
Modeling flocks with perceptual agents from a

dynamicist perspective

Angel Zaldivar Pino

Manuel Gonzalez Bedia
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Abstract

Computational simulations of flocks and crowds have typically been processed by

a set of logic or syntactic rules. In recent decades a new generation of systems has

emerged from dynamicist approaches in which the agents and the environment are

treated as a pair of dynamical systems coupled informationally and mechanically. Their

spontaneous interactions allow them to achieve the desired behavior. The main propo-
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sition assumes that the agent does not need a full model or to make inferences before

taking actions; rather, the information necessary for any action can be derived from the

environment with simple computations and very little internal state. In this paper we

present a simulation framework in which the agents are endowed with a sensing de-

vice, an oscillator network as controller and actuators to interact with the environment.

The perception device is designed as an optic array emulating the principles of the an-

imal retina, which assimilates stimuli resembling optic flow to be captured from the

environment. The controller modulates informational variables to action variables in

a sensory-motor flow. Our approach is based on the Kuramoto model that describes

mathematically a network of coupled phase oscillators and the use of evolutionary

algorithms, which is proved to be capable of synthesizing minimal synchronization

strategies based on the dynamical coupling between agents and environment. We carry

out a comparative analysis with classical implementations taking into account several

criteria. It is concluded that we should consider replacing the metaphor of symbolic in-

formation processing by that of sensory-motor coordination in problems of multi-agent

organizations.

Keywords: crowd simulation, flocking simulation, dynamical modeling, oscillators net-

works, artificial evolution
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1 Introduction

The cost of producing animated movies is high. The fundamental objective of computer an-

imation programming is to select techniques and design tools that are expressive enough for

animators to specify what they intend, yet at the same time are powerful enough to relieve

animators of the task of specifying any details they are not interested in [1]. At the highest

level of abstraction, the animator becomes director. At his command are ”intelligent” char-

acters who know how to get the job done. They only need to be told what to do. It is the

character’s job to find a way of completing the task.

There are many issues in computer animation and simulation when it is necessary to

model virtual crowds of autonomous agents, in which the motion of an animated charac-

ter is choreographed based on procedural or rule-based motion techniques [2][3]. Usually,

the procedural techniques are used with physics-based animation, and rule-based motion

techniques are used with behavioral or intelligent animation. Symbolicism has been the pre-

vailing paradigm in the world of virtual agents simulation, often encountering some serious

drawbacks when dealing with real world problems; principally, low expressiveness, hard

implementation and the limits imposed by the richness of the environment.

In this work we approach the problem from a dynamic perspective, assuming that the

agent does not need a full model or to make inferences about the environment before taking

actions, with simple computations and very little internal state. We argue that such a spec-

ification involves the coupling of sensory information with appropriately structured control
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systems to generate action.

Our objective can be defined as modeling the locomotory behavior of virtual worlds

based on perceptually controlled dynamic agents whose control architecture is a dynamical

system, which will modulate informational variables captured by the visual sensing device

into action variables understandable to an actuator mechanism under a sensory-motor flow.

The novelty of our proposal focuses on the design of a synthetic sensory perception

model that emulates the principles of geometric projection and stimulus translation that

occur in vertebrate retina, and the linking of this model with the controller through dynamic

laws.

The approach aims to replace the notion of symbolic representation and processing by

modeling in terms of dynamical coupling as a more appropriate metaphors for defining

adaptive behavior in virtual agents.

The paper is organized as follows. The following section discusses some related works

about the dynamic perspective of behaviour, perception and synchronization. We then

present the methods adopted in our model, including the framework for defining an agent as

an autonomous entity controlled by a dynamical system, the details of the agent perception

and a description of the artificial evolution scheme to optimize the parameters of the sys-

tem. Following this, we present the results, which show details of the time-series analysis

of the simulations and the behaviour of the oscillators network. In order to illustrate the

potential of the proposal, we carry out a comparative analysis with simulations of classical

implementations under qualitative, quantitative and information-theoretic perspectives. The
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paper closes with a discussion of the results obtained and proposals for future work.

2 Related works

A virtual agent is a system which has intrinsic goals and exhibit a behavior in a specific

domain. In ideal terms, the agent must be able to carry out activities in a flexible manner.

Some definitions of ”intelligent” agents emphasize goal-directed behavior as the essence of

intelligence. An autonomous entity observes through sensors and acts upon an environment

using actuators. These characteristics suggest that an agent acts as an automaton, having a

close resemblance to an animal’s sensory-motor situation. According to Wilson, an animal

exists in a sea of sensory signals, where only some signals are significant. The animal is

capable of actions which tend to change these signals [4].

As regards with the natural resemblance Douglas et al. [5] suggest that vision should

not be viewed as passive information processing but rather as an active ”integrated sensory-

motor event” [6][7]. The most widely adopted theory about animal perception is derived

from the Ecological Psychology of J.J. Gibson [8][7]. The concept of ”direct perception”

assumes that an animal and its environments are inseparable pairs that should be described

in terms of a relevant scale to the animal’s behavior. A principal tenet of the direct percep-

tion approach is that the perceived stimulus provides adequate information for controlling

behavior without further inferential processing or model construction. The animal has direct

knowledge of, and also a relationship to, its environment as a result of natural laws. The
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Gibsonian approach can be summarized as follows: it is more desirable to put the animal in

its environment than to put the environment in the animal.

Gibson introduced the notion of optical flow as being the pattern of the apparent motion

of elements in an environment caused by the relative motion of an observer. The concept de-

scribes the visual stimulus provided to animals moving through the world. The conversion

of this innate ability to a computer capability is crucial in the field of machine vision. The

term optical flow has been co-opted by roboticists to incorporate related techniques from

the fields of image processing and navigation control, such as motion detection, object seg-

mentation, time-to-contact information, focus of expansion calculations, luminance, motion

compensated encoding, and stereo disparity measurement [9][10].

Furthermore, the concept of ”affordance” has been applied in the modelling of path-

planning and steering for crowds and groups [11]. Each agent perceives the environment

through a set of vector and scalar fields, the egocentric property allows to compute a lo-

cal space-time plan. The perception fields is used to compute a fitness measure for every

possible action, defined as an affordance field.

The last two decades have also witnessed radical changes of perspective about the na-

ture of behaviour, leaving behind some of the assumptions of computational functionalism

[12][8]. Several works [13][14][15][16][12] have advanced the claim that behaviour is not

well understood as symbolic manipulation or connectionist processing, but rather as com-

plex, dynamical interactions of an agent with its environment. These ideas can be used to

explain the internal processing which underlies an agent’s interactions with the environment,
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where the coupled nature of a system of equations replaces the idea of ”representation”.

