wss Universidad By (Cocuelade

11 Ingenieria y Arquitectura
1542 Zaragoza Universidad Zaragoza

Proyecto Fin de Carrera

MEMORIA

Curso de introduccion a la
programacion de videojuegos para
dispositivos moviles en Corona SDK

AUTOR
Carlos Lorenzo Paricio
DIRECTOR
Ramon Piedrafita Moreno
ESPECIALIDAD
Electronica Industrial
CONVOCATORIA
Marzo 2012

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

RESUMEN

Desde la aparicidn en el mercado de dispositivos méviles con altas prestaciones
asociados a la evolucién de la tecnologia, estos han abierto un amplio mercado para el
desarrollo de videojuegos y dotan de una potencia grafica similar a la que posee un
entorno de juegos portatil tradicional como pueden ser la consolas portatiles Sony PSP
o Nintendo DS.

El objetivo de este proyecto es desarrollar una aplicacidén genérica
multiplataforma optimizada para Ipad, ya sea para su primera o segunda versidn, que
nos permita aprender a programar videojuegos 2D para dispositivos méviles que
aungue no exploten todo el potencial que posee el dispositivo, es el genero mas
descargado de las tiendas de aplicaciones moéviles dada su adiccién y dado que el
consumo de bateria es notablemente inferior que en los videojuegos en 3D, ya que
estos Ultimos necesitan mas prestaciones.

Para este fin, se ha generado una aplicacién didactica que nos permite
introducirnos en el mundo de la programacion de videojuegos en este tipo de
dispositivos , en ella se distinguen diferentes secciones. Por una parte se muestran
capitulos relacionados con el lenguaje de programacién de Corona SDK, por otro lado
otros donde se desarrollan videojuegos por completo y se muestra su programacién
mediante ejemplos y también aparece otra seccidn con juegos totalmente funcionales.

En este proyecto también se realiza un estudio para conocer los entornos de
desarrollo de los diferentes sistemas operativos mdviles y varias opciones de
desarrollo multiplataforma que existen en la actualidad.

Al final se ha elegido dadas sus caracteristicas un software multiplataforma
llamado Corona SDK, permite la programacién de dispositivos con iOS (Iphone, IPod y
IPad), Android(numerosos dispositivos en el mercado) y recientemente para
Amazon/KIndle. Tiene un alto rendimiento y permite la utilizacién de sus componentes
nativos. Recalcar que varias aplicaciones desarrolladas con Corona SDK han sido
lideres en descargas en la “AppStore” y “Android Market” por lo que se demuestra su
gran potencial y se puede considerar como una opcion alternativa a otros entornos de
programacion.

Aunque esta aplicacion seria posible instalarla en cualquier dispositivo I10S o
Android dado su cédigo comun, es necesario poseer una gran pantalla para ejecutarla.
Esta es la razdén principal por la que hemos elegido una tablet y en nuestro caso un
producto comercializado por Apple, el Ipad. Ya que parte del contenido de la
aplicacion es texto y dado que nuestro dispositivo posee una gran pantalla de 9,7
pulgadas podremos verlo perfectamente en este dispositivo.

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

iNDICE DE CONTENIDO

1 Objetivo del proyecto
1.1 Introduccién
1.2 Objetivo del proyecto
1.3 Organizacion de la memoria

2 Metodologiay planificacién del proyecto

3 Diseiio e implementacion de la aplicacion
3.1 Requisitos de la aplicacion
3.1.1 Requisitos funcionales
3.1.2 Requisitos no funcionales
3.2 Disefio
3.2.1 Escenas
3.21.1 Tipo1
3.21.2 Tipo2
3.21.3 Tipo3
3.2.2 Diagramas de actividad
3.2.3 Disefio de pantallas de la aplicacion
3.2.3.1 Pantalla de carga
3.2.3.2 Pantalla bienvenida
3.2.3.3 Pantalla Menu Principal
3.2.3.4 Pantalla Capitulo Diapositivas
3.2.3.5 Pantalla Introduccion Capitulo Ejemplos
3.2.3.6 Pantalla Visualizacion Tema
3.2.3.7 Pantalla Configuracién
3.2.3.8 Pantalla de Menu Juegos
3.2.3.9 Pantalla de Juegos
3.3 Implementacién
3.3.1 Estructura del programa
3.3.2 Ficheros de configuracién
3.3.2.1 posicion.dat
3.3.3 Ficheros de contenido
3.3.3.1 variables.lua
3.3.4 Moddulos o librerias
3.3.4.1 director.lua
3.3.4.2 util.lua
3.3.4.3 movieClip.lua
3.3.4.4 ui.lua
3.3.4.5 showText
3.3.4.6 tableView.lua
3.3.4.7 slideView.lua
3.34.8 examples.lua
3.3.4.9 variables.lua
3.3.5 Titulos de la aplicacion
3.3.6 Adaptacién dindmica de contenido
3.3.6.1 config.lua
3.3.6.2 build.settings
3.3.7 Pruebasy verificacion
3.4 Tareas de administracion
3.4.1 Distribuir aplicaciones

4 Conclusiones
4.1 Mejorasy ampliaciones

5 Bibliografia y referencias

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

6 Plataformas de programacion en dispositivos mdviles 47
6.1 Introduccidn 47
6.2 Dispositivos y sistemas operativos 47
6.3 Aplicaciones web versus aplicaciones nativas 50
6.4 Desarrollo aplicaciones méviles nativas para i0OS y Android 51
6.5 Desarrollo mévil multiplataforma 51

6.5.1 PhoneGap 52
6.5.2 Titanium Appcelerator 52
6.5.3 Adobe Air Mobile 54
6.5.4 Corona SDK 54
6.5.5 Plataforma seleccionada 55

7 Plataforma Corona SDK. Caracteristicas 56
7.1 Introduccion a la Plataforma Corona SDK 56
7.2 Gestion de proyectos en Corona SDK 57
7.3 Lenguaje de Corona SDK: Lua 57

7.3.1 Generalidades 57
7.3.2 Variables 59
7.3.3 Expresiones 60
7.4 Estructuras de control 63
7.4.1 Funciones 64
7.4.2 Objetos, propiedades y funciones 64
7.5 Librerias estdndar de Lua 65
7.6 Librerias de Corona SDK 66
7.7 Visualizacion de objetos en pantalla 66
7.8 Gestion de eventos 70
7.9 Animacidon y movimiento 72
7.10 Motor fisico 74
7.11 Conectividad 79
7.12 Gestion de la memoria 81

8 ANEXO I - Detalle de funciones en Corona SDK 85

8.1 Librerias estdndar de Lua 85
8.1.1 Biblioteca béasica 85
8.1.2 Mbobdulos (bibliotecas externas) 88
8.1.3 Manipulacién de cadenas 89
8.1.4 Manipulacién de tablas 95
8.1.5 Funciones matematicas 95
8.1.6 Funciones de entrada y salida 98
8.1.7 Funciones de sistema operativo 101

8.2 Librerias de Corona SDK 102
8.2.1 Biblioteca display 103
8.2.2 Biblioteca transition 105
8.2.3 Biblioteca media 107
8.2.4 Biblioteca native 107
8.2.5 Biblioteca system 108
8.2.6 Biblioteca widget 109
8.2.7 Bibioteca StoryBoard 113

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

1 Objetivo del proyecto

1.1 Introduccion

El crecimiento y popularizacidn de los dispositivos mdviles durante los ultimos anos, ha
generado un gran desarrollo de estos ,que, ademas de permitir la tradicional
comunicacion entre redes fijas y moviles, poseen la capacidad de ejecutar todo tipo de
aplicaciones desarrolladas especificamente para estos dispositivos.

Las prestaciones de los dispositivos méviles aumentan dia dia, posibilitando asi

la implementacién de aplicaciones muy potentes e interesantes. Los denominados
“Smartphones” o teléfonos de ultima generacién y las “Tablets”, presentan una serie
de caracteristicas de procesamiento, memoria y capacidad de conexién que estd
llevando a los grandes fabricantes, operadores y desarrolladores a una auténtica
carrera por lograr las mejores aplicaciones y estar a la cabeza de ventas.

Google® ha hecho publicos los resultados de un estudio llevado a cabo el pasado mes
de marzo en Estados Unidos, en el que se entrevistd a un total de 1.430 usuarios
poseedores de un moderno Tablet.

El perfil tipo de poseedor de un tablet utiliza este dispositivo principalmente en el
domicilio particular (82%) antes que en el trabajo (7%), e incluso antes que en
movilidad (11%), aunque curiosamente un aparato ligero de estas caracteristicas esta
mas pensado, precisamente, para entornos maviles.

Aunque el tablet no es considerado aun como el principal dispositivo informatico, esta
robando horas de uso al pc o al portatil.

Entre los principales usos que se dan al tablet destaca su vertiente ludica, con un 84%
de los encuestados utilizando su dispositivo para videojuegos. La lectura de noticias se
encontraria en cuarta posicion con un 61%, practica que mas terreno podria estar
quitandole a los periddicos en papel, mientras que el 56% de los usuarios se conectan
a redes sociales, el 46% consumen e-books, y el 74% gestiona su correo electrénico.

Digamos que si resumimos todos los datos que ha arrojado el estudio, tendriamos que
el poseedor de un tablet lo utiliza cuando llega a su casa después del trabajo para
navegar por Internet, gestionar su correo electrénico, acceder a las redes sociales a
través de apps especificas y ademas como entorno de aprendizaje o lector de libros.

Este estudio conviene a los desarrolladores de tablets, terreno en el cual ha

presentado sus credenciales Samsung con Android 3.0, Apple con su I0S 5 para el Ipad
u otras plataformas menos conocidas y por tanto menos utilizadas.

" http://www.imatica.org/bloges/2011/04/190486382011.htm|

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

Los tablets se distinguen por muchas caracteristicas, entre las que destacan las
distintas pantallas tactiles, un sistema operativo propio, la conectividad a internet y el
acceso al correo electrdnico. Otras aplicaciones que suelen estar presentes son las
camaras integradas, acelerdmetro, la reproduccién de musica y visualizacidn de fotos y
videos y algunos programas de navegacidn asi como aplicaciones de lectura de
documentos en distintos formatos electrénicos. La mayoria de dispositivos también
permiten al usuario instalar programas adicionales para dar un valor afiadido al
dispositivo y asi poder competir con sus rivales.

En funcién de los distintos fabricantes, cada uno de los dispositivos méviles posee un
sistema operativo que determina las capacidades multimedia de los aparatos, y la
forma de interactuar con el usuario.

1.2 Objetivo del proyecto

En este entorno, el objetivo del proyecto es el desarrollo de una aplicacién
desarrollada especificamente para IPad que permita al usuario aprender interactuando
con ésta de forma sencilla y sin apenas conocimientos previos de programacién de
videojuegos. Se pretende la realizacidn de una herramienta sencilla y que haga posible
la distribucidn de conocimientos de programacion hacia personas que quieren iniciarse
en esta disciplina.

Para este fin, después de conocer distintos entornos de desarrollo para varios sistemas
operativos moviles, se utilizard una plataforma de software multiplataforma que
permite la construccidn para dispositivos con iOS, Android y Kindle.

El objetivo es tener un cédigo de aplicacion comuin que sumado a unos contenidos
configurables nos permitan la construccién de aplicaciones nativas para varios
dispositivos aunque en este caso la aplicacidn ha sido graficamente disefiada para la
tablet de Apple, el Ipad.

IPAD

CONTENIDO

APLICACION 1+ | (CONFIGURABLE)

Figura 1.1 . Esquema del objetivo del proyecto

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

1.3 Organizacion de la memoria

La memoria del proyecto esta organizada por capitulos, se enumeran a continuacién
incluyendo una pequena descripcién del mismo.

En el capitulo 2 se especifica la metodologia en el desarrollo del proyecto y la
planificacion del mismo.

En el capitulo 3 se realiza el disefio e implementecion de la aplicacién. Todo lo incluido
a la programcion de la misma.

En el capitulo 4 se recopilan las conclusiones extraidas en el desarrollo del proyecto y
las posibilidades de actualizaciéon en un futuro.

En el capitulo 5 se realiza un estudio de las plataformas para la programacion de
dispositivos mdviles incidiendo en aquellas que permiten la generacidn de aplicaciones
multiplataforma.

En el capitulo 6 se analiza la opcidn elegida en este proyecto, Corona SDK de “Ansca
mobile”. Se realiza una detallada descripcién de sus caracteristicas que han llevado a la

eleccidn de esta para el desarrollo del proyecto.

En el capitulo 7 se enumera toda la bibiografia utilizada en la memoria asi como la
posibles referencias.

En el capitulo 8 se puede aceder al Anexo | donde podemos consultar detalles de las
funciones mas especificas de Corona SDK.

-10-

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

2 Metodologia y planificacién del proyecto

En el desarrollo de este proyecto se ha seguido una metodologia basada en un ciclo de
vida evolutivo. El desarrollo evolutivo se basa en la idea de realizar una
implementacidn inicial e ir modificando la aplicacion hasta que se obtiene un sistema
gue se considere adecuado. Las actividades de desarrollo y verificacién se entrelazan
en lugar de separarse, y a su vez, existe una rapida retroalimentacion entre ambas.
Este modelo acepta que los requerimientos del usuario puedan modificarse e
incorporarse nuevos.

La practica demuestra que obtener todos los requerimientos al comienzo del proyecto
es complejo, no sélo por la dificultad de definir la totalidad del producto, sino porque
estos requerimientos evolucionan durante el desarrollo y de esta manera, surgen
nuevos requerimientos a cumplir. El modelo de ciclo de vida evolutivo afronta este
problema mediante una iteracidon de ciclos en los cuales se incluyen posibles nuevos
requisitos, posteriormente se mejora o cambia el desarrollo y por ultimo se lleva a
cabo una nueva evaluacion.

En la siguiente figura se puede ver de forma clara el esquema del ciclo de vida del
proyecto.

ACTIVIDADES

VERSION

ESPECIFICACIONES e INICIAL

REQUISITOS DEL
SISTEMA DESARROLLO VERSION
CODIGO INTERMEDIA

VERSION

VERIFICACION ey

Figura 2.1 . Esquema de realizacidn del proyecto basado en ciclo de vida evolutivo

Previamente al desarrollo evolutivo, se debe realizar la tarea de descripcion del
proyecto. Esta actividad incluye la definicién del objetivo del proyecto, el estudio y
eleccidn de la plataforma de desarrollo y el esbozo de los requisitos de la aplicacién.
Para esta tarea se dedican aproximadamente 5 semanas que incluye el estudio y
conocimiento de la plataforma seleccionada.

-11 -

Curso de introduccion a la programaciéon de videojuegos para dispositivos méviles en Corona SDK

Durante la especificacidn, se ha profundizado en el analisis y la definicidén de los
requisitos de la aplicacion adaptdndolos tanto a las necesidades surgidas en las otras
fases como a las caracteristicas de la plataforma de desarrollo seleccionada.

El primer desarrollo del proyecto, se centrd en obtener un primer prototipo que
permitiera la navegacion entre los distintos apartados de la aplicacién, sin apenas
contenidos ni elementos graficos finales y verificando que era aceptablemente visible
en el simulador.

Previo a la segunda etapa de desarrollo en la que se implementd toda la funcionalidad
de generacidn de contenidos, se realizé la especificacion y analisis del formato que
deben tener los contenidos. Solo en las versiones mas evolucionadas, se ha realizado la
construccion de la aplicacidn y la prueba en el dispositivo.

Finalmente se han desarrollado las pantallas y funciones auxiliares, asi como el disefio
grafico final. Una vez realizadas las pruebas y verificaciones completas de la aplicacién,
se procede a la construccién de la version final y se instala en el dispositivo para su
testeo.

Como se ha indicado anteriormente, seguiremos un ciclo de vida evolutivo, por lo que
todas estas fases se realizan en paralelo. Para todas estas tareas se dedican unas 14

semanas

Posteriormente, se requiere 2 semanas de documentacion y revisidn previas a la
finalizacion del proyecto.

En el siguiente diagrama de Gantt pueden verse la planificacién.

oct 2011 nov 2011 dic 2011 ene 2012 feb 2012
Nombre de tarea Comienzo Fin Duracién
25/9| 210 | 9/10|15/1o|23/10|3o/10| 6/11 13/11|20/11|27/11| 4/12|11/12|1e/12|25/12 71 | &1 | 1571 | 22/1 | 2971 | 5/2 | 12/2|
Definicion Objetivo Proyecto 26/09/2011 30/09/2011 1s %
Estudio Pltaforma Desarrollo 03/10/2011 14/10/2011 2s L__-,
Estudio Plataforma Seleccionada 17/10/2011 28/10/2011 2s L—_—,
Especificacion y analisis requerido 31/10/2011 27/01/2012 13s e I
Disefio 31/10/2011 27/01/2012 13s Hi
Implementacion 31/10/2011 27/01/2012 13s l-/H
Verificacion 31/10/2011 27/01/2012 13s e D
Documentacion 03/02/2012 16/02/2012 2s - |
Finalizacion 03/02/2012 16/02/2012 2s - |

Figura 2.2 . Diagrama de Gantt en el cual puede verse la planificacion del proyecto

-12 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3 Diseno e implementacién de la aplicacion

3.1 Requisitos de la aplicacion

Como se ha comentado al principio de la memoria, el objetivo del proyecto es el
desarrollo de una aplicacion didactica espedifica para la tablet de Apple, el Ipad.

Debe ser un desarrollo que permita generar una aplicacion capaz de ser portada a otro
dispositivo sin apenas conocimientos sobre la misma. Cambiando ciertos parametros,
sobre todo la adaptacion del contenido, podremos ser capazes de utilizar nuestra
aplicacién en otros dispositivos que funcionan con otro sistema operativo movil.

De acuerdo a esta descripcidn del sistema se realiza la especificacidon de requisitos que
describe las funcionalidades que debe tener la aplicacion.

3.1.1 Requisitos funcionales

Aplicacién adaptada especificamente para Ipad.

La aplicacién debe ser multi-idoma(espafiol e ingles).

Debe ser posible cambiar ciertos paremetros de configuracion.

Al salir de la aplicacidn, ésta debe ser capaz de guardar la posicidén en la cual nos
encontramos en ese momento.

La estructura de la aplicacién debe construirse para una posible actualizaciéon
futura.

» La aplicacién permitird enviar el cddigo de los juegos que aparecen en ella para
que los usuarios puedan disponer de el para su estudio detallado.

VVYYVY

A\

3.1.2 Requisitos no funcionales

» La plataforma de desarrollo sera Corona SDK de Ansca Mobile

» La aplicacién debera estar disponible para la plataforma iOS.

» Elusuario debe ser capaz de interactuar con la aplicacion intuitivamente y sin
apenas dificultad.

3.2 Diseio

Una vez se ha estudiado la finalidad del sistema y su viabilidad, se procede a realizar el
disefio de la aplicacidon de cara a realizar su implementacion.

Se busca que la aplicacion se caracterice por ser una aplicacion sencilla, facil de manejary
gue se adapte al dispositivo y a los cambios de configuracién.

Al ser una aplicacion didactica no es necesario que presente un aspecto refinado,
elegante y formal sino que admite que las formas de los objetos puedan ser todas

distintas, las asimetrias puedan ser comunes y los colores sin sentido.

Para el disefio de la aplicacién hemos considerado una opcidén que nos ha proporcionado
Corona SDK a través de un desarrollador que ha ofrecido su trabajo para todo el mundo

-13 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

de forma libre y gratuita. Es un modulo externo o libreria que nos permite hacer
funcionar aplicaciones a base de escenas. El nombre del modulo es “DirectorClass” y su
autor es un programador brasilefio llamado Ricardo Rauber. Desde que publicé su trabajo
la ha ido actualizando para corregir errores y mejorarla y actualmente nos encontramos
por la version 1.4.

Recientemente Corona SDK ha publicado en su lista de API’S una nueva forma de utilizar
escenas pero esta vez de forma oficial. Lo han llamado “Storyboard” y permite el
movimiento entre escenas como lo hace directorClass.

La razén por la cual vamos a utilizar directorClass y no Storyboard es que en el inicio de |la
programacién de la aplicacidn esta era la Unica opcidn que presentaba Corona SDK y se
decidio en su momento utilizarla. Ademas posee alguna caracteristica que la libreria
propia de Corona SDK no, como por ejemplo que lleva incorporado un recolector de
objetos y de listeners que los elimina cuando cambiamos de escena. En cambio
“Storyboard” no ofrece esa posibilidad.

A continuacién se muestra la imagen del arbol de opciones de la aplicacién.

TEMAS
SELECCION DE
CAPITULO
CONTENIDO
PANTALLA DE | MENU TEMAS
BIENVENIDA . PRINCIPAL
CONFIGURACION

Figura 3.1. Opciones de la aplicacién

La aplicacién constara de una pantalla de bienvenida que nos dard paso a la pantalla del
menu principal o a la ultima pantalla que teniamos cuando cerramos la aplicacién en el
caso de ser un capitulo de ejemplos. En la pantalla del menu principal aparecera una lista
con todos los capitulos disponibles, separados por colores y botdn en la parte superior
derecha que al pulsarlo aparece la pantalla de configuracion.

Las opciones, como se puede apreciar en el esquema anterior, son:

» Seleccionar Capitulo: Dentro de la seleccidn de capitulo existen varios tipo de
ellos. Los 3 primeros son capitulos teoricos, los 4 siguientes son capitulos que
estan basados en ejemplos y los 4 ultimos son capitulos son juegos. Los 3 tipos de
capitulos estan diferenciados por colores.

» Configuracion: Muestra la pantalla de configuracion de la aplicacidn. Se pueden
modificar varias o

-14 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

» pciones.
Cuando un usuario se introduce en un capitulo la forma del contenido del mismo
depende del tipo de capitulo que ha pulsado. Como se ha comentado anteriomente
existen 3 tipos de capitulos distintos y pasamos a explicar mas en detalle cada uno de de
ellos. Los vamos a separar por escenas y estan explicacos a continuacion.

3.2.1 Escenas

3.2.1.1 Tipo1

Este tipo de escena es utilizado en los tres primeros capitulos. Estos capitulos digamos
gue son teoria. No podemos interactuar en ellos mas que para pasar las diapostivivas. En
ellos podermos ver informarcion relacionada con el titulo del capitulo pulsado. Se puede
decir que es un pase de diapositivas porque el contenido del mismo son imagenes que
podemos ir cambiando con los botones que estdn situdados en la parte inferior de la
pantalla o deslizando con el dedo hacia la derecha o hacia la izquierda dependiendo si
gueremos avanzar o retrasar la diapositiva.

3.2.1.2 Tipo2

Esta escena es la que mas complejidad de las 3 lleva. Es la escena que utilizamos en los
capitulos que aparecen los ejemplos de programacidén. Es una escena con la estructura
comun para los 4 capitulos pero que dependiendo de las variables que se cargan al inicio
del mismo el capitulo se configura de forma diferente y es posible utilizarlo.

3.2.1.3 Tipo3

Es la Unica escena que no sigue una patréon comun para el mismo tipo de capitulos. Son
capitulos tipo “juegos”, en ellos aparecen juegos completos que han sido creados
anteriormente en los capitulos de ejemplos. Al ser juegos diferentes su programacion no
se parece aunque se ha intentado que la estructura de los mismos sea parecida para
mayor facilidad de programacién y llevar un orden concreto y poder utilizarlo en todos los
juegos.

3.2.2 Diagramas de actividad

Se muestran a continuacion los diagramas de actividad de carga del contenido de las
escenas principales de la aplicacidn.

-15-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

LLAMADA
ESCENA

COMPROBAMOS IDIOMA

CREAMOS LA TABLA

CREAMOS TABLEVIEW

FIN
CARGA

Figura 3.2. Diagrama de actividad de la carga de la pantalla principal

En este diagrama se muestra el flujo de carga de datos desde el modulo externo que
contiene la tabla de capitulos del menu principal de la aplicacion.

Esta carga viene condicionada mayormente por el idioma de la apliacacion y por el tipo de
capitulo.

Segun el estado de la variable language_state la tabla que pasamos a la tableView para
gue muestre la lista de capitulos en la pantalla del menu principal contiene un idioma u
otro.

Para determinar el color de la fuente lo conseguimos con la variable id, nos permite
seleccionar el color dependiendo de su valor. Es posible configurar la tableView a nuestro

antojo y muestra de ello es que seria posible elegir un color para cada fuente de la misma.

En la siguiente figura se muestra el diagrama de actividad de la carga de la escena Tipo 1
gue esta directamente relacionada con los 3 primeros capitulos.

-16 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

LLAMADA
ESCENA

COMPROBAMOS
IDIOMA

CREAMOS LA TABLA
DE IMAGENES

CREAMOS SLIDEVIEW

FIN
CARGA

Figura 3.3. Diagrama de actividad de la carga del contenido de la escena Tipo 1

Como podemos observar el primer paso realizado es comprobar el idioma actual de la
aplicaciéon. Cada vez que se llama a la escena se hace este chequeo.

Despues de comprobar el idioma, creamos dentro de la escena la variable local mylmages
gue no es mas que una tabla en la cual estan incluidas las rutas de las imagenes que seran
mostradas dentro del capitulo.

Estas imagenes son diferentes para cada idioma por lo cual es necesario incluir dentro de
la carpeta los 2 idiomas.

Por ultimo creamos un objeto slideView, le pasamos como pardmetro la tabla de
ubicaciones de imagenes que hemos creado al principio dependiendo del idioma. Las
imagenes que mostramos tienen unas dimensiones espeficicas para poder ocupar todo el

espacio libre disponible. Estas dimensiones son 900 x 600 pixeles

A continuacién se muestra el diagrama de actividad de la escena Tipo 2.

