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Abstract. We study the six-dimensional solvmanifolds that admit complex structures

of splitting type classifying the underlying solvable Lie algebras. In particular, many

complex structures of this type exist on the Nakamura manifold X, and they allow us to
construct a countable family of compact complex non-∂∂̄ manifolds Xk, k ∈ Z, that admit

a small holomorphic deformation {(Xk)t}t∈∆k satisfying the ∂∂̄-Lemma for any t ∈ ∆k

except for the central fibre. Moreover, a study of the existence of special Hermitian
metrics is also carried out on six-dimensional solvmanifolds with splitting-type complex

structures.

Introduction

Let g be a real Lie algebra of even dimension. A complex structure on g is an endomorphism
J : g→ g satisfying J2 = −Idg and the Nijenhuis condition

(1) NijJ(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ] = 0, for all X,Y ∈ g.

An important problem is to find the Lie algebras that admit such a structure. They al-
low to construct many interesting examples of compact complex manifolds whenever the
simply-connected Lie group G of g has a lattice Γ of maximal rank. Indeed, by extending
J to the group G and then passing J to the quotient G/Γ one obtains nilmanifolds, resp.
solvmanifolds, when G is nilpotent, resp. solvable, endowed with G-left-invariant complex
structures. In real dimension four, the solvable Lie algebras admitting a complex structure
have been classified by Ovando in [28], however no general result is known in higher di-
mension. Focused in six dimensions, Salamon [33] classifies the nilpotent Lie algebras that
admit a complex structure, finding eighteen non-isomorphic Lie algebras (see also [6]). In
[1] Andrada, Barberis and Dotti obtain the Lie algebras endowed with a complex structure
J of abelian type, i.e. J satisfies [JX, JY ] = [X,Y ] for all X,Y ∈ g. More recently, Fino
and the second and third authors [11] classify the 6-dimensional unimodular solvable Lie
algebras admitting a complex structure J with non-zero closed (3, 0)-form Ψ.
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The existence of a closed nowhere vanishing (n, 0)-form Ψ on a 2n-dimensional almost
complex manifold automatically implies the Nijenhuis condition (1), and such complex mani-
folds have holomorphically trivial canonical bundle. Nilmanifolds with G-left-invariant com-
plex structures are examples of this kind; in fact, by [33, Theorem 1.3], for any basis {ωj}nj=1

of (1,0)-forms on the underlying nilpotent Lie algebra, the (n, 0)-form Ψ = ω1 ∧ · · · ∧ ωn is
closed. However, this is no longer true for general G-left-invariant complex structures on
solvmanifolds. In [11, Proposition 2.1] it is proved that for solvmanifolds, the existence of
a G-left-invariant complex structure with holomorphically trivial canonical bundle is equiv-
alent to the existence of a non-zero closed (n, 0)-form on the Lie algebra underlying the
solvmanifold. The second author finds in [27, Chapter 4] that several of the complex struc-
tures with holomorphically trivial canonical bundle on 6-dimensional solvmanifolds are also
of splitting type, i.e. they satisfy [18, Assumption 1.1] (see Definition 1.1 for details), but
that there are other complex structures that are not of splitting type.

In addition to providing an important source of examples of compact complex manifolds
with unusual and interesting properties, the complex structures of splitting type have also
interest because they constitute a natural solvable extension of complex nilmanifolds, as
they are certain semi-direct products of the latter by Cn. In this sense, they allow to inves-
tigate to what extent geometric properties of nilmanifolds still survive in this larger class
of homogeneous spaces. See, e.g., the deformation limits constructed in [4]; compare also
the observation [19] that Oeljeklaus-Toma manifolds are solvmanifolds of real splitting type
endowed with a left-invariant complex structure, and as such they do not admit Vaisman
metrics. Furthermore, some complex cohomological invariants of the manifold can be ob-
tained explicitly, which allows to study several aspects of their complex [21, 18, 22, 3] and
Hermitian [19, 20, 10] geometry.

One of these invariants are the Dolbeault cohomology groups. For nilmanifolds, several
steps have been done in [7, 9, 31, 32] towards the (still open) conjecture that the Dolbeault
cohomology of a nilmanifold with G-left-invariant complex structure J can be computed in
terms of invariant forms on G, i.e. in terms of the pair (g, J). Concerned with the calculus
of the Dolbeault cohomology of solvmanifolds, Kasuya [18] provides a technique to compute
such complex invariants when the complex structure is of splitting type. The Dolbeault
cohomology groups are obtained by means of a certain finite-dimensional subalgebra of the
de Rham complex and, more recently, the first author and Kasuya develop in [3] a technique
to compute the Bott-Chern cohomology by means of another finite-dimensional subalgebra.
These techniques have allowed to study the deformation limits of compact complex ∂∂̄-
manifolds [4] and of compact balanced manifolds [11].

Our objective in this paper is the complex geometry of 6-dimensional solvmanifolds en-
dowed with a (G-left-invariant) complex structure of splitting type. The paper is structured
as follows. In Section 1, we obtain the solvable Lie algebras that may support a splitting-type
complex structure. More concretely, in Theorem 1.7 we prove that if G/Γ is a 6-dimensional
solvmanifold endowed with a complex structure J of splitting type, then the Lie algebra g
of G is isomorphic to sk for some 1 ≤ k ≤ 12 (see the list in Theorem 1.7 for a description
of the Lie algebras sk). Since six of the Lie algebras sk have parameters in their description,
the number of non-isomorphic Lie algebras underlying the solvmanifolds with splitting-type
complex structure is not finite. In Remark 1.17 we discuss the existence of lattices.

In Section 2, we investigate the existence of Hermitian metrics, with special attention
to strong Kähler with torsion (SKT) and balanced metrics. In particular, we obtain SKT
structures on solvmanifolds corresponding to s1 and we show the existence of balanced
structures on the other Lie algebras sk for 2 ≤ k ≤ 12 (see Table 6). A conjecture of Fino



COMPLEX STRUCTURES OF SPLITTING TYPE 3

and Vezzoni [13] states that in the compact non-Kähler case it is never possible to find an
SKT metric and also a balanced one. In [14] they prove the conjecture for nilmanifolds
and in [13] for 6-dimensional solvmanifolds having holomorphically trivial canonical bundle.
As a consequence of our study in Section 2, it turns out that the conjecture also holds
for any splitting-type complex structure on a 6-dimensional solvmanifold. On the other
hand, Popovici proposes in [30] a conjecture relating the balanced and the Gauduchon cones
of ∂∂̄-manifolds, and he observes that, if proved to hold, the conjecture would imply the
existence of a balanced metric on any ∂∂̄-manifold. Since solvmanifolds corresponding to s1

do not satisfy the ∂∂̄-Lemma, as another consequence of our study in Section 2, one has that
balanced metrics exist on any ∂∂̄-solvmanifold of dimension 6 endowed with a splitting-type
complex structure (see Corollary 2.8).

Finally, Section 3 is devoted to the complex geometry of the Nakamura manifold and to the
construction of some analytic families of compact complex structures on it. The Lie algebra
underlying the Nakamura manifold is s12, and the complex-parallelizable structure given
in [26] and the abelian complex structure found in [1] are particular examples of splitting-
type complex structures. After classifying, up to equivalence, the splitting-type complex
structures on the Nakamura manifold (see Proposition 3.1), we prove in Theorem 3.3, by
an appropriate deformation of its abelian complex structure, that the property of having
holomorphically trivial canonical bundle and the property of being of splitting type are not
stable under holomorphic deformations.

Moreover, in Theorem 3.8 we construct, for each k ∈ Z, a compact complex manifold
Xk that does not satisfy the ∂∂̄-Lemma, and we prove that Xk admits a small holomorphic
deformation {(Xk)t}t∈∆k

, ∆k being an open disc in C around 0, such that (Xk)t is a compact
complex ∂∂̄-manifold for any t 6= 0. For the proof of this result we make use of the complex
geometry on s12, since the compact complex manifolds Xk, k ∈ Z, and all of their small
holomorphic deformations (Xk)t, t ∈ ∆k, are solvmanifolds corresponding to s12 endowed
with complex structures of splitting type. Furthermore, they all have holomorphically trivial
canonical bundle and admit a balanced metric.

When we consider the case k = −1, then we recover the main result in [4] because
it corresponds precisely to the complex-parallelizable structure. So our Theorem 3.8 shows
that the result extends to a countable family of complex structures. Since one of the complex
structures (concretely k = 0) is the abelian one [1], we have in particular that the abelian
complex structure can be deformed to complex structures satisfying the ∂∂̄-Lemma. In other
words, the abelian complex structure on the Nakamura manifold (which does not satisfy the
∂∂̄-Lemma) is the central limit of an analytic family of compact complex ∂∂̄-manifolds.

1. The Lie algebras underlying the solvmanifolds with complex structures
of splitting type

We are concerned with solvmanifoldsX = G/Γ endowed with a complex structure of splitting
type in the following sense:

Definition 1.1. [18, Assumption 1.1] A solvmanifold X = G/Γ endowed with a G-left-
invariant complex structure J is said to be of splitting type if G is a semi-direct product
G = Cn nϕ N such that:

(1) N is a connected simply-connected 2k-dimensional nilpotent Lie group endowed with
an N -left-invariant complex structure JN ;

(2) for any z ∈ Cn, it holds that ϕ(z) ∈ Aut(N) is a holomorphic automorphism of N
with respect to JN ;

(3) ϕ induces a semi-simple action on the Lie algebra n associated to N ;



COMPLEX STRUCTURES OF SPLITTING TYPE 4

(4) G has a lattice Γ (then Γ can be written as Γ = ΓCnnϕΓN such that ΓCn and ΓN are
lattices of Cn and N , respectively, and, for any z ∈ ΓCn , it holds ϕ(z) (ΓN ) ⊆ ΓN );

(5) the inclusion ∧•,• (n⊗R C)
∗
↪→ ∧•,• (N/ΓN ) induces the isomorphism in cohomology

H•,•
∂̄

(
∧•,• (n⊗R C)

∗) ∼=→ H•,•
∂̄

(N/ΓN ) .

We recall the construction of the complex structure (for further details see [18]). Let
G = Cn nϕ N ; taking z = (z1, . . . , zn) ∈ Cn, we consider {dz1, . . . , dzn} the standard (1, 0)-
basis of Cn. Consider {ϕ1, . . . , ϕk} the N -invariant (1, 0)-basis such that the induced action
is given by the diagonal matrix

ϕ(z) =

α1

. . .

αk

 ,

where αj ∈ Hom(Cn;C∗) are characters of Cn, j = 1, . . . , k. Then

{dz1, . . . , dzn, α
−1
1 ϕ1, . . . , α−1

k ϕk} is a G-invariant (1, 0)-basis for the complex struc-
ture on G = Cn nϕ N .

1.1. Reduced equations of splitting-type complex structures in dimension 6. If
the complex dimension of the solvmanifold is n + k = 3, then we have the following cases:
G = C2nϕC or G = CnϕN , where the nilpotent factor N in the semi-direct product has real
dimension 4 and it is endowed with a left-invariant complex structure. There are only two
possibilities for N , namely the complex surface C2 or the real 4-dimensional nilpotent Lie
group KT with Lie algebra Kt = h3⊕R (we denote by h3 the real 3-dimensional Heisenberg
Lie algebra) endowed with the left-invariant complex structure defined by a basis of (1, 0)-
forms {τ, σ} satisfying

(2)

{
dτ = 0,

dσ = τ ∧ τ̄ .

The nilmanifold KT/Γ endowed with the complex structure (2) is the well-known Kodaira-
Thurston manifold.

For the case C nϕ N , either for N = C2 or KT , the action ϕ : C → Aut(N) will be
represented for every z3 ∈ C by a diagonal matrix of the form

(3) ϕ(z3) =

(
eAz3+Bz̄3 0

0 eCz3+Dz̄3

)
,

where A,B,C,D ∈ C. For the case C2 nϕ C, the action is given for every (z2, z3) ∈ C2 by

ϕ(z2, z3) = eAz2+Bz̄2+Cz3+Dz̄3 ,

where A,B,C,D ∈ C.

Proposition 1.2. Let X = G/Γ be a 6-dimensional solvmanifold endowed with a complex
structure of splitting type, and suppose that G = C2 nϕ C or G = C nϕ C2. If g is the Lie
algebra of G, then there is a basis {ω1, ω2, ω3} for (g1,0)∗ satisfying the complex structure
equations  dω1 = Aω13 +Bω13̄,

dω2 = −(A+ B̄ + ε)ω23 + ε ω23̄,
dω3 = 0,

for some A,B ∈ C and ε ∈ {0, 1}. (Here, and in what follows, ωk̄ stands for ωk.)
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Proof. Let G = C nϕ N be the semi-direct product where the action ϕ : C → Aut(N) is
given by the matrix (3), once fixed a (1, 0)-coframe for N . We are considering the case
N = C2. Hence, ϕ(z3) is automatically an automorphism of C2 and the complex struc-
ture on G is determined by the global G-invariant (1, 0)-basis {ω1 = e−Az3−Bz̄3dz1, ω

2 =
e−Cz3−Dz̄3dz2, ω

3 = dz3}. The complex structure equations in the basis {ω1, ω2, ω3} are

dω1 = Aω13 +Bω13̄, dω2 = Cω23 +Dω23̄, dω3 = 0.