Differential equations systems can capture the agent’s behavior through a multi-dimensional

space under certain environmental and internal pressures, with low dimensional descriptions

[15][16][17][8]. The system should be described at a scale relevant to the agent’s behavior

and the work of the controller is seen as an interaction of internal and external forces rather

than the product of representations and sequential operations.

In the context of crowd simulation there are a series of works that have enriched our

vision. A seminal paper that adopts a dynamic approach for crowds modelling is the work

of Helbing and Molnar [18]. Here, a system of Non-Linear Equations captures the motion

by including several force terms as acceleration, repulsion and attraction. Schuerman et al.

propose an advanced abstraction of a crowd [19], the steering logic of an agent can influence

the steering decisions of any agent within their sphere of influence. The work of Treuille

et a.l is an attempt to bring computational crowds to the real crowds [20], which is based

on continuum dynamics. A dynamic potential field integrates global navigation and obsta-

cle without the need of an explicit description of the behaviour. The predictive approach

in autonomous navigation have been used in some works, the key issue is that each agent

perceives surrounding agents and extrapolates their trajectory in order to react to potential

collisions [21]. With the same focus Berg and Manocha [22] propose a model in which each

agent assumes that the other agents make a similar collision-avoidance reasoning. A relevant

approach based on artificial life is the work of Shao and Terzopoulos [23], this paper ad-

dresses the rich complexity of real pedestrians in urban environments. The model integrates
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motor, perceptual, behavioral, and cognitive components. The environment is represented

using hierarchical data structures, which efficiently support the perceptual queries of the

agent their behavioral responses and sustain their ability to plan their actions on local and

global scales. Berseth et al. provided a broad view of parameters selection in crowds [24].

This paper investigates the effect that these parameters have on an algorithm’s performance,

including statistical analysis of the correlations between parameters and performance crite-

ria. An interesting extension of Reynolds’s model is the work of Hartman and Benes [25],

the paper introduce a complementary force to model the leadership on the flock. The work

show the drawbacks that appear in the extension of a rule base system.

Furthermore, much work has been done on dynamical systems as controllers of com-

plex motor behaviors, particularly in the field of locomotion [26]. However, to date there

has been very little research on the wider issues in the generation of embodied cognitive

behaviors. One of the pioneering steps in this direction is the work of Moioli [27] in which

a network of oscillators was used as the controller of simulated robotic agents engaged in

some simple tasks. The model used is based on the Kuramoto model of coupled phase oscil-

lators [28][29][30]. Their main contribution is to suggest how oscillatory networks can be

provided with input and output mechanisms so that they are able to engage in sensory-motor

brain-body-environment loops, allowing robust adaptive couplings between perceptive ac-

tivity and environmental dynamics.

The Kuramoto model consists of a population of oscillators whose dynamics are gov-

erned as shown in equation (1).
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θ̇i = ωi +
n∑
j=1

kijsin(θj − θi), i = 1, 2, ..., n (1)

where n is the number of oscillators, θi is the phase of the i− th oscillator, ωi is the natural

frequency and kij is the coupling gain. This formalism provides a class of dynamical system

where the phase differential θ̇ changes at each instant of time the oscillators phase, as shown

in equation (2).

θi(t+ ∆t) = θi(t) + θ̇i∆t; ∆t = 1 (2)

The oscillators are said to synchronize if the phase differences given by θj − θi,∀i, j =

1, 2, ..., n become asymptotically constant. Imagine these oscillators as points in a circle.

The points then move with the same angular frequency and, hence, the angular distance

(phase difference) between the points remains constant with time. The order parameter r is

defined as shown in equation (3).

reiψ =
1

n

n∑
j=1

eiθj (3)

where ψ is the average phase. The order parameter r(t) with 0 ≤ r(t) ≤ 1 is a measure

of phase coherence of the oscillator population. If the oscillators synchronize, then the

parameter converges to a constant r∞ ≤ 1, but if the oscillators add incoherently then the

order parameter r remains close to zero.
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3 Mathematical framework

The standard model of our theoretical framework is an embodied and situated agent to-

gether with its environment. The agent can be described mathematically as a function that

associates the sensor inputs to the motor outputs as shown in equation (4).

O(t) = C(I(t), e) (4)

where I(t) represents the input vector defined by the sensor readings of the agent, O(t)

is the output vector, C is the function which maps every possible percept sequence to a pos-

sible action, and e is the vector of evolved parameters that characterize the controller. This

suggests that a specific architecture can be used to perform different tasks in a specific envi-

ronment simply by modifying the configuration of its controller; in other words, subjecting

it to a different evolutionary synthesis.

The analytical form of the function C will be based on equation (1), containing the

system of differential equations that represents the agent’s control core. This function in-

duces correlations, thus reducing the high dimensional sensory space to a low-dimensional

sub-space of actions [17][31].

Equation (4) is analogous to Gibson’s principle of direct perception expressed as ∆Finternal =

g(∆flow), where the change in the agent’s internal forces is a function of the change in the

optic flow.

In the following sections we describe our proposal, defining the structures of body, envi-
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ronment and controller (unspecified in their parameter values). We first discuss a 2D model

of our synthetic retina, before going on to describe 3D perception. Both models are de-

scribed through three guidelines: (a) the sensory layer, (b) the iterative behavior loop and

(c) the body structure. The evolutionary synthesis process is described in the last section.

3.1 2d retinal perception

The vertebrate retina is a light-sensitive layer of tissue interconnected by synapses, which

is responsible for the conversion of patterns of light into neuronal signals. Transduction is a

cascade of chemical and electrical events through which energy from environmental stimuli

is converted to neural activity for the brain to understand and process. Several important fea-

tures of visual perception can be traced to the retinal encoding for processing light. Motion

perception is the process of inferring the speed and direction of elements in a scene based

on visual inputs. This process has proven to be a difficult problem from a computational

perspective, and extraordinarily difficult to explain in terms of neural processing. When an

image moves across the retina, it stimulates a number of receptors sequentially. The brain

reads the message and thus can determine the direction of movement, taking into account

the direction in which the cells are triggered and the speed.

Mobile agents in a virtual environment are exposed to a continuous stream of ever-

changing sensory stimulation, and all the elements of a virtual environment are usually

geometrically defined. So, we have new circumstances for collecting information from
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the environment where the optical flow can be extracted from the relative position of the

observer and the elements of the environment with simple vector processing. The agent

can simply concentrate on detecting coordinates, resulting in relatively simple optical flow

detection. For this it is essential to have a sensor that detects motion by spatio-temporal

correlation.

It must be taken into account that the nature of the stimulus must be consistent with the

function of the agent in the environment, and therefore the sensory system design. In addi-

tion, the actuators must be designed according to the environment where the agent moves.