-17 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

LLAMADA
ESCENA

COMPROBAMOS
IDIOMA

CARGAMOS LAS
VARIABLES

CREAMOS LA ESCENA

FIN
CARGA

Figura 3.4. Diagrama de actividad de la carga del contenido Tipo 2

El primer paso de la escena es comprobar el estado de la variable local language_state.
Segun su estado cargamos las variables que usaremos para crear la escena. Para cargar el
contenido de esta escena llamamos a la funcion new del modulo externo variables. Al
llamar a esta funcién le pasamos los pardmetros para configurar un capitulo especifico.
Esos parametros son el capitulo y tema que queremos visualizar. Internamente la funcién
new se encarga de seleccionar las variables correspondientes dependiendo del idioma
seleccionado.

Tambien hacemos uso de la funcidn content que se encarga de gestionar la barra de
contenido dentro de los temas de los capitulos.

Cuando se crean los objetos de la escena, estos utilizan las variables cargadas
anteriormente por lo que podemos usar una misma escena para ver todos los capitulos
cuya escena es del Tipo 2, los capitulos con ejemplos.

Se debe mencionar que no es posible utilizar este tipo de escena para los 3 primeros
capitulos aunque la similitud de la escena sea evidente. La razén es simple, para cargar el
slideView es necesario utilizar un fondo de pantalla diferente para poder ver la sensacién
de transicidon del slideView dentro del recuadro gris.

-18 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.2.3 Diseio de pantallas de la aplicacion

3.2.3.1 Pantalla decarga

w2s Universidad

Zaragoza

Figura 3.5. Pantalla de carga de la aplicacion

La pantalla de carga contiene una imagen con el logotipo de la Universidad de Zaragoza.
Los elementos de la vista son:

» Unaimagen cargada desde un fichero denominado splash.png que se incluye en el
directorio de imagenes de la aplicacidn.
En esta pantalla no hay opcidn de realizar acciones, existe un temporizador con una
duracion de 2sg que se encarga de cambiar de escena automaticamente tras pasar el
tiempo al que esta programado.

Esta pantalla da paso a la pantalla de bienvenida de la aplicacidn.

-19 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.2.3.2 Pantalla bienvenida

Curso de Introducdion
»nma SDK

Toca la pantalla para continuar

Figura 3.6. Pantalla de bienvenida de la aplicacion

La pantalla de bienvenida contiene el titulo de la aplicacién. Los elementos que contiene
la vista son:

» Lavista contiene un fondo de pantalla negro.

» Unaimagen cargada desde fichero que es las encargada de mostras el titulo de la
aplicaciéon, dependiendo del idioma el archivo cambia.

» Sila ultima vez que se ejecutd la aplicacion se estaba visualizando un contenido de
un capitulo de ejemplos o de diapositivas, pregunta si se desea volver a la Ultima
posicién. Esto es util si se ha suspendido la aplicacién por una llamada u otro
motivo. El archivo posicidn.dat es el encargado de almacenar esta informacién.

La pantalla a paso al Menu principal de la aplicacion o a la Ultima posicion visualizada
dentro de un capitulo.

-20-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.2.3.3 Pantalla Menu Principal

Can gou makel..with Corona SPK

Motor Fisico
Audio Y Video
Sonidos y videos.

Bubble Ball
(anteriormente

Figura 3.7. Pantalla del Menu principal de la aplicacion

La pantalla del Menu Principal contiene el listado de los capitulos seleccionables asi como
los accesos a los juegos.

El listado de los capitulos esta incluido en el modulo externo “variables.lua”, el formato
es una tabla en la cual se incluyen todos los parametros referentes a la tableView, que es
el objeto encargado de mostrar la tabla. Los elementos que presenta la vista son:

Listado de capitulos .

Titulo de la aplicacidn.

Imagenes de juegos en la parte derecha de la pantalla.
Boton de Configuracion.

VVVYYVY

Desde esta pantalla es posible acceder a cualquier capitulo de la aplicacién asi como al
menu de configuracién.

-21-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.2.3.4 Pantalla Capitulo Diapositivas

Can you maXel..wth Corona SDK

INTROPUGECION A 1A PROGRAMASION DE VIDEOIVEGOS

INTRODUCCION A LA PROGRAMACION DE VIDEOJUEGOS
EN DISPOSITIVOS MOVILES

: | V % “ m .
[oo]

Figura 3.8. Pantalla de presentacién de diapositivas

En la pantalla de presentacién de diapositivas se puede visualizar uno de los 3 primeros
capitulos seleccionables en el Menu Principal. Los elementos que contiene la vista son:

Titulo de la aplicaciéon(Can you....)

Titulo del capitulo.

Objeto slideViev(incluye eventos y funciones)
Boton Menu.

Botdn Previus.

Boton Next.

VVVVVYY

Desde esta pantalla mediante la utilizacidén de los diferentes botones es posible o dirigirse
al menu principal para seleccionar otro capitulo o bien ir cambiando la diapositiva con los
botones de next y previus.

Existen 3 capitulos que utlizan esta misma forma y la escena utilizada es la misma para
todos y cada uno de ellos, la Tipo 1.

-22-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.2.3.5 Pantalla Introduccion Capitulo Ejemplos

Can gou makel..with Corona SDK

ViISURUZACION Y EVEATOS |

Este capitulo nos introduce en la visualizacion de objetos
asi como los eventos que los controlan. Hemos elegido un
juego standard conocido como "Space Shooter” para mostrar b
las posibilidades que nos ofrece Corona SDK. Vamos a
aprovechar el siguiente capitulo, Animacion y Movimiento, f
para terminar de rematar el juego y darle una aparencia real
de funcionamiento. Antes de comenzar a construir el juego
se incluye una introduccion sobre la creacion de objetos y
eventos

Figura 3.9. Pantalla de introduccién a un capitulo de ejemplos

En la pantalla de introduccién a un capitulo de ejemplos se visualiza un pequeno parrafo

gue nos detalla que nos vamos a encontrar en el capitulo seleccionado. El contenido de Ia
vista es:

Titulo de la aplicacidn.

Titulo del capitulo.

Contenido de la introduccion.

Dispositivo sobre el cual se van a visualizar los diferentes ejemplos.
Botén Play.

Boton Menu.

VVVYVYVVYY

Cuando nos encontramos en esta pantalla podemos dirigirnos hacia varias escenas.
Podemos volver al menu principal o podemos pulsar el botén play e iniciar el capitulo.

-23-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.2.3.6 Pantalla Visualizacion Tema

Can you maXel..wth Corona SDK

INTROPRUGCION [

Comenzamos la introduccion creando objetos de
pantalla, en primer lugar un rectangulo:

Figura 3.10. Pantalla de visualizacidn de un capitulo de ejemplos

La pantalla de visualizacion de un capitulo de ejemplos es similar a la anterior con la Unica
diferencia que el espacio ocupado por la introduccidn al capitulo ahora esta reservado
para ver las explicaciones sobre lo que aparece en el simulador. Esta pantalla es comun a
los 4 capitulos de ejemplos. Cada capitulo de ejemplos contiene en su interior diferentes
temas que son tratados de forma ordenada respecto a la creacidn del videojuego de
ejemplo. Enumeramos a continuacién los elementos que contiene la vista:

Titulo de la aplicacidn.

Titulo del tema que estamos visualizando

Espacio reservado para la explicacion del tema.

Dispositivo simulado sobre el cual se visualizan los diferentes ejemplos.
Boton menu.

Boton configuracion.

Botones next y previus.

Boton play y pause.

Boton content.

VVVVYVYVVYVYY

Existen varias posibilidades en esta pantalla a la hora de realizar acciones. Los botones
con flechas de direccidn se utlizan para avanzar o retroceder en el tema.

Existe un botdn play que al pulsarlo ejerce la misma funcién que la flecha next pero de
forma automatica, sin necesidad de estar pulsando cada vez que avanze el tema. Se
detiene cuando llega a la ultima linea de las explicaciones. Al pulsar play este botén
desaparece y el boton pause aparece para detener las explicaciones cuando precise. En
ese instante se alternan los botones para reanudar la marcha al volver a pulsar play.

-24-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

El botdn content hace aparecer una barra con el contenido del capitulo distingido por
temas. A continuacion se muestra el contenido de los temas de cada capitulo.

Capitulo 4 — Visualizacion y eventos :

Introduccion |
Introduccion |l
Introduccion I
Introduccion IV
Formas
Imagenes
Texto

Grupos
Propiedades
Eventos 1
Eventos 2
Eventos 3

VVVVVVVYVYVVYY

Capitulo 5— Animacion y movimiento :

» Transition |
» Transition I
» MovieClip |
» MovieClip Il

Capitulo 6 — Motor Fisico :

Fisica |
Flsica Il
Escenario
Cuerpos
Pelota
Juego

VVVYVYVYVYY

Capitulo 7 — Audio y video :

Audio |
Audio Il
Video |
Video Il

VVVYYVY

A continuacio se muestra una imagen de pantalla cuando aparece la barra oculta de
contenido.

-25-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Figura 3.11. Pantalla con la barra de contenido

La forma que se gestiona la barra es la siguente, hay tantos temas que no caben todos
dentro de la pantalla por lo cual se ha incluido un slide sobre los temas que delizando el
dedo movemos la barra de contenido hacia ambos lados. Al pulsar sobre un tema en
concreto se carga la escena pertinente y se visualiza de la misma forma.

Para ocultar la barra de contenido sin cambiar de escena es tan facil como tocar la
pantalla por encima de la barra y esta desaparece para poder continuar viendo el
capitulo.

3.2.3.7 Pantalla Configuracion

COMNFIGURACIONM
IDIOMA
N g
AN

soniPo

ON BB oFF

ANIMACION
ON B oFF

ACERCH DE

Version: 1.0
Autor: Carlos Lorenzo Paricio

Figura 3.12. Pantalla de configuracién de la aplicacion

En esta pantalla se muestran las opciones de configuracién de la aplicacion. Los
elementos que contiene la vista son:

» Enla parte superior aparece el titulo de la escena.

» Las opciones que se permiten modificar son el idoma, el sonido y la animacion.

» Todas las opciones se cambian pulsando sobre el valor. Se guardan
automaticamente en el modulo externo “variables.lua”.

-26 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Las opciones que pueden modificarse son simples y sencillas. Cuando pulsamos sobre las
seleccion de idioma este nos pregunta si estamos de acuerdo con cambiar de idioma y
nos advierte que es necesario reinicia la aplicacién, como vemos a continuacion.

Cambiar idioma
(‘) Es necesario reiniciar la aplicacion

Cancelar) (OK)

Figura 3.13. Pantalla de reinicio de aplicacién.

La imagen no corresponde con la advertencia que nos muestra el dispositivo sino la que
vemos en el simulador aunque solo cambia el disefio.

Para ocultar la pantalla de configuracién arrastramos con el dedo hacia arriba y al soltarlo
automaticamente la pantalla se oculta.

3.2.3.8 Pantalla de Menu Juegos

BUBE!: BRLL

PLAY

OPTIONS

EXIT

Figura 3.14. Pantalla de inicio del juego Bubble Ball

En esta escena podemos ver la pantalla de introduccién de un juego, en este caso la del
Bubble Ball. Para cargar un juego es necesario cargar una escena diferente por lo tanto
existen tantas escenas como juegos. La estructura que mantienen los juegos es similar
para todos aunque evidentemente la diferencia de contenido es grande. Es posible
aprovechar el orden de carga de variables, de funciones y de eventos.

-27 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Los elementos de la vista que aparecen en la pantalla principal de los juegos son:

» Titulo del juego.
» Botones de play, options y exit.

3.2.3.9 Pantalla de Juegos

Figura 3.15. Pantalla del juego Space Shooter

En la pantalla de juegos podemos observar que aparecen 2 botones en las esquinas
superiores. El botdn de la esquina derecha nos permite volver al menu principal del juego.

Cuando pulsamos el botdn superior izquierdo aparece la aplicacidén nativa del dispositivo

para mandar un e-mail con un archivo adjunto en formato zip incluendo el juego que
estamos visualizando para su posterior estudio.

3.3 Implementacion

En esta seccidn se detalla cdmo se ha implementado la aplicacidn.

-28 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Como se ha comentado anteriormente el disefo de la aplicacidn respecto a la transicidon
de escenas se realiza mediante el modulo externo DirectorClass. A continuacion
mostramos la estructura de la aplicacidon y comentamos el sistema de archivos y
directorios que rige la aplicacién.

3.3.1 Estructura del programa

En el siguiente esquema se puede visualizar la estructura completa del programa vy los
ficheros externos que se utilizan en el.

Modulos externos:
main.lua director.lua - examples.lua - showText.lua - physics.lua - movieclip.lua
uti.lua - variables.lua - ui.lua - tableView.lua - slideView.lua
Pantalla splash.lua Caps1,2,3
de Carga
capl.lua
cap2.lua
cap3.lua
Pantalla screenl.lua
Bienvenida
Caps 4,5,6,7
cap4.lua
Menu e - cap5.lua scene.lua
Principal cap6.lua

can7.lua

Caps 8,9, 10

cap8.lua
cap9.lua
capl0.lua

Figura 3.16 Estructura de escenas de la aplicacion

En los siguientes apartados se iran desglosando los mdédulos que componen la estructura
del programa y los ficheros que se utilizan para su configuracion.

button.mp3

Aplicacion sound bubble_ball

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

cap8.zip

Figura 3.17. Estructura de directorios del proyecto en Corona SDK

La organizacién de los ficheros se localiza en una carpeta de proyecto principal, de
acuerdo a la estructura establecida por Corona SDK, donde se encuentra el archivo
principal de la aplicacidn main.lua, las escenas, mddulos externos de cédigo y directorios

de imagenes y sonidos.

Los archivos de audio y sonidos estan almacenados dentro de un directorio denominado
sound.

-30-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Las imagenes se encuentran en el directorio images, dentro de este directorio las
imagenes se encuentra clasificadas dependiendo la escena donde aparecen . Existen
imagenes que son utilizadas por varias escenas como son los botones, fondos de pantalla
y el titulo de la aplicacidn que aparece en todas las escenas.

Con respecto al fichero auxiliar, es creado dinamicamente por la aplicacion en el
directorio de documentos y definido en la constante system.DocumentsDirectory y que es
usado para ficheros que necesitan permanecer entre varias sesiones de la aplicacién.

3.3.2 Ficheros de configuracion

Para la construccién de la aplicacion es necesario un fichero de configuracién que
pasamos a explicar a continuacidn. Debe ser generado por el administrador y es necesaria
su existecia para que la aplicacidn funcione con normalidad.

3.3.2.1 posicion.dat

Guarda la posicién dentro de la escena que estamos visualizando. Se va actualizando al
cambiar de escena. En caso de interrupcidn de la aplicacidn permite volver al punto
previo al iniciar la aplicacidn de nuevo, en el caso de que estemos visualizando un tema
dentro de un capitulo de ejemplos o dentro de unos de los capitulos de diapositivas.
Contiene el nombre de la escena en la cual estamos situados. Este dato es pasado a
nuestra funcién de chequeo de posicidn y este determina en que posicidn nos habiamos
guedado anteriomente. Existen 2 posibilidades a la hora de guardar en el archivo. Si en la
escena en la que estamos es necesario guardar la posicidn, escribimos en el archivo el
nombre de la escena, por ejemplo formas. En el caso de que no sea necesario escribimos
un “0”. Cuando la funcién chequea el archivo posicion.dat sabe que si obtiene un “0” no
es necesario preguntar la ultima posicidon conocida, en el caso que aparezca una cadena
pregunta si queremos volver a esa escena. A continuacidn se muestra una pantall con la
imagen que nos ofrece el simulador. No es la misma que aparece en el dispositivo, solo
cambia graficamente la forma de mostrarse.

Bienvenido
@ iQuiere acceder a |a ultima posiciéon guardada?

Cancelar) (oK)

Figura 3.18 Pantalla de acceso a la ultima posicién guardada.

3.3.3 Ficheros de contenido

Los ficheros de contenido de la aplicacidon almacenan los datos para la generacidn de las
escenas que contienen texto. En nuestro caso todos esos datos se encuentran dentro de
la libreria variables.lua y la explicamos a continuacion.

-31-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.3.3.1 variables.lua

El texto esta almacenado dentro del modulo externo variables.lua. La forma de
selecionarlo es simple. Mediante la funcién new(cap,tema) selecionamos las cadenas de
texto a mostrar y las rutas de los titulos de las escena que luego esta gestidna para que
aparezcan correctamente.

Segun el estado de la variable global language_state se carga el idioma de las variables.

Podemos ver a continuacion una fragmento del cddigo de la libreria variables.lua,
exactamente la funcién new(cap,tema)

variables.lua

function new(cap,tema)
if language_state == false then

if cap == 1 then
tema_tit = "images/titulos/spanish/introduccion.png"

non non non

mylmages = {"images/cap1/1.jpg", "images/cap1/2.jpg", "images/cap1/3.jpg", "images/cap1/4.jpg",

non non non

"images/cap1/5.jpg", "images/capl/6.jpg", "images/capl/7.jpg", "images/cap1/8.jpg"}

end
if cap == 2 then

tema_tit = "images/titulos/spanish/lua.png"

mylmages = {"images/cap2/1.jpg", "images/cap2/2.jpg", "images/cap2/3.jpg", "images/cap2/4.jpg"}
end
if cap == 3 then

tema_tit = "images/titulos/spanish/coronaSDK.png"

mylmages = {"images/cap3/1.jpg", "images/cap3/2.jpg", "images/cap3/3.jpg", "images/cap3/4.jpg"}
end
if cap == 4 then

titulo = {"Introduccion I","Introduccion II","Introduccion Ill","Introduccion
IV","Formas","Imagenes","Texto ","Grupos","Propiedades","Eventos 1", "Eventos 2", "Eventos 3"}
numero_temas =12

if tema == 0 then

tema_tit = "images/titulos/spanish/visualizacion.png"

string_introduccion =" Este capitulo nos introduce en la visualizacion de objetos asi
como los eventos que los controlan. Hemos elegido un juego standard conocido como "'Space Shooter" para mostrar
las posibilidades que nos ofrece Corona SDK. Vamos a aprovechar el siguiente capitulo, Animacion y Movimiento,
para terminar de rematar el juego y darle una aparencia real de funcionamiento. Antes de comenzar a construir el
juego se incluye una introduccion sobre la creacion de objetos y eventos."

end
if tema==1 then
strings = {}

strings[1] = "display.newRect(x,y,width,height)"
strings[2] = "display.newRoundedRect(x,y,w,h,radius)"

-32-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

strings[3] = "display.newCircle(x,y,radius)"

strings[4] = "display.newLine(x1,y1,x2,y3)"

strings[5] = "line:append(x3,y3)"

strings[6] = "object:setFillColor(R,G,B,transparency)"

strings[7] = "line:setColor(R,G,B,transparency)"

strings2 = {}

strings2[1] = "Ahora un rectangulo con los bordes redondeados:"

strings2[2] = "El siguiente es un circulo:"

strings2[3] = "Tambien es posible dibujar una linea:"

strings2[4] = "Con la siguiente instruccion podemos incluir otra linea al ultimo punto del
objeto anterior:"

strings2[5] = "Para cambiar el color de un objeto:"

strings2[6] = "El metodo de la linea es distinto:"

y ={180,255,325,395,505,575,645}

y2 ={120,225,295,365,445,545,615}

tema_tit = "images/titulos/spanish/introduccion1.png"

string_introduccion = "Comenzamos la introduccion creando objetos de pantalla, en
primer lugar un rectangulo:"

escena_anterior = "cap4"

escena_siguiente = introduccion2

fin=7

3.3.4 Moddulos o librerias

Como se ha comentado en la estructura del programa, a partir del mdédulo principal,
main.lua, se han cargado una serie de mddulos externos o librerias que nos permiten
acceder a funciones y a utliidades que a priori Corona SDK no permite y que nos da un
plus de comodidad a la hora de programas ya que podemoa adaptar librerias especificas
para otros proyectos a cualquier otro.

La forma de incluir un modulo en un proyecto es la siguiente:
local ejemplo = require(“ejemplo”)

Dentro del modulo es necesario incluir la siguiente linea para que Corona SDK entienda lo
que es.

module(..., package.seeall)
El archivo principal, main.lua, contiene la llamada a todos esas librerias pero la libreria

imprescindible para nuestra aplicacion es director.lua. Vamos a pasar a explicar como
funcionan los modulos y en primer lugar comenzamos con el mas importante.

3.3.4.1 director.lua

El funcionamiento de este modulo es muy sencillo. Es necesario que el main.lua contenga
la siguente parte de cédigo para afadir la libreria. Y cada escena es necesario que siga un
patrén de cédigo para que todo valla perfecto.

Este es el cddigo que presenta el archivo principal main.lua:

-33-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

local mainGroup = display.newGroup()

local main = function ()
mainGroup:insert(director.directorView)
director:changeScene("splash")
return true

end

main()

En este caso llamamos a la escena splash.lua.

Lo primero que hace el codigo es crear un grupo de objetos. En el incluiremos los objetos
de pantalla que creemos y que seran llamados “hijos”.

Luego creamos la funcidn principal de la aplicacién que mas tarde llamaremos para
iniciarla.

Para cambiar de escena simplemente utilizamos la siguiente instruccion:
director:changeScene(escena)
Donde escena es un archivo como por ejemplo: scene.lua

El formato de scene.lua es diferente al main.lua a continuacién se explica con mas detalle
tras mostrar un ejemplo de escena:

new = function ()
local localGroup = display.newGroup()
-- Codigo escena
return localGroup

end

Creamos un grupo local que solo esta dentro de la escena. Es necesario incluir cada
objetos de pantalla que se cree dentro del grupo porque de cara a una gestién correcta
de la memoria en la aplicacién, que como se ha comentado, es importante en dispositivos
moviles, se ha utilizado una estructura basada en objetos de visualizacidn o display
objects. Al cambiar de escena cada uno de los objetos incluidos son eliminados y
resolvemos del problema de la memoria de un plumazo. Tambien son eliminados los
posible eventos asociados a los objetos.

Las posibilidades que nos ofrece esta libreria para cambiar de escena son las siguientes:

director:changeScene(params, escena, efecto)

-34-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

params = estos parametros estaran disponibles en la siguiente escene. Su formato
solo puede ser el de una tabla. Ha ido predeterminado por el autor.

escena = archivo con extensién punto lua.
efecto = ha sido preconfigurado por el autor, como ejemplos downFlip, fade....

3.3.4.2 util.lua

En ella estan incluidas ciertas herramientas que utilizamos como complemento de las
librerias de lua y las propias de Corona SDK. A continuacion enumeramos todas las
funciones incluidas en este libreria:

function ParseCSVLine (line,sep)

Esta funcion lo que hace es separar el contenido de una cadena que esta separada por un
caracter especifico en varias cadenas dentro de una tabla.

Parametros de entrada:

line = linea con valores separados con un caracter
sep = caracter separador. Si no se especifica se usa la coma ',

Parametro de salida:

Devuelve una tabla de strings con los parametros que antes estaban
separados.

loadValue = function(strFilename)
Esta funcion permite cargar en una cadena el contenido de un archivo.
Parametros de entrada:

srtFilename = archivo que va a ser procesado

Parametro de salida:

Devuelve un string con el contenido del archivo

saveValue = function(strFilename, strValue)
Esta funcion guarda el contenido de una string dentro de un archivo
Parametros de entrada:

srtFilename = archivo que va a ser procesado

-35-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

srtValue = string que va a ser guardada

Parametro de salida:

No tiene.

getPosicionGuardada = function ()

La funcidn se encarga de comprobar si hay alguna posicién guardada al entrar en la
aplicacién de nuevo.

Parametros de entrada:
No tiene.

Parametro de salida:
Devuelve si hay capitulo guardado y en su caso un string con el nombre del
capitulo guardado.

crearConfiguracion = function (language,grupo)
Esta funcion crea el menu de configuracidn de la aplicacién.
Parametros de entrada:

language = idioma que debe mostrar el menu
grupo = el grupo local de la escena

Parametro de salida:

Devuelve un grupo, que no es mas que el propio menu. Con su eventos,
botones...

3.3.4.3 movieClip.lua

Este modulo es propio de Corona SDK pero no viene incluido en la aplicacién y es
necesario hacerlo manualmente. Es util para crear animaciones. Hemos explicado su
funcionamiento en el tema de animacién y movimiento y lo hemos utilizado en algin
juego. Para agregarla al proyecto simplemente basta con copiar el archivo movieClip.lua
dentro de nuestra carpeta de aplicacién.

3.3.4.4 ui.lua

Otro modulo propio de Corona SDK no incluido inicialmente. Sirve para crear botones con
animacioén. Es facil de usar. Simplemente permite crear el botdn al dale como pardmetros
las imagenes y la funciona asociada. Aqui un ejemplo:

-36-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

local buttonMenu = function (event)
-- Accion a realizar
end

btmenu = ui.newButton{
default = “menu.png",
over = "menu_over.png",
onEvent = buttonMmenu,
id = "btmenu"

}

3.3.4.5 showText

Este modulo ha sido creado especificacmente para este proyecto. Lo usamos para darle la
animacién a una cadena dentro de los capitulos de ejemplo. Su funcionamiento es
sencillo. Le puedes pasar como parametro un string y te carga cada letra del string
individualmente. Es posible configurar parametros como el tiempo entre letras, longitud
del texto, posiciones. La dificultad de este modulo radica en que ha sido necesario
individualizar el tamano de cada letra para que al mostrarlas todas juntas den una
sensacion de coesion y parezca que es un string y una suma suma de varios. A
continuacion se detalle la funcidn.

function draw(string , x, y, color , tamafio, anchura , tiempo , sonido, cap, temal, id,
tope, flag)

Parametros de entrada:

string = cadena a mostrar

X, ¥ = posiciones del comienzo del string

color = los colores posibles son “blanco”, “gris” y “negro”

tamafio = de la fuente

anchura = el texto cambia de linea

tiempo = entre letras

sonido = se reproduce cuando imprime una letra

cap, temal, id = esta relacionado con el tema que visualizamos
tope = cada tema visualiza un numero de veces este complemento

flag = depende de esta variable para comportarse de una forma u otra

Parametro de salida:

Devuelve 2 grupos. El primero con el string cargado y el segundo que
devuelve es el ejemplo que se carga dentro de la funcion

-37-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.3.4.6 tableView.lua

Este es necesario para que funcione la tabla de capitulos del menu principal. Es un widget
gue proporciona Corona SDK y va muy bien para este tipo de objetos. Se agrega mediante
el archivo en la carpeta. Le pasamos los parametros de configuracidn mediante una tabla
de strings donde se incluyen los titulos y subtitulos de la misma. Es nuestro caso se ha
utilizado una tableView modificada para mostrar una imagen en el lado izquierdo de cada
linea.

