

Proyecto Fin de Carrera

MEMORIA	

Curso de introducción a la
programación de videojuegos para

dispositivos móviles en Corona SDK

AUTOR
Carlos Lorenzo Paricio

DIRECTOR

Ramón Piedrafita Moreno

ESPECIALIDAD

Electrónica Industrial

CONVOCATORIA

Marzo 2012

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 2	
 -­‐	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 3	
 -­‐	

RESUMEN	

Desde	
 la	
 aparición	
 en	
 el	
 mercado	
 de	
 dispositivos	
 móviles	
 con	
 altas	
 prestaciones	

asociados	
 a	
 la	
 evolución	
 de	
 la	
 tecnologia,	
 estos	
 han	
 abierto	
 un	
 amplio	
 mercado	
 para	
 el	

desarrollo	
 de	
 videojuegos	
 	
 y	
 dotan	
 de	
 una	
 potencia	
 grafica	
 similar	
 a	
 la	
 que	
 posee	
 un	

entorno	
 de	
 juegos	
 portátil	
 tradicional	
 como	
 pueden	
 ser	
 la	
 consolas	
 portátiles	
 Sony	
 PSP	

o	
 Nintendo	
 DS.	
 	

	

El	
 objetivo	
 de	
 este	
 proyecto	
 es	
 desarrollar	
 una	
 aplicación	
 genérica	

multiplataforma	
 optimizada	
 para	
 Ipad,	
 ya	
 sea	
 para	
 su	
 primera	
 o	
 segunda	
 versión,	
 que	

nos	
 permita	
 aprender	
 a	
 programar	
 videojuegos	
 2D	
 para	
 dispositivos	
 móviles	
 que	

aunque	
 no	
 exploten	
 todo	
 el	
 potencial	
 que	
 posee	
 el	
 dispositivo,	
 es	
 el	
 genero	
 mas	

descargado	
 de	
 las	
 tiendas	
 de	
 aplicaciones	
 	
 móviles	
 dada	
 su	
 adicción	
 y	
 dado	
 que	
 el	

consumo	
 de	
 batería	
 es	
 notablemente	
 inferior	
 que	
 en	
 los	
 videojuegos	
 en	
 3D,	
 ya	
 que	

estos	
 últimos	
 necesitan	
 mas	
 prestaciones.	
 	

	

Para	
 este	
 fin,	
 se	
 ha	
 generado	
 una	
 aplicación	
 didáctica	
 que	
 nos	
 permite	

introducirnos	
 en	
 el	
 mundo	
 de	
 la	
 programación	
 de	
 videojuegos	
 en	
 este	
 tipo	
 de	

dispositivos	
 ,	
 en	
 ella	
 se	
 distinguen	
 diferentes	
 secciones.	
 Por	
 una	
 parte	
 se	
 muestran	
 	

capitulos	
 relacionados	
 con	
 el	
 lenguaje	
 de	
 programación	
 de	
 Corona	
 SDK,	
 por	
 otro	
 lado	

otros	
 donde	
 se	
 desarrollan	
 videojuegos	
 por	
 completo	
 y	
 se	
 muestra	
 su	
 programación	

mediante	
 ejemplos	
 y	
 también	
 aparece	
 otra	
 sección	
 con	
 juegos	
 totalmente	
 funcionales.	

	

En	
 este	
 proyecto	
 también	
 se	
 realiza	
 un	
 estudio	
 para	
 conocer	
 los	
 entornos	
 de	

desarrollo	
 de	
 los	
 diferentes	
 sistemas	
 operativos	
 móviles	
 y	
 varias	
 opciones	
 de	

desarrollo	
 multiplataforma	
 que	
 existen	
 en	
 la	
 actualidad.	
 	

	

Al	
 final	
 se	
 ha	
 elegido	
 dadas	
 sus	
 caracteristicas	
 un	
 software	
 multiplataforma	

llamado	
 Corona	
 SDK,	
 permite	
 la	
 programación	
 de	
 dispositivos	
 con	
 iOS	
 (Iphone,	
 IPod	
 y	

IPad),	
 Android(numerosos	
 dispositivos	
 en	
 el	
 mercado)	
 y	
 recientemente	
 para	

Amazon/KIndle.	
 Tiene	
 un	
 alto	
 rendimiento	
 y	
 permite	
 la	
 utilización	
 de	
 sus	
 componentes	

nativos.	
 	
 Recalcar	
 que	
 varias	
 aplicaciones	
 desarrolladas	
 con	
 Corona	
 SDK	
 han	
 sido	

lideres	
 en	
 descargas	
 en	
 la	
 “AppStore”	
 y	
 “Android	
 Market”	
 por	
 lo	
 que	
 se	
 demuestra	
 su	

gran	
 potencial	
 y	
 se	
 puede	
 considerar	
 como	
 una	
 opción	
 alternativa	
 a	
 otros	
 entornos	
 de	

programación.	

	

Aunque	
 esta	
 aplicación	
 seria	
 posible	
 instalarla	
 en	
 cualquier	
 dispositivo	
 IOS	
 o	

Android	
 dado	
 su	
 código	
 comun,	
 es	
 necesario	
 poseer	
 una	
 gran	
 pantalla	
 para	
 ejecutarla.	

Esta	
 es	
 la	
 razón	
 principal	
 por	
 la	
 que	
 hemos	
 elegido	
 una	
 tablet	
 y	
 en	
 nuestro	
 caso	
 un	

producto	
 comercializado	
 por	
 Apple,	
 el	
 Ipad.	
 	
 Ya	
 que	
 parte	
 del	
 contenido	
 de	
 la	

aplicacion	
 es	
 texto	
 y	
 dado	
 que	
 nuestro	
 dispositivo	
 posee	
 una	
 gran	
 pantalla	
 de	
 9,7	

pulgadas	
 podremos	
 verlo	
 perfectamente	
 en	
 este	
 dispositivo.	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 4	
 -­‐	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 5	
 -­‐	