The key points in this step are that the coupling of the sensor to the controller should be

intuitive for the proposed architecture and the coupling of the actuators with the controller

output compatible with its own dynamics.

Sensory layer: Our model consists of an agent in a two dimension environment. The

sensor detects the position of a particle within its field of view, the point is projected using

geometric equations to a discrete array S1×m of length m that registers the stimulus, as

shown in Figure 1.

The lineL1 is defined by the particle position P1(x1, y1) and the projection point P2(x2, y2)

(agent position in the space) and line L2, being defined by two distinct points P3(x3, y3),

and P4(x4, y4). This line is defined orthogonally to the velocity vector of the agent and at a

empirical distance from the point P2. The intersection point P (x, y) between L1 and L2 de-

termines the index i of array S that is stimulated by the projection of the particle, as shown

in equation (5).
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x = (x1y2−y1x2)(x3−x4)−(x1−x2)(x3y4−y3x4)
(x1−x2)(y3−y4)−(y1−y2)(x3−x4)

y = (x1y2−y1x2)(y3−y4)−(y1−y2)(x3y4−y3x4)
(x1−x2)(y3−y4)−(y1−y2)(x3−x4)

u = (y−y3)
(y4−y3)

i = bu ∗mc

(5)

where x and y are the coordinates of the intersection point P , u is the value of indepen-

dent variable for the point P in the parametric equation of L2 (u ∈ [0..1]) and i is the index

of the array S that is stimulated by the ray L1.

Figure 1: 2d retinal device. A particle within the field of view is projected geometrically in
a sensitive array and is translated into a vector that registers the stimulus.

An individual receives signals within a small surrounding neighborhood. The neighbor-

hood is characterized by a distance and an angle (measured from the center of the agent and

with respect to the velocity vector, respectively). Signals from outside the local neighbor-

hood are ignored. The neighborhood could be considered a model of limited perception.

The vector S can capture stimuli at various levels according to the task to be performed.

The most elementary stimulation is constituted by a binary vector that does not contain a
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notion of movement because it only perceives at each instant of time the static position

of the particle, as shown in Figure 1. A more complex stimulus can register movement

patterns similar to optical flow, as shown in Figure 2. Here, the projection of the target

point on the cells is similar but the cells record the time during which the particle excites

a specific cell. The time is measured from the input to the visual field of the agent. From

the computational viewpoint, this corresponds to discrete values of the simulation time step.

The stimulus basically contains the direction of movement and speed. The direction of

movement is expressed by the ascending values for the leftward movement or descending

for the rightward movement registered in the stimulus vector. The velocity is expressed by

the magnitude of the values. The greater the values, the smaller the particle velocity by the

visual field and vice versa. If the particle is not within the visual field, the stimulus is zero.

Figure 2: Every sensitive cell records the time that the particle excites a specific cell. The
stimulus contains the direction of movement and speed of the particle that crosses the visual
field.

When there are many particles in the visual field, the general optical flow is calculated

averaging the stimulus generated by each particle independently, as shown in Figure 3. With

this new concept of stimulus, the agent basically has a notion of direction and speed of the

movement of agents in its environment.
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Figure 3: In order to calculate the total optical flow when the visual field is crossed by
more than one particle,the optical flow vectors generated for each of the particles must be
averaged. The resulting stimulus contains the average direction and the speed of the particles
of the neighborhood.

Iterative behavior loop: The agent movements are controlled by a network of three

coupled oscillators, all being connected to sensory stimuli, as shown in Figure 4. Each

stimulus S at a given instant is modulated by a matrix Am×3; this multiplication results in a

three value vector I1×3 which is coupled to each of the oscillators, as shown in equation (6).

Figure 4: Each sense at a given instant is modulated by a matrix A, and the resulting vector
I is coupled to each of the oscillators. This factor alters the oscillatory behavior of the
network according to environmental interactions.

At each time step, the oscillators network iterates seeking synchronization. The phase

differential from a node i is calculated following equation (6). The model is inspired by the

Kuramoto equations in such a way that the frequency of each node is the result of the sum
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of its natural frequency of oscillation with the scaled value of the sensory input related to

that node.

θ̇i = ωi + Ii +
n∑
j=1

kijsin(θj − θi), i = 1...3 (6)

where Ii is the value of the sensory inputs at instant t for the oscillator i, θi is the phase

of the i− th oscillator, ωi is the intrinsic frequency of the oscillators, and kij is the coupling

factor from the j − th to the i − th oscillator. At each iteration the phase from a node i is

calculated following equation (2).

The network coupling in our model allows that the natural activity of each oscillator

modulates the global activity of the network. The outputs of the system are defined as a

function of the phase differences of two particular oscillators (see equation (7)). In this way,

the behaviour emerges from the dynamical interplay between the neural system of an agent,

its body, and the environment, creating a sensory-motor loop.

Here, the result of the control process influences the operation of the process itself in

the next time step as negative feedback. Negative feedback tends to make a system self-

regulating. It can produce stability and reduce the effect of fluctuations [32]. Negative

feedback loops in which just the right amount of correction is applied in the most timely

manner can be very stable, accurate and responsive. It decreases the effects of unpredictable

influences from the system’s environment. This property allows our model to operate in any

realistic environment with many sources of noise or surprises.
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Body structure: Embodiment constitutes a physical grounding of the agent, which is

forced to face the kind of real-world issues organisms have to deal with. As a result, the

morphology of the body often plays a key role in the generation of behavior. Thus, the

body not only imposes constraints on the behavior of an agent, but it allows an agent to

exploit the world by means of sensory-motor coupling with the environment. The idea of

situatedness means that the agent is embedded in a world. Its whole interaction with the

environment is controlled by the agent itself [33][17][34]. So, the environment is a rich

source of constraints and opportunities for the agent.

The body structure of our agent is modeled abstractedly as a circular body with two

diametrically opposed motors which can move forward with different velocities[35][27].

The activation of the motors is defined, for the right and left motor, respectively as ar and al.

Thus, the sine of the relative phase between oscillators 1 and 2 activates the right motor while

the relative phase of oscillators 1 and 3 activates the left motor, as shown in equation (7). A

phase-sensitivity function is applied to each of the phase differences to reduce instabilities

in these differences caused by the resetting of the phase of each oscillator when it exceeds

2π.

ar = sin(θ1 − θ2) + 1.0

al = sin(θ1 − θ3) + 1.0

(7)

The position of the agent in the environment is characterized geometrically by direction

γ in scalar form in the range [0, 2π], and a vector position (xn, yn). At each iteration the
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new position is calculated according to equations (8).

vt = (ar + al)

va = (ar − al)/2.0

γ = γ + va

xn = xn + vt · cos(γ)

yn = yn + vt · sin(γ)

(8)

where vt is the magnitude of displacement, va is the angle variation, γ is the new direc-

tion angle (normalized) and xn and yn is the new position in x and y axes respectively. Due

to the abstract design of the body, the agent has only two directions to turn (right or left) in

a time step.