3.3.4.7 slideView.lua

Otro widget que nos facilita Corona SDK. En nuestro caso se ha modificado internamente
para adaptarlo a nuestras necesidades. Lo hemos utilizado en los capitulos de
diapositivas. Nos permite deslizar con el dedo entre las diferentes imagenes hacia un lado
como para otro. Es necesario incluir el archivo para agregarlo al proyecto.

3.3.4.8 examples.lua

Esta libreria es la responsable de cargar los ejemplos de los capitulo que se usan para
aprender a programas. Incluye una funcion que al pasarle unos parametros nos devuelve un
grupo con el contenido de lo que le estamos solicitando. A continuacion se muestra la
funcion que usamos:

function new(cap,tema,id)

A través de los parametros la funcién sabe que tiene que mostrar. En su interior hay un
entramado de condicionales que son las encargadas de elegir el objeto a mostrar.

3.3.4.9 variables.lua

La ultima libreria que pasamos a explicar es sin duda es la mas importante después de la
directoraClass dado su contenido. Anteriomente la hemos comentado como libreria de
contenido. En ella se almacenan todas las variables globales que aparecen en la aplicacidon
asi como la funciones que cargan el contenido en la mayoria de las escenas. Ademas
estan guardadas también las tablas que pasamos como parametro a una escena cuando la
cambiamos. Vamos a enumerar la funciones que la ocupan y para que sirven cada una de
ellas asi como todas las variables globales que aparecen.

Variables Globales:
language_state = false -- Estado del idioma
sound_state = true -- Estado del sonido

animation_state = true -- Estado de la animacion
estado_temasGroup = false -- Estado del grupo temasGroup

-38 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Funciones:

new = function (cap, tema)

Es la encargada de cargar el contenido a mostrar en una escena. Como vemos los
parametros de carga son necesarios para que la funcidn sepa que debe mostrar. Esta
funcidon también detecta el idioma del string y devuelve el correcto.

new? = function ()

Se ocupa de cargar la pantalla de configuracidn. Dependiendo de estado de la variable
language_state carga un idioma u otro.

new?2 = funcion ()

En ella esta incluida la tabla necesaria para el objeto tableView. Tambien diferencia entre
el idioma que necesitemos.

new4 = funcion ()

Esta funcion también se utilizar en la pantalla de configuracién y es la encargada de
determinar en que posicidn debe situarse los botdnes de activado de sonido y de
animacion.

new>5 = function ()

Esta funcion la utilizamos en la pantalla de bienvenida. Determina que idioma debemos
elegir a la hora de mostrar el titulo y los textos.

content = function(cap,tema,tema_seleccionado)

Crea todos los eventos relacionados con la barra Content. Le damos pardmetros dado que
cada capitulo es distinto y es necesario caracterizarlo individualmente.

Tablas de parametros:

Como hemos comentado anteriomente podemos pasar parametros entre escenas pero
solo mediante tablas. Pues eso es lo que hacemos con estas tablas. Estan configuradas de
tal forma que cuando llamas a la escena scene.lua le pasas los paremetros necesarios
para configurar esa escena. La escena es comun para todos los capitlos pero su contenido
no, por lo que después de pasar estos parametros llamamos a la function de Ila libreria
variables con esos pardmetros y asi conseguimos cargar lo que nos interesa.

-39-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.3.5 Titulos de la aplicacion

Para realizar los titulos de la aplicacidn se ha utlizado un recurso Web gratuito y que
aparece en http://cooltext.com/ Es posible generar miles tipos de fuentes para titulos. A
continuacion se muestra una pantalla de lo pasos para genenar un titulo de la aplicacién.

Choose a Logo Style

3L Quilives 240 Curiiae Alien Glow
g Blended) Towinkod
Burning CLARVIED
Chrome One Thamans TEw S S RE s
Funt dit Shve Al
Cutonr Felt
[EROS T
KITSAGINRIZ ST Sloswvingisrect) Lradient Bevel
Corausrse {<en iText
Molten Core M) =&y
Old Stene Chrszlisve PARTICLE
[Fixec[saoce | 5 el S Simple
Stadbues NNEEFL 7 L

Figura 3.19. Primer paso para creacion de titulo

Lo primero es seleccionar el estilo del titulo que queremos. Pulsamos encima del que mas
nos guste.

Me@a)

Design Your Logo
Neon

Font

Blippo AaBbCcDJEcFiGgHAliJjKklUmMm

Text Size

70 3

[]

Glow

Shadow

File Format
| .PNG w/ Transparency) #]

Render Logo

Figura 3.20. Segundo paso para creacién de titulo

-40-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

En el siguiente paso introducimos el titulo en el cuadro de texto. Podemos cambiar la
fuente del titulo asi como el color.

Elegimos el formato que queremos de la imagen y pulsamo el botén render Logo para
generar el titulo.

)o@

Download Image - Edit this logo - Get HTML Code - Email Image

Usage Terms
You are welcome to use any of the generated graphics in any way, shape, or form without asking permission. If you'd like to thank us, please tell
your friends about this service and consider linking to us.

Figura 3.21. Aspecto del titulo definitivo

3.3.6 Adaptacion dindmica de contenido

Figura 3.22. Dispositivo moévil Ipad

Para comenzar es necesario decidir el tamafio de contenido, con independencia de las
dimensiones de la pantalla. Este método proporciona el sistema de coordenadas para el
cddigo de las aplicaciones realizadas con Corona SDK, que serd independiente de la
cantidad real de pixeles en la pantalla del dispositivo.

Para esto se define el tamafio que queremos al que se adapte nuestra aplicacion, el
tamafio del contenido, en el archivo de la aplicacién ubicado config.lua. El codigo no tiene
por qué conocer el tamano real de la pantalla.

Vamos a configurar nuestro archivo config.lua, este se encarga de escalar el contenido de
la pantalla del dispositivo que visualiza la aplicacion debido al modo de escalado
(parametro scale definido en config.lua)

3.3.6.1 config.lua

-41 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Hay varios modos:

» letterbox: es el modo mdas comun, ya que no se recorta el contenido aunque por el
contrario puede mostrar zonas negras. En la aplicacion se pueden detectar esas
zonas y definir un contenido genérico, por ejemplo.

» ZoomEven: En este modo, el contenido se escala para llenar completamente la
pantalla, aunque puede que alguna parte de la pantalla vea recortados los bordes.
Esto significa que nunca habra zonas, pero puede quedar parte del contenido
fuera de la pantalla.

» ZoomStretch: El contenido se escala para completar totalmente la anchura y altura
de la pantalla. No se pierde contenido pero se puede distorsionar si el dispositivo
tiene una relacién de aspecto diferente de su contenido. También puede parecer
extrafia cuando se gira, ya que la distorsidn es determinada por la orientacién
inicial.

» sin parametro scale: Esto desactiva el modo de escalado de contenidos, y produce
el mismo resultado que no tener un archivo config.lua.

El fichero config.lua, permite personalizar la configuracién por dispositivos.

config.lua

-- config.lua

-—- Autor: CARLOS LORENZO PARICIO --
- Version: 1.0 --

application =
{
content =
{
width = 768,
height = 1024,

scale = "letterbox",
fps = 30,
antialias = true,

by

Como podemos observar hemos utilizado el modo normal o letterbox. Configuramos las
dimensiones de la pantalla para nuestro dispositivo. La pantalla del Ipad tiene una
resolucién de 768 por 1024 pixeles. El parametro fps establece que cada 30 frames por
segundo se actualiza el entrerframe de la aplicacion.

Respecto al paremtetro de configuracidon antialias, Corona SDK utiliza un software anti-
aliasing para los objetos vectoriales. Anteriormente este sistema estaba implementado
por defecto pero ahora aparece deshabilitado y es necesario activar, este mejorara
considerablemente el rendimiento de objetos vectoriales y deberia haber poca diferencia
visual en los dispositivos mas actuales que presentan pantallas de alta definicidn.

-42-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

3.3.6.2 build.settings

Este archive es necesario que aparezca en la raiz de nuestro proyecto si queremos
configurar ciertos parametros de nuestra aplicacion.

build.settings

--build.settings--

-—- Autor: CARLOS LORENZO PARICIO --
- Version: 1.0 --

settings = {
orientation =
{
default = "landscapeRight",
supported = { "landscapeleft", "landscapeRight" },

by

Como puede observarse nuestra orientacion por defecto esta configurada como
landscaprRight. Esto quiere decir la aplicacion esta disefiada para funcionar

horizontalmente y que ademas admite girarla como se observa en el parametro
supported. Es posible incluir opciones portrait, portraitUpsideDown o landscape.

3.3.7 Pruebas y verificacion

Antes de decir que la aplicacion esta terminada es necesario que esta sea sometida a un
periodo de prueba y comprobacién de su funcionamiento.

Para ello hemos elegido la forma de tradicional de hacerlo y es ir probando todas las
opciones posibles que admite cada escena de la aplicacién.

Dado que hay escenas que son similares el trabajo se simplifica y es posible reducir
bastante el tiempo de verificacion.

Tras someter a prueba la aplicacidn se detectan fallos de funcionamiento que son
anotados en un blog de ensayos y que mas tarde son analizados mediante el simulador
corrigiéndolos a medida que van aparenciendo.

En nuestro caso ha aparecido un fallo bastante grave y para el que ha sido necesario
bastante tiempo para encontrar su solucién. A continuacidn se explica de que fallo se
trata y se comenta por encima los fallos comunes y de facil solucién.

El fallo al que nos referimos nos ha costado detectarlo porque en el simulador no aparece
pero en el dispositivo si. Asi es dificil detectar fallos y solo haciendo pruebas detalladas es
posible corregirlos. En este caso el problema procede de las imagenes que mostrarmos en
en pantalla, particularmente en los botones. Tras disefar los botones con un programa de

-43 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

disefio conocido nos dimos cuenta que al construir la aplicacién aparecia un error que no
conseguiamos corregir. Nos dimos cuenta que eliminando el objeto el error desaparecia y
al proceder a cambiar la imagen a mostrar el fallo ya no aparecia mas.

Otros fallos comunes son las rutas de imagenes. Suelen esta equivocadas y simplemente
basta con corregirlas o colocar los archivos imagen en la ruta correcta.

Tambien son comunes los errores tipograficos. Al cometer un error en la programacion
detecta que algo no va bien y precisa correccion.

3.4 Tareas de administracion

Una vez finalizadas las tareas de desarrollo del cddigo de la aplicacion, se deben realizar
una serie de tareas de administracion para poder completar la funcionalidad.

3.4.1 Distribuir aplicaciones

Una vez que se tienen los elementos para construir la aplicacién y ha sido probada, se
deben realizar las tareas para construir la aplicacién.

En el fichero build.settings se pueden afiadir una serie de valores opcionales para definir
aspectos de la construccién. Se utiliza para establecer la orientacidn de la aplicacién y el
comportamiento de auto-rotacién, junto con una variedad de plataformas especificas
parametros de construccion.

Para el caso de dispositivos con iOS la tareas necesarias para obtener la aplicacion:

1 - Developer account y Developer Certificate
Lo primero es inscribirse en el iPhone Developer Program de Apple en la siguiente
direccion:

http://developer.apple.com/iphone/program/
Luego es necesario solicitar un certificado de desarrollador (Developer Certificate)

2 - Keychain certificate

Una vez que se han inscrito en el programa de desarrolladores, se debe utilizar la
herramienta de "Keychain access", ubicado en la carpeta de servicios con el fin de crear
una solicitud de certificado. Esto se utiliza para autenticar su equipo.

3 - AdAadir un dispositivo

Se debe registrar un dispositivo para el que se va a construer la aplicacion por lo que se
necesita el nimero Uniques Device Identification (UDID).

-44 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

4 - App IDs

Con el fin de obtener perfiles de aprovisionamiento, primero se debe crear una ID de la
aplicacion. El ID de la aplicacion permite a una aplicacion comunicarse con el servicio de
notificaciones push y / o cualquier otro hardware externo que tiene la aplicacion. Un ID
de la aplicacién consiste en un 10 caracteres " Bundle Seed ID" como prefijo generado por
Apple, y un sufijo " Bundle Identifier” creado por el administrador del equipo en el portal
del programa.

5 - Provisioning profiles

Hay tres tipos de perfiles de aprovisionamiento para el programa de iPhone: Ad Hoc,
desarrollo y distribucién. El perfil de distribucién es lo que se utiliza para crear una
aplicacidon con el propédsito expreso de ponerlo en la App Store.

6 - Construir la aplicacion

La construccion de su aplicacién utilizando Corona es un proceso sencillo una vez que
haya perfiles de aprovisionamiento en su lugar. Para construir la aplicacion, abra el
simulador de Corona y abrir un proyecto (seleccione File> Open ... para abrir el proyecto).
A continuaciodn, seleccione File> Build> 10S ... Aparecerad el siguiente didlogo:

N OO Build for iPhone

Application name: WebOverlay

Version: 1.0

Project Path: /Volumes/rttmain/docs/SampleCode/iPhone/Device/WebOverlay

Build for v Device
Xcode Simulator

Device Compatibility—

0S Compatibility: [iPhone 0S 3.0 B
Code Signing Identity: | Choose from the following ﬂ
Save to folder: /Users/wluh/Desktop Browse...

(_Cancel) (Build

Figura 3.23. Construccidn aplicacién en iOS

Una vez que haya introducido toda la informacién pertinente, se pulsa el botén 'Build'.
Una vez que Corona ha completado la construccidn, la salida sera una aplicacién que se
guarda en un directorio.

7 - Subir la aplicacion a la App Store

Una vez que se han construido y probado la aplicacién con Corona, es hora de subirlo a la
App Store. Para ello, se tiene que acceder a "iTunes Connect" en el iPhone Dev Center. Si
la aplicacidn va a ser de pago, se tienen que aceptar los contratos de Apple.

Después de rellenar toda la informacién necesaria, subir la aplicacién, al menos un
pantallazo, etc, la afliccién entra en el proceso de revisidn por parte de Apple.

4 Conclusiones

-45 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

En este capitulo se ofrecen una serie de conclusiones acerca del trabajo realizado para la
consecucion de los objetivos que se habian marcado en el Proyecto fin de carrera, tanto
en el aspecto técnico de la aplicacion desarrollada como en lo personal. Ademas, se
proponen una serie de posibles mejoras de cara a futuras ampliaciones de la aplicacidn.

En un futuro la actualizacion de esta aplicacion podria ser una nueva propuesta para un
proyecto Fin de Carrera para que otro alumno que pueda estar interesado la retome y
complete una serie de mejoras y actualizaciones que mas tarde enumeraremos.

Los objetivos planteados en el analisis de requisitos del proyecto han sido cumplidos con
éxito.

Entre las dificultades del proyecto ha estado el aprendizaje de la programacién en Corona
SDK. Se desconocia totalmente la aplicacién y se ha necesitado un curso de formacion
impartido por la Universidad de Zaragoza para iniciarse en la plataforma.

Finalmente en este proyecto se ha optado por obtener un resultado final optimizado para
el iPad dado que este es el dispotivo que el departamento posee para realizar las pruebas
de testeo.

La realizacion de este proyecto ha supuesto una ampliacién de mis conocimientos de
programacién sobre dispositivos moviles, sobre todo en cuanto al desarrollo de
aplicaciones multiplataforma, una tendencia que actualmente se esta imponiendo en el
mercado.

Me ha permitido conocer distintas plataformas para el desarrollo de aplicaciones, cada
una con sus caracteristicas y particularidades asi como profundizar en Corona SDK, una
herramienta, todavia en evolucion, que en un futuro préximo serd un referente en este
campo.

En definitiva, el desarrollo del proyecto ademas de incrementar el conocimiento sobre
herramientas y tecnologias, ha supuesto un reto personal importante una vez superadas
todas las asignaturas de la carrera.

4.1 Mejoras y ampliaciones

Desde un principio, el diseiio del sistema ha sido orientado a futuras ampliaciones, no
solo de los contenidos como ya se puede realizar, sino de la aplicacién en si.

Asi pues, algunas de las posibles mejoras serian:

Mejorar la visualizacion del contenido.

Optimizar la visualizacidén para todo tipo de dispositivos méviles y tabletas.
Actualizaciones del contenido desde la propia aplicacion.

Los temas para una posible actualizacién del contenido pueden ser:

VVVYYVY

o Scrolling lateral.
o Niveles en los juegos construidos.
o Efectos graficos.

-46 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

o Multijugador.
o Openfeint.
o Publicidad.

5 Bibliografia y referencias

» ‘Corona SDK. Language and API Reference’. Ansca mobile, 2011

» Roberto lerusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes. ‘Lua 5.1
Reference Manual’ . Lua.org, 2007

» Pagina de recursos de documentacién de corona SDK:
http://developer.anscamobile.com/resources

> Indice TIOBE de utilizacién de lenguajes de programacion,
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

> http://www.imatica.org/bloges/2011/04/190486382011.html

6 Plataformas de programacion en dispositivos moéviles

6.1 Introduccion

La primera cuestion en este proyecto es determinar las distintas alternativas y
herramientas para el desarrollo de aplicaciones nativas para mdviles. Cada plataforma
tiene su propio lenguaje, herramientas de desarrollo y APIs con los que crear aplicaciones.

Otra opcidn es la creacidon de aplicaciones Web para movil frente a aplicaciones nativas
de los dispositivos.

La solucién mas éptima debe pasar por una herramienta “write once, run everywhere”, es
decir, un software con el que sea posible programar con un lenguaje determinado y que,
ademas, permita que la aplicacion funcione en varios dispositivos.

Este tipo de herramientas se estan popularizando y se han comparado cuatro de ellas:

Adobe Air Mobile (Adobe)
PhoneGap (Open source)
Appcelerator (Titanium)
Corona SDK (Ansca mobile)

YV V VY

6.2 Dispositivos y sistemas operativos

El mercado de los dispositivos méviles tiene una gran variabilidad y necesita de una
constante y légica adaptacién. Las caracteristicas que lo definen son:

-47 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

» Existencia de una gran heterogeneidad, en el que practicamente para cada una
de las principales marcas de dispositivos dispone de su propio sistema.

» Una visidn de un mercado altamente volatil con cambios muy significativos en
periodos muy cortos. Las cifras disponibles en cualquier “time to market”,
resulta dificilmente comparable o extrapolar con el de desarrollos realizados
en otras épocas.

Los sistemas operativos méviles mas utilizados actualmente son:

Android : es un sistema operativo basado en Linux disefiado originalmente para
dispositivos mdviles, tales como teléfonos inteligentes, pero que posteriormente ha
expandido su desarrollo para soportar otros como tablets, reproductores MP3, netbooks,
PCs e incluso televisores. Android, al contrario que otros sistemas operativos para
dispositivos mdviles como iOS o Windows Phone, se desarrolla de forma abierta y se
puede acceder tanto al cddigo fuente como al listado de incidencias donde se pueden ver
problemas aun no resueltos y reportar problemas nuevos.

iOS : i0S (anteriormente denominado iPhone OS) es un sistema operativo movil de Apple
desarrollado originalmente para el iPhone, siendo después usado en todos los
dispositivos iPhone, iPod Touch e iPad. Es un derivado de Mac OS X. La interfaz de usuario
de iOS se basa en con el concepto de manipulacién mediante gestos multitactil. Los
elementos de la interfaz se componen por deslizadores, interruptores y botones. La
respuesta es inmediata y se provee de una interfaz fluida.

BlackBerry OS: es un sistema operativo movil desarrollado por Research In Motion (RIM)
para sus dispositivos BlackBerry. El sistema permite multitarea y tiene soporte para
diferentes métodos de entrada adoptados por RIM para su uso en computadoras de
mano, particularmente la trackwheel, trackball, touchpad y pantallas tactiles.

Windows Phone: es un sistema operativo mévil compacto desarrollado por Microsoft, y
pensado para su uso en dispositivos méviles. Se basa en el nucleo del sistema operativo
Windows CE y cuenta con un conjunto de aplicaciones basicas utilizando las API de
Microsoft Windows. Esta disefado para ser similar a las versiones de escritorio de
Windows estéticamente.

Symbian: es un sistema operativo que fue producto de la alianza de varias empresas de
telefonia mdvil, entre las que se encuentran Nokia, Sony Ericsson, Psion, Samsung,
Siemens, Arima, Bengq, Fujitsu, Lenovo, LG, Motorola, Mitsubishi Electric, Panasonic,
Sharp, etc. El objetivo de Symbian fue crear un sistema operativo para terminales mdviles
gue pudiera competir con los existentes en su momento. Se esta dejando de utilizar
aungue su presencia es todavia importante.

Java ME: La plataforma Java Micro Edition, o anteriormente Java 2 Micro Edition(J2ME),
es una especificacion de un subconjunto de la plataforma Java orientada a proveer una
coleccidn certificada de APIs de desarrollo de software para dispositivos con recursos
restringidos. Estd orientado a productos de consumo como PDAs, teléfonos mdviles o
electrodomésticos.

-48 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

MeeGo: es una plataforma basada en Linux resultado de la uniéon de los sistemas
operativos Maemo y Moblin, con el que Intel y Nokia pretendian competir con el sistema
Android de Google. El proyecto estd auspiciado por la Linux Foundation.

Mobile web (HTML and JavaScript) : desarrollo de aplicaciones web para moviles.

Qt: es una biblioteca multiplataforma ampliamente usada para desarrollar aplicaciones
con una interfaz grafica o para programas sin interfaz grafica como herramientas para la
linea de comandos y consolas para servidores. Es producido por la divisién de software Qt
de Nokia. Qt es utilizada en KDE, un entorno de escritorio para sistemas como GNU/Linux
o FreeBSD, entre otros. Qt utiliza el lenguaje de programacién C++ de forma nativa,
adicionalmente puede ser utilizado en varios otros lenguajes de programacidn a través de
bindings.

En la siguiente figura se puede apreciar la evolucidon del porcentaje de utilizacién de cada
sistema operativo. Este estudio se ha realizado en los ultimos 4 afos y esta basado en
encuestas online y entrevistas a desarrolladores de 75 paises y a ejecutivos que trabajan
en laindustria mévil en organizaciones comerciales y agencias digitales.

Se observa que Android e iOS son los mas utilizados con un 53% y un 15%

respectivamente. El incremento del sistema operativo Android de Google es debido al
crecimiento exponencial de las ventas de dispositivos con ese sistema operativo.

World-wide Smartphone Mobile OS Marketshare %

70 4
66 —eAndroid
& 63 62 —i0S
60 4 - 1 57 | | = Symbian
——RIM o)
50 | 9 49 21 ——Microsoft
S0NS7 a4 45 a4 ——Bada @
41 | <+—OtherOS
40 4 36 36
33
30 4 05 /31 27
22
19 21 o 2 20 20 o
20 4 7 16 17 16 17 11

0 4 12 : 15 i i 15
= —— I LN 14
2 13 3

0+ = - . : - ' - — - 2 . P—
2007 2007 2007 2007 2008 2008 2008 2008 2009 2009 2009 2009 2010 2010 2010 2010 2011 2011 2011
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

Figura 3.1. Evolucion de la utilizacién de S.0. méviles.

-49-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Este mismo estudio muestra que los sistemas operativos que los desarrolladores estan
pensando en utilizar para sus desarrollos futuros son Android e iOS. Asi mismo, Symbian
es la plataforma con las mayor tasa de abandono por parte de los desarrolladores. Casi el
60% de los desarrolladores utilizando actualmente Symbian esta pensando en cambiar a
otros. Tambien cabe destacar el descenso que la compaiiia RIM ha sufrido probablemente
por los fallos que sus servidores sufrieron inexplicablemente a lo largo del afno 2011.

6.3 Aplicaciones web versus aplicaciones nativas

Todos los dispositivos méviles tienen uno o varios navegadores y muchos de ellos ya
soportan HTML5, por lo que una opciéon de desarrollo de aplicaciones es simplemente,
crear una aplicacién web y usarla desde el navegador de uno de estos dispositivos.

Ventajas:

» Disefio mds sencillo: Es suficiente con solo hacer un disefio adaptado a una
pantalla y resolucién pequefias, simplemente adaptando un CSS por cada
dispositivo. Ademas, las aplicaciones web se pueden “tunear” para que
parezcan aplicaciones nativas: icono de aplicacién, pantalla completa, splash
screen, barra de estado, etc.

» Implementacion: las aplicaciones web pueden ser desarrolladas en cualquier
tecnologia de servidor, asi que podemos usar cualquier lenguaje que ya se
conozca (Java, Grails, Php, Ruby, Python,...) con la seguridad de que la
aplicacion se vera practicamente igual en todos los terminales.

» Seguridad: Se controla el acceso a la aplicacion y se puedes actualizar sin
necesidad de accion del usuario.

Desventajas:

» Acceso APIs del dispositivo: no hay acceso completo a todas las APIs nativas
del mdvil. Aunque la cdmara y el micro son accesibles con Flash, todos
sabemos que esa tecnologia esta vetada en iOS. Desde HTML5 y Javascript, es
posible acceder a las coordenadas del GPS, pero no en tiempo real ni de la
misma manera que si pudiéramos acceder a la APl del mévil directamente. Y lo
mismo con otras funciones de los dispositivos.

» Mayor implicacion de usuario: para usar una aplicacién web en un movil, es
necesario que el usuario abra el navegador y teclee la direccidn, ya sea porque
la sepa, la haya encontrado en Google. Una vez abierta la aplicacién, debe
anadirla a favoritos o, mejor todavia, crear un icono de acceso directo en el
movil para acceder a ella mas tarde. Es mucho mas facil descargar una
aplicacion y que aparezca directamente como un icono en nuestro movil.