ÍNDICE	
 DE	
 CONTENIDO	

1	
 Objetivo	
 del	
 proyecto	
 8	

1.1	
 Introducción	
 8	

1.2	
 Objetivo	
 del	
 proyecto	
 9	

1.3	
 Organización	
 de	
 la	
 memoria	
 10	

2	
 Metodología	
 y	
 planificación	
 del	
 proyecto	
 11	

3	
 Diseño	
 e	
 implementación	
 de	
 la	
 aplicacion	
 13	

3.1	
 Requisitos	
 de	
 la	
 aplicación	
 13	

3.1.1	
 Requisitos	
 funcionales	
 13	

3.1.2	
 Requisitos	
 no	
 funcionales	
 13	

3.2	
 Diseño	
 13	

3.2.1	
 Escenas	
 15	

3.2.1.1	
 Tipo	
 1	
 15	

3.2.1.2	
 Tipo	
 2	
 15	

3.2.1.3	
 Tipo	
 3	
 15	

3.2.2	
 Diagramas	
 de	
 actividad	
 15	

3.2.3	
 Diseño	
 de	
 pantallas	
 de	
 la	
 aplicacion	
 19	

3.2.3.1	
 Pantalla	
 	
 de	
 carga	
 19	

3.2.3.2	
 Pantalla	
 bienvenida	
 20	

3.2.3.3	
 Pantalla	
 Menú	
 Principal	
 21	

3.2.3.4	
 Pantalla	
 Capitulo	
 Diapositivas	
 22	

3.2.3.5	
 Pantalla	
 Introduccion	
 Capítulo	
 Ejemplos	
 23	

3.2.3.6	
 Pantalla	
 Visualizacion	
 Tema	
 24	

3.2.3.7	
 Pantalla	
 Configuración	
 26	

3.2.3.8	
 Pantalla	
 de	
 Menu	
 Juegos	
 27	

3.2.3.9	
 Pantalla	
 de	
 Juegos	
 28	

3.3	
 Implementación	
 28	

3.3.1	
 Estructura	
 del	
 programa	
 29	

3.3.2	
 Ficheros	
 de	
 configuración	
 31	

3.3.2.1	
 posicion.dat	
 31	

3.3.3	
 Ficheros	
 de	
 contenido	
 31	

3.3.3.1	
 variables.lua	
 32	

3.3.4	
 Módulos	
 o	
 librerías	
 33	

3.3.4.1	
 director.lua	
 33	

3.3.4.2	
 util.lua	
 35	

3.3.4.3	
 movieClip.lua	
 36	

3.3.4.4	
 ui.lua	
 36	

3.3.4.5	
 showText	
 37	

3.3.4.6	
 tableView.lua	
 38	

3.3.4.7	
 slideView.lua	
 38	

3.3.4.8	
 examples.lua	
 38	

3.3.4.9	
 variables.lua	
 38	

3.3.5	
 Titulos	
 de	
 la	
 aplicacion	
 40	

3.3.6	
 Adaptación	
 dinámica	
 de	
 contenido	
 41	

3.3.6.1	
 config.lua	
 41	

3.3.6.2	
 build.settings	
 43	

3.3.7	
 Pruebas	
 y	
 verificación	
 43	

3.4	
 Tareas	
 de	
 administración	
 44	

3.4.1	
 Distribuir	
 aplicaciones	
 44	

4	
 Conclusiones	
 45	

4.1	
 Mejoras	
 y	
 ampliaciones	
 46	

5	
 Bibliografía	
 y	
 referencias	
 47	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 6	
 -­‐	

6	
 Plataformas	
 de	
 programación	
 en	
 dispositivos	
 móviles	
 47	

6.1	
 Introducción	
 47	

6.2	
 Dispositivos	
 y	
 sistemas	
 operativos	
 47	

6.3	
 Aplicaciones	
 web	
 versus	
 aplicaciones	
 nativas	
 50	

6.4	
 Desarrollo	
 aplicaciones	
 móviles	
 nativas	
 para	
 iOS	
 y	
 Android	
 51	

6.5	
 Desarrollo	
 móvil	
 multiplataforma	
 51	

6.5.1	
 PhoneGap	
 52	

6.5.2	
 Titanium	
 Appcelerator	
 52	

6.5.3	
 Adobe	
 Air	
 Mobile	
 54	

6.5.4	
 Corona	
 SDK	
 54	

6.5.5	
 Plataforma	
 seleccionada	
 55	

7	
 Plataforma	
 Corona	
 SDK.	
 Características	
 56	

7.1	
 Introducción	
 a	
 la	
 Plataforma	
 Corona	
 SDK	
 56	

7.2	
 Gestión	
 de	
 proyectos	
 en	
 Corona	
 SDK	
 57	

7.3	
 Lenguaje	
 de	
 Corona	
 SDK:	
 Lua	
 57	

7.3.1	
 Generalidades	
 57	

7.3.2	
 Variables	
 59	

7.3.3	
 Expresiones	
 60	

7.4	
 Estructuras	
 de	
 control	
 63	

7.4.1	
 Funciones	
 64	

7.4.2	
 Objetos,	
 propiedades	
 y	
 funciones	
 64	

7.5	
 Librerías	
 estándar	
 de	
 Lua	
 65	

7.6	
 Librerías	
 de	
 Corona	
 SDK	
 66	

7.7	
 Visualización	
 de	
 objetos	
 en	
 pantalla	
 66	

7.8	
 Gestión	
 de	
 eventos	
 70	

7.9	
 Animación	
 y	
 movimiento	
 72	

7.10	
 Motor	
 físico	
 74	

7.11	
 Conectividad	
 79	

7.12	
 Gestión	
 de	
 la	
 memoria	
 81	

8	
 ANEXO	
 I	
 –	
 Detalle	
 de	
 funciones	
 en	
 Corona	
 SDK	
 85	

8.1	
 Librerías	
 estándar	
 de	
 Lua	
 85	

8.1.1	
 Biblioteca	
 básica	
 85	

8.1.2	
 Módulos	
 (bibliotecas	
 externas)	
 88	

8.1.3	
 Manipulación	
 de	
 cadenas	
 89	

8.1.4	
 Manipulación	
 de	
 tablas	
 95	

8.1.5	
 Funciones	
 matemáticas	
 95	

8.1.6	
 Funciones	
 de	
 entrada	
 y	
 salida	
 98	

8.1.7	
 Funciones	
 de	
 sistema	
 operativo	
 101	

8.2	
 Librerías	
 de	
 Corona	
 SDK	
 102	

8.2.1	
 Biblioteca	
 display	
 103	

8.2.2	
 Biblioteca	
 transition	
 105	

8.2.3	
 Biblioteca	
 media	
 107	

8.2.4	
 Biblioteca	
 native	
 107	

8.2.5	
 Biblioteca	
 system	
 108	

8.2.6	
 Biblioteca	
 widget	
 109	

8.2.7	
 Bibioteca	
 StoryBoard	
 113	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 7	
 -­‐	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 8	
 -­‐	

1 Objetivo del proyecto

1.1 Introducción	

	

El	
 crecimiento	
 y	
 popularización	
 de	
 los	
 dispositivos	
 móviles	
 durante	
 los	
 últimos	
 años,	
 ha	

generado	
 un	
 gran	
 desarrollo	
 de	
 estos	
 ,que,	
 además	
 de	
 permitir	
 la	
 tradicional	

comunicación	
 entre	
 redes	
 fijas	
 y	
 móviles,	
 poseen	
 la	
 capacidad	
 de	
 ejecutar	
 todo	
 tipo	
 de	

aplicaciones	
 desarrolladas	
 específicamente	
 para	
 estos	
 dispositivos.	

	

Las	
 prestaciones	
 de	
 los	
 dispositivos	
 móviles	
 aumentan	
 dia	
 	
 día,	
 posibilitando	
 así	

la	
 implementación	
 de	
 aplicaciones	
 muy	
 potentes	
 e	
 interesantes.	
 Los	
 denominados	

“Smartphones”	
 o	
 teléfonos	
 de	
 ultima	
 generación	
 y	
 las	
 “Tablets”,	
 presentan	
 una	
 serie	

de	
 características	
 de	
 procesamiento,	
 memoria	
 y	
 capacidad	
 de	
 conexión	
 que	
 está	

llevando	
 a	
 los	
 grandes	
 fabricantes,	
 operadores	
 y	
 desarrolladores	
 a	
 una	
 auténtica	

carrera	
 por	
 lograr	
 las	
 mejores	
 aplicaciones	
 y	
 estar	
 a	
 la	
 cabeza	
 de	
 ventas.	

	

Google1	
 ha	
 hecho	
 públicos	
 los	
 resultados	
 de	
 un	
 estudio	
 llevado	
 a	
 cabo	
 el	
 pasado	
 mes	

de	
 marzo	
 en	
 Estados	
 Unidos,	
 en	
 el	
 que	
 se	
 entrevistó	
 a	
 un	
 total	
 de	
 1.430	
 usuarios	

poseedores	
 de	
 un	
 moderno	
 Tablet.	

	

El	
 perfil	
 tipo	
 de	
 poseedor	
 de	
 un	
 tablet	
 utiliza	
 este	
 dispositivo	
 principalmente	
 en	
 el	

domicilio	
 particular	
 (82%)	
 antes	
 que	
 en	
 el	
 trabajo	
 (7%),	
 e	
 incluso	
 antes	
 que	
 en	

movilidad	
 (11%),	
 aunque	
 curiosamente	
 un	
 aparato	
 ligero	
 de	
 estas	
 características	
 está	

más	
 pensado,	
 precisamente,	
 para	
 entornos	
 móviles.	
 	

	

Aunque	
 el	
 tablet	
 no	
 es	
 considerado	
 aún	
 como	
 el	
 principal	
 dispositivo	
 informático,	
 está	

robando	
 horas	
 de	
 uso	
 al	
 pc	
 o	
 al	
 portátil.	
 	

	

Entre	
 los	
 principales	
 usos	
 que	
 se	
 dan	
 al	
 tablet	
 destaca	
 su	
 vertiente	
 lúdica,	
 con	
 un	
 84%	

de	
 los	
 encuestados	
 utilizando	
 su	
 dispositivo	
 para	
 videojuegos.	
 La	
 lectura	
 de	
 noticias	
 se	

encontraría	
 en	
 cuarta	
 posición	
 con	
 un	
 61%,	
 práctica	
 que	
 más	
 terreno	
 podría	
 estar	

quitándole	
 a	
 los	
 periódicos	
 en	
 papel,	
 mientras	
 que	
 el	
 56%	
 de	
 los	
 usuarios	
 se	
 conectan	

a	
 redes	
 sociales,	
 el	
 46%	
 consumen	
 e-­‐books,	
 y	
 el	
 74%	
 gestiona	
 su	
 correo	
 electrónico.	
 	

	

Digamos	
 que	
 si	
 resumimos	
 todos	
 los	
 datos	
 que	
 ha	
 arrojado	
 el	
 estudio,	
 tendríamos	
 que	

el	
 poseedor	
 de	
 un	
 tablet	
 lo	
 utiliza	
 cuando	
 llega	
 a	
 su	
 casa	
 después	
 del	
 trabajo	
 para	

navegar	
 por	
 Internet,	
 gestionar	
 su	
 correo	
 electrónico,	
 acceder	
 a	
 las	
 redes	
 sociales	
 a	

través	
 de	
 apps	
 específicas	
 y	
 además	
 como	
 entorno	
 de	
 aprendizaje	
 o	
 lector	
 de	
 libros.	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Este	
 estudio	
 conviene	
 a	
 los	
 desarrolladores	
 de	
 tablets,	
 terreno	
 en	
 el	
 cual	
 ha	

presentado	
 sus	
 credenciales	
 Samsung	
 con	
 Android	
 3.0	
 ,	
 Apple	
 con	
 su	
 IOS	
 5	
 para	
 el	
 Ipad	

u	
 otras	
 plataformas	
 menos	
 conocidas	
 y	
 por	
 tanto	
 menos	
 utilizadas.	

	

	

	

1	
 http://www.imatica.org/bloges/2011/04/190486382011.html	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 9	
 -­‐	

Los	
 tablets	
 se	
 distinguen	
 por	
 muchas	
 características,	
 entre	
 las	
 que	
 destacan	
 las	

distintas	
 pantallas	
 táctiles,	
 un	
 sistema	
 operativo	
 propio,	
 la	
 conectividad	
 a	
 internet	
 y	
 el	

acceso	
 al	
 correo	
 electrónico.	
 Otras	
 aplicaciones	
 que	
 suelen	
 estar	
 presentes	
 son	
 las	

cámaras	
 integradas,	
 acelerómetro,	
 la	
 reproducción	
 de	
 música	
 y	
 visualización	
 de	
 fotos	
 y	

videos	
 y	
 algunos	
 programas	
 de	
 navegación	
 así	
 como	
 aplicaciones	
 de	
 lectura	
 de	

documentos	
 en	
 distintos	
 formatos	
 electrónicos.	
 La	
 mayoría	
 de	
 dispositivos	
 también	

permiten	
 al	
 usuario	
 instalar	
 programas	
 adicionales	
 para	
 dar	
 un	
 valor	
 añadido	
 al	

dispositivo	
 y	
 así	
 poder	
 competir	
 con	
 sus	
 rivales.	