The formalism described above provides a dynamical system which can be parame-

terized by specifying the modulation matrix, the specific values for the frequency of the

oscillators, and the coupling factor between the oscillators ([ω1, ω2, ω3, Am×3, k3×3]). For

example, the exact encoding for defining an agent whose retina has three cells is a vector

that contains the three frequency values of the oscillators ωi, the modulation matrix A of

three by three for a total of 9 elements and the coupling matrix k, where nine values are

needed for a three oscillators network. This configuration uses 21(3 + 9 + 9) genes of 8 bits

each, for a total of 168 bits.
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3.2 3d retinal perception

Sensory layer: In order to extend the concept of the synthetic retina proposed in the previous

section for 3d spaces, we designed a sensor that can see inside a conical viewing volume,

which is defined by the angle d and depth l as shown in Figure 5. Using geometric equa-

tions, the particles within the volume are projected to the corresponding receptor cell and

translated into a matrix, similarly to the 2d retina model. If there is no stimulus within the

volume, the matrix is zero.

The line L is defined by the particle position P1 and the projection point P2 (agent po-

sition in 3-dimensional space). The plane S is defined by a normal vector N that coincide

with the velocity vector of the agent (normalised) and point P3 defined at a empirical dis-

tance from P2 on the plane.

Consider the point P the intersection between the line L and the plane S. The equation

of a plane can be written asN ·(P −P3) = 0. The equation of the line L (point P on the line

passing through points P1 and P2) can be written as P = P1 + u(P2−P1). The intersection

of these two occurs when N · (P1 + u(P2 − P1)) = N · P3. Solving for u gives as shown in

equation (9).

u =
N · (P3 − P1)

N · (P2 − P1)
(9)

where u is the value of independent variable for the point P in the parametric equation

of L (evaluating any of the components in the vector equation).
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On the other hand, a plane may be described parametrically as the set of all points as

shown in equation (10)

P = P3 + sV + tW (10)

where s and t range over all real numbers, V and W are given linearly independent

vectors defining the plane, and P3 is the vector representing the position of an arbitrary

point on the plane. Solving the system of equations we obtain the parameters s and t. After

a simple process of transformation and discretization based on the position and dimension

of the plane in the space, s′ and t′ will define the cell of the matrix S that is stimulated by

the ray L.

The matrix can capture stimuli at various levels according to the task to be performed,

from an elementary stimulation that does not contain a notion of movement to a more com-

plex stimulus as an optical flow.

Iterative behavior loop: The coupling of the sensing device with the controller within

the iterative behavior loop has the same philosophy as that described in relation to the 2d

space. The agent’s movement is controlled by a network of three coupled oscillators, all

being connected to sensory stimuli as shown in Figure 6. The retinal matrix is transformed

into a vectorR product of the concatenation of its rows. Each sense is modulated by a matrix

A at a given instant. This multiplication results in a three value vector I which is coupled

to each of the oscillators, in the same way as shown in equation (6). At each iteration the
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Figure 5: Synthetic retina model in 3d spaces. Here, the particle goes through the view
volume, which is projected onto a sensitive plane for activate the corresponding cell in each
time step.

phase from a node i is calculated following equation (2).

Figure 6: 3d retinal device. Each sense at a given instant is modulated by a matrix A.
The resulting vector I is coupled to each of the oscillators. This factor alters the oscillatory
behavior of the network according to environmental interactions.

Body structure: The body structure of our agent is modeled abstractedly as a flying en-

tity which can change its direction of flight in 3d space as a function of two real values that

express x and y axis rotation, corresponding to the pitch and yaw rotation angles, respec-

tively. The outputs of the system can then be defined as the sine of the phase differences of

two particular oscillators, as shown in equation (11).
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rx = sin(θ1 − θ3)

ry = sin(θ1 − θ2)
(11)

where θi is the phase of the i−th oscillators in a time step t, and rx and ry are the rotation

angles in the local system of the agent (pitch and yaw rotation), respectively. A phase-

sensitivity function is applied to reduce instabilities in the value of the phase differences.

The position of the agent in the environment is characterized geometrically by a direction

vector and a position vector. At each iteration the new direction vector is calculated using the

equations of rotation of a vector in the space according to the angles rx and ry. Subsequently,

the new position is calculated by displacing the current position point on the path to the new

direction vector, using the parametric equation of the segment.

The genetic encoding for the 3d agent can be represented by the vector ([ω1, ω2, ω3, A9×3, k3×3]).

3.3 Evolving a dynamic agent

At this point we have a prototype of embodied and situated agents intimately linked to a

specific environment. Their parameter values are unspecified. However, we have no clues

for providing behavior or specific methods for designing complex systems with many inter-

acting parts. In complex systems modeling, it is more fruitful to focus on the most simple

substrate. Thus, a good method is to use an open-ended synthesis system where some param-

eters of the model are not specified in the design because this is very difficult to do by hand

[36][13][37]. Living systems are dynamical systems designed through natural Darwinian
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evolution, so it makes sense to consider the artificial equivalent to this design process using

evolutionary techniques [38]. Here, the designer plays a passive role, the genetic algorithm

is responsible for finding the parameters to execute the behavior. For this it is necessary to

model the agent-environment interaction in a parameterized agent and weighting the desired

performance on the fitness function [39][38][40].

In our case, genetic algorithms make it easier for us to explore and exploit the complex

dynamics of sensory-motor loops in greater depth [41]. Also, partly due to its stochastic

nature, evolution can find several different (and equally viable) solutions. When evolution is

complete, the agents with positive results are taken and the way in which they solve the task

is analyzed. There is nothing preventing the use of evolutionary algorithm for optimizing

both the body and the controller of the agent. This allows us to explore the possibilities

of the agent in its environment in greater depth and reduces the severity of the problem of

selecting an appropriate body structure a priori [27].

According to a computationalist conception, the attitude of an agent towards environ-

mental changes can include a variety of mechanisms that produce adaptive changes in an

individual during its lifetime. However, the dynamicist perspective of adaptability changes

drastically. In a changing and unpredictable environment, an agent controller cannot always

be designed beforehand, but a suitable controller may be evolved depending on the situation

of the environment. If a species evolves in a changing environment there will be evolution-

ary pressure in favor of individuals with the ability to learn during their lifetime. The ability

to learn allows individuals to maximize their adaptability to the environment. This is known
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as Baldwin’s effect. Baldwin suggested that any change, feature or custom that lasts long

enough also involves a genetic change [42][43].