» Velocidad de ejecucion y conectividad: Ejecutar una aplicacidn nativa es
menos costoso que renderizar HTML e interpretar JavaScript. Ademas cada

-50-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

peticidn desde nuestra aplicacidn implicara un acceso contra nuestro servidor.
Una aplicacién nativa tiene todos los recursos y procesos guardados en local, y
solo accede al servidor para obtener o enviar datos si es que los necesita. Por
tanto, una aplicacidn web no tiene la fluidez y velocidad de manejo que una
aplicacion nativa.

» Monetizacion: es mas facil que un usuario pague por nuestros servicios si
simplemente cobramos por nuestra aplicacién al descargarla del App Store,
gue no hacer que el usuario se tenga que registrar y efectuar el pago en
nuestra web, introduciendo manualmente todos sus datos como el nimero
tarjeta, direccidn, etc. Apple tiene su App Store para I0S y MacOS, Google su
Chrome Web Store, Google Apps Marketplace y el Android Market, Amazon su
Amazon Appstore, incluso hay markets alternativos como OpenAppMkt. Cada
vez mas empresas invierten en crear un entorno facil y cdmodo para que el
usuario pueda descargar, probar y comprar aplicaciones, repartiéndose los
beneficios.

6.4 Desarrollo aplicaciones maviles nativas para iOS y Android

Como se ha indicado anteriormente, cada plataforma tiene su propio lenguaje,
herramientas de desarrollo y Apis con los que crear aplicaciones. Se detallan los dos mas
importantes, iOS y Android.

10S

Utiliza el lenguaje Objective-C, aunque también se puede utilizar C/C++. Con este lenguaje
podemos crear aplicaciones para Iphone, Ipad y Ipod Couch en sus distintas versiones.
Hay también distintas versiones de 10S pero todas ellas se programan usando el mismo
lenguaje. Objective-C tiene una sintaxis un tanto compleja de escribir y de leer.

Xcode es el entorno de desarrollo oficial de Apple. Con él, podemos crear aplicaciones de
escritorio para Mac y para I0S. También se pueden utilizar editores de texto planoy
compilar las aplicaciones “a mano”, es una tarea casi imposible.Se necesita de un
ordenador Mac con el IPhone SDK y para distribuir aplicaciones en el App Store y para
poder probar las aplicaciones desarrolladas en nuestro propio Iphone/Ipad, es necesario
adquirir una licencia de desarrollador.

Android

Android es menos restrictivo. El lenguaje que se utiliza para programar aplicaciones es
Java y tiene un SDK multiplataforma que funciona en Windows, Linux y Mac.

Se puede utilizar como entorno de desarrollo un plugin ADT para Eclipse que incluye un
simulador, que también es multiplataforma, libre y gratuito

6.5 Desarrollo mavil multiplataforma

Existen diversas opciones que permiten desarrollar aplicaciones multiplataforma. Un
software con el que es posible programar con un lenguaje determinado y que, ademas,
permite que la aplicacidon funcione en varios dispositivos con un mismo cédigo.

-51-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

6.5.1 PhoneGap

PhoneGap es un sistema para crear aplicaciones usando HTML5, CSS3 y Javascript,
ejecutadas dentro en un componente WebKit del mévil. Provee una serie de librerias
Javascript desarrolladas en el lenguaje especifico de cada plataforma (Objetctive-C para
I0S, Java para Android, etc) que permiten acceder a las caracteristicas del moévil como
GPS, acelerédmetro, camara, contactos, base de datos, filesystem, etc.

Al ser una pdagina web, se tiene acceso al DOM y se puede usar frameworks web como
jQuery o cualquier otro. Requiere disefiar la aplicacién web con los componentes visuales
tipicos del HTML, etc o usar un framework web mobile como jQuery Mobile o Sencha
Touch entre otros. Tiene la ventaja de que se puede definir la navegacion inicial de la
aplicacién usando un navegador en un ordenador, sin tener que ejecutarla en el
simulador.

Se puede ver una aplicacién PhoneGap como una serie de paginas web que estan
almacenadas y empaquetadas dentro de una aplicacidn mévil, visualizadas con un
navegador web, con acceso a la mayoria de APIs del movil, lo cual lo convierte en una
alternativa muy sencilla para crear aplicaciones.

Para trabajar con cada plataforma hay que usar un sistema distinto: para Iphone/lpad es
necesario usar Xcode (solo disponible en Mac) y una plantilla de proyecto que
proporciona PhoneGap. Para Android se debe usar Eclipse (Windows, Mac y Linux) y otra
plantilla de proyecto especifica. Y para Blackberry no hay entorno: solo Java SDK,
BlackBerry SDK y Apache Ant.

Ventajas:

» Eslasolucion que mas plataformas moviles soporta, ya que corre dentro de un
navegador web. Ademas de Iphone/Ipad y Android, funciona también en Palm,
Symbian, WebOS, Windows mobile 7 y BlackBerry,

» Es muy facil de desarrollar y proporciona una gran libertad a los que tienen
conocimientos de HTML y Javascript.

» Hay buena documentacion y bastantes ejemplos.

» Es gratis, soporte de pago. Licencia BSD.

Inconvenientes:

» Requiere Mac con Xcode para empagquetar aplicaciones 10S.

» La aplicacidn no es mas que una pagina web, por lo que el aspecto dependera
del framework web utilizado. Necesitaremos el uso de frameworks HTML
maviles si queremos que parezca una aplicacion nativa.

» No llega al rendimiento de una aplicaciéon nativa, pues el HTML, CSS y
Javascript debe ser leido e interpretado por el motor del navegador cada vez
arranca.

6.5.2 Titanium Appcelerator

Con Appcelerator es posible crear aplicaciones para Android, Iphone y de escritorio,
usando exclusivamente Javascript (el soporte para Blackberry estd en fase beta).

-52-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Para programar proporciona Titanium Studio, un IDE basado en Eclipse con el que crear
los proyectos y editar los ficheros Javascript y el resto de recursos y lanzar los scripts de
creacion.

Las aplicaciones se programan integramente con Javascript, creando y colocando “a
mano” todos los controles, usando para ello una libreria que hace de puente entre la
aplicacién Javascript y los controles del sistema. Esto significa que las ventanas y demas
controles visuales (botones, listas, menus, etc) son nativos: cuando se afiade un botdn, se
crea un botdn del sistema y se afiade a la vista, lo que lo hace mas rapido de renderizar y
la respuesta del usuario es también rapida.

Una de las caracteristicas mas interesantes de Appcelerator es que al empaquetar la
aplicacion, el Javascript es transformado y compilado. Después, cuando se arranca la
aplicacidon en el mavil, el cddigo se ejecuta dentro de un engine Javascript, tal y como dice
la documentacién oficial, que serd JavaScriptCore en 10S (el intérprete de Webkit, el
motor de Safari y Chrome) y Mozilla Rhino en Android/Blackberry.

El hecho de que el Javascript esté compilado y que los controles creados sean nativos, le
hace tener mejor rendimiento posible en comparacién con PhoneGap o Adobe Air para
moviles y similar a Corona SDK.

Con Appcelerator es complicado maquetar, pues no existe un HTML inicial donde afadir
los controles, sino que hay que crear las ventanas y componentes “a mano” con
Javascript.

Los desarrollos de las librerias Javascript para cada sistema operativo evolucionan por
separado por lo que es posible que no funcionen de la misma manera. A diferencia de
PhoneGap, que solo tiene una libreria Javascript para acceder a las caracteristicas
especiales del sistema, Appcelerator necesita ademas librerias para manejar los controles
nativos y su disposicién en la pantalla, por lo que el desarrollo en general es mas costoso.

Para iOS, Titanium Studio genera un proyecto Xcode con el Javascript transformado junto
con todas las librerias necesarias. Después es posible lanzar el simulador con la aplicacion
en Xcode sin salir de Titanium Studio. Una vez generado el proyecto, éste se puede abrir
con Xcode y continuar empaquetandolo y configurandolo para su distribucion
(certificados, provisioning, logos, splash screen, etc). Desde Xcode no se puede editar el
JavaScript, se debe volver a editar en Titanium Studio y regenerar el proyecto Xcode otra
vez.

Sobre el soporte Android, tanto para probar en el simulador como para empaquetar la
aplicacidn, solo hay que tener el SDK de Android instalado.

Ventajas:

Multiplataforma mdévil y también de escritorio.
Aspecto y controles nativos. Buen rendimiento.
Buenos ejemplos

Gratis, soporte de pago. Licencia Apache.

YV V VY

-53-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Desventajas:
» Definicion de componentes visuales y ubicacion de controles compleja
» Mucha documentacion pero poco actualizada
» Requiere Mac y Xcode para empaquetar aplicaciones I0S.

6.5.3 Adobe Air Mobile

Adobe Air mobile funciona con Flex 4 y soporta las plataformas 10S, Android y BlackBerry
Tablet, ademas de los sistemas de escritorio Windows, Mac y Linux (a través de un
runtime). Flex 4 utiliza el lenguaje de programacion ActionScript, de tipado fuerte y con
clases, interfaces, herencia y paquetes muy parecido a Java con el que poder hacer
complejos desarrollos.

El IDE oficial, Flash Builder 4.5 es un IDE muy potente y es de pago. Es posible compilar y
empaquetar las aplicaciones con el Flex SDK opensource y gratuito pero es mas complejo.
Los controles visuales usados durante el desarrollo y ejecucidon no son los originales de
cada plataforma, sino que son especificos de Flex 4. Esto garantiza que todas las
aplicaciones tendran exactamente el mismo aspecto y comportamiento.

Se pueden depurar aplicaciones en remoto. Una de las peculiaridades es que es la Unica
herramienta que no requiere ni el Android SDK ni el Xcode para Mac para ejecutar y crear
las aplicaciones.

Ventajas:

» Multiplataforma mévil y también de escritorio.

» ActionScript es un lenguaje muy potente que permite el uso de patronesy
estructuras complejas en los desarrollos.

» Desarrollo y definicion de las vistas con el editor visual de MXML con Flash Builder.
El IDE y Flex 4 son muy potentes, y la documentacién buena.

» Flash Builder 4.5 no requiere el uso de Xcode ni Mac.

» Depuracion remota.

Desventajas:
» El precio de Flash Builder 4.5. Aunque hay otras herramientas y se puede usar el
SDK gratuito.
» No funciona en todos los Android, solo en los de gama alta que tengan
arquitectura Arm7.
» Rendimiento es regular y la renderizacién no es suave en |0S.
» Aspecto no nativo (aunque homogéneo entre todas las plataformas).

6.5.4 Corona SDK

Corona es un framework para el desarrollo de aplicaciones graficas para i0OS/Android de la
compafiiia Ansca Mobile. Se desarrolla en Lua y no tiene IDE, aunque si viene con un
interprete-emulador y multitud de ejemplos.

-54-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Contiene varios simuladores para cada uno de los dispositivos para los que se puede
desarrollar y un depurador por linea de comandos. El emulador dispone asi mismo de un
terminal que permite mostrar mensajes de trazas durante la ejecucion.

No son necesarios conocimientos de Objective-C/Cocoa, C + + o0 Java. Lua es un lenguaje
de programacién imperativo, estructurado y bastante ligero que fue disefiado como un
lenguaje interpretado con una semantica extendible.

Contiene un conjunto limitado de librerias propias de Lua asi como otras propias del SDK
qgue aportan la funcionalidad y apariencia propia de estos dispositivos méviles, en especial
de los de Apple.

Hay que pagar una licencia para cada plataforma o una conjunta para I0S/Android.

Ventajas:

Alto rendimiento en la ejecucidn de aplicaciones.

Motor grafico y fisico ideal para juegos.

Lua es un lenguaje bastante sencillo y potente.

Buena documentacion, ejemplos y plantillas. Amplia comunidad.

Incorpora elementos nativos, sobre todo de iOS muy sencillos de implementar.

VVVYYVYVY

Desventajas:
» El precio de la licencia anual.
» Aunque se puede usar para cualquier tipo de aplicacidn, realmente es ideal para
aplicaciones graficas y juegos.
» Estd en evolucidn.

6.5.5 Plataforma seleccionada

Después del estudio de las caracteristicas de los distintos entornos multiplataforma, estds
son las conclusiones.

En todos los casos, los lenguajes de las plataformas, Lua, JavaScript y ActionScipt, son
suficientemente potentes y ademas, sencillos de implementar.

Para el disefio de la aplicacidn, el mas avanzado es el de adobe que tiene su propio editor.
El resto necesitan de una colocacién un tanto manual, aunque en Corona SDK se pueden
crear grupos que facilitan el disefo.

Appcelerator y Corona son los Unicos que permiten crear controles nativos de cada
plataforma aunque la utilizacidén y ubicacion grafica de estos en Appcelerator es mas
compleja. Adobe permite usar sus propios componentes con resultado homogéneo en
todas las plataformas.

PhoneGap es el que mas sistemas operativos soporta. El resto cubren las mas
importantes Android e iOS.

-55-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

El rendimiento de la aplicacidon es muy bueno en Corona SDK asi como también en
Appcelerator. Las otras dos opciones son menos rapidas aunque con un rendimiento
aceptable.

Con respecto a la documentacién disponible, Corona SDK es la que tiene mas disponible y
con una amplia comunidad en la pagina web de la compaiiia. Es una herramienta en
evolucidn pero la documentacién esta siempre actualizada. La documentacién en Adobe
también es bastante completa. Las otras dos son herramientas jévenes que todavia les
falta para estar acabadas: sus APIs cambian, estan incompletas y a veces fallan y la
documentacién es regular.

En cuanto a la distribucidn, la plataforma de Adobe es la Unica que no necesita tener un
Mac para desarrollar para iOS.

Appcelerator y PhoneGap son gratuitos, solo hay que pagar para el soporte. Flash Builder
4.5 Premium tiene un precio muy elevado, aunque se puede usar la version de prueba
durante 30 dias y hay SDK libres. Corona SDK es gratis para desarrollo, pero requiere
pagar una licencia anual de $199 si quieres subir tus aplicaciones al App Store o Market
de Android o $349 para ambos.

Con estos criterios, las dos mejores opciones por rendimiento y por posibilidad de utilizar
componentes nativos son Corona SDK y Appcelerator. Eliminando la restriccidn
econdémica asociada a las licencias de Corona SDK, y dado que la gestion grafica es mejor
y la documentacién mas completa en esta plataforma, se selecciona Corona SDK como
base para el desarrollo de la aplicacién moévil de este proyecto.

7 Plataforma Corona SDK. Caracteristicas

7.1 Introduccion a la Plataforma Corona SDK

La plataforma Corona SDK es un entorno de desarrollo de aplicaciones méviles para la
creacién de aplicaciones de altas prestaciones, aplicaciones multimedia y juegos para
dispositivos iOS, Android y Kindle.

Corona SDK contiene un simulador para cada uno de los dipositivos con sistema operativo
movil de Apple, y para varios modelos de dispositivos con sistema operativo Android.
Tambien contiene un depurador por linea de comandos asi como aplicaciones de ejemplo
y documentacién.

Permite a los desarrolladores usar Lua, un lenguaje de scrip de alto rendimiento
construido sobre un motor de Objective-C/C++. No son necesarios conocimientos de
Objective-C/Cocoa, C + + 0 Java. Lua es un lenguaje de programacion imperativo,
estructurado y bastante ligero que fue disefiado como un lenguaje interpretado con una
semantica extendible.

Contiene un conjunto limitado de librerias propias de Lua asi como otras propias del SDK
gue aportan la funcionalidad y apariencia propia de estos dispositivos méviles, en especial

de los de Apple.

-56-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

7.2 Gestion de proyectos en Corona SDK

Para crear aplicaciones en Corona SDK se necesita instalar la aplicacién Corona SDK en
entorno Mac o Windows y utilizar un editor de texto para generar los archivos con el
cddigo. La versién de prueba de Corona SDK nos permite realizar pruebas con el
simulador en dispositivos Android o iOS (solo en equipos Mac). Para construir
aplicaciones y distribuirlas en la AppStore o el android Market es necesario comprar una
licencia.

Para crear un proyecto de Corona es necesario como minimo una carpeta que contenga
un archivo de texto llamado "main.lua". Este archivo, "main.lua", es el primer archivo
gue lee Corona SDK por lo que si no esta disponible la aplicaciéon no puede iniciarse. Este
archivo principal, a su vez, puede cargar otros archivos de cédigo externo, o recursos de
otros programas, tales como sonidos,imdagenes o videos. La extensién de archivo ". lua"
indica que el archivo esta escrito en lenguaje en ese lenguaje, que es el que se usa para
crear aplicaciones en Corona SDK.

De cara a la construccién de la aplicacidn, en la carpeta del proyecto existen 2
posibilidades de configuracién mediante ficheros. El primero es el fichero config.lua con
las dimensiones del contenido visible y el modo de escalado de la pantalla. Este archivo se
comenta mas adelante en la implementacidn del proyecto al tratar la adaptacion
dinamica de contenido en la pantalla. También se debe afadir un archivo Icon.png que
serd el icono de la aplicacién al instalarse en el dispositivo final . El segundo fichero que
podemos incluir es el denominado build.settings que describe las propiedades en tiempo
de construccién. Mas adelante, en las tareas de administracion se comentaran las
opciones de este archivo.

7.3 Lenguaje de Corona SDK: Lua

7.3.1 Generalidades

Lua es un lenguaje de programacion imperativo, estructurado y bastante ligero que fue
disefiado como un lenguaje interpretado con una semantica extendible.. Fue creado en
1993 en la universidad catélica de Rio de Janeiro y cuyo nombre significa “Luna” en
portugués. Es muy utilizado en programacion de videojuegos asi como en aplicaciones
para videoconsolas como PSP y Wii.

A continuacidn se detalla el uso del lenguaje asi como las librerias propias que posee Lua
y se incluyen algunos ejemplos para poder comprender como funciona.

Identificadores

Puede ser cualquier cadena de caracteres que incluya letras, digitos y guiones bajos. Los
identificadores se utilizan como nombres de variables y campos de tablas. Se distinguen
las mayusculas y minusculas

Palabras clave

Como cualquier otro lenguaje de programacion, Lua utiliza una serie de palabras para
crear las instrucciones que forman cada programa. Por este motivo, estas palabras se
consideran reservadas y no se pueden utilizar como nombre de una variable o funcién.

-57-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

and break do else elseif

end false for function if

in local nil not or

repeat return then true until while
Comentarios

Los comentarios comienzan con un guion doble (--) siempre que no esté incluido dentro
de una cadena. Los bloques de comentarios estan delimitados por corchetes.

- [

Comentario

11

Tipos y valores
Lua es un lenguaje tipado dinamicamente por lo que no es necesario declarar el tipo de
variables. Una vez asignado el valor, este define el tipo de la variable.

Los tipos basicos son:

nil — este tipo tiene un sélo valor, nil, que representa la ausencia de valor. Es
analogo al valor null utilizado en otros lenguajes.

boolean — tiene 2 valores: false y true. En expresiones condicionales, false y nil son
evaluados como false mientras que cualquier otro valor es evaluado como true.
number - representa numeros reales (en coma flotante y doble precisién).

string - representa un array de caracteres. Lua trabaja con 8 bits: los strings
pueden contener cualquier caracter de 8 bits, incluyendo el caracter cero ("\0').
function — representa una funcién dentro del script Lua.

table - implementa arrays asociativos, esto es, arrays que pueden ser indexados
no sélo con numeros, sino también con cualquier valor (excepto nil). Las tablas
pueden ser heterogéneas, ya que pueden contener valores de todos los tipos
(excepto nil). Las tablas son el mecanismo de estructuracion de datos en Lua.
Pueden ser usadas para representar arrays ordinarios, tablas de simbolos,
conjuntos, registros, grafos, arboles, etc. Para representar registros, Lua usa el
nombre del campo como indice. El lenguaje soporta esta representacién haciendo
la notacidn b.nombre equivalente a b["nombre"].

Los valores de las tablas y las funciones son objetos: las variables no contienen realmente
esos valores, sino que solo los referencian. La asignacion, el paso de argumentos y el
retorno de las funciones siempre manejan referencias a esos valores; esas operaciones no
implican ningun tipo de copia.

La funcidn type retorna un string que describe el tipo de un valor dado.

-58 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

7.3.2 Variables

Las variables son lugares donde se almacenan valores. Existen tres tipos de variables en
Lua: globales, locales y campos de tabla. Antes de la primera asignacion, el valor de una
variable es nil.

Variables globales
Lua asume que las variables son globales, a no ser que sean declaradas explicitamente
como locales.

print(a) --> nil
a = "this is one pound"
print(a) --> "this is one pound”

Variables globales perduran mientras la aplicacion esta funcionando. Para eliminar una
variable global de la memoria debe asignarse el valor nil, comportdndose como si esa
variable no hubiera sido inicializada.

Variables locales

Las variables locales se definen usando la palabra local. Al contrario que las variables
globales, las variables locales tienen un ambito definido Iéxicamente: pueden ser
accedidas libremente desde dentro de las funciones definidas en su mismo ambito, que
empieza con la declaracion de la variable y termina con el final del bloque en el que se
encuentra.

a = 10
local i =1

while i <= 10 do

local a = i*i - la variable a es diferente a la de fuera del bloque
print(a) --> 1, 4, 9, 1le6, 25,
i=1+1

end

print(a) --> 10 (la variable local a)

Campos de Tabla

Los campos de tabla son los elementos que componen la tabla. Los valores se asignan a
los campos que estan indexados en un array. Cuando el indice es un string, el campo es
conocido como propiedad.

t = { foo="hello" } - creamos una table con una propiedad individual "foo"
print(t.foo) --> "hello"

t.foo = "bye" - asignamos un Nuevo valor a la propiedad "foo"

print(t.foo) --> "bye"

t.bar = 10 --> creamos una nueva propiedad llamada “bar”

print(t.bar) --> 10

print(t["bar"]) --> 10

-59-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

7.3.3 Expresiones

Operadores aritméticos
Lua tiene los operadores aritméticos comunes:
+ (adicidn)
- (substraccion)
* (multiplicacidn)
/ (division)
% (mddulo)
A (exponenciacion)
- (negacion)

Si los operandos son nimeros o strings que se convierten a numeros, entonces todas las
operaciones tienen el significado corriente. La exponenciacién trabaja con cualquier
exponente. Por ejemplo, x*(-0.5) calcula la inversa de la raiz cuadrada de x.

El mdédulo se define como
a % b == a - math.floor(a/b)*b

Operadores relacionales
Los operadores relacionales en Lua son :

== (igualdad)

~= (no igualdad)

< (menor que)

> (mayor que)

<= (menor o igual que)
>= (mayor o igual que)

Devuelven siempre un resultado false o true.

La igualdad (==) primero compara el tipo de los operandos. Si son diferentes entonces el
resultado es false. En otro caso se comparan los valores de los operandos. Los nimeros y
las cadenas se comparan de la manera usual. Los objetos (tablas y funciones) se
comparan por referencia: dos objetos se consideran iguales sdélo si son el mismo objeto.
Cada vez que se crea un nuevo objeto (una tabla o funcién) este nuevo objeto es
diferente de todos los demas objetos preexistentes.

El operador ~= es exactamente la negacién de la igualdad (==).

Operadores Iogicos

Los operadores légicos en Lua son :
and (conjuncion)
or (disyuncion)
not (negacién)

Como las estructuras de control, todos los operadores légicos consideran false y nil como
falso y todo lo demas como verdadero.

-60 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

El operador negacion not siempre retorna false o true.

El operador conjuncidn and retorna su primer operando si su valor es false o nil; en caso
contrario and retorna su segundo operando.

El operador disyuncidn or retorna su primer operando si su valor es diferente de nil y
false; en caso contrario or retorna su segundo argumento.

Tanto and como or usan evaluacién de cortocircuito; esto es, su segundo operando se
evalula sélo si es necesario. He aqui varios ejemplos:

10 or 20 --> 10

10 or error () -—> 10
nil or "a" __> "a"
nil and 10 --> nil
false and error () --> false
false and nil --> false
false or nil --> nil
10 and 20 --> 20

Concatenacion

El operador de concatenacién de strings en Lua se denota mediante dos puntos seguidos
('.."). Si ambos operandos son nUmeros entonces se convierten a strings.

Operador de longitud
El operador longitud se denota mediante #. La longitud de un string es su nimero de
bytes (significado normal de la longitud de un string cuando cada cardcter ocupa un byte).

La longitud de una tabla t se define como un indice entero n tal que t[n] no es nil y t[n+1]
es nil; ademas, si t[1] es nil entonces n puede ser cero. Para un array regular, con valores
no nil desde 1 hasta un n dado, la longitud es exactamente n, el indice es su ultimo valor.
Si el array tiene "agujeros" (esto es, valores nil entre otros valores que no lo son),
entonces #t puede ser cualquiera de los indices que preceden a un valor nil (esto es, Lua
puede considerar ese valor nil como el final del array).

Precedencia de los operadores
La precedencia de los operadores en Lua sigue lo expuesto en la tabla siguiente de menor
a mayor prioridad:

or
and

< > <= >= ~= ==
+ i

* / %

Not # - (unario)

-61-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Se pueden usar paréntesis para cambiar la precedencia en una expresién. Los operadores
de concatenacién ('..") y de exponenciacién (‘') son asociativos por la derecha. Todos los
demads operadores son asociativos por la izquierda.

-62 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

7.4 Estructuras de control

Estructura condicional, if ... else
La sintaxis de la estructura condicional es:

if exp then
bloque
elseif exp then
bloque
else
bloque
end

Tanto else como elseif son opcionales.

La condicion de una expresion (exp) de una estructura de control puede retornar
cualquier valor. Como se ha indicado anteriormente, tanto false como nil se consideran
falsos. Todos los valores diferentes de nil y false se consideran verdaderos (en particular,
el nimero 0y el string vacio son también verdaderos).