	

En	
 función	
 de	
 los	
 distintos	
 fabricantes,	
 cada	
 uno	
 de	
 los	
 dispositivos	
 móviles	
 posee	
 un	
 	

sistema	
 operativo	
 que	
 determina	
 las	
 capacidades	
 multimedia	
 de	
 los	
 aparatos,	
 y	
 la	

forma	
 de	
 interactuar	
 con	
 el	
 usuario.	

1.2 Objetivo	
 del	
 proyecto	

En	
 este	
 entorno,	
 el	
 objetivo	
 del	
 proyecto	
 es	
 el	
 desarrollo	
 de	
 una	
 aplicación	

desarrollada	
 específicamente	
 para	
 IPad	
 que	
 permita	
 al	
 usuario	
 aprender	
 interactuando	

con	
 ésta	
 de	
 forma	
 sencilla	
 y	
 sin	
 apenas	
 conocimientos	
 previos	
 de	
 programación	
 de	

videojuegos.	
 Se	
 pretende	
 la	
 realización	
 de	
 una	
 herramienta	
 sencilla	
 y	
 que	
 haga	
 posible	

la	
 distribución	
 de	
 conocimientos	
 de	
 programación	
 hacia	
 personas	
 que	
 quieren	
 iniciarse	

en	
 esta	
 disciplina.	

	

Para	
 este	
 fin,	
 después	
 de	
 conocer	
 distintos	
 entornos	
 de	
 desarrollo	
 para	
 varios	
 sistemas	

operativos	
 móviles,	
 se	
 utilizará	
 una	
 plataforma	
 de	
 software	
 multiplataforma	
 que	

permite	
 la	
 construcción	
 para	
 dispositivos	
 con	
 iOS,	
 Android	
 y	
 Kindle.	

	

El	
 objetivo	
 es	
 tener	
 un	
 código	
 de	
 aplicación	
 común	
 que	
 sumado	
 a	
 unos	
 contenidos	

configurables	
 nos	
 permitan	
 la	
 construcción	
 de	
 aplicaciones	
 nativas	
 para	
 varios	

dispositivos	
 aunque	
 	
 en	
 este	
 caso	
 la	
 aplicación	
 ha	
 sido	
 gráficamente	
 diseñada	
 para	
 la	

tablet	
 	
 de	
 Apple,	
 el	
 Ipad.	

	

Figura	
 1.1	
 .	
 Esquema	
 del	
 objetivo	
 del	
 proyecto	

	

APLICACION CONTENIDO
(CONFIGURABLE) +

IPAD

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 10	
 -­‐	

1.3 Organización	
 de	
 la	
 memoria	

La	
 memoria	
 del	
 proyecto	
 esta	
 organizada	
 por	
 capitulos,	
 se	
 enumeran	
 a	
 continuación	

incluyendo	
 una	
 pequeña	
 descripción	
 del	
 mismo.	

	

En	
 el	
 capitulo	
 2	
 se	
 especifica	
 la	
 metodología	
 en	
 el	
 desarrollo	
 del	
 proyecto	
 y	
 la	

planificación	
 del	
 mismo.	

	

En	
 el	
 capitulo	
 3	
 se	
 realiza	
 el	
 diseño	
 e	
 implementecion	
 de	
 la	
 aplicación.	
 Todo	
 lo	
 incluido	

a	
 la	
 programcion	
 de	
 la	
 misma.	
 	

	

En	
 el	
 capitulo	
 4	
 se	
 recopilan	
 las	
 conclusiones	
 extraídas	
 en	
 el	
 desarrollo	
 del	
 proyecto	
 y	

las	
 posibilidades	
 de	
 actualización	
 en	
 un	
 futuro.	

	

En	
 el	
 capitulo	
 5	
 se	
 realiza	
 un	
 estudio	
 de	
 las	
 plataformas	
 para	
 la	
 programación	
 de	

dispositivos	
 móviles	
 incidiendo	
 en	
 aquellas	
 que	
 permiten	
 la	
 generación	
 de	
 aplicaciones	

multiplataforma.	

	

En	
 el	
 capitulo	
 6	
 se	
 analiza	
 la	
 opción	
 elegida	
 en	
 este	
 proyecto,	
 Corona	
 SDK	
 de	
 “Ansca	

mobile”.	
 Se	
 realiza	
 una	
 detallada	
 descripción	
 de	
 sus	
 características	
 que	
 han	
 llevado	
 a	
 la	

elección	
 de	
 esta	
 para	
 el	
 desarrollo	
 del	
 proyecto.	

	

En	
 el	
 capitulo	
 7	
 se	
 enumera	
 toda	
 la	
 bibiografia	
 utilizada	
 en	
 la	
 memoria	
 asi	
 como	
 la	

posibles	
 referencias.	

	

En	
 el	
 capitulo	
 8	
 	
 se	
 puede	
 aceder	
 al	
 Anexo	
 I	
 donde	
 podemos	
 consultar	
 detalles	
 de	
 las	

funciones	
 mas	
 especificas	
 de	
 Corona	
 SDK.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 11	
 -­‐	

2 Metodología y planificación del proyecto

En	
 el	
 desarrollo	
 de	
 este	
 proyecto	
 se	
 ha	
 seguido	
 una	
 metodología	
 basada	
 en	
 un	
 ciclo	
 de	

vida	
 evolutivo.	
 El	
 desarrollo	
 evolutivo	
 se	
 basa	
 en	
 la	
 idea	
 de	
 realizar	
 una	

implementación	
 inicial	
 e	
 ir	
 modificando	
 la	
 aplicación	
 hasta	
 que	
 se	
 obtiene	
 un	
 sistema	

que	
 se	
 considere	
 adecuado.	
 Las	
 actividades	
 de	
 desarrollo	
 y	
 verificación	
 se	
 entrelazan	

en	
 lugar	
 de	
 separarse,	
 y	
 a	
 su	
 vez,	
 existe	
 una	
 rápida	
 retroalimentación	
 entre	
 ambas.	

Este	
 modelo	
 acepta	
 que	
 los	
 requerimientos	
 del	
 usuario	
 puedan	
 modificarse	
 e	

incorporarse	
 nuevos.	

	

La	
 práctica	
 demuestra	
 que	
 obtener	
 todos	
 los	
 requerimientos	
 al	
 comienzo	
 del	
 proyecto	

es	
 complejo,	
 no	
 sólo	
 por	
 la	
 dificultad	
 de	
 definir	
 la	
 totalidad	
 del	
 producto,	
 sino	
 porque	

estos	
 requerimientos	
 evolucionan	
 durante	
 el	
 desarrollo	
 y	
 de	
 esta	
 manera,	
 surgen	

nuevos	
 requerimientos	
 a	
 cumplir.	
 El	
 modelo	
 de	
 ciclo	
 de	
 vida	
 evolutivo	
 afronta	
 este	

problema	
 mediante	
 una	
 iteración	
 de	
 ciclos	
 en	
 los	
 cuales	
 se	
 incluyen	
 posibles	
 nuevos	

requisitos,	
 posteriormente	
 se	
 mejora	
 o	
 cambia	
 el	
 desarrollo	
 y	
 por	
 último	
 se	
 lleva	
 a	

cabo	
 una	
 nueva	
 evaluación.	

	

En	
 la	
 siguiente	
 figura	
 se	
 puede	
 ver	
 de	
 forma	
 clara	
 el	
 esquema	
 del	
 ciclo	
 de	
 vida	
 del	

proyecto.	

	

Figura	
 2.1	
 .	
 Esquema	
 de	
 realización	
 del	
 proyecto	
 basado	
 en	
 ciclo	
 de	
 vida	
 evolutivo	

Previamente	
 al	
 desarrollo	
 evolutivo,	
 se	
 debe	
 realizar	
 la	
 tarea	
 de	
 descripción	
 del	

proyecto.	
 Esta	
 actividad	
 incluye	
 la	
 definición	
 del	
 objetivo	
 del	
 proyecto,	
 el	
 estudio	
 y	

elección	
 de	
 la	
 plataforma	
 de	
 desarrollo	
 y	
 el	
 esbozo	
 de	
 los	
 requisitos	
 de	
 la	
 aplicación.	

Para	
 esta	
 tarea	
 se	
 dedican	
 aproximadamente	
 5	
 semanas	
 que	
 incluye	
 el	
 estudio	
 y	

conocimiento	
 de	
 la	
 plataforma	
 seleccionada.	
 	

	
 	

REQUISITOS DEL
SISTEMA
CODIGO

ESPECIFICACIONES

DESARROLLO

VERIFICACION

VERSION
INICIAL

VERSION
INTERMEDIA

VERSION
 FINAL

ACTIVIDADES

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 12	
 -­‐	

Durante	
 la	
 especificación,	
 se	
 ha	
 profundizado	
 en	
 el	
 análisis	
 y	
 la	
 definición	
 de	
 los	

requisitos	
 de	
 la	
 aplicación	
 adaptándolos	
 tanto	
 a	
 las	
 necesidades	
 surgidas	
 en	
 las	
 otras	

fases	
 como	
 a	
 las	
 características	
 de	
 la	
 plataforma	
 de	
 desarrollo	
 seleccionada.	

	

El	
 primer	
 desarrollo	
 del	
 proyecto,	
 se	
 centró	
 en	
 obtener	
 un	
 primer	
 prototipo	
 que	

permitiera	
 la	
 navegación	
 entre	
 los	
 distintos	
 apartados	
 de	
 la	
 aplicación,	
 sin	
 apenas	

contenidos	
 ni	
 elementos	
 gráficos	
 finales	
 y	
 verificando	
 que	
 era	
 aceptablemente	
 visible	

en	
 el	
 simulador.	