The last step of our methodological scheme is the evolutionary synthesis process for

each task and the simulation of the system behaviour. The following sections outline a series

of experiments using the prototypes of autonomous agent described previously in order to

show the potential of this framework.

4 Analysis of the results

Our approach consists of producing some diversity and then applying selective pressure to

keep the best solutions and discard the others. The design of the fitness function is based on

simulating the behavior of the agent in the environment long enough to evaluate its perfor-

mance according to the desired role. We are thus facing a problem-specific creative process.

This should be approached from a heuristic perspective, observing the parameters of the

scope of our problem, reasoning and making adjustments according to trial and error.

The first experiment focuses on providing flock behavior to the agent in 2d space. The

second experiment expands this to collective behaviors in 3d space. Each experiments is

described through two guidelines: (a) the evolutionary synthesis process and (b) simulation

and analysis of the results.

24



4.1 2d flock model

Evolutionary synthesis:The evolutionary mechanism used in this experiment is striking due

to its simplicity. The flock behaviour should be weighted on the fitness measure and must

be based on quantities that are available in the agent simulation. We have used the average

of the deviation of each agent with respect to the average direction of their neighbors. This

parameter can be interpreted as a measure of the alignment of the entire flock, tending to 0

when the flock is perfectly aligned. This can be formalized as shown in equation (12).

δ(t) =

N∑
i=1

∣∣∣D(t)−Di(t)
∣∣∣

N
(12)

where δ is the average deviation angle of the flock with respect to the average direction,

D is the average direction angle of the flock, Di is the direction angle of the i − th agent

(normalized scalar) andN is the number of individuals in the flock. The fitness function was

defined as minimizing the average deviation angle of the flock with respect to the average

direction in a time period T according to equation (13).

min

T∑
t=1

δ(t)

T
(13)

So, to evaluate each individual in the evolutionary process is to evaluate the quality of a

flock where all agents are specified identically for long enough. Each individual is initialized

in random initial conditions, synthesizing the adaptability whatever the initial conditions.
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The algorithm type used was a simple generational and elitist algorithm that ensures

that the best individual passes to the next generation. We use a population size of 80 in a

maximum of 100 generations. The tournament selector was used as the parent selector, and

uniform crossover as the recombinator type. The recombination probability was fixed at

0.75 and the mutator probability at 0.1, with one locus mutator as the mutator operator. In

80 generations approximately the agents successfully performed the task, obtaining the best

fitness value in the order of [101..102].

Simulation and results: Figure 7 represents different flock simulation states where all

agents are configured with the genotype obtained in the evolutionary process, from the initial

state when the flock motion is chaotic to the 75 iterations when the agents achieve alignment

with their neighbors. At the micro level each agent is capable of rotating in the direction of

the neighbours’ movement. The macro effect is a flock behavior, seeing as the seemingly

intelligent behavior of a flock is restricted to evolve the elementary behavior of an individual.

The stimulation of the agents at each instant of time is calculated by averaging the stimulus

generated by the flow of each agent that is inside its visual field, as was described in section

3.1.

Looking at the time series of the parameter under optimization (see Figure 8), we can

appreciate that from iteration 100 the value tends to 0. This means the flock is perfectly

aligned.

Another commonly used flocking parameter that quantitatively illustrates the formation

of flocks is the degree of alignment of the flock in terms of the absolute direction versus
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Figure 7: Four states of a flock simulation, where each individual is encoded to rotate in the
direction of the optical flow perceived from its neighborhood. Over the 100 iterations the
flock is acceptably aligned.

time of each agent, as shown in Figure 9. Note that when the flock organization occurs the

steering angle is equal for all agents.

From the point of view of the synchronization dynamic in the controller of each agent,

the first thing to remark is that the order parameter of the oscillator network (see equation

(3)) of all agents converges to 1 as a measure of phase coherence of the oscillator popula-

tion, the synchronization emerging as the essence of sensory motor coordination (see Figure

10a). Another interesting point to note is that synchronization occurs independently in each

agent. However, the global order parameter including all oscillators of the simulation also
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Figure 8: Chart of average deviation of each agent respect to average direction of neighbors
versus time. The trend to 0 reveals an aligned flock.

converges to 1 (as shown in Figure 10b). This result suggests that the oscillators of the

system are synchronized with each other. Such behaviour occurs because the population of

oscillators is connected by means of dynamical interaction in the environment.

4.2 3d flock model

In section 4.1 we described an experiment where an agent uses the movement patterns col-

lected from its 2d environment to perform autonomous collective tasks. The agent was

sensitive to the direction of the flow that crossed its field of view, turning in the same di-

rection. Here, we describe a version of this experiment in 3d space using the corresponding

synthetic retina model.

Evolutionary synthesis: In the previous experiment a macro-measure of the collective

behavior (flock aligning) was used to evaluate the evolution quality. Although it is feasible
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Figure 9: Absolute direction versus time in a flock simulation. When the flock organization
occurs the steering angle is equal for all agents.

to use the same mechanism for 3d space, we decided to use a micro-magnitude. Like the

2d agent, the individual behaviour of the 3d agent must be able to rotate in the direction

of movement of its neighbors. Therefore, the fitness function was designed by placing an

agent in a random position and direction in the environment. Its visual field was crossed by

a number of particles of random direction and velocity, one behind the other. In this process

it can be seen how well the actuators of the agent rotate in the direction of the particle

that crosses its visual field. In order to ensure that the agent performs the desired behavior

correctly, several particles are simulated in each evaluation to average its performance. The

objective function can be formalized as shown in equation (14).

min

N∑
i=1

τi

N
(14)

whereN is the number of particles used in the experiment, τ is the angle between vectors
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(a)

(b)

Figure 10: (a)Order parameter of all oscillator networks of the system. (b) Global order
parameter including all oscillators of the system.
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~P and ~A, ~P represents the projections in the retinal plane of the vector that describe the flow

motion of the i − th particle and ~A represents the projections in the retinal plane of the

vector that describe the agent motion in response to this stimulus, as shown in Figure 11.

Figure 11: Angle τ , formed by projections in the retinal plane of the vector that describe the
flow motion ~P and the projections in the retinal plane of the vector that describe the agent
motion ~A.

The average of the performance evaluations of the agent with all the particles is the

fitness value of the individual. After obtaining an agent able to orient its direction based on

the motion flow detected by its sensing device, we try to extend this behavior to a whole

flock. Remember that when there are many particles in the visual field, the general optical

flow is calculated averaging the stimulus generated by each of the particles independently,

thereby each agent basically has a notion of the direction and the speed of movement of its

neighbors.

