the argument
of perigee and the other in the mean anomaly. Moreover, as it can be seen, the available positions
both in mean anomaly and in the argument of perigee have been trebled, being just the ninth part
of all available real positions of satellites in the constellation.

Applying the 3D Necklace Flower Constellations to these parameters, we obtain |Gy = 10
different necklaces in the mean anomaly and |G,| = 3 in the argument of perigee [19, 40, 41],
generating a total of |Gar||Gu|LE L, = 8820 different symmetrical configurations (compared to the
L%Nw = 98 configurations obtained using just the 3D Lattice Flower Constellations theory due
to the boundaries in the configuration numbers). Note that the number of configurations using
necklaces can be increased even further by expanding the fictitious constellation or generating other
fictitious constellations.

As there are too many configurations to analyze, we choose, without losing generality, Lyrq = 4,
Ly, = 3 and L,yg = 6 as combination numbers of the constellation, and Gy = {1,4,7} and
G, = {1,4} as the necklaces in the mean anomaly and the argument of perigee respectively.
Applying the definition of symmetry of a necklace from Equation (1.46), these results are obtained:
Sym(Gar) = 3 and Sym(G,) = 3.

With these parameters, we can use Equation (3.35) to obtain the shifting of the argument of perigee
with respect to the right ascension of the ascending node:

Sym(G.) | Swalo — Lua = 3| 7Su.q —6, (3.44)

which leads to Sy = 0. On the other hand, the shifting parameter of the mean anomaly with
respect to the argument of perigee can be computed using Equation (3.28):

Sym(Gum) | Smwlw — Lvw = 3| 6Syw — 3, (3.45)

which has three solutions, Sy, = 0,1,2. Now, with this result, we apply Equation (3.40) to obtain
the shifting parameter of the mean anomaly with respect the right ascension of the ascending node:

Sym(gM) ’ SMQLQ — (LMQ — SMUJLWQ) = 3 ’ 7SMQ — (4 — 6SMw>, (3.46)

which is Syrq = 1 no matter the value of Sy;, = 0,1,2 used. Note that in other examples, different
values of Sy, require different Sp;q.

As it can be seen, three configurations can be generated due to the multiple solutions of Shy.
In particular, we choose Sy,o = 0, Sy = 2 and Sy = 1 as the selected configuration. The
lattice obtained from this configuration can be seen in Figure 3.1 where the (2, w, M )-space of the
distribution selected is shown. The circles represent available positions while the colored ones are
the real satellites of the configuration.
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Figure 3.1: (Q,w, M)-space representation of the constellation.

Moreover, it is interesting to study the representation of this lattice using tori. This can be observed
in Figure 3.2 where the three tori that define the distribution are shown. As it can be seen from
Figure 3.1 and Figure 3.2, the distribution is symmetrical in all three orbital parameters: the right
ascension of the ascending node, the argument of perigee and the mean anomaly.

Q-0 TORUS Q-MTORUS o -MTORUS

Figure 3.2: Tori representation of the constellation distribution.

Now, this configuration is applied to a satellite constellation. Without losing generality, we choose
an eccentricity of e = 0.3, an inclination equal to the critical inclination ¢ = 63.43° and a semi-major
axis equal to @ = 12,770 km. With these orbital parameters, an inertial configuration as shown in
Figure 3.3 is obtained.

This constellation is just an example of the possibilities that the application of necklaces into the
3D lattice flower constellations theory can bring. As it has been said, the number of possibilities
can be increased indefinitely, being the only constraint the computational power available.
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Figure 3.3: Inertial orbits of the constellation.

3.2 Conclusions

3D Lattice Flower Constellations is a powerful tool that allows the generation of constellations
with symmetric configurations and minimum parametrization. The distribution obtained with
this methodology is fixed to certain positions which is a constraint in the number of possible
configurations that the theory can generate.

This chapter introduces the concept of necklaces in the formulation of 3D Lattice Flower
Constellations, increasing the number of possible symmetric configurations, being the only limitation
the computational power available. This is achieved by an expansion of the searching space of the
constellation and applying the necklace to fit the configuration again to the one sought. Moreover,
all the configurations obtained by this methodology maintain the properties of the former Lattice
Flower Constellations, presenting symmetry in the lattice of the right ascension of the ascending
node, the argument of perigee and the mean anomaly of all the satellites in the constellation.

In addition, this new design framework can be used to introduce non uniformities in the distribution
while maintaining a structure in the configuration. This is done by defining necklaces adapted to the
mission requirements, which provides a powerful tool during the initial constellation design process.
Other applications of this methodology include the study of constellation reconfiguration problems,
the assessment of satellite failure in a distribution, or the definition of the launching schedule for a
constellation made of a large number of satellites.

Furthermore, the 3D Necklace Flower Constellations includes all the former Lattice Flower
Constellation designs, being as such, a generalization of the Lattice Flower Constellation theory.
This means that the 3D Necklace Flower Constellation theory is able to generate all former
configurations (2D, 3D Lattice Flower Constellations and 2D Lattice Flower Constellations using
necklaces), and create new distributions using the necklace theory.
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Finally, it is important to note that the expansion of the search space can be increased as much
as desired, providing more possibilities of design as the size of the fictitious constellation becomes
larger. Moreover, as it will be seen in the next chapters, this expansion can also be done in an n-
dimensional Lattice, instead of just a 2D or a 3D Lattice, which increases the number of possibilities
of design.



Chapter 4

4D Necklace Flower Constellations

Previous 2D and 3D Necklace Flower Constellations were able to perform uniform distributions
in the mean anomaly, the right ascension of the ascending node and the argument of perigee,
maintaining the rest of the orbital parameters constant in the distribution. This leads to
constellations that maintain a fixed structure in their movement and whose satellites share the
same period of repetition. However, the ability to distribute satellites uniformly when they present
different semi-major axes was still remaining.

This chapter aims to generalize the concepts of lattices and necklaces for a 4D distribution of
satellites. In that respect, we introduce as the new variable of design the semi-major axis of the
satellites. This allows to bound satellites from very different orbits to create a structure that
is continuously changing. However, as it will be seen during this chapter, the constellation still
presents internal structures with subsets of satellites that relates to former 2D and 3D distributions.
That way, 4D Necklace Flower Constellations can be regarded as a bounding of different Flower
Constellations.

In addition, and in order to maintain the configuration over time, a methodology to design these
constellations under the Jo perturbation is introduced. As it will be seen, this effect requires to
modify all orbit parameters for every satellite of the constellation. Thus, it is not possible to include
a 5D or greater Lattice theory in satellite constellation design, which makes 4D Necklace Flower
Constellations the greatest generalization of this constellation theory.

In this chapter we proceed as follows. First, the 4D Lattice Flower Constellation theory is
introduced, a further generalization of the 2D and 3D Lattice Flower Constellations where the
new variable of design is the semi-major axis of the orbits, and a four by four Hermite Normal Form
is used. Second, the effects of the Js perturbation are included in the design in order to maintain
the structure of the constellation over longer periods of time. Third, the concept of necklace is
applied to this kind of design, allowing to expand the search space of possible configurations.

4.1 4D Lattice Flower Constellations

The generation of a 4D Lattice has deeper implications in the formulation compared with the
evolution from the 2D Lattice to the 3D Lattice Flower Constellations where the argument of perigee
was included in the design. The reason for that lays in two properties. First, the semi-major axis
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(a) does not have a modular nature unlike the angles mean anomaly (M), argument of perigee
(w) and right ascension of the ascending node (£2). This means that the definition of the lattice
must be done in a completely different manner. Second, we are seeking constellation structures
that are maintained over time, thus, we require that the configuration as a constellation presents
periodicity. This new kind of distribution provokes that the structure of the constellation is changing
continuously. Nevertheless, over its movement, the constellation maintains the characteristic
symmetries of a Lattice Flower Constellation and presents a period of repetition for the whole
structure.

In order to generate a lattice in a 4D space, we require four variables. Let {V?, vy yM } be
the distribution variables of a lattice where V¢ is related to the variation of the semi-major axis,
V% is related to the right ascension of the ascending node, V¢ is related to the argument of perigee,
and VM is related to the initial mean anomaly of a satellite of the constellation. It is important to
note that {V, VE V¥ VMY do not represent the actual variation of the semi-major axis, the right
ascension of the ascending node, the argument of perigee or the initial mean anomaly, instead, this
variables define a set of values for each variable that are used in order to generate the distribution of
the constellation. In particular, and without losing generality, we define the distribution variables
{Ve, v Ve VMY in the range [0, 1]. In case other sizes of these variables are required, the resultant
space can be modified by terms of an homotopy.

Therefore, a four dimensional lattice can be created using the Hermite Normal Form and a set
of distribution parameters {r,i, k, j}, each one associated with a different dimension of the space.
That way, the 4D lattice is defined as:

Lo O 0 0 e r

Los Lo 0 0 Vi | ; (4.1)
Lua Leg Lo O /N k
Lya Lvo Lyw L Vil J

where in order to ease notation, we denote L, to the number of different semi-major axes, Lq to
the number of orbital planes with the same semi-major axis, L, to the number of orbits per plane
with the same semi-major axis, and Ljs to the number of satellites per orbit. Moreover, and in
order to avoid duplicities in the constellation definition, we define the parameters of distribution
asr = {1,..., Ly}, i = {1,...,La}, k = {1,...,Ly,} and j = {1,..., Ly} which name each
satellite of the constellation. On the other hand, the configuration numbers have these constraints:
Lo, € {0,...,Ly — 1}, Lyq € {0,..., Ly — 1}, Lyq € {0,..., Lo — 1}, Ly € {0,..., Ly — 1},
Lyq €40,...,Lg—1} and Ly, € {0,..., L, — 1}, for the same reason.

However, as opposed to what happens 2D and 3D Lattice Flower Constellations, Equation (4.1)
cannot be used directly to generate the variables of the satellites of the constellation since the semi-
major axis does not present modular arithmetic naturally and, in general, it is not constraint in
value. Thus, we have to proceed with a 4D lattice in a slightly different manner.
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By expanding (4.1), the values of the distribution variables can be obtained:

1
i?kr = L—r,
a
1 . LQa
V;]k?’r‘ = LiﬂliLaLQT,
w _ ik— LwQ i—i Lwa_LwQLQa ,
ikt L, LsLo Lys\Li Lg Lo/~
1 - Ly 1 (Lyo  LmwLuo) .
Vi = I 1 e\ Ty T L 1o )t
M MLy M Q w Q
_ i LMa _ LMQ LQa _ LMw Lwa _ LQa LwQ r (4 2)
Ly \ L, Lo L, L, L, L, Lq '

where, as said before, the distribution variables are subjected to modular arithmetic (modulo 1).
Thus, Equation (4.2) can be rewritten as:

[ 1
ikr = mod _L—T, 1] ,

1 (. Lg
Vwkr = mod L—Q (z— Laar> ,1} )

(1 LwQ . Lwa LwQ LQa
w — i _ _ _ 1
ikr mod o (k I. ) ( L. Io L. )r) , ] ,
Lma _ LywLual) . _
Lq L, Lq

LMa LMQ LQa LMw Lwa LQa LwQ
- - - - r) 1], (4.3)
Lq Lo L, L, \ Le La Lg

V;,]k’r‘ = mod _L

where, in order to simplify notation, we denote mod[a, b] to the value of a under modulo b. Now,
we aim to obtain a set of distribution variables based on integer numbers. In order to do that, we
multiply the first expression from Equation (4.3) by L,, the second by L,Lq, the third by L,Lq Ly,
and the fourth by L,LqLy s, leading to the following set of equations:

Lq ijr mod [ ] )
LoLV, = mod[Lei— Loar, LoLa,
L,LqL, ijr = mod [LQL k — LooLat — (LwaLo — LuaLaa) 7 LuLaLa) (4.4)
[

Ly L,LalL, V],ﬂ, = mod[L,LaL.j — LywLaoLek — (LyroLwLa — LarwLwaLa) i —
- (LMaLwLQ - LMQLQaLw - LMw (LwaLQ - LQaLwQ)) r, LMLwLQLa] .

Then, we define a new set of variables {N® N2, N N'M} which relate to the original through
these expressions:

iskr LoVikrs
Nz?kr = LoLoVij,
ik = LwLaLaViig,,
Nt = LuLoLoLdVit,, (4.5)
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and introduced in Equation (4.4), we obtain:

i(;'kr = mod [ ]
./\/;JM = mod [Lai — Laar, LoLa) ,
ijkr = mod[LoL.k — LyaLai — (Lwa Lo — LuaLqa) 7y LuLaLa)
[

MJ’CT = mod[L,LoLyj — LywLaLok — (LyaLwLa — LviwLwaLa) i —
— (LmalwLa — LyaLloale — Lo (Lwalo — LaaLwa)) m, Ly LoLaLa],  (4.6)
where it is easy to derive that {N N N NM} are integer numbers since there are the result

of sums and multiplications of integer numbers. We can also derive that these new distribution
variables can only present the values shown in the following expressions:

N e {1,...,L.},

N? e {1,...,LgL.},

N¥ e {1,...,L,LoL,},

NM e {1,... LyLyLoL,}, (4.7)

which define a set of possible values for each different dimension of the space. This means that
we can define given values of the semi-major axis, the right ascension of the ascending node, the
argument of perigee, and the initial mean anomaly for the satellites of the constellation to share. For
instance, let L,Lq = 4 be the number of different positions in the right ascension of the ascending
node, that is, the number of different orbital planes of the constellation. If we relate N* = {1,2, 3,4}
to 1 = 0°, Qy = 30°, Q3 = 90° and Q4 = 180° respectively, we are setting the possible orbital
planes in which the satellites of the constellation will be positioned.

4.1.1 Setting the values of the semi-major axes of the constellation

Although the methodology presented in the 4D Lattice Flower Constellations allows to generate
any kind of distribution, in most applications it is interesting that the structure of the constellation
present some periodic properties, and thus, some constraints must be imposed in the semi-major
axis in order to obtain that characteristic.

Let N, be the number of complete orbits that a satellite requires in order to complete a closed track
in a given frame of reference, and let Ny be the number of complete rotations that the frame of
reference performs during this time. For instance, if the selected frame of reference is the Earth
Fixed (ECEF), N, and Ny correspond to the number of orbit revolutions and the number of days
that a satellite requires to repeat its ground-track. In that respect, it is worth noticing that even if
an orbit does not repeat its ground-track in the Earth Fixed, it is possible to find another rotating
frame of reference in which it is. Thus, we can define a period of repetition for the whole structure
defined as:

T. = N,T = NgTy, (4.8)

where T is the orbital period of each satellite and T} is the rotating period of the reference frame.
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Then, since we want all the satellites to generate a structure that is repeated, we impose that T, is
shared by all the satellites in the constellation. This means that, in general, all the satellites will
repeat their motion in N; revolutions of the rotating frame of reference, while, on the other hand,
the number of orbit revolutions that each satellite will require depends on each individual satellite
(due to different values of their semi-major axis). Thus, we are free to select the different values of
N, for the constellation, taking into account that /N, must be an integer number.

4.1.2 Introducing the J2 perturbation in the formulation

The former formulation considers a keplerian movement where the satellites are only subjected
to the main term of the gravitational potential of the primary body. However, for satellites
orbiting the Earth, it is very interesting to include the oblateness effect of the Earth (Jy of the
gravitational potential) in the design process of the constellation due to the important effects that
this perturbation provokes. In particular, it produces a shifting of the orbital planes and also rotates
the orbits inside their plane. This causes the destruction of the initial design of the constellation
in very short periods of time, shorter the closer the satellite is to the Earth. For these reasons, we
include in the constellation design the effects of the Jo perturbation.

The secular variations of the classical elements for a satellite orbiting the Earth under the Js
perturbation are:

C.Lsec:O; n:\l%

2
1+ 3J2<R®e2)> (2 — 3sin’(7)) V1i-é?|;

4 a(l —
3 Ry \*
: _ S 2 )
€sec = 0; Wsec = 1J2 <a(1—62)) n (5COS (Z) — 1) ;
: : 3 R 2 ‘
tsec = 05 Qgee = —§J2 (a(l—%) n cos(7); (4.9)

where p and Rg are the gravitational constant and the equatorial radius of the Earth respectively,
and n is the mean motion of the satellite. Thus, there are three secular variables that change over
time: the right ascension of the ascending node, the argument of perigee and the mean motion. In
order to maintain the configuration as a constellation, we require that all the orbital planes shift at
the same speed (Qsec = Qseco), that the rotations in the orbital plane are performed at the same
speed (Wsee = Wsecn), and that the period of the orbits is congruent with the repetition period of
the whole structure (7. must be the same for all the satellites of the constellations), that is, there
exists a time period when the constellation repeats its dynamic. We denote QsecO and Wgeeo to the
constellation reference for the secular variations of the right ascension of the ascending node and
the argument of perigee. On the other hand, and for a given satellite of the constellation, there
exists a relation between the different periods:

P
T, = Np% — NTy. (4.10)
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Thus, using Equation (4.9) and the former constraints, we obtain:
21 N, m 3 Rs \°
= = |1+ -Jo| ———= -3 1—e2
T, Ny = —1-4 2( )> (2 sm())\/ e,

a(l —e?
3 R 2w N
Wseeo = 2 <(®> u £ (5c08%(i) — 1),

a(l —e?) Ty Ny

. 3 R@ 27TN
Dgecr = —odo 28 ) T 411
) 2J2(a(1_62)) 2 conl) (4.11)

which is a system of three nonlinear equations with three unknowns (the semi-major axis, the
inclination and the eccentricity) for each different value of N®. From the expressions of wseqo and

Qseco, we can derive that:
) _ —Wsecd £ \/ secO + 5Qsec07 (4'12)

cos(i
5QsecO

which means that all the satellites in the constellation have the same inclination (the one of the
reference orbit), since wgeeo and Qe are common for the constellation. On the other hand, from
the expression in (.0 We obtain a relation between the semi-major axis and the eccentricity of the
orbit:

R 3 Jo 2w N,
1—e2 =22 o2 2 2022 oog(4), (4.13)
a 2 QsecO Ty Ny
and we introduce it in the expression of the mean motion, obtaining a nonlinear equation in the
semi-major axis:

e Rl 4.14
21 N, a ar N, cos(i) a cos(i) | (4.14)

s _ Ty Ng - Qsec0 TaNg 2 — 3sin%(i) |Re | 3 Jo 21N,

2 QsecO Td Nd
from where the value of the semi-major axis can be obtained numerically, and then, the value of
the eccentricity using Equation (4.13).

This means that all satellites of the constellation that share the same value of N'® present the same
values of semi-major axis, inclination and eccentricity. This is effectively generating a 3D Lattice
Flower Constellation inside the 4D configuration. Thus, a 4D Lattice Flower Constellation can
also be regarded as a set of 3D Lattice Flower Constellations that present a given relation in their
motions provided by Equation (4.8).

Finally, it is important to note that under additional perturbations, the satellites of the constellation
will require of orbital maneuvers in order to maintain the configuration defined [22, 16]. This is more
important in a 4D Lattice Flower Constellation since the inclination, eccentricity and semi-major
axis are in general different for the satellites in the constellation.

4.1.3 Example of application

As an example of application, we consider a constellation made of 54 satellites. This constellation
is distributed in 2 different semi-major axes (L, = 2), three orbital planes per each semi-major axis
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(Lq = 3), three orbits per orbital plane and given semi-major axis (L, = 3) and three satellites per
orbit Ly; = 3. This defines the size of the constellation and the number of possibilities of design
(provided by the different values of the combination numbers). In addition, the satellites of the
constellation present the repeating ground-track property, generating a repetition in the dynamic
of the constellation each three days (Ng = 3).

First, the inclination of the constellation is the critical inclination ¢ = 63.43°, while e = 0.1 is the
reference eccentricity. The two different values of the semi-major axis and eccentricity are defined
in such a way that the two subsets of satellites (each related to a different semi-major axis) perform
N, = {8,6} orbital revolutions respectively in three days and that they maintain the conditions
provided by Equation (4.11). This leads to two semi-major axes: 21926 km and 26561 km, and two
eccentricities: 0.1 and 0.5406 respectively. On the other hand, we impose that the distribution in
the right ascension of the ascending node, the argument of perigee and the mean anomaly follows
a uniform distribution, and thus:

N N NM
Qujpr = 2 —L L VA e L 4.15
ijkr WLaLQ’ Wijkr TrLaLQLw7 ijkr ﬂ—LaLQLwLM ( )
Then, we select the values of the combination numbers L;;, in particular: Loy = 0, L3z = 2,

Ly =1, Lygs = 0, Lyp = 2 and Ly = 1; and generate the distribution using Equation (4.6).
This configuration can be seen in Figure 4.1, where a tori representation has been selected since
it is the most clear manner to represent a 4D space with modular arithmetic. In the figure, all
the filled circles represent the projection of the variables of the satellites of the constellation in
the tori, thus, each tori contains a different number of points due to the superposition of variables
during the projection. Furthermore, it can be observed that all the satellites in the distribution are
positioned following closed lines in the tori, which is the graphical representation of the symmetry
(or congruence) of the configuration.

Q-aTORUS o - Q TORUS ®-aTORUS

Figure 4.1: Tori representation of the 4D Lattice Flower Constellation.
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On the other hand, the initial inertial distribution of the constellation can be observed in Figure 4.2.
The most important property of 4D Lattice Flower Constellations, compared to 2D and 3D Lattice
Flower Constellations, is that the structure of the constellation is changing continuously due to the
dynamic of the system. However, several structures appear in the constellation, some of them are
periodic (due to the different semi-major axes) and others are fixed (as in the 2D and 3D Lattice
Flower Constellations).

x 10" x10°

3 )

Figure 4.2: Isometric (left) and polar (right) views of the 4D Lattice Flower Constellation.

4.2 4D Necklace Flower Constellations

Once the 4D Lattice Flower Constellation design is introduced, it is time to generalize the theory
with the concept of necklaces. A necklace is a subset of elements taken from a set of available
positions. In the case of study, the available positions are generated by the definition of a fictitious
constellation that has a larger number of satellites than the one that is required to be designed.
On the other hand, the elements chosen from these available positions are the real satellites of the
constellation. In that respect, we are interested in introducing necklaces in the distribution in such
a way that the resultant configurations maintain the properties of uniformity and symmetry from
the original theory.

In a 4D Lattice configuration, we can introduce four different necklaces, one per variable in the
lattice. However, creating a necklace in the top most variable, that is A'®, is equivalent to remove
all the orbits with certain values of the semi-major axis, and thus, it is trivial from a mathematical
point of view as well as by using the theory of 4D Lattice Flower Constellations presented in this
work. For that reason and in order to simplify the formulation, we only consider necklaces generated
in the other three variables.

Let Ga, G, and Gy be a set of necklaces defined in the variables considered in the distribution,
in particular, the right ascension of the ascending node, the argument of perigee and the mean
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anomaly respectively. A necklace G is a subset of elements taken from a set of available positions
presented in each dimension, that is:

Go C{1,...,La},
G, C{1,..., Ly},
G C{1,..., Ly} (4.16)
such that |Gq| = Nq is the number of elements in the necklace Gq, |G,| = N, are the number of

elements in G, and |Gy/| = Njs are the number of elements in Gps. In addition, and in order to
simplify the notation used, we assume that:

Go = {Ga(l),...,Ga(i"),.. gQ(NQ)}
gw = {gw(1> ( *)a ( w)}
v = {QM(l) QM( *), gM(NM)} (4.17)

with:

1< Ga(l) < <Ga(i*) < <Ga(Na) < Lo,

1<G,(1) <+ <Gu(k*) <+ < Gu(Ny,) < Ly,
1<Gu)<--<Gu(*) < <Gu(Na) < Ly, (4.18)
where the indexes ¢*, k* and j* name each element of their respective necklaces Gqo, G, and Gyy.

This allows to interpret necklaces as injective functions between the elements of the necklace and
the available positions in the space:

g: ZL XZNQXZNwXZNM — ZLQXZLQXZLWXZLM

a

(r,i", k% 5%) — (r,Ga(i"), Gu(K"), Gr(57))- (4.19)
Thus, it makes sense to refer to G, where the integer parameters i* € {1,..., Nqo}, k* € {1,...,N,}
and j* € {1,..., Nas} represent the different elements inside the necklaces defined. In addition, we

define the shifting parameters Sq., Sur, Swa, Sy, Sma and Sy, as degrees of freedom that the
necklaces present relative to the movement in other dimensions. Thus, the relation between the
positions in the fictitious constellation and the ones in the necklaces is provided by:

T = gQ(Z*) + Sqr,

k = gw(k*) + Swrr + Sin,

Jj = Gu(") + Surr + Suai + Sywk. (4.20)
However, necklaces also present an internal structure that alters slightly the modular arithmetic
inside them, since there are some rotations that allows to obtain the same distribution and not just a
complete rotation of the configuration. We define symmetry of a necklace (Sym(G)) to the minimum
rotation that must be performed in a necklace in order to obtain the same configuration[19, 20, 37].