	

Previo	
 a	
 la	
 segunda	
 etapa	
 de	
 desarrollo	
 en	
 la	
 que	
 se	
 implementó	
 toda	
 la	
 funcionalidad	

de	
 generación	
 de	
 contenidos	
 ,	
 se	
 realizó	
 la	
 especificación	
 y	
 análisis	
 del	
 formato	
 que	

deben	
 tener	
 los	
 contenidos.	
 Solo	
 en	
 las	
 versiones	
 más	
 evolucionadas,	
 se	
 ha	
 realizado	
 la	

construcción	
 de	
 la	
 aplicación	
 y	
 la	
 prueba	
 en	
 el	
 dispositivo.	

	

Finalmente	
 se	
 han	
 desarrollado	
 las	
 pantallas	
 y	
 funciones	
 auxiliares,	
 así	
 como	
 el	
 diseño	

gráfico	
 final.	
 Una	
 vez	
 realizadas	
 las	
 pruebas	
 y	
 verificaciones	
 completas	
 de	
 la	
 aplicación,	

se	
 procede	
 a	
 la	
 construcción	
 de	
 la	
 versión	
 final	
 y	
 se	
 instala	
 en	
 el	
 dispositivo	
 para	
 su	

testeo.	

	

Como	
 se	
 ha	
 indicado	
 anteriormente,	
 seguiremos	
 un	
 ciclo	
 de	
 vida	
 evolutivo,	
 por	
 lo	
 que	

todas	
 estas	
 fases	
 se	
 realizan	
 en	
 paralelo.	
 Para	
 todas	
 estas	
 tareas	
 se	
 dedican	
 unas	
 14	

semanas	

	

Posteriormente,	
 se	
 requiere	
 2	
 semanas	
 de	
 documentación	
 y	
 revisión	
 previas	
 a	
 la	

finalización	
 del	
 proyecto.	

	

En	
 el	
 siguiente	
 diagrama	
 de	
 Gantt	
 pueden	
 verse	
 la	
 planificación.	

	

	

Id. Nombre de tarea Comienzo Fin Duración
oct 2011 nov 2011 dic 2011 ene 2012 feb 2012

25/9 2/10 9/10 16/10 23/10 30/10 6/11 13/11 20/11 27/11 4/12 11/12 18/12 25/12 1/1 8/1 15/1 22/1 29/1 5/2 12/2

1 1s30/09/201126/09/2011Definicion Objetivo Proyecto

2 2s14/10/201103/10/2011Estudio Pltaforma Desarrollo

3 2s28/10/201117/10/2011Estudio Plataforma Seleccionada

4 13s27/01/201231/10/2011Especificacion y analisis requerido

5 13s27/01/201231/10/2011Diseño

6 13s27/01/201231/10/2011Implementacion

7 13s27/01/201231/10/2011Verificacion

8 2s16/02/201203/02/2012Documentacion

9 2s16/02/201203/02/2012Finalizacion

	

Figura	
 2.2	
 .	
 Diagrama	
 de	
 Gantt	
 en	
 el	
 cual	
 puede	
 verse	
 la	
 planificación	
 del	
 proyecto	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 13	
 -­‐	

	

	

3 Diseño e implementación de la aplicacion

3.1 Requisitos	
 de	
 la	
 aplicación	

Como	
 se	
 ha	
 comentado	
 al	
 principio	
 de	
 la	
 memoria,	
 el	
 objetivo	
 del	
 proyecto	
 es	
 el	

desarrollo	
 de	
 una	
 aplicación	
 didáctica	
 espedifica	
 para	
 la	
 tablet	
 de	
 Apple,	
 el	
 Ipad.	
 	

	

Debe	
 ser	
 un	
 desarrollo	
 que	
 permita	
 generar	
 una	
 aplicación	
 capaz	
 de	
 ser	
 portada	
 a	
 otro	

dispositivo	
 sin	
 apenas	
 conocimientos	
 sobre	
 la	
 misma.	
 Cambiando	
 ciertos	
 parámetros,	

sobre	
 todo	
 la	
 adaptación	
 del	
 contenido,	
 podremos	
 ser	
 capazes	
 de	
 utilizar	
 nuestra	

aplicación	
 en	
 otros	
 dispositivos	
 que	
 funcionan	
 con	
 otro	
 sistema	
 operativo	
 móvil.	

	

De	
 acuerdo	
 a	
 esta	
 descripción	
 del	
 sistema	
 se	
 realiza	
 la	
 especificación	
 de	
 requisitos	
 que	

describe	
 las	
 funcionalidades	
 que	
 debe	
 tener	
 la	
 aplicación.	

3.1.1 Requisitos	
 funcionales	

Ø Aplicación	
 adaptada	
 especificamente	
 para	
 Ipad.	

Ø La	
 aplicación	
 debe	
 ser	
 multi-­‐idoma(español	
 e	
 ingles).	

Ø Debe	
 ser	
 posible	
 cambiar	
 ciertos	
 paremetros	
 de	
 configuración.	

Ø Al	
 salir	
 de	
 la	
 aplicación,	
 ésta	
 debe	
 ser	
 capaz	
 de	
 guardar	
 la	
 posición	
 en	
 la	
 cual	
 nos	

encontramos	
 en	
 ese	
 momento.	

Ø La	
 estructura	
 de	
 la	
 aplicación	
 debe	
 construirse	
 para	
 una	
 posible	
 actualización	

futura.	

Ø La	
 aplicación	
 permitirá	
 enviar	
 el	
 código	
 de	
 los	
 juegos	
 que	
 aparecen	
 en	
 ella	
 para	

que	
 los	
 usuarios	
 puedan	
 disponer	
 de	
 el	
 para	
 su	
 estudio	
 detallado.	

3.1.2 Requisitos	
 no	
 funcionales	

Ø La	
 plataforma	
 de	
 desarrollo	
 será	
 Corona	
 SDK	
 de	
 Ansca	
 Mobile	

Ø La	
 aplicación	
 deberá	
 estar	
 disponible	
 para	
 la	
 plataforma	
 iOS.	

Ø El	
 usuario	
 debe	
 ser	
 capaz	
 de	
 interactuar	
 con	
 la	
 aplicación	
 intuitivamente	
 y	
 sin	

apenas	
 dificultad.	

3.2 Diseño	

Una	
 vez	
 se	
 ha	
 estudiado	
 la	
 finalidad	
 del	
 sistema	
 y	
 su	
 viabilidad,	
 se	
 procede	
 a	
 realizar	
 el	

diseño	
 de	
 la	
 aplicación	
 de	
 cara	
 a	
 realizar	
 su	
 implementación.	

	

Se	
 busca	
 que	
 la	
 aplicacion	
 se	
 caracterice	
 por	
 ser	
 una	
 aplicación	
 sencilla,	
 fácil	
 de	
 manejar	
 y	

que	
 se	
 adapte	
 al	
 dispositivo	
 y	
 a	
 los	
 cambios	
 de	
 configuración.	

	

Al	
 ser	
 una	
 aplicación	
 didáctica	
 no	
 es	
 necesario	
 que	
 presente	
 un	
 aspecto	
 refinado,	

elegante	
 y	
 formal	
 sino	
 que	
 admite	
 que	
 las	
 formas	
 de	
 los	
 objetos	
 puedan	
 ser	
 todas	

distintas,	
 las	
 asimetrías	
 puedan	
 ser	
 comunes	
 y	
 los	
 colores	
 sin	
 sentido.	

	

Para	
 el	
 diseño	
 de	
 la	
 aplicación	
 hemos	
 considerado	
 una	
 opción	
 que	
 nos	
 ha	
 proporcionado	

Corona	
 SDK	
 a	
 través	
 de	
 un	
 desarrollador	
 que	
 ha	
 ofrecido	
 su	
 trabajo	
 para	
 todo	
 el	
 mundo	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 14	
 -­‐	

PANTALLA DE
BIENVENIDA

MENU
PRINCIPAL

CONFIGURACION

SELECCIÓN DE
CAPITULO

TEMAS

CONTENIDO
TEMAS

de	
 forma	
 libre	
 y	
 gratuita.	
 	
 Es	
 un	
 modulo	
 externo	
 o	
 librería	
 que	
 nos	
 permite	
 hacer	

funcionar	
 aplicaciones	
 a	
 base	
 de	
 escenas.	
 El	
 nombre	
 del	
 modulo	
 es	
 “DirectorClass”	
 y	
 su	

autor	
 es	
 un	
 programador	
 brasileño	
 llamado	
 Ricardo	
 Rauber.	
 Desde	
 que	
 publicó	
 su	
 trabajo	

la	
 ha	
 ido	
 actualizando	
 para	
 corregir	
 errores	
 y	
 mejorarla	
 y	
 actualmente	
 nos	
 encontramos	

por	
 la	
 versión	
 1.4.	
 	

	

Recientemente	
 Corona	
 SDK	
 ha	
 publicado	
 en	
 su	
 lista	
 de	
 API’S	
 una	
 nueva	
 forma	
 de	
 utilizar	

escenas	
 pero	
 esta	
 vez	
 de	
 forma	
 oficial.	
 Lo	
 han	
 llamado	
 “Storyboard”	
 	
 y	
 permite	
 el	

movimiento	
 entre	
 escenas	
 como	
 lo	
 hace	
 directorClass.	