Simulation and results: Figure 12 shows the simulation of a flock whose agents are

configured with the best individual obtained by the mechanism described above. The stim-

ulation of each agent is calculated by averaging the stimulus generated by the flow of each

neighbor within its visual field. The depth parameter of the 3d retina was fixed at a relatively

small value, recreating a limited perception model in an animal flock. Over 600 iterations
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the agents achieved alignment with their neighbors. The figure shows that the agents are

aligned with their close neighbors, giving the sensation of self-organization.

Also, we see that the parameters that quantitatively illustrate the formation of flocks used

in the 2d-experiment look similar. In particular, the choreography of the flocks have great

similarities with the flocks described by Reynolds [44][45]. Reynold’s model is a classic

in the simulation of artificial swarms. He described a flock as a general class of polarized,

non-colliding, aggregate motion of a group of individuals, based on a set of rules.

4.3 Comparison of the results

In order to make a deeper comparative analysis of our proposal with classical implemen-

tations, we compared our model with Reynolds’s model from three different perspectives.

First, under qualitative criteria; second, measuring quantitatively certain criteria of resem-

blance of the simulated flocks with natural flocks; and finally, making use of some ”informa-

tion theoretic” measures observed in the temporal dynamics of the simulation, to quantify

two concepts inherent to the field of multi-agent organizations, the degree of autonomy and

emergence of each of the models.

A qualitative comparison of both models is summarized in the table 1.

A method to estimate the flocking ability is to turn to counting the cumulative number

of collisions between agents and to observe the temporal dependency of the number of

stragglers and the number of flocks. In order to carry out a quantitative comparison, we also
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(a)

(b)

Figure 12: Two simulation state of a flock of agents configured to rotate in the direction of
the perceived optical flow. The second frame shows how the agents are aligned with their
close neighbors, giving the sensation of self-organization.
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Reynolds’s model Our model
Flocking behavior Each member is controlled by a relatively simple set

of rules that operate locally with symbolic manipula-
tion of the information.

Each member is controlled by a dynamic system re-
sulting from evolutionary algorithms with a sensory-
motor coordination approach.

Action selection The rules base can lead to conflicting behavior. The
controller negotiates among the various demands pro-
duced as a result of the perception.

The internal network modulates informational vari-
ables to action variables in a sensory-motor flow with-
out inference.

Resemblance with
natural flocks

Flight formations emerge as well as the presence of
somewhat erratic, unsystematic behaviour, strictly de-
pendent on the parameters. Repeating patterns can be
detected.

A high sense of dynamism and improvisation.

Perception Each agent has a perception of center, velocities and
direction of the nearby flockmates.

The perception device is an optic array allowing cap-
ture flexibly stimulus from the close environment.

Individual parame-
ters

Area of influence; weight of each rule; how fast they
can turn, accelerate or decelerate; the field of vision;
among others. Values are placed empirically.

Basically the dynamical system parameters. The per-
ception device and the actuators can also be parame-
terized.

Complexity The processing complexity is n-squared. Even when
interactions are limited to some k nearest neighbors,
it is still necessary to find them in the total population.

N-squared complexity because each agent must rea-
son about each of the other agents, even if only to
decide to ignore them.

Easy to extend Extending the rules base from a micro perspective. Modeling the agent-environment interaction and
weighting the desired performance on the fitness
function based on micro or macro magnitudes.

Changing environ-
ment

The agent should include prior adaptation mecha-
nisms, such as increasing the rule base. Harder to treat
in a changing and unpredictable environment.

A suitable controller is evolved depending on the situ-
ation of the environment, providing the ability to learn
during its lifetime.

Relationship with the
environment

The rules base is totally dependent on quantities that
can be perceived in the environment.

Agent dynamically coupled to the environment. Only
perceives and acts. The functioning of the environ-
ment is irrelevant.

System abstraction The system should be described at a scale relevant to
the individual agent’s behavior.

The system can be described at individual or collec-
tive level.

Table 1: A qualitative comparison of some relevant criteria for Reynolds’s model and our
model.

use the method followed by Bajek [46][47] [48] based on starting both models (Reynolds’s

model and our model in 3d space) with identical initial conditions in terms of number of

individuals, initial position and direction. Then, some parameters of the simulations are

measured during the runs:

• Collisions: when an individual violates the vital area of another individual. The agents

are confined using a circular invisible boundary, when an agent crosses this boundary

occurs a collision.

• Stragglers: individuals who do not belong to any flock. Stragglers are agent with a
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fluctuating neighborhood, they do not manage to join the group throughout the simu-

lation.

• Flocks: number of groups that are generated in the simulation. Each group has specific

average direction and speed.

The comparison is based on averaging each of these parameters in several runs for both

algorithms, as shown in Table 2. After five runs of experiments, the quantitative data do not

show significant differences between the algorithms. Both models behaved very similarly

in avoiding collisions. Reynolds’s model, summed over the whole population of 50 agents,

averaged 2 collisions in 750 simulation steps versus a 1.6 in our model with identical condi-

tions. In both case, collisions occurred randomly throughout the simulation and were mostly

head-on collisions, caused by the merging of flocks and were caused in circumstances where

there was no scape route. Stragglers in this set of experiments did not persist for long pe-

riods of time. At the beginning of the simulation some agent can be isolated but usually

doesn’t take long before it is attracted by a group. Our model generated a smaller number of

flocks, quite possibly due to the difference in the limited perception model. The perception

model is determinant in this experiments, in both methods the parameters can be adjusted in

many ways with successful results. So, there is a wide range of configurations that resulting

in similar behaviour to a greater or lesser extent depending of the values.

We have also estimated the degree of uniform distribution in both models by measuring

the nearest neighbour distances (see Figure 13a ). We can see that this factor drastically

35



Reynolds’s model Oscillator model
collisions stragglers flocks collisions stragglers flocks

1 0 3 2 3 2 3
2 2 4 4 0 3 1
3 2 1 3 1 0 2
4 5 1 5 1 1 1
5 1 3 4 3 5 2

avg 2 2.4 3.6 1.6 2.2 1.8

Table 2: A comparison of the number of collisions, number of stragglers and number of
flocks after 1000 simulation steps in five experiments for both models.

decreases to the extents that align the flock. Reynolds’s model is slightly perturbed, possibly

due to the imbalance of the rules of aggregation and repulsion. From the viewpoint of

convergence, no significant differences exist. Figure 13b shows the average speed of the

flock as the level of alignment. This equally reveals that although in the Reynolds simulation

the speed changes abruptly due to the polarization rules, there are no significant differences

between the two algorithms.