In other words:
Sym(G) =min{l <r<n:G+r=gG}. (4.21)

Thus, introducing the concept of symmetry of the necklace in Equation (4.20), we obtain:
= mod [Gq(i*) + Sa,7, Sym(Ga)]
k= mod[Gy(k™) + Swrr + Suai, Sym(Gy)],
j = mod[Gn (") + Surr + Snmai + Syvwk, Sym(Gar)] - (4.22)
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It is important to note that since the shifting parameters are subjected to the modular arithmetic
of their respective necklaces, we can impose the following constraints in order to avoid duplicities
in the formulation:

Sor € {0,...,Sym(Gq) — 1},
SwrsSwa € {0,...,Sym(G,) — 1},
SMT,SMQ,SM(,J (S {0,...,Sym(gM) — 1}. (4.23)

On the other hand, the expressions of the distribution parameters i and k from Equation (4.22) can
be substituted in the equations of j and k, obtaining:

= mod [Ga(i") + Sa,r, Sym(Ga)] ,
ko= mod [Gu(K) + Surr + Suamod [Go(i*) + Sorr, Sym(Ga)] , Sym(G.)],

j = mod[Gy(j*) + Surr + Swamod [Ga(i*) + Sa,r, Sym(Ga)] +
+  Syemod G, (K*) + S,pr+
+  Suomod [Ga(i*) + Sq,r, Sym(Ga)], Sym(G.)], Sym(Gar)], (4.24)

which can be introduced in the original lattice of the distribution given by Equation (4.6), leading
to the following expression of the lattice including necklaces in its formulation:

N jepr mod [r, L, ,

J\/ﬁj*k*r = mod [L,mod [Go(i*) + Sa,r, Sym(Ga)] — Laar, LaLa],
NiZjege, = mod [LoLgmod [G, (k) 4 Surr + Suomod [Ga (i) +

Sarr, Sym(Ga)| , Sym(Gy,)] — LuaLemod [Go(i*)+

Sarr, Sym(Ga)] — (Lwala — LuaLaa) 7, LwloLa)

N e = mod[LyLoLemod (G (5%) + Sarrr + Syamod [Ga (i) +
Sarr, Sym(Ga)] + Sywmod [Gy, (K*) + Surr+

Swamod [Ga (i) + Sarr, Sym(Ga)], Sym(Gw)], Sym(Gum)] —
— Ly LoLomod [Gy, (K*) 4+ Surr + Swamod [Ga (i) +

+  Sopr, Sym(Ga)], Sym(Gu)] —

— (LmaLwLa — LayjwLyaLe) mod [Go(i%) + Sapr, Sym(Ga)| —
— (LmalwLo — LyoLoale —

— Ly (LyaLa — LaaLwa)) Ty Lar Ly Lo L) - (4.25)

Equation (4.25) allows to define any lattice configuration based on fixed necklaces that performs
uniform distributions in a given space. However, since the space considered is also subjected to
modular arithmetic, we are specially interested in the configurations where a complete rotation in
the available positions in any dimension generates the same configuration, that is, the structure
generated is independent of rotations in the distribution variables. This implies that each satellite
of the constellation observes an equivalent configuration with respect to the rest of the satellites
of the constellation. In addition, this condition allows to define constellations that maintain the
original properties of uniformity and symmetry from the original Lattice Flower Constellations.



4D Necklace Flower Constellations 63

Mathematically, the condition of symmetry must be fulfilled in every variable under the rotation of
any dimension, that is:

a Q2 ) M .
('/vi*j*k*(r—i-La)aj\/;*j*k*(r+La)>'/\/i*j*k*(r-i-La) N '*k*(r—i—La)) =

— a Q M
- ( i*j*k*T"/\/;*j*k*T’ * *k‘*’/"N *k.* )

a W —
( (i*+NQ)j*k*r7Nz*+NQ *k*wN(i*JrNQ)'*k*r7Mi*+NQ)j*k*r> =

a w M
= (./\/:L'*j*k.*r,./\/l*]*k*r,./\[ *k*T"'/\/’L'*j*k*T') 9

a Q W M .

(Ni*j*(k*ww)r,Ni*j*(k*ww)r,Ni*j*(,f*ww)r,/\/Z.*j*(k*+Nw)T> -
_ a Q W M

- ( i*j*k’*’l"7'/\/"i*j*k’*7'" ’i*j*k‘*’/"'/\/’i*j*k‘*’f) )

a Q W M _
(Ni*<j*+NM>k*wNz‘*(j*+NM)k*wNi*(j*+NM)k*wN ‘*(j*+NM)k*T> -
a w M
(N *k*?""/\/’l j*k*'f‘"/\/’ *k*’f‘7'/\/’i*j*k*’l“) 5 (4.26)

for a complete rotation in the right ascension of the ascending node, the argument of perigee and
the mean anomaly respectively. Note that a complete rotation in the set of available positions in
one variable is equivalent to a complete rotation in the elements inside the necklaces.

Then, by applying the conditions from Equation (4.26) to the distribution given by Equation (4.25),
we obtain the following relations (see References [19, 20, 21] and Chapters 2 and 3 for a more detailed
insight on this process):

Sym(Ga) | SarLly — Loy,
Sym(Gy) | Swalq — Lwa,
Sym(Gw) | SurLr — (Lur — SwaLar)
Sym(Gur) | SmwLle — Ly,
Sym(Gn) | Smala — (Lya — Svwlen) s
Sym(Gu) | SmrLr — (Larr — SvaLar — SvwLer) (4.27)

which represent the constraints that the shifting parameters have to fulfill in order to obtain
symmetric configurations.

It is important to note that both the variables and the shifting parameters present a hierarchy
(clearly seen in Equations (4.25) and (4.27)), where a variable higher in the hierarchy is able to
influence a higher number of variables while having a lower number of dependencies with the rest
of variables. For instance, a variation in the semi-major axis of a satellite (the variable in the top
most position of the hierarchy) modify the distribution of any other variable, while, on the other
hand, a variation in the mean anomaly (the lowest variable in the hierarchy) does not influence
the others. Thus, by using this property it is possible to alter the constellation distribution by just
performing a change in the order of the hierarchy presented in this manuscript. In that regard, we
selected the hierarchy a > 2 > w > M to decrease the number of different orbits, and thus, the
number of launches to build the constellation in orbit.
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4.2.1 Example of application

In order to maintain the example as simple as possible, we take as the fictitious constellation, the
configuration presented in Section 4.1.3, where now, instead of occupying all the available positions
generated in that distribution, a necklace is introduced. In particular, we only introduce one necklace
in the mean anomaly corresponding to Gy = {1}, which means that only one satellite in each orbit
is selected (Np; = 1). This could represent, for example, an incomplete constellation that is being
built in orbit, where, in order to provide functionality to the constellation, we are interested that
all the orbits are occupied by at least one satellite while still requiring a distribution as uniform as
possible.

Since the constellation has a complete configuration in the right ascension of the ascending node
and the argument of perigee, their respective necklaces are G,, = {1,2,3} and G, = {1,2,3}. Then
using Equation (4.21) we derive that the symmetry of the necklaces are Sym(Gys) = 3, . Moreover,
from the application of the first condition from Equation (4.27) we obtain:

1280, — 0, (4.28)

where Sq, = 0 in order to fulfill the expression; from the second condition:

113Su0 — 2, (4.29)
S.q = 0; from the third condition:
1|25, — (1—0), (4.30)
S, = 0; and from the fourth condition:
313Smw — 0, (4.31)

Srvw = 0,1,2. This means that we have three possible values of the shifting parameter. However,
if we apply the fifth condition:
3|13Sma — (2 —2SMw), (4.32)

we can derive that there exist solution if and only if Sz, = 1. In that case Sy;q = 0,1,2. Finally,
from the sixth condition:
3128y —(1—-0-1), (4.33)

Sy = 0 no matter the value of Syrq used. Thus, we have no constraint to select the value of Sy q
from Syrq = 0,1,2. For the purpose of this example, we take Sy = 2 as the shifting parameter
for the constellation.
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Figure 4.3: Tori representation of the 4D Necklace Flower Constellation.

Figure 4.3 shows the tori representation of the constellation where the satellites are represented
with filled circles and the available positions with emptied circumferences. In this figure, it can be
observed that all the tori are identical to Figure 4.1 except for the M — w torus where the effects
of the necklace can be observed. As it can be seen in that torus, the property of symmetry is
maintained (the distribution is still congruent), presenting a uniform configuration in the available
positions. Moreover, it is worth noting that although the effect of the necklace are only observed
in the M — w torus, the tori in M —  and M — r are also being affected. However, due to the
fact that this representation is just a projection of a 4D space, the holes in the configurations are
covered by other satellites of the distribution.
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Figure 4.4: Isometric (left) and polar (right) views of the 4D Necklace Flower Constellation.
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The inertial distribution of the constellation can be seen in Figure 4.4. Compared with Figure 4.2 it
can be observed that the inertial orbits in both constellations are the same, having the constellation
in this example only one satellite in each orbit. In addition, from the polar view of Figure 4.4 we
can see that there is a symmetry in the z — z plane in this projection, which is a property that has
been maintained from the original distribution of Figure 4.2

4.3 4D Necklace Flower Constellations as a generalization of all
possible Lattice Flower Constellations

4D Necklace Flower Constellations contains as a subset all the former Lattice and Necklace
Flower Constellations, namely, the 2D Lattice Flower Constellations, the 3D Lattice Flower
Constellations, the 2D Necklace Flower Constellations and the 3D Necklace Flower Constellations.
From Equations (4.25) and (4.27), if we impose that L, = 1, we obtain a 3D Necklace Flower
Constellation. If, in addition, we impose L, = 1, 2D Necklace Flower Constellations are generated.
Finally, if we impose that all the necklaces occupy all the available positions, the symmetries of all
necklaces are equal to one and all the shifting parameters are zero, thus, leading to their Lattice
Flower Constellations counterparts.

Moreover, since the formulation now is not constraint by uniform distributions (since we can define
the positions in each dimension freely) the 4D Necklace Flower Constellation methodology provides
a larger number of possibilities of design. The ability to define such non uniform distributions is
also possible using necklaces properly, however, being able to define the positions that are more
interesting directly simplifies the constellation design process and simplifies the possibilities of
design.

4.4 Conclusion

This chapter introduces the 4D Lattice and Necklace Flower Constellations as new frameworks
in satellite constellation design. In that respect, these 4D methodologies allow to expand the
possibilities of design of the former 2D and 3D Lattice Flower Constellations. This is done by
introducing a new variable of distribution, the semi-major axis, and modifying the manner in which
the possible configurations are defined, which allows more freedom in the design.

The most important characteristic of 4D Lattice and Necklace Flower Constellations is that the
general structure of the constellation is continuously changing, presenting a period of repetition
during its dynamic. Nevertheless, inside this configuration, there are substructures that can be
appreciated, which correspond to internal 2D and 3D Necklace Flower Constellations. This provides
a tool to bound several Lattice Flower Constellations.

The present chapter also introduces necklaces in the formulation, which allows to generate a fictitious
constellation, that has more satellites than the constellation that we want to design, and select
from it a subset of satellites in such a way that the properties of uniformity and symmetry are
maintained in the configuration. This allows to increase the number of possibilities in design, as
they are proportional to the number of satellites in the fictitious constellation generated. With
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this technique, constellations with a small number of satellites can provide the same number of
possibilities in design that constellations composed by a bigger number of satellites.

Finally, the effects of the Js perturbation are considered with the final purpose of maintaining the
initial design configuration for longer periods of time. We include the effects of the Jy perturbation
by a modification in the mean values of the eccentricity and semi-major axis of the orbits of each
satellite so that the compatibility condition in the rotating frame of reference is maintained under
this perturbation. Following that procedure, it is possible to maintain not only the configuration,
but also the symmetries of the constellation, requiring a fewer amount of fuel in order to perform
the relative station keeping of the constellation.
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Chapter 5

n-Dimensional congruent lattices
using necklaces

The formulation to generate uniform distributions of satellites in several variables was introduced
in the 2D, 3D and 4D Necklace Flower Constellations chapters. However, as we pointed out, 4D
Necklace Flower Constellations is the greatest generalization that the theory can provide for satellite
constellation design. However, the necklace methodology introduced in these designs can be applied
to any problem that relates with uniform distribution of elements in a given space. For this reason,
the generalization of the necklace lattice theory for n dimensions is introduced in this chapter.

Necklaces in n-dimensional lattices provides a powerful tool to generate uniform distributions in a
modular space of any dimension, maintaining the properties of uniformity, symmetry and congruence
in the resultant configurations. In addition, the theory presented in this chapter represents the
generalization of the methodology introduced in the 2D, 3D and 4D Necklace Flower Constellations,
making the formulation more compact and robust. In that respect, this chapter deals also with the
problem of existence and uniqueness of the configurations obtained, providing the set of constraints
that the parameters of the distribution must fulfill in order to avoid duplicities in the formulation.

In addition, some counting theorems are introduced that allow to count the number of different
possibilities in design that this theory can provide under different conditions. As such, it represents
a generalization of the theorems presented in the 2D Necklace Flower Constellations.

This chapter contains two different parts. In the first part, we introduce the definition of congruent
lattice and study its properties. This allows to generate uniform lattices in a n-dimensional modular
space. Second, the concept of necklace is introduced in the formulation, providing a methodology
to select subsets of elements from the original congruent lattice, while maintaining the congruence
property in the selection.

5.1 n-Dimensional congruent lattice distribution

The objective of this section is to generate a uniform distribution of points in a n-dimensional
space that is subjected to modular arithmetic. This implies three important consequences. First,
due to the modular arithmetic affecting the n-dimensional space, such space can be regarded as
a (n — 1)-dimensional torus in a n-dimensional space. Second, since points cannot be split, there
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are an integer number of them that are distributed in the space considered. Third, the locations
of these points are defined using coordinates in the space, which means that, in order to locate a
point, n real numbers are required, being n the number of dimensions of the space. Thus, a relation
between a set of integers and the real space must be defined, that is, a lattice.

Let n be the number of dimensions of a space where a congruent lattice is required to be generated.
The lattice is defined as an application between Z" and R™:

T1: 2" — R"
) (5.1)
kE — V

where k names each point of the distribution, and V locates it in the space considered, that is, it
is the set of coordinates of each point of the distribution. In particular, k; represents the position
number of the point in the dimension i € Z,, while V; is the distribution variable considered to
range between [0, 1] due to the modular arithmetic of the space. Note that spaces with other sizes
can be obtained by an homotopy of the space studied.

Let ¢ = 1,...,n be an integer parameter that names each of the dimensions of the space,
where {V; € V | V; € [0,1]} is the distribution variable in the dimension i of the space, and
{k; € k| k; € Z} is the distribution parameter on each dimension. In addition, let L; be the
number of different values of V; provided that {k; | j # i} are fixed, in other words, L;; is the
number of available positions in the dimension ¢. This means that, since k; names a particular
position in the space, only L;; different values of k; generate different configurations.

Definition 1. Two lattice configurations are equivalent if they represent the same points in the
space. This means that the set of points defined by {V'(k)} is the same as {V*(k*)}, where {V(k)}
and {V*(k*)} are two different distribution. This definition is represented as:

{Vi(E)} ={V(k)}. (5.2)

However, an in order to simplify notation, we refer to two equivalent configurations as:

VK 2 V (k). (5.3)
for the whole distribution, or:

Vit (k") = Vi(k), (5.4)
with i € {1,...,n}, for each particular dimension of the configuration.

Definition 2. A congruent lattice V' (k) is defined as a lattice where:

‘/’L({]-u L) 7km—17 kma km—i—l’ ) kn}) =
= Vi({L, ... km—1,km + Loyvm, km+1, - - kn}) Yiome{1,2,...,n}, (5.5)
which means that a complete rotation in one of the dimensions of the space of configuration generates
an equivalent distribution. In that respect, it is worth noticing that even if two distributions are

equivalent, each point can be defined with a different combination of the values of k. In addition,
and in order to ease the notation, from now on we will refer to this condition as:

Vilkm) = Vi(km + Lymm)- (5.6)
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Theorem 4. Given a Hermite Normal Form L;; of size nxn, a congruent lattice in a n-dimensional
space can be described as:

1 i—1
Vi=mod | — | ki — L;;V; 1 5.7
i mo Lii 7 j; ( ) J) ’ ) ( )
where mod(a, b) is the modulo in base b of a, and L;; are the elements of the Hermite Normal Form
associated with the distribution.

Proof. A lattice between Z" and R™ can be defined as an isomorphism:

T2 : 7" — R™
) (5.8)
{al,...,ai,...,an} — {Vl,...,V;,...,Vn}
which, in general, can be represented by a system of n independent equations:
Pii Pia - Py Vi o1
Py Poo oo Poy Va Qo
S . =1 .| (5.9)
Pn,l Pn,2 tee Pn,n Vo Qp

where FP; ; are a set of integers, and the values of V; can be obtained by an inversion of the matrix
(since it is non singular). However, Equation (5.9) can produce the same distributions with different
combinations of the values of P;; and «;. For this reason, the Hermite Normal Form [42] is
introduced in order to avoid these duplicities in the formulation.

By performing row operations in Equation (5.9), the Hermite Normal Form of the system is
obtained [43], that is, a system expressed by a lower triangular matrix:

Ly 0 0 - 0 " ki
Lon Loy 0 e 0 Vo ko
= , (5.10)
Ly1np Lpaag -+ Lp—in-1 0O V-1 kn—1
Lni  Lps - . Lon v, k,,

where due to the process of row operations, L;; € Z and k; € Z are obtained as a linear combination
of the former parameters Pj; and «; respectively. Equation (5.10) can be also expressed in matrix
notation as:

i
> LiVi= ki, (5.11)
j=1
and from this equation, an expression for V; can be obtained:
1 i—1
Vi=——\ki—)_ LiVj|, (5.12)
Li;
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which defines a lattice in the space studied. However, Equation (5.12) does not fulfill, in general,
the conditions for a congruence lattice as it is explained in Definition 2. In particular, using
Equation (5.12), and applying the condition for congruence lattice:

Vi(km) = Vi(km + Linm), (5.13)

three different cases can be observed:

o If m > i the congruency is fulfilled automatically since V; only depends on terms of k; such
that j <.

e If m =i, we have to impose that:

Vl(k‘z) g‘/i(k‘i—FLii) Vi e {1,2,...,n}, (5.14)
which leads to:
1 i—1 1 i—1
L ki_jz;LijVj =TI ki"’Lii_;Li]’Vj ; (5.15)

where, both sides of the equation are identical only if L;; = 0. However, that would mean that
there are no available positions in any dimension, and thus, no lattice would be generated.
That is the reason why another property of the space has to be considered. In particular, if
the modular arithmetic of the space is introduced in Equation (5.12) by limiting the number
of different available positions in a dimension:

1 i—1
V; = L—iimod k; — ; LV, Ly |, (5.16)

then, the condition of congruence lattice is achieved if:

This leads to the first boundary of the distribution parameters:

Corollary 2. In order to avoid duplicities in the formulation and to obtain a congruent
distribution, k; € Zr,, and there exist an intrinsic modular arithmetic in the distribution
parameters such that:

e If m < 4, the resulting condition becomes:

i—1 i—1
1 1
L > LiVilkm) | = 7 | ki = 2 LigVilhm + Lonm) | - (5.19)
(43 jil K4 ] 1

which is equivalent to the congruence lattice condition since:
Vi(km) = Vi(km + Limm) Vij,me {1,2,...,n}, (5.20)

as presented in Corollary 2.
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That way, using Equation (5.16), it is possible to fulfill the congruence condition for all the
dimensions of the lattice. Moreover, by introducing the term L; inside the modular operator,
the following expression is obtained:

i—1

1

Vi=mod | ki—;Lijvj 1 (5.21)
‘]:

This means that the point with distribution parameters k; = L;; Vi € Z™ is located in the center of
the coordinate system of the space, serving as a reference for the distribution.

O]

It is important to note that having included the modular arithmetic in L;;, the terms L;; represent
the number of different positions in V; provided that {k; | j # i} are fixed, while {L;; | i # j} are
the configuration numbers, a set of integers that modify the distribution of the lattice.

Once the lattice is defined in Theorem 4, a boundary of the parameters is established in order to
avoid duplicities in the formulation. Two sets of boundaries are generated, the first related with
the parameter distribution k;, and the second related to the possible values of the Hermite Normal
Form LZ]

Theorem 5. The set of distribution parameters k; is bounded in order to avoid duplicities in the
formulation of a congruent lattice. In particular:

k; € {1,2,...,[/%} (5.22)
Proof. Let k be a vector containing the distribution parameters where the position m is occupied by
km € Z, and let k* be the same vector but with the position m occupied by the parameter £, € Z

instead of k,,. Let suppose that both distributions are equivalent in the dimension m, then, using
Equation (5.21), a relation between both distribution parameters is obtained:

1 m—1 1 m—1
mod | — [ kp, — Lpn;iVil,1| =mod |—— | k), — Ly Vi, 1]. 5.23

which can be expanded, leading to:

1 m—1 1 m—1
T | hm— > LV | +A= | b - > LV |, (5.24)

where A is an unknown integer. Then, performing some operations in the former expression, the
following relation is obtained:
km + ALy = ki, (5.25)

and thus, if k,, is defined in the ring of integers Zr,,., = {1,2,..., Lim}, k), can range all Z.
On the other hand, the lattices generated in the rest of the dimensions are equivalent due to the
congruence lattice condition (Corollary 2). Consequently, all possible configurations are equivalent
to the ones defined by ky, € {1,2,..., Lym}-

O
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Theorem 6. The set of configuration numbers L;; must be constraint in order to avoid duplicities
in the formulation of a congruent lattice. In particular:

L €{0,1,...,Lj; —1}. (5.26)

In addition, the relation between two equivalent distributions L and L* is given by:

1—1
Li; = Lij + Z A,Lyj, (5.27)

p=J

where Ay, are a set of integer numbers that are used to perform row operations in the Hermite
Normal Form.

Proof. From the properties of the Hermite Normal Forms [42], an n X n integral matrix is in Hermite
Normal Form if the matrix is lower triangular (or upper triangular), the elements of the diagonal
are positive, and the elements of a column are bounded by L;; € [0, L;j; —1]. If these conditions are
met, we can conclude that the matrix is in its Hermite Normal Form and in addition, we can assure
that the representation of the system is unique. This means that all the equivalent congruent lattice
configurations can be generated performing row operations in this Hermite Normal Form (which is
unique).

Let ¢ an arbitrary row in which we want to modify the configuration numbers L;; in such a way
that the resultant distribution is equivalent to the original. In order to obtain the new combination
numbers, we perform row operations such that the matrix is still triangular and the diagonal remains
unaltered since the diagonal defines the number of elements in each dimension (see Theorem 5).
That way, the formulation of the congruent lattice, defined in this work, is maintained no matter
the distribution presented.

Let L and L* be two equivalent distributions. Thus, each element of the matrix L* can be expressed
by means of the elements of L. In particular, the general term of the matrix can be written as:

n
Lij =L+ ALy, (5.28)
p=1

where A, are a set of integer numbers that are used to perform the row operations and n is the
number of dimensions of the distribution. Since we want the matrix that defines each distribution
to be triangular, and with a given set of values in the diagonal, we have to limit the sum to certain
rows. In particular:

i—1
Lij =L+ ALy, (5.29)
p=jJ

We can rewrite the former expression into:

i—1
L:j = L;; + Z Aprj + Aijj, (5.30)
p=j+1
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which represents the general expression to obtain all the equivalent distributions of a given
configuration. From Equation (5.30) and since we can impose the parameters A; to present any
integer value, we can transform the expression into:

i—1
Lij=Lij+ Y ApLy mod (Ljj), (5.31)
p=j+1
where it is easy to observe that any distribution can be defined by an equivalent set of parameters
that follow this boundary:

L;-kj S {0,1,...,ij — ].}, (532)
That way, we prove the boundaries of the configuration numbers (L;; € {0,1,..., L;; —1}) and also
the relations between two equivalent configurations given by this theory. ]

5.1.1 Number of possible configurations

Once the lattice and the distribution is completely defined, it is time to calculate the number of
different configurations that can be obtained under the assumption that the number of elements in
each dimension ¢ (L;;) is already known.

Theorem 7. Given a lattice distribution defined by:

1 i—1
Vi=mod | — | k; — Li;Vi)y|,1], 5.33
i Lii ) ;( ij J) ( )
and for a fired number of elements distributed in each dimension i (Li;), the number of different
configurations provided by this lattice configuration is:

n n—i

H H Lii (5.34)

i=1j=1

where n is the number of dimensions of the problem.

Proof. Since the number of elements in each dimension is fixed L;;, the only parameters that can
modify the distribution are the combination numbers L;; which have the particularity that i # j.
Additionally, from Theorem 6, we now that the values of L;; are constraint in order to obtain
different configurations. Thus, in the dimension 7 there are:

11 % (5.35)

possible combinations of the combination numbers. Then, for the complete Hermite Normal From,

we have:
n i1—1

H H Lj; (5.36)

i=1j=1
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different configurations of the lattice. The former expression can be rearranged into:

n—1 n—2 n—(n—1)
n—1 n—2 1
II Zis ) | I] Los Ly | =L Vel -Lgn),l)(n,l), (5.37)
j=1 j=1 j=1
or in a more compact notation: 4
H Ly = H H L. (5.38)
i=1 i=1j=1

which is the number of different possible configurations in a congruent lattice in a space of n
dimensions.