	

La	
 razón	
 por	
 la	
 cual	
 vamos	
 a	
 utilizar	
 directorClass	
 y	
 no	
 Storyboard	
 es	
 que	
 en	
 el	
 inicio	
 de	
 	
 la	

programación	
 de	
 la	
 aplicación	
 esta	
 era	
 la	
 única	
 opción	
 que	
 presentaba	
 Corona	
 SDK	
 y	
 se	

decidio	
 en	
 su	
 momento	
 utilizarla.	
 Ademas	
 posee	
 alguna	
 característica	
 que	
 la	
 librería	

propia	
 de	
 Corona	
 SDK	
 no,	
 como	
 por	
 ejemplo	
 que	
 lleva	
 incorporado	
 un	
 recolector	
 de	

objetos	
 y	
 de	
 listeners	
 que	
 los	
 elimina	
 cuando	
 cambiamos	
 de	
 escena.	
 En	
 cambio	

“Storyboard”	
 no	
 ofrece	
 esa	
 posibilidad.	

	

A	
 continuación	
 se	
 muestra	
 la	
 imagen	
 del	
 árbol	
 de	
 opciones	
 de	
 la	
 aplicación.	
 	

	

	

	

	

	

Figura	
 3.1.	
 Opciones	
 de	
 la	
 aplicación	

	

La	
 aplicación	
 constará	
 de	
 una	
 pantalla	
 de	
 bienvenida	
 que	
 nos	
 dará	
 paso	
 a	
 la	
 pantalla	
 del	

menú	
 principal	
 o	
 a	
 la	
 ultima	
 pantalla	
 que	
 teníamos	
 cuando	
 cerramos	
 la	
 aplicación	
 en	
 el	

caso	
 de	
 ser	
 un	
 capitulo	
 de	
 ejemplos.	
 En	
 la	
 pantalla	
 del	
 menú	
 principal	
 aparecerá	
 una	
 lista	

con	
 todos	
 los	
 capítulos	
 disponibles,	
 separados	
 por	
 colores	
 y	
 botón	
 en	
 la	
 parte	
 superior	

derecha	
 que	
 al	
 pulsarlo	
 aparece	
 la	
 pantalla	
 de	
 configuración.	

	

Las	
 opciones,	
 	
 como	
 se	
 puede	
 apreciar	
 en	
 el	
 esquema	
 anterior,	
 son:	

	

Ø Seleccionar	
 Capitulo:	
 Dentro	
 de	
 la	
 selección	
 de	
 capitulo	
 existen	
 varios	
 tipo	
 de	

ellos.	
 Los	
 3	
 primeros	
 son	
 capitulos	
 teoricos,	
 los	
 4	
 siguientes	
 son	
 capítulos	
 que	

están	
 basados	
 en	
 ejemplos	
 y	
 los	
 4	
 ultimos	
 son	
 capítulos	
 son	
 juegos.	
 Los	
 3	
 tipos	
 de	

capitulos	
 están	
 diferenciados	
 por	
 colores.	

	

Ø Configuración:	
 Muestra	
 la	
 pantalla	
 de	
 configuración	
 de	
 la	
 aplicación.	
 Se	
 pueden	

modificar	
 varias	
 o	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 15	
 -­‐	

Ø pciones.	

Cuando	
 un	
 usuario	
 se	
 introduce	
 en	
 un	
 capitulo	
 la	
 forma	
 del	
 contenido	
 del	
 mismo	

depende	
 del	
 tipo	
 de	
 capitulo	
 que	
 ha	
 pulsado.	
 Como	
 se	
 ha	
 comentado	
 anteriomente	

existen	
 3	
 tipos	
 de	
 capítulos	
 distintos	
 y	
 pasamos	
 a	
 explicar	
 mas	
 en	
 detalle	
 cada	
 uno	
 de	
 de	

ellos.	
 Los	
 vamos	
 a	
 separar	
 por	
 escenas	
 y	
 están	
 explicacos	
 a	
 continuación.	

	

3.2.1 Escenas	
 	

3.2.1.1 Tipo	
 1	

Este	
 tipo	
 de	
 escena	
 es	
 utilizado	
 en	
 los	
 tres	
 primeros	
 capítulos.	
 Estos	
 capítulos	
 digamos	

que	
 son	
 teoria.	
 No	
 podemos	
 interactuar	
 en	
 ellos	
 mas	
 que	
 para	
 pasar	
 las	
 diapostivivas.	
 En	

ellos	
 podermos	
 ver	
 informarcion	
 relacionada	
 con	
 el	
 titulo	
 del	
 capitulo	
 pulsado.	
 Se	
 puede	

decir	
 que	
 es	
 un	
 pase	
 de	
 diapositivas	
 porque	
 el	
 contenido	
 del	
 mismo	
 son	
 imágenes	
 que	

podemos	
 ir	
 cambiando	
 con	
 los	
 botones	
 que	
 están	
 situdados	
 en	
 la	
 parte	
 inferior	
 de	
 la	

pantalla	
 o	
 deslizando	
 con	
 el	
 dedo	
 hacia	
 la	
 derecha	
 o	
 hacia	
 la	
 izquierda	
 dependiendo	
 si	

queremos	
 avanzar	
 o	
 retrasar	
 la	
 diapositiva.	
 	

3.2.1.2 Tipo	
 2	

Esta	
 escena	
 es	
 la	
 que	
 mas	
 complejidad	
 de	
 las	
 3	
 lleva.	
 Es	
 la	
 escena	
 que	
 utilizamos	
 en	
 los	

capítulos	
 que	
 aparecen	
 los	
 ejemplos	
 de	
 programación.	
 Es	
 una	
 escena	
 con	
 la	
 estructura	
 	

común	
 para	
 los	
 4	
 capitulos	
 pero	
 que	
 dependiendo	
 de	
 las	
 variables	
 que	
 se	
 cargan	
 al	
 inicio	

del	
 mismo	
 el	
 capitulo	
 se	
 configura	
 de	
 forma	
 diferente	
 y	
 es	
 posible	
 utilizarlo.	
 	

3.2.1.3 Tipo	
 3	

Es	
 la	
 única	
 escena	
 que	
 no	
 sigue	
 una	
 patrón	
 común	
 para	
 el	
 mismo	
 tipo	
 de	
 capítulos.	
 Son	

capitulos	
 tipo	
 “juegos”,	
 en	
 ellos	
 aparecen	
 juegos	
 completos	
 que	
 han	
 sido	
 creados	

anteriormente	
 en	
 los	
 capitulos	
 de	
 ejemplos.	
 Al	
 ser	
 juegos	
 diferentes	
 su	
 programación	
 no	

se	
 parece	
 aunque	
 se	
 ha	
 intentado	
 que	
 la	
 estructura	
 de	
 los	
 mismos	
 sea	
 parecida	
 para	

mayor	
 facilidad	
 de	
 programación	
 y	
 llevar	
 un	
 orden	
 concreto	
 y	
 poder	
 utilizarlo	
 en	
 todos	
 los	

juegos.	

	

3.2.2 Diagramas	
 de	
 actividad	

Se	
 muestran	
 a	
 continuación	
 los	
 diagramas	
 de	
 actividad	
 de	
 carga	
 del	
 contenido	
 de	
 las	

escenas	
 principales	
 de	
 la	
 aplicación.	

	

	

	

	

	

	

	

	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 16	
 -­‐	

	

	

	

Figura	
 3.2.	
 Diagrama	
 de	
 actividad	
 de	
 la	
 carga	
 de	
 la	
 pantalla	
 principal	

	

En	
 este	
 diagrama	
 se	
 muestra	
 el	
 flujo	
 de	
 carga	
 de	
 datos	
 desde	
 el	
 modulo	
 externo	
 que	

contiene	
 la	
 tabla	
 de	
 capítulos	
 del	
 menú	
 principal	
 de	
 la	
 aplicación.	

	

Esta	
 carga	
 viene	
 condicionada	
 mayormente	
 por	
 el	
 idioma	
 de	
 la	
 apliacacion	
 y	
 por	
 el	
 tipo	
 de	

capitulo.	
 	

	

Según	
 el	
 estado	
 de	
 la	
 variable	
 language_state	
 la	
 tabla	
 que	
 pasamos	
 a	
 la	
 tableView	
 para	

que	
 muestre	
 la	
 lista	
 de	
 capitulos	
 en	
 la	
 pantalla	
 del	
 menú	
 principal	
 contiene	
 un	
 idioma	
 u	

otro.	

	

Para	
 determinar	
 el	
 color	
 de	
 la	
 fuente	
 lo	
 conseguimos	
 con	
 la	
 variable	
 id,	
 nos	
 permite	

seleccionar	
 el	
 color	
 dependiendo	
 de	
 su	
 valor.	
 Es	
 posible	
 configurar	
 la	
 tableView	
 a	
 nuestro	

antojo	
 y	
 muestra	
 de	
 ello	
 es	
 que	
 seria	
 posible	
 elegir	
 un	
 color	
 para	
 cada	
 fuente	
 de	
 la	
 misma.	

	

En	
 la	
 siguiente	
 figura	
 se	
 muestra	
 el	
 diagrama	
 de	
 actividad	
 de	
 la	
 carga	
 de	
 la	
 escena	
 Tipo	
 1	

que	
 esta	
 directamente	
 relacionada	
 con	
 los	
 3	
 primeros	
 capitulos.	

	

LLAMADA
ESCENA

COMPROBAMOS IDIOMA

CREAMOS LA TABLA

CREAMOS TABLEVIEW

FIN
CARGA

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 17	
 -­‐	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figura	
 3.3.	
 Diagrama	
 de	
 actividad	
 de	
 la	
 carga	
 del	
 contenido	
 de	
 la	
 escena	
 Tipo	
 1	

	

Como	
 podemos	
 observar	
 el	
 primer	
 paso	
 realizado	
 es	
 comprobar	
 el	
 idioma	
 actual	
 de	
 la	

aplicación.	
 Cada	
 vez	
 que	
 se	
 llama	
 a	
 la	
 escena	
 se	
 hace	
 este	
 chequeo.	
 	