The unimodularity of G is equivalent to the condition d(∧3,2g∗⊕∧2,3g∗) = {0}, which forces
A+ B̄+C+ D̄ = 0. Clearly, if D = 0, then C = −A− B̄. Now, if D 6= 0 then, up to scaling
ω3, we can suppose that D is equal to 1 and so C = −A − B̄ − 1, arriving at the desired
structure equations.

Consider next the case G = C2 nϕ C. In this case we have a (1, 0)-coframe {η1, η2, η3}
given by {η1 = e−Az2−Bz̄2−Cz3−Dz̄3dz1, η

2 = dz2, η
3 = dz3}. Hence, the structure equations

are

dη1 = Aη12 +Bη12̄ + Cη13 +Dη13̄, dη2 = dη3 = 0.

The unimodularity condition is equivalent to A + B̄ = 0 and C + D̄ = 0. Thus, we can
consider (A,C) 6= (0, 0), because otherwise ϕ is trivial. Now, if A 6= 0 (similarly for C 6= 0
when A = 0) then the change of basis {ω1 = η1, ω2 = η3, ω3 = Aη2 + Cη3} provides the

structure equations dω1 = ω13 − ω13̄ and dω2 = dω3 = 0. �

Proposition 1.3. Let X = G/Γ be a 6-dimensional solvmanifold endowed with a complex
structure of splitting type, and suppose that G = C nϕ KT . Then, there is a (1, 0)-basis
{ω1, ω2, ω3} satisfying the complex structure equations

dω1 = ε (ω13 − ω13̄),

dω2 = ω11̄,

dω3 = 0,

where ε ∈ {0, 1}.

Proof. The semisimple action induced by ϕ on Kt assures the existence of a basis for Kt such
that the action is diagonal. So, we can take a basis of the form

P ·
(
τ
σ

)
, where P =

(
p11 p12

p21 p22

)
∈ GL(2,C)

and {τ, σ} is the preferred basis of (1, 0)-forms with structure equations (2).
Denote also

Q := P−1 =

(
q11 q12

q21 q22

)
=

1

p11p22 − p12p21

(
p22 −p12

−p21 p11

)
.

With respect to this basis, we can assume that the action ϕ is diagonal and given by
the inverse of the matrix (3), which we will denote simply by α. So, the invariant basis we
choose is {

ω1, ω2, ω3 := dz3

}
, where

(
ω1

ω2

)
= α · P ·

(
τ
σ

)
.

Since

dα = −α · E , where E :=

(
Aω3 +B ω3̄ 0

0 C ω3 +Dω3̄

)
,
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whence we get the structure equations (here ∧ is intended componentwise):

d

(
ω1

ω2

)
= dα ∧ P ·

(
τ
σ

)
+ α · P · d

(
τ
σ

)

= −α · E ∧ α−1 ·
(
ω1

ω2

)
+ α · P ·

(
0

τ ∧ τ̄

)

= −
((
Aω3 +Bω3̄

)
∧ ω1(

Cω3 +Dω3̄
)
∧ ω2

)
+ α · P ·

((
0
τ

)
∧
(

0
τ̄

))
=

(
ω1 ∧

(
Aω3 +Bω3̄

)
ω2 ∧

(
Cω3 +Dω3̄

))+ α · P ·
((

0
τ

)
∧
(

0
τ̄

))
.

Since there is no dependence on α in the first term, it is well-defined for any value of the
parameters A,B,C,D ∈ C.

As for the second term:

α · P ·
((

0
τ

)
∧
(

0
τ̄

))

= α ·
(
P ·
(

0
q11α

−1
1 ω1 + q12α

−1
2 ω2

))
∧
(
P̄ ·
(

0

q̄11ᾱ
−1
1 ω1̄ + q̄12ᾱ

−1
2 ω2̄

))

= α ·
((

p12 ·
(
q11α

−1
1 ω1 + q12α

−1
2 ω2

)
p22 ·

(
q11α

−1
1 ω1 + q12α

−1
2 ω2

)) ∧ (p̄12 ·
(
q̄11ᾱ

−1
1 ω1̄ + q̄12ᾱ

−1
2 ω2̄

)
p̄22 ·

(
q̄11ᾱ

−1
1 ω1̄ + q̄12ᾱ

−1
2 ω2̄

)))

=
1

|p11p22 − p12p21|2

(
α1 · |p12|2

α2 · |p22|2

)
· ω ,

where

ω = α−1
1 ᾱ−1

1 |p22|2ω11̄ − α−1
1 ᾱ−1

2 p22p̄12ω
12̄ − ᾱ−1

1 α−1
2 p12p̄22ω

21̄ + α−1
2 ᾱ−1

2 |p12|2ω22̄.

So,

d

(
ω1

ω2

)
=

((
Aω3 +Bω3̄

)
∧ ω1(

Cω3 +Dω3̄
)
∧ ω2

)
+

1

|p11p22 − p12p21|2

(
α1 · |p12|2

α2 · |p22|2

)
· ω.

Now, we have to take care about the dependence on z3 of the terms in the expression
above. Note that the case (A,B,C,D) = (0, 0, 0, 0) is trivial, that is, it yields just the
product. Let us assume (A,B) 6= (0, 0). The term

α1 ·
|p12|2

|p11p22 − p12p21|2
· α−1

1 ᾱ−1
1 |p22|2ω11̄ = ᾱ−1

1 ·
|p12|2|p22|2

|p11p22 − p12p21|2
ω11̄

contains ᾱ−1
1 that depends on z3. So either p12 = 0 or p22 = 0. If p22 = 0, then ω =

α−1
2 ᾱ−1

2 |p12|2ω22̄ and therefore we have to assume α1α
−1
2 ᾱ−1

2 to be constant. Up to rescale
p12, we may assume

α1α
−1
2 ᾱ−1

2 ·
|p12|2

|p21|2
= 1 ,

getting in this case the structure equations

(4) d

(
ω1

ω2

)
=

((
Aω3 +Bω3̄

)
∧ ω1(

Cω3 +Dω3̄
)
∧ ω2

)
+

(
ω22̄

0

)
.
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On the other hand, if p12 = 0, then ω = α−1
1 ᾱ−1

1 |p22|2ω11̄ and we get the necessary
assumption that α2α

−1
1 ᾱ−1

1 is constant. Moreover, up to rescaling, we may assume

α2α
−1
1 ᾱ−1

1 ·
|p22|2

|p11|2
= 1 ,

which reduces the structure equations to

(5) d

(
ω1

ω2

)
=

((
Aω3 +Bω3̄

)
∧ ω1(

Cω3 +Dω3̄
)
∧ ω2

)
+

(
0

ω11̄

)
.

In case (C,D) 6= (0, 0), we look at the term

α2 ·
|p22|2

|p11p22 − p12p21|2
· α−1

2 ᾱ−1
2 |p12|2ω22̄ = ᾱ−1

2 ·
|p12|2|p22|2

|p11p22 − p12p21|2
ω22̄

and we argue in the same way as before. If p22 = 0, then we are reduced to the structure
equations (4), whereas if p12 = 0, then we are reduced to the structure equations (5).

Note that, with reference, e.g., to the second case (5), the Jacobi condition yields the
equations

A+ B̄ − C = D − C̄ = 0 .

Now the unimodularity condition is then equivalent to the equation Ā + B = 0. Finally, if
A 6= 0 then we can suppose that it is equal to 1 after rescaling ω3. �

For the sake of clearness, we summarize Proposition 1.2 and Proposition 1.3 in the fol-
lowing statement.

Theorem 1.4. Let X = G/Γ be a 6-dimensional solvmanifold endowed with a complex
structure of splitting type. Then, there is a co-frame {ω1, ω2, ω3} of invariant (1, 0)-forms
satisfying the complex structure equations

(6)


dω1 = Aω13 +B ω13̄,

dω2 = −(A+ B̄ + ε)ω23 + ε ω23̄,

dω3 = 0

or

(7)


dω1 = ε (ω13 − ω13̄),

dω2 = ω11̄,

dω3 = 0,

where A,B ∈ C and ε ∈ {0, 1}.

Remark 1.5. We note that for a complex structure in (6), the canonical bundle is holomor-
phically trivial if and only if B = −ε. Indeed, by [11, Proposition 2.1], since the complex
structure is left-invariant, a nowhere vanishing holomorphic (3, 0)-form on X = G/Γ is nec-

essarily invariant, but a direct calculation shows that dω123 = (B+ ε)ω1233̄. Similarly, for a

complex structure in (7), one has that dω123 = −ε ω1233̄, so the canonical bundle is holomor-
phically trivial if and only if ε = 0. We show below which are the Lie algebras underlying
such solvmanifolds.
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1.2. Six-dimensional solvable Lie algebras with complex structures of splitting
type. In this section we determine the 6-dimensional real Lie algebras underlying the re-
duced equations of splitting-type complex structures obtained in the previous section. For
simplicity, we introduce the following definition.

Definition 1.6. We will say that g admits a complex structure of splitting type if g is a real
Lie algebra underlying the complex equations (6) or (7) in Theorem 1.4.

Recall that those Lie algebras underlying the complex equations (7) correspond to Lie
groups of the form CnϕKT , whereas the Lie algebras underlying (6) correspond to C2nϕC
or Cnϕ C2.

The main result in this section is the following theorem.

Theorem 1.7. Let g be a unimodular (non-nilpotent) solvable Lie algebra of dimension 6.
Then, g admits a complex structure of splitting type if and only if it is isomorphic to one in
the following list:

s1 = (e23, e34,−e24, 0, 0, 0),

s2 = (0,−e13, e12, 0, 0, 0),

s3 = (0,−e13, e12, 0,−e46, e45),

s4 = (e15,−e25,−e35, e45, 0, 0),

sα5 = (e15, e25,−e35 + α e45,−α e35 − e45, 0, 0), α > 0,

sα,β6 = (α e15 + e25,−e15 + α e25,−α e35 + β e45,−β e35 − α e45, 0, 0),

α > 0, 0 < β < 1,

sα7 = (e25,−e15, α e45,−α e35, 0, 0), 0 < α ≤ 1,

sα8 = (α e15 + e25,−e15 + α e25,−α e35 + e45,−e35 − α e45, 0, 0), α > 0,

s9 = (−e16,−e26, e36 − e45, e35 + e46, 0, 0),

sα,β10 = (e15 +β e16−e26, e16 +e25 +β e26,−e35−β e36−α e45, α e35−e45−β e46, 0, 0),

α 6= 0, β ∈ R,

sα11 = (e16 − e25, e15 + e26,−e36 − α e45, α e35 − e46, 0, 0), α ∈ (0, 1),

s12 = (e16 − e25, e15 + e26,−e36 + e45,−e35 − e46, 0, 0).

Here we follow the notation in [33]. For example, by writing (e23, e34,−e24, 0, 0, 0) we
mean that there exists a basis {e1, . . . , e6} of the dual of the Lie algebra satisfying de1 =
e2 ∧ e3, de2 = e3 ∧ e4, de3 = −e2 ∧ e4, and de4 = de5 = de6 = 0.

Remark 1.8. For detailed explanations on the values of the parameters in the list above,
see Appendix A.

Let us start by determining the Lie algebras underlying the equations (7).

Proposition 1.9. The Lie algebras g that admit a complex structure of splitting type cor-
responding to C nϕ KT are (0, 0, 0, 0, 0, e12) if g is nilpotent, and s1 if g is solvable but
non-nilpotent.



COMPLEX STRUCTURES OF SPLITTING TYPE 9

Proof. It is clear that one obtains (0, 0, 0, 0, 0, e12) if ε = 0 in (7). For ε = 1, if we consider
the basis {e1, . . . , e6} given by ω1 = e3 − i e2, ω2 = 2(e5 − i e1) and ω3 = 1

2 (e6 − i e4), then
it is immediate to see that the real Lie algebra is s1. �

We divide the study of equations (6) according to the vanishing of coefficient ε. As a
result we present several tables (see Tables 1, 2, 3, 4 and 5). There, the real basis {e1, . . . , e6}
is the one that corresponds to the real structure equations in Theorem 1.7.

Proposition 1.10. The Lie algebras underlying equations (6) with ε = 0 are s2, s9, sα,β10 ,
sα11, s12.