The ability to measure a phenomenon is an essential step toward its effective scientific

description. Recent studies in complexity have generated a variety of models that address

particular aspects of the behavior of complex systems. These models have made significant

contributions to our understanding of the notion of organization [49]. Some ”information

theoretic” measures have been used to quantify the degree of constraint inherent in the orga-

nization of each model. Concepts of emergence and autonomy are recurrent in artificial life

and related cognitive and behavioral sciences. Both have been used as quantitative measures

based on the framework of multivariate autoregression and, specifically, Granger causality

[50].
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(a)

(b)

Figure 13: (a) Comparison of the nearest neighbour distances and (b) the average flight
speed of the flock.
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Granger causality is a statistical interpretation of causality according to which a signal

A causes a signal B if information in the past of A helps predict the future of B, over and

above predictions based on the past of B alone [51][52]. To illustrate G-causality, suppose

that the temporal dynamics of two time series X1(t) and X2(t) (both of length T ) can be

described by a bivariate autoregressive model as shown in equation (15).

X1(t) =
p∑
j=1

A11,jX1(t− j) +
p∑
j=1

A12,jX2(t− j) + ξ1(t),

X2(t) =
p∑
j=1

A21,jX1(t− j) +
p∑
j=1

A22,jX2(t− j) + ξ2(t)

(15)

where p is the maximum number of lagged observations included in the model, A con-

tains the coefficients of the model, ξ1 and ξ2, are the residuals (prediction errors) for each

time series. If the variance of ξ1 is reduced by the inclusion of the X2 terms in the first

equation, then it is said that X2 G-causes X1. Assuming that X1 and X2 satisfy covari-

ance stationarity, the magnitude of this interaction can be measured by the log ratio of the

prediction error variances for the restricted (R) and unrestricted (U ) models, see equation

(16).

gc2→1 = log
(
var(ξ1R(12))

var(ξ1U )

)
(16)

where ξ1R(12) is derived from the model omitting the A12,j(for all j) coefficients in the

first equation, and ξ1U is derived from the full model. Importantly, G-causality is easy to

generalize to the multivariate (conditional) case in which the G-causality of X1 is tested in
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the context of multiple variables X2, , XN (Xi 6= Xj for all Xij). In this case, X2 G-causes

X1 if knowing X2 reduces the variance in X1’s prediction error when the activities of all

other variables X3, , XN are also included in the regression model.

We adopt a simple conception of autonomy as the degree of self-determination of a sys-

tem. A variable is autonomous to the extent that it helps predict its own future, as compared

to predictions based on past states of a set of external variables. An autonomous system

should not be fully determined by its environment. Having a practically applicable mea-

sure of autonomy is useful for gaining insight into mechanisms underlying apparently au-

tonomous behavior, as well as into selective pressures that can lead to increases or decreases

in autonomy.

The G-causality provides a means of operationalizing autonomy as self-determination,

or self-causation. The G-autonomy measure asks whether the prediction error of X1 is

reduced by inclusion of its own past, given a set of external variables X2,...,N . Put simply, a

variable is G-autonomous to the extent that it is dependent on its own history and that these

dependencies are not accounted for by external factors.

Recalling equation (15), X1 is G-autonomous if the coefficients in A11 are jointly signif-

icantly different from zero. This can be tested by performing an F-test of the null hypothesis

that A11 = 0, given assumptions of covariance stationarity for X1 and X2. By analogy with

G-causality, the G-autonomy of X1 with respect to X2 is given by equation (17).
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gaX1|X2 = log
(
var(ξ1R(11))

var(ξ1U )

)
(17)

where ξ1R(11) is derived from the model omitting the coefficients A11,j (for all j) in the

Granger equations.

G-autonomy can be validated by its application to time series that have different self-

causation characteristics by construction. In our test, three experimental conditions are

compared:

1. Agents move randomly

2. Agent behavior is determined by Reynolds rules.

3. Agent behavior is controlled by an evolved network of oscillators.

Each condition of the model was run for 10 trials of 2, 000 time steps each (following

the evolution in condition 3). From each trial, 20 time series were generated, corresponding

to the trajectories of the agents. To prevent edge effects, each time series (a1, , a20) consisted

of the average of the horizontal and vertical displacement from the middle of the environ-

ment. Each time series was then first-order differenced [i.e., a(t) → a(t) − a(t − 1)] in

order to ensure covariance stationarity. Each resulting data set was used to construct a mul-

tivariate autoregressive model of order p = 4. Each model was then used to calculate the

G-autonomy values (see equation (17)). G-autonomies were averaged across the 10 trials in

each condition, as shown in Figure 14.
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Figure 14: Agents G-autonomy (averaged across the 10 trials) for each condition. All
comparisons are statistically significant (two-tailed t-test, p < 0.001). (Condition 1-Agents
move randomly, 2-Agent behavior is determined by Reynolds rules, 3-Agent behavior is
controlled by an evolved network of oscillators.)

We can see that random movement (condition 1) produces high G-autonomy, because

random movement in this model is not a white noise process; rather, it implies that the

agent changes direction unpredictably, so that the best predictors of future agent positions

are recent past positions. The Reynolds model (condition 2) produces medium G-autonomy,

because the agent position is now well predicted by the past positions of a flock. However,

the G-autonomy value in our model (condition 3) is higher than in condition 2 because in

this condition it is driven both by the position of nearby agents and by the internal state

of the oscillators network, also suggesting that evolutionary adaptation in the model leads

to increased G-autonomy. A possible explanation for this is that the evolved controller has

the opportunity to take the internal state into account at every time step. G-autonomy in

condition 3 remains lower than in condition 1 because agents’ positions can still be par-

tially predicted by flock position. So, the G-autonomy measure quantifies and amplifies the

concept of autonomy as self-determination.
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On the other hand, an emergent property is in a qualitative sense ”more than the sum” of

its component parts. G-emergence is a statistical measure of the extent to which an emergent

process is both autonomous from and dependent upon its underlying causal factors [50]. G-

emergence is a continuous version of weak emergence, in which a macro property is weakly

emergent to the extent that it is not deducible from micro-level observations. G-causality and

G-autonomy together provide the necessary ingredients for operationalizing G-emergence.

This measure captures the basic intuition about weak emergence that involves dependence

on underlying processes, and that at the same time involves autonomy from underlying

processes. According to G-emergence, a macro variable M is emergent from a set of micro

variables m if and only if:

i) M is G-autonomous with respect to m.

ii) M is G-caused by m.

A simple measure for the G-emergence of M from m is therefore given by equation

(18).

geM |m = gaM |m

(
1
N

N∑
i=1

gcmi→M

)
(18)

This value will be zero either if M is independent of m or if M is fully predicted by

m. There are other more sophisticated methods that detect nonlinear dependencies and

which can be less sensitive to noise. However, for the present purposes this method is
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preferable because it is simple to describe and to implement, statistical significance can

easily be assessed, and it supplies an explicit formula for G-emergence.