	

Despues	
 de	
 comprobar	
 el	
 idioma,	
 creamos	
 dentro	
 de	
 la	
 escena	
 la	
 variable	
 local	
 myImages	

que	
 no	
 es	
 mas	
 que	
 una	
 tabla	
 en	
 la	
 cual	
 están	
 incluidas	
 las	
 rutas	
 de	
 las	
 imágenes	
 que	
 serán	

mostradas	
 dentro	
 del	
 capitulo.	

	

Estas	
 imágenes	
 son	
 diferentes	
 para	
 cada	
 idioma	
 por	
 lo	
 cual	
 es	
 necesario	
 incluir	
 dentro	
 de	

la	
 carpeta	
 los	
 2	
 idiomas.	
 	

	

Por	
 ultimo	
 creamos	
 un	
 objeto	
 slideView,	
 le	
 pasamos	
 como	
 parámetro	
 la	
 tabla	
 de	

ubicaciones	
 de	
 imágenes	
 que	
 hemos	
 creado	
 al	
 principio	
 dependiendo	
 del	
 idioma.	
 	
 Las	

imágenes	
 que	
 mostramos	
 tienen	
 unas	
 dimensiones	
 espeficicas	
 para	
 poder	
 ocupar	
 todo	
 el	

espacio	
 libre	
 disponible.	
 Estas	
 dimensiones	
 son	
 900	
 x	
 600	
 pixeles	

	

A	
 continuación	
 se	
 muestra	
 el	
 diagrama	
 de	
 actividad	
 de	
 la	
 escena	
 Tipo	
 2.	

	

LLAMADA
ESCENA

COMPROBAMOS
IDIOMA

CREAMOS LA TABLA
DE IMAGENES

CREAMOS SLIDEVIEW

FIN
CARGA

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 18	
 -­‐	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figura	
 3.4.	
 Diagrama	
 de	
 actividad	
 de	
 la	
 carga	
 del	
 contenido	
 Tipo	
 2	

	

El	
 primer	
 paso	
 de	
 la	
 escena	
 es	
 comprobar	
 el	
 estado	
 de	
 la	
 variable	
 local	
 language_state.	

Según	
 su	
 estado	
 cargamos	
 las	
 variables	
 que	
 usaremos	
 para	
 crear	
 la	
 escena.	
 Para	
 cargar	
 el	

contenido	
 de	
 esta	
 escena	
 llamamos	
 a	
 la	
 función	
 new	
 del	
 modulo	
 externo	
 variables.	
 Al	

llamar	
 a	
 esta	
 función	
 le	
 pasamos	
 los	
 parámetros	
 para	
 configurar	
 un	
 capitulo	
 especifico.	

Esos	
 parámetros	
 son	
 el	
 capitulo	
 y	
 tema	
 que	
 queremos	
 visualizar.	
 Internamente	
 la	
 función	

new	
 se	
 encarga	
 de	
 seleccionar	
 las	
 variables	
 correspondientes	
 dependiendo	
 del	
 idioma	

seleccionado.	

	

Tambien	
 hacemos	
 uso	
 de	
 la	
 función	
 content	
 que	
 se	
 encarga	
 de	
 gestionar	
 la	
 barra	
 de	

contenido	
 dentro	
 de	
 los	
 temas	
 de	
 los	
 capitulos.	

	

Cuando	
 se	
 crean	
 los	
 objetos	
 de	
 la	
 escena,	
 estos	
 utilizan	
 las	
 variables	
 cargadas	

anteriormente	
 por	
 lo	
 que	
 podemos	
 usar	
 una	
 misma	
 escena	
 para	
 ver	
 todos	
 los	
 capitulos	

cuya	
 escena	
 es	
 del	
 Tipo	
 2,	
 los	
 capitulos	
 con	
 ejemplos.	

	

Se	
 debe	
 mencionar	
 que	
 no	
 es	
 posible	
 utilizar	
 este	
 tipo	
 de	
 escena	
 para	
 los	
 3	
 primeros	

capitulos	
 aunque	
 la	
 similitud	
 de	
 la	
 escena	
 sea	
 evidente.	
 La	
 razón	
 es	
 simple,	
 para	
 cargar	
 el	

slideView	
 es	
 necesario	
 utilizar	
 un	
 fondo	
 de	
 pantalla	
 diferente	
 para	
 poder	
 ver	
 la	
 sensación	

de	
 transición	
 del	
 slideView	
 dentro	
 del	
 recuadro	
 gris.	

LLAMADA
ESCENA

COMPROBAMOS
IDIOMA

CARGAMOS LAS
VARIABLES

CREAMOS LA ESCENA

FIN
CARGA

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 19	
 -­‐	

3.2.3 Diseño	
 de	
 pantallas	
 de	
 la	
 aplicacion	

3.2.3.1 Pantalla	
 	
 de	
 carga	

Figura	
 3.5.	
 Pantalla	
 de	
 carga	
 de	
 la	
 aplicacion	

La	
 pantalla	
 de	
 carga	
 contiene	
 una	
 imagen	
 con	
 el	
 logotipo	
 de	
 la	
 Universidad	
 de	
 Zaragoza.	

Los	
 elementos	
 de	
 la	
 vista	
 son:	

	

Ø Una	
 imagen	
 cargada	
 desde	
 un	
 fichero	
 denominado	
 splash.png	
 que	
 se	
 incluye	
 en	
 el	

directorio	
 de	
 imagenes	
 de	
 la	
 aplicación.	

En	
 esta	
 pantalla	
 no	
 hay	
 opción	
 de	
 realizar	
 acciones,	
 existe	
 un	
 temporizador	
 con	
 una	

duración	
 de	
 2sg	
 que	
 se	
 encarga	
 de	
 cambiar	
 de	
 escena	
 automáticamente	
 tras	
 pasar	
 el	

tiempo	
 al	
 que	
 esta	
 programado.	

	

Esta	
 pantalla	
 da	
 paso	
 a	
 la	
 pantalla	
 de	
 bienvenida	
 de	
 la	
 aplicación.	

	

	

	

	

	

	

	

	

	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 20	
 -­‐	

3.2.3.2 Pantalla	
 bienvenida	

Figura	
 3.6.	
 Pantalla	
 de	
 bienvenida	
 de	
 la	
 aplicacion	

La	
 pantalla	
 de	
 bienvenida	
 contiene	
 el	
 titulo	
 de	
 la	
 aplicación.	
 Los	
 elementos	
 que	
 contiene	

la	
 vista	
 son:	

	

Ø La	
 vista	
 contiene	
 un	
 fondo	
 de	
 pantalla	
 negro.	

Ø Una	
 imagen	
 cargada	
 desde	
 fichero	
 que	
 es	
 las	
 encargada	
 de	
 mostras	
 el	
 titulo	
 de	
 la	

aplicación,	
 dependiendo	
 del	
 idioma	
 el	
 archivo	
 cambia.	

Ø Si	
 la	
 última	
 vez	
 que	
 se	
 ejecutó	
 la	
 aplicación	
 se	
 estaba	
 visualizando	
 un	
 contenido	
 de	

un	
 capítulo	
 de	
 ejemplos	
 o	
 de	
 diapositivas,	
 pregunta	
 si	
 se	
 desea	
 volver	
 a	
 la	
 última	

posición.	
 Esto	
 es	
 útil	
 si	
 se	
 ha	
 suspendido	
 la	
 aplicación	
 por	
 una	
 llamada	
 u	
 otro	

motivo.	
 El	
 archivo	
 posición.dat	
 es	
 el	
 encargado	
 de	
 almacenar	
 esta	
 información.	

	

La	
 pantalla	
 a	
 paso	
 al	
 Menú	
 principal	
 de	
 la	
 aplicación	
 o	
 a	
 la	
 última	
 posición	
 visualizada	

dentro	
 de	
 un	
 capítulo.	

	

	

	

	

	

	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 21	
 -­‐	

3.2.3.3 Pantalla	
 Menú	
 Principal	

Figura	
 3.7.	
 Pantalla	
 del	
 Menu	
 principal	
 de	
 la	
 aplicacion	

La	
 pantalla	
 del	
 Menu	
 Principal	
 contiene	
 el	
 listado	
 de	
 los	
 capítulos	
 seleccionables	
 asi	
 como	

los	
 accesos	
 a	
 los	
 juegos.	
 	

	

El	
 listado	
 de	
 los	
 capítulos	
 esta	
 incluido	
 en	
 el	
 modulo	
 externo	
 “variables.lua”,	
 	
 el	
 formato	

es	
 una	
 tabla	
 en	
 la	
 cual	
 se	
 incluyen	
 todos	
 los	
 parámetros	
 referentes	
 a	
 la	
 tableView,	
 que	
 es	

el	
 objeto	
 encargado	
 de	
 mostrar	
 la	
 tabla.	
 Los	
 elementos	
 que	
 presenta	
 la	
 vista	
 son:	

	

Ø Listado	
 de	
 capítulos	
 .	

Ø Titulo	
 de	
 la	
 aplicación.	

Ø Imágenes	
 de	
 juegos	
 en	
 la	
 parte	
 derecha	
 de	
 la	
 pantalla.	

Ø Boton	
 de	
 Configuración.	

	

Desde	
 esta	
 pantalla	
 es	
 posible	
 acceder	
 a	
 cualquier	
 capitulo	
 de	
 la	
 aplicación	
 asi	
 como	
 al	

menú	
 de	
 configuración.	
 	