O]

5.2 n-Dimensional congruent necklace distributions

The objective now is to generate a configuration space using a congruent lattice as described in
Equation (5.7) and then select a subset of available positions in such a way that the property of
congruence in the distribution is maintained. In order to do that, we first introduce the concept of
necklace and some of its basic properties.

Definition 3. A necklace is a subset of elements taken from a set of available positions that present
modular arithmetic. It is represented as:

G C Zp, (5.39)

where m is the number of available positions considered.

Definition 4. Two necklaces (G; and Go) are identical (=) if they select the same subset of elements
from the available positions:

G1 =G = {G1} = {G2}. (5.40)

Definition 5. Two necklaces (G; and Ga) are considered to be equivalent, that is, there exists an
equivalence relation = between them, if they fulfill the following expression:

G12Gy<=3s:G1=Ga+s mod (m), (5.41)
where s is an integer that belongs to Z,,.

It is important to note the differences between identical and equivalent necklaces. In that regard,
a necklace whose elements are reordered but they occupy the same available positions define an
identical necklace. On the other hand, a necklace that performs a rotation in the available positions
generate an equivalent necklace. In addition, it is easy to derive that two necklaces that are identical,
are also equivalent (as seen in Definition 5 if s | m). However, there are other cases where a rotation
generates an identical necklace. For that reason, we introduce the concept of symmetry of the
necklace.
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Definition 6. Symmetry of the necklace is the minimum number of positions that a necklace has to
rotate in order to obtain an identical necklace. The symmetry of a given necklace G is represented
by Sym(G) and its mathematical expression is provided by the following equation:

Sym(G) =min{l <r<n:G+r=gG}. (5.42)

This means that given a necklace G and applying a rotation of {s : Sym(G) | s} generates an
identical necklace (see Definition 4) which is also equivalent to G (see Definition 5). In addition,
this implies that the maximum number of rotations that we can apply to the necklace G without
generating an identical necklace is (Sym(G) — 1). This allows us to define the shifting parameter,
whose objective is the definition of all the possible different movements that a necklace can perform
in its available positions.

Definition 7. The shifting parameter S is the minimum representation of any rotation that a
necklace can perform in its available positions. As a consequence of the definition of Symmetry of
the necklace and the modular arithmetic of the problem, the shifting parameter is constrained such
that:

Se{0,1,...(Sym(G) — 1)}. (5.43)

With the definitions and properties of the necklace already defined, it is now possible to find all
the different movements that each necklace introduced in the lattice is able to perform in order to
maintain the property of congruence in the lattice. As before, we are very interested in avoiding
duplicities in the formulation both for counting purposes as for efficiency in the study.

Let G; be a necklace defined in the dimension i of the space, where G, is represented as a vector of
dimension IV; which contains the information of the positions occupied from the available positions.
Note that NV; also corresponds to the number of different elements in the dimension 7 provided that
{kj | j # i} are fixed. That is, the necklace G; is a subset from the set of available locations in Zp,;:

Gi C{1,..., Ly}, (5.44)

such that |G;| = N; is the number of elements of the necklace G;. On the other hand, and in order
to simplify the notation used, we assume that:

with
1<Gi(1) <+ < Gi(ky) < -+ < Gi(Ni) < Ly, (5.46)

and where the index kf € {1,..., N;} is an integer modulo Nj, that is, k¥ 4+ N; is the same index as
k¥, that points to each element inside the necklace. This allows to define an application (G;) that
defines the positions that the necklace occupies in the available positions:

Qi: ZNz‘ — ZL”
kil — Gi(k). (5.47)

For this reason, it makes sense to refer to G;(k}). Thus, due to the modular arithmetic inside the

necklace:
Gi(k}) = Gi(mod(k; + Nj, N;)), (5.48)
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which corresponds to a complete rotation in the available positions in dimension ¢. It is important to
note that this rotation is equivalent to a movement in the admissible locations defined by Corollary 2:

as both represent the same movement of the necklace, one using the parametrization of the necklace
and the other using the parametrization of the available positions. In addition, by applying the
definition of symmetry of the necklace (Definition 6), the former equation can be defined in terms
of the symmetry of the necklace in the dimension i (Sym(G;)) and the necklace G;:

Gi = Gi + ASym(G;), (5.50)

where A is an unknown integer. Thus, the following corollary can be derived:

Corollary 3. The modular arithmetic governing the rotations in the set of available positions
subjected to a given necklace is:

Gi = Gi + Sym(G:) mod (Sym(Gi))- (5.51)

It is important to note that since a complete rotation over the available positions generates an
identical distribution, L; must be a multiple of Sym (G) due to the fact that Sym (G) is the
minimum rotation to generate an identical necklace. This implies that Sym (G) | Li;.

On the other hand, we define a set of movements for each necklace in its dimension in order to
provide a methodology in the formulation to shift the necklaces over the available positions respect
the movement performed in other dimensions. Let the shifting matrix S be a lower triangular matrix
of size n X n, made entirely of integer elements, where the term S;; € Z is the shifting parameter
(see Definition 7) that relates the movement of the necklace G; with the movement performed in the
dimension j. This means that the movement of the necklace G; is only affected by the movement
of necklaces G; located in dimensions where j < i (as was previously the case with the variables V;
and the distribution parameters k;).

Theorem 8. A necklace defined lattice in a n-dimensional modular space can be generated by the
following expression:

ZZ: LiVi = ki
=1

i—1
ki = mod |Gi(k)+ Y Sijkj, Sym (Gi)| (5.52)
j=1

where G; is the necklace in the dimension i, k} is the distribution parameter inside the necklace and

Sij is the shifting parameter of the necklace G; with respect to the dimension j.

Proof. An application between the available locations k; and the necklace elements G;(k}) can be
defined as done in Equation (5.47):

T3: (ZNl X ZN2 X o+ X ZNn) — (ZLH X ZL22 X o+ X ZLnn)
(K k3, . kD) — (ku ko, k), (5.53)
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where the relation between the distribution parameters in the available positions k;, and the elements
of the necklace is described as:

1—1
ki = Gi(k}) + Z Sijkj, (5.54)
=1

being G;(k;) the term that provides the information about the structure of the necklace in the
dimension, while the term 23;11 Sijk; represents all the possible dependences between the necklace
G; with the movement of the configuration in other dimensions. However, and due to the existence
of symmetries in the necklace, there are movements that generate identical configurations. Thus,
using Corollary 3:
i—1
ki =mod | Gi(kf) + Y Sijks, Sym(Gi) | , (5.55)
j=1

which avoids the duplicities of configurations for different sets of shifting parameters.

Now, we introduce Equation (5.55) into the initial lattice defined in Equation (5.11), obtaining:

ZZ: LiVi = ki
=1

i—1
ki = mod |Gi(kf)+ ) Sijkj, Sym (G)| - (5.56)
j=1

Note that the former expression is a recursive function in the different dimensions of the space in
study due to the fact that both L;; and S;; are zero when j > 7.

O
Theorem 9. The shifting parameters that allow the lattice defined by:
ZLijVj = ki
j=1
i—1
ki = mod |Gi(k))+ Y Sijkj, Sym (Gi)| (5.57)
j=1
to be congruent must fulfill the following relation:
1—1
Sym(gz) SZ“L]']‘ - Lij - Z Siquj . (558)
g=j+1

Proof. In order to derive the theorem, we focus on a particular dimension ¢ where we apply the
congruence condition seen in Definition 2:

Vilkj) = Vi(kj + Lj;) Vi,j €{L,2,...,n}, (5.59)
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where we assume that a complete rotation of the configuration is performed in the dimension j while
the other dimensions remain unrotated. This means that in addition to the congruence condition:

Vi(k;) = Vitk; + Lj;) i # j. (5.60)
since only the dimension 7 is subjected to a movement.

Studying the lattice presented in Equation (5.52) we can observe three different cases, the case in
which j > ¢, the case j = ¢ and the case j < ¢. For all the cases of study we consider:

iLip%(kj) = ki(k;)
p=1
i—1
kilky) = Gi(k})+ > Sipkp(ks) + AiSym (Gi) , (5.61)
p=1

as the original lattice before the complete rotation in the dimension j, where V,(k;) and ky(k;)
represent the variable and the distribution parameters of the original configuration and A; is an
unknown integer. On the other hand:

> LpVp(kj+ Lj;) = ki(kj + Ljj)
p=1
i—1
ki(kj + ij) = Gi(k})+ Z Sipkp(kij + ij) + B;Sym (G;), (5.62)
p=1

is the lattice after the complete rotation in the dimension j, where V(k; + Lj;) represents the
variable in the dimension ¢ affected by a complete rotation performed in the dimension j and
kp(kj + Ljj;) is the modified distribution parameter k, after the rotation. Finally B; is an unknown
integer generated due to the modular arithmetic of the problem.

e If 7 > i, the rotation in the dimension j does not affect k; since:

> LipVplkj + Ljj) = Y LipVu(ks) = > Lip [Vo(kj + Ljz) = V(k;)] =0, (5.63)
p=1 p=1 p=1

which implies that:
kp(kj + Lj;) = kp(k;) Vp <j. (5.64)

Regarding the second expression of the lattice, we compare the original and the rotated
configuration, obtaining:

0= Siplkp(ks + Lyj) = ky(ky)] + (Bi — A;)Sym (G) (5.65)

which means that no constraint has to be imposed in the shifting parameters for the fulfillment
of the congruent condition.
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e If j =i, the difference between both lattices is:
J
> Lip Volhy + Lyg) = Vi(ky)] = Ly, (5.66)
p=1
since L;; = kj(kj + Lj;) — kj(k;j) (a complete rotation in this dimension). In addition, the
former equation can be rearranged into:

j—1
Ly Vikj + Lyz) = Vi(k)] + > Lyp Vil + L) — Vi) = Ly, (5.67)
p=1
and using Equation (5.60), we obtain:
Vj(kj + Ljj) = Vj(kj) =1 (5.68)

that represents the complete rotation in the dimension ¢. It is clear that since the variables
V; are subjected to a modulo 1 arithmetic, V;(k; + L;;) = V;(k;). However, this result affects
other dimensions as it is shown later.

On the other hand, from the differences between the second terms of the lattice of the original
and rotated configurations:

j—1
Ljj =Y Sjplkp(k; + Lyj) — kp(ky)] + (Bj — A)Sym (G;) (5.69)
p=1

where applying the condition presented in Equation (5.64) we derive that:
Lj; = (Bj — A;)Sym (G;) , (5.70)
and thus, no additional constraint must be imposed since Sym (G;) | Ljj;.

o If j < i, the difference between both lattices is:

> LigVy(kyj + Ljj) = > LigVa(ks) = ki(kj + Lj;) — ka(ky), (5.711)
q=1 q=1

which is equal to:
> Lig Vy(kj + L) = Va(kj)] = ki(k; + Ljj) — ka(k;), (5.72)

and rearranged it leads to:

j—1
> Lig Vy(kj + Lyj) = Va(kp)) + Lij [Vi(kj + Lj;) — Vi(ky)] +
q=1

+ Lig [Vg(kj + Lj;) — Vo(kj)] = ki(kj + Ljj) — ki(k;), (5.73)

q=j+1
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which can be simplified using Equations (5.60) and (5.68), obtaining:

Lij = ki(k; + Lj;) — ki(kj). (5.74)

On the other hand, from the differences in the second term of the lattice of both configurations:

i—1
ki(kj + Lyz) — ki(k;) =Y Sip [kp(kj + Ljj) — kp(kj)] + (B; — A;)Sym (G;), (5.75)
p=1

where using Equation (5.74) and (5.64) leads to:
i—1
Lij =Y Sip [kp(ks + Lyj) — kp(ky)] + (Bj — A;)Sym (G;) - (5.76)
p=j

In addition, the former expression can be rearranged into:

Lij = Sijlkj(kj + Lyj;) — kj(k;)] +

i—1
+ > Siplkp(ky + L) — kp(ky)] + (B; — 4;)Sym (G;) , (5.77)
p=j+1
where:
kj(kj + Ljj) — kj(k;) = Lyj, (5.78)

representing the complete rotation in the dimension j, while:
kp(kj + Ljj) — kp(kj) = Ly, (5.79)

as seen in Equation (5.74). Thus, Equation (5.77) can be written as:

i—1
Lij = SiiLij+ Y SipLp; + (B; — A;)Sym (G;), (5.80)
p=j+1
or, in a more compact manner:
i—1
Sym(gl) SZ"L]']' - Lij - Z Siquj 5 (581)

q=j+1

which is an expression that relates the values of the shifting parameters with respect to
elements of the Hermite Normal Form and other shifting parameters. Note that the expression
is a recursive function.

Thus, and as seen from the three cases studied, the only constraint that affects the shifting
parameters is:

i—1
Sym(Gi) | SizLjj — | Lij = D SiqLej | - (5.82)
=j+1

O
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5.2.1 Number of possible configurations

In this section we deal with the problem of counting the number of different configurations that the
n-dimensional congruent lattices using necklaces can generate. In that respect, we consider three
different cases of study:

o Fixing the set of necklaces G; for all i € {1,...,n}, and the Hermite Normal Form.
 Fixing the set of necklaces G; and L;; for all i € {1,...,n}.
» Fixing the sizes of the necklaces N; = |G;| and L;; for all i € {1,...,n}.

However, first we need to determine the number of different necklaces of a given size that can be
generated in a given dimension. Let L be a set of available positions in a given dimension where
we select a necklace G comprised of N elements taken from the available positions. In other words
G C{1,...,L} where |G| = N.

Theorem 10. The number of different necklaces under the equivalence relation =2 and that are
comprised by N elements taken from L available positions is:

L 1 g g1 g'
- N — Z T ‘sz(g')} . (5.83)
T AT
g q'lg
by | fin _

where g = Sym/(G) are the possible symmetries in the problem considered and |Fiz(qg')| is the number
of elements contained in the Fix of g, and which is provided by:

L g g1 g
. . /
Fitg)| = || N | = X FIPi@)]| (5.84)
79 g'=
g'lg
LN
L g .

Proof. Let + Z;, be the possible different actions that can be applied to a given necklace, and
which correspond to the possible different rotations that a necklace G can perform in the available
positions Zp,. In addition, let G = Z, be the group containing the possible actions that can apply
to any necklace defined in L available positions. That way, we can define a map ¢ as:

o: GxX — X
(9,x) — x+g mod (L). (5.85)

The objective is to apply the Burnside’s Lemma to this application. Therefore, we have to compute
|Fix(g)|. The Fix of a given action is the set of elements that remain unaltered under the application
of that action. In that respect, from the definition of symmetry of a necklace (see Equation (5.42)),
we know that the only possible values of g € G that have elements in the Fix(X) are the ones that
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presents symmetries, that is, when an element fulfills g = Sym(G). This means that only the values
such that ¢g|L and §|N contribute to the elements of the Fix.

First, we focus in a particular value of symmetry of the necklace g = Sym(G) and its Fix (Fix(g)).
Since there exists symmetry in the necklace, the configuration can be regarded as a pattern
comprised of g available positions that is repeated L/g times in the L available positions. In
this pattern, there must be Ng/L elements from the necklace since all the patterns must have the
same number of elements. Thus, the number of possible combinations that exists in a pattern of
size g (PC(g)) is:

PCg)=| N . (5.86)
On the other hand, each pattern can rotate L/g possible times in the L available positions while

maintaining the same configuration (due to the symmetry that we are imposing). Thus, the number
of combinations of N elements in L available positions that present a given symmetry g is:

L L g
—PC(g) = — N . (5.87)
g g fg

However, this counting also includes some elements that belong to other symmetries (remember
that from Definition 6 the symmetry of a necklace was defined as the minimum rotation in order
to obtain an identical necklace), and thus, they must be removed from this set of combinations in
order to avoid duplicities in the counting process. For instance, if L = 6 and N = 3 and we consider
g = 6 as the symmetry in study, the number of combinations that we compute with Equation (5.86)
include combinations of elements that also present symmetry of g = 3: {1,4}, {2,5} and {3,6};
and thus, we could count them twice if we are not careful in the counting process. In order to
avoid these cases, we only consider g as the smallest symmetry that a combination of elements can
present.

From the definition of Fix, we know that the number of possible combinations of N elements with
a particular symmetry g is the |Fix(g)| itself. In addition, the possible combinations of elements
must have been generated based on patters of size g (as in Equation (5.86)). Thus, the number of
different patterns that exists for a particular symmetry ¢’ is:

PC(¢") = i, [Fix(g")] . (5.88)

Then, we can remove from the counting process, of the different pattern generators with symmetry
g, all the elements that belong to a different symmetry such that ¢’ < g:

g 9! g'
PClo)=| N | = 7 [Fix(a)], (5.89)
s g=
d'lg
LN

where the sum is performed in all the symmetries ¢’ such that ¢'|g and %]N since ¢’ must also fulfill
the conditions for symmetry.
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Once the number of pattern combinations is computed, the |Fix(g)| can be obtained using
Equation (5.89), leading to:

1
: L g = .
[Fix(g)| = — N |- E\FIX(Q')I : (5.90)
g —gq —1
L g
d'lg
LN
L g .

which is a recursive function that can be easily computed. Equation (5.90) allows to obtain the
number of different necklaces under a given symmetry g. This is done by the direct application of
Burnside’s Lemma, where G = Zj, as pointed out before. That way, we can derive that the number
of different necklaces is:

1 Ly
7 > [Fix(g)], (5.91)
g=1
9l L
%'N]W

which using Equation (5.90) can be rewritten as:

Ly 1 g g—1 g/
. /
- N |- 7 Fix(¢)|] - (5.92)
g -
g=1 Lg g'=1
g|Lm J'lg
LN i §|N i

O]

Once Theorem 10 is presented, it is now possible to introduce the counting theorems for congruent
lattices using necklaces. Each condition studied and theorem is presented in a different subsection.

5.2.1.1 Fixing G; for all i € {1,...,n} and the Hermite Normal Form.

In this case we focus on the study of the number of possibilities given a set of necklaces G; and
the complete Hermite Normal Form of the fictitious constellation. By doing this, the available
positions are fixed (they cannot shift), and thus, this methodology provides the number of congruent
configurations that follow the particular distribution given by the Hermite Normal Form. This is
equivalent to compute the number of possible values that the shifting parameters S;; can present
in Equation (5.58).

Theorem 11. Given a set of necklaces G; in each dimension of the space such thati € {1,...,n},
and a fized Hermite Normal Form, there exist congruent configurations in the available distributions
if and only if:

i—1
ged(Sym(Gi), L) || Lij — > SijLgj | » V{i,j:i>j}, (5.93)
q=j+1
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being the number of different configurations in that case:

n i—1

H H ged(Sym(Gi), Ljj), (5.94)

i=1j=1

Proof. Equation (5.58) can be expressed as:

i—1
ASym(Qz) -+ ijSZ'j = Lz’j — Z Siquju (5.95)
q=j+1
where A is a unknown integer. As it can be seen, Equation (5.95) can be regarded as a linear

Diophantine equation where we select A and S;; as the variables of study. By the use of Bézout’s
identity, we can conclude that there exist solution if and only if:

i—1
gcd(Sym(gi),ij) L'j— Z Siquj . (5.96)
g=j+1

In the case the former expression is fulfilled, the solutions of Equation (5.95) have the form:

Sym(G;)
ged(Sym(Gi), Ljj)’

(Sij)a = (Sij)o+ AL with Al =
A Ly; 7
ng(Sym(gz),L]])

where (S;j)o and (A)g is a known pair of solutions, and A is an integer number.

(A = (Ao — (5.97)

However, the shifting parameters S;; are constrained as seen in Definition 7, and thus, S;; €
{0,...,Sym(G;) — 1}. This means that the number of different values of S;; that can be defined is
provided by:

FW(QMJ 1o {(Sym(gi)—1)gcd(5ym(gi)7ij)J 1=

Al Sym(G:)

= ged(Sym(Gi), Ljj). (5.98)

The condition provided by Equation (5.97) as well as the number of different values of S;; given
by Equation (5.98) must be fulfilled for all the dimensions of the space, thus, the condition for the
existence of solution is:

i—1
gcd(Sym(Q,-), ij) Lij — Z Siquj , v {Z,j D> j}, (5.99)
q=j+1

while the total number of different configurations is given by all possible combinations of the shifting

parameters S;;. Therefore the number of different configurations is:

n i—1

TT1] gcd(Sym(G:), Ljj). (5.100)

i=1j=1
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O]

As it can be observed, if all the necklaces comprise all the available positions of their respective
dimensions, we obtain that there exists congruent configurations always since Sym(G;) = 1 for any
dimension. In addition, there is only one possible configuration due to the fact that:

n i—1

IT1]ecd(t, Lj;) =1. (5.101)

i=1j=1

This is an expected result, since in a complete configuration, a given Hermite Normal Form can
only generate one congruent lattice distribution.

5.2.1.2 Fixing G; and L;; for all i € {1,...,n}.

On the other hand, in this second case, we fix the necklace G; and the number of available positions
in each dimension, that is, the parameters L;; from the Hermite Normal Form. This provides the
information of how many different distributions can be created with a given set of patterns (through
the parameter Sym(G;)). This problem is equivalent to compute the amount of pairs {S;;, L;;} that
are solution of Equation (5.58).

Theorem 12. Given a set of necklaces G; and a number of available positions in each dimension
L;;, the number of different congruent configurations that can be generated is:

n n—i

Iz (5.102)

i=1j=1

Proof. We first focus on a particular combination of dimension of study ¢ and dimension in which
rotations are considered. Then, by using Equation (5.58) we can present the relation between S;;
and L;;:

L;;Si; — 1L;; = ASym(Gar) — Z SiqLqjs (5.103)
q=j+1

where the elements S;; and Lg; with ¢ > j are supposed to be known since can be computed in other
recursions of the equation. Equation (5.103) can be regarded as a Diophantine equation where S;;
and L;; are its variables. Then, this Diophantine equation has solution if and only if:

ged(Ljj, 1) |ASym(Gar) — Z SiqLyj (5.104)
q=j+1

which is always true. Furthermore, the solutions generated are:
(Sij)x = (Sijlo+ A,
(Lij)x = (Lij)o + AL, (5.105)

where (S;j)o and (L;j)o are a pair of possible solutions of Equation (5.103) and A is an integer.
From Equation (5.105), we can deduce that there is only one solution for each particular value of
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the integer A, since L;; € {0,...,L;; — 1} and the the summation is assumed to be fixed in the
equation. Thus, we are interested to know the number of the different values that A can present in
the equation.

From Equation (5.103) and the different maximum and minimum constraints of L;; and S;; (see
Theorem 6 and Definition 7), the maximum and minimum values of A that can be obtained are:

1—1
1
Amin = A SZL—L—l s
Sym(gl) q;l q--q) ( JJ )
1 i—1
Apax —_— SigLgi + Lii(Sym(G;) — 1) |, 5.106
Sym(gl) qzj;_l q-q] ]]( ( ) ) ( )

which define:

Lj;(Sym(Gi) — 1) + (Lj; — 1)
Sym(G;)

LAma:r - Amsz +1= \‘ J +1= ij (5107)

different possible values of A. This means that, there are L;; different combinations for the pairs
{L;j,Si;}. It is interesting to note that this is coincident with the number of possibilities that
Lij €{0,...,Lj; — 1} presents.

Therefore, the number of different configurations that we can obtain under these conditions is:

n n—i

Tz (5.108)

i=1j=1

which corresponds to the number of possible configurations of a complete congruent lattice (see
Theorem 7).

O

Theorem 12 also leads to an important property when both the set of necklaces G; and the number
of available positions in each dimension L;; is fixed: the number of possibilities only depends on the
number of available positions, not in the necklace selected nor in the configuration numbers.

5.2.1.3 Fixing N; and L;; for all i € {1,...,n}.

This case is an interesting variation of the previous counting methodology, where now, instead of
fixing the necklaces G;, the number of elements taken in each dimension is set, that is, N; = |G;|.
Thus, it provides information on the number of possibilities of distribution that are available with
a given number of elements retrieved and a set of available positions in each dimension.
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Theorem 13. Let L;; wherei € {1,...,

n} be the number of available positions in each dimension

i of a n-dimensional space, and let N; be number of elements taken as a subset of the available
positions. Then, the number of different congruent lattice configurations using necklaces that can be

generated is:

g 1y
N; - Z F‘FW(QI)‘
L g=1 "
q'lg
LN,
g

(5.109)

where |Fix(g')| for the dimension i is the number of elements contained in the Fix of g, and that

can be computed as:

| Fiz(g)| =

g gt g’
N | =D [Fisd)] |
—-—3g r_
L 9=
dlg
LN

(5.110)

Proof. From Theorem 10 we know that in each dimension i, it is possible to generate

P =
g=1
g|Ls;
Lii |,
g
different necklaces, where:
[Fix(g)| =

This means that the total number of combinations of necklaces between the different dimensions is

0

g
Ni
L g

g—
Z Lg—le

Ig
ii | N,

m‘h

q
L—}le

QMQ

g Ig
Zl ‘N

h

)| (5.111)

9| - (5.112)

(5.113)

In addition, once all the necklaces in the space are fixed, we can apply Theorem 12 in order to
obtain the total number of different configurations by a combination of all the possibilities:

(5.114)
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The former expression can be rearranged into:

n
[]PLi, (5.115)
i=
and using Equation (5.111) we obtain:
n Li; g—
(n—i) 1 J g
Iz AL Z L— Fix(q)|] , (5.116)
i=1 g=1 9 g'=1
LglLu v g |g
“L|N; L”HV

which shows the total number of configurations that are presented in the lattice under the considered
conditions of fixed N; and L;;.