Estructura repetitivas, while y until
La sintaxis de estas estructuras es:

while exp do
bloque
end

repeat
bloque
until exp

En ambos casos se ejecuta el bloque de forma repetitiva. En el primer caso, la expresion
se evalula al principio y en el segundo al final. En el bucle repeat—until el bloque interno
no acaba en la palabra clave until sino detras de la condicién. De esta manera la condicién
puede referirse a variables locales declaradas dentro del bloque del bucle.

Estructura for
La sentencia for tiene dos formas: una numérica y otra genérica.

La forma numérica del bucle for repite un bloque mientras una variable de control sigue
una progresion aritmética. Tiene la sintaxis siguiente:

for nombre '="'expl',' exp2 [',' exp3] do
bloque

end

El bloque se repite para los valores de nombre comenzando en expl hasta que sobrepasa
exp2 usando como paso exp3.

-63 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

for i=1, 25, 5 do
print (1)
end

La sentencia for genérica trabaja con funciones, denominadas iteradores. En cada
iteracion se invoca a la funcién iterador que produce un nuevo valor, parandose la
iteracion cuando el nuevo valor es nil. El bucle for genérico tiene la siguiente sintaxis:

for lista_de_nombres in explist do
bloque
end

for lista_de_nombres in explist do bloque end
lista_de_nombres ::= nombre {',' nombre}

Por ejemplo, este bucle recorre las lineas de un fichero

for line in io.lines (filename) do
print (line)
end

break
La orden break se usa para terminar la ejecucién de los bucles while, repeat y for,
saltando a la sentencia que sigue después del bucle.

Un break finaliza el bucle mas interno que esté activo.

7.4.1 Funciones

La sintaxis para la definicidn de funciones es :
function nombre_de_func ([lista_de_argumentos]) bloque end

Asi mismo se puede utilizar.
nombre_de_func = function ([lista_de_argumentos]) bloque end

Una definicidn de funcion es una expresidn ejecutable, cuyo valor tiene el tipo function.

Los argumentos formales de una funcidn actian como variables locales que son
inicializadas con los valores actuales de los argumentos.

La orden return se usa para devolver valores desde una funcién. Las funciones pueden
retornar mas de un valor.

7.4.2 Objetos, propiedades y funciones

Muchas de las API’s de Corona SDK devuelven objetos. Las propiedades de esos objetos
son manipulables (datos, posicidn, visibilidad, escala...) y se pueden afiadir nuevas como
si tratara de una tabla.

-64 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

m.n

Las nuevas propiedades no pueden comenzar con el caracter guién bajo ("_"), ya que esta
reservado para el sistema.Todas las propiedades se puede acceder a través de la cadena

nn

que representa el indice, tabla[“propiedad”] o del operador punto ("."), tabla.propiedad

Dado que las funciones pueden ser variables, una tabla puede almacenar estas como
propiedades. Esto permite que una tabla pueda ser utilizada para agrupar légicamente
una familia de funciones, por ejemplo, la biblioteca matematica (math). Las funciones
pueden utilizarse también como los métodos asociados al objeto.

Una diferencia clave entre una funcién almacenada como propiedad o un método de un
objeto, es la sintaxis. Se necesita decirle a Lua que tiene la intencion de llamar a esta
funcién como un método de objeto, no sélo una funcidn normal. Para ello, es necesario

n.n nn

utilizar el operador dos puntos (":") en lugar del operador punto (".").
Objeto:funcion(argl, arg2)

El operador dos puntos es en realidad un acceso directo. En la mayoria de lenguajes, una
llamada al método objeto es como una llamada a la funcién normal, excepto que hay un
argumento oculto para la funcidn que es el objeto mismo. Este argumento oculto que se
conoce como this en Javascript y self en Lua. Igualmente se podria llamar un método de
objeto mediante el operador punto, si se pasa el objeto como primer argumento:

Objeto.funcion(Objeto, argl, arg2)

7.5 Librerias estandar de Lua

Corona SDK incluye las mismas bibliotecas Lua que son parte del estandar. Estas
bibliotecas proporcionan una funcionalidad util y basica. Se agrupan en las siguientes
categorias:

> Biblioteca basica: proporciona algunas funciones del nicleo de Lua

» Manipulacién de cadenas: proporciona funciones para tratamiento de cadenas,
busquedas y deteccién de patrones.

» Manipulacién de tablas: proporciona funciones genéricas para manejo de tablas

> Funciones matematicas: Esta biblioteca es una interfaz a la biblioteca matematica
estandar de C.

» Funciones de entrada y salida: proporciona dos estilos diferentes de manejo de
ficheros. El primero de ellos usa descriptores de fichero implicitos; esto es, existen
dos ficheros por defecto, uno de entrada y otro de salida, y las operaciones se
realizan sobre éstos. El segundo estilo usa descriptores de fichero explicitos.

-65-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

» Funciones de sistema operativo: proporciona funciones asociadas al sistema
operativo del dispositivo.

A excepcidn de la biblioteca basica, cada biblioteca ofrece todas sus funciones como
propiedades de una tabla o como los métodos de sus objetos. Esto crea una agrupacion
I6gica de funciones y es la manera de crear en Lua un espacio de nombres de diferente
funcionalidad.

Los detalles de las funciones de cada biblioteca se especifican en el Anexo | de esta
memoria.

7.6 Librerias de Corona SDK

Corona SDK posee su propio conjunto de bibliotecas sobre las bibliotecas estandar de Lua.
Algunas bibliotecas estan incorporadas internamente, mientras que otras deben ser
cargadas explicitamente.

Las siguientes son las bibliotecas centrales de Corona SDK y se cargan automaticamente
cuando se inicia la aplicacién:

» display - proporciona todas las rutinas para la creacién de objetos de
visualizacion.

» transition - funciones para la animacion de objetos de visualizacion, lo que
simplifica el proceso de creacidon de movimientos basicos.

» timer - ofrece funciones basicas de tiempo.
» media - permite el acceso a las capacidades multimedia del dispositivo.

» native - proporciona acceso a los elementos de la interfaz nativa de los
dispositivos.

» system - es un conjunto de funciones de sistema.

Los detalles de las funciones de cada una de estas bibliotecas se especifican en el Anexo |
de esta memoria.

7.7 Visualizacion de objetos en pantalla

Como se ha comentado, la biblioteca display contiene las funciones para crear los objetos
graficos, tanto imagenes, texto o formas geométricas.

Para gestionar el orden en que se dibujan los objetos graficos, estan organizados en una

jerarquia que determina que objetos aparecen por encima de otros. La jerarquia es
posible gracias a la existencia de objetos de grupo, GroupObjects. Son un tipo especial de

-66 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

DisplayObject que pueden contener otros objetos hijos. Permiten organizar los objetos
graficos para poder establecer relaciones entre ellos.

Los objetos pertenecientes a un grupo, es decir, los hijos, estan organizados en un array
por lo que el primer hijo (indice 1) esta por debajo del siguiente hijo, y asi sucesivamente,
el ultimo hijo esta siempre por encima de todos los demas.

group:insert() es el método para insertar objetos dentro de un determinado grupo
existente y el acceso a los objetos se puede realizar con el indice correspondiente,

group[1] .

-- se crean objetos
local square = display.newRect(0, 0, 100, 100)
local rect = display.newRect(0, 0, 100, 100)

-— se crea el grupo
local group = display.newGroup ()

-- se insertan objetos
group:insert (square)
group:insert(rect)

-- acceso indexado a los objetos
assert((group[l] == square) and (group[2] == rect))

Para mover objetos hacia adelante y hacia atras se puede cambiar el indice asociado a los
mismos o bien utilizar los métodos object:toBack() y object:toFront()

Las modificaciones realizadas en las propiedades de los objetos son actualizadas en la
pantalla de acuerdo al ciclo definido en el sistema. Este se ejecuta 30 o 60 veces por
segundo de acuerdo al valor de velocidad de actualizacién de la pantalla (frame rate)
establecido en el fichero config.lua. Cada ciclo genera un evento “enterframe” que es
capturable por un listener del cédigo Lua.

La pantalla representa el sistema de coordenadas base para los objetos. Cada objeto o
grupo de visualizacién opera con su propio sistema de coordenadas local y se debe
relacionar con las coordenadas de la pantalla.

Para definir la posicidn se utiliza el sistema de coordenadas cartesianas. El origen de la
pantalla se encuentra en la esquina superior izquierda, como se observa en la figura 4.2,
de modo que valores positivos de y, desplazan la posicion hacia abajo y valores positivos
de x, la desplazan a la derecha. Todas las coordenadas de la pantalla se definen en
relacion con este origen.

-67 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Coordenadas globales de ia Pantalia

(0,0) L

Coordenadas tocales

(0,0)

Y,
Figura 4.1. Origen de coordenadas en las pantallas de los dispositivos

Cuando un objeto es creado, sus coordenadas son relativas a la pantalla principal. Cuando
se afiade un listener para eventos tactiles (touch events) al objeto, este devuelve la
posicién en la pantalla. Cuando el objeto es afiadido a un grupo, las coordenadas de este
objeto son relativas a las del grupo y no a las de la pantalla. Para poder obtener las
coordenadas de pantalla podemos llamar al método object.contentBounds()

Dado que los dispositivos tienen recursos limitados, es importante eliminar los objetos de
visualizacién de la jerarquia de la pantalla cuando ya no se usan. Esto ayuda al
rendimiento general del sistema al reducir el consumo de memoria (especialmente las
imagenes). En el apartado de gestion de la memoria de este capitulo se explica como
eliminar los objetos de visualizacién de la forma mas adecuada.

Los objetos graficos son instancias de la clase DisplayObject que posee propiedades y
métodos comunes para todos ellos y como todos los objetos en Lua, puede ser tratado

como una tabla afladiendo propiedades nuevas.

Estas son las propiedades comunes de los objetos:

object.alpha Opacidad del objeto. Con valor 0 el objeto es
transparente y con valor 1 es opaco. Por defecto valor 1.

object.height Altura del objeto (coordenadas locales)

object.isVisible Controla si el objeto es visible. Valor booleano (true es
visible, false no es visible).

object.isHitTestable Permite recibir eventos aun cuando el objeto no es
visible. Valor booleano. Por defecto false

object.parent Devuelve el grupo padre del objeto.

object.rotation Angulo de rotacién del objeto (grados)

object.contentBounds Tabla que contiene las propiedades xMin, xMax, yMin,
yMax en coordenadas de pantalla.

object.contentHeight Altura (coordenadas de pantalla)

object.contentWidth Anchura (coordenadas de pantalla)

-68 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

object.width Anchura (coordenadas locales)

object.x Especifica la posicion x (en coordenadas locales) del

objeto relativa al origen del padre. Especificamente,

proporciona la posicién x del punto de referencia del
objeto relativa al padre.

object.xOrigin Especifica la posicion x de origen del objeto relativa al
origen del padre. En coordenadas locales.

object.xReference Define la posicién x de referencia con respecto a la
posicion x de origen. Es relativa a otro punto del objeto,
no del padre.

Conceptualmente, el punto de referencia es aquel sobre
el que se suceden las rotaciones y los cambios de escala.
Cambiando este valor no se modifica la posicién del
objeto. Unicamente es un punto de referencia.

object.xScale Valor del factor de escalado en la direccién x. Un valor
0.5 escalard el objeto un 50% en la direccidn x.
object.y Especifica la posicion y (en coordenadas locales) del

objeto relativa al origen del padre. Especificamente,
proporciona la posicién x del punto de referencia del
objeto relativa al padre.

object.yOrigin Especifica la posicion y de origen del objeto relativa al
origen del padre. En coordenadas locales.

object.yReference Define la posicién y de referencia con respecto a la
posicion y de origen. Es relativa a otro punto del objeto,
no del padre.

Conceptualmente, el punto de referencia es aquel sobre
el que se suceden las rotaciones y los cambios de escala.
Cambiando este valor no se modifica la posicién del
objeto. Unicamente es un punto de referencia.
object.yScale Valor del factor de escalado en la direccién y. Un valor
0.5 escalard el objeto un 50% en la direccidn y.

Estas son los métodos comunes de los objetos:

object:rotate(deltaAngle) | Afiade el valor deltaAngle (en grados) a la actual
propiedad de rotacion.
object:scale(x,y) Multiplica las propiedades de escala xScale y yScale por
los valores sx y sy respectivamente.
object:setReferencePoint(| Establece la referencia del objeto en el punto
referencePoint) especificado en el parametro. El argumento puede ser:

= display.CenterReferencePoint

= display.TopLeftReferencePoint

= display.TopCenterReferencePoint

= display.TopRightReferencePoint

= display.CenterRightReferencePoint

= display.BottomRightReferencePoint

= display.BottomCenterReferencePoint

= display.BottomLeftReferencePoint

= display.CenterLeftReferencePoint
Cambiando la referencia del objeto se cambiaran los
valores de x e y sin mover el objeto.

object:translate(deltaX, Afiade los valores deltaX y deltaY a las propiedades x e y
deltay) del objeto desplazando el objeto de su posicidn actual.
object:removeSelf() Borra el objeto y libera su memoria, asumiendo que no

hay otras referencias a él.

-69 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Para objetos de texto, hay algunas propiedades y métodos especificos:

object.size Tamanio del texto

object.text Cadena que contiene el texto del campo de texto. Es
usado para actualizar la cadena de texto del objeto.
object:setTextColor(r, g, b | Establece el color de un objeto de texto. Todos los
[,a]) valores deben estar entre 0y 255. El valor a es opcional
y representa Alpha (opacidad); por defecto es 255
(opaco).

7.8 Gestion de eventos

La manera de crear aplicaciones interactivas en Corona SDK es mediante la gestién de
eventos. Estos desencadenan acciones que provocan una respuesta del programa. Por
ejemplo, cualquier objeto que se muestre en la pantalla, puede convertirse en un botén
interactivo. Esta flexibilidad es uno de las ventajas mas importantes que tiene esta
plataforma de desarrollo.

Hay eventos globales que no estdn asociados a ningun objeto en particular y que son
difundidos a todos los listeners integrados. Se entiende por listener, aquellas funciones
capaces de recibir y tratar los eventos. Estos eventos globales son:

enterFrame

Eventos que ocurren en el intervalo de actualizacion de la aplicacién. Este se ejecuta 30 o
60 veces por segundo de acuerdo al valor de velocidad de actualizacidn de la pantalla
(frame rate) establecido en el fichero config.lua. Se genera en el objeto Runtime:

Runtime:addEventListener ("enterFrame", myObject)

Las propiedades asociadas a este evento son:
» event.name : cadena "enterFrame".
» event.time : tiempo en milisegundos desde el inicio de la aplicacion.

system

Los eventos de sistema son distribuidos para notificar a la aplicacion de acciones externas
como la interrupcién del programa por una llamada entrante al dispositivo. Son
generados también por el objeto Runtime.

Las propiedades asociadas a este evento son:
= event.name: cadena "system".
= event.type: cadena que identifica el tipo de evento. Los posibles valores son:
o "applicationStart": ocurre cuando la aplicacion es lanzada y se ejecuta el
cddigo de main.lua
o '"applicationExit": ocurre cuando el usuario cierra la aplicacién.
o '"applicationSuspend": ocurre cuando el dispositivo necesita suspender la
aplicaciéon por entrada de una llamada o por inactividad.
o "applicationResume": ocurre cuando una aplicacién se reanuda tras una
suspension.

-70 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

orientation

Los eventos de orientacidn se producen cuando se cambia la orientacion del dispositivo
en aquellos que disponen de acelerdmetro que permite detectarlos. Son generados
también por el objeto Runtime.

Las propiedades asociadas a este evento son:
» event.name: cadena "orientation".
» event.type: cadena que representa la orientacién del dispositivo:

o '"portrait"

o "landscapelLeft"

o '"portraitUpsideDown"
o "landscapeRight"

o '"faceUp"

o '"faceDown"
» event.delta: Es el angulo de diferencia entre el fin y el inicio del cambio de
orientacion.

Hay también otros eventos globales asociados al acelerémetro, al GPS, a la brdjulay a
niveles bajos de memoria que dependen también de si los dispositivos tienen esas
funcionalidades.

El resto de eventos se consideran locales ya que son gestionados por un listener concreto.

Cuando el usuario toca la pantalla con el dedo, se genera un evento de golpeo (hit event)
que se distribuye a todos los objetos de la jerarquia de visualizacién que intersectan con
el punto de toque de la pantalla. Este evento es propagado desde el objeto que estd mas
arriba en la jerarquia hasta el que estd mas abajo.

Esa propagacidn se puede parar indicandole al sistema que el evento esta tratado,

devolviendo true en la funcién listener (return true). Si el evento no es tratado por

ninguno de los objetos transversales, es difundido como un evento global al objeto
Runtime.

Los eventos tactiles (touch events) son otro tipo especial de los “hit events” que
desencadenan una secuencia de eventos con diferentes fases.

Las propiedades asociadas a estos eventos son:

event.name: Cadena "touch".

event.x: posicidn x del toque en las coordenadas de la pantalla.

event.y: posicion y del toque en las coordenadas de la pantalla.

event.xStart: posicidn x en el inicio del toque.

event.yStart: posicion y en el inicio del toque.

event.phase: cadena que identifica las fases de la secuencia de toque. Los valores
son:

VVVYVYVVYY

"began": un dedo toca la pantalla, inicia el evento.

"moved": un dedo se mueve por la pantalla.

"ended": un dedo es levantado de la pantalla, finaliza el evento.
"cancelled": el sistema cancela la secuencia del evento.

O O O O

-71-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

7.9 Animacion y movimiento

Ademads de aplicaciones, Corona SDK es una herramienta muy potente para el desarrollo
de juegos y una de sus grandes ventajas es que cualquier objeto que se muestra en la
pantalla se puede animar y dotarlo de movimiento.

La biblioteca de transiciones contiene las funciones para animar un objeto de
visualizacidén por interpolacién de una o mas propiedades durante un tiempo
determinado.

La manera mas simple es utilizar el método transition.to cuyo primer argumento es el
objeto sobre el que se van a modificar las propiedades y el segundo es una tabla con los
parametros de control. Estos determinan, entre otros, la duracién de la animacion y los
valores finales de las propiedades del objeto. Los valores intermedios de las propiedades
son determinados por unas funciones de ajuste que se especifican también como
parametro de control. Se pueden ver en la siguiente tabla:

easing.linear Define un movimiento constante sin
aceleracion.
easing.inExpo Inicia el movimiento desde la velocidad

ceroy, a continuacién, lo acelera
conforme se ejecuta.

easing.inOutExpo Inicia el movimiento desde una velocidad
cero, acelera y luego desacelera de nuevo
hasta cero utilizando una ecuacién de
aceleracién exponencial.
easing.inOutQuad Inicia la animacién desde una velocidad
cero, se acelera, y entonces desacelera
de nuevo hasta cero.

easing.inQuad Realiza una interpolacién cuadratica de
los valores de la propiedad de animacién
en una transicion empezando desde cero.
easing.outExpo Inicia movimiento rapido y luego
desacelera hasta la velocidad cero
conforme se ejecuta.

easing.outQuad Inicia movimiento rapido y desacelera
mientras realiza una interpolacion
cuadratica de los valores de la propiedad
de animacién

Estos son algunos de los pardmetros que se pueden definir en la tabla de control:

» params.time — duracion de la transicion en milisegundos.

» params.transition — funciones de ajuste de la transicion. Por defecto es
easing.linear
params.delay — especifica el retraso desde el comienzo de la transicién.
params.onStart - es una funcién o listener que se invoca al comenzar la transicion.
params.onComplete - es una funcién o listener que se invoca al finalizar la
transicion.

YV V VY

-72 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Este es un ejemplo de transicion de un objeto en la direccidn vertical durante 3 segundos
con un ajuste lineal:

circle2 = display.newCircle (65, 60, 10)
circle2:setFillColor (255,0,255,255)
transition.to(circle2, {time=3000, y=460, transition = easing.linear})

Para cancelar una transicion se utiliza la funcion transition.cancel(tween).

Hay otra biblioteca externa, movieclip, que permite crear sprites animados o movieclips, a
partir de secuencias de imagenes, que luego se puede mover por la pantalla usando las
mismas técnicas que cualquier objeto de visualizacién de Corona.

Las funciones de esta biblioteca estan disponibles para reproducir estas animaciones de
forma total o parcial, en direccidén hacia adelante o hacia atras, saltando a ciertos
fotogramas, eliminando automaticamente la animacién en el término de una secuencia e
incluso permitiendo que se pueda arrastrar la animacién mediante eventos de arrastrar y
soltar. Este marco ofrece una manera rapida y ligera para crear animaciones.

La biblioteca no viene precargada en Corona, por lo que se debe cargar el médulo externo
movieclip.lua en aquellas aplicaciones que lo precisen.

Para crear un nueva animacion, se resalia con la funcidon movieclip.newAnim(frames)
donde se pasa como pardmetros las distintas imagenes que forman la animacion.

myAnim = movieclip.newAnim{ "imgl.png", "img2.png", "img3.png", "img4.png" }

Esta animacidn se puede reproducir hacia adelante con la funcién object:play() de forma
ciclica hasta que es detenida por la funcidn object:stop(). Para reproducir de manera mas
particularizada, se pueden establecer los siguientes parametros

object:play{ startFrame=a, endFrame=Db, loop=c, remove=shouldRemove }
Con loop se indica el nimero de ciclos de repeticidn siendo el valor 0 para un ciclo sin fin.
El pardmetro remove es un valor booleano que si tienen el valor true, elimina el objeto
cuando la secuencia se ha completado. El valor por defecto es false.
Similar a estas funciones, existe object:reverse() para reproducir la animacién en sentido
contrario al definido. Asi mismo se pueden definir parametros en esta funcién:
object:reverse{ startFrame=a, endFrame=b, loop=c, remove=shouldRemove }
Se reproducen los ciclos desde b (endFrame) hasta a (startFrame).
Para acceder a frames concretos de los definidos en la animacidn se utilizan las funciones

object:nextFrame() y object:previousFrame(). También es posible definir un punto de
ruptura en un frame en concreto con object:stopAtFrame(frame).

-73 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Para hacer que un objeto de animacion se pueda desplazar por el usuario, se usa la
funcidén object:setDrag. Con el parametro booleano drag, se indica si se puede desplazar o
no. Con limitXy limitY se limita el desplazamiento en los ejes x e y o con una tabla de
puntos {left, top, width, height} se especifica una determinada superficie de
desplazamiento.

De cara a controlar la animacién y el desplazamiento, los parametros onPress, onDrag y
onRelease permiten definir funciones o listeners para controlar los eventos con el mismo
nombre.

myAnim:setDrag{ drag=true, limitX=false, limitY=false,
onPress=myPressFunction, onDrag=myDragFunction,
onRelease=myReleaseFunction, bounds={ 10, 10, 200, 50 }}

Es posible definir también animaciones personalizadas, definiendo las trayectorias y
movimientos de los objetos. Se deben generar llamando de forma repetida a un listener
gue gestione los eventos “enterframe” del sistema, es decir, el evento que se genera por
el numero de fotogramas por segundos definidos en la aplicacién (con un valor por
defecto de 30 modificable a 60).

Este es un ejemplo de una animacion personalizada:

local xdirection,ydirection = 1,1
local xpos,ypos = display.contentWidth*0.5,display.contentHeight*0.5
local circle = display.newCircle(xpos, ypos, 20);

circle:setFillColor (255,0,0,255);
local function animate (event)
Xpos = xpos + (2.8 * xdirection);

ypos = ypos + (2.2 * ydirection);

if (xpos > display.contentWidth - 20 or xpos < 20) then

xdirection = xdirection * -1;
end
if (ypos > display.contentHeight - 20 or ypos < 20) then
ydirection = ydirection * -1;
end
circle:translate(xpos - circle.x, ypos - circle.y)
end
Runtime:addEventListener ("enterFrame", animate);

7.10 Motor fisico

Como se ha comentado en el apartado anterior, Corona SDK permite realizar de forma
sencilla y potente la animacidn de objetos. Igual de simple es la capacidad de dotar a
cualquier objeto de un motor fisico que le permite interactuar con otros objetos de la
aplicacion.

Corona traduce automaticamente desde las unidades establecidas en la pantalla hasta las
unidades internas métricas de la simulacién fisica. Todos los valores de posicidn son

-74 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

declarados en pixeles, que se convierten internamente en metros a una ratio de 30
pixeles por metro (esta proporcién es configurable por el usuario en physics.setScale).

Para utilizar las caracteristicas del motor fisico de Corona SDK, se debe cargar el médulo
“physics”

local physics = require "physics"

Para controlar la simulacién fisica dentro de la aplicacidon estan las funciones
physics.start(), physics.pause() y physics.stop(). La funcidn start crea una instancia o
reanuda el mundo fisico, pause realiza una parada momentanea de la simulaciéon y stop
destruye el mundo fisico.

El motor fisico permite definir el valor de la gravedad que aplica tanto en la componente
horizontal como en la vertical de los objetos. La funcidn es physics.setGravity(x, y). Por

defecto (0, 9.8). physics.getGravity devuelve los valores usados en x e y respectivamente.

Usando esta propiedad y la APl del acelerémetro de Corona, se puede hacer una function
basada en la gravedad dinamica de acuerdo al valor de inclinacidn del dispositivo:

local function onTilt (event)

physics.setGravity(10 * event.xGravity, -10 * event.yGravity)
end
Runtime:addEventListener ("accelerometer", onTilt)
Cuerpos fisicos

El mundo de la fisica se basa en las interacciones de los cuerpos rigidos. Los objetos
creados con corona SDK pueden ser dotados de ciertas caracteristicas fisicas que
permiten modelar su comportamiento y su relacidon con otros objetos. Es por esto, que al
invocar al constructor physics.addBody para definir las caracteristicas fisicas de un objeto
no se crea un objeto nuevo, sino que se extienden las propiedades del mismo.