	

	

	

	

	

	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 22	
 -­‐	

3.2.3.4 Pantalla	
 Capitulo	
 Diapositivas	

	

	

	

Figura	
 3.8.	
 Pantalla	
 de	
 presentación	
 de	
 diapositivas	

	

	

En	
 la	
 pantalla	
 de	
 presentación	
 de	
 diapositivas	
 se	
 puede	
 visualizar	
 uno	
 de	
 los	
 3	
 primeros	

capitulos	
 seleccionables	
 en	
 el	
 Menu	
 Principal.	
 Los	
 elementos	
 que	
 contiene	
 la	
 vista	
 son:	

	

Ø Titulo	
 de	
 la	
 aplicación(Can	
 you….)	

Ø Titulo	
 del	
 capitulo.	

Ø Objeto	
 slideViev(incluye	
 eventos	
 y	
 funciones)	

Ø Boton	
 Menu.	

Ø Botón	
 Previus.	

Ø Boton	
 Next.	

	

Desde	
 esta	
 pantalla	
 mediante	
 la	
 utilización	
 de	
 los	
 diferentes	
 botones	
 es	
 posible	
 o	
 dirigirse	

al	
 menú	
 principal	
 para	
 seleccionar	
 otro	
 capitulo	
 o	
 bien	
 ir	
 cambiando	
 la	
 diapositiva	
 con	
 los	

botones	
 de	
 next	
 	
 y	
 previus.	

	

Existen	
 3	
 capitulos	
 que	
 utlizan	
 esta	
 misma	
 forma	
 y	
 la	
 escena	
 utilizada	
 es	
 la	
 misma	
 para	

todos	
 y	
 cada	
 uno	
 de	
 ellos,	
 la	
 Tipo	
 1.	

	

	

	

	

	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 23	
 -­‐	

3.2.3.5 Pantalla	
 Introduccion	
 Capítulo	
 Ejemplos	

	

	

Figura	
 3.9.	
 Pantalla	
 de	
 introducción	
 a	
 un	
 capitulo	
 de	
 ejemplos	

	

En	
 la	
 pantalla	
 de	
 introducción	
 a	
 un	
 capitulo	
 de	
 ejemplos	
 se	
 visualiza	
 un	
 pequeño	
 párrafo	

que	
 nos	
 detalla	
 que	
 nos	
 vamos	
 a	
 encontrar	
 en	
 el	
 capitulo	
 seleccionado.	
 El	
 contenido	
 de	
 la	

vista	
 es:	

	

Ø Titulo	
 de	
 la	
 aplicación.	

Ø Titulo	
 del	
 capitulo.	

Ø Contenido	
 de	
 la	
 introduccion.	

Ø Dispositivo	
 sobre	
 el	
 cual	
 se	
 van	
 a	
 visualizar	
 los	
 diferentes	
 ejemplos.	

Ø Botón	
 Play.	
 	

Ø Boton	
 Menu.	

	

Cuando	
 nos	
 encontramos	
 en	
 esta	
 pantalla	
 podemos	
 dirigirnos	
 hacia	
 varias	
 escenas.	

Podemos	
 volver	
 al	
 menú	
 principal	
 o	
 podemos	
 pulsar	
 el	
 botón	
 play	
 e	
 iniciar	
 el	
 capitulo.	

	

	

	

	

	

	

	

	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 24	
 -­‐	

3.2.3.6 Pantalla	
 Visualizacion	
 Tema	

	

Figura	
 3.10.	
 Pantalla	
 de	
 visualización	
 de	
 un	
 capitulo	
 de	
 ejemplos	

	

La	
 pantalla	
 de	
 visualización	
 de	
 un	
 capitulo	
 de	
 ejemplos	
 es	
 similar	
 a	
 la	
 anterior	
 con	
 la	
 única	

diferencia	
 que	
 el	
 espacio	
 ocupado	
 por	
 la	
 introducción	
 al	
 capitulo	
 ahora	
 esta	
 reservado	

para	
 ver	
 las	
 explicaciones	
 sobre	
 lo	
 que	
 aparece	
 en	
 el	
 simulador.	
 Esta	
 pantalla	
 es	
 común	
 a	

los	
 4	
 capitulos	
 de	
 ejemplos.	
 Cada	
 capitulo	
 de	
 ejemplos	
 contiene	
 en	
 su	
 interior	
 diferentes	

temas	
 que	
 son	
 tratados	
 de	
 forma	
 ordenada	
 respecto	
 a	
 la	
 creación	
 del	
 videojuego	
 de	

ejemplo.	
 Enumeramos	
 a	
 continuación	
 los	
 elementos	
 que	
 contiene	
 la	
 vista:	

	

Ø Titulo	
 de	
 la	
 aplicación.	

Ø Titulo	
 del	
 tema	
 que	
 estamos	
 visualizando	

Ø Espacio	
 reservado	
 para	
 la	
 explicación	
 del	
 tema.	

Ø Dispositivo	
 simulado	
 sobre	
 el	
 cual	
 se	
 visualizan	
 los	
 diferentes	
 ejemplos.	

Ø Boton	
 menú.	

Ø Boton	
 configuracion.	

Ø Botones	
 next	
 y	
 previus.	

Ø Boton	
 play	
 y	
 pause.	

Ø Boton	
 content.	

	

Existen	
 varias	
 posibilidades	
 en	
 esta	
 pantalla	
 a	
 la	
 hora	
 de	
 realizar	
 acciones.	
 Los	
 botones	

con	
 flechas	
 de	
 dirección	
 se	
 utlizan	
 para	
 avanzar	
 o	
 retroceder	
 en	
 el	
 tema.	

	

Existe	
 un	
 botón	
 play	
 que	
 al	
 pulsarlo	
 ejerce	
 la	
 misma	
 función	
 que	
 la	
 flecha	
 next	
 pero	
 de	

forma	
 automática,	
 sin	
 necesidad	
 de	
 estar	
 pulsando	
 cada	
 vez	
 que	
 avanze	
 el	
 tema.	
 Se	

detiene	
 cuando	
 llega	
 a	
 la	
 ultima	
 línea	
 de	
 las	
 explicaciones.	
 Al	
 pulsar	
 play	
 este	
 botón	

desaparece	
 y	
 el	
 boton	
 pause	
 aparece	
 para	
 detener	
 las	
 explicaciones	
 cuando	
 precise.	
 En	

ese	
 instante	
 se	
 alternan	
 los	
 botones	
 para	
 reanudar	
 la	
 marcha	
 al	
 volver	
 a	
 pulsar	
 play.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 25	
 -­‐	

El	
 botón	
 content	
 hace	
 aparecer	
 una	
 barra	
 con	
 el	
 contenido	
 del	
 capitulo	
 distingido	
 por	

temas.	
 A	
 continuación	
 se	
 muestra	
 el	
 contenido	
 de	
 los	
 temas	
 de	
 cada	
 capitulo.	

	

Capitulo	
 4	
 –	
 Visualizacion	
 y	
 eventos	
 :	
 	

	

Ø Introduccion	
 I	

Ø Introduccion	
 II	

Ø Introduccion	
 III	

Ø Introduccion	
 IV	

Ø Formas	

Ø Imagenes	

Ø Texto	

Ø Grupos	

Ø Propiedades	

Ø Eventos	
 1	

Ø Eventos	
 2	

Ø Eventos	
 3	

	

Capitulo	
 5–	
 Animacion	
 y	
 movimiento	
 :	
 	

	

Ø Transition	
 I	

Ø Transition	
 II	

Ø MovieClip	
 I	

Ø MovieClip	
 II	

	

Capitulo	
 6	
 –	
 Motor	
 Fisico	
 :	
 	

	

Ø Fisica	
 I	

Ø FIsica	
 II	

Ø Escenario	

Ø Cuerpos	

Ø Pelota	

Ø Juego	

	

Capitulo	
 7	
 –	
 Audio	
 y	
 video	
 :	
 	

	

Ø Audio	
 I	

Ø Audio	
 II	

Ø Video	
 I	

Ø Video	
 II	

	

	

	

A	
 continuacio	
 se	
 muestra	
 una	
 imagen	
 de	
 pantalla	
 cuando	
 aparece	
 la	
 barra	
 oculta	
 de	

contenido.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 26	
 -­‐	

	

	

Figura	
 3.11.	
 Pantalla	
 con	
 la	
 barra	
 de	
 contenido	

	

La	
 forma	
 que	
 se	
 gestiona	
 la	
 barra	
 es	
 la	
 siguente,	
 hay	
 tantos	
 temas	
 que	
 no	
 caben	
 todos	

dentro	
 de	
 la	
 pantalla	
 por	
 lo	
 cual	
 se	
 ha	
 incluido	
 un	
 slide	
 sobre	
 los	
 temas	
 que	
 delizando	
 el	

dedo	
 movemos	
 la	
 barra	
 de	
 contenido	
 hacia	
 ambos	
 lados.	
 Al	
 pulsar	
 sobre	
 un	
 tema	
 en	

concreto	
 se	
 carga	
 la	
 escena	
 pertinente	
 y	
 se	
 visualiza	
 de	
 la	
 misma	
 forma.	

	

Para	
 ocultar	
 la	
 barra	
 de	
 contenido	
 sin	
 cambiar	
 de	
 escena	
 es	
 tan	
 fácil	
 como	
 tocar	
 la	

pantalla	
 por	
 encima	
 de	
 la	
 barra	
 y	
 esta	
 desaparece	
 para	
 poder	
 continuar	
 viendo	
 el	

capitulo.	