In both models (Reynolds’s model and our model), the flock seems to have a shape

and trajectory of its own, which transcends those of the individual agents. Here, a simple

agent simulation is used to test whether visually compelling flocking correlates with high

G-emergence of the center of mass of the flock (the macro variable) with respect to the

trajectories of the individual agents (the micro variables).

The objective is to measure the G-emergence of the center of mass of a flock with respect

to the individual agents. N = 20 agents are simulated in a toroidal square environment. The

agents are randomly initialized with positions and velocities.

Three different conditions were tested:

1. Agents move randomly

2. Agent behavior is determined by Reynolds rules.

3. Agent behavior is controlled by an evolved network of oscillators.

For each condition the simulation was run 25 times with each run lasting 5000 time steps.

For each run the x, y coordinates of each agent and the global center of mass were recorded.

Several preprocessing steps were carried out prior to calculation of the G-emergence. Each

coordinate pair was transformed into a single variable reflecting distance from the center

of the environment. The first 50 data points were removed to eliminate initial transients,
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and each resulting time series was transformed into its zero-mean equivalent. Finally, each

time series was first-order differenced in order to ensure covariance stationarity. Following

preprocessing, for each run in each condition the G-emergence of the center of mass was

computed using a model order p = 5.

Figure 15 shows the mean G-emergence of the center of mass in each condition. All

values of G-emergence in conditions 2 and 3 were significant (P < 10−5 for G-autonomy

and G-causality, two-tailed t-test); those in condition 1 were not.

Figure 15: G-emergence of the center of mass of a flock for all conditions. (Condition
1-Agents move randomly, 2-Agent behavior is determined by Reynolds rules, 3-Agent be-
havior is controlled by an evolved network of oscillators.))

This confirms the prediction of a high G-emergence value for compelling flocking. There

is no statistical difference between the two methods. The macro property is highly emergent

to the extent that it is not deducible from micro-level observations. This measure is based on

a statistical interpretation of causality. It sidesteps conceptual pitfalls such as competition

among micro and macro causes, and it provides an objective and graded assessment of the

non-triviality of micro-to-macro inferential pathways.

44



5 Discussion and future work

Our approach is inspired by Gibson’s concept that there is sufficient information available in

the agent-environment interaction to control the agent’s behavior without further inference

or reconstruction. We try to demonstrate that the perception-action dynamics in an agent

provide a non-inferential source of information which can deal with problems for which

other computation techniques (planning, mapping, reasoning, etc.) can be limited.

We have presented an experimental simulation framework capable of modeling be-

haviors of embodied and situated agents whose control architecture is based on oscillator

networks. The internal network modulates the stimulus signals to action signals under a

sensory-motor flow. The perception device of the agent is designed as an optic array emu-

lating the principles of motion perception in the animal retina. We use an intuitive design

methodology where the model is designed in abstract dynamic terms thanks to the evolu-

tionary approach, allowing agents to be designed without structural components predefined

in the design process. The behavior emerges thanks to three factors: suitable devices of per-

ception and action for the environment, a controller perfectly coupled to the sensory-motor

loop capable of generating coordination dynamics for the problem, and a fitness function

that synthesizes the complexity and diversity of agent-environment interaction that estab-

lishes selective pressure in the evolution process of the agent.

Our model is applied in two flocking experiments in 2d and 3d environments. We carry

out a comparative analysis of our proposal with Reynolds’s model under qualitative, quan-
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titative and information-theoretic points of view. In the qualitative aspect our model stands

out above classical implementations by its high sense of dynamism and improvisation in the

simulation. Our optic array model allows stimulus to be flexibly captured from the environ-

ment compared to a perception closely linked to specific behavior in the Reynolds model.

The differential equations system can capture the agent’s behavior with low dimensional

descriptions of each individual, and the system can be described at a scale relevant to both

individual behavior and collective behavior, showing a high scalability capacity. Our agent

is dynamically coupled to the environment (it perceives and acts), as opposed to a rules-

based model which depends entirely on the problem-environment. Our design methodology

is effective when we have no clues to provide behavior. The keys of our approach are the

agent-environment interaction and the fitness function. Once this has been achieved, the

genetic algorithm is responsible for finding the parameters to execute the behavior. Also,

our model is marked by an inherent adaptability. The individuals evolve in a changing en-

vironment with an evolutionary pressure in favor of agents with the ability to learn during

their lifetimes.

A quantitative measure of some parameters of resemblance with natural flocks in iden-

tical initial conditions for both models shows a great similarity in the simulations.

Some statistical measures have been used to quantify the degree of emergence and au-

tonomy of our model versus Reynolds’s model. The G-autonomy value in our model is

higher than the rules-based model because the evolved controller has the opportunity to

take the internal state into account at every time step besides the external conditions. Our
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agent position is partially predicted by flock position rather than being totally predicted as in

the Reynolds’s model. However, there is no statistical difference in G-emergence between

the two methods, both showing high values. In both models, the macro property is highly

emergent to the extent that it is not deducible from micro-level observations.

On the other hand, our approach allows full integration of environmental, corporal and

neural factors as well as its complex dynamic interaction within the same explanation frame-

work. It is therefore possible to analyze patterns of control activity, variability of actuators

and sensors of the system in a coupled way. Thus, we can see that:

• The system exhibits circular causation in a negative feedback loop closed through the

environment. This contradicts the classical notion of linear causation of behavior by

stimuli, in which environmental stimuli are thought to cause behavioral responses,

mediated by intervening cognitive processes.

• The negative feedback that occurs in agent-environment interaction gives our agent

certain properties such as self-regulation and stability, reducing the effect of fluctu-

ations. Observing its internal variables, we can see patterns of stability, accuracy,

sensitivity and a reduction of the effects of unpredictable influences.

• The results of the experiments have demonstrated that our agent controls neither its

own behavior nor external environmental variables, but rather its own perceptions of

those variables. Actions are not controlled, they are varied so as to cancel out the

effects of unpredictable environmental disturbances. So, ”behavior is the control of
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perception”.

Our model does not target any specific biological mechanism; it only shows the potential

of oscillatory controllers within a continuous time-closed sensory-motor loop for complex

adaptive tasks. Our approach provides new ways of thinking about behavior at another level

of abstraction or from a different paradigmatic perspective. The dynamicist focus has helped

us to replace the notion of symbolic representation and processing by modeling in terms of

dynamical coupling without the need of an explicit encoding on the side of the agent as a

more appropriate metaphor for defining adaptive behavior in virtual agents.

Our future research priority will be to extend the model to perform more complex tasks

of locomotory behavior and perception in changing environments. Also, we are interested

in the perception of patterns, shapes and sizes from the environment. Another important

issue is the study of dynamic patterns of control activity and the variability of actuators and

sensors.
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