Las propiedades del objeto como posicion x,y o rotacién siguen trabajando normalmente
auque se implemente el cuerpo fisico pero los movimientos se pueden ver condicionados
por la fuerza de la gravedad u otro tipo de interacciones fisicas.

Un objeto de visualizacién con atributos fisicos puede ser eliminado de la forma habitual,
con object:removeSelf(), eliminandolo de la pantalla visible y de la simulacién fisica. Una
vez asignadas propiedades fisicas, no se pueden eliminar de forma independiente.

Los cuerpos fisicos tienen tres propiedades principales:

» density (densidad) — valor que permite calcular la masa al multiplicarlo por la
superficie. Este parametro se basa en un valor de 1,0 para el agua, es decir, los
materiales mas ligeros que el agua (como la madera) tienen una densidad inferior
a 1,0, y los materiales mas pesados (como las piedras) tienen una densidad
superior a 1,0. Sin embargo, el comportamiento del objeto global dependera

-75-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

también de la gravedad y de la escala pixeles-metros (pixels-to-meter) definida en
el motor fisico. El valor por defecto es de 1,0.

» friction (friccion) - puede ser cualquier valor no negativo, un valor de 0 significa
gue no hay friccion y un valor 1 se corresponde con una friccidn fuerte. El valor
por defecto es de 0,3.

» bounce (rebote) - determina la velocidad con que un objeto es devuelto después
de una colisién. Los valores mayores que 0,3 tienen un rebote alto. Un
rebote superior a 1,0 es valido, pero produce comportamientos extrafios. El valor
por defecto es de 0,2.

Por defecto, el constructor physics.addBody supone que el objeto fisico es rectangular,
con los limites de colisidn que se ajustan automaticamente a los bordes de la imagen
asociada o un objeto vectorial. Esto funciona bien para las cajas, plataformas, grandes
masas de tierra, y otros sprites de forma rectangular. Todos los parametros de la tabla
son opcionales, y si no se indican se toman los valores por defecto. Para varios objetos
con las mismas propiedades es recomendable el uso de una tabla comin como se ve en
los ejemplos:

local crate = display.newlImage("crate.png", 100, 20

0)
physics.addBody(crate, { density = 1.0, friction 0.3, bounce = 0.2 })

local cratel = display.newImage("crate.png", 100, 200)
local crate2 = display.newImage("crate.png", 180, 280)

local crateMaterial = { density = 1.0, friction = 0.3, bounce = 0.2 }

physics.addBody(cratel, crateMaterial)
physics.addBody (crate2, crateMaterial)

Cuando el cuerpo fisico no se ajusta a un contenido rectangular se pueden usar las
estructuras circulares o poligonales.

Los cuerpos circulares requieren un parametro radio (radius) adicional. Esto funciona bien
para bolas, piedras y otros objetos que pueden ser tratados como perfectamente
redondos en el calculo de colisiones. Para objetos redondos “irregulares” es
recomendable utilizar un radio menor al objeto o la definicién de una forma poligonal.

local ball = display.newImage("ball.png", 100, 200)
physics.addBody(ball, { density = 1.0, friction = 0.3, bounce = 0.2,
radius = 25 })

Para aquellos casos en los que los cuerpos rectangulares y circulares no encajan con la
forma del objeto, se deben utilizar los cuerpos poligonales. Estos tienen un parametro
shape que es una tabla de coordenadas de puntos que definen la silueta de la forma.
Estas coordenadas son relativas al objeto cuyo origen es situado por Corona SDK en el
centro de la imagen.

-76 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Por ejemplo, para dibujar una forma rectangular de 20 pixeles de altura y 40 de anchura
con origen en el centro, se deberia usar la siguiente forma:

squareShape = { -20,-10, 20,-10, 20,10, -20,10 }

El nimero méximo de puntos (y por lo tanto, de lados del poligono) permitido por la
forma de colisidén es de ocho. Una definicién de una forma se puede volver a utilizar varias
veces. Las coordenadas del poligono debe estar definido en sentido horario, y la forma
resultante debe ser convexa.

También es posible construir un cuerpo de multiples elementos. En este contexto, cada
elemento del cuerpo se especifica como una forma de poligono por separado con sus
propiedades fisicas. La estructura seria:

physics.addBody(displayObject, [bodyType,] bodyElement1, [bodyElement2, ...])

Hay un caso especial de cuerpos fisicos denominados sensores, que no se relacionan
fisicamente con otros objetos fisicos, sino que solo producen los eventos de colisién
cuando otros objetos pasan por ellos. Este seria un ejemplo de un sensor invisible en la
pantalla:

local rect = display.newRect(50, 50, 100, 100)
rect:setFillColor(255, 255, 255, 100)
rect.isVisible = false -- optional
physics.addBody(rect, { isSensor = true })

Estas son las propiedades de los cuerpos fisicos:

» body.isAwake — (booleano) estado “despierto” del objeto. Por defecto, todos los
cuerpos se van de forma automatica "a dormir" cuando no se interactua con ellos
durante un par de segundos hasta que algo (por ejemplo, una colisién) los
despierta.

» body.isBodyActive — (booleano) estado de actividad actual. Cuerpos inactivos no
se destruyen, sino que se retiran de la simulacién y dejar de interactuar con otros
organismos.

» body.isBullet — (booleano) determina si el cuerpo debe ser entendido como una
"bala". Las balas estan sujetas a la deteccién de colisiones continua, en lugar de la
deteccidn de colisiones periddicas en timesteps. Evita que objetos en movimiento
rapido pasen por barreras sélidas. El valor predeterminado es falso.

» body.isSensor— (booleano) propiedad de solo escritura. Un sensor pasa a través
de otros objetos sin rebotar pero también desencadena eventos de colisién.

-77 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

» body.isSleepingAllowed — (booleano) permite que los objetos se “duerman”.
Valor por defecto es verdadero.

» body.isFixedRotation — (booleano) rotacidn del cuerpo esta bloqueada. El valor
predeterminado es falso.

» body.angularVelocity - valor numérico de la velocidad actual angular (rotacién), en
grados por segundo.

» body.linearDamping - valor numérico de la cantidad de movimiento lineal del
cuerpo que es amortiguado es amortiguado. El valor predeterminado es cero.

» body.angularDamping - valor numérico de cuanta rotacion del cuerpo debe ser
amortiguada. El valor predeterminado es cero.

» body.bodyType — cadena que identifica el tipo de objeto. Los posibles valores son
"static" (por defecto), "dynamic"(por defecto) y "kinematic".

o 'static" - no se mueven, y no interactian unos con otros. Ejemplos de
objetos estaticos incluyen suelo, o paredes de una maquina de pinball.

o "dynamic" - se ven afectados por la gravedad y las colisiones
con otros cuerpos.

o "kinematic" - se ven afectados por fuerzas, pero no por la gravedad. Se
establece generalmente para objetos que se pueden arrastrar, al menos
durante la duracion del evento de arrastre.

Estos son los métodos de los cuerpos fisicos:

» body:setLinearVelocity — funcion que establece en los componentes x ey, la
velocidad lineal del objeto en pixeles por segundo.

» body:getLinearVelocity - funcion que devuelve la velocidad lineal del objeto en x e
y en pixeles por segundo

» body:applyForce - funcion que se le pasa como parametro los valores de fuerza
lineal aplicada en los ejes x e y las coordenadas del objeto en las que se aplica la
fuerza. Si el punto de destino es el centro de masas del cuerpo, el cuerpo sera
empujado en una linea recta; si el objetivo es un punto desplazado del centro de
masas, el cuerpo girara alrededor de este centro. Para objetos simétricos el centro
de masas coincide con el centro del objeto (object.x, object.y). Ejemplo:
myBody:applyForce(500, 2000, myBody.x, myBody.y)

» body:applyTorque - un valor numérico para la fuerza aplicada de rotacion. El
cuerpo rotara sobre su centro de masas.

-78 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

» body:applyLinearimpulse - igual que funcidn applyForce, excepto que da solo un
impulso en un choque Unico y momentaneo.

» body:applyAngularimpulse - igual que funcién applyTorque, excepto que da solo
un impulso angular en un choque Unico y momentaneo.

» body:resetMassData - Si los datos de masa por defecto para el cuerpo han sido
anulados, esta funcién establece la masa calculada a partir de las formas.

Colisiones
La collision entre objetos que propicia el motor fisico, es tratado a través del modelo
estandar de eventos — listeners de Corona, con tres nuevos tipos de eventos especificos.

Para deteccidn de colisiones generales se debe usar el evento “collision” que incluye dos
fases, “began” y “ended” para el momento inicial y final del contacto. Estas fases existen
para colisiones normales entre dos cuerpos y como sensor de colisiones. Para que pueda
ser tratado se debe implementar un “collision” listener.

Hay otros dos tipos de eventos que se usan para el choque entre dos cuerpo (no en
sensores), “preCollision” y “postCollision”. El primero es un tipo de evento que se dispara
antes de que los objetos comiencen a interactuar y el segundo es un tipo de evento que
se activa inmediatamente después que los objetos que han interactuado.

Las colisiones se transmiten entre pares de objetos, y pueden ser detectados de forma
global, usando un detector de tiempo de ejecucién (Runtime listener), o localmente en
cada uno de los objetos, utilizando una tabla de listeners.

7.11 Conectividad

Corona incluye la ultima version (v2.02) de las bibliotecas LuaSocket. Estos médulos Lua
permiten aplicar los protocolos de red comunes como SMTP (envio de mensajes de
correo electrénico), HTTP (acceso a la WWW) y FTP (carga y descarga de archivos).
También se incluyen funciones de apoyo MIME (codificacidn comun), la manipulacién de
URLy LTN12 (transferencia y filtrado de datos).

Luasocket es una coleccidn de bibliotecas externas que son preinstaladas en aplicaciones
de Coronay no se cargan automaticamente por defecto. Para utilizarlas, debe cargarse
de forma explicita cada uno de ellos para que las funciones de las bibliotecas estén
disponibles para la aplicacion:

local socket = require ("socket") o local http = require ("http")

Corona permite realizar conexiones http asincronas. Esta caracteristica le permite realizar
llamadas HTTP y HTTPS/SSL asincronas, utilizando cualquier método valido HTTP ("GET",
"POST", etc), asi como la adicidn de encabezados y contenidos. No hace falta dejar el
programa a la espera de respuesta desde el servidor sino que una vez se obtiene esta, se
genera un evento que nos permite tratar la respuesta.

Para enviar una peticién a un servidor, se debe especificar una URL, un método y un
detector para el resultado:

-79 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

network.request(url, method, listener [, params])
El método por defecto es GET y las propiedades del evento respuesta son dos:
» event.response — Una cadena que contiene la respuesta desde el servidor.
» event.isError — valor booleano que devuelve true en caso de error de red o false

en caso contrario.

Este es un ejemplo peticidn http:

local function networkListener (event)

if (event.isError) then

print ("Network error!")
else

print ("RESPONSE: " .. event.response)
end

end

-— Access Google over SSL:
network.request ("https://encrypted.google.com", "GET", networkListener)

En ciertas ocasiones es necesario especificar cabeceras adicionales en la peticién. Ambos
pueden especificarse en la tabla de parametros opcional:
» params.headers — Tabla especificando los valores de cabecera con claves de tipo

cadena.
» params.body — Una cadena conteniendo el cuerpo (body) HTTP.

headers = {}

headers["Content-Type"] = "application/json"
headers["Accept-Language"] = "en-US"

headers.body = "This is an example request body."

Para realizar una descarga, se utiliza una funcidn similar a la anterior salvo que se
descarga la respuesta a un archivo local en la ruta que se especifique, en lugar de en la
memoria caché. Esto se recomienda para respuestas de gran tamafo (por ejemplo,
documentos XML), y también puede ser utilizado para la descarga de imagenes a
distancia. Este es el formato:

network.download(url, method, listener [, params], destFilename [, baseDir])

El parametro opcional baseDir puede ser system.DocumentsDirectory (por defecto) o
system.TemporaryDirectory.

local function networkListener (event)
if (event.isError) then
print ("Network error - download failed")
else
myImage = display.newlImage("helloCopy.png",
system.TemporaryDirectory, 60, 40)
myImage.alpha = 0

-80 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

transition.to(myImage, { alpha = 1.0 })
end

print ("RESPONSE: " .. event.response)
end

network.download("http://developer.anscamobile.com/demo/hello.png", "GET",
networkListener, "helloCopy.png", system.TemporaryDirectory)

Si lo que se desea es descargar especificamente imagenes para mostrarlas en pantalla,
existe la siguiente funcion:

display.loadRemotelmage(url, method, listener [, params], destFilename [,
baseDir] [, x, y])

Contiene las coordenadas x e y para situar la imagen en la pantalla.

Las propiedades del evento respuesta son las mismas que los casos anteriores y ademas
tiene una tercera:

» event.target — representa el Nuevo objeto creado después de que la imagen es
descargada.

Corona SDK permite mostrar contenido web directamente a través de los denominados
web popup, que carga local o remotamente paginas web.

La funcidn es:
native.showWebPopup(url [, options])
native.showWebPopup(x, y, width, height, url [, options])

y los pardmetros son:
» url—URL de la pagina web local o remota. Por defecto, la URL es una ruta absoluta
a un servidor remoto.

» X, Y, width, height — pardmetros de posicidén y tamafio de la ventana del popup. Si
no se especifica se asume que ocupa toda la pantalla.

» Options —tabla que contiene valores opcionales. options.baseUrl| para determinar
si la url es relativa o absoluta, options.hasBackground para indicar si tiene un
fondo opaco o no y options.urlRequest que designa una funcidn para interceptar
los eventos generados en el web popup.

7.12 Gestion de la memoria

Los dispositivos mdviles tienen una memoria limitada disponible para su uso, por lo que
se debe tener cuidado para asegurarse de que el uso total de la memoria de su aplicacion
se mantiene al minimo y se gestiona de forma correcta.

Lua realiza automaticamente la gestion de la memoria. Esto significa que no debemos
preocuparnos ni de asignar (o reservar) memoria para nuevos objetos ni de liberarla
cuando los objetos dejan de ser necesarios. Lua gestiona la memoria automaticamente

-81-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

ejecutando un recolector de basura (garbage collector) de cuando en cuando para
eliminar todos los objetos muertos (esos objetos que ya no son accesibles desde Lua).
Todos los objetos en Lua son susceptibles de gestidon automatica: tablas, funciones y
cadenas.

Sin embargo, hay ciertos puntos que se deben tener en cuenta ya que se debe indicar al
sistema que se debe considerar como basura, es decir, hay que preocuparse por la
gestion logica de la memoria. Por ejemplo, cualquier valor almacenado en una variable
global no se considera basura, aunque la aplicacidén no lo vuelva a utilizar de nuevo.

La gestidon de memoria en Corona SDK se debe aplicar sobre los siguientes cinco aspectos:
Objetos de visualizaciéon

Variables globales

Runtime listeners

Temporizadores (Timers)

Transiciones

VVVYYVYVY

La forma de monitorizar la utilizaciéon de la memoria en la aplicaciéon es afiadir en la
aplicacion, en el fichero main.lua, el siguiente cddigo que visualiza su utilizacion

local monitorMem = function ()
collectgarbage ()
print ("MemUsage: " .. collectgarbage ("count"))
local textMem = system.getInfo("textureMemoryUsed") / 1000000
print ("TexMem: " .. textMem)
end
Runtime:addEventListener ("enterFrame", monitorMem)

Objetos de visualizacion

Estos son los mas faciles de gestionar, ya que son directamente responsables de la
creacién de objetos de visualizacidn. La forma en que puede evitar las pérdidas de
memoria al mostrar objetos es asegurarse de que se quitan aquellos que ya no son
necesarios.

Dado un objeto circulo, lo podemos eliminar de la siguiente manera:

-- Creacién del objeto
local redBall = display.newCircle(100, 100, 25)

-- eliminacion del objeto
redBall:removeSelf ()

o
display.remove (redBall)

-— elminacidén de la referencia
redBall=nil

-82 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

La diferencia entre display.remove() y el método de objeto removeSelf() es que en primer
caso se comprueba que el objeto no ha sido eliminado previamente. Es sélo una manera
mas segura de eliminar los objetos en Corona.

Las fugas en este caso se presentan con mayor frecuencia cuando los objetos se crean
dentro de un bucle, o en alguna parte que es dificil hacer un seguimiento de cada objeto
individual. Se debe asegurar que los objetos de visualizacidn son liberados de la memoria
cuando ya no son necesarios, especialmente al cambiar de imagen o pantalla.

Variables globales

En Corona SDK se recomienda que se usen la menor cantidad de variables globales
(aquellas que se declaran sin usar la palabra local). En el momento que esas variables
haya dejado de ser Utiles o no vaya a usarse mas, se debe asegurar que se les asigna el
valor nil para que el recolector pueda liberar su memoria.

Runtime listeners

Cuando se elimina un objeto de visualizacién, los listeners para captar los eventos que
estdn asociados, también se liberan de la memoria. Sin embargo, cuando se agregan
listeners al objeto Runtime (tiempo de ejecucidn), por ejemplo, el listener enterFrame,
nunca se liberan hasta que se eliminan manualmente.

Una pérdida de memoria comun que ocurre con los listeners en el Runtime es cuando un
desarrollador aflade en una pantalla en particular, pero que se olvida de quitarlo cuando
el usuario sale de la pantalla. Cuando vuelve a ella, hay dos listeners en el Runtime que se
ejecutan en uno encima del otro.

Ademads de poder provocar un error por falta de memoria, se pueden producir errores en
la gestidn de los eventos con resultados inesperados.

Temporizadores y transiciones

Temporizadores y transiciones son probablemente una de las causas mas comunes de
errores por memoria.

Un método para manejar estas es almacenar todos los temporizadores y las transiciones
en una tabla, de modo que cuando se sabe que han terminado, se puedan cancelar todos
ellos a la vez.

Si se agrega el siguiente codigo al archivo main.lua (u otro médulo), se puede hacer
facilmente un seguimiento de los temporizadores / transiciones y cancelarlos todos a la
vez, siempre y cuando sea necesario:

timerStash = {}
transitionStash = {}

function cancelAllTimers ()
local k, v

for k,v in pairs(timerStash) do

timer.cancel (v)
v = nil; k = nil

-83-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

end

nil

{1

timerStash
timerStash
end

function cancelAllTransitions ()
local k, v

for k,v in pairs(transitionStash) do
transition.cancel(v)
v = nil; k = nil

end

transitionStash = nil

transitionStash = {}
end

Y entonces cuando se crea un nuevo temporizador o una transicion:

timerStash.newTimer = timer.performWithDelay (

transitionStash.newTransition = transition.to(myObject {

Entonces se puede llamar a las funciones cancelAllTimers() y cancelAllTransitions() para
pararlos de una vez.

-84-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

8 ANEXO | — Detalle de funciones en Corona SDK

8.1 Librerias estandar de Lua

Corona incluye las mismas bibliotecas estandar Lua que son parte del estandar de Lua.
Estas bibliotecas proporcionan una funcionalidad util y basica. Se agrupan en las
siguientes categorias:

Biblioteca basica

Modulos (bibliotecas externas)
Manipulacién de cadenas
Manipulacién de tablas
Funciones matematicas
Funciones de entrada y salida
Funciones de sistema operativo

VVVVYVYYVY

A excepcidn de la biblioteca basica, cada biblioteca ofrece todas sus funciones como
propiedades de una tabla o como los métodos de sus objetos. Esto crea una agrupacion
I6gica de funciones y es la manera de crear Lua un espacio de nombres de conjuntos
diferentes de funcionalidad.

8.1.1 Biblioteca bdsica

La biblioteca basica proporciona algunas funciones del nucleo de Lua.

assert (v [, mensaje])

Activa un error cuando el valor de su argumento v es falso (por ejemplo, nil o false); en
otro caso retorna todos sus argumentos. mensaje es un mensaje de error; cuando esta
ausente se utiliza por defecto "assertion failed!".

error (mensaje [, nivel])

Termina la ultima funcién protegida llamada, estableciendo mensaje como mensaje de
error. La funcidén error nunca retorna.

Normalmente error afade, al comienzo del mensaje, cierta informacién acerca de la
posicién del error. El argumento nivel especifica codmo obtener la posicidén del error. Con
nivel 1 (por defecto) la posicion del error es donde fue invocada la funcién error. Nivel 2
apunta el error hacia el lugar en que fue invocada la funcién que llamé a error; y asi
sucesivamente. Pasar un valor 0 como nivel evita la adicion de la informacidn de la
posicién al mensaje.

_G
Una variable global (no una funcién) que almacena el entorno global (o sea, _G._G =_G).
Lua mismo no usa esta variable; cambiar su valor no afecta ninglin entorno, ni viceversa. (

Se usa setfenv para cambiar entornos.)

getfenv ([f])

Retorna el entorno actualmente en uso por la funcién. f puede ser una funcién Lua o un
numero que especifica la funcidn a ese nivel de la pila: nivel 1 es la funcién que invoca a

-85 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

getfenv. Si la funcién dada no es una funcién Lua o si f es O, getfenv retorna el entorno
global. El valor por defecto de f es 1.

getmetatable (objeto)

Si objeto no tiene una metatabla devuelve nil. En otro caso, si la metatabla del objeto
tiene un campo "__metatable" retorna el valor asociado, o si no es asi retorna la
metatabla del objeto dado.

ipairs (t)
Retorna tres valores: una funcién iteradora, la tabla t, y 0, de tal modo que la
construccion

fori,v in ipairs(t) do bloque end

iterard sobre los pares (1,t[1]), (2,t[2]), -+, hasta la primera clave entera con un valor nil
en la tabla.

next (tabla [, indice])

Permite al programa recorrer todos los campos de una tabla. Su primer argumento es una
tabla y su segundo argumento es un indice en esta tabla. next retorna el siguiente indice
de la tabla y su valor asociado. Cuando se invoca con nil como segundo argumento next
retorna un indice inicial y su valor asociado. Cuando se invoca con el ultimo indice o con
nil en una tabla vacia next retorna nil. Si el segundo argumento esta ausente entonces se
interpreta como nil. En particular se puede usar next(t) para comprobar si una tabla estd
vacia.

El orden en que se enumeran los indices no esta especificado, incluso para indices
numéricos. (Para recorrer una tabla en orden numérico Usese el for numérico o la funcion
ipairs.)

El comportamiento de next es indefinido si durante el recorrido se asigna un valor a un
campo no existente previamente en la tabla. No obstante se pueden modificar campos

existentes. En particular se pueden borrar campos existentes.

pairs (t)
Retorna tres valores: la funcidn next, la tabla t, y nil, por lo que la construccién

for k,v in pairs(t) do bloque end
iterara sobre todas las parejas clave-valor de la tabla t.

Véase next para las precauciones a tomar cuando se modifica la tabla durante las
iteraciones.

pcall (f, arg1,)

Invoca la funcién f con los argumentos dados en modo protegido. Esto significa que
ningun error dentro de f se propaga; en su lugar pcall captura el error y retorna un cédigo
de estatus. Su primer resultado es el cédigo de estatus (booleano), el cual es verdadero si

- 86 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

la lamada tiene éxito sin errores. En ese caso pcall también devuelve todos los resultados
de la llamada después del primer resultado. En caso de error pcall retorna false mas un
mensaje de error.

print (---)

Recibe cualquier nimero de argumentos e imprime sus valores en el fichero estandar de
salida (stdout), usando tostring como funcién para convertir los argumentos a strings.
print no esta disefiada para salida formateada sino sdlo como una manera rapida de
mostrar valores, tipicamente para la depuracién del cddigo. Para salida formateada Usese
string.format.

rawequal (v1, v2)
Verifica si vl es igual a v2, sin invocar ningun metamétodo. Devuelve un booleano.

rawget (tabla, indice)
Obtiene el valor real de tabla[indice] sin invocar ningin metamétodo. tabla debe ser una
tabla e indice cualquier valor diferente de nil.

rawset (tabla, indice, valor)
Asigna valor a tabla[indice] sin invocar ningin metamétodo. tabla debe ser una tabla,
indice cualquier valor diferente de nil y valor un valor cualquiera de Lua.

select (indice,)

Si indice es un numero retorna todos los argumentos después del niumero indice. En otro
caso indice debe ser el string "#", y select retorna el nimero total de argumentos extra
gue recibe.

setfenv (f, tabla)

Establece el entorno que va a ser usado por una funcién. f puede ser una funcién Lua o un
numero que especifica la funcién al nivel de pila: nivel 1 es la funcién que invoca a
setfenv. setfenv retorna la funcién dada.

Como caso especial, cuando f es 0 setfenv cambia el entorno del proceso que esta en
ejecuciodn. En este caso setfenv no retorna valores.

setmetatable (tabla, metatabla)
Establece la metatabla de una tabla dada. (No se puede cambiar la metatabla de otros
tipos desde Lua, sino sélo desde C.) Si metatabla es nil entonces se elimina la metatabla

de la tabla dada. Si la metatabla original tiene un campo "__metatable" se activa un error.

Esta funcion retorna tabla.

tonumber (e [, base])

-87 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Intenta convertir su argumento en un numero. Si el argumento es ya un nimero o un
string convertible a un nimero entonces tonumber retorna este nimero; en otro caso
devuelve nil.

Un argumento opcional especifica la base para interpretar el nimero. La base puede ser
cualquier entero entre 2 y 36, ambos inclusive. En bases por encima de 10 la letra 'A’ (en
mayuscula o minuscula) representa 10, 'B' representa 11, y asi sucesivamente, con 'Z'
representando 35. En base 10 (por defecto), el nimero puede tener parte decimal, asi
como un exponente opcional (véase §2.1). En otras bases sélo se aceptan enteros sin
signo.

tostring (e)

Recibe un argumento de cualquier tipo y lo convierte en un string con un formato
razonable. Para un control completo de cdmo se convierten los nimeros, Usese
string.format.