Proof. Suppose first that B = −Ā in (6), so we can suppose that A 6= 0. Moreover,
taking {ω′1 = ω1, ω′2 = ω2, ω′3 = Aω3} we can suppose that A = −B = 1. If we set
ω1 = e3 + ie2, ω2 = e4 + ie5, ω3 = e6 + i

2e
1, then we obtain the structure equations of s2.

On the other hand, if B 6= −Ā, observe that we can normalize the coefficient in ω23 just
by taking a new basis {ω′1 = ω1, ω′2 = ω2, ω′3 = −(A+ B̄)ω3}.

If we denote ω′1 = α1 + iα2, ω′2 = α3 + iα4, ω′3 = α5 + iα6, then the real structure
equations become dα5 = dα6 = 0 and


dα1 = −α15 − 2 ImB α25 + (1 + 2ReB)α26,

dα2 = 2 ImB α15 − (1 + 2ReB)α16 − α25,

dα3 = α35 − α46,

dα4 = α36 + α45.

It is straightforward to see that if B = − 1
2 , the Lie algebra is isomorphic to s9 (take

ei = αi, i = 1, 2, 3, 4, e5 = α6, e6 = α5). If we consider the real basis e1 = α3, e2 = α4, e3 =

α1, e4 = α2, e5 = α6, e6 = α5, then the Lie algebra is isomorphic to s12 if B = 0 and sα
′

11,
for α′ = −1−2B, if B ∈ R\{− 1

2 , 0}. Notice that α′ ∈ R\{−1, 0} and hence the Lie algebra

sα
′

11 is isomorphic to the Lie algebra sα11 for some α ∈ (0, 1), as it appears in Theorem 1.7 (see
Appendix A for details). If B = −1, taking e1 = −α3, e2 = −α4, e3 = α2, e4 = α1, e5 =
α6, e6 = α5 we obtain the Lie algebra s12. Finally, if ImB 6= 0, then with respect to the
real basis e1 = α3, e2 = α4, e3 = α1, e4 = α2, e5 = α5 − 1+2ReB

2ImB α6, e6 = α6, we obtain

sα,β10 where α = 2 ImB 6= 0 and β = 1+2ReB
2ImB . �

In Table 1 we summarize the results obtained in the previous proposition.
From now on, we focus on the equations (6) with ε = 1. Let us consider the basis of real

1-forms {α1, . . . , α6} given by

(8) ω1 = α1 + iα2, ω2 = α3 + iα4, ω3 = α5 + iα6.
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A,B ∈ C Real basis {e1, . . . , e6} Lie algebra

A = −B̄ 6= 0
ω1 = e3 + ie2, ω2 = e4 + ie5,

s2
ω3 = e6 + i

2e
1

A = −1− B̄
B ∈ R

B = −1
ω1 = e4 + ie3, ω2 = −e1 − ie2,

s12
ω3 = e6 + ie5

B = − 1
2

ω1 = e1 + ie2, ω2 = e3 + ie4,
s9

ω3 = e6 + ie5

B = 0
ω1 = e3 + ie4, ω2 = e1 + ie2,

s12
ω3 = e6 + ie5

B 6= −1,− 1
2 , 0

ω1 = e3 + ie4, ω2 = e1 + ie2, sα
′

11

ω3 = e6 + ie5 α′ = −1− 2B

ImB 6= 0 ω1 = e3 + ie4, ω2 = e1 + ie2, sα,β10

ω3 =
(
e5 + 1+2ReB

2ImB e6
)

+ ie6 α = 2 ImB, β = 1+2ReB
2ImB

Table 1. Lie algebras underlying equations (6) with ε = 0 (Proposition 1.10).

Hence, in terms of this basis the real structure equations become dα5 = dα6 = 0 and

(9)



dα1 = (ReA+ ReB)α15 − (ImA− ImB)α16

−(ImA+ ImB)α25 − (ReA−ReB)α26,

dα2 = (ImA+ ImB)α15 + (ReA−ReB)α16

+(ReA+ ReB)α25 − (ImA− ImB)α26,

dα3 = −(ReA+ ReB)α35 + (ImA− ImB)α36

+(ImA− ImB)α45 + (2 + ReA+ ReB)α46,

dα4 = −(ImA− ImB)α35 − (2 + ReA+ ReB)α36

−(ReA+ ReB)α45 + (ImA− ImB)α46.

We need to consider different cases in order to identify all the possible real Lie algebras
underlying these equations. Concretely, we focus our attention at the expression ImA−ImB
in (9) distinguishing three cases, namely: ImA = ImB = 0, ImA = ImB 6= 0, or ImA 6=
ImB.

1.2.1. Case ε = 1, ImA = ImB = 0.

Lemma 1.11. The Lie algebras underlying equations (6) with ε = 1 and A,B ∈ R are s2,
s4, sα7 , s9, sα11, s12.

Proof. Imposing condition ImA = ImB = 0 in (9), the equations simplify as

dα1 = (A+B)α15 − (A−B)α26, dα3 = −(A+B)α35 + (2 +A+B)α46,

dα2 = (A−B)α16 + (A+B)α25, dα4 = −(2 +A+B)α36 − (A+B)α45.

Now, it suffices to consider different cases depending on the vanishing of the coefficients
in the previous structure equations. Concretely, we divide our analysis in the subcases
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A = −B, A = B 6= 0 and A 6= ±B. The results appear in Table 2. Notice that in the case
of the Lie algebra sα

′

7 , if α′ = |A| > 1 then it is isomorphic to sα7 with α = 1/α′, so that

0 < α ≤ 1 according to Theorem 1.7. Similarly, sα
′

11 is isomorphic to the Lie algebra sα11 for
some α ∈ (0, 1), as it appears in Theorem 1.7.

For each case in Table 2, we need to apply a change of real basis between the initial one
{α1, . . . , α6} and the final one {e1, . . . , e6}. These changes are given simply by equalling the
expression of ωi’s given in (8) and their corresponding expressions given in Table 2.

�

A,B ∈ R Real basis {e1, . . . , e6} Lie algebra

A = −B

A = 0
ω1 = e4 + ie5, ω2 = e3 + ie2,

s2
ω3 = −e6 − i

2e
1

A 6= 0
ω1 = − A

|A| e
3 + ie4, sα

′

7

ω2 = e1 + ie2, ω3 = e6 + i
2e

5 α′ = |A|

A = B

A = −1
ω1 = e1 + ie4, ω2 = e3 + ie2,

s4
ω3 = − 1

2e
5 + ie6

A 6= 0,−1
ω1 = e1 + ie2, ω2 = e3 + ie4,

s9
ω3 = − 1

2A e
6 − i

2(A+1) e
5

A 6= ±B

A = −1
ω1 = e1 + ie2, ω2 = e4 + ie3,

s12
ω3 = 1

B−1 e
6 − i

B+1 e
5

B = −1
ω1 = e1 + ie2, ω2 = e3 + ie4,

s12
ω3 = 1

A−1 e
6 + i

A+1 e
5

A+B = −2
ω1 = e3 + ie4, ω2 = e1 + ie2,

s9
ω3 = − 1

2 e
6 + i

2(A+1) e
5

A+B 6= −2 ω1 = e1 + ie2, ω2 = e3 + ie4, sα
′

11

A,B 6= −1 ω3 = 1
A+B e

6 + i
A−B e

5 α′ = 2+A+B
B−A

Table 2. Lie algebras underlying equations (6) with ε = 1 and ImA =
ImB = 0 (Lemma 1.11).

1.2.2. Case ε = 1, ImA = ImB 6= 0.

Lemma 1.12. The Lie algebras underlying equations (6) with ε = 1 and ImA = ImB 6= 0

are s3, sα5 , s9, sα,β10 .
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Proof. Taking ImA = ImB 6= 0, the equations (9) transform into

dα1 = (ReA+ ReB)α15 − 2 ImAα25 − (ReA−ReB)α26,

dα2 = 2 ImAα15 + (ReA−ReB)α16 + (ReA+ ReB)α25,

dα3 = −(ReA+ ReB)α35 + (2 + ReA+ ReB)α46,

dα4 = −(2 + ReA+ ReB)α36 − (ReA+ ReB)α45.

We consider the following cases according to the vanishing of some coefficients in the equa-
tions above, namely ReA = −ReB, ReA = ReB 6= 0 and ReA 6= ±ReB, obtaining the
results that appear in Table 3. The changes of basis between {αi}6i=1 and {ei}6i=1 follow
directly from Table 3, taking into account (8). �

ImA = ImB 6= 0 Real basis {e1, . . . , e6} Lie algebra

ReA = −ReB

ω1 = e2 − ie3, ω2 = e5 + ie6,

s3ω3 = 1
2ImA (e1 −ReAe4) + i

2e
4

ReA = ReB = −1

ω1 = − ImA
|ImA|e

3 + ie4, sα5

ω2 = e1 + ie2, ω3 = 1
2 e

5 + ie6 α = |ImA|

ReA = ReB 6= 0,−1

ω1 = e3 + ie4, ω2 = e1 + ie2, sα,010

ω3 = − 1
2ReA e

5 − i
2(ReA+1) e

6 α = −ImA
ReA

ReA 6= ±ReB ω1 = e3 + ie4, ω2 = e1 + ie2,

s9ReA+ ReB = −2 ω3 = − 1
2 e

6 + i
2(ReA+1) (e5 + ImAe6)

ReA 6= ±ReB

ω1 = e1 + ie2, sα,β10

ReA+ ReB 6= −2

ω2 = e3 + ie4, α = 2ImA(2+ReA+ReB)
Re 2A−Re 2B

ω3 = 1
ReA+ReB e

5 + 1
2ImAe

6 − i 2ImA
Re 2A−Re 2B e

5 β = ReA+ReB
2ImA

Table 3. Lie algebras underlying equations (6) with ε = 1 and ImA =
ImB 6= 0 (Lemma 1.12).

1.2.3. Case ε = 1, ImA 6= ImB. Starting from (9), let us consider the new basis
{β1, . . . , β6} given by

βi = αi, i = 1, 2, 3, 4, β5 = (ImA− ImB)α5, β6 = (ImA− ImB)α6.

In terms of this basis, the structure equations (9) are

(10)



dβ1 = −β1 ∧
(
β6 − ReA+ReB

ImA−ImB β
5
)
− β2 ∧

(
ImA+ImB
ImA−ImB β

5 + ReA−ReB
ImA−ImB β

6
)
,

dβ2 = −β2 ∧
(
β6 − ReA+ReB

ImA−ImB β
5
)

+ β1 ∧
(

ImA+ImB
ImA−ImB β

5 + ReA−ReB
ImA−ImB β

6
)
,

dβ3 = β3 ∧
(
β6 − ReA+ReB

ImA−ImB β
5
)

+ β4 ∧
(
β5 + 2+ReA+ReB

ImA−ImB β6
)
,

dβ4 = −β3 ∧
(
β5 + 2+ReA+ReB

ImA−ImB β6
)

+ β4 ∧
(
β6 − ReA+ReB

ImA−ImB β
5
)
.



COMPLEX STRUCTURES OF SPLITTING TYPE 13

We define the 1-forms

ν5 = β5 +
2 + ReA+ ReB

ImA− ImB
β6, ν6 = β6 − ReA+ ReB

ImA− ImB
β5.

The linear dependence of ν5 and ν6 will play a key role in our study of the underlying Lie
algebras. Let us define

∆ = ∆(A,B) = (ImA− ImB)2 + (2 + ReA+ ReB)(ReA+ ReB)

= |A|2 + |B|2 + 2(ReA+ ReB + ReAReB − ImAImB).

It is straightforward to check that ν5 and ν6 are linearly independent if and only if ∆ 6= 0.
In the following lemmata we study the cases ∆ = 0 and ∆ 6= 0.

Lemma 1.13. The Lie algebras underlying equations (6) with ε = 1, ImA 6= ImB and

∆(A,B) = 0 are sα5 , s
α,β
6 , sα8 , s

α,0
10 .

Proof. Notice first that the condition ∆ = 0 implies that ReA + ReB 6= 0,−2. Since ν5

and ν6 are linearly dependent, we have that

ν5 = θ ν6, where θ =
2 + ReA+ ReB

ImA− ImB
= −ImA− ImB

ReA+ ReB
6= 0.

Let us consider the new basis {γ1, . . . , γ6} given by γi = βi, 1 ≤ i ≤ 5, and γ6 = ν6 =
β6 + 1

θ β
5. With respect to this basis, the structure equations (10) are

(11)



dγ1 = −γ16 + γ2 ∧
[(

|B|2−|A|2
(ImA−ImB)2

)
γ5 −

(
ReA−ReB
ImA−ImB

)
γ6
]
,

dγ2 = −γ26 − γ1 ∧
[(

|B|2−|A|2
(ImA−ImB)2

)
γ5 −

(
ReA−ReB
ImA−ImB

)
γ6
]
,

dγ3 = γ36 + θ γ46,

dγ4 = γ46 − θ γ36.