O

In addition, it is interesting to note that if N; = L;; for all ¢, the number of configurations is the
same as in the case of a complete lattice (as seen in Theorem 7). This result was expected due to
the fact that the necklace theory is a generalization of the original lattice theory presented.

5.3 Alternative formulation

It is possible to generate a congruent lattice, and its generalization using necklaces, based on an
entirely integer formulation. This includes the variables V; which are real numbers in the original
formulation.

We depart from Equation (5.11):

i
> LiVi = ki, (5.117)
j=1
and multiply each expression by the integer H;;ll L,,, obtaining:
i i—1 i—1
Y L [T LowVi= ki ] Lon, (5.118)
7j=1 p=1 p=1
which can be expressed in a different manner by simple operations in the summation:
i—1 i—1 i—1 i—1
Li [T LopVi + > Lis [[ LenVs = Ei [ | Low: (5.119)
p=1 7j=1 p=1 p=1

and by merging the product in the first term of the equation and rearranging the product of the
second term we derive:

H LypVi + Z Lij H Lunm H LV = ki H Lpp. (5.120)

m=j+1
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Now, a change in the distribution variable V; is performed. Let N; be the new set of variables that
relate with the originals V; through the following relation:

Ni= 1] LoVi- (5.121)

which introduced in Equation (5.120) leads to:

N; + ZLUN H Lo = ki HLpp, (5.122)

m=j+1

where we can obtain the value of the new variable by means of the distribution parameters k;:

N; =k HL,,p ZLZJN H L. (5.123)

m=j+1

As in the case of V;, the former expression is constraint due to the modular arithmetic of the space.
In particular, and since N; = [[,_; LypVi, N; € [0, [T— Lpp}:

N; = mod |k HLpp ZLUN H me,HLpp : (5.124)

m=j+1

One important thing to note is that A; € Z Vi since all the operations performed are products and
sums of integer numbers.

Now, we introduce in the new formulation provided by Equation (5.124) into the necklace
formulation given by Equation (5.52), which leads to:

i—1
N+ZLZJN H Liwm = /-ciHL,,p;
p=1

m=j+1
i—1
ki = mod |Gi(k) + Y Sijkj, Sym (Gi)| | (5.125)
7j=1

where the congruent configurations correspond to the ones provided by Theorem 9. In that respect,
note that the congruent relations provided by Equation (5.58) are independent on the definition of
the variables used.

Equation (5.125) defines congruent lattices where the variables N; present now integer numbers

(note that they are sums and products of integers) that are defined in NV; € |1,..., H;zl Lpp].



92 n-Dimensional congruent lattices using necklaces

5.4 Conclusion

This chapter introduces the generalization to n-dimensions of the theory behind the 2D, 3D and 4D
Necklace Flower Constellations. This methodology allows to generate all the congruent and uniform
distributions in a n-dimensional space subjected to modular arithmetic. Moreover, the theory allows
to select subsets of elements in such a way that the properties of uniformity and congruence are
maintained in the resultant configuration.

On the other hand, the chapter introduces three sets of theorems. The first set provides the
formulation to generate lattice and necklace congruent distributions in the space considered. The
second set aims to determine the constraints that the distribution parameters must follow in order
to avoid duplicities in the formulation. Finally, the third set consist of counting theorems which
provide the number of different possibilities of design that this theory can generate.

This theory provides a deep mathematical foundation for the configurations presented in the Lattice
and Necklace Flower Constellations, as well as in any other uniform congruent distribution in a
modular n-dimensional space. In that respect, it complements the theory presented for Necklace
Flower Constellations providing mathematical robustness to the whole methodology of design. As
such, with this theory we close the Necklace Flower Constellations methodology.



Chapter 6

Ground-Track Constellations

The designs of Walker, Draim and the Lattice Flower Constellation Theory distribute the satellites
in the inertial frame of reference, not providing any tool to control the distribution in the Earth
Fixed frame of reference. As such, generating a constellation whose satellites share their ground-
tracks becomes difficult. For this reason, we introduce the Ground-Track Constellations as a general
constellation design methodology to generate constellations directly in the Earth Fixed frame of
reference.

The proposed constellation design allows to generate a configuration in which a number of different
relative trajectories is defined, each of these containing a number of satellites that present the same
instantaneous relative trajectory over time. Moreover, in order to decrease the number of orbital
launches to build the constellation, another constraint will be set: satellites from different relative
trajectories have to share the same inertial orbit, allowing a decrease in the number of inertial orbits.

In addition, this methodology allows to include orbital perturbations in the initial design of the
constellation. This process is possible since the greatest orbital perturbation in satellites orbiting
the Earth is the Earth gravitational potential, which is a periodic perturbation from the Earth
Fixed frame of reference. This allows to generate distributions that are resistant to these kind
of perturbations, providing a powerful tool to define constellations independent of the orbital
perturbations. This represents a great difference when comparing with other satellite constellation
designs, where the effects of perturbations where including after the definition of the constellation.
Furthermore, the distribution of these constellations is defined using the along track distances
measured in time, which provides very interesting results and possibilities for design.

The time distribution methodology introduced is able to generate all kinds of satellite configurations
including equally spaced in time distributions (as the Lattice Flower Constellations Theory does)
but also formations of satellites. Examples of these are presented in this chapter for both keplerian
formulation and perturbed models using the time distribution methodology introduced in this work.

This chapter is organized as follows. First, a keplerian formulation for the Ground-Track
Constellations is introduced, where in order to make things easier, we have separated the design in
three steps. In the first step, a constellation whose satellites belong to the same ground-track is
presented. Later, in the second step, additional ground-tracks are included in the formulation, while
in the third step, the condition for minimum number of inertial orbits is imposed in the design.
Once the keplerian formulation is presented, an alternative design process is described which allows
to define constellations under orbital perturbations. Examples of all the methodologies presented
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in this chapter are included to show some of the possibilities that this design can provide.

6.1 Keplerian model for constellation design

In an unperturbed dynamic model, the classical orbital parameters (a, e, i, w, ) are constant
whilst the mean anomaly (M) varies through time. This property will be used to show in a clear
way the analytical model behind the constellation design proposed in this chapter.

Along this section, three different constellation designs will be shown, each one expanding the
possibilities of the former one with a new concept. First, a constellation design model in which
satellites share the same relative trajectory with respect to a rotating reference frame will be
presented. Second, this model will be expanded with the possibility of distribution of the satellites
in several different relative trajectories. And finally, a constraint will be set in order to reduce the
number of inertial orbits to a minimum. That way, the costs of building the constellation in orbit
are considerably reduced.

All these constellation designs share the mean values of the semi-major axis, the eccentricity, the
inclination and the argument of perigee. This is done in order to achieve the sharing of the relative
trajectories.

One important thing to notice is that the definition of the relative trajectory done throughout this
chapter can be established in whatever rotating frame of reference that rotates at a constant speed
with respect to the inertial frame of reference, and thus, it does not have to be the one fixed with the
movement of the Earth. This has two important implications. The first one is that the methodology
can be used in constellations orbiting any celestial body. The second one is that even if the satellites
rotate a particular celestial body, the definition of the constellation does not have to be made in
the reference frame fixed to the central body, it can be made in other reference system, increasing
the freedom in the design. However, in most applications, it is more practical the use of the ECEF
(Earth Centered - Earth Fixed) frame of reference as it defines the constellation in a relative to
Earth position, so during this chapter, it is assumed that the design of the constellation is done in
the ECEF frame of reference.

6.1.1 Constellation design with a common relative trajectory

The objective of this design model is to generate a constellation whose satellites share the same
relative trajectory over time. The first thing required to achieve this condition is to define that
particular relative trajectory. It is worth noting that the relative trajectory is not required to be
closed in the proposed methodology.

The position of a satellite along its trajectory in the perifocal frame of reference is:
x = (rcos f, rsin f, 0), (6.1)

where 7 is the radius of the orbit in each instant of time:

_a (1 — 62)
" T ecosf (62)
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and f is the true anomaly of the satellite.

These positions can be expressed in the inertial frame of reference (ECI: Earth Centered Inertial)
using rotational matrices (R3 and Rq):

x|gor = R3 (2) Ry (i) Rs (w) x, (6.3)
and it can also be expressed in the ECEF (Earth Centered - Earth Fixed) frame of reference:

x|pceEr = R3 (—Yaco — wat) X|Eor, (6.4)

where 1go is the longitude of Greenwich at the time of reference ¢t = 0 and wg, is the angular velocity
of rotation of the Earth.

Thus, using Equations (6.1), (6.3) and (6.4), the position of a certain satellite is obtained in the
ECEF frame of reference:

rcos f
X|pcEr = R3 (—vgo — wat) R3 (Q) Ry (i) Rz (w) | rsinf |, (6.5)
0

where combining the first two matrices, the following expression is obtained:

rcos f
X|ECEF = Rg (Q — 1/)@0 — w@t) Rl (Z) Rg (W) ’I”Sinf . (66)
0

The aim now is to create a constellation of satellites whose trajectories in the ECEF frame of
reference are the same. To be able to do that, the orbital elements a, e, ¢ and w must be equal for
all the satellites of the constellation. Let a, e, i, w, ¢ be the orbital parameters of the reference
trajectory and let tg be the reference time of the constellation which is associated with a reference
satellite of the constellation (which can be an actual satellite or a fictitious position). This reference
trajectory (named xg) can be expressed in the relative frame of reference as:

rcos f
xo|leceEr = R3 (0 — Yeo — wet) R1 (i) R (w) | rsinf |, (6.7)
0

where r and f are a function of t. This relative trajectory must be fulfilled by every satellite in
the constellation, so it is fixed in the design of the constellation. If another point of this relative
trajectory is considered, a satellite that shares the same relative trajectory can be obtained. If the
value of ty is modified, this relative trajectory remains the same. Let ¢; be the changed value of ¢y,
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then, the right ascension of the ascending node suffers a variation of AQ) = —wg (t; —tp). Thus, the
relative trajectory of the satellite (x3) when t; is considered is:

rcos f
x1|ecer = R3(Qo — Yao —we(ti —to+ 1)) R1 (1) R3 (w) | rsinf |. (6.8)

0

where r and f are now a function of (¢; +¢). From Equation (6.8) and using the inverse relation of
Equation (6.4), the inertial orbit of this second satellite can be obtained through:

x1|gcr = Rs (Yoo + wet) X1|ECEF, (6.9)
so the inertial orbit is:
rcos f
x1|pcr = R3 (Qo —we(t1 —t0)) R1 () R3 (w) | rsinf |- (6.10)
0

In other words, let {a,e,i,w,Qy, Mo} and {a, e, i,w,Q1, M1} be the classical orbital elements of two
satellites where My and M; are given for the initial time. We impose that both satellites lay in the
same relative trajectory:

xo|gcer(t + (t1 —to)) = x1|pcer(t) YVt e R, (6.11)

where t1 — tg is the time that satellite 0 requires to reach the same position of satellite 1 in the
relative trajectory. Then, in the inertial frame of reference and following Equation (6.10), a relation
between both right ascensions of the ascending nodes can be obtained:

Ql = QO - W@(tl - to). (612)

On the other hand, the mean anomaly of the reference satellite can be defined as:
M =n(t+ty—T1), (6.13)

where 7 is the time of pass for the perigee, ¢y is the time of reference of the constellation and n is
the mean motion of the satellite, which, for a keplerian movement is:

n= 2 (6.14)

being u the standard gravitational constant of the Earth. As all the inertial orbits are identical
except for a rotation and a time of reference, we can define 7 as the time of pass for the perigee of
the leading satellite of the constellation, that is, satellite 0. It is important to notice that with this
definition, 7 becomes independent of the satellite of study. Thus, the mean anomaly of satellite 1
can be expressed as:

My =n(t+t1 —71), (6.15)
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where t; is the reference time of satellite 1. Then, a relation between both mean anomalies can be
obtained:
My = My + n(t1 — to). (616)

As it can be seen, combining Equations (6.12) and (6.16), a function between M; and ; can be
established:

n n

M, = (MO + QO) — —Qq; (617)

We We
which represent a straight line (M;(£2;) with a slope of n/wg) as it can be seen in the (2, M)-
space [13] representation of the relative trajectory shown in Figure 6.1, where each vertical line
represents the inertial orbit and the diagonal represents the relative trajectory of the satellite for a
particular instant.

Figure 6.1: (2, M)-space representation of a relative trajectory.

If instead of only one satellite, a certain number of them are taken, it is possible to generate a
constellation whose satellites share the same relative trajectory. Let ¢, be the temporal positions
in the relative trajectory (in the same sense as t; worked) and let Ng be the number of satellites
in the relative trajectory, where ¢ € [1, Ny represent each particular satellite of the constellation.
Then, for each ¢:

n n
M, = My+—y ) — —Qq; 1
q < O+W@ 0) we Q> (6 8)
and the inertial orbits can be expressed as:
rcos f
Xq|lECT = Rs3 (Qo — w@(tq — to)) R (’L) Rs (LL)) rsin f . (6.19)
0

As Equation (6.19) shows, the first matrix corresponds to a rotation in a modified right ascension
of the ascending node for each satellite. Let €2, be the right ascension of the ascending node of the

satellite ¢, then:
Qy = Qo —wg(ty —to). (6.20)
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Note that (t;,—to) represents a distribution over time with respect to the reference trajectory defined
in the beginning, and as such, it does not depend on the time () used in the propagation, that is, it
remains constant. Moreover, ¢, and wg are also constant in time, so it can be concluded that €2 is
fixed for each satellite of the constellation. On the other hand, the initial value of the true anomaly
of each satellite of the constellation (f;) only depends on ¢,. Then, it is possible to generate the
full constellation by the only use of the parameter of distribution t¢,. Each inertial orbit of the
constellation is obtained by:

a (1 - 62)
1+ ecos fy cos g

Xql|ECT = Rs (Qo — W@(tq — to)) R (Z) Rs (w) a (1 B 62) sinf . (6.21)
1+ ecos fq 1

0

Equation (6.21) allows to design a distribution of satellites in which all have the same relative
trajectory (and thus, they share the same ground-track). This distribution is done over time, with
no constraints in the selection of the different values of ¢, which is the parameter of distribution in
the configuration.

A more compact representation of the distribution can be done combining Equations (6.18)
and (6.20), which lead to:

Q = Qo—wal(ty—to);
M, = Mo+n(ty—to); (6.22)

where t, is the parameter of distribution of the configuration, and €29, to and My are the parameters
related to the leading satellite.

6.1.1.1 Example of constellation defined in a single relative trajectory

As an example of application, a constellation consisting on five satellites is selected. The semi-
major axis of the constellation is a = 14420 km, the eccentricity is e = 0.4 and the inclination is
i = 63.435°. Suppose that a distribution of satellites is required in such a way that once the first
satellite has observed a particular region, the rest of the satellites have to pass over the same region
but with a delay of five minutes between them.

Without losing generality, let g = 0, My = 0 and tg = 0 be the parameters of the leading satellite.
Then, the time distribution of the constellation is defined by the following relation:

ty =300(q — 1); (6.23)

where ¢ € [1, 5] defines the parameter of distribution for each particular satellite and 300 represents
the delay in seconds between satellites. From Equation (6.22), the following distribution is obtained:

Qg = —wely;
M, = ntg; (6.24)
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Table 6.1: Initial distribution of the constellation.
Element Sat. 1 Sat. 2 Sat. 3 Sat. 4 Sat. 5

Qq (deg) 0.000 | -1.2534 | -2.5068 | -3.7603 | -5.0137
My (deg) 0.000 6.2671 12.5342 | 18.8013 | 25.0684

which leads to the configuration shown in Table 6.1.

Figure 6.2 shows the inertial and relative trajectories of the constellation. As it can be seen, the
relative trajectory is common for all the satellites in the constellation whilst they have five different
inertial orbits. One important property of this design is that, even if we decrease the distances
between satellites, it is not possible for the satellites to collide because they are moving in the same
relative trajectory which does not have self intersections.

2 (km)

Figure 6.2: Inertial (left) and relative (right) trajectories of the constellation.

6.1.2 Constellation design with multiple relative trajectories

The objective now is to distribute the satellites in more than one relative trajectory. The
methodology is similar to the previous one (see Section 6.1.1), but in this case, other degrees
of freedom are added in the spacing of the relative trajectories in the ECEF frame of reference. Let
N; be the number of relative trajectories in which the constellation is distributed and let k € [1, V]
be the parameter that names each one of this trajectories. Therefore, the total number of satellites
in the constellation Ny is:

Ns = Ng Ny, (6.25)
where Ny is the number of satellites in each relative trajectory.

Furthermore, the satellites named with the sub-index k0 are the leading satellites of each k relative
trajectory, that is, the reference satellites that define the trajectories in the ECEF frame of reference.
Moreover, the leading satellite, named with the sub-index 00, represents the reference origin of the
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whole constellation. Thus, as seen before, the relative trajectories can be defined as:

rcos f
XkqlECEF = R3(0)R1 (1) R3(w) | rsinf |, (6.26)
0
where:
o=+ AQ, — Yo — w@(tkq —to+1t), (6.27)

AQy, is the space distribution of the relative trajectories in the ECEF frame of reference and ty,
represents the distribution parameter of the constellation. Note that r and f are now functions
of ty4. The parameter t, distributes the satellites in a k relative trajectory and the ¢ position in
that relative trajectory. As it can be seen, two degrees of freedom control the distribution of the
constellation: A€ and ty,.

Transforming those coordinates to the ECI frame of reference, and naming fy, the true anomaly of
the satellite g of the k relative trajectory at the initial time, the following inertial orbits for each
satellite of the constellation are obtained:

a (1 — €2>
1+ ecos fiq

. 2
Xkq|ECI = Rs (qu) R (2) Rs (w) a (1 —¢ )
1+ ecos fig

0

oS fiq

sinfuy | (6.28)

where the right ascension of the ascending node of each satellite is:
Qg = Qo + AQg — we(trg — o), (6.29)

which means that, in general, each satellite presents a different inertial orbit.

This distribution can also be represented in the (€2, M)-space. As done before:

qu = Qo+ AQ; — w@(tkq — to),
qu = My+ n(tkq - to), (630)

and the relation between 23, and My, is:
n n n
My, = (Mo + Qo> + —AQ — 79]“1; (6.31)
We We We

which is a distribution of points over a family of straight lines that have the same slope. Figure 6.3
shows a particular case of a satellite with respect to the reference trajectory (named 0). There, the
satellite 11 (k = 1,q = 1) is located in the relative trajectory 1 which presents a rotation of A
with respect to the reference trajectory.
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Relative trajectary 1

Relative trajectary 0

Mol — L N

Figure 6.3: (2, M)-space representation of the configuration for multiple relative trajectories.

6.1.2.1 Example of constellation defined in various relative trajectories

As an example of this section, we present a sun synchronous constellation based on 15 satellites
distributed in 3 relative trajectories and circular orbits. The constellation has an altitude of 880 km,
and thus, a = 7260 km and ¢ = 98.95°. Now, we choose a distribution of the constellation such
that the relative trajectories are equally spaced and the satellites in each orbital plane are equally
spaced in time. That way, this distribution can be expressed as:

k—1
AQr = 2
k 0 Nt ;
q—1
t = 27 ; 6.32
kq Nst ( )

where Ny = 3 is the number of relative trajectories and N4 = 5 is the number of satellites per relative
trajectory. Using Equation (6.30) this initial distribution leads to the following configuration:

k—1 27wgq—1
Nt n Nst’
q—1
Nst’

Qpg = 2m

My, = 27 (6.33)

where k € [1, N¢] and ¢ € [1, Ng]. The distribution is shown in the (€2, M)-space in Figure 6.4,
where it can be observed how the satellites are positioned in three different lines that represent the
relative trajectories of the constellation.

Figure 6.5 shows the inertial and relative trajectories of the constellation. As it can be seen, there are
15 different orbits, one for each satellite, however there are only three different relative trajectories
(a solid line, a dashed line and a dotted line), which was the objective sought.

As it can be seen from Figures 6.4 and 6.5, this distribution generates too many different orbital
planes, one per satellite, a fact that increases the expenses of building the constellation in orbit.
Therefore, in the next subsection the constraint of minimum number of inertial orbits will be set in
order to correct this situation.
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Figure 6.4: (Q, M)-space, where each point represents a satellite in the constellation.
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Figure 6.5: Inertial (left) and relative (right) trajectories of the constellation.

6.1.3 Constellation design with minimum number of inertial orbits

Once a distribution over different relative trajectories is done, it is interesting to impose the
restriction that the constellation has to be built in the least number of inertial orbits due to costs
reduction. As seen before, the procedure places the satellites in different relative trajectories.
Nevertheless, there is no constraint with respect to the inertial frame of reference, and in fact, each
Qg is in general different. The aim now is to impose that the values of {1, are shared between
relative trajectories.
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The parameter 5, is a time distribution of the satellites in the constellation, but in reality, there exist
two effects provoked by this parameter, the movement along the relative trajectory and the spacing
of the inertial orbits. On the other hand, the spacing of the relative trajectories is controlled by the
parameter A€);. As we require to reduce the number of inertial orbits to a minimum, a relation
between t;, and A€, has to be found in order to achieve this condition. As tj, is a distribution,
we can separate it in two different parameters t; and ¢, such that:

tyg =ty + tg, (6.34)

where ¢, is related to the distribution of satellites in the same relative trajectory as done in
Section 6.1.1, and we want t; to be related with the inertial orbits. In order to achieve that,
we impose the right ascension of the ascending node to be independent of the parameter k, in the
form of tj, or AQy. That way, the number of inertial orbits only depends on t,, which is related
with the number of points per relative trajectory.

Thus, applying Equation (6.34) in Equation (6.29), we obtain:

Qpg = Qo + AQy — we (tr + tq — to), (6.35)
where it is possible to eliminate the dependence on k imposing:
AQ
ty = —" (6.36)
W

and thus, introducing this value for ¢ in Equation (6.35) the following expression for the right
ascension of the ascending node is obtained:

qu = Q() - W@(tq - to). (637)

Note that now, {2, does not depend on the terms in %, and as such, is the same for every satellite
that shares the value of ¢4, one for each relative trajectory. That leads to a distribution in which
the satellites with the same ¢ are distributed in the same inertial orbit whilst the satellites with the
same k are distributed in the same relative trajectory (remember that f, is a function of t, + t5).
Figure 6.6 shows how the distribution works in the ECEF and the ECI frames of reference for two
generic relative trajectories.

The (2, M)-space representation can be defined as before:
Qg = Qo —walty—to),
AQ
My, = Mo+n (’“ ity — t0> : (6.38)
We
obtaining the same expression as in Equation (6.31):

My = (Mo + ”QO> +LAQ, - Oy (6.39)
Weg Wep W

The difference now is that the right ascension of the ascending node is shared by one satellite of
each relative trajectory as seen in Figure 6.7. In fact this is a particular case of the one presented
in Section 6.1.2.

Using the two time distributions ¢, and tj, it is possible to achieve the configuration desired with
no constraints in the distribution, generating constellation configurations distributed in a reduced
number of orbital planes.
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Figure 6.6: Constellation distribution in the ECEF (left) and ECI (right) frames of reference.
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Figure 6.7: (2, M)-space representation of the configuration for minimum number of inertial orbits.

6.1.3.1 Example of constellation defined in various relative trajectories with minimum
number of inertial orbits

As an example of application, a constellation of five satellites is chosen. This time we impose as a
requirement of the mission that the satellites have to be distributed forming a “+” shape during
their movement around the Earth. Let a = 26562 km, e = 0 and ¢ = 50° be the orbital parameters
of the constellation, and let g = 0, My = 0 and £y = 0 be the parameters of the leading satellite.

In order to design the constellation, three relative trajectories and three inertial orbits are required
to be able to obtain that shape. So three different values of ¢, (inertial orbits) and three different
values of AQy (relative trajectories) must be taken. We define the first relative trajectory as the
one that contains the central point of the “+” (k = 1), being the upper and lower points also
contained in this relative trajectory (see Figure 6.8). On the other hand, the left and right points
are contained in two different relative trajectories, k = 2 and k = 3 respectively. Moreover, the left
and right points of the “4” are defined in the same inertial orbits as the upper and lower points,
more precisely, the left and the upper points have the same inertial orbit ¢ = 2, whilst the right and
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lower point are contained in the same inertial orbit ¢ = 3. The central point has its own inertial
orbit ¢ = 1.