Si la metatabla de e tiene un campo "___tostring" entonces tostring invoca al
correspondiente valor con e como argumento y usa el resultado de la llamada como su
propio resultado.

type (v)
Retorna el tipo de su Unico argumento, codificado como string. Los posibles resultados de

esta funcién son "nil" (un string, no el valor nil), "number", "string", "boolean, "table",
"function", "thread" y "userdata".

unpack (lista [, i [, j11)
Retorna los elementos de una tabla dada. Esta funcién equivale a

return lista[i], lista[i+1], -+, lista[j]

excepto que este cddigo puede ser escrito sélo para un nimero fijo de elementos. Por
defectoies 1yjeslalongitud de la lista, como se define a través del operador longitud .

8.1.2 Moddulos (bibliotecas externas)

Corona admite la funcionalidad de médulos de Lua para crear y cargar bibliotecas
externas.

En la actualidad, el SDK incluye varias bibliotecas externas como "ui.lua" (para la creacién
de los botones con rollover) y "sprite.lua" (para crear sprites animados, o "clips de
pelicula").

Estas librerias se pueden encontrar en los proyectos de muestra "Button" y "clip de
pelicula", ubicado en el directorio del cdédigo de ejemplo del SDK.

Crear bibliotecas externas

- 88 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Se pueden crear mddulos externos de Lua, lo cual es util para la organizacidn de grandes
proyectos en varios archivos, o la creacién de bibliotecas reutilizables de cédigo para
futuros proyectos.

La forma mas facil de crear un mdédulo es utilizar el siguiente formato y guardarlo en un
fichero con extension .lua en el mismo directorio que el archivo del proyecto main.lua:

module (..., package.seeall)

-- Declare the functions you want in your module
function hello ()

print ("Hello, module")
end

Cargar bibliotecas externas

Para cargar un mdédulo de directorio de su proyecto, se usa require(NombreModulo) al
comienzo del archivo main.lua. Las funciones en el médulo, estaran disponibles con el
formato NombreModulo.nombreFuncion ().

-- Carga biblioteca
local testlib = require("testlib")

-- llamada a funcidén hello ().
testlib.hello ()

-— la misma function en el cache same function
local hello = testlib.hello()

-- invocaciones futuras a la funcidén son mas rapidas
hello ()

8.1.3 Manipulacion de cadenas

Esta biblioteca proporciona funciones genéricas de manejo de strings, tales como
encontrar y extraer substrings y detectar patrones. Cuando se indexa un string en Lua el
primer cardcter estd en la posicién 1 (no en 0 como en C). Se permite el uso de indices
negativos que se interpretan como indexado hacia atras, desde el final del string. Por
tanto el ultimo caracter del string esta en la posicion -1, y asi sucesivamente.

La biblioteca de strings proporciona todas sus funciones en la tabla string. También
establece una metatabla para string donde el campo __index apunta a la misma
metatabla. Por tanto, se pueden usar las funciones de manejo de string en un estilo
orientado a objetos. Por ejemplo, string.byte(s, i) puede ponerse s:byte(i).

string.byte (s [, i [, jl])
Devuelve los cddigos numéricos internos de los caracteres s[i], s[i+1], -+, s[j]. El valor por
defecto deies 1; el valor por defecto dejes .

Téngase en cuenta que los cddigos numéricos no son necesariamente portables de unas
plataformas a otras.

-89 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

string.char (-++)

Recibe cero o mas enteros. Devuelve un string con igual longitud que el nimero de
argumentos, en el que cada caracter tiene un cédigo numérico interno igual a su
correspondiente argumento.

Téngase en cuenta que los cddigos numéricos no son necesariamente portables de unas
plataformas a otras.

string.dump (function)

Devuelve un string que contiene la representacion binaria de la funcién dada, de tal
manera que una llamada posterior a loadstring con este string devuelve una copia de la
funcién. func debe ser una funcién Lua sin upvalues.

string.find (s, patron [, inicio [, bdsica]])

Busca la primera aparicion de patrén en el string s. Si la encuentra, find devuelve los
indices de s donde comienza y acaba la aparacion; en caso contrario retorna nil. Un tercer
argumento numeérico opcional inicio especifica ddnde comenzar la busqueda; su valor por
defecto es 1y puede ser negativo. Un valor true como cuarto argumento opcional basica
desactiva las utilidades de deteccidn de patrones, realizando entonces la funcién una
operacion de "busqueda basica de substring", sin caracteres "magicos" en el patrén.
Téngase en cuenta que si se proporciona el argumento basica también debe
proporcionarse el argumento inicio.

Si el patrdn tiene capturas entonces en una deteccidn con éxito se devuelven los valores
capturados, después de los dos indices.

string.format (formato, --*)

Devuelve una version formateada de sus argumentos (en nimero variable) siguiendo la
descripcién dada en su primer argumento (formato, que debe ser un string). El string de
formato sigue las mismas reglas que la familia de funciones C estandar printf. Las Unicas
diferencias son que las opciones/modificadores *, I, L, n, p, y h no estadn soportadas, y que
existe una opcidn extra g. Esta ultima opcién da formato a un string en una forma
adecuada para ser leida de manera segura de nuevo por el intérprete de Lua: el string es
escrito entre dobles comillas, y todas las dobles comillas, nuevas lineas, ceros y barras
inversas del string se sustituyen por las secuencias de escape adecuadas en la escritura.
Por ejemplo, la llamada

string.format('%q’, 'un string con "comillas" y \n nueva linea')
producird el string:
"un string con \"comillas\" y \

nueva linea"

Las opcionesc,d, E, e, f, g, G, i, 0, u, Xy x esperan un nimero como argumento, mientras
que qy s esperan un string.

Esta funcidn no acepta valores de string que contengan caracteres cero, excepto como
argumentos de la opcién g.

-90 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

string.gmatch (s, patron)
Devuelve una funcion iteradora que, cada vez que se invoca, retorna las siguientes
capturas del patrén en el string s.

Si el patrén no produce capturas entonces la coincidencia completa se devuelve en cada
llamada.

Como ejemplo, el siguiente bucle

s = "hola mundo desde Lua"

for w in string.gmatch(s, "%a+") do
print (w)

end

iterara sobre todas las palabras del string s, imprimiendo una por linea. El siguiente
ejemplo devuelve en forma de tabla todos los pares clave=valor del string dado:

t = {}

s = "desde=mundo, a=Lua"

for k, v in string.gmatch(s, " (%w+)=(%w+)") do
t[k] = v

end

Para esta funcidn, un 'A' al principio de un patrén no funciona como un ancla, sino que
previene la iteracion.

string.gsub (s, patron, reemplazamiento [, n])

Devuelve una copia de s en la que todas (o las n primeras, si se especifica el argumento
opcional) las apariciones del patrén han sido reemplazadas por el reemplazamiento
especificado, que puede ser un string, una tabla o una funcién. gsub también devuelve,
como segundo valor, el nimero total de coincidencias detectadas.

Si reemplazamiento es un string entonces su valor se usa en la sustitucion. El caracter %
funciona como un caracter de escape: cualquier secuencia en reemplazamiento de la
forma %n, con n entre 1y 9, significa el valor de la captura nimero n en el substring
(véase mas abajo). La secuencia %0 significa toda la coincidencia. La secuencia %%
significa un caracter porcentaje %.

Si reemplazamiento es una tabla entonces en cada captura se devuelve el elemento de la
tabla que tiene por clave la primera captura; si el patrén no proporciona ninguna captura
entonce toda la coincidencia se utiliza como clave.

Si reemplazamiento es una funcién entonces la misma es invocada cada vez que exista
una captura con todos los substrings capturados pasados como argumentos en el mismo
orden; si no existen capturas entonces toda la coincidencia se pasa como un Unico
argumento.

-91 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Si el valor devuelto por la tabla o por la llamada a la funcién es un string o un nimero,
entonces se usa como string de reemplazamiento; en caso contrario si es false o nil,
entonces no se realiza ninguna sustitucion (esto es, la coincidencia original se mantiene
en el string).

He aqui algunos ejemplos:

w
Il

string.gsub ("hola mundo", " (%Sw+)", "%$1 %1")
x="hola hola mundo mundo"

|
|
\

X = string.gsub ("hola mundo", "%w+", "%0 %0", 1)
--> x="hola hola mundo"

x = string.gsub ("hola mundo desde Lua", " (%w+)%s* (sw+)", "%2 $1")
--> x="mundo hola Lua desde"

x = string.gsub("casa = $HOME, usuario = SUSER", "$$(%w+)", os.getenv)
--> x="casa = /home/roberto, usuario = roberto"
x = string.gsub ("4+5 = Sreturn 4+58", "$$(.-)%S$", function (s)
return loadstring(s) ()
end)

--> x="4+5 = 9"

local t = {nombre="lua", versidén="5.1"}
x = string.gsub ("$nombre-$versidén.tar.gz", "$$(swt)", t)
-—> x="lua-5.1l.tar.gz"

string.len (s)
Recibe un string y devuelve su longitud. El string vacio "" tiene longitud 0. Los caracteres
cero dentro del string también se cuentan, por lo que "a\000bc\000" tiene longitud 5.

string.lower (s)

Recibe un string y devuelve una copia del mismo con todas las letras mayusculas
cambiadas a minusculas. El resto de los caracteres permanece sin cambios. La definicidon
de letra mayuscula depende del sistema local.

string.match (s, patron [, inicio])

Busca la primera aparicidon del patrén en el string s. Si encuentra una, entonces match
retorna la captura del patrdn; en caso contrario devuelve nil. Si el patrén no produce
ninguna captura entonces se devuelve la coincidencia completa. Un tercer y opcional
argumento numérico inicio especifica ddnde comenzar la bisqueda; su valor por defecto
es 1y puede ser negativo.

string.rep (s, n)
Devuelve un string que es la concatenaciéon de n copias del string s.

string.reverse (s)
Devuelve un string que es el original s invertido.

string.sub (s, i [, j])
Retorna el substring de s que comienza en i y continla hasta j; i y j pueden ser negativos.

Si j estd ausente entonces se asume que vale -1 (equivalente a la longitud del string). En

-92 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

particular, la llamada string.sub(s,1,j) retorna un prefijo de s con longitud j, y string.sub(s,
-i) retorna un sufijo de s con longitud i.

string.upper (s)

Recibe un string y devuelve una copia del mismo con todas las letras mindsculas
cambiadas a mayusculas. El resto de los caracteres permanece sin cambios. La definicion
de letra mindscula depende del sistema local.

Patrones

Clases de caracteres:

Se usan clases de caracteres para representar conjuntos de caracteres. Estan permitidas
las siguientes combinaciones para describir una clase de caracteres:

» x:(donde x no es uno de los caracteres magicos 2$()%.[]*+-?) representa el propio
caracter x.

.. (un punto) representa cualquier caracter.

%a: representa cualquier letra.

%c: representa cualquier caracter de control.

%d: representa cualquier digito.

%l: representa cualquier letra minuscula.

%p: representa cualquier caracter de puntuacion.

%s: representa cualquier caracter de espacio.

%u: representa cualquier letra mayuscula.

%w: representa cualquier caracter alfanumérico.

%x: representa cualquier digito hexadecimal.

%z: representa el caracter con valor interno 0 (cero).

%x: (donde x es cualquier caracter no alfanumérico) representa el caracter x. Esta
es la manera estandar de "escapar" los caracteres magicos. Cualquier caracter de
puntuacion (incluso los no magicos) pueden ser precedidos por un signo de
porcentaje '%' cuando se quieran representarse a si mismos en el patrén.

VVVVVVVYVVYYY

[conjunto]: representa la clase que es la unidn de todos los caracteres en el conjunto. Un
rango de caracteres puede ser especificado separando el caracter del principio y del final
mediante un guidn '-'. Todas las clases del tipo %x descritas mas arriba pueden ser
también utilizadas como componentes del conjunto. Todos los otros caracteres en el
conjunto se representan a si mismos. Por ejemplo, [%w_] (o [_%Ww]) representa cualquier
caracter alfanumeérico o el subrayado, [0-7] representa un digito octal, y [0-7%|%-]
representa un digito octal, una letra mindscula o el caracter '-'.

La interaccion entre los rangos y las clases no esta definida. Por tanto, patrones como
[%a-z] o [a-%%] carecen de significado.

[Aconjunto]: representa el complemento de conjunto, donde conjunto se interpreta como
se ha indicado mas arriba.

Para todas las clases representadas por letras simples (%a, %c, etc.) las correspondientes
letras mayusculas representan la clase complementaria. Por ejemplo, %S representa
cualquier caracter no espacio.

-93 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Las definiciones de letra, espacio y otros grupos de caracteres dependen del sistema
local. En particular, la clase [a-z] puede no ser equivalente a %l.

Cada elemento de un patrén puede ser :

» una clase de caracter simple, que equivale a cualquier caracter simple de la clase;

» una clase de caracter simple seguida por '*', que equivale a 0 6 mas repeticiones
de los caracteres de la clase. Estos elementos de repeticidn siempre equivaldran a
la secuencia de caracteres mas larga posible;

» un clase de caracter simple seguida por '+', que equivale a 1 6 mas repeticiones de
los caracteres de la clase. Estos elementos de repeticién siempre equivaldran ala
secuencia de caracteres mas larga posible;

» un clase de caracter simple seguida por '-', que también equivale a 0 6 mas
repeticiones de los caracteres de la clase. Al contrario que '*', Estos elementos de
repeticién siempre equivaldrdn a la secuencia de caracteres mas corta posible;

» una clase de caracter simple seguida por '?', que equivale a 0 6 1 apariciones de un
caracter de la clase;

» %n, para n entre 1y 9; este elemento equivale a un substring igual a la captura
numero n;

» %bxy, donde x e y son dos caracteres diferentes; este elemento equivale a strings
gue comienzan con x, finalizan con y, estando equilibrados x e y. Esto significa que,
iniciando un contador a 0, si se lee el string de izquierda a derecha, sumando +1
por cada x que aparezca y -1 por caday, el y final es el primero donde el contador
alcanza 0. Por ejemplo, el elemento %b() equivale a una expresidn con paréntesis
emparejados.

Patron:

Un patrdn es una secuencia de elementos de patréon. Un 'A' al comienzo de un patrén
ancla la busqueda del patrén al comienzo del string en el que se produce la bisqueda. Un
'S' al final de un patrén ancla la bdsqueda del patrén al final del string en el que se
produce la busqueda. En otras posiciones '*' y 'S' no poseen un significado especial y se
representan a si mismos.

Capturas:
Un patrén puede contener subpatrones encerrados entre paréntesis que describen
capturas. Cuando sucede una coincidencia entre un patrén y un string dado, los
substrings que concuerdan con lo indicado entre paréntesis en el patrdn, son
almacenados (capturados) para uso futuro. Las capturas son numeradas de acuerdo a sus
paréntesis izquierdos. Por ejemplo, en el patrén "(a*(.)%w(%s*))", la parte del string que
concuerda con "a*(.)%w(%s*)" se guarda en la primera captura (y por tanto tiene nUmero
"o

1); el caracter que concuerda con "." se captura con el nimero 2, y la parte que
concuerda con "%s*" tiene el nUmero 3.

Como caso especial, la captura vacia () retorna la posicion actual en el string (un nimero).
Por ejemplo, si se aplica el patréon "()aa()" al string "flaaap", dara dos capturas: 3y 5.

Un patron no puede contener caracteres cero. Se debe usar %z en su lugar

-94 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

8.1.4 Manipulacion de tablas

Esta biblioteca proporciona funciones genéricas para manejo de tablas. Todas estas
funciones estan definidas dentro de la tabla table.

La mayoria de las funciones en la biblioteca de tablas asume que las mismas representan
arrays o listas (o sea, estan indexadas numéricamente). Para estas funciones, cuando
hablamos de la "longitud" de una tabla queremos decir el resultado del operador longitud

(#).

table.concat (tabla [, separador [, i [, j]]])

Dado una table donde todos sus elementos son strings o nimeros devuelve
tabla[i]..separador..tabla[i+1] --- separador..tabla[j]. El valor por defecto de separador es
el string vacio, el valor por defecto de i es 1y el valor por defecto de j es la longitud de Ia
tabla. Sii es mayor que j, la funcién devuelve un string vacio.

table.insert (tabla, [posicion,] valor)

Inserta el elemento valor en la posicidn dada en la tabla, desplazando hacia adelante
otros elementos para abrir hueco, si es necesario. El valor por defecto de posicion es n+1,
donde n = #tabla es la longitud de la tabla (véase §2.5.5), de tal manera que
table.insert(t,x) inserta x al final de la tabla t.

table.maxn (tabla)

Devuelve el mayor indice numérico positivo de una tabla dada o cero si la tabla no tiene
indices numéricos positivos. (Para hacer su trabajo esta funcidn realiza un barrido lineal
de la tabla completa.)

table.remove (tabla [, posicion])

Elimina de tabla el elemento situado en la posicidon dada, desplazando hacia atras otros
elementos para cerrar espacio, si es necesario. Devuelve el valor del elemento eliminado.
El valor por defecto de posicion es n, donde n es la longitud de la tabla, por lo que la
llamada table.remove(t) elimina el dltimo elemento de la tabla t.

table.sort (tabla [, comparador])

Ordena los elementos de la tabla en un orden dado modificando la propia tabla, desde
table[1] hasta table[n], donde n es la longitud de la tabla. Si se proporciona el argumento
comparador éste debe ser una funcidn que recibe dos elementos de la tabla y devuelve
verdadero cuando el primero es menor que el segundo (por lo que not
comparador(a[i+1],a[i]) serd verdadero después de la ordenacidn). Si no se proporciona
una funcién comparador entonces se usa el operador estandar < de Lua.

El algoritmo de ordenacidn no es estable; esto es, los elementos considerados iguales por
la ordenaciéon dada pueden sufrir cambios de orden relativos después de la ordenacién.

8.1.5 Funciones matematicas

Esta biblioteca es una interface a la biblioteca matematica estandar de C. Proporciona
todas sus funciones dentro de la tabla math.

math.abs (x)
Devuelve el valor absoluto de x.

-95-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

math.acos (x)
Devuelve el arco coseno de x (en radianes).

math.asin (x)
Devuelve el arco seno de x (en radianes).

math.atan (x)
Devuelve el arco tangente de x (en radianes).

math.atan2 (y, x)

Devuelve el arco tangente de y/x (en radianes), pero usa los signos de ambos argumentos
para determinar el cuadrante del resultado. (También maneja correctamente el caso en
que X es cero.)

math.ceil (x)
Devuelve el menor entero mayor o igual que x.

math.cos (x)
Devuelve el coseno de x (se asume que estd en radianes).

math.cosh (x)
Devuelve el coseno hiperbdlico de x.

math.deg (x)
Devuelve en grados sexagesimales el valor de x (dado en radianes).

math.exp (x)
Devuelve el valor de ex.

math.floor (x)
Devuelve el mayor entero menor o igual que x.

math.fmod (x, y)
Devuelve el resto de la divisidon de x pory.

math.frexp (x)
Devuelve my e tales que x = m 2%, e es un entero y el valor absoluto de m esta en el

intervalo [0.5, 1) (o cero cuando x es cero).

math.huge
El valor HUGE_VAL, un valor mas grande o igual que otro valor numérico cualquiera.

math.ldexp (m, e)
Devuelve m 2 € (e debe ser un entero).

math.log (x)
Devuelve el logaritmo natural de x.

-96 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

math.log10 (x)
Devuelve el logaritmo decimal (base 10) de x.

math.max (x, --+)
Devuelve el mayor valor de entre sus argumentos.

math.min (x, --)
Devuelve el menor valor de entre sus argumentos.

math.modf (x)
Devuelve dos numeros, las partes entera y fraccional de x .

math.pi
El valor de pi.

math.pow (x, y)
Devuelve xy. (Se puede también usar la expresion xy para calcular este valor.)

math.rad (x)
Devuelve en radianes el valor del angulo x (dado en grados sexagesimales).

math.random ([m [, n]])
Esta funcion es un interface a rand, generador simple de nimeros pseudo-aleatorios
proporcionado por el ANSI C. (Sin garantias de sus propiedades estadisticas.)

Cuando se invoca sin argumentos devuelve un nimero pseudoaleatorio real uniforme en
el rango [0,1). Cuando se invoca con un nimero entero m, math.random devuelve un
numero pseudoaleatorio entero uniforme en el rango [1, m]. Cuando se invoca con dos
argumentos my n enteros, math.random devuelve un nimero pseudoaleatorio entero
uniforme en el rango [m, n].

math.randomseed (x)
Establece x como "semilla" para el generador de nimeros pseudoaleatorios: iguales
semillas producen iguales secuencias de numeros.

math.sin (x)
Devuelve el seno de x (se asume que esta en radianes).

math.sinh (x)
Devuelve el seno hiperbdlico de x.

math.sqrt (x)
Devuelve la raiz cuadrada de x. (Se puede usar también la expresién x*0.5 para calcular

este valor.)

math.tan (x)
Devuelve la tangente de x (se asume que esta en radianes).

-97 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

math.tanh (x)
Devuelve la tangente hiperbdlica de x.

8.1.6 Funciones de entrada y salida

La biblioteca de entrada/salida (I/O de sus siglas en inglés) proporciona dos estilos
diferentes de manejo de ficheros. El primero de ellos usa descriptores de fichero
implicitos; esto es, existen dos ficheros por defecto, uno de entrada y otro de salida, y las
operaciones se realizan sobre éstos. El segundo estilo usa descriptores de fichero
explicitos.

Cuando se usan descriptores implicitos todas las operaciones soportadas estan en la tabla
io. Cuando se usan descriptores explicitos, la operacién io.open devuelve un descriptor de
fichero y todas las operaciones se proporcionan como métodos asociados al descriptor.

La tabla io también proporciona tres descriptores de fichero predefinidos con sus
significados usuales en C: io.stdin, io.stdout e io.stderr. La biblioteca de entrada/salida
nunca cierra esos ficheros.

A no ser que se especifique, todas las funciones de entrada/salida devuelven nil en caso
de fallo (mas un mensaje de error como segundo resultado y un cédigo de error
dependiente del sistema como un tercer resultado) y valores diferentes de nil si hay éxito.

Manipulacion de ficheros implicita

io.close ([descriptor_de_fichero])
Equivalente a descriptor_de_fichero:close(). Sin argumento cierra el fichero de salida por
defecto.

io.flush ()
Equivalente a descriptor_de_fichero:flush aplicado al fichero de salida por defecto.

io.input ([descriptor_de_fichero | nombre_de_fichero])

Cuando se invoca con un nombre de fichero entonces lo abre (en modo texto), y
establece su manejador de fichero como fichero de entrada por defecto. Cuando se llama
con un descriptor de fichero simplemente lo establece como manejador para el fichero de
entrada por defecto. Cuando se invoca sin argumento devuelve el fichero por defecto
actual.

En caso de errores esta funcion activa error en lugar de devolver un cédigo de error.
io.lines ([nombre_de_fichero])
Abre el fichero de nombre dado en modo lectura y devuelve una funcién iteradora que,

cada vez que es invocada, devuelve una nueva linea del fichero. Por tanto, la construccién

for linea in io.lines(nombre_de_fichero) do bloque end

-98 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

iterara sobre todas las lineas del fichero. Cuando la funcién iteradora detecta el final del
fichero devuelve nil (para acabar el bucle) y cierra automaticamente el fichero.

La llamada aio.lines() (sin nombre de fichero) equivale a io.input():lines(); esto es, itera
sobre todas las lineas del fichero por defecto de entrada. En ese caso no cierra el fichero
cuando acaba el bucle.

io.open (nombre_de_fichero [, modo])
Esta funcion abre un fichero, en el modo especificado en el string mode. Devuelve un
descriptor de fichero o, en caso de error, nil ademas de un mensaje de error.

El string que indica modo puede ser uno de los siguientes:

"r'": modo lectura (por defecto);

"w'": modo escritura;

"a": modo adicion;

"r+": modo actualizacidn, todos los datos preexistentes se mantienen;

"w+": modo actualizacién, todos los datos preexistentes se borran;

"a+": modo adicién con actualizacién, todos los datos preexistentes se mantienen,
y la escritura se permite sélo al final del fichero.

El string que indica el modo puede contener también 'b' al final, lo que es necesario en
algunos sistemas para abrir el fichero en modo binario. Este string es exactamente el que

se usa en la funcién estandar de C fopen.

VVVYVYVYVYY

io.output ([descriptor_de_fichero | nombre_de_fichero])
Similar a io.input, pero operando sobre el fichero por defecto de salida.

io.popen (prog [, modo])

Comienza a ejecutar el programa prog en un proceso separado y retorna un descriptor de
fichero que se puede usar para leer datos que escribe prog (si modo es "r", el valor por
defecto) o para escribir datos que lee prog (si modo es "w").

Esta funcion depende del sistema operativo y no esta disponible en todas las plataformas.

io.read ()
Equivalente a io.input():read.

io.tmpfile ()
Devuelve un descriptor de fichero para un fichero temporal. Este se abre en modo
actualizacion y se elimina automaticamente cuando acaba el programa.

io.type (objeto)

Verifica si objeto es un descriptor valido de fichero. Devuelve el string "file" si objeto es
un descriptor de fichero abierto, "closed file" si objeto es un descriptor de fichero
cerrado, o nil si objeto no es un descriptor de fichero.

io.write (--+)
Equivalente a io.output():write.

-99 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Manipulacion de ficheros explicita

fichero:close ()

Cierra el descriptor de fichero. Téngase en cuenta que los ficheros son cerrados
automaticamente cuando sus descriptores se eliminan en un ciclo de liberaciéon de
memoria, pero que esto toma un tiempo impredecible de ejecucién.

fichero:flush ()
Salva cualquier dato escrito en fichero.

fichero:lines ()

Devuelve una funcion iteradora que, cada vez que es invocada, devuelve una nueva linea
leida del fichero. Por tanto, la construccién

for linea in fichero:lines() do bloque end

iterard sobre todas las lineas del fichero. (A diferencia de io.lines, esta funcion no cierra el
fichero cuando acaba el bucle.)

fichero:read (---)

Lee en el fichero, de acuerdo el formato proporcionado, el cual especifica qué leer. Para
cada formato, la funcién devuelve un string (o un nimero) con los caracteres leidos, o nil
si no pudo leer los datos con el formato especificado. Cuando se invoca sin formato se usa
uno por defecto que lee la proxima linea completa (véase mas abajo).