In order to determine the Lie algebras underlying the equations (11), we distinguish the

cases when |A| = |B| or |A| 6= |B| (see Table 4 for details). Notice that the Lie algebras sα
′

5 ,

sα
′,β′

6 and sα
′

8 in Table 4 are isomorphic to the Lie algebras sα5 , sα,β6 and sα8 with the values
of the parameters α and β that appear in Theorem 1.7.

Observe that the relation between the bases {γi}6i=1 and {ei}6i=1 can be deduced from
the following diagram:

α

Table 4

&&// β // γ // e.

�

Lemma 1.14. The Lie algebras underlying equations (6) with ε = 1, ImA 6= ImB and

∆(A,B) 6= 0 are s9, s
α,β
10 , sα11, s12.

Proof. Since ∆ 6= 0, the 1-forms ν5 and ν6 are linearly independent. Hence, we consider the
basis {ν1, . . . , ν6} given by

νi = βi, i = 1, 2, 3, 4, ν5 = β5 +
2 + ReA+ ReB

ImA− ImB
β6, ν6 = β6 − ReA+ ReB

ImA− ImB
β5.
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ImA 6= ImB, ∆(A,B) = 0 Real basis {e1, . . . , e6} Lie algebra

|A| = |B|

B = Ā

ω1 = e1 + ie2, ω2 = e3 + ie4, sα
′

5

ω3 = 1
2ImA

[
e6 − i

(
e5 + ImA

1+ReA e
6
)]

α′ = − 1+ReA
ImA

B 6= Ā

B = −1 ω1 = e1 + ie2, ω2 = e4 + ie3, sα
′

8

ImA 6= 0 ω3 = 1
ImAe

6 − i
1+ReA (e5 + e6) α′ = ImA

1+ReA

A = −1 ω1 = e1 + ie2, ω2 = e3 + ie4, sα
′

8

ImB 6= 0 ω3 = −1
ImB e

6 + i
1+ReB (e5 − e6) α′ = ImB

1+ReB

ReA 6= ReB ω1 = e1 + ie2, ω2 = e3 + ie4, sα
′,β′

6

ReA,ReB 6= −1 ω3 = 1
ImA−ImB e

6 − i 1
ReA−ReB e

5 α′ = ImA−ImB
ReA−ReB

(ImA)(ImB) 6= 0 +i ReA+ReB
(ImA−ImB)2 e

6 β′ = −(2+ReA+ReB)
ReA−ReB

|A| 6= |B|

ω1 = e1 + ie2, ω2 = e3 + ie4,
sα,010

ω3 = ReA−ReB
|A|2−|B|2 e5 + ImA−ImB

|A|2−|B|2 e6

− iImA+ImB
|A|2−|B|2 e5 + iReA+ReB

|A|2−|B|2 e6 α = 2+ReA+ReB
ImA−ImB

Table 4. Lie algebras underlying equations (6) with ε = 1, ImA 6= ImB
and ∆(A,B) = 0 (Lemma 1.13).

The structure equations (10) transform into

dν1 = −ν16 − ImA−ImB
∆

(
X ν25 − Y ν26

)
,

dν2 = −ν26 + ImA−ImB
∆

(
X ν15 − Y ν16

)
,

dν3 = ν36 + ν45,

dν4 = −ν35 + ν46,

where

X =
|A|2 − |B|2

ImA− ImB
, Y = 2

ImA(1 + ReB) + ImB(1 + ReA)

ImA− ImB
.

Now, the study is divided according to the vanishing of coefficients X and Y (see Table 5
for details). For the sake of clarity, we see what happens when X = Y = 0: let us define
p = ImA+ImB

ImA−ImB and q = ReA−ReB
ImA−ImB , and consider the following system of equations in

variables p and q: {
X = p(ImA− ImB) + q(ReA+ ReB),

Y = p(2 + ReA+ ReB)− q(ImA− ImB).

Observe that the determinant associated to the system is −∆. Since ∆ 6= 0, if X = Y = 0,
the system has trivial solution and therefore B = Ā and, in particular, ∆ = 4(|A|2 +
ReA) 6= 0.
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Finally, the relation between the bases {νi}6i=1 and {ei}6i=1 can be deduced from

α

Table 5

&&// β // ν // e.

�

ImA 6= ImB, ∆(A,B) 6= 0 Real basis {e1, . . . , e6} Lie algebra

|A| = |B|

Y = 0

ω1 = e1 + ie2, ω2 = e3 + ie4,

s9
ω3 = −ImA

2(|A|2+ReA)

(
e5 + 1+ReA

ImA e6
)

− i ImA
2(|A|2+ReA)

(
ReA
ImA e

5 − e6
)

Y 6= 0

ω1 = e3 + ie4, ω2 = e1 − ie2,

sα,010ω3 = ImA−ImB
∆

(
e6 − 2+ReA+ReB

ImA−ImB e5
)

α = −Y (ImA−ImB)
∆+ i(ImA−ImB)

∆

(
e5 + ReA+ReB

ImA−ImB e
6
)

|A| 6= |B|

Y = 0

∆ = ±(|A|2 − |B|2)

ω1 = e3 + ie4, ω2 = e1 − ie2,

s12
ω3 = ImA−ImB

∆

(
e5 − 2+ReA+ReB

ImA−ImB e6
)

+ i(ImA−ImB)
∆

(
ReA+ReB
ImA−ImB e

5 + e6
)

∆ 6= ±(|A|2 − |B|2)

ω1 = e3 + ie4, ω2 = e1 − ie2,

sα
′

11ω3 = ImA−ImB
∆

(
e5 − 2+ReA+ReB

ImA−ImB e6
)

α′ = −X(ImA−ImB)
∆+ i(ImA−ImB)

∆

(
ReA+ReB
ImA−ImB e

5 + e6
)

Y 6= 0

ω1 = e1 − ie2, ω2 = e3 + ie4,

sα,β10ω3 = X(2+ReA+ReB)−Y (ImA−ImB)
X ∆ e5

α = Y
X+ 2+ReA+ReB

Y (ImA−ImB) e
6 − i

Y e
6

β = ∆
Y (ImA−ImB)−i X(ImA−ImB)+Y (ReA+ReB)

X ∆ e5

Table 5. Lie algebras underlying equations (6) with ε = 1, ImA 6= ImB
and ∆(A,B) 6= 0 (Lemma 1.14).

The previous lemmata provide the following

Proposition 1.15. The unimodular solvable 6-dimensional Lie algebras underlying equa-

tions (6) with ε = 1 are s2, s3, s4, sα5 , sα,β6 , sα7 , sα8 , s9, sα,β10 , sα11, s12.

As a consequence of the previous propositions, we prove the main result of this section:

Proof of Theorem 1.7. The “only if” part of the theorem follows from Propositions 1.9, 1.10
and 1.15.

For the proof of the “if” part, we must show that all the Lie algebras in the list admit a
splitting-type complex structure. This is clear for the Lie algebras s1, s2, s3, s4, s9 and s12

from Proposition 1.9 and Tables 1, 2 and 3. The remaining Lie algebras in the list depend
on parameters, so we will show next particular appropriate values of A and B that define a
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complex structure of splitting type on each one of the Lie algebras sα5 , sα,β6 , sα7 , sα8 , sα,β10 and
sα11 in the list.

For the Lie algebra sα5 , α > 0, we consider A and B given by A = B = −1 + i α.
These values of the parameters A and B lie in Table 3, since ImA = ImB = α 6= 0 and
ReA = ReB = −1. Hence, the (1,0)-forms ω1 = − ImA

|ImA|e
3 + ie4 = −e3 + ie4, ω2 = e1 + ie2,

ω3 = 1
2 e

5 + ie6 define a splitting-type complex structure on sα5 according to Table 3.
For the other Lie algebras the argument is similar. We show below particular appropriate

values of A,B and the table where the corresponding basis of (1,0)-forms is given:

- For sα,β6 , α > 0 with α 6= 1, 0 < β < 1, it suffices to take A = −2
1+β + i 1−α2

α(1+β) and

B = i 1+α2

α(1+β) in Table 4;

- For s1,β
6 , 0 < β < 1, we can take A = − 1+β

1+β2 + i 1−β
1+β2 and B = − 1−β

1+β2 + i 1+β
1+β2 in Table 4;

- For sα7 , 0 < α ≤ 1, we take A = −B = α in Table 2;

- For sα8 , α > 0, we take A = 1
1+α2 (1− α2 + 2iα) and B = −1 in Table 4;

- For sα,β10 , α 6= 0, β ∈ R, we can take A = −1− B̄ with B = 1
2 (αβ − 1 + iβ) in Table 1;

- Finally, for the Lie algebra sα11, α ∈ (0, 1), we take A = −1 − B with B = − 1
2 (1 + α) in

Table 1. 2

Remark 1.16. In view of Remark 1.5, a 6-dimensional unimodular (non-nilpotent) solvable
Lie algebra admits a complex structure of splitting type with a non-zero closed (3, 0)-form if
and only if B = −ε in the structure equations (6). Looking at the tables above, it is easy to
check that this condition is satisfied if and only if the Lie algebra is isomorphic to s4, s1

7, sα8
or s12, which is in accord with [11, Theorem 2.8] (notice that these Lie algebras correspond,
respectively, to the Lie algebras labeled as g1, gα2 and g8 in [11]).

On the other hand, the Lie algebras obtained in Theorem 1.7 appear with different nota-
tions in previous papers. Next, we make explicit the correspondence with [5, 35]:

s1 = g0
4,9 ⊕ R2, s2 = g0

3,5 ⊕ R3, s3 = g0
3,5 ⊕ g0

3,5, s4 = g−1,−1,1
5,7 ⊕ R,

sα5 = g1,−1,α
5,13 ⊕ R, sα,β6 = gα,−α,β5,17 ⊕ R, sα7 = g0,0,α

5,17 ⊕ R, sα8 = gα,−α,15,17 ⊕ R,

s9 = N0,−1,0,−1
6,13 , sα,β10 = N−1,α,β,−β

6,15 , sα11 = N0,α,−1
6,18 , s12 = N0,−1,−1

6,18 .

It turns out that the only Lie algebra that is completely solvable is s4.

Remark 1.17. As regards solvmanifolds of splitting type, we notice that the condition
(5) in Definition 1.1 is satisfied by the Kodaira-Thurston manifold; see [7, 9, 31, 32] for
general results on the Dolbeault cohomology of nilmanifolds. Therefore, we need to study
the existence of lattices in the connected and simply-connected solvable Lie groups Gk
corresponding to the Lie algebras sk in Theorem 1.7. The Lie groups G1, G2 and G3 admit
lattices (see [5, Table 8]). Also G4 admits lattices by [11, 27]. Moreover, by [8, page 13] we
have:

• Gα,β6 admits lattices if and only if β = r1
r2
∈ Q and α satisfies exp(2πα−1r2) +

exp(−2πα−1r2) ∈ Z, that is, α is the form αn := 2πr2
log( 1

2 (n±
√
n2−4))

with n ∈ N;

• Gα7 admits lattices if and only if α ∈ Q;
• Gα8 admits lattices if and only if exp(2πα−1) + exp(−2πpα−1) ∈ Z, that is, for any
α of the form αn := 2π

log( 1
2 (n±

√
n2−4))

with n ∈ N.

In Proposition 1.18 below we show the existence of lattices for a countable family of Gα5 .
Note that the results on the existence of lattices are consistent with [36, Proposition 8.7],
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where it is shown that only countably many non-isomorphic simply-connected solvable Lie

groups admit a lattice. Therefore, one cannot expect a lattice to exist on Gα5 , Gα,β6 , Gα7 or
Gα8 for every value of α, β, and so, in this sense, our proposition below completes the cases
when the Lie algebra is decomposable.

The indecomposable case is more difficult to treat, but in Section 3 we will provide explicit
lattices on the Lie group associated to s12 (which is the Lie algebra underlying the Nakamura
manifold [26], see also [37]) with interesting properties with respect to the ∂∂̄-Lemma.

Proposition 1.18. There is a countable family {αs,n} ⊂ R+ such that the connected and
simply-connected Lie group G

αs,n
5 admits a lattice.

Proof. The Lie algebra of Gα5 , α > 0, can be written as sα5 = g1,−1,α
5,13 ⊕ R with g1,−1,α

5,13 =

R nade5
R4. Since the simply-connected Lie group Hα corresponding to g1,−1,α

5,13 is almost-

nilpotent [5], it admits a lattice if and only if there exists τ 6= 0 such that the matrix
exp(τ ade5) belongs to the conjugation class of an integer matrix. We have (see [5, p. 41])
that exp(t ade5) is given by

(12) exp(t ade5) =


e−t 0 0 0

0 e−t 0 0

0 0 et cosαt −et sinαt

0 0 et sinαt et cosαt

 .