If the delay between satellites in the same relative trajectory is taken as 10 minutes, the values of
tqy can be defined as: 1 = 0s, to = 600 s and t3 = —600 s. Regarding the values of A2 and for the
sake of simplicity, we choose Ay = 0, AQde = —wgte and Ad3 = —wgts. With those parameters,
the distribution of the constellation is shown in Table 6.2, where Sat. (k,q) represents the satellite
contained in the inertial orbit ¢ and the relative trajectory k.

Table 6.2: Initial distribution of the constellation.

Element Sat. (1,1) | Sat. (1,2) | Sat. (1,3) | Sat. (2,2) | Sat. (3,3)
Qpq (deg) 0 -2.5068 2.5068 -2.5068 2.5068
Myq (deg) 0 5.0137 -5.0137 0 0

Figure 6.8 shows the inertial orbits and relative trajectories of the constellation. As it can be seen,
the constellation is built in three different inertial orbits and three relative trajectories generating
the “+7” shape that we were aiming for.

Figure 6.8: Inertial (left) and relative (right) trajectories of the constellation.

6.2 Perturbed model for constellation design

Previously, it has been seen how to generate the constellation design in a keplerian model.
The objective now is to apply this methodology to the case of orbital perturbations. Orbital
perturbations such as the gravitational potential of the Earth, the solar radiation pressure, the
Sun and Moon as disturbing third bodies or the atmospheric drag, will destroy the keplerian
configuration proposed in a short period of time, so other complementary model has to be developed
to solve this problem. The perturbed model proposed in this chapter achieves the sharing of the
relative trajectories despite of being the satellites subjected to certain known orbital perturbations.
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This methodology can be applied with any kind of orbital propagators (analytical, semi-analytical
or numerical) not having any constraint in that respect.

As done in the latter section, three different constellation designs will be presented, corresponding
to the ones studied previously in the keplerian model. That way, a clearer exposition of the
methodology is presented.

6.2.1 Constellation design with a common relative-trajectory

The objective is to generate a constellation whose satellites share the same relative trajectory
despite of being subjected to several known orbital perturbations. Note that sharing the same
relative trajectory does not mean that it has to be closed, in fact, the model is independent of this

property.

The idea behind the perturbed model is to propagate first a reference satellite xg, which will be
called the leading satellite, taking into account all the perturbations of the dynamical model chosen,
and keeping the results of times, positions and velocities of the propagation in certain moments to
generate the positions and velocities of the satellites of the constellation. The information that is
kept correspond to the moments when:

t=t, — to, (6.40)

where g is the reference time of the leading satellite, and t, represents the parameter of distribution
of each particular satellite. Moreover, using the nomenclature introduced in the keplerian model,
qc [1, Nst]-

Then, a transformation of these positions and velocities, given in the ECI frame of reference, will be
performed in order to define the initial positions and velocities of the satellites of the constellation.
Therefore, two transformations will be required: the first one to define the relative trajectory,
and the second one to obtain the inertial orbits that have generated that relative trajectory and
correspond to satellites of the constellation.

Let Xq|pcr and Vq|por be the positions and velocities of the leading satellite in the inertial frame of
reference. The relative positions (xq|pcrr) and velocities (vq|Ecrr) are obtained from the inertial
ones by using the following expressions:

XqlecEr = R3(—vao — we(ty —to)) XqlECT,
valecer = R3(—Yco —wa(ty —to)) Valecr — we X Xq|ECEF- (6.41)

However, the initial inertial positions xq|pcr and velocities vq|pcr are required in order to define
the constellation, thus, the second transformation of frames of reference is needed:

XqlEcr = R3(¥6o)Xq|ECEF,
Valecr = Rs3(Ygo) Vq|lECEF + we X XqlECT- (6.42)

One important thing to notice is that, having included the perturbations in the initial orbit
propagation, all the satellites follow the same relative trajectory for the perturbations considered
in the constellation design. Thus, the more realistic the orbital perturbation model is, the better
the constellation will perform in the reality.
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6.2.2 Constellation design with multiple relative trajectories

The next step in complexity in the design of a constellation is to include multiple relative trajectories
in the configuration. The process is similar as before, but now, several leading satellites are required
in order to define the different relative trajectories, one leading satellite for each relative trajectory.
Furthermore, the distribution of the satellites is done using two parameters: the time distribution
over the different relative trajectories i, and the angular distribution of the relative trajectories in
the ECEF frame of reference AQy.

As it has been said, each relative trajectory requires a leading satellite. Those satellites have the
same values of ag, eg, ig and wgp, whilst the right ascension of the ascending node follows:

Qro = Qo+ AQg — wg (tkO — to) s (643)

where Q¢ are the right ascension of the ascending nodes of the leading satellites and each relative
trajectory is named as k € [1, N;]. Moreover, each one can present a different reference with respect
to the global reference time of the constellation ¢y, that means that in general, each leading satellite
define a time of reference for each relative trajectory txg.

Once the leading satellites are defined, each one of them is propagated for a time equal to at least the
maximum value of (t;,—1tx0), that is, the maximum distance in time between the leading satellite and
the satellites in the constellation related to it. This generates a number of relative trajectories equal
to V¢, the number of different relative trajectories of the constellation. As previously, the values of
the positions and velocities of each relative trajectory for the moments when (¢t = t, —to) are kept,
which represent the distribution of the constellation, and two transformations are performed:

Xkq|ECEF = R3 (—¥go — wa (tkq — to)) Xxq|ECT,

ViglEcEF = R3 (=%ao — wa (tkg — o)) ViqlECT — Wa X Xkq|ECEF:

Xrq|ECcT = R3 (Yco) XkqlECEF,

Vig|ECI = R3 (Y60) Viq|ECEF + wg X XkqlECT (6.44)

The values of the inertial positions xkq|rcr and velocities viq|pcr of each satellite determine the
initial configuration of the constellation. This configuration distributes the constellation in N
different relative trajectories and a number of inertial orbits equal to the number of satellites (in
general). This is the same case as the one seen in Section 6.1.2 but for a non keplerian model.
In that regard, having too many different orbital planes in the constellation increases the costs of
the mission, therefore, it is required to include the constraint of minimum number of inertial orbits
which is presented in the next section.

6.2.3 Constellation design with minimum number of inertial orbits

The latter configuration distributes the constellation in N4 different inertial orbits, which is a design
decision that carries a lot of expenses to build the constellation in orbit. In order to solve that,
and as done Section 6.1.3, the distribution parameter can be separated in two different distribution
parameters t; and t4, where t;, = tx +t;,. Then, a relation can be established between ¢, and
Q. using Equation (6.36). However, the orbital perturbations make the right ascension of the
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ascending node to shift and therefore, the configuration obtained from the keplerian procedure does
not generate orbits in the same inertial planes.

In order to solve that, we introduce a modification in the distribution of t; from Equation (6.36)
that allows to include the effects of the shifting of the right ascension of the ascending node in the
formulation. If we fix a frame of reference in the orbit, we observe that the Earth does not rotate
at wg due to the shifting in the right ascension of the ascending node. In this frame of reference,
the Earth rotates respect to the orbit at wg — €, where € is the derivative of the right ascension of
the ascending node. Thus, applying this modification to Equation (6.36), we obtain:
L (6.45)
we — ko
where Q is the derivative of the right ascension of the ascending node for the leading satellite of the
relative trajectory k, which can be obtained using the secular value of the perturbation. The value
of ¢} is introduced in Equation (6.44) leading to a constellation based on N; satellites distributed
in V; relative trajectories and Ny inertial orbits. All this design includes the orbital perturbations
considered in the propagations that were made.

6.3 Constellation design based on equally spaced in time
distributions

The aim of this section is to define a constellation distribution that is equally spaced in time, basing
the design in the case of multiple relative trajectories and minimum number of inertial orbits. In
order to do this kind of distribution, it is required to have a closed relative track, which defines a
repeating cycle that allows to define the distribution.

Let a cycle be the time that a satellite requires to repeat its ground-track, and let 7. be the period
of this cycle. In order to achieve the repeating ground-track property, the orbital parameters have
to fulfill a relation with the rotation of the Earth, given by:

T, = NyTo = NyTag, (6.46)

where N, is the number of orbital revolutions to cycle repetition, Ny is the number of revolutions
of the ECEF frame with respect the orbital plane to cycle repetition, T is the nodal period of the
orbit and Toq is the nodal period of Greenwich.

Let Ng be the number of satellites in each different relative trajectory, and let ¢ € [1, Ng] be the
integer that names each satellite of each relative trajectory of the constellation. In order to obtain
an equally spaced in time distribution in each relative trajectory, we distribute the values of ¢, over
the period of the cycle T¢, where t, < T, generating the following configuration:

T,
= (- 13" (6.47)

Furthermore, let N; be the number of different relative trajectories, and let k& € [1, N;] be the
integer that names each different relative trajectory of the constellation. The right ascension of the



Examples of application 109

ascending nodes of the leading satellites of each relative trajectory are expressed as:

2T

Qy :Qo-f-(k—l)Nt,

(6.48)

where:

AQp = — Qo = (k— 1) (6.49)

Note that the right ascension of the ascending node of the leading satellites is not shared in general
with the rest of the satellites situated in the same relative trajectory (see Equation (6.20)).

Using Equation (6.45), the distribution of ¢j is obtained:

2
(k=15
t = —————1L, (6.50)
we — ko

thus, the distribution of each satellite (tx, = t + t4) for an equally spaced in time configuration is:

T, 2
—S p(k-1) T

1)Nst v (O@ - Qko) . (6.51)

lhg = (q —

One thing to notice is that due to the possible symmetries in the configuration, two conditions have
to be assured by the designer. The first one is that the parameters Ng and N,, must be relatively
primes in order to avoid duplicities in the formulation (for example N,, = 2 and Ng = 3 is equivalent
to Np =4 and Ny = 6).

The second condition is related to avoiding the overlapping of satellites in the configuration. This
may occur if the distribution is uniform with symmetries in time and space, a condition that appears
when the parameters N, and N; are relatively primes between them. Let Ny be the maximum
common divisor between IV, and IV;. Then, the distribution over space is:

2
Q= Qo + (k — 1)J\J\If’ (6.52)

and therefore, the distribution over time is:

2
NN, (w@ _ Qko)

tha = (4= DS+ (k- ) (6.53)

where Equations (6.52) and (6.53) substitute Equations (6.48) and (6.51) in order to avoid the
overlapping of satellites.

6.4 Examples of application

In this section, two examples of application are shown. In particular, a Medium Earth Orbit
Constellation and a Low Earth Orbit Constellation are presented. In these designs, constellations
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whose satellites are equally spaced in time are defined (see Section 6.3). Moreover, the satellites will
present the repeating ground-track property and will be distributed in the least number of inertial
orbits using the perturbed model (see Section 6.2.3).

During these examples the following perturbations have been taken into account: the gravitational
potential of the Earth [29] up to 4th order terms (including tesserals), the Sun and Moon as
disturbing third bodies [30], the solar radiation pressure [31] and the atmospheric drag (Harris-
Priester [32, 33] model). In addition, it has been supposed that all the satellites are identical in
each constellation.

6.4.1 Example of Medium Earth Orbit Constellation

First, it is supposed, as part of the mission requirements, that the parameters N,, Nq4, Ny and
N; are known, as well as the inclination and eccentricity of the orbits. Moreover, as a mission
requirement, the pass of the constellation over a certain point of the Earth with coordinates in
longitude and latitude (1, ¢,) is imposed, and we choose f = 7 over that point to maximize the
time of coverage of the constellation in these coordinates.

Table 6.3: Initial positions and velocities of the constellation.

Sat. (k,q) z [km] y [km] z [km)] vg [km/s] vy [km/s] v, [km/s]
1,1 29742.291 -453.883 26500.795 -1.171 1.358 1.337
1,2 154.758 9918.577 -8829.518 -4.072 -3.511 -4.013
1,3 -29744.259 452.557 26498.609 1.171 -1.358 1.338
1,4 -160.231 -9924.333 -8822.957 4.072 3.509 -4.016
2,1 16921.730 8809.410 31186.380 -2.343 1.135 -0.134
2,2 -14103.296  -21475.852  -5338.235 -0.094 -2.969 2.559
2,3 -16924.510 -8809.572 31186.600 2.343 -1.135 -0.134
2,4 14100.583 21472.679 -5342.417 0.094 2.970 2.559
3,1 -2593.920 13813.974  22164.558 -2.884 -0.004 -2.655
3,2 -9567.105 -32767.410  13084.071 1.093 -0.422 2.330
3,3 2590.853 -13813.672  22168.897 2.884 0.004 -2.654
3,4 9564.986 32767.859 13080.263 -1.093 0.422 2.330
4,1 -9918.577 154.758 -8829.518 3.511 -4.072 -4.013
4,2 -452.557 -29744.259  26498.609 1.358 1.171 1.338
4,3 9924.333 -160.231 -8822.957 -3.509 4.072 -4.016
4.4 451.231 29746.226 26496.423 -1.357 -1.171 1.338
5,1 21475.852  -14103.296  -5338.235 2.969 -0.094 2.559
5,2 8809.572 -16924.510  31186.600 1.135 2.343 -0.134
5,3 -21472.679 14100.583 -5342.418 -2.970 0.094 2.559
5,4 -8809.735 16927.289  31186.819 -1.135 -2.343 -0.134
6,1 32767.410 -9567.105 13084.071 0.422 1.093 2.330
6,2 13813.672 2590.854 22168.896 -0.004 2.884 -2.654
6,3 -32767.859 9564.986 13080.264 -0.422 -1.093 2.330
6,4 -13813.370 -2587.787 22173.233 0.004 -2.884 -2.653
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On the other hand, we impose that the semi-major axis of all the satellites of the constellation present
the repeating ground-track property. This condition is achieved by the use of osculating elements
in the constellation for each satellite, having considered the orbital perturbations mentioned before.
This is performed by the use of the numerical method presented in the following chapter.

Once the orbital parameters are established for one satellite, it is time to generate the initial
configuration of a constellation with minimum number of inertial orbits, that is, the methodology
presented in Section 6.2.3 is used. However, in order to do that, the constellation distribution must
be chosen firstly. For the sake of simplicity, the value of ¢y is fixed as tp = 0 and Equations (6.47)
and (6.53) are used in order to define the equally spaced in time configuration.

Using this equally spaced in time distribution, we apply it to a constellation consisting of 24 satellites
and show the results. The constellation repeats its ground-track each two orbital revolutions
(N, = 2) and each day (Ngq = 1). Furthermore, all satellites have an inclination of i = 63.435°
and an eccentricity of e = 0.5. A high eccentricity orbit has been selected in order to show the
possibilities of the constellation design model. The constellation is distributed in 6 different relative
trajectories (Ny = 6) and 4 inertial orbits (Ng = 4), thus Ny = N;Ng = 24.

Note that N; = 6 and N, = 2 have a maximum common divisor of Ny = 2, so, Equations (6.52)
and (6.53) must be used to perform the distribution. As a further requirement, it has been imposed

that one ground-track of the constellation passes over the city of Zaragoza (Spain) with coordinates
(¢ = 41.698169° and 1), = —0.874295°).

With these conditions, the constellation is designed following the perturbed model proposed in this
work obtaining the initial positions and velocities shown in Table 6.3. These results are given in the
inertial frame of reference and generate a constellation whose satellites are distributed in 4 different
inertial orbits and 6 relative trajectories.
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Figure 6.9: Ground-track of the constellation.



112 Ground-Track Constellations

This configuration can be seen in Figure 6.9, where the ground-track of the whole constellation is
presented. There, it can be observed that the constellation is distributed in 6 different ground-tracks,
being them completely closed and shared by 4 satellites each.

Figure 6.10 shows the inertial (left) and relative (right) trajectories of all the satellites in the
constellation. There, it can be seen how the constellation is distributed in only 4 different inertial
orbits, and how the relative trajectory is shared by groups of satellites (4 for each relative trajectory).
The figure allows also to see the possibilities that the definition of the constellation in the relative
frame of reference brings, generalizing the orbits from a conic shape in the inertial frame of reference
into a more diverse group of configurations in the relative frame of reference.

Figure 6.10: Inertial (left) and relative (right) trajectories of the constellation.

Finally, in Figure 6.11, the polar view of the constellation in the ECEF frame of reference can
be observed. It can be concluded that the satellites are able to share their relative trajectories (4
satellites in each trajectory) despite of being subjected to orbital perturbations.

Figure 6.11: Polar view of the constellation in the ECEF frame of reference.
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6.4.2 Example of Low Earth Orbit Constellation

For this second example, we choose a constellation composed by 16 satellites that has as main
mission Earth observation. The constellation is distributed in circular orbits and in the same
relative trajectory in the ECEF frame of reference using the uniform in time distribution seen in
Section 6.3. As in the former example, the repeating ground-track property is imposed following
the methodology explained for orbital perturbations. However, due to the nature of the mission,
two new requirements are included, the sun-synchrony of the orbits and the ability to scan all the
Earth surface in the minimum time considering a sensor with a field of view of 7.5° that requires
to work at 705 + 5 km over the Earth surface.

With these conditions, we obtain a constellation whose satellites have a = 7978.61 km, e = 0,
1 = 98.21° and that repeat a cycle of their ground-tracks in 233 orbital revolutions or 16 days. The
initial positions and velocities of the satellites of the constellation can be seen in Table 6.4.

Table 6.4: Initial positions and velocities of the constellation.

Sat. (q) z [km] y [km] z [km)] ve [km/s] vy [km/s] v, [km/s]
1 5284.700 -80.647 4708.740 -4.921 -1.361 5.499
2 -3121.980 563.734 -6332.950 6.679 1.224 -3.175
3 453.969 -965.619 6999.826 -7.4332 -0.903 0.362
4 2247.912 1216.725  -6601.230 7.060 0.446 2.489
5 -4640.872  -1286.606  5197.538 -5.605 0.081 -4.976
6 6302.855 1158.491  -3006.073 3.312 -0.595 6.711
7 -7027.148 -856.836 358.524 -0.502 1.019 -7.412
8 6664.128 421.497 2352.191 -2.388 -1.290 6.999
9 -5310.014 73.102 -4688.967 4.897 1.361 -5.512
10 3123.734 -562.082 6330.047 -6.675 -1.228 3.188
11 -495.962 960.076 -6995.614 7.433 0.910 -0.397
12 -2237.058  -1217.700  6610.987 -7.061 -0.452 -2.467
13 4605.905 1287.042  -5217.115 5.636 -0.073 4.955
14 -6295.586  -1164.822  3040.536 -3.340 0.587 -6.686
15 7016.553 862.183 -387.252 0.538 -1.015 7.419
16 -6686.889  -433.575  -2302.522 2.337 1.286 -7.010

On the other hand, in Figure 6.12, the inertial orbits for the constellation in the initial time (left)
and during a propagation of 16 days (right) are presented. As it can be seen, all the satellites of
the constellation lay in the same inertial orbit that, due to the orbital perturbations considered, is
modified during the time of propagation as seen clearly in the figure. Nevertheless, although the
inertial orbits are greatly perturbed, we can observe in Figure 6.13 that the ground-track of the
constellation for 16 days of propagation remains fixed for all the satellites of the constellation.

The property of ground-track repetition (or the sharing of the same relative trajectory) can be
maintained over time without orbital maneuvers using the design methodology proposed in this
work. However, due to the non periodic perturbations such as the atmospheric drag or the solar
radiation pressure, the constellation will be modified and thus, orbital maneuvers will be required
in the long term. One important thing to notice is that although in orbit maneuvers are always
needed, the use of this methodology reduces the effects of orbital perturbations over the constellation
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Figure 6.12:

Inertial orbits of the constellation at a given time (left) and over 16 days of propagation
(right).
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Figure 6.13: Coverage and ground-track of the constellation for 16 days of propagation.

(specially periodic perturbations such as the non-uniformity of the Earth gravitational field) and

thus, this perturbed design model allows the reduction of the fuel required for the station-keeping
of the constellation.
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6.5 Conclusions

This chapter has shown a new design model to create constellations whose satellites share one or
several relative trajectories using time as parameter of distribution in the configuration. This design
allows to distribute satellites in several relative trajectories without no restrictions at all in their
distribution, a property that can be used to configure missions in which the satellites have to pass
consecutively over a certain point of the Earth’s surface.

This design model opens a wide variety of possibilities in the configuration of satellite constellations,
and it is able to handle any combination of orbital parameters, being the model applicable even
with constellations based on high eccentricity orbits.

Furthermore, two different approaches have been presented for this design model, a keplerian
model in which no orbital perturbation was considered, and a perturbed model that can handle
orbital perturbations. These two methodologies represent the same idea, but each one has its own
peculiarities and uses. Specifically, the perturbed model allows to include the orbital perturbations
inside the design process, improving the results obtained.

Moreover, this constellation design model allows to include orbital properties to the basic design.
In that respect, a semi-major axis correction has been applied to the two examples presented in
this chapter in order to achieve the repeating ground-track property in the constellation despite of
being the satellites subjected to certain known orbital perturbations. The ability to include other
properties such as the sun-synchrony or the frozen character is also possible as it has been seen in
the second example.

Finally the decrease on the number of inertial orbits to a minimum, represents a big design
advantage, due to the fact that the reduction of inertial orbits allows to group satellites in their
launches, therefore reducing the costs of the mission.
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Chapter 7

On the definition of repeating
ground-track constellations

Many satellite missions require to pass over the same points of the Earth surface periodically for
different purposes. One of the most common examples is Earth observation satellites, but there are
other uses, such as the ability to establish communications periodically with certain ground stations
or the study of defined regions of the planet surface that require regional coverage.

All these applications are based on satellites that present a particular set of orbital elements related
to a feature, the repeating ground-track property. This property can be easily modeled in a keplerian
formulation with a closed solution. However, if orbital perturbations are considered, the problem
increases greatly its complexity and transforms, what once was a simple formulation, into a problem
that has no analytical solution.

As a result, several formulations have appeared over the years to solve this problem with different
approaches. As an example, Mortari in his Flower Constellations [5] presented a repeating ground-
track property formulation in which the effect produced by the oblateness of the Earth (J2
perturbation) was the only perturbation considered. Other example can be seen in Wagner’s [44]
work, where a numerical method based on a semi-major axis correction is used to achieve the
repeating ground-track property.

In this chapter we introduce a new numerical method that improves the maintenance of the repeating
ground-track property of a given satellite no matter the orbital configuration used. The idea behind
this method is to include the perturbations in the design process [45, 15, 16] instead of trying to
compensate the orbital perturbations by on orbit maneuvers. Thus, the methodology proposed is
able to include the effects of orbital perturbations in its formulation, modifying the design value of
the semi-major axis in order to define the reference orbit of a given satellite.

One important thing to notice is that orbital perturbations will eventually destroy the repeating
ground-track property of a satellite no matter the orbit design. In particular, with just the J2
perturbation, the only orbits that maintain indefinitely its configuration are circular or critical
inclination orbits, all others rotate in their orbital planes, modifying their initial ground-track in
the process. This problem aggravates with the inclusion of other orbital perturbations.

Even so, the numerical method proposed in this chapter improves the maintenance of the repeating
ground-track property of a given satellite over time compared to other analytical and numerical
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methods. The methodology can be applied to any kind of orbital configuration, including retrograde
and high eccentric orbits. Moreover, the work also includes the study of other orbital properties
such as the sun-synchrony or the frozen conditions, which are very important requirements for some
missions, specially Earth observation satellites. This provides a wider range of possible applications
for this methodology.

After this numerical method is shown, a general methodology to impose the repeating ground
track property to any constellation distribution under the effects of periodic orbital perturbations
is presented. The design proposed is based on the Ground-Track Constellations [22, 23] (see
Chapter 6), a design methodology that performs the definition of the constellation directly in
the Earth Fixed frame of reference, unlike other satellite constellation designs such as Flower
Constellations [8, 19, 9, 20], Walker Constellations [3] or Draim elliptic constellations [4] where
this definition is done in the inertial frame of reference. This allows to perform a more natural
definition of the constellation related to the Earth and to include the effects of orbital perturbations
in the initial design of the constellation.

In addition, Ground-Track Constellations provide the possibility to use an alternative formulation
for perturbed systems that allows to include the effect of the Earth gravitational potential in the
definition of the constellation. That way, it is possible to combine the algorithm presented in this
work for repeating ground-track orbits, with a satellite constellation design. Finally, this work
presents a complete example where these methodologies are used together to define the reference
orbits of a sun-synchronous repeating ground-track constellation.

7.1 On the definition of repeating ground-track orbits

Throughout this paper, the so called classical orbital elements are used, namely: a the semi-major
axis, e the eccentricity, ¢ the inclination, w the argument of perigee, € the right ascension of the
ascending node and M the mean anomaly. Other common parameters used are: wg the angular
velocity of the Earth, u the Earth gravitational constant, Rq the Equatorial Earth radius and Js
the second order term of the gravitational potential of the Earth.