Los formatos disponibles son

= "*n":lee un nimero; éste es el Unico formato que devuelve un nimero en lugar
de un string.

= "*3": lee el resto del fichero completo, empezando en la posicidn actual. Al final
del fichero devuelve un string vacio.

= "*¥|":]ee la proxima linea (saltandose el final de linea), retornando nil al final del
fichero. Este es el formato por defecto.

= un nUmero: lee un string con como maximo este numero de caracteres,
devolviendo nil si se llega al final del fichero. Si el nUmero es cero no lee nada y
devuelve un string vacio, o nil si se alcanza el final del fichero.

fichero:seek ([de_dodnde] [, desplazamiento])
Establece (o solicita) la posicion actual (del puntero de lectura/escritura) en el fichero,
medida desde el principio del fichero, en la posicién dada por desplazamiento mas la base
especificada por el string donde, como se especifica a continuacidn:

= "set": sitla la posicion base en 0 (comienzo del fichero);

= "cur":sitda la posicion base en la actual;

= "end":sitla la posicion base al final del fichero.

En caso de éxito la funcidn seek retorna la posicidn final (del puntero de lectura/escritura)
en el fichero medida en bytes desde el principio del fichero. Si la llamada falla retorna nil,
mas un string describiendo el error.

-100 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

El valor por defecto de dénde es "cur", y para desplazamiento es 0. Por tanto, la lamada
fichero:seek() devuelve la posicion actual, sin cambiarla; la lamada fichero:seek("set")
establece la posicion al principio del fichero (y devuelve 0); y la lamada
fichero:seek("end") establece la posicidn al final del fichero y devuelve su tamafio.

fichero:setvbuf (modo [, tamano])
Establece un modo buffer para un fichero de salida. El argumento modo puede ser uno de
estos tres:

» "no":sin buffer; el resultado de cualquier operacién de salida se produce
inmediatamente.

» "full": con buffer completo; la operacidon de salida se realiza sélo cuando el buffer
estd lleno o cuando se invoca explicitamente la funcién flush en el descriptor del
fichero.

» "line": con buffer de linea; la salida se demora hasta que se produce una nueva
linea en la salida o existe una entrada de algun fichero especial (como una
terminal).

Para los dos ultimos casos, tamafio especifica el tamafo del buffer, en bytes. El valor por
defecto es un tamafio adecuado.

fichero:write (---)

Escribe el valor de sus argumentos en el fichero dado por su fichero. Los argumentos
pueden ser strings o niumeros. Para escribir otros valores Usese tostring o string.format
antes que write.

8.1.7 Funciones de sistema operativo

Esta biblioteca estd implementada a través de la tabla os.

os.clock ()
Devuelve una aproximacion al total de segundos de CPU usados por el programa.

os.date ([formato [, tiempo]])
Devuelve un string o una tabla conteniendo la fecha y hora, formateada de acuerdo con el
string dado en formato.

Si el argumento tiempo estd presente entonces ese tiempo concreto es el que se
formatea (véase la funcidn os.time para una descripcidn de este valor). En caso contrario,
date formatea el tiempo actual.

Si formato comienza con '!' entonces el tiempo se formatea de acuerdo al Tiempo
Universal Coordinado. Después de este caracter opcional, si formato es *t entonces date
devuelve una tabla con los siguientes campos:

year (cuatro digitos),

month (1--12),

day (1--31),

hour (0--23),

min (0--59),

sec (0--61),

wday (dia de la semana, el domingo es 1),

VVVVYVYYVY

-101-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

» yday (dia dentro del afio),
» e isdst (booleano, verdadero si es horario de verano).

Si formato no es *t entonces date devuelve el tiempo como un string, formateado de
acuerdo con las mismas reglas que la funcidn strftime de C.

Cuando se invoca sin argumentos date devuelve una representacién razonable de la fecha
y la hora que depende de la maquina y del sistema local (esto es, os.date() equivale a
os.date("%c")).

os.difftime (t2, t1)
Devuelve el nimero de segundos desde el instante t1 hasta el t2. En POSIX, Windows y
algunos otros sistemas este valor es exactamente t2-t1.

os.exit ([codigo])
Invoca la funcidn exit de C, con un cddigo entero opcional, para terminar el programa
anfitrion. El valor por defecto de cddigo es el valor correspondiente a éxito.

os.remove (nombre_de_fichero)
Elimina el fichero o directorio dado. Los directorios deben estar vacios para poder ser
eliminados. Si la funcién falla retorna nil, mas un string describiendo el error.

os.rename (nombre_viejo, nombre_nuevo)
Renombra un fichero o directorio de nombre_viejo a nombre_nuevo. Si la funcién falla
retorna nil, mas un string describiendo el error.

os.time ([tabla])

Devuelve el tiempo actual cuando se llama sin argumentos, o un tiempo representando la
fecha y hora especificadas en la tabla dada. Esta debe tener los campos year, month y
day, y puede tener los campos hour, min, sec e isdst (para una descripcién de esos
campos, véase la funcidn os.date).

El valor retornado es un numero, cuyo significado depende del sistema. En POSIX,
Windows y algunos otros sistemas este nimero cuenta el nimero de segundos desde
alguna fecha inicial dada (la "época"). En otros sistemas el significado no esta
especificado, y el nimero retornado por time puede ser usado sélo como argumento de
las funciones date y difftime.

8.2 Librerias de Corona SDK

Corona SDK posee su propio conjunto de bibliotecas sobre las bibliotecas estandar de Lua.
Algunas bibliotecas estan incorporadas internamente, mientras que otras deben ser
cargadas explicitamente.

Las siguientes son las bibliotecas centrales de Corona y se cargan automaticamente
cuando se inicia la aplicacién:

-102 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

» display - proporciona todas las rutinas para la creacién de objetos de
visualizacion.

» transition - funciones para la animacion de objetos de visualizacion, lo que

simplifica el proceso de creacion de movimientos basicos.

timer - ofrece funciones basicas de tiempo.

media - permite el acceso a las capacidades multimedia del dispositivo.

native - proporciona acceso a los elementos de la interfaz nativa de los

dispositivos.

» system - es un conjunto de funciones de sistema.

YV V VY

8.2.1 Biblioteca display

La biblioteca display contiene todas las funciones relacionadas con la creacién de objetos
de visualizacién.

Esta biblioteca estd organizada en 3 grupos de funciones que permiten crear objetos en
pantalla, la modificacién de las propiedades de la pantalla en si, y otras funciones
funciones de utilidad.

Crear objetos de visualizacion
Todo lo que se dibuja en la pantalla es un DisplayObject. Todos tienen propiedades y
métodos comunes.

display.newGroup()
Crea un grupo en el que se pueden anadir y borrar objetos hijos. Devuelve un objeto
grupo (GroupObject) que lo representa.

display.newlmage(filename [, baseDirectory] [, left, top])
Devuelve un objeto con la imagen cargada desde el fichero especificado en filename.

display.newlmageRect([parentGroup,] filename [, baseDirectory] width, height)
Devuelve un objeto con la imagen cargada desde el fichero especificado en filename
utilizando aquella cuya resolucién esta de acuerdo a la escala de contenido actual,
determinada por Corona, que es la relacion entre la pantalla actual y las dimensiones de
contenido de la base se define en config.lua. En base a esta escala, Corona utiliza la tabla
imageSuffix (también definida en config.lua), que enumera los sufijos de la misma familia
de las imdagenes, para encontrar la mejor combinacion de las opciones de imagen
disponibles.

display.loadRemotelmage(url, method, listener [, params], destFilename [, baseDir] [,
x yl)

Este método devuelve un objeto con la imagen que se obtiene de forma remota de
acuerdo a los parametros.

display.newCircle(xCenter, yCenter, radius)

Crea un circulo con radio radius centrado en (xCenter, yCenter). Devuelve un objeto
vector (vectorObject) que lo representa.

-103 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

display.newRect(left, top, width, height)

Crea un rectangulo con las dimensiones especificadas (width, height) con la esquina
superior situada en las coordenadas (left, top) . Devuelve un objeto vector (vectorObject)
que lo representa.

display.newRoundedRect(left, top, width, height, cornerRadius)
Es similar al caso anterior pero devuelve el rectangulo con las esqueinas redondeadas de
acuerdo al valor cornerRadius.

display.newlLine([parent,] x1,y1, x2,y2)
Dibuja una linea desde un punto a otro. Opcionalmente se pueden afiadir nuevos puntos
al final de la linea (metodo object:append)

display.newText(string, x, y, font, size)

Crea un objeto de texto con la cadena string con su esquina superior izquierda en (x, y).
Devuelve un TextObject que lo representa.

Se debe especificar el nombre de la fuente y el tamafio.

Propiedades de la pantalla

Propiedad Descripcidn

display.contentCenterX Equivalente a display.contentWidth/2

display.contentCenterY Equivalente a display.contentHeight/2

display.contentHeight Altura original del contenido en pixels. Este valor por
defecto coincide con la altura de la pantalla, pero puede
ser otro valor si se utiliza la escala de contenido en
config.lua.

display.contentWidth Ancho original del contenido en pixels. Este valor por
defecto coincide con el ancho de la pantalla, pero puede
ser otro valor si se utiliza la escala de contenido en

config.lua.
display.viewableContent Una propiedad de sélo lectura que contiene la anchura
Width en pixeles de la zona visible de la pantalla, en el sistema

de coordenadas del contenido original. Esto es util ya que
dependiendo del modo de adaptacion dinamica de la
escala que se utiliza, y la relacidn de aspecto del
dispositivo que se utiliza, algunos de los contenidos
originales se pueden escalar de manera que las porciones
gueden fuera de la pantalla.

display.viewableContentH | Una propiedad de sélo lectura que contiene la altura en

eight pixeles de la zona visible de la pantalla, en el sistema de
coordenadas del contenido original.
display.contentScaleX Es la proporcién entre la anchura del contenido y de la

pantalla en pixels. Este valor por defecto es 1, pero

- 104 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

puede ser otro valor si se utiliza la escala de contenido en
config.lua.

display.contentScaleY Es la proporcién entre la altura del contenido y de la
pantalla en pixels. Este valor por defecto es 1, pero
puede ser otro valor si se utiliza la escala de contenido en
config.lua.

display.screenOriginX Devuelve la distancia x desde la izquierda de la pantalla
de referencia a la izquierda de la pantalla actual, en
unidades de pantalla de referencia. En los modos
"letterbox" o "zoomEven" la escala hace que se puedan
modificar la superficie visible en la pantalla del
dispositivo actual. Estos métodos permiten averiguar la
cantidad de area visible se ha afadido o eliminado en el
dispositivo actual.

display.screenOriginY Devuelve la distancia y desde la parte superior de la
pantalla de referencia a la parte superior de la pantalla
actual, en unidades de pantalla de referencia.

display.statusBarHeight Altura de la barra de estado.

Otras funciones

display.save(displayObject, filename [, baseDirectory])
Hace que el objeto de visualizacidn referencia DisplayObject se guarde en una imagen
JPEG y lo guarda en el nombre de archivo filename.

display.captureScreen(saveToAlbum)
Captura el contenido de la pantalla y lo devuelve como un objeto de imagen con origen
en la parte superior izquierda de la pantalla.

display.setStatusBar(mode)
cambia la apariencia de la barra de esado del iPhone y iPod Touch. El valor mode puede
ser:

= display.HiddenStatusBar

= display.DefaultStatusBar

= display.TranslucentStatusBar

= display.DarkStatusBar

8.2.2 Biblioteca transition

La biblioteca de transiciones permite animar un objeto de visualizacién por interpolacién
de una o mas propiedades durante un tiempo determinado.

transition.to(target, params)

Devuelve una transicidn que anima las propiedades de un objeto de visualizacién durante
un tiempo. El valor de las propiedades se especifica en la tabla de parametros params.
Para personalizar la transicion se pueden especificar las siguientes propiedades:

-105 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

» params.time — duracion de la transicion expresada en milisegundos. Por defecto la
duracién es de 500 ms (0.5 segundos).

» params.transition — define la transicién. Utiliza la biblioteca easing . Por defecto es
easing.linear . Otras opciones son:

o easing.inQuad

easing.outQuad

easing.inOutQuad

easing.inExpo

easing.outExpo

easing.inOutExpo

O O O O O

params.delay — especifica el retraso desde el comienzo de la transicién.
params.onStart - es una funcién o listener que se invoca al comenzar la transicién.
params.onComplete - es una funcién o listener que se invoca al finalizar la
transicion.

YV V VY

transition.cancel(tween)
Cancela la transicion tween

Biblioteca timer
Esta biblioteca ofrece las funciones basicas para ejecutar acciones con cierto tiempo de
retraso.

timer.performWithDelay(delay, listener [, iterations])

Invoca a la function listener despues del tiempo especificado en delay (milisegundos).
Existe un parametro opcional que indica el nimero de iteraciones que se invocara la
funcion listener. Por defecto es 1y el valor 0 representa un nimero infinito de
invocaciones por lo que esta funcidn debe tener la condicién de cancelacion.

timer.cancel(timerid)
Cancela el temporizador asociado con timerld.

Ejemplo:

local t = {}

function t:timer (event)
local count = event.count
print ("Table listener called " .. count .. " time(s)")
if count >= 3 then

timer.cancel (self.source) -- after 3rd invocation, cancel timer

end

end

—-— Invoca metodo timer de t un numero infinito de veces
timer.performWithDelay(1000, t, 0)

- 106 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

8.2.3 Biblioteca media

La biblioteca media proporciona acceso a las funciones multimedia del dispositivo
Audio
Para reproducir sonidos cortos (1 a 3 segundos)

media.newEventSound(soundFile)

media.playEventSound(sound)

Para sonidos mas largos
media.playSound(soundFile)
media.pauseSound()
media.stopSound()

Video
Para reproducir un video:
media.playVideo(path [, baseSource], showControls, listener)

Camara y biblioteca de fotos
Muestra las funciones de camara o las bibliotecas de fotos del dispositivo.
media.show(imageSource, listener)

imageSource puede ser uno de estos valores
» media.Photolibrary
» media.Camera
» media.SavedPhotosAlbum

8.2.4 Biblioteca native

La biblioteca native proporciona acceso a varias funciones de la interfaz nativa de usuario
en el dispositivo.

native.setActivitylndicator(visible)
Muestra u oculta el indicador de actividad de la plataforma.

native.showAlert(title, message [, buttonLabels [, listener]])
Muestra un cuadro de alerta emergente con uno o mas botones, utilizando un control
nativo de alerta.

native.cancelAlert(alert)
Cierra el cuadro de alerta mediante programacion.

native.newFont(name [, size])

Crea un objeto de fuente que se puede utilizar para especificar la fuente de texto nativo
en campos y marcos de texto.

native.systemFont y native.systemFontBold representan las fuentes del sistema (normal
y negrita).

native.getFontNames() — devuelve un array con los nombres de todas las fuentes
disponibles en el sistema.

-107 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

native.newTextField(left, top, width, height [, listener])
Crea un campo de entrada de texto de una linea.

native.setKeyboardFocus(textField)
Pone el foco sobre un campo de texto y muestra el teclado del dispositivo. Pasando el
valor false, se oculta el teclado.

native.newTextBox(left, top, width, height)
Crea un cuadro de texto de varias lineas con desplazamiento.

native.showWebPopup(url [, options])
Crea una ventana emergente con una pantalla completa para la carga local o remota de
paginas web.

native.cancelWebPopup()
Oculta la ventana emergente para paginas web.

native.showPopup(name, options)

Muestra las aplicaciones nativas de envio de e-mail o sms.
name: “sms” o “mail”

options: tabla con las opciones de configuracion

8.2.5 Biblioteca system

system.getinfo(param)

Devuelve informacidn sobre el sistema en el que se ejecuta la aplicacidn. El argumento es
una cadena que determina la informacién que se devuelve. Estos son los valores validos
para el parametro.

Parametro Informacion

name Nombre legible del dispositivo

model Modelo del dispositivo: “Iphone”, “Ipad”....

devicelD devuelve el identificador Unico del dispositivo
(IMEI)

environment Entorno en el que esta corriendo la aplicacidn:

"simulator" - Simulador de Corona
"device" - dispositivo

platformName Nombre de la plataforma o SO:
"Mac OS X"
"iPhone OS"
"Android"
platformVersion Versién de la plataforma o SO
version Version del corona SDK
textureMemoryUsed | Uso de memoria en bytes
maxTextureSize Tamaino maximo de memoria del dispositivo

-108 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

system.getPreference(category, name)
Devuelve el valor una preferencia de sistema como una cadena. Las categorias son:
» Categoria "ui" — preferencias de las aplicaciones generales. En esta categoria, con
el nombre “language” se puede obtener el idioma preferido en el dispositivo.
» Categoria " locale" — preferncias locales. Podemos obtener los nombres "country",
"identifier" y "language".

system.getTimer()
Devuelve el tiempo en milisegundos desde que se lanzo la apliaccion.

system.pathForFile(filename [, baseDirectory])

Genera una ruta absoluta usando como base el directorio de la aplicaciéon. Un segundo
parametro opcional especifica que directorio utilizar para construir la ruta completa, y su
valor por defecto es system.ResourceDirectory. Si el directorio base es
system.ResourceDirectory y ruta generada apunta a un archivo que no existe, se devuelve
nil.

Los directorios que pueden ser usados como base se definen en las siguientes constantes:
= system.ResourceDirectory — es el directorio donde estan las herramientas de la
aplicacién. En el simulador se corresponde con la carpeta de proyecto.

= system.DocumentsDirectory — debe ser usado para ficheros que precisan
persistencia entre varias sesiones de la aplicacién.

= system.TemporaryDirectory — es un directorio temporal. Los ficheros creados en
este directorio no tienen asegurada su permanencia entre sesiones.

8.2.6 Biblioteca widget

La biblioteca widget proporciona herramientas utiles para dar a nuestra aplicacién un
aspecto mas dinamico. Dentro de la biblioteca podemos diferencias varios objetos, a
continuacion los enumeramos:

widget.setTheme(themeFilename)
Nos permite dar un aspecto 10S a la aplicacién. El tema grafico que tiene un dispositivo

con I0S no se puede modifcar, con esta opcidn la aplicacién parece mas integrada en el
sistema operativo movil.

-109 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

widget.newButton([options])

Para agregar botones animados con aspecto 10S. Es similar a la libreria ui.

i A\

Widget Button

A y/

Figura 8.1. Boton de la biblioteca widget

widget.newsSlider([options])

Introduce un objeto slider deslizable con el dedo. Suele usarse para ampliar/reducir
objetos, sonido...

Figura 8.2. Slider de la biblioteca widget

-110-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

widget.newScrollView([options])

Se crea un objeto mas grande que la pantalla y es necesario deslizarlo. Este widget nos
permite hacer esa funcién de forma facil y sencilla.

r)

Move Up to Scroll

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Curabitur imperdiet
consectetur euismod. Phasellus non
ipsum vel eros vestibulum consequat.
Integer convallis quam id urna

tristique eu viverra risus eleifend.

Aenean suscipit placerat venenatis.
Pellentesque faucibus venenatis
eleifend. Nam lorem felis, rhoncus vel
rutrum quis, tincidunt in sapien. Proin
eu elit tortor. Nam ut mauris
pellentesque justo vulputate convallis
eu vitae metus. Praesent mauris eros,
hendrerit ac convallis vel, cursus quis
sem. Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Quisque
fermentum, dui in vehicula dapibus,
lorem nisi placerat turpis, quis
gravida elit lectus eget nibh. Mauris
molestie auctor facilisis.

A

Figura 8.3. ScrollView de la biblioteca widget

y/

widget.newTableView([options])

Se crea una tabla en forma de lista. Puede ocupar bastante espacio y nos permite bajar o
subir entre sus lineas asi como eliminarlas.

|..||I Carrier = D|

Row #41

Row #42
Row #43

Row #44

Row #45

Row #46

Row #47

-111-

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Figura 8.4. TableView de la biblioteca widget

widget.newTabBar([options])

Si queremos que nuestra aplicacion tenga pestanas esta es una opcién muy util. Nos
permite cambiar entre ellas con solo pulsar el botdn correspondiente.

First Tab

Figura 8.5. TabBar de la biblioteca widget

widget.newPickerWheel([options])

Crea un objeto que puede servirnos para seleccionar una fecha. Deslizando entre sus
cifras seleccionamos el dia, mes y aiflo que estamos. Puede adaptarse para otros
menesteres como por ejemplo seleccionar peso, altura, edad. Es muy configurable.

October
November | 2011

December

Figura 8.6. Picker Wheel de la biblioteca widget

-112 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

8.2.7 Bibioteca StoryBoard

Es la nueva libreria nativa que Corona SDK ha implementado recientemente. Ha incluido
esta aplicacién tras la version no oficial de gestidn de escenas, la directorClass que lleva
utilizdndose practicamente desde que aparecié Corona SDK. A continuacidn se explica en
detalle su funcionamiento.

Lo primero es afiadir la libreria a nuestra aplicacién:

local storyboard = require "storyboard"

El siguiente paso es cargar la primera escena de la aplicacién:
storyboard.gotoScene(escena,efecto,tiempo)

La estructura que presenta una escena es la siguiente:

local storyboard = require("storyboard")
local scene = storyboard.newScene()

function scene:createScene(event)
local group = self.view

end

function scene:enterScene(event)
local group = self.vie

end

function scene:exitScene(event)
local group = self.view

end

function scene:destroyScene(event)
local group = self.view

end

scene:addEventListener("createScene", scene)
scene:addEventListener("enterScene", scene)
scene:addEventListener("exitScene", scene)

scene:addEventListener("destroyScene", scene)

return scene

-113 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

Las escenas son archivos que estan dentro del directorio principal de la aplicacién y cuya
extensién es la misma que el archivo main.lua.

Como vemos la estructura de las escenas esta definida. En la funcion createScene se
introduce lo referido a la creacion de la escena.

En la funcidn enterScene colocamos el cddigo que queremos que se ejecute al entraren la
escena.

En la funcidn exitScene es necesario eliminar todos los objetos creados para las escena asi
como los listeners.

Para finalizar la funcion detroyScene nos permite ejecutar cédigo cuando la escena es
eliminada.

-114 -

Curso de introduccion a la programacion de videojuegos para dispositivos méviles en Corona SDK

iNDICE DE FIGURAS

FIGURA 1.1 . ESQUEMA DEL OBJETIVO DEL PROYECTO

FIGURA 2.1 . ESQUEMA DE REALIZACION DEL PROYECTO BASADO EN CICLO DE VIDA EVOLUTIVO
FIGURA 2.2 . DIAGRAMA DE GANTT EN EL CUAL PUEDE VERSE LA PLANIFICACION DEL PROYECTO
FIGURA 3.1. OPCIONES DE LA APLICACION

FIGURA 3.2. DIAGRAMA DE ACTIVIDAD DE LA CARGA DE LA PANTALLA PRINCIPAL
FIGURA 3.3. DIAGRAMA DE ACTIVIDAD DE LA CARGA DEL CONTENIDO DE LA ESCENA TIPO 1
FIGURA 3.4. DIAGRAMA DE ACTIVIDAD DE LA CARGA DEL CONTENIDO TIPO 2
FIGURA 3.5. PANTALLA DE CARGA DE LA APLICACION

FIGURA 3.6. PANTALLA DE BIENVENIDA DE LA APLICACION

FIGURA 3.7. PANTALLA DEL MENU PRINCIPAL DE LA APLICACION

FIGURA 3.8. PANTALLA DE PRESENTACION DE DIAPOSITIVAS

FIGURA 3.9. PANTALLA DE INTRODUCCION A UN CAPITULO DE EJEMPLOS

FIGURA 3.10. PANTALLA DE VISUALIZACION DE UN CAPITULO DE EJEMPLOS
FIGURA 3.11. PANTALLA CON LA BARRA DE CONTENIDO

FIGURA 3.12. PANTALLA DE CONFIGURACION DE LA APLICACION

FIGURA 3.13. PANTALLA DE REINICIO DE APLICACION.

FIGURA 3.14. PANTALLA DE INICIO DEL JUEGO BUBBLE BALL

FIGURA 3.15. PANTALLA DEL JUEGO SPACE SHOOTER

FIGURA 3.16 ESTRUCTURA DE ESCENAS DE LA APLICACION

FIGURA 3.17. ESTRUCTURA DE DIRECTORIOS DEL PROYECTO EN CORONA SDK
FIGURA 3.18 PANTALLA DE ACCESO A LA ULTIMA POSICION GUARDADA.

FIGURA 3.19. PRIMER PASO PARA CREACION DE TITULO

FIGURA 3.20. SEGUNDO PASO PARA CREACION DE TITULO

FIGURA 3.21. ASPECTO DEL TITULO DEFINITIVO

FIGURA 3.22. DISPOSITIVO MOVIL IPAD

FIGURA 3.23. CONSTRUCCION APLICACION EN IOS

FIGURA 3.1. EVOLUCION DE LA UTILIZACION DE S.O. MOVILES.

FIGURA 4.1. ORIGEN DE COORDENADAS EN LAS PANTALLAS DE LOS DISPOSITIVOS
FIGURA 8.1. BOTON DE LA BIBLIOTECA WIDGET

FIGURA 8.2. SLIDER DE LA BIBLIOTECA WIDGET

FIGURA 8.3. SCROLLVIEW DE LA BIBLIOTECA WIDGET

FIGURA 8.4. TABLEVIEW DE LA BIBLIOTECA WIDGET

FIGURA 8.5. TABBAR DE LA BIBLIOTECA WIDGET

FIGURA 8.6. PICKER WHEEL DE LA BIBLIOTECA WIDGET

-115-

11
12
14
16
17
18
19
20
21
22
23
24
26
26
27
27
28
29
30
31
40
40
41
41
45
49
68
110
110
111
112
112
112