Let τ 6= 0 be such that sinατ = 0, that is, τ = sπ
α with 0 6= s ∈ Z. In this case the

matrix (12) is diagonal and its characteristic polynomial is

(13) p(λ) =
(
λ2 − (e−τ + (−1)seτ )λ+ (−1)s

)2
.

Now, if exp(τ ade5) lies in the conjugation class of an integer matrix, then p(λ) ∈ Z[λ], that
is, e−τ + (−1)seτ = n, for some n ∈ Z. Solving this equation, we get

τs,n = − log

(
n+

√
n2 − 4(−1)s

2

)
, αs,n = − sπ

log

(
n+
√
n2−4(−1)s

2

) , for n ≥ 3.

Substituting these values in (13), we get p(λ) =
(
λ2 − nλ+ (−1)s

)2 ∈ Z[λ], which is also
the characteristic polynomial of the integer matrix

Bs =


0 (−1)s+1 0 0

1 n 0 0

0 0 0 (−1)s+1

0 0 1 n

 ∈ Aut(4,Z).

In addition, it turns out that Q exp(τs,n ade5)Q−1 = Bs, where

Q =


0 β+ 0 β−

0 1 0 1

β+ 0 β− 0

1 0 1 0

 , β± =
1

2

(
−n±

√
n2 − 4(−1)s

)
,

concluding the proof. �
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2. Hermitian geometry of splitting-type complex structures

In this section we study the existence of special Hermitian metrics on solvmanifolds endowed
with a complex structure of splitting type. From now on, F denotes the fundamental (1, 1)-
form associated to a Hermitian metric g, and n is the complex dimension of the complex
manifold.

It is well-known that the Kähler condition “dF = 0” can be weakened in the “geometry
with torsion” direction, and the main classes of Hermitian structures that arise are:

• Hermitian-symplectic (or holomorphic-tamed), that is, F is the (1, 1)-component of
a d-closed 2-form;
• SKT (strong Kähler with torsion or pluri-closed), that is, ∂∂̄F = 0;
• k-Gauduchon [15], that is, ∂∂̄F k ∧ Fn−k−1 = 0, where k = 1, . . . , n− 2.

The following implications are clear from the definitions:

Kähler ⇒ Hermitian-symplectic ⇒ SKT ⇒ 1-Gauduchon.

So far, no example of compact complex non-Kähler manifold admitting Hermitian-symplectic
structure is known, see [23, page 678], [34, Question 1.7].

Other interesting and well-known classes of Hermitian metrics on compact complex man-
ifolds are:

• balanced (in the sense of Michelsohn [25]), that is, dFn−1 = 0;
• strongly Gauduchon [29], that is, Fn−1 is the (n− 1, n− 1)-component of a d-closed

(2n− 2)-form; equivalently, the (n, n− 1)-form ∂Fn−1 is ∂̄-exact;
• Gauduchon [16], that is, ∂∂̄Fn−1 = 0.

It is clear that

Kähler ⇒ balanced ⇒ strongly Gauduchon ⇒ Gauduchon.

We recall also that any conformal class of Hermitian structures admits a Gauduchon repre-
sentative by the foundational theorem by Gauduchon [16, Théorème 1]. A recent conjecture
of Fino and Vezzoni [13] states that in the compact non-Kähler case it is never possible to
find an SKT metric and also a balanced one, and they prove the conjecture for nilmanifolds
[14] and for 6-dimensional solvmanifolds having holomorphically trivial canonical bundle
[13]. On the other hand, Popovici [30] proposes, for ∂∂̄-manifolds, a conjecture relating
their balanced and Gauduchon cones, and he observes that, if proved to hold, the conjec-
ture would imply the existence of a balanced structure on any ∂∂̄-manifold. Recall that a
∂∂̄-manifold is a compact complex manifold X satisfying the ∂∂̄-Lemma, that is, if for any
d-closed form γ of pure type on X, the following exactness properties are equivalent:

γ is d-exact ⇐⇒ γ is ∂-exact ⇐⇒ γ is ∂̄-exact ⇐⇒ γ is ∂∂̄-exact.

We have the following general result.

Proposition 2.1. Let X = G/Γ be a solvmanifold endowed with a complex structure of
splitting type, i.e., G = C nϕ N , where N is nilpotent. Then, X admits a balanced (re-
spectively, strongly Gauduchon) Hermitian structure if and only if N admits an invariant
balanced (respectively, strongly Gauduchon) Hermitian structure.

Proof. First of all, by the well-known symmetrization process, X admits a balanced (respec-
tively, strongly Gauduchon) Hermitian structure if and only if the Lie group G admits an
invariant balanced (respectively, strongly Gauduchon) Hermitian structure. Let n be the
complex dimension of X, and denote by {ωn} a co-frame of (1, 0)-forms for the factor C in
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G. First, notice that, if we have an invariant Hermitian structure FG on G, (respectively,
an invariant Hermitian structure FN on N) then we can construct an invariant Hermitian
structure FN on N (respectively, an invariant Hermitian structure FG on G) such that

Fn−1
G = Fn−1

N + Fn−2
N ∧ ωnn̄ ,

with abuse of notations. Indeed, as a vector space, the Lie algebra g of G splits as g = n⊕R2,
where n is the Lie algebra of N . Invariant structures on G (respectively, on N) are identified
with linear structures on g (respectively, on n). If we start from a Hermitian structure FN

on N , then we can take FG := n−1

√
Fn−1
N + Fn−2

N ∧ ωnn̄, which is a Hermitian structure on

G. On the other hand, if we start from a Hermitian structure FG on G, then it induces a
Hermitian structure FN on N and the Hermitian structure ωnn̄ on R2, up to multiplicative
positive constants, such that FG = FN + ωnn̄, which yields the above identity.

Since dωn = 0, we have

(14) dFn−1
G = dFn−1

N + dFn−2
N ∧ ωnn̄ = dFn−1

N + dNF
n−2
N ∧ ωnn̄ ,

where dN denotes the differential over N .
We notice also that dFn−1

N = 0 by unimodularity. Otherwise, if dFn−1
N 6= 0, then either

d
(
Fn−1
N ∧ ωn

)
or d

(
Fn−1
N ∧ ωn̄

)
would be non-trivial d-exact 2n-forms.

Then, (14) reduces to

dFn−1
G = dNF

n−2
N ∧ ωnn̄ .

It follows that dFn−1
G = 0 if and only if dNF

n−2
N = 0. Analogously, it follows that ∂Fn−1

G is

∂̄-exact if and only if ∂Fn−2
N is ∂̄-exact. �

In [10] it is studied the existence of Hermitian-symplectic structures on complex solvman-
ifolds (see [10, Theorem 1.1] for case when G is not of type (I) and [10, Theorem 1.2] for
other cases). We recall that a Lie group G is said to be of type (I) if for any X ∈ g, all the
eigenvalues of the adjoint operator adX are pure imaginary. Some of the Lie algebras in the
list of Theorem 1.7 are of type (I) but other not, however for all of them (except s1) the Lie
group is of the form G = Cnϕ Cn−1, so we give in the following result an alternative direct
proof about existence of special Hermitian metrics in this concrete case.

Proposition 2.2. Let X = G/Γ be a solvmanifold endowed with a complex structure of
splitting type, such that G = C nϕ Cn−1. Then, for X it is equivalent: to admit SKT
structures; to admit Hermitian-symplectic structures; to admit Kähler structures.

Proof. By the symmetrization process, X admits SKT, Hermitian-symplectic or Kähler
structure if and only if the Lie group G admits an invariant SKT, invariant Hermitian-
symplectic or invariant Kähler structure. Fix a co-frame {ω1, . . . , ωn−1} of (1, 0)-forms on
Cn−1 and a co-frame {ωn} of (1, 0)-forms on C, such that the complex structure equations
are of the form {

dωj = Aj ωnj +Bj ωn̄j , j ∈ {1, . . . , n− 1},
dωn = 0,

for suitable Aj , Bj ∈ C. Notice that the Jacobi identity is satisfied for any value of the
structure constants, while the unimodularity condition corresponds to the requirement

n−1∑
j=1

(Aj + B̄j) = 0 .



COMPLEX STRUCTURES OF SPLITTING TYPE 20

Consider the general invariant metric on G given by

F :=

n∑
h,k=1

αhk̄ ω
hk̄

where (αhk̄)h,k is a Hermitian matrix with entries in C. By noticing that

∂∂̄ωhk̄ = (Bh + Āk)(Ah + B̄k)ωnn̄hk̄, dωhk̄ = (Ah + B̄k)ωnhk̄ + (Āk +Bh)ωn̄hk̄,

we get

∂∂̄F =

n−1∑
h,k=1

αhk̄(Bh + Āk)(Ah + B̄k)ωnn̄hk̄ .

So, if F is SKT, then every coefficients must vanish. In particular, for any j ∈ {1, . . . , n−1},

|Bj + Āj |2 = 0 ,

since αjj̄ 6= 0. But this implies that the diagonal Hermitian structure F̃ := i
2

∑n
h=1 ω

hh̄ is

Kähler, since 2dF̃ = i
∑n−1
h=1

(
(Ah + B̄h)ωnhh̄ + (Āh +Bh)ωn̄hh̄

)
= 0. �

2.1. Hermitian structures in dimension 6. Next we consider the case when the (real)
dimension ofX is 6. As we reminded in the proofs of Propositions 2.1 and 2.2, the existence of
Kähler, Hermitian-symplectic, SKT, balanced and strongly Gauduchon structures is reduced
to their existence at the Lie algebra level, so we will study the spaces of such Hermitian
structures on each sk, for 1 ≤ k ≤ 12. We also study the existence of 1-Gauduchon structures
on the Lie algebras sk, although as it is pointed out in [12], the symmetrization process does
not hold for this kind of Hermitian structures on solvmanifolds, and so our study covers
only the space of invariant 1-Gauduchon structures. The existence results are summarized
in Table 6.

A generic Hermitian structure on sk is given, with respect to any coframe {ω1, ω2, ω3} of
(1, 0)-forms, by 

ir2 u z

−ū is2 v

−z̄ −v̄ it2


or equivalently, by the expression

(15) 2F = ir2ω11̄ + is2ω22̄ + it2ω33̄ + uω12̄ − ūω21̄ + vω23̄ − v̄ω32̄ + zω13̄ − z̄ω31̄,

where r, s, t ∈ R \ {0} and u, v, z ∈ C satisfy the conditions that ensure that F is positive-
definite: r2s2 > |u|2, s2t2 > |v|2, r2t2 > |z|2 and r2s2t2+2Re (iūv̄z) > t2|u|2+r2|v|2+s2|z|2.

Let us consider first the Lie algebra s1, which corresponds to the structure equations (7)
for ε = 1, and for which we can apply Proposition 2.1 because the Lie group G is of the
form C nϕ KT . By [29, Observation 4.4], every strongly Gauduchon compact complex
surface is Kähler, so in particular the Kodaira-Thurston manifold does not admit strongly
Gauduchon structures. Hence, by Proposition 2.1, we conclude that s1 does not admit either
strongly Gauduchon or balanced structures. A direct calculation shows that it does not
admit Hermitian-symplectic structures. However, there always exist SKT and 1-Gauduchon
structures, since for a metric F given by (15) we have

2 ∂∂̄F = uω132̄3̄ − ū ω231̄3̄, 2 ∂∂̄F ∧ F = |u|2 ω1231̄2̄3̄.

More precisely, F is SKT if and only if F is 1-Gauduchon, if and only if u = 0.
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The remaining Lie algebras sk, 2 ≤ k ≤ 12, correspond to the complex structure
equations (6), and we can apply Proposition 2.2 because the Lie group G is of the form
C nϕ C2. As a matter of notation, let us denote such complex structures simply as
J = (A,B, ε) ∈ C2×{0, 1}. Given a generic Hermitian structure (15), we first note that one
can always normalize the metric coefficients r and s, i.e. we can suppose r = s = 1. There-
fore, we will identify the Hermitian structures simply by a tuple F = (t2, u, v, z) ∈ R+×C3,
where 1 > |u|2, t2 > |v|2, t2 > |z|2 and t2 + 2Re (iūv̄z) > t2|u|2 + |v|2 + |z|2, in order for F
to be positive-definite.