In this section, and for the purpose of having a reference solution that is simple and clear, only the
perturbation produced by the Earth oblateness (.J2) is considered. This limitation will be overcome
afterwards with the addition of other orbital perturbations in the semi-major axis correction model
introduced in this work.

Let a cycle be the time that a satellite requires to repeat its ground-track, being T, the period of
the cycle. In order to achieve the repeating ground-track property, the orbital parameters have to
fulfill a compatibility relation with the rotation of the Earth given by:

T, = NyTo = NyTag, (7.1)

where N, is the number of orbital revolutions to cycle repetition, and N4 is the number of sidereal
days to cycle repetition. Moreover, T, is the nodal period of the orbit, that can be expressed as a
function of the mean motion (n), the secular variation of the mean argument with respect from the

mean motion (M,), and the secular variation of the argument of perigee (). In particular:

2 2
_ o - il . (7.2)
M+w n+M,+w

T
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On the other hand T is defined as the nodal period of Greenwich, whose value is given by the

following expression:

2
Tog = ——, 7.3
= (73)

where the drifting of the orbital plane has been taken into account.

Using Equations (7.1), (7.2) and (7.3), the following expression can be obtained:

n+Mo+w=]]€<w@—Q>, (7.4)

where the derivatives of the mean orbital elements, considering only the Jy perturbation, are:

N
a3’

2 2
MO = M\/l —e2 (2—3sin2i) = MM(?)COS%— 1);

402 (1 — €2)? 402 (1 — €2)?
3Jon RZ 3Joan R
o o= 28 (4o 5sin?i) = — 20 (500827 — 1) ;
4a? (1 — €2) 4a? (1 — €2)
3JonR2
= —L@Q cos . (7.5)
242 (1 — e2)

If these derivatives are replaced in Equation (7.4), an expression as a function of the semi-major
axis is obtained:

2
L [1+ &@2 [(2—3sin21) \/1—62+4—5Sin2i]] =

a’ 4a2 (1 — e2)

N 3.2, /%Ré
2 cosi |, (7.6)

= —_—— w, —|— —_—m
Ny | %7 2a2 (1—e2)?

and manipulating it, a polynomial in the semi-major axis can be derived:

2 3J2Rge 22 2 2 Np : Np 7/2
N/ —i—m (2 —3sin®4) V1 — €2 +4 —5sin Z—Qchosz :Fdw@a . (7.7)

In order to solve Equation (7.7) and to simplify the notation, k; and ko are defined as:

b = Navi
1 pr®7
3JyR2 { N,
ke = ki——% _|(2—3sin?i)v/1—e2+4—5sin?i — 2-L cosi|, 7.8
2 14(1—62)2 ( ) Nd ( )

which are introduced in Equation (7.7) to obtain the following expression:

a”/? — k1a® — ky = 0. (7.9)
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Equation (7.9) allows to find the value of the semi-major axis as a function of the rest of the orbital
elements by just using a Newton-Raphson’s method to find the roots of the function:

7~/2 — kla? — kﬁg

CL]
7.5/2 .
24, —2k1a]

(7.10)

dj+1 = aj —
a
where the stop condition of the method is given by | aj4+1 — a; |< tol, with tol being the desired
accuracy. In order to initialize the method, the semi-major axis for the unperturbed case (ag) is
chosen as the initial value for the iteration:

a3 N, N\ 2 e

On — -'d — ag= | [ =2 a . (7.11)
N 2

K We p/ Wg

The previous procedure is a corrector algorithm that iteratively search the most accurate value of the
semi-major axis, and which is equivalent to other classical approaches [5, 35]. However, this approach
presents several problems in its usage. First, it only takes into account the Js perturbation. Second,
the value obtained from those expressions is the mean semi-major axis, and not the instantaneous
one. Therefore, in a certain position of the orbit, the precise semi-major axis is unknown. And
third, the definition of the nodal period of the orbit (7(), as seen in Equation (7.2), is not correct,
as it performs an addition of a true angle (the argument of perigee) with a mean angle (the mean
anomaly), which causes the introduction of an error in the process.

7.1.1 Example of ground-track drift with J; perturbation

An example of the implications of these assumptions is presented in this section. In particular,
a circular orbit with critical inclination (that is ¢ = 63.43°) is selected. We also impose that the
orbit has to repeat its ground-track each 14 orbital revolutions and each day (that is N, = 14
and Ny = 1). Moreover, and in order to fix its position, a point of pass is fixed with coordinates
¢r = 41.698169°N and 1, = 0.874295°W (Zaragoza, Spain). With this coordinates, it is possible
to derive the rest of the orbital elements required to define the orbit.

Once the orbit has been completely defined, it is possible to calculate its ground-track during a
day of propagation (note that the orbit has been defined to repeat its ground-track in one day).
The computed ground-track can be seen in Figure 7.1 for the case of the algorithm presented in
Equation (7.7). This figure shows clearly how the ground-track of the orbit does not close at all
in the region above South-Western Europe (Iberian Peninsula), with a computed drift of —107.605
km/day, being the effect more noticeable the closer the satellite is to the Earth surface.

A much better approximation can be obtained by using the algorithm provided by Vallado [35]
and a transformation from mean to osculating elements (like the ones devised by Deprit [24] or
Brouwer [25, 46]). In particular, using this procedure and for the example provided, a drift of 0.007
km/day is computed. As it can be seen, the improvement is very significant. Thus, during this
paper, we will use this methodology as the reference for performance comparisons. However, even
by using this methodology, the ground-track of the orbit is not completely closed and the problem
becomes mere severe as other terms of the Earth gravitational potential are considered. Thus, we
introduce a new numerical methodology to overcome this problem and improve the accuracy.
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Figure 7.1: Ground-track of a circular orbit with IV, = 14, Ng = 1 and i = 63.43°.

7.2 Reference orbit under the Earth gravitational potential

A numerical methodology has been developed to improve the repeating ground-track behavior of
satellites subjected to orbital perturbations. The basis of the methodology is to correct the value
of the semi-major axis obtained from the reference model (Vallado [35] and a transformation from
mean to osculating elements) by adjusting the orbit of the satellite in the ECEF (Earth-Centered,
Earth-Fixed) frame of reference. This correction is achieved by using a basic property in celestial
mechanics: if the semi-major axis of an orbit increases, its period also increases, which makes
the ground-track to drift towards the West, and vice versa. Therefore, the goal of the correction
proposed is to find the value of the instantaneous semi-major axis that allows the closing of the
ground-track in a period of time equal to a cycle, T.
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Figure 7.2: Deviation between two passings through the Earth Equator (Ag).

In order to do so, a series of propagations of the orbit of the satellite are performed. In particular,
each propagation has to be done for a time of at least two cycles in order to assure that the satellite
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is able to cross the Earth Equator at least 2/N,, times in the same direction in the ECEF frame of
reference. This propagation has two different objectives. The first one is to obtain the time that the
satellite requires to complete a cycle (T;), while the second aims to compute the deviation of the
ground-track produced in that time in its passing through the Earth Equator in the ECEF frame
of reference, named At (see Figure 7.2).

Let ag be the semi-major axis obtained using the reference approach for a given combination of
orbits and days to ground track repetition (IV, and N, respectively). During the propagation, the
resultant orbit produces a drift in the ground-track after the repetition cycle that is denoted as
Atg. The value of Ay is computed as the angle between the instantaneous angular momentums,
projected upon the Earth Equator plane (in the ECEF frame of reference), of the satellite in its
two passings through the Earth Equator.

On the other hand, let a be the value of the semi-major axis that makes the ground-track to close,
that is, the nominal value of the semi-major axis that we want to compute. In addition, as it is the
nominal value, we know by definition that the drift of its ground-track in a repeating cycle is zero.
Thus, it is possible to express the ground-track drift of the satellite under consideration respect to
this nominal orbit:

Ay = wg (Te, — Te) =wg Ny (To—T), (7.12)

where N,, is the repetition cycle, and Tp, T" are the period of the orbits with semi-major axis ag and
a respectively. If a strictly keplerian formulation is considered as a first approximation, the former

a3 a3
Avpg = wa N, | 214 2 —2my [ — | . (7.13)
I I

In addition, let di) be the mean variation of the ground-track drift of an orbit in the period of a
repeating cycle, that is:

equation can be expressed as:

iy = A:;fo. (7.14)

where di)g can be expressed by means of both values of the semi-major axis by using Equations (7.13)
and (7.14):
a3

dv,bozw@( 1—3>. (7.15)

Qg

Therefore, as ag and diy are already known, we can obtain the value of a as a function of the
parameters of the former propagation. In particular:

. —2/3
a = ap <1 - dw0> : (7.16)

The value provided by Equation (7.16) can be used as a first approximation to the solution. In fact,
Equation (7.16) can be transformed into an interpolating formula:

-\ —2/3
a; = ;1 (1 — dl/h—l) s (7.17)

We
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however, this iterative process can be improved significantly by the use of the secant method:

(ag-1) —ag-2) (7.18)
(dgi—1) — d(i—2))

aj = aj—1) — dip_1)

which is initialized with solutions provided by Equation (7.17).

The process shown above requires a number of propagations of the same satellite with different
values of its semi-major axis (maintaining the rest of mean orbital parameters constant) until a
value of a; that fulfills the repeating ground-track property is obtained (condition dTp] < €, where
€ is the parameter that controls the precision of the numerical method).

This method can be applied no matter the orbit considered, including satellites with high
eccentricity, low semi-major axis or retrograde orbits. Moreover, the methodology is not limited by
the Earth gravitational model considered, being possible to include the effect of zonal and tesseral
terms in the computation of the nominal orbit.

7.2.1 Example of semi-major axis perturbation

Now, an application of the methodology to the example shown in Section 7.1.1 is presented.
Figure 7.1 showed how a low circular orbit with critical inclination and parameters N; = 1 and
N, = 14 behaved using Equation (7.7), and how a simple transformation from mean to osculating
elements improved the result. In here, the numerical semi-major axis correction introduced in this
work is used. Figure 7.3 shows the results of the propagation of an orbit obtained through this
methodology. As it can be seen, the corrected orbit is completely closed.

Figure 7.3: Ground-track of the semi-major axis corrected orbit with design parameters: N, = 14,
Ng=1,e=0.0 and 7 = 63.43°.

However, and in order to have a quantitative parameter to study the repeating ground-track
performance that presents each one of these orbits, the drift that the ground-track of an orbit
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suffers over the Earth Equator per day is selected. This parameter is computed as explained in the
previous section, and it is measured as the amount of kilometers that the ground-track drifts over
the Earth Equator per day.

Table 7.1: Ground-track deviation in the equator and semi-major axis for the two methods under
Jo perturbation.

Methodology Reference algorithm | a-correction’s method
Drift [km/day] 0.007 < 10710
a [km)] 7219.001 7219.000

Table 7.1 provides a comparison of the two methods to calculate the semi-major axis of the orbit.
The table shows that using the reference model, a semi-major axis of 7219.001 km with a drift of
0.007 km/day is obtained (which represents a deviation towards the East). On the other hand,
using the semi-major axis correction, a semi-major axis of 7219.000 km is obtained with a drift of
less than 10710 km/day. As it can be seen, the difference in the value of the semi-major axis is not
too big (approximately 1 m), however, this difference is important to define the nominal orbit not
only for the effect of the Earth gravitational potential, but also for the atmospheric drag. As we
will see later, the difference between methodologies increases if more terms of the Earth potential
are included.

Table 7.2: Ground-track deviation in the equator and semi-major axis for the two methods for a
gravitational potential with terms up to 4th order (including tesseral terms).

a-correction’s method

Methodology

Reference algorithm

Drift [km/day]

0.113

<1010

a [km)]

7219.001

7219.015

On the other hand, a similar study has been made considering a Earth gravitational model with
terms up to the 4th order, including zonal and tesseral terms. The results of this computation are
provided in Table 7.2. As it can be seen, the drift of the ground-track for the reference algorithm
has increased to 0.113 km/day, while the proposed methodology maintains the accuracy.

Table 7.3: Initial position and velocity of the modified orbit in the ECI frame of reference.
z [km] z [km] | vy [km/s] vy [km/s] v, [km/s]
5391.764 110.223 | -2.286 2.413 6.647

y [km]
4803.640

Coordinates

Satellite

The initial positions and velocities of the orbit in the ECI (Earth Centered Inertial) frame of
reference are shown in Table 7.3. These orbital parameters have been obtained using the semi-major
axis correction presented in this work and are the ones that allow the closing of the relative-track
for the conditions considered.

7.2.2 Performance of the numerical method

In this section, we aim to show the improvements on the ground-track repetition that the semi-
major axis correction proposed in this work is able to achieve. For that objective, we take into
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consideration the orbital perturbations provoked by a 4 by 4 order Earth gravitational potential
model [29] in order to show the performance of the method. Note that the semi-major axis that is
able to achieve the repeating ground-track property is very dependent on the various parameters
of the problem, more precisely, the reference point of pass in the Earth surface, the inclination, the
eccentricity, the argument of perigee, the relation between /V, and N4 and the right ascension of the
ascending node. For that reason and in order to simplify the results obtained, we will assume that
the point of pass is 0° N and 0° W as coordinates, a perigee equal to w = 90°, and a right ascension
of the ascending node equal to 0°. Fixing those parameters allows to generate a family of surfaces
that only depends on the relation between N, and N4, the eccentricity, and the inclination.

Three examples are provided, a Low Earth Orbit (LEO), a Medium Earth Orbit (MEO), and
a Geosynchronous Orbit (GSO). In each example the drift of the ground-track in the equator is
presented for the case of the semi-major axis obtained from the reference algorithm (Vallado [35]
and a transformation from mean to osculating elements). On the other hand, the drift obtained
from the semi-major axis correction can be reduced as much as required, by increasing the number
of iterations. Particularly, during the computation of these examples, a tolerance in the drift of
10719 km is imposed, which is also the maximum drift obtained during the numerical tests in all
the cases in study. On the other hand, and for the cases of study, the number of iterations that
the algorithm required to find this precision was maintained below 5 iterations, using in most cases
only 2 iterations. Now, the results for this examples are presented.

7.2.2.1 Low Earth Orbits

Figure 7.4 shows the ground-track drift in the equator of a set of Leo orbits with parameters IV, = 15
and Ng = 1 and for the case of the reference algorithm. As it can be seen, a maximum deviation
of 6.34 km/day in the ground-track is observed in the equator. It is important to note that the
maximum drifts computed occur for orbits with an orbital plane near the equator. This is due to the
effect of the zonal harmonics of Earth potential that are not considered in the reference algorithm.
Moreover, we can compare these results with the ones obtained from the algorithm introduced in
this article, where a maximum drift of 1070 km per day is obtained. This shows the improvement
that this algorithm presents. The results are presented up to eccentricity equal to 0.05 in order to
avoid possible collisions of the satellite with the Earth surface at the altitudes considered. In the
other examples, larger values of the eccentricity will be studied.

On the other hand, Figure 7.5 presents the effect of the correction performed in the mean semi-
major axis of the orbits. As it can be seen, the correction varies from —0.7 km to 0.55 km. This
variation can be regarded as very small, however, when defining a reference orbit for orbit control
maintenance, these variations can be very appreciable. As an example of this, let a satellite at the
altitude presented in the example be imposed to have a dead band of 1 km under the atmospheric
drag. This means that the mean semi-major axis of the satellite will vary typically in a range on the
order of 10 — 100 meters around the reference orbit, depending on the satellite physical properties
and the solar activity. As it can be seen, this shows the importance of defining a reference orbit as
precise as possible for the periodic orbital perturbations.
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Figure 7.4: Ground-track drift for LEO orbits with parameters: N, =15, Ng = 1.
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Figure 7.5: Difference in semi-major axis for LEO orbits with parameters: N, = 15, Ng = 1.

7.2.2.2 Medium Earth Orbits

Now, the study for a set of MEO orbits with parameters N, = 3 and Ng = 1 is presented. Figure 7.6
shows the ground-track drift in the equator that is obtained if the reference algorithm is used under
a 4 by 4 Earth gravitational potential. As it can be seen, increasing the eccentricity of the orbits
increases the drift up to 8 km/day if using the reference algorithm and for the cases of study.
This effect is provoked by the approximations associated with the reference algorithm and the
transformations from mean to osculating elements.
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Figure 7.6: Ground-track drift for MEO orbits with parameters: N, =3, Ng = 1.

The difference in the semi-major axis obtained in both algorithms is presented in Figure 7.7. As
it can be observed, even at this altitude, the difference in the semi-major axis is noticeable with a
maximum variation of 2.65 km. On the other hand, if we focus in the same region of study as in
the previous example, a reduction in the variation of the semi-major axis is obtained. This result
is expected as the perturbation forces provoked by the Earth gravitational potential increase the
closer the satellite is to the Earth.
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Figure 7.7: Difference in semi-major axis for MEO orbits with parameters: N, =3, Ng = 1.
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7.2.2.3 Geo Synchronous Orbits

As a final example, we present the results of these algorithms for GSO orbits. In order to obtain
this kind of configuration the satellites have to complete an orbit in one day, that is, N, = 1 and
Ny = 1. As before, the results for ground-track drift of the reference algorithm and its difference in
semi-major axis with the methodology introduced in this work are presented in Figures 7.8 and 7.9
respectively.
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Figure 7.8: Ground-track drift for GSO orbits with parameters: N, =1, Ng = 1.
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Figure 7.9: Difference in semi-major axis for GSO orbits with parameters: N, =1, Ny = 1.

As it can be seen, the drift computed for the reference algorithm is smaller than in the previous
example. This is due to the fact that the satellites are farther from the Earth, and thus, the effect of
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the Earth gravitational potential is reduced. However, we can still see notable differences between
both algorithms as the eccentricity of the orbits increases.

7.2.3 Including other perturbations

It is possible to include other orbital perturbations such as the Sun and Moon as disturbing third
bodies, the solar radiation pressure or the atmospheric drag in the correction of the reference semi-
major axis of the orbit without any modification of the algorithm. However, as these perturbations
are not periodic in the Earth Fixed frame of reference, the repeating ground-track property will
be lost after several repeating cycles. This means that, as time passes, orbital maneuvers must be
performed in order to maintain the orbit properties. For these reasons, the algorithm presented in
this work is specially interesting when defining a reference orbit in mission design. That way, the
semi-major axis correction allows to reduce the relative to Earth station-keeping of a satellite, as it
can absorb the effects of conservative perturbations that are periodic, such as the Earth gravitational
potential, including them in the initial design of the orbit.

7.2.4 Addition of other orbital properties

Most of the Earth observation satellites require, in addition to the repeating ground-track property,
other orbital properties due to the nature of their missions. As an example of that, optical missions
usually require to have near circular, frozen, sun-synchronous and near to Earth orbits. However,
not all the missions are subjected to the same requirements and some conditions in the orbit can
be relaxed. Other examples that require frozen or sun-synchronous orbits include radar missions or
remote sensing.

Therefore, in addition to the repeating ground-track property, it is interesting to study the possibility
to include the sun-synchrony and the frozen orbit conditions in the algorithm introduced in this
work. This allows to include this properties (alongside with the Earth gravitational model) directly
in the computation of the reference orbit of a mission.

7.2.4.1 Sun-Synchrony

Sun-synchrony is an interesting property that allows satellites to visit regions of the surface at
the same solar time. This property has important advantages in Earth observation cameras as it
maintains the conditions of lighting over the regions of study. The condition for sun-synchrony is:

. w
Dgee = —2, (7.19)
yr

where Q.. is the secular variation of the right ascension of the ascending node and yr =
365.25636042 is the number of sidereal days contained in a year. Using Lagrange Planetary
equations, a relation between Equation (7.19) and the orbital elements can be established through:

: R3
Opee = Sy VI i, (7.20)
27472 (1 —e?)
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Equations (7.20) and (7.19) can be combined and related with the number of orbital revolutions to
cycle repetition (N,) and the number of sidereal days to cycle repetition (Ng) using Equation (7.11),
obtaining;:
1/3
3 NI Wi
1-e)’ =—ShyrR2[2222)  cosi. (7.21)
( ) 2 S2] Ng /'52

However, Equation (7.21) is not defined for any combination of eccentricity, inclination and semi-
major axis of the orbit. First of all, the eccentricity has an upper and a lower boundary. The upper
boundary is related with the minimum altitude over the Earth surface; the perigee,

rp=ua(l—e), (7.22)

and relating this equation with parameters N, and Ny using Equation (7.11):
1/3
N2w?
emaz = 1 — ( D @> Tp. (7.23)

On the other hand, the lower boundary is related with the existence of a real solution in
Equation (7.21). That way,

3 NT Wi\ Y?
emin = 1| 1 — | =J2 yr R2 (p@> . (7.24)
min 9 D Ng M2

Furthermore, Equations (7.23) and (7.24) relate with the minimum and maximum angle between
the orbital plane and the equator:

2(1—e2,,) <N§ M2)1/3

08 tmaz = 3 J, yr Rg @%
2 1/3
COS i :_gw ﬂ/ﬁ / (7.25)
e 3 Joyr Ry \NJ wi ' ’

Once the boundaries of the problem have been defined, it is time to include the sun-synchrony in the
semi-major axis correction. In order to do that, it is required to modify the inclination and/or the
eccentricity of the orbits as the same time that the semi-major axis of the orbit is modified in the
algorithm in order to maintain the condition of sun-synchrony. In that respect, three possibilities
can be considered: to modify the inclination in each step of the iteration (with a fixed eccentricity),
to modify the eccentricity (with a fixed inclination), or to vary both variables in each iteration (if a
frozen orbit is also required). Each approach has its advantages and disadvantages and it depends
on the orbit requirements. More precisely, modifying the inclination implies calculating in each
step the conditions of the orbit to pass over the point of reference, but it also assures the control
over the eccentricity, a parameter that can be more critical depending on the mission. On the
other hand, modifying the eccentricity requires less computation but the inclination is controlled
by Equation (7.21). Finally, varying both variables allows a better control of the result at a cost
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of more computational time and a more complex algorithm. However, this allows to obtain orbits
which are sun-synchronous and Frozen, which is a property very interesting in many applications.

Regarding the algorithm, the semi-major axis correction is done as before, but with a slightly
modification: each time that a semi-major axis is computed using Equation (7.18), a new value
of either the inclination and/or the eccentricity is done (as has been defined before), which means
that the next computed propagation calculated includes the modified values of semi-major axis,
inclination and eccentricity. This process is maintained until the precision in the drift of the relative
track is fulfilled, just in the same way as the semi-major axis correction was explained.

7.2.4.2 Frozen orbits

Frozen orbits are those whose eccentricity and argument of perigee do not suffer from secular
variations in the evolution of the satellite movement. This condition is very interesting for optical
missions, where this property allows to observe a given region from the same altitudes in each
passing of the satellite. For a model in which only the Jo effect is considered, there are only two
possibilities to achieve that condition, having a circular orbit or having a critical inclination orbit.
However, in this chapter, the Js3 effect will also be considered, as it includes more possible frozen
solutions to the problem and allows to find more stable solutions.

Thus, considering the Js and .J3 perturbations, the secular derivatives of the eccentricity and the
argument of perigee are:

3
e = —;/ﬂ Re isinicosw 1—§sin2i ,
2V a3 \ a (1—e2)? 4

) 3J3 w R 5 . 5. J3 Rg sinw (sin?i — €2 cos? i
= =B JEZe (2 14 320 (7.2
w [(1 _62)2 a3 a? Ml + Jo 2a 1 — €2 esini (7.26)

Equation (7.26) has solutions when the inclination is zero or the critical inclination, and when the
argument of perigee is either w = 7/2,37/2, and this relation is fulfilled:

1J3 Rg sin?i — e?cos?i |
1-eX)e=-—-2"9 7.27
( ¢ )e 2J2 a sin ¢ i ( )

which is a third degree equation in the eccentricity.

In order to get a repeating grand-track and frozen orbit, we follow a similar process to the one
showed for the sun-synchrony property. First, the semi-major axis correction is performed, and for
each new value of a; obtained, the inclination and eccentricity of the orbit are also modified in order
to achieve the frozen orbit (using one of the conditions presented).

7.2.4.3 Syn-synchronous and Frozen orbits

As it has been said previously, it is possible to include both conditions in an orbit. Using
Equations (7.21) and (7.27), the values of the inclination and eccentricity for a given semi-major
axis can be obtained. Thus, in each iteration, the values of the eccentricity and inclination are
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updated with the new vale of the semi-major axis provided by the actual iteration. This allows to
obtain the three properties (ground-track repetition, sun-synchrony and frozen) at the same time. It
is important to note that by doing this, the number of iterations required by the algorithm slightly
increases. However, and for the cases of study, the maximum number of iterations never overpassed
the 8 iterations.

7.3 Repeating ground-track constellation design

One of the most interesting applications of the semi-major axis correction is satellite constellation
design. That way, it is possible to combine the semi-major axis correction with the Ground-Track
Constellations [22, 23] methodology of design, which is summarized below, to generate satellite
configurations that can be preserved for long periods of time without orbital maneuvers.