Now, by Proposition 2.2, there exists a Kähler structure if and only if there is a Hermitian-
symplectic structure, if and only if there exists an SKT structure. A direct calculation
from (6) shows that the existence of one of these types of structures implies

A+ B̄ = 0,

that is, the complex structure must be of the form J = (A,−Ā, ε), where A ∈ C and
ε ∈ {0, 1}. According to the classification given in Section 1.2, the Lie algebras admitting
such a complex structure are s2, s3, s

α
7 . Indeed,

- if ε = 0 then from Table 1 we get s2 (notice that we can take A = 1 in this case);

- if ε = 1 and A ∈ R, then by Table 2 the possibilities are s2, sα7 ;

- if ε = 1 and ImA 6= 0, then from Table 3 we get s3.

Next we give a detailed description of the spaces of Kähler structures.

Proposition 2.3. Let g be a 6-dimensional solvable Lie algebra with a complex structure J
of splitting type. Then, g admits a Kähler structure if and only if g is isomorphic to s2, s3

or sα7 , and the Kähler structures (J, F ) are the following:

(K.i) (s2, J, F ), where J = (1,−1, 0) and F = (t2, 0, v, 0).

(K.ii) (s3, J, F ), where J = (A,−Ā, 1), ImA 6= 0, and F = (t2, 0, 0, 0).

(K.iii) (sα7 , J, F ), where J = (A,−A, 1), A ∈ R\{0,−1}, and F = (t2, 0, 0, 0). (Notice that
α = |A| or α = | 1A |.)

(K.iv) (s1
7, J, F ), where J = (−1, 1, 1) and F = (t2, u, 0, 0).

Proof. A direct computation shows that

(16) 2 ∂̄F = (Ā+ ε) (uω12̄3̄ + ū ω21̄3̄)− εv̄ ω32̄3̄ + Āz̄ ω31̄3̄ .

Hence the conditions to be satisfied for F being Kähler are

u(A+ ε) = 0 , εv = 0 , Az = 0 .

If ε = 0, then we may assume that A = 1 (see the proof of Proposition 1.10 for details)
and therefore u = z = 0. The Kähler structures are then given by (t2, 0, v, 0) and we obtain
case (K.i).

If ε = 1, then v = 0 and several cases appear:

• If A = 0, it is equivalent to the previous case (K.i).
• If A = −1, then z = 0. So, J = (−1, 1, 1) and F = (t2, u, 0, 0), which corresponds

to (K.iv).
• If A 6= 0 and A 6= −1, then u = v = z = 0. Depending on the values of A (see

Tables 2 and 3), we get the remaining cases (K.ii) or (K.iii). �
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Remark 2.4. In [17, Example 4], it is shown that the complex structures corresponding to
cases (K.i) and (K.iv) in Proposition 2.3 admit Kähler metrics. In the recent paper [2] it
is shown that s3 admits a Kähler structure and, moreover, solvmanifolds constructed from
the Lie algebra s1

7 give rise to new supersymmetric vacua. Notice that s2, s3 and sα7 are the
only (non abelian) solvable Lie algebras in six dimensions admitting Ricci flat metrics (see
[2] and the references therein). By Proposition 2.3 all these Lie algebras admit a Kähler
structure, although by [11] only s1

7 with J = (1,−1, 1) admits a Calabi-Yau structure.

In the following proposition we compare the spaces of Hermitian-symplectic, SKT and
1-Gauduchon structures with the space of Kähler structures.

Proposition 2.5. Let g be a 6-dimensional solvable Lie algebra with a complex structure J
of splitting type that admits Kähler structures. Any Hermitian structure (J, F ) on g is 1-
Gauduchon if and only if it is Hermitian-symplectic, if and only if it is SKT. Moreover, any
SKT structure (J, F ) on g is one of the following:

(SKT.i) (s2, J, F ), where J = (1,−1, 0) and F = (t2, 0, v, z).

(SKT.ii) (s3, J, F ), where J = (A,−Ā, 1), ImA 6= 0, and F = (t2, 0, v, z).

(SKT.iii) (sα7 , J, F ), where J = (A,−A, 1), A ∈ R \ {0,−1}, and F = (t2, 0, v, z).

(SKT.iv) (s1
7, J, F ), where J = (−1, 1, 1) and F = (t2, u, v, z).

Proof. Using (16), we have

2 ∂∂̄F = |A+ ε|2(uω132̄3̄ − ū ω231̄3̄), 2 ∂∂̄F ∧ F = |u|2 |A+ ε|2 ω1231̄2̄3̄.

Therefore, the SKT condition is equivalent to the 1-Gauduchon condition, and they are
equivalent to u(A+ ε) = 0.

On the other hand, the structure F is Hermitian-symplectic if

∂̄F = ∂β, ∂̄β = 0, where β ∈ g0,2 .

Since ∂β ∈ 〈Aω31̄3̄, ε ω32̄3̄〉, it follows from (16) that F is Hermitian-symplectic if and only
if there exist λ, µ ∈ C satisfying

u(A+ ε) = 0 , v ε = λ ε , z A = µ Ā.

It is always possible to find λ, µ satisfying the last two equations. The first one is precisely
the SKT condition.

Now, depending on the vanishing of the metric coefficient u, the possibilities for a Her-
mitian structure (J, F ) to satisfy the SKT condition are:

• u 6= 0. Then, ε = 1 and A = −1, which corresponds to the case (SKT.iv).
• u = 0. If ε = 0, then we can suppose A = 1, which leads to the case (SKT.i). The

remaining cases (SKT.ii) and (SKT.iii) are obtained when ε = 1.

�

Remark 2.6. A complex structure J as above admits SKT structures if and only if it admits
Kähler ones, however, for any fixed J , there exist SKT structures which are not Kähler.
Indeed, by Propositions 2.3 and 2.5, any SKT structure with metric coefficient z 6= 0 is not
Kähler. Similarly, there exist Hermitian-symplectic structures and 1-Gauduchon structures
which are not Kähler.
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Now, with respect to balanced and strongly Gauduchon Hermitian structures, we can
apply Proposition 2.1 for N = C2 and so any complex structure corresponding to the
equations (6) admits balanced structures. Indeed, for any value of the tuple (A,B, ε) ∈
C2 × {0, 1}, the Hermitian structures given by (t2, u, 0, 0) are balanced. Notice that there
exist strongly Gauduchon Hermitian structures that are not balanced, for instance, consider
a complex structure J = (A,B, 1), i.e. with ε = 1, and a Hermitian structure F given by
(t2, 0, v, z) with v 6= 0.

We summarize all the results about Hermitian structures in Table 6. Here, the symbol
“X” means that the corresponding kind of Hermitian metrics exists for any complex structure
of splitting type on the Lie algebra (see Tables 1–5), whereas “−” means that none of the
complex structures admits such kind of metrics. Here “H-symplectic” means Hermitian-
symplectic and “sG” refers to strongly Gauduchon metrics.

Kähler H-symplectic SKT invariant 1-G balanced sG

s1 − − X X − −
s2 X X X X X X

s3 X X X X X X

s4 − − − − X X

sα5 − − − − X X

sα,β6 − − − − X X

sα7 X X X X X X

sα8 − − − − X X

s9 − − − − X X

sα,β10 − − − − X X

sα11 − − − − X X

s12 − − − − X X

Table 6. Existence of Hermitian metrics for any complex structure of split-
ting type.

Remark 2.7. Note that the Lie algebra s1 = g0
4,9 ⊕ R2 (see Remark 1.16) admits SKT

Hermitian structures because the 4-dimensional Lie algebra g0
4,9 admit them by [24], and

so the product complex structure on s1 admits SKT structures. However, the Hermitian
structures that we have obtained on s1 are different because the splitting-type complex
structure is not a product, and in this sense, our study above provides a new example of
SKT metrics in dimension 6.

Finally, we notice also that our results provide (up to our knowledge) new families of
non-Kähler balanced solvmanifolds (see also Remark 1.17). The s12 case is especially rich,
as Section 3 below shows.

In relation to the conjectures in [13] and in [30] mentioned above, as a consequence of the
results of this section one has the following result.

Corollary 2.8. Let X = G/Γ be a 6-dimensional solvmanifold endowed with a complex
structure of splitting type. We have:
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(i) If X has an SKT metric and also a balanced metric, then X is Kähler.
(ii) If X satisfies the ∂∂̄-Lemma, then X is balanced.

Proof. If X has an SKT metric and also a balanced metric, then by symmetrization, there
is an SKT structure and also a balanced structure on the Lie algebra g underlying X. Now,
by Table 6, the Lie algebra is isomorphic to s2, s3 or sα7 . In any case, there is a Kähler
structure on g and so X is Kähler, which completes the proof of (i).

For the proof of (ii), in view of Table 6 it is enough to prove that for any lattice Γ on the
connected and simply-connected Lie group G1 corresponding to s1, the solvmanifold G1/Γ
does not satisfy the ∂∂̄-Lemma with respect to any complex structure of splitting type J .
In addition, by the symmetrization process, it suffices to check that the ∂∂̄-Lemma is not
satisfied at the Lie algebra level. Now, for any complex structure of splitting type J we have
a basis {ω1, ω2, ω3} of (1,0)-forms satisfying (7) with ε = 1, therefore the (1,1)-form

ω11̄ = dω2 = ∂(−ω2̄) = ∂̄ω2

is d-exact, ∂-exact and ∂̄-exact, but it is not ∂∂̄-exact. �

3. Complex structures on the Nakamura manifold

In this section we focus on the complex geometry of splitting type on the Nakamura manifold
[26], whose underlying Lie algebra is s12. Firstly, we classify the complex structures of
splitting type, which allows us to produce analytic families of complex solvmanifolds with
holomorphically trivial canonical bundle satisfying interesting properties in relation to the
∂∂̄-Lemma.

3.1. Moduli of complex structures of splitting type on the Nakamura manifold.
Next we study the space of complex structures of splitting type on the Lie algebra s12 up
to equivalence.

Proposition 3.1. On the Lie algebra s12, there exist the following non-equivalent complex
structures of splitting type:

(i) (s12, J̃) : dω1 = −ω13, dω2 = ω23, dω3 = 0;

(ii) (s12, JA) :


dω1 = Aω13 − ω13̄,

dω2 = −Aω23 + ω23̄, A ∈ C, |A| 6= 1,

dω3 = 0;

(iii) (s12, JB) :


dω1 = −ω13 +B ω13̄,

dω2 = −B̄ ω23 + ω23̄, B ∈ C, |B| < 1,

dω3 = 0.

Proof. Here the equivalence between the complex structures is in the usual sense: two
complex structures J and J ′ on a Lie algebra g are equivalent if there exists an automorphism
F : g −→ g such that J = F−1 ◦ J ′ ◦ F . We first observe the following property of the
complex structures defined by equations (6) with A = −1 and ε = 1: if we denote by JB
such a complex structure, then, for B 6= 0, JB is equivalent to J1/B (indeed, it suffices to

multiply ω3 by B̄, and change ω1 with ω2). This property explains the condition |B| < 1 in
the equations (iii) above.

Now, according to our classification in Section 1 of complex structures of splitting type,
the Lie algebra s12 appears only in some specific cases in the Tables 1, 2 and 5. First, from
Table 1, in the case (A,B) = (−1, 0) we obtain equations (i), and in the case (A,B) = (0,−1)
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equations (iii) for B = 0, just considering a new basis {τ1 = ω2, τ2 = ω1, τ3 = −ω3}. The
case B = −1, A ∈ R − {±1}, of Table 2 lies in equations (ii), whereas the case A = −1,
B ∈ R− {±1}, of Table 2 lies in the equations (iii).

With respect to Table 5, the complex structures on s12 satisfy the conditions

ImA 6= ImB, ImA(1 + ReB) = −ImB(1 + ReA), ∆ = ±(|B|2 − |A|2) 6= 0,

where ∆ = |A|2 + |B|2 + 2(ReA + ReB + ReAReB − ImA ImB). Next we study the
solutions of this set of equations:

- If ImA = 0, since ImB 6= 0, then A = −1 and ∆ = |B|2 − 1 6= 0. In this case, the
structures belong to case (iii). Similarly, if ImB = 0 then B = −1 and ∆ = 1 − |A|2 6= 0,
so we are in case (ii).

- Suppose now that (ImA)(ImB) 6= 0 and ReA = ReB = −1. It is straightforward to
verify that ∆ = (ImA − ImB)2. But ∆ = ±(|B|2 − |A|2) = ±(Im 2B − Im 2A) implies
ImA = ImB, which is a contradiction to ∆ 6= 0.

- Finally, if (ImA)(ImB) 6= 0 and (1 + ReA)(1 + ReB) 6= 0, then we can take ImB =

−ImA
(

1+ReB
1+ReA

)
. Now, the condition ∆ = |B|2 − |A|2 is equivalent to B = −A

(
1+Ā
1+A

)
,

which implies |B| = |A|. The case ∆ = −(|B|2 − |A|2) is similar. In conclusion, we do not
get complex structures in these cases.