The Ground-Track Constellations methodology is based on the idea of generating relative
trajectories defined with orbital perturbations taken into account, and distributing the satellites
along these relative trajectories. That way, the effects of orbital perturbations are introduced in
the design of the constellation, allowing the maintenance of the configuration for longer periods of
time.

The distribution of a Ground-Track Constellation follows this relation:

Mg = Qoo —we(ty — o),
qu = My+n (tk +1tg — to) ; (7.28)

where Qg9, My and ty are the values of right ascension of the ascending node, mean anomaly
and time respect to the Greenwich meridian for the reference satellite of the constellation. On the
other hand, ¢, and ¢; represent the distribution based on time of the satellites along £ different
relative trajectories, and €, and M}, names the right ascension of the ascending node and the
mean anomaly of a satellite placed in the position ¢ of the relative trajectory k.

As an example of this application, an equally spaced in time distribution is chosen. This
configuration can be defined as:

2
e o= (k—1) LB
NN, (w@ - Qko)
T.
t, = —1)— 2
b = -3 (7.29)

where NV; is the number of relative-tracks, Ng the number of satellites per relative-track, Qo the
secular variation of the right ascension of the ascending node of the reference satellite £0, and Ny the
maximum common divisor between N, and N; (Ny = ged(Ny, N¢)). In this distribution k € [1, N¢]
and g € [1, Ng].

We impose as a requirement of the constellation that all satellites must have the repeating ground-
track and the sun-synchronous properties, and thus, the semi-major axis correction presented in
this work is applied. Moreover, each satellite presents a repeating ground-track cycle each 59 orbital
revolutions (N, = 59) and four days (Ng = 4). Regarding the satellite distribution, all satellites
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present the same relative trajectory (/N = 1) which means that this relative trajectory contains all
four satellites (Ng = 4).

One important property of this constellation is that, although the satellites are distributed in only
one relative trajectory, they are also contained in the same inertial orbit. This property can be
achieved as the number of inertial orbits using this kind of distribution is equal to Ng;/gcd(Ngi, Ng).
That way, only one semi-major axis correction has to be done, as all the constellation is defined
using the same relative trajectory obtained from the propagation of one reference satellite.

In the current example, the only perturbation considered is the gravitational potential of the
Earth [29] up to 4th order terms (including tesserals). This perturbation has the particularity
that it is periodic in the ECEF frame of reference, which allows to obtain a stable solution in
this case. With this perturbation and the distribution defined in Equations (7.28) and (7.29), the
initial positions and velocities can be computed. The initial state of the constellation is presented
in Table 7.4 where the positions and velocities are defined in the ECI frame of reference.

Table 7.4: Initial positions and velocities of the constellation.

Sat. (k,q) z [km] y [km] z [km)] vg [km/s] vy [km/s] v, [km/s]
1,1 5239.796 -79.962 4668.731 -4.947 -1.324 5.529
1,2 4597.367 1234.183  -5157.908 5.634 -0.083 5.002
1,3 -5251.144 78.267 -4665.286 4.939 1.323 -5.527
1,4 -4609.440 -1235.011  5154.648 -5.625 0.084 -5.003

Figure 7.10 shows the ground-track of the constellation for a propagation of 4 days. As it can be
seen, all four satellites share the same ground-track, which is closed, achieving the ground-track
property for the whole constellation. This state has been achieved even with the perturbation
provoked by the Earth gravitational potential, obtaining a repeating ground-track property that
can be maintained for months (and for the perturbation considered) without orbital maneuvers.

On the other hand, Figure 7.11 represents the inertial orbits of the constellation. The image on
the left shows the initial inertial orbit, whilst the image on the right presents the propagation of
the constellation for a time equal to four days. As it can be observed, the inertial orbit plane has
drifted due to the effect of the Jy perturbation. Nevertheless, as it has been seen in Figure 7.10, the
ground-track of the constellation remains unchanged despite the orbital perturbations considered,
which shows the possibilities that the semi-major axis correction provides.

This configuration can be maintained indefinitely with only a periodic perturbation such as the
Earth gravitational potential. However, if other orbital perturbations are considered, the ground-
track and relative trajectories of the constellation will change over time, and thus, orbital maneuvers
will be required to be applied to correct that situation. However, as the effects of the Earth
gravitational potential are included in the original design, less fuel will be required to maintain the
relative to Earth station-keeping.
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Figure 7.11: Initial (left) and 4 days propagation (right) of the inertial orbits of the constellation.

7.4 Conclusions

This chapter presents a new numerical method designed to obtain repeating ground-track orbits
of a given satellite, taking into account orbital perturbations. This method is based on a semi-
major axis correction that is performed in the orbit design and which includes the effects of all the
perturbations considered in its formulation.
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The advantages of this method is that it allows to improve the maintenance of the repeating ground-
track property of a satellite despite of the orbital perturbations by just calculating a small number
of orbit propagations. It has also applications on very different orbit designs, including retrograde
or high elliptical orbits. Moreover, the method presented can be used with different perturbation
models and propagators, being not restricted in that sense.

The most important property of the semi-major axis correction is that it allows to include periodic
perturbations such as the Earth gravitational potential in the design of an orbit, which reduces the
amount of fuel required to maintain the relative to Earth station-keeping. Other perturbations can
be also included in the methodology improving the design obtained, however, due to the nature
of non periodic and non conservative perturbations, the initial ground-tracks will be modified over
time, and orbital maneuvers will be required to maintain the repeating ground-track property.

This numerical method has direct applications in different space missions, providing a wide variety
of uses. This is improved with the addition of other orbital properties such as the sun-synchrony
or the frozen condition. One of the most important applications of this methodology is Earth
observation satellites that require the repeating ground-track property. With this technique, those
missions can reduce the amount of fuel required to maintain their ground-tracks due to a decrease
in the drift that their ground-track suffers over time compared with other methods. Other useful
applications are communications, where the possibility of connecting satellites and ground segment
in a periodic basis represents a repeating ground-track problem of great interest.

Another important application is satellite constellation design. In particular, the semi-major axis
correction and the concept of designing a constellation in the ECEF frame of reference, can be
combined to generate satellite constellations that take orbital perturbations into account in their
design. This allows to maintain the configuration of the constellations for longer periods of time
without using orbital maneuvers.
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Chapter 8

Combining satellite constellation
design

In previous chapters, we presented a set of methodologies that can be applied in satellite
constellation design. In that respect, we included not only the theory and formulation behind
these methodologies, but also multiple examples showing the possibilities of application of each
design methodology. However, each technique has been treated separately throughout this work,
not presenting, at a first glance, any relation between the different designs, nor how to apply them
in a more complex problem.

In this final chapter, we focus on the combination and application of the different constellation
design methodologies presented in this thesis. In particular, we deal with the relation that exists
between the 2D Necklace Flower Constellations and the Ground-Track Constellations, providing
a set of equations that allows to transform the first formulation into the later. Other lattice and
necklace formulations can be obtained easily from the set of equations presented in this chapter,
and thus, we do not treat them in here.

In addition, and in order to present a clear example of all these methodologies, a basic design
and study of an Earth observation constellation based on the designs of the 2D Necklace Flower
Constellations and the Ground-Track Constellations is presented. In particular, a constellation
whose satellites share the same ground-track is selected, where some satellites of the constellation
contain different instruments. This will allow to show the possibilities of design of the Necklace
Flower Constellations and the Ground-Track Constellations, and will provide very interesting results
from a design point of view.

Finally, the chapter includes a simple study of the constellation generated. This study is separated
in three parts. In the first part, the mission concept is presented, including the selection of payloads
and the requirements affecting the mission that are considered in this study. Second, we include
the definition of the nominal design of the constellation by means of the Flower and Ground-Track
Constellations formulations. After this process is done, we provide a description of a couple of
launching strategies that allow to build the constellation in orbit. Third, we define a control strategy
for the mission and evaluate the orbital maneuvers required by each satellite of the constellation.
With all these results, a simple but complete study of an Earth observation constellation mission is
shown.
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8.1 From Flower Constellations to Ground-Track Constellations

We have seen previously that Necklace Flower Constellations were able to perform uniform
distributions of a given set of satellites in the inertial frame of reference. On the other hand,
Ground-Track Constellations focused on distribute satellites directly in the Earth Fixed frame of
reference, being able to perform any kind of distribution, uniform and non uniform, being its
inertial configuration a result of the design in the Earth Fixed. Now, we present a set of expressions
that allows to transform the Necklace Flower Constellations into the Ground-Track Constellation
formulation. That way, it is possible to determine how satellites are distributed in the Earth Fixed
frame of reference.

In that respect, Ground-Track Constellations can only be related to 2D Lattice and Necklace Flower
Constellations since in order for a subset of satellites to present the same ground-track, they have
to share the semi-major axis, the inclination, the eccentricity and the argument of perigee. In
particular, the most general representation of a Ground-Track Constellation distribution is defined
as:

AQyy = Ay —we(trg —to),
AMy, = n(tkq —to), (8.1)
where (t;, —to) represents the along track distribution of the satellites of the constellation and A€,

is the distribution of the ground-tracks in the Earth Fixed frame of reference. On the other hand,
a 2D Lattice Flower Constellation is distributed following this expression:

2r .
2T 2 Lya .

AM;: = —(j—-1)— — —-1), 2
2 (-1 -y )

where Lq is the number of orbits of the constellation and Lj; is the number of satellites per orbit.
Thus, by identification of the distributions in Equations (8.1) and (8.2) we can obtain the relation
between Ground-Track and 2D Lattice Flower Constellations:

_ _welmo) (i-1) we(i-1)
AQ = 2 {(1 - LM) Ia + 0 L mod (27),

2% {(jL—Ml) B 1}/]\;&2 (iL—Ql)] ’

(tkg —to) = (8.3)

which allows to obtain the distribution of a 2D Lattice Flower Constellation in the Earth Fixed
frame of reference.

Moreover, it is possible to establish this relation using the 2D Necklace Flower Constellations
formulation. As done in Chapter 2, the positions of the satellites in the different available positions
in the orbital planes and in the mean anomaly can be defined by means of the position inside a
necklace:

(-1 = Gu—1+Sua(Ga—1), (8.4)
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which introduced in Equation (8.3) leads to:

AQr = 2« [(1 — u;?if‘j;) (gﬂL; 1) 4 u:?(gM -1 +fj\\/[/fﬂ(g9 - 1))} mod (27),
2 —1+8 ~1) L 1
(tg—to) = — [(QM LZQ(QQ ) _ LALQ (QQLQ )} . (8.5)

However, it is interesting to study the case when the constellation is based on repeating ground-
track orbits. In those cases, the mean motion n and the Earth spin rate wg can be related with the
number of orbit revolutions and days to ground-track repetition (N, and N, respectively):

N Ny
=2r—L, =2m— 8.6
n=2r T, wg = 2w T, (8.6)
being T. the time that the constellation satellites require to close their ground-tracks. Thus,
introducing this expressions in Equation (8.5):

_ ~ NaLuo\ (Go—1) | Na(Gm —1+ Sua(9a —1))
AQ, = 27 [(1 N, Lu > o + N, Tor } mod (27),
Te [(Gr — 1+ Svua(Ga—1)) Ly (Ga — 1)} (Tc >
thy —tg) = — — Al =— 8.7
(kg = o) N, [ L Im Lo | T N,)’ (8.7)

where A is an unknown integer and, since the ground-tracks are closed, a modular arithmetic
in the ground-track distribution is introduced. Another interesting case of study happens when
the constellation is distributed in just one ground-track. Since the distribution of the fictitious
constellation is uniform, we know that the along track distribution of the constellation is also
uniform and thus, we can define the distribution directly in the Earth Fixed frame of reference:

(q— 1)TC T [(QM— 1+ Sua(Go —1))  Lua (G — 1)] A <TC>, (8.8)

Ng ¢ N, L Ly Lo N,

(tkg —to) =

where Ng = LqLjs is the number of satellites of the constellation. We can simplified the former
expression to obtain (¢—1) as a function of the distribution in the 2D Necklace Flower Constellation:

Nyt [(Gu — 1+ Sua(Ga—1))  Lua (Go — 1)] <N5t>
-1)= — + A , 8.9
G-1="73 [ Lt Lv Lo N, (89)
and after performing some basic operations:
1 LqoL
(q—l):F{(QM—1+SMQ(gQ—1))LQ—(QQ—1)LMQi| —I—A( (;VM> . (8.10)
P P

It is important to note that (¢—1) is always an integer number, since in order to have a 2D Necklace
Flower Constellation distributed in just one ground-track, the combination number Lj;q must be
chosen in such a way that the value obtained in Equation (8.10) is an integer number. In addition,
Equation (8.10) allows to determine the relative positions of the satellites along the ground-track
of the constellation, since a necklace in the along-track distribution has been generated using this
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procedure. In such cases, the distribution of the constellation in the right ascension of the ascending
node and in the mean anomaly can be rewritten as:

(¢—1)

AQ, = —2mNy4 N,

AM, = 2xn,9— Y (8.11)
Nst

where this expression represents the alternative formulation of an uniform distribution in a single
ground-track based on the Ground-Track Constellations methodology.

Once the general relation between both constellation design formulations is introduced, we are able
to show a simple but complete example of constellation design in the next section. This will allow
to not only present some of the possibilities of design of these methodologies but also to show that
the design concepts obtained are feasible from an engineering point of view.

8.2 Design and study of an Earth observation constellation

For this study we propose a constellation for Earth observation based on 6 satellites which have to
observe the same regions of the Earth under very similar geometries. This property will allow to
combine the scientific results of the different satellites and reduce the revisiting time of the mission.
In that respect, the chosen constellation is based on the instruments carried by the missions Landsat
7 [47], OCO-2 [48] and CloudSat [1], having each two satellites of the constellation the same or
equivalent payloads. This introduces in the problem studied three different families of instruments,
which will have some interesting results during the design of the constellation.

Landsat program is the oldest family of satellites that have as their mission the acquisition of
satellite imagery of the Earth. The program focuses on monitoring the landmass of the Earth,
providing high spatial resolution images both in the visible and the infrared specters of light. The
first satellite of the family, the Earth Resources Technology Satellite (later renamed Landsat 1),
was launched in 1972 providing nearly three years of operation to the mission. Other satellites
of the family followed the program: Landsat 2 (1975—1982), Landsat 3 (1978—1983), Landsat 4
(1982—-1993), Landsat 5 (1984—2013), Landsat 6 (1993—1993), Landsat 7 (1999—) and Landsat 8
(2013—). In addition, Landsat 9 is expected to be launched in 2020. In this work we focus on
Landsat 7 instrument, the Enhanced Thematic Mapper Plus (ETM+), and the requirements that
this instrument imposes to the mission. The ETM+ is an imaging radiometer with eight spectral
bands that ranges from the visible blue to the far infrared.

The Orbiting Carbon Observatory (OCO) is a satellite mission that was intended to provide
observations on the atmospheric carbon dioxide from a near polar orbit. However, the first satellite
of the series, OCO, was lost in a launch failure in 2009. Later, in 2014, OCO-2 was successfully
launched to substitute OCO. One interesting property of OCO-2 is that the satellite maintains
a loose formation with the A-train (a tandem formation of satellites), providing complementary
scientific data to the mentioned constellation. The primary payload of OCO-2 consists of three high
resolution grating spectrometers.
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The CloudSat mission is part of the Earth Observing System (EOS) Afternoon Constellation, also
known as the A-train, a tandem formation actually based on six satellites: Aqua, Aura, CALIPSO,
CloudSat, GCOM-W1 and OCO-2. The aim of CloudSat is the study of clouds with the objective
of characterizing the role they play in regulating the Earth’s climate. The satellite was launched
in 2006 and its primary payload is the Cloud Profiling Radar (CPR), a 94-GHz radar with 500-m
vertical resolution.

8.2.1 Mission requirements

As it has been said, the mission considered is based on six satellites and two kinds of payloads, two
different spectrometers (from Landsat 7 and OCO-2) and a radar (from CloudSat). In addition, each
two satellites of the constellation will contain the same or an equivalent payload. This introduces a
set of very different mission requirements for each satellite of the constellation that they must fulfill
in order to provide scientific data to the mission.

Now, we present the mission requirements for each satellite, showing the constraints that each
instrument introduces in the problem as well as the physical properties of the satellites that originally
carried these payloads. In that respect, and in order to show the requirements in a clearer manner,
we have separated each satellite class in a different point.

8.2.1.1 Landsat 7 class satellites (ETM+)

First of all, and for this mission, we assume that the two Landsat 7 class satellites will be the
primary spacecrafts of the mission, since they are the heaviest satellites that we are considering.
This means that, during the design, we will focus on the requirements of these two satellites, being
the requirements of the other satellites additional constraints that we will apply to this first set of
requirements.

The ETM+ is an instrument with a field of view of £7.5° and a swath of 185 km, which requires
to fly in a nominal orbit with an altitude of 705 km + 5 km at the equator. Moreover, this payload
requires to perform periodically three different kind of calibrations that affects the selection of the
orbit [49, 50, 51]:

e Ground Look Calibration (GLC): this calibration consists on the observation of particular
areas of the Earth surface, that, due to their properties of homogeneity and stability over the
course of the year, allow to perform measure comparisons. This calibration is carried out each
2 to 6 months during the normal operation of the satellite. Examples of this reference regions
are Railroad Valley Playa ((38.5° N, 115.7° W)) and White Sands (32.9° N, 106.4° W).

o Full aperture Solar Calibration (FASC): this calibration is performed each 4 to 6 weeks during
the normal operation of the satellite and consists on the observation of the Sun using a set of
mirrors in the instrument while the satellite lays in the frontier between day and night and
flies over the polar circle area.

o Partial Aperture Solar Calibration (PASC): this calibration is performed once per day and
lasts two minutes. It consists on the measurement of the radiation of the Sun while the
satellites has just exit an eclipse and its sub-satellite point is still in a night region.
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Additionally, there are two more requirements that the ETM+ must fulfill. First, the local time at
ascending node must be between 09:45 and 10:15. Second, and in order to maintain the ground-
track of the orbit and the observation geometric properties, the orbit inclination of the satellite
must be in the range of +0.15° from the sun-synchronous inclination.

On the other hand, the spacecraft size and weight of the satellite also influences the dynamic of the
satellite. In that respect, we select Landsat 7, as the reference for this class of satellites. Landsat 7
has a mass of 1982 kg, its height is 4 m and presents 2.7 m of diameter [52]. These dimensions will
be used in order to evaluate the effect of the atmospheric drag in the satellite.

8.2.1.2 OCO-2 class satellites (grating spectrometer)

The instrument of OCO-2 (a payload consisting of three grating spectrometers), requires a sun-
synchronous orbit with a local time at the ascending node between 13:18 and 13:33 and a nominal
altitude over the equator of around 705 km. In addition, it requires an inclination control of +0.1°
related to its sun-synchronous inclination.

Furthermore, OCO-2, the reference satellite for this class of satellites, has a weight of 530 kg, a
longitude of 2.3 m and 1.4 m of diameter [52].

8.2.1.3 CloudSat class satellites (CPR)

The CPR instrument does not introduce more requirements to the mission (since it share many
of the previous constraints presented for Landsat 7 and OCO-2). In that respect, CPR requires
also a sun-synchronous orbit with an altitude of around 705 km over the equator. In addition, the
reference satellite used in this work, CloudSat, has a mass of 999 kg and the following dimensions:
2.3m x 2.3m x 2.8m [52].

8.2.1.4 Ground-track maintenance

In addition to the requirements imposed by each instrument of the mission, we are required to
maintain the ground-track of the orbit inside some boundaries. This is done primarily for three
reasons. The first one is in order to maintain the geometry of the observations from one cycle
of repetition to other. This allows to compare the data of different passes, allowing a more in
depth insight in the scientific problem considered. The second objective is to be able to maintain
the communications with the ground segment in a periodic basis, presenting a geometry between
satellite and ground stations that allows the communication for the time required in the mission.
Finally, the third objective aims to maintain the structure of the constellation even under the orbital
perturbations affecting the constellation.

In that regard, we will assume that all the constellation satellites will have a ground-track control
both in plane and in inclination. The boundaries of this control will be the same for all the satellites
of the constellation in order to maintain the structure of the system as a constellation. In particular,
we assume a dead band of 1.5 km (in each direction) and a range of inclinations of £0.01 from the
sun-synchronous inclination.
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8.2.2 Nominal design of the constellation

Once the mission requirements have been presented, it is time to define the nominal design of the
constellation. In order to do that, we first define the reference orbit for the constellation, that is,
an orbit that is able to generate the ground-track that we are looking for while fulfilling all the
requirements of the mission. Then, the design of the constellation will be performed using the
theory of the 2D Necklace Flower Constellations and the Ground-Track Constellations.

First of all, and from the requirements of repetition from the calibration of the ETM+ as well as
for convenience of design for data handling and performance of the mission, we select a repeating
ground-track sun-synchronous orbit. Moreover, since all the satellites of the constellation require to
observe the same regions of the Earth under similar geometries, we impose that all satellites of the
constellation share the same ground-track. This means that the nominal values of the eccentricity,
inclination, argument of perigee and semi-major axis of all the satellites of the constellation will be
the same [22].

However, although the satellites of the constellation are required to fly in an orbit with an altitude
of around 705 km, we do not know exactly the semi-major axis of the orbit nor its eccentricity
or inclination. In order to obtain them, we impose the requirements of repeating ground-track
orbit, sun-synchrony, and that the swath of the ETM+ is able to cover all the Earth at the end of
the repeating cycle. By applying these conditions, we can obtain a series of compatible orbits. A
summary of them can be seen in Table 8.1. In fact, there are more solutions to the ones presented,
however, we focus on the ones that present the minimum repetition time.

Table 8.1: Repetition parameters of some compatible orbits.
Np | 233 | 262 | 277 | 291 | 306 | 335 | 364 | 379 | 393 | 408 | 422 | 437

Ng| 16 | 18 | 19 | 20 | 21 | 23 | 25 | 26 | 27 | 28 | 29 | 30

From Table 8.1 we can observe that the solution with the best repetition time is the one with
N, = 233 and N4 = 16, thus, we select it as the nominal orbit for the constellation. This means
that each satellite of the constellation will repeat its ground-track in 233 orbit revolutions or 16
days. On the other hand, and since we want the orbit to be as stable as possible, we impose that
the satellites of the constellation present the frozen orbit property. With these conditions, we are
able to obtain the nominal values of the semi-major axis, the eccentricity, the inclination, and the
argument of perigee of the orbits. A summary of them can be seen in Table 8.2.

Table 8.2: Orbital parameters of the nominal orbit of the constellation.

Nominal semi-major axis 7077.722 km
Nominal inclination 98.186°
Nominal eccentricity 0.001043
Nominal argument of perigee 90.000°
Right ascension of the ascending node and mean anomaly | Dependant on the date and satellite
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With the results provided in Table 8.2, we can now focus on the distribution of the constellation.
The first step for this is to determine the size of the fictitious constellation that we require to
generate. We know from the requirements of Landsat 7 and OCO-2, that they require a local
time in the ascending node from 09:45 to 10:15 and from 13:18 to 13:33 respectively. The local
time is in fact providing us the information of the angular distance that must exist between the
orbital planes of both satellites. In particular, we can separate both orbital planes 51.43° to fulfill
this requirement. This angular distance is chosen to slightly simplify the following calculations,
since the value corresponds to the seventh part of the complete rotation (360°/7 ~ 51.43°). On
the other hand, we assume that the CloudSat class satellites do not require any special local solar
time to perform their measurements. Thus, with this simple calculation, we have determined that
the fictitious constellation must present 7 orbital planes, that is Lo = 7 and, since the number of
satellites that share instrument is two, we can derive that N = 3.

The objective now is to determine the number of available positions that can be defined in each
orbit in order for all the satellites to have the same ground-track. From the expression in the right
ascension of the ascending node of Equation (8.11), if we impose that all the satellites belong to
the same inertial orbit:

(¢—1)

st
we can derive that the maximum number of available positions in each inertial orbit is equal to Ny
(which corresponds to the nodes of the orbit). This means that the fictitious constellation that is
compatible with the ground-track of the problem has Lj; = Nz = 16 available positions in each
orbit, where only two positions will be occupied by satellites of the constellation, that is, the number
of real satellites per orbit is Ny = 2.

0=—2rN, mod (27), (8.12)
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Figure 8.1: Representation of the fictitious constellation in the (€2, M)-space.

With the dimension of the fictitious constellation already known, that is, Lo and Ljs, the only
parameter of the fictitious constellation that we have to compute is the combination number Lj;q.
Its value can be obtained by analyzing Equation (8.10) and imposing that the expression always
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generates an integer number. That way, we can derive that the combination number that allows
the fictitious constellation to be distributed in only one ground-track is Ljrq = 2. Figure 8.1 shows
the distribution of the fictitious constellation in the (€, M)-space. It is important to note that
the position of the reference satellite of the orbit will depend on the date, since the orbit and the
satellites are rotating during the dynamic of the system.

The objective now is to select the positions where the satellites are located, that is, the introduction
of necklaces. This process is done in two steps. First, a necklace in the mean anomaly G,s is
introduced and the uniform distributions related to it derived. Then, the necklace in the right
ascension of the ascending node is defined, which will constrain the constellation to the orbital
planes of interest.