Let us study now the equivalences of complex structures. Observe first that all the
complex structures in the cases (i) and (ii) satisfy dim H3,0

∂̄
(g) = 1, but dim H3,0

∂̄
(g) = 0 for

the complex structures in case (iii). Therefore, there are no equivalences between the case
(iii) and cases (i)-(ii). A direct calculation allows to show that the complex structure (i) is
not equivalent to any complex structure in (ii), and moreover, two complex structures J and
J ′ in (ii), respectively in (iii), are equivalent if and only if A = A′, respectively B = B′. �

Remark 3.2. Observe that J̃ given by (i) is the complex-parallelizable structure on the
Nakamura manifold [26], and the complex structure given by A = 0 in the family (ii)
corresponds to the abelian complex structure, see [1]. In addition, a complex structure
of splitting type on s12 gives rise to a complex solvmanifold with holomorphically trivial
canonical bundle if and only if it belongs to (i) or (ii), accordingly to Remark 1.5.

The following theorem reveals that the Nakamura manifold has a rich space of com-
plex structures. The result is based on an appropriate deformation of its abelian complex
structure.

Theorem 3.3. The property of having holomorphically trivial canonical bundle and the
property of being of splitting type are not stable under holomorphic deformations.

Proof. Although the first part of the theorem was firstly shown by Nakamura [26], we provide
other proof based on the invariant complex geometry described in Proposition 3.1.

Let Γ be any lattice on the Lie group G12 corresponding to s12, and consider the complex
solvmanifoldX0 = (G12/Γ, J0) endowed with its abelian complex structure J0, which is given
by taking A = 0 in the family (ii) of Proposition 3.1. Consider an open disc ∆ := ∆(0, ε)
around 0 in C for ε > 0 small enough, and the family {Xt}t∈∆ of complex solvmanifolds
given by the solvmanifold G12/Γ endowed with the complex structure Jt defined by the

(1,0)-co-frame {ω1
t := ω1, ω2

t := ω2, ω3
t := ω3 − tω1̄}. Notice that the form ω1̄ defines a

non-zero Dolbeault cohomology class on X0, and so the previous family Xt provides a small
holomorphic deformation of X0. The complex structure equations of the invariant complex
structure Jt are

(17) dω1
t = −ω13̄

t , dω2
t = −t̄ ω12

t + ω23̄
t , dω3

t = −t ω31̄
t .
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Now, since dω123
t = −t ω1231̄

t 6= 0 for any t ∈ ∆∗, by [11, Proposition 2.1] the solvmanifold
Xt does not have holomorphically trivial canonical bundle for any t 6= 0. Indeed, Jt does
not belong to (i) or (ii) for t 6= 0, see Remark 3.2. Moreover, from the complex structure
equations (17) one also has that Jt does not belong to the family (iii), because there are
not non-zero invariant holomorphic (1,0)-form for t 6= 0. In conclusion, Jt is not of splitting
type for any t 6= 0. �

Remark 3.4. All the complex structures Jt given in the proof of Theorem 3.3 admit bal-
anced metrics.

3.2. The ∂∂̄-Lemma on a family of splitting-type complex structures on the Naka-
mura manifold. In [11, Proposition 3.7] the complex structures on the Lie algebra s12

giving rise to complex solvmanifolds with holomorphically trivial canonical bundle are clas-
sified. There are two complex structures, denoted in the aforementioned paper by J ′ and
J ′′, and a family JC parametrized by C ∈ C with ImC 6= 0 which can be represented by a
(1, 0)-co-frame

{
ω1
C , ω

2
C , ω

3
C

}
with structure equations:

(18) JC :


dω1

C = −(C − i)ω13
C − (C + i)ω13̄

C ,

dω2
C = (C − i)ω23

C + (C + i)ω23̄
C ,

dω3
C = 0.

Observe that all the structures JC are of splitting type, whereas J ′ and J ′′ are not.
Moreover, the family (18) unifies the complex structures (i) and (ii) of Proposition 3.1.

Concretely, if C = −i in (18) then we obtain the complex-parallelizable structure J̃ in
Proposition 3.1, whereas if C 6= −i then the complex structure JC corresponds to the
complex structure JA in the family (ii) of Proposition 3.1 for A = −(C − i)/(C̄ − i). Thus,
the connected and simply-connected solvable Lie group G12 with Lie algebra s12, endowed
with a left-invariant complex structure JC given by (18), may be written as a semi-direct
product (G12, JC) = C nϕC C2, where the action ϕC is described by a diagonal matrix (3)
and the characters αC1 , α

C
2 : C→ C∗ are

(19) αC1 (z3) = e−(C−i)z3−(C+i)z̄3 , αC2 (z3) = αC1 (z3)−1.

Now, we are concerned with the construction of lattices Γ in (G12, JC) compatible with
the splitting. They are of the form Γ = Γ′ nϕC Γ′′, where Γ′ and Γ′′ are lattices of C and
C2 respectively and Γ′ is compatible with the splitting, in other words, ϕC(z) (Γ′′) ⊆ Γ′′ for
any z ∈ Γ′. The former condition implies that ϕC |Γ′ must be in the conjugation class of a
matrix in GL(2,Z).

Lemma 3.5. For every C ∈ C with ImC 6= 0, the lattice Γ′C := π
2ImC (1 − iReC)Z ⊕

i
2 log( 3+

√
5

2 )Z of C is compatible with the splitting ϕC given by the characters (19). Thus,
the complex solvmanifold XC := (G12/ΓC , JC) is of splitting type, where ΓC := Γ′C nϕC Γ′′

and Γ′′ is a lattice of C2.

Proof. After computing its characteristic polynomial, it turns out that the diagonal ma-
trix (3) with characters (19) is in the conjugation class of a matrix in GL(2,Z), if the

condition (C − i)z3 + (C + i)z̄3 = log(n+
√
n2−4
2 ) holds for some n ∈ Z. In particular, fixed

C ∈ C with ImC 6= 0, we get z3 = π
2ImC (1− iReC) for n = −2 and z3 = i

2 log( 3+
√

5
2 ) for

n = 3. Therefore, Γ′C = π
2ImC (1− iReC)Z⊕ i

2 log( 3+
√

5
2 )Z is a lattice of C compatible with

the splitting. �
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As a consequence of the previous lemma, we have a family {XC}ImC 6=0 of complex
solvmanifolds of splitting type with underlying real Lie algebra s12. We are interested
in knowing which of them satisfy the ∂∂̄-Lemma. The following result states a sufficient
condition in order to satisfy the ∂∂̄-Lemma. This condition is stated and proved in terms of
the differential complexes (B•,•Γ , ∂̄) and (C•,•Γ , ∂, ∂̄) defined by Kasuya [18], respectively, by
Kasuya and the first author [3]. Recall that such complexes allow to compute the Dolbeault,
respectively the Bott-Chern cohomology of complex solvmanifolds of splitting type.

Lemma 3.6. Let X = (G/Γ, J) be a complex solvmanifold of splitting type. If ∂|B•,•Γ
=

∂̄|B•,•Γ
= 0 and Bq,pΓ = Bp,qΓ for all p, q ∈ N, then X satisfies the ∂∂̄-Lemma.

Proof. If the complex (B•,•Γ , ∂, ∂̄) satisfies Bq,pΓ = Bp,qΓ for all p, q ∈ N then, since C•,•Γ :=

B•,•Γ +B•,•Γ , it holds C•,•Γ = B•,•Γ . Furthermore, the condition ∂|B•,•Γ
= ∂̄|B•,•Γ

= 0 forces the

natural isomorphisms

H•,•BC(X) ∼= H•,•BC(CΓ) = C•,•Γ = B•,•Γ = H•,•
∂̄

(BΓ) ∼= H•,•
∂̄

(X).

Hence, X satisfies the ∂∂̄-Lemma. �

Now we recall the construction of the differential complex (B•,•ΓC
, ∂̄) defined in [18, Corol-

lary 4.2] in order to compute the Dolbeault cohomology ofXC . For any complex solvmanifold
in the family {XC}ImC 6=0, consider a set {z1, z2} of local coordinates on C2 and z3 a local
coordinate on C. We have the following basis {ω1

C , ω
2
C , ω

3
C} of left-invariant (1, 0)-forms,

where ω3
C = dz3 and

ω1
C =

(
αC1
)−1

dz1 = e(C−i)z3+(C+i)z̄3dz1, ω2
C =

(
αC2
)−1

dz2 = e−(C−i)z3−(C+i)z̄3dz2,

satisfying the complex structure equations (18). Now, the unitary characters

βC1 , β
C
2 , γ

C
1 , γ

C
2 : C→ C∗ satisfying that αC1

(
βC1
)−1

, αC2
(
βC2
)−1

, ᾱC1
(
γC1
)−1

, ᾱC2
(
γC2
)−1

are

holomorphic and required to construct the double complex (B•,•ΓC
, ∂̄) are:

(20)
βC1 (z3) = e(C̄−i)z3−(C+i)z̄3 , βC2 (z3) = βC1 (z3)−1 = e−(C̄−i)z3+(C+i)z̄3 ,

γC1 (z3) = e(C−i)z3−(C̄+i)z̄3 , γC2 (z3) = γC1 (z3)−1 = e−(C−i)z3+(C̄+i)z̄3 .

Following [18, Corollary 4.2], [3, Theorem 2.16], and defining for the sake of simplicity that
βC3 = γC3 ≡ 1, we have that for XC the complexes B•,•ΓC

and C•,•ΓC
are generated by:

(21)
Bp,qΓC

=

〈
βCI ω

I
C ∧ γCJ ω̄JC

∣∣∣∣∣ the restriction of βIγJ on ΓC is trivial

|I| = p, |J | = q

〉
,

Cp,qΓC
= Bp,qΓC

+ B̄p,qΓC
,

where (p, q) ∈ N2. Taking into account the expressions in (20), it turns out that the restric-
tions induced by the characters on the generators in (21) reduce in our case to satisfy one
of the following conditions:

βC1 |ΓC = 1, γC1 |ΓC = 1,
(
βC1 γ

C
1

)
|ΓC = 1,

(
βC1
(
γC1
)−1
)
|ΓC = 1.

From now on, we will express the generators of the complexes B•,•ΓC
and C•,•ΓC

in terms of the
following:
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(22)


ϕ1 := βC1 ω

1
C = e(C+C̄−2i)z3dz1,

ϕ2 := βC2 ω
2
C = e−(C+C̄−2i)z3dz2,

ϕ3 := dz3,


ϕ̃1 := γC1 ω

1̄
C = e(C+C̄−2i)z3dz̄1,

ϕ̃2 := γC2 ω
2̄
C = e−(C+C̄−2i)z3dz̄2,

ϕ̃3 := dz̄3,

where ϕ1, ϕ2, ϕ3 have bidegree (1, 0) and ϕ̃1, ϕ̃2, ϕ̃3 have bidegree (0, 1). The complex struc-
ture equations expressed in the co-frame {ϕ1, ϕ2, ϕ3, ϕ̃1, ϕ̃2, ϕ̃3} are:

(23)


dϕ1 = −(C + C̄ − 2i)ϕ13,

dϕ2 = (C + C̄ − 2i)ϕ23,

dϕ3 = 0,


dϕ̃1 = (C + C̄ − 2i)ϕ31̃,

dϕ̃2 = −(C + C̄ − 2i)ϕ32̃,

dϕ̃3 = 0.

In the tables below, we shorten, e.g., ϕ12̃ := ϕ1 ∧ ϕ̃2.

Proposition 3.7. Let XC = (G12/ΓC , JC) be a complex solvmanifold according to
Lemma 3.5. Then, XC satisfies the ∂∂̄-Lemma if and only if C 6= i

k ∈ C, for 0 6= k ∈ Z.

Proof. Let C ∈ C with ImC 6= 0 and Γ′C be the lattice of C provided in Lemma 3.5. The
triviality of the products of the characters restricted to Γ′C behaves as follows:

(
βC1 γ

C
1

)
|Γ′C = 1, for any C,(

βC1
(
γC1
)−1
)
|Γ′C = 1, if and only if C = i

k with 0 6= k ∈ Z,

βC1 |Γ′C = γC1 |Γ′C = 1, if and only if C = i
2k+1 with k ∈ Z.

The computations of the double complex B•,•ΓC
and of the Hodge and the Betti numbers for

the solvmanifolds XC can be found in Table 8. The computations of these numbers reveal
that if C = i

k for 0 6= k ∈ Z then h2,0

∂̄
(XC) + h1,1

∂̄
(XC) + h0,2

∂̄
(XC) 6= b2(XC), thus XC

does not satisfy the ∂∂̄-Lemma. However, when C 6= i
k it turns out that the hypothesis of

Lemma 3.6 are satisfied by using the relations

ϕ̃1 ∧ ϕ̃2 = ϕ̄1 ∧ ϕ̄2, ϕ2 ∧ ϕ̃1 = −ϕ̄1 ∧ ¯̃ϕ2, ϕ1 ∧ ϕ̃2 = −ϕ̄2 ∧ ¯̃ϕ1,

of the generators (22), and the complex structure equations (23). Hence, all the correspond-
ing complex solvmanifolds XC for C 6= i

k satisfy the ∂∂̄-Lemma. �

3.3. The ∂∂̄-Lemma under holomorphic deformations. In this section we construct
complex solvmanifolds of splitting type with holomorphically trivial canonical bundle that
satisfy the ∂∂̄-Lemma by deforming structures that do not satisfy this last condition.