We have to select two satellites from each inertial orbit. In that respect, it is of interest for the
mission that the along track distance between both is maximum in order to optimize the revisiting
time. Thus, the necklace in the mean anomaly is defined as Gy = {1,9}, where Gy;(1) = 1 is the
first satellite of each class and Gyr(2) = 9 is the second satellite of each class. Then, we obtain the
shifting parameter for this configuration by the application of Equation (2.23):

8| 7Spa — 2, (8.13)

which has as a solution Sy;q = 6. Figure 8.2 shows the resultant configuration, where the filled
circles are actual satellites and the emptied and filled circles are the available positions of the
fictitious constellation. As it can be seen, the uniformity of the configuration is maintained.
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Figure 8.2: Representation of the fictitious constellation with a necklace in the mean anomaly.

After that, we require to include the necklace in the right ascension of the ascending node. In
that respect, and since we consider the Landsat 7 class satellites the primary spacecrafts of the
mission, we consider their orbital plane as the reference for the constellation. Then, from the mission
requirements, we know that the Landsat 7 and OCO-2 class satellites must be in two different planes
at an angle of 51.43°, which represent two consecutive planes of the fictitious constellation. On the
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other hand, we locate the orbital plane of the CloudSat class satellites at the same angular distance
but on the other direction. That way, the necklace selected is Go = {1,2,7}, where Go(1) = 1
corresponds to the Landsat 7 class satellites, Gno(2) = 2 relate to the OCO-2 class satellites, and
Ga(3) = 7 represents the CloudSat class satellites.

Table 8.3: Distribution of the constellation.
Landsat 7 class 0OCO-2 class CloudSat class

Ga(1) Ga(2) Ga(3)
Gu(1) | Gum(2) Gu(1) Gm(2) Gu(1) Gm(2)
AQ | 0.0000° 0.0000° 51.4286° 51.4283° | 308.5714° | 308.5714°
AM | 0.0000° | 180.0000° | 128.5714° | 308.5714° | 51.4286° | 231.4286°

This satellite distribution is summarized in Table 8.3 showing where the different instruments are
located. Additionally, Figure 8.3 shows the general distribution of the constellation where the first
orbit contains the two Landsat 7 class satellites, the second orbit contains the OCO-2 class satellites
and the seventh orbital plane contains the CloudSat class satellites.
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Figure 8.3: Representation of the real constellation in the (€2, M)-space.

Finally, we determine the order that the satellites follow in their ground-track as well as their along
track distance. This is done by using Equation (8.10). It is important to note that Equation (8.10)
can be expressed as a Diophantine equation that has only one solution since ¢ € {1,...,LqoLa}.
Table 8.4 shows the results of that conversion. As it can be seen, the satellites are sequential, that
is, first, an OCO-2 class satellite flies over a given area, then, a Landsat 7 class satellite does so
followed by a CloudSat class satellite and again a OCO-2 class satellite, repeating the sequence
commented.
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Table 8.4: Along track distribution of the constellation.

Landsat 7 class | OCO-2 class CloudSat class
Ga(1) Ga(2) Ga(3)
Gu(1) | Gu(2) | Gm(1) | Gm(2) | (1) | Gur(2)
q 1 57 105 49 65 9

Another important thing to notice is that this is just a possible configuration of the constellation.
In that regard, the satellites still have a degree of freedom inside their orbits represented by the
available positions of the fictitious constellation. This provides a tool for easily reconfigure the
constellation or to fit it to more restrictive requirements or a more concrete mission.

8.2.3 Possible launching strategies

The previous section showed the general distribution of the constellation satellites referenced to
one of the Landsat 7 class satellites. However, we did not treat the launching possibilities available
nor the strategy to acquire the formation once in orbit. In this section, we describe two launching
strategies for the constellation under two different suppositions. In the first one we consider that it
is possible to launch two satellites at the same time, while in the second one we assume that each
satellite will be launched in different dates.

If it is possible to launch two satellites at the same time, satellites of the same class (that is, that
contain the same payload) are launched together, being able to fill the satellites of one orbital plane
at the same time. In these cases, a possible strategy consists on injecting the satellites into an
orbit that is slightly higher than the nominal. This is done in order to reduce some fuel in the
acquisition of the final positions of the satellites in that orbit. In fact, the orbital plane should also
be slightly rotated respect to the nominal in order to introduce the effects of the drifting due to the
Jo perturbation during the initial orbit acquisition. The exact values of these modifications depend
greatly on the launcher selected, thus, we will not include a study of all these possibilities.

On the other hand, if each satellite is launched separately, we will have two launches per inertial
orbit. The first one should aim to the nominal position selected for that particular satellite, that
is, one of the nodes of the inertial orbit. However, the second satellite on that orbit must perform
other considerations. First of all, one of the nodes of the orbit will be occupied by the first satellite
launched. This implies that now there are some nodes in which the injection is not allowed. Second,
we have to consider the situations in which a collision may occur between the two satellites. For
those reasons, the second satellite should be injected in a lower orbit than the nominal and ahead of
the first satellite (see Figure 8.4). This reduced semi-major axis must take into account the launcher
injection errors, being sure that the probability that the second satellite and the upper stage of the
launcher crosses the orbit of any satellite of the constellation is negligible. Moreover, flying ahead
with a lower altitude provides us the certainty that the satellites will move apart each other in the
first days of mission.
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{ Movement

Figure 8.4: Possible injection positions in the orbit.

8.2.4 Control strategy and station keeping

With the nominal values of the orbital elements provided before, it is possible to maintain the
orbits without any orbital maneuver under the gravitational potential of the Earth. This is done
by transforming the mean elements from the nominal design of the orbit to osculating elements for
each particular satellite of the constellation. That way, if only the Jo perturbation is considered,
we can use a transformation like the one of Kozai [28] or Liu [26, 27]. However, if more terms of
the Earth gravitational potential are considered, a numerical algorithm is required. An example of
this kind of algorithms is the one provided in Chapter 7. Using this transformations, it is possible
to maintain a frozen orbit, like the orbits considered, nearly indefinitely under these perturbations,
being the maneuvers required negligible compared to other orbital perturbations.

In addition to the Earth gravitational potential, we consider in this study the atmospheric drag, the
Sun and Moon as disturbing third bodies and the solar radiation pressure. In that respect, and due
to the nature of the problem, we will separate their effects in in plane and out of plane maneuvers,
which are more related to the actual control of the satellites.

For this mission, we propose a control box strategy for all the satellites of the constellation. This
means that each satellite will have a defined boundary in which it is maintained. From the
mission requirements, we have to impose a control in inclination of +0.01° with respect to the
sun-synchronous inclination and a dead band of +1.5 km, which corresponds approximately to the
maximum deviation that the control in inclination provokes in the ground-track of the orbits. This
control box is applied to all the satellites of the constellation in order to maintain the formation
over time.
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8.2.4.1 In plane maneuvers

In plane maneuvers have two objectives. The first one aims to counter the decay of the semi-
major axis of the orbit due to the atmospheric drag, while its second objective consists on the
maintenance of the ground-track of the orbit inside its defined dead band. These two effects are
provoked primarily by the atmospheric drag and the Sun and Moon as disturbing third bodies.

In this section we present the results for frequency between in plane maneuvers, size of the maneuvers
and impulse in each maneuver for all the satellites of the constellation. As it will be seen, these
values depend on the physical properties of each satellite and the date in which the computation
is considered. In that respect, we have selected the values of the real Landsat 7, OCO-2 and
CloudSat as the references for this study. A summary of their properties is provided in the mission
requirements of this chapter. All the in plane maneuvers are assumed to be performed when the
satellites are in eclipse in order to not disturb the normal acquisition of images.

On the other hand, and in addition to the expected correction due to the orbital perturbations, a
given number of collision avoidance maneuvers per year must be taken into account when defining
the fuel budget. However, in most cases those maneuvers require to increase the semi-major axis
of the orbit, and thus, do not provoke an increase in the requirements of fuel for the mission (since
this fuel is being used to improve the maintenance of the ground-track at the same time). For this
reason, we do not treat these cases in the following study.

The results presented in this section are generated using the MSIS-00 model for the atmospheric
density, and tabulated data from European Cooperation for Space Standardization (ECSS) for the
flux generated in a solar cycle. Moreover, we consider a constant density during each day. In
addition, all the figures shown in this section correspond to a complete solar cycle beginning on
January of 2020. Note that if information about the mission for other dates not presented in the
figures is required, these results can be extrapolated to other dates due to the eleven years periodicity
of the solar cycle.

It is important to note that the results presented in this section greatly depend on the ballistic
coefficient of the satellites, the local time in their ascending nodes, the solar flux and the drag
coefficient of these satellites. In that respect, the values of the solar flux (and thus the atmospheric
density) is only a prediction based on past cycles of the Sun, that is constantly updated to include
new data. On the other hand the drag coefficient of the satellites is an estimation based on past
missions and we are only able to obtain a more precise value once the satellite is in orbit. This means
that the calculation presented in this section has a high uncertainty due to these factors. However,
these results present a baseline of the strategy and the order of magnitude of the maneuvers expected
during the mission of the satellites.

8.2.4.1.1 Landsat 7 class satellites

We start the in plane maneuver study with the results for the Landsat 7 class satellites. In particular,
Figures 8.5 shows the maneuver frequency, Figure 8.6, the size of the maneuver, and Figure 8.7, the
impulse required in each maneuver.
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Figure 8.5: Maneuver frequency of the Landsat 7 class satellites.
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Figure 8.6: Size of the maneuver of the Landsat 7 class satellites.
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Figure 8.7: Av per maneuver of the Landsat 7 class satellites.

8.2.4.1.2 0OCO-2 class satellites

As done before, the following figures present the results for the OCO-2 class satellites and for a
complete solar cycle of eleven years. To be more precise, Figures 8.8 shows the maneuver frequency,
Figure 8.9, the size of the maneuver, and Figure 8.10, the impulse required in each maneuver.
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Figure 8.8: Maneuver frequency of the OCO-2 class satellites.
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8.2.4.1.3 CloudSat class satellites

Finally, we present the results for the CludSat class satellites. In that regard, Figure 8.11 presents
the maneuver frequency, Figure 8.12, the size of the maneuver, and Figure 8.13, the impulse required
in each maneuver.

200~ — max

- ] N
| /\

/¥

N
IS
o

o
N
o

[0.]
(@)

Frequency (days)
o)
7

60

40

20

I I | I | I
2%20 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
Date (year)

Figure 8.11: Maneuver frequency of the CloudSat class satellites.
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Figure 8.13: Av per maneuver of the CloudSat class satellites.

As it can be seen from the results presented for each class of satellites, the maneuver frequency and
the size and impulse required in each maneuver depends on the satellite considered. In particular,
the ballistic coefficient is affecting considerably the results obtained. For instance, focusing on
the maneuver frequency, bigger satellites require to perform maneuvers with less frequency, while
smaller satellites require more maneuvers for the same time period.

8.2.4.2 Out of plane maneuvers

Out of plane maneuvers aim to ensure the sun-synchrony of the orbit, the mean local solar time, and
the maintenance of the ground-track of the constellation. The deviation produced in the inclination
of the orbits is provoked primarily by the Sun and Moon as disturbing third bodies and the solar
radiation pressure. In this section we present the results of the evolution of the inclination of the
orbits under perturbations and the out of plane maneuvers required to maintain the satellites in
their defined control boxes.

For this study, we take into account the following perturbations: the Earth gravitational potential
up to 4th order terms (including tesseral terms), the Sun and Moon as disturbing third bodies,
the solar radiation pressure and the atmospheric drag (using the same model as in the in plane
maneuvers). In addition, we assume that the out of plane maneuvers are performed once the
satellite has reach the boundary, this means that all the out of plane maneuvers will be based in
a change of inclination of 0.02°, which means that the impulse required is Av = 2.61957 m/s for
each maneuver. Another important thing to notice is that out of plane maneuvers will modify the
along track distribution of the constellation and thus, we must expect additional in plane maneuvers
following each out of plane maneuver. Since this additional maneuvers are very dependent of the
impulsive errors, we do not treat them in this study.
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8.2.4.2.1 Landsat 7 class satellites

As before, we begin the study with Landsat 7 class satellites. In that respect, Figure 8.14 shows
the evolution of the inclination of the orbit through one year of propagation. From this figure and
the numerical data obtained, we can derive that for the inclination boundary considered, that is,
40.01°, an out of plane maneuver should be planed for each Landsat 7 class satellite each 200 days
of mission.
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Figure 8.14: Inclination evolution of the Landsat 7 class satellites.

8.2.4.2.2 0OCO-2 class satellites

We continue the study about the out of plane maneuvers of the constellation with the OCO-2 class
satellites. Figure 8.15 presents the evolution of the inclination (in osculating elements) for one
year of propagation of the satellites. From the figure and the numerical data produced during the
propagation, we conclude that this class of satellites will require an out of plane maneuver each 260
days in order to fulfill the inclination mission requirements.

Additionally, it is important to note that the secular variation of the inclination suffered by OCO-2
class satellites is positive, compared to the Landsat 7 and CloudSat class satellites which is negative.
This effect is produced by the different orientation of the orbit of OCO-2 class satellites with respect
to the Sun. In particular, OCO-2 class satellites orbit is the only one with a local solar time in the
ascending node greater than the 12:00 hours, more precisely 13:26, which produces this important
change in the evolution of the inclination.
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Figure 8.15: Inclination evolution of the OCO-2 class satellites.

8.2.4.2.3 CloudSat class satellites

inclination (°)

\ | | |
0 50 100 150 200 250 300 350
Time (days)

Figure 8.16: Inclination evolution of the CloudSat class satellites.
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Finally, Figure 8.16 shows the osculating evolution of the inclination for the CloudSat class satellites
for one year of propagation (as in the other cases). However, in this case, after a year of propagation,
the satellites are not able to reach the boundaries of the control box. In fact, the computation has
been continued, in order to obtain a frequency between out of plane maneuvers. By doing that, we
conclude that an out of plane maneuver is required each 600 days of mission.

On the other hand, comparing Landsat 7 class satellites inclination evolution with the one of
CloudSat, we can see how CloudSat class satellites require a lesser number of out of plane maneuvers
for the same time period. This is provoked due to the gyroscopic effect in the orbit, affecting more
intensively to satellites near the 12:00 - 24:00 local solar time at the ascending node. In that respect,
the reader should remember that there are two sets of equilibrium points in the inclination. The
first one corresponds to the 06:00 - 18:00 orbits which are also know as dusk and dawn orbits (stable
configuration); while the second set comprised by the 12:00 - 24:00 orbits is unstable.

8.3 Conclusion

This chapter has introduced a general methodology to relate 2D Necklace Flower Constellations
with Ground-Track Constellations. This allows to benefit from both formulations, being able to
obtain precise information on the distribution that the constellation presents both in the inertial
and in the Earth Fixed frame of reference. In that respect, the chapter focuses on the special
case where all the satellites of the constellation share the same ground-track, since this is a very
interesting design in many Earth observation an telecommunication missions.

On the other hand, an example of constellation for Earth observation is provided. This constellation
design is performed using the methodologies of the Necklace Flower Constellations and the Ground-
Track Constellations, which allows to fulfill the mission requirements considered. In that regard,
the constellation is based on six satellites containing three different payloads, which means that
each instrument introduces new constraints in the problem.

In addition, a complete study of the constellation is performed, including the definition of the
nominal orbits of the constellation, the launching strategy and the control strategy for the mission.
That way, we present in a clearer manner how all the theory presented in this thesis works
together, and how it can be applied to a more complex problem that presents very different mission
requirements, showing a possible solution to the problem.
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Conclusions

The research presented in this manuscript departs from the Flower Constellations Theory, a general
satellite constellation methodology of design based on Number Theory which allows to generate
any kind of satellite configuration. In particular, this work centers its attention on its lattice
formulations, represented by the 2D and 3D Lattice Flower Constellations, which are the evolution
of the initial parametrization of the theory, and the 2D Lattice Flower Constellations using necklaces,
which introduced, for the first time, the idea of necklaces in satellite constellation design. Taking
these methodologies as a base, this thesis continues that research by generalizing the previous theory
and introducing new approaches to the problem.

This work contains the complete Necklace Flower Constellations theory, a new framework for
satellite constellation design. The particularity of this new technique lays in the generation of
constellation configurations where the satellites are able to create structures that are maintained
during their dynamic. In addition, the theory allows to expand the number of different configurations
as much as desired, which provides a powerful tool for satellite constellation design.

Necklace Flower Constellations constitutes the evolution and generalization of Lattice Flower
Constellations, a methodology that was initially devised to generate uniform and symmetric
configurations. In particular, Necklace Flower Constellations allows to increase the size of the
searching space, being able to generate a greater number of possible configurations while maintaining
the number of satellites of the constellation. This is done by the generation of a fictitious
constellation, bigger than the one that we are seeking, from where we select the subset of satellites
that fulfills the conditions of symmetry and uniformity. That way, the characteristics of the original
Lattice Flower Constellations are maintained in the design.

This methodology has multiple uses. First of all, it allows to expand the number of possibilities
that a set of satellites can provide. Second, it presents possible reconfiguration opportunities that
a constellation can perform in order to obtain compatible distributions. Third, it allows to define
the sequence of launches that a constellation can follow in order to maintain some properties of the
structure in each step of the sequence. Finally, the methodology also allows to asses the effect of
failure of a satellite in the structure.

This work presents the following Necklace related Flower Constellations:

e 2D Necklace Flower Constellations. This is the basic design of Necklace Flower Constellations
where the distribution is performed in the right ascension of the ascending node and the
mean anomaly of the satellites. This kind of distribution generates rigid structures that are
maintained during the dynamic of the system.
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¢ 3D Necklace Flower Constellations. Compared to the 2D formulation, this technique includes
the argument of perigee as the additional distribution variable, which expands the number of
possibilities of design while generating rigid structures in the constellation.

e 4D Lattice Flower Constellations. This technique includes the effect of different values of the
semi-major axis in satellite constellation design. This means that this methodology is able to
bound satellites with very different dynamics, generating a structure as a constellation that
presents periodicity.

e 4D Necklace Flower Constellations. This is the greatest generalization of the Necklace Flower
Constellation theory which include all the former distributions in its formulation. In addition,
it introduces some new concepts in satellite distribution that can be applied to the other
Necklace Flower Constellation designs.

e n-Dimensional congruent lattices using necklaces. This theory represents the mathematical
foundations of the Lattice and Necklace methodologies of Flower Constellations. It includes
the boundaries that the Lattice and Necklace Flower Constellations presents and also the
theorems to compute the number of different configuration possibilities that these techniques
can provide.

It is important to note that the concepts and methodologies applied to a particular design shown
in any of the Necklace Flower Constellations techniques can be applied to the others, since the
foundations of these design techniques are the same.

In addition, this work introduces the Ground-Track Constellations, an alternative satellite
constellation design performed directly in the Earth Fixed frame of reference. This alternative
design philosophy represents the dual definition of the constellation (with respect to the Flower
Constellation theory) and presents some advantages compared to other configurations defined
in the inertial frame of reference. In particular, the constellation is referenced directly to the
objective of most of the missions, the Earth, which simplifies the design process and makes the
definition more natural in that reference frame. Moreover, this methodology allows to include
orbital perturbations, specially the Earth gravitational potential, in a simple manner in the initial
design of the constellation. Finally, this design technique allows to define any kind of distribution,
including satellite formations.

All the research presented in this work provides the tools for the design and study of satellite
constellations, and includes examples of application for the different methodologies introduced.
This includes both simple and more complex studies where these techniques are applied for the
definition and study of constellations.
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Los resultados de la investigacion presentada en este manuscrito parten de la teoria de las Flower
Constellations, una metodologia general para el disefio de constelaciones de satélites basada en
la Teoria de Numeros y que permite la generacién de cualquier configuracién de satélites. En
particular, este trabajo centra su atencién en las formulaciones basadas en lattices, representadas
por las 2D y 3D Lattice Flower Constellations, que son la evoluciéon de la parametrizacion original
de la teoria, y las 2D Lattice Flower Constellations using necklaces, que introdujeron por primera
vez la idea de necklaces en el disefio de constelaciones de satélites. Tomando estas metodologias
como base, esta tesis continla esta investigacién generalizando la teoria anterior e introduciendo
nuevos enfoques al problema.

Este trabajo contiene la teoria completa de las Necklace Flower Constellations, un nuevo marco
para el disefio de constelaciones de satélites. La particularidad de esta nueva técnica reside en
la generacién de constelaciones cuyos satélites permiten crear una estructura que es mantenida
durante la dindmica del sistema. Ademas, la teoria permite expandir el nimero de configuraciones
diferentes obtenidas tanto como se desee, otorgando una herramienta poderosa para el disefio de
constelaciones de satélites.

Las Necklace Flower Constellations constituyen la evolucién y generalizacién de las Lattice
Flower Constellations, una metodologia inicialmente pensada para la generacién de configuraciones
simétricas y uniformes. En concreto, las Necklace Flower Constellations permiten aumentar
el tamano del espacio de biisqueda, siendo capaces de generar un mayor nimero de posibles
configuraciones mientras se mantiene el niimero de satélites de la constelacién. Esto es posible
gracias a la generacion de una constelacion ficticia, mayor que la que queremos generar, de la que
se selecciona el subconjunto de satélites que cumplen las condiciones de simetria y uniformidad.
De esta forma, se mantienen las caracteristicas originales de las Lattice Flower Constellations en el
diseno.

Esta metodologia tiene multiples usos. Primero de todo, permite la expansién del ntmero
de posibilidades que un conjunto de satélites puede proporcionar. Segundo, presenta posibles
oportunidades de reconfiguracién que la constelacién puede realizar para obtener distribuciones
compatibles. Tercero, permite la definicién de la secuencia de lanzamientos que una constelacion
puede seguir para mantener ciertas propiedades de la estructura en cada etapa de la secuencia.
Finalmente, la metodologia también permite la evaluacion del efecto de fallo de un satélite en la
estructura.
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Este trabajo presenta las siguientes Necklace Flower Constellations:

e 2D Necklace Flower Constellations. Este es el diseno béasico de las Necklace Flower
Constellations donde la distribucién se realiza en el argumento del nodo ascendente y en
la anomalia media de los satélites. Este tipo de distribucién genera estructuras rigidas que se
mantienen durante la dindmica del sistema.

e 3D Necklace Flower Constellations. Comparado con la formulacién de las 2D, esta técnica
incluye el argumento del perigeo como variable adicional de distribucion, la cual expande el
nimero de posibilidades de disefio a la vez que genera estructuras rigidas en la constelacién.

e 4D Lattice Flower Constellations. Esta técnica incluye el efecto de diferentes valores del
semieje mayor en el disenio de constelaciones de satélites. Ello implica que esta metodologia
permite relacionar satélites con dindmicas muy distintas, generando una estructura como
constelacion que presenta periodicidad.

e 4D Necklace Flower Constellations. Esta es la generalizacién udltima de la teoria de las
Necklace Flower Constellations, e incluye en su formulacién todas las distribuciones anteriores.
Ademas, esta metodologia introduce nuevos conceptos en distribucién de satélites que pueden
ser aplicados a otros disefios basados en las Necklace Flower Constellations.

e n-Dimensional congruent lattices using necklaces. Esta teoria representa la base matematica
de las metodologias de las Lattice y Necklace Flower Constellations. En concreto, incluye los
limites que las Lattice y Necklace Flower Constellations presentan asi como los teoremas que
permiten la computacién del niimero de posibilidades de configuracién que estas metodologias
de diseno permiten.

Es importante destacar que los conceptos y metodologias aplicados a disefios particulares mostrados
en cualquiera de las técnicas de las Necklace Flower Constellations pueden ser aplicadas a otras,
dado que los conceptos base son los mismos en estas técnicas de diseno.

Ademaés, este trabajo introduce las Ground-Track Constellations, un disefio alternativo de
constelaciones de satélites que se realiza directamente en el sistema de referencia Earth Fixed.
Esta filosofia alternativa de disefio representa la definicién dual de la constelacion (con respecto a la
teoria de las Flower Constellations) y presenta ciertas ventajas comparado con otras configuraciones
definidas en el sistema de referencia inercial. En concreto, la constelacion se referencia directamente
con el objeto de la mayoria de misiones, la Tierra, lo que simplifica el proceso de disefio y consigue
que la definicién de la constelacién sea més natural en este sistema de referencia. Ademads, esta
metodologia permite incluir, de un modo sencillo, las perturbaciones orbitales en el diseno inicial de
la constelacién. Esto es especialmente interesante para el caso del potencial gravitatorio terrestre.
Finalmente, esta técnica de diseno permite definir cualquier tipo de distribucién, incluyendo
formaciones de satélites.

Toda la investigacion presentada en este trabajo proporciona las herramientas para el disefio y
estudio de constelaciones de satélites, incluyendo ejemplos de aplicacién de las distintas metodologias
introducidas. Esto incluye tanto estudios simples como mas elaborados, en donde estas técnicas son
aplicadas para la definicion y estudio de constelaciones.
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