We consider the differential complexes (B•,•Γ,t , ∂̄) and (C•,•Γ,t , ∂, ∂̄) and the techniques intro-

duced in [4] to compute the Dolbeault and Bott-Chern cohomologies of small deformations.
In particular, by means of the computation of the cohomologies of the complex-parallelizable
structure on the Nakamura manifold, the non-closedness of the ∂∂̄-Lemma property under
holomorphic deformations is proved in [4, Corollary 6.1]. Using the splitting-type complex
geometry on s12, we extend this result to the following:

Theorem 3.8. There is an infinite family of complex solvmanifolds {Xk}k∈Z not satisfying
the ∂∂̄-Lemma and admitting a small holomorphic deformation {(Xk)t}t∈∆k

such that (Xk)t
does satisfy the ∂∂̄-Lemma for every t 6= 0.

Moreover, the solvmanifolds {(Xk)t}t∈∆k
, k ∈ Z have holomorphically trivial canonical

bundle and are balanced.
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Proof. Consider the infinite family {Xk}k∈Z where Xk := XCk , Ck = i
2k+1 and XC is the

complex solvmanifold described in Lemma 3.5. By Proposition 3.7, Xk does not satisfy the
∂∂̄-Lemma for any k ∈ Z.

We consider an open disc ∆k := ∆(0, εk) ⊂ C for εk > 0 small enough, and the fam-
ily {(Xk)t}t∈∆k

, k ∈ Z, of holomorphic deformations of Xk given by the (1, 0)-co-frame{
ω1
Ck,t

:= ω1
Ck

, ω2
Ck,t

:= ω2
Ck

, ω3
Ck,t

:= ω3
Ck

+ t ω̄3
Ck

}
. For simplicity, we will denote ωiCk,t

as ωik,t. The structure equations become:
dω1

k,t = − (Ck−i)+(Ck+i) t̄
1−|t|2 ω13

k,t −
(Ck+i)+(Ck−i) t

1−|t|2 ω13̄
k,t,

dω2
k,t = (Ck−i)+(Ck+i) t̄

1−|t|2 ω23
k,t + (Ck+i)+(Ck−i) t

1−|t|2 ω23̄
k,t,

dω3
k,t = 0.

It is easy to see that the previous complex structures are of splitting type, and therefore,
there exist balanced metrics (see Table 6). Moreover, since dω123

k,t = 0, the solvmanifolds
have holomorphically trivial canonical bundle.

Taking into account the characters αC1 , αC2 , βC1 , βC2 , γC1 , γC2 described in (19) and (20),
we define the generators of the complex B•,•ΓCk ,t

= ∧•,•〈ϕ1
t , ϕ

2
t , ϕ

3
t , ϕ̃

1
t , ϕ̃

2
t , ϕ̃

3
t 〉 associated to

the complex solvmanifold (Xk)t:
ϕ1
t := βCk1 ω1

k,t = exp (−2 i z3) dz1,

ϕ2
t := βCk2 ω2

k,t = exp (2 i z3) dz2,

ϕ3
t := ω3

k,t = dz3 + t dz̄3,


ϕ̃1
t := γCk1 ω1̄

k,t = exp (−2 i z3) dz̄1,

ϕ̃2
t := γCk2 ω2̄

k,t = exp (2 i z3) dz̄2,

ϕ̃3
t := ω3̄

k,t = dz̄3 + t̄ dz3,

where ϕ1
t , ϕ

2
t , and ϕ3

t have bi-degree (1, 0) and ϕ̃1
t , ϕ̃

2
t , and ϕ̃3

t have bi-degree (0, 1), as
explicitly described in Table 9. Consider also the bi-differential bi-graded double complex

C•,•ΓCk ,t
:= B•,•ΓCk ,t

+B•,•ΓCk ,t

of vector spaces, where

ϕ̄3
t = ϕ̃3

t , ϕ̃1
t ∧ ϕ̃2

t = ϕ̄1
t ∧ ϕ̄2

t , ϕ1
t ∧ ¯̃ϕ1

t = 0, ϕ2
t ∧ ¯̃ϕ2

t = 0,

ϕ1
t ∧ ϕ̃2

t = ¯̃ϕ1
t ∧ ϕ̄2

t , ϕ2
t ∧ ϕ̃1

t = ¯̃ϕ2
t ∧ ϕ̄1

t , ϕ1
t ∧ ϕ̄1

t = ¯̃ϕ1
t ∧ ϕ̃1

t , ϕ2
t ∧ ϕ̄2

t = ¯̃ϕ2
t ∧ ϕ̃2

t ,

as explicitly described in Table 9. We compute the structure equations:



dϕ1
t = 2 i

1−|t|2 ϕ
1
t ∧ ϕ3

t − 2 t i
1−|t|2 ϕ

1
t ∧ ϕ̄3

t ,

dϕ2
t = − 2 i

1−|t|2 ϕ
2
t ∧ ϕ3

t + 2 t i
1−|t|2 ϕ

2
t ∧ ϕ̄3

t ,

dϕ3
t = 0,

d ¯̃ϕ1
t = − 2 i

1−|t|2
¯̃ϕ1
t ∧ ϕ̄3

t + 2 t̄ i
1−|t|2

¯̃ϕ1
t ∧ ϕ3

t ,

d ¯̃ϕ2
Ak,t

= 2 i
1−|t|2

¯̃ϕ2
t ∧ ϕ̄3

t − 2 t̄ i
1−|t|2

¯̃ϕ2
t ∧ ϕ3

t ,



dϕ̃1
t = − 2 i

1−|t|2 ϕ
3
t ∧ ϕ̃1

t − 2 t i
1−|t|2 ϕ̃

1
t ∧ ϕ̄3

t ,

dϕ̃2
t = 2 i

1−|t|2 ϕ
3
t ∧ ϕ̃2

t + 2 t i
1−|t|2 ϕ̃

2
t ∧ ϕ̄3

t ,

dϕ̃3
t = 0,

dϕ̄1
t = − 2 i

1−|t|2 ϕ̄
1
t ∧ ϕ̄3

t − 2 t̄ i
1−|t|2 ϕ

3
t ∧ ϕ̄1

t ,

dϕ̄2
t = 2 i

1−|t|2 ϕ̄
2
t ∧ ϕ̄3

t + 2 t̄ i
1−|t|2 ϕ

3
t ∧ ϕ̄2

t .

By [18, Corollary 1.3], [3, Theorem 2.16] and [4, Theorem 1.1, Theorem 1.2] (with respect
to the Hermitian metric g := ϕ1

t � ϕ̃1
t +ϕ2

t � ϕ̃2
t +ϕ3

t � ϕ̄3
t ), such complexes allow to compute

the Dolbeault cohomology and the Bott-Chern cohomology of (Xk)t.
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Note that the differential bi-graded algebra
(
B•,•ΓCk ,t

, ∂̄
)

and the bi-differential double

complex
(
C•,•ΓCk ,t

, ∂, ∂̄
)

of vector spaces do not depend on Ck; in particular, for any Ck =
i

2k+1 varying k ∈ Z, they are isomorphic to the corresponding object with k = −1, that

is, C = −i. Hence, it follows that the computations and the results in [4, §4] still hold for
any Ck. More precisely, we recall in Table 10 the harmonic representatives in the Dolbeault
cohomology, respectively Bott-Chern cohomology, with respect to the metric g.

In Table 7, we summarize the results of the computations by giving the Betti, Hodge, and
Bott-Chern numbers of the complex solvmanifolds Xk and of its small deformations (Xk)t.
From the results summarized in Table 10, we get that (Xk)t satisfies the ∂∂̄-Lemma for any
t 6= 0. �

dimCH
•,•
] (Xk)t

t = 0 t 6= 0

dR ∂̄ BC ∂̄ BC

(0,0) 1 1 1 1 1

(1,0)
2

3 1 1 1

(0,1) 3 1 1 1

(2,0)

5

3 3 1 1

(1,1) 9 7 3 3

(0,2) 3 3 1 1

(3,0)

8

1 1 1 1

(2,1) 9 9 3 3

(1,2) 9 9 3 3

(0,3) 1 1 1 1

(3,1)

5

3 3 1 1

(2,2) 9 11 3 3

(1,3) 3 3 1 1

(3,2)
2

3 5 1 1

(2,3) 3 5 1 1

(3,3) 1 1 1 1 1

Table 7. Summary of the dimensions of the de Rham, Dolbeault, and
Bott-Chern cohomologies of the complex solvmanifolds (Xk)t.
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Appendix A. Reduction of parameters

In this appendix we show how to reduce the value of the parameters in the algebras

sα5 , s
α, β
6 , sα7 , s

α
8 , s

α,β
10 , sα11 according to Theorem 1.7.

Let us consider the following changes from a basis {e1, . . . , e6} to another real basis
{f1, . . . , f6}, where λ is a non-zero real number:

ChA f i = ei, i = 1, 3, 5, 6, f2 = e4, f4 = e2.

ChB f i = ei, i = 1, 2, 5, 6, f3 = e4, f4 = e3.

ChC f i = ei, i = 1, 3, 6, f2 = −e2, f4 = −e4, f5 = −e5.

ChD f i = ei, i = 1, 2, 3, 5, 6, f4 = −e4.

ChE f1 = e3, f2 = −e4, f3 = e1, f4 = −e2, f5 = −λe5, f6 = e6.

ChF f i = ei, i = 2, 4, 6, f1 = −e5, f3 = e1, f5 = e3.

ChG f1 = e3, f2 = e4, f3 = e1, f4 = e2, f i = ei, i = 5, 6.

ChH f1 = e3, f2 = e4, f3 = e1, f4 = e2, f5 = λe5, f6 = −e6.

Case sα5 : Consider sα5 where α ∈ R, with structure equations

sα5 = (e15, e25,−e35 + α e45,−α e35 − e45, 0, 0), α ∈ R.
Then:

• If α = 0, change ChA gives the isomorphism s0
5
∼= s4.

• Change ChB gives the isomorphism sα5
∼= s−α5 .

Therefore, we can suppose α > 0.

Case sα,β6 : Consider sα,β6 where α, β ∈ R, with structure equations

sα,β6 = (α e15 + e25,−e15 + α e25,−α e35 + β e45,−β e35 − α e45, 0, 0), α, β ∈ R.
Then:

• Change ChC gives the isomorphism sα,β6
∼= s−α,β6 .

• Change ChD gives the isomorphism sα,β6
∼= sα,−β6 .

• If α = 0, s0,β
6
∼= sβ7 .

• If β = 0 and α 6= 0, change ChE with λ = α gives the isomorphism sα,06
∼= s

1
α
5 .

• If β = 1, sα,16
∼= sα8 .

• If β 6= 0, 1, change ChE with λ = β gives the isomorphism sα,β6
∼= s

α
β ,

1
β

6 .

Therefore, we can suppose α > 0 and β ∈ (0, 1).

Case sα7 : Consider sα7 where α ∈ R, with structure equations

sα7 = (e25,−e15, α e45,−α e35, 0, 0), α ∈ R.
Then:

• If α = 0, change ChF gives the isomorphism s0
7
∼= s2.

• Change ChD gives the isomorphism sα7
∼= s−α7 .
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• Change ChE with λ = α gives the isomorphism sα7
∼= s

1
α
7 .

Therefore, we can suppose 0 < α ≤ 1.

Case sα8 : Consider sα8 where α ∈ R, with structure equations

sα8 = (αe15 + e25,−e15 + αe25,−αe35 + e45,−e35 − αe45, 0, 0), α ∈ R.

Then:

• Observe that s0
8
∼= s1

7.

• Change ChC gives the isomorphism sα8
∼= s−α8 .

Therefore, we can suppose α > 0.

Case sα11: Consider sα11 where α ∈ R, with structure equations

sα11 = (e16 − e25, e15 + e26,−e36 − αe45, αe35 − e46, 0, 0), α ∈ R.

Then:

• If α = 0, change ChG gives the isomorphism s0
11
∼= s9.

• Change ChB gives the isomorphism sα11
∼= s−α11 .

• Change ChH with λ = α gives the isomorphism sα11
∼= s

1
α
11.

• Change ChB gives the isomorphism s1
11
∼= s12.

Therefore, we can suppose α ∈ (0, 1).
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