	

3.2.3.7 Pantalla	
 Configuración	

Figura	
 3.12.	
 Pantalla	
 de	
 configuración	
 de	
 la	
 aplicacion	

En	
 esta	
 pantalla	
 se	
 muestran	
 las	
 opciones	
 de	
 configuración	
 de	
 la	
 aplicación.	
 Los	

elementos	
 que	
 contiene	
 la	
 vista	
 son:	

	

Ø En	
 la	
 parte	
 superior	
 aparece	
 el	
 titulo	
 de	
 la	
 escena.	

Ø Las	
 opciones	
 que	
 se	
 permiten	
 modificar	
 son	
 el	
 idoma,	
 el	
 sonido	
 y	
 la	
 animación.	

Ø Todas	
 las	
 opciones	
 se	
 cambian	
 pulsando	
 sobre	
 el	
 valor.	
 Se	
 guardan	

automáticamente	
 en	
 el	
 modulo	
 externo	
 “variables.lua”.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 27	
 -­‐	

Las	
 opciones	
 que	
 pueden	
 modificarse	
 son	
 simples	
 y	
 sencillas.	
 Cuando	
 pulsamos	
 sobre	
 las	

selección	
 de	
 idioma	
 este	
 nos	
 pregunta	
 si	
 estamos	
 de	
 acuerdo	
 con	
 cambiar	
 de	
 idioma	
 y	

nos	
 advierte	
 que	
 es	
 necesario	
 reinicia	
 la	
 aplicación,	
 como	
 vemos	
 a	
 continuación.	

	

	

	

Figura	
 3.13.	
 Pantalla	
 de	
 reinicio	
 de	
 aplicación.	

	

La	
 imagen	
 no	
 corresponde	
 con	
 la	
 advertencia	
 que	
 nos	
 muestra	
 el	
 dispositivo	
 sino	
 la	
 que	

vemos	
 en	
 el	
 simulador	
 aunque	
 solo	
 cambia	
 el	
 diseño.	

	

Para	
 ocultar	
 la	
 pantalla	
 de	
 configuración	
 arrastramos	
 con	
 el	
 dedo	
 hacia	
 arriba	
 y	
 al	
 soltarlo	

automáticamente	
 la	
 pantalla	
 se	
 oculta.	

	

3.2.3.8 Pantalla	
 de	
 Menu	
 Juegos	

	

	

Figura	
 3.14.	
 Pantalla	
 de	
 inicio	
 del	
 juego	
 Bubble	
 Ball	

	

En	
 esta	
 escena	
 podemos	
 ver	
 la	
 pantalla	
 de	
 introducción	
 de	
 un	
 juego,	
 en	
 este	
 caso	
 la	
 del	

Bubble	
 Ball.	
 Para	
 cargar	
 un	
 juego	
 es	
 necesario	
 cargar	
 una	
 escena	
 diferente	
 por	
 lo	
 tanto	

existen	
 tantas	
 escenas	
 como	
 juegos.	
 	
 La	
 estructura	
 que	
 mantienen	
 los	
 juegos	
 es	
 similar	

para	
 todos	
 aunque	
 evidentemente	
 la	
 diferencia	
 de	
 contenido	
 es	
 grande.	
 Es	
 posible	

aprovechar	
 el	
 orden	
 de	
 carga	
 de	
 variables,	
 de	
 funciones	
 y	
 de	
 eventos.	
 	
 	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 28	
 -­‐	

Los	
 elementos	
 de	
 la	
 vista	
 que	
 aparecen	
 en	
 la	
 pantalla	
 principal	
 de	
 los	
 juegos	
 son:	

	

Ø Titulo	
 del	
 	
 juego.	

Ø Botones	
 de	
 play,	
 options	
 y	
 exit.	

	

3.2.3.9 Pantalla	
 de	
 Juegos	

	

	

Figura	
 3.15.	
 Pantalla	
 del	
 juego	
 Space	
 Shooter	

	

En	
 la	
 pantalla	
 de	
 juegos	
 podemos	
 observar	
 que	
 aparecen	
 2	
 botones	
 en	
 las	
 esquinas	

superiores.	
 El	
 botón	
 de	
 la	
 esquina	
 derecha	
 nos	
 permite	
 volver	
 al	
 menú	
 principal	
 del	
 juego.	

	

Cuando	
 pulsamos	
 el	
 botón	
 superior	
 izquierdo	
 aparece	
 la	
 aplicación	
 nativa	
 del	
 dispositivo	

para	
 mandar	
 un	
 e-­‐mail	
 con	
 un	
 archivo	
 adjunto	
 en	
 formato	
 zip	
 incluendo	
 el	
 juego	
 que	

estamos	
 visualizando	
 para	
 su	
 posterior	
 estudio.	

	

	

	

	

	

	

	

	

	

	

	

3.3 Implementación	

En	
 esta	
 sección	
 se	
 detalla	
 cómo	
 se	
 ha	
 implementado	
 la	
 aplicación.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 29	
 -­‐	

	

Como	
 se	
 ha	
 comentado	
 anteriormente	
 el	
 diseño	
 de	
 la	
 aplicación	
 respecto	
 a	
 la	
 transición	

de	
 escenas	
 se	
 realiza	
 mediante	
 el	
 modulo	
 externo	
 DirectorClass.	
 	
 A	
 continuación	

mostramos	
 la	
 estructura	
 de	
 la	
 aplicación	
 y	
 comentamos	
 el	
 sistema	
 de	
 archivos	
 y	

directorios	
 que	
 rige	
 la	
 aplicación.	

	

3.3.1 Estructura	
 del	
 programa	

En	
 el	
 siguiente	
 esquema	
 se	
 puede	
 visualizar	
 la	
 estructura	
 completa	
 del	
 programa	
 y	
 los	

ficheros	
 externos	
 que	
 se	
 utilizan	
 en	
 el.	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

	

	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Figura	
 3.16	
 Estructura	
 de	
 escenas	
 de	
 la	
 aplicacion	

	

	

En	
 los	
 siguientes	
 apartados	
 se	
 irán	
 desglosando	
 los	
 módulos	
 que	
 componen	
 la	
 estructura	

del	
 programa	
 y	
 los	
 ficheros	
 que	
 se	
 utilizan	
 para	
 su	
 configuración.	

	

main.lua

splash.lua

screen1.lua

screen2.lua

cap1.lua
cap2.lua
cap3.lua

scene.lua
cap4.lua
cap5.lua
cap6.lua
cap7.lua

cap8.lua
cap9.lua
cap10.lua

Menu
Principal

Pantalla
de Carga

Pantalla
Bienvenida

Caps 1, 2, 3

Caps 4, 5, 6, 7

Caps 8, 9, 10

Modulos	
 externos:	
 	

director.lua	
 -­‐	
 examples.lua	
 -­‐	
 showText.lua	
 -­‐	
 physics.lua	
 -­‐	
 movieclip.lua	

uti.lua	
 -­‐	
 variables.lua	
 -­‐	
 ui.lua	
 -­‐	
 tableView.lua	
 -­‐	
 slideView.lua	

bubble_ball Aplicacion sound

cap

.....

.....

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 30	
 -­‐	

Figura	
 3.17.	
 Estructura	
 de	
 directorios	
 del	
 proyecto	
 en	
 Corona	
 SDK	

	

	

	

La	
 organización	
 de	
 los	
 ficheros	
 se	
 localiza	
 en	
 una	
 carpeta	
 de	
 proyecto	
 principal,	
 de	

acuerdo	
 a	
 la	
 estructura	
 establecida	
 por	
 Corona	
 SDK,	
 donde	
 se	
 encuentra	
 el	
 archivo	

principal	
 de	
 la	
 aplicación	
 main.lua,	
 las	
 escenas,	
 módulos	
 externos	
 de	
 código	
 y	
 directorios	

de	
 imágenes	
 y	
 sonidos.	

	

Los	
 archivos	
 de	
 audio	
 y	
 sonidos	
 están	
 almacenados	
 dentro	
 de	
 un	
 directorio	
 denominado	

sound.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 31	
 -­‐	

Las	
 imágenes	
 se	
 encuentran	
 en	
 el	
 directorio	
 images,	
 dentro	
 de	
 este	
 directorio	
 las	

imágenes	
 se	
 encuentra	
 clasificadas	
 dependiendo	
 la	
 escena	
 donde	
 aparecen	
 .	
 Existen	

imágenes	
 que	
 son	
 utilizadas	
 por	
 varias	
 escenas	
 como	
 son	
 los	
 botones,	
 fondos	
 de	
 pantalla	

y	
 el	
 titulo	
 de	
 la	
 aplicación	
 que	
 aparece	
 en	
 todas	
 las	
 escenas.	

	

Con	
 respecto	
 al	
 fichero	
 auxiliar,	
 es	
 creado	
 dinámicamente	
 por	
 la	
 aplicación	
 en	
 el	

directorio	
 de	
 documentos	
 y	
 definido	
 en	
 la	
 constante	
 system.DocumentsDirectory	
 y	
 que	
 es	

usado	
 para	
 ficheros	
 que	
 necesitan	
 permanecer	
 entre	
 varias	
 sesiones	
 de	
 la	
 aplicación.	

	

3.3.2 Ficheros	
 de	
 configuración	

Para	
 la	
 construcción	
 de	
 la	
 aplicación	
 es	
 necesario	
 un	
 fichero	
 de	
 configuración	
 que	

pasamos	
 a	
 explicar	
 a	
 continuación.	
 Debe	
 ser	
 generado	
 por	
 el	
 administrador	
 y	
 es	
 necesaria	

su	
 existecia	
 para	
 que	
 la	
 aplicación	
 funcione	
 con	
 normalidad.	

3.3.2.1 posicion.dat	

Guarda	
 la	
 posición	
 dentro	
 de	
 la	
 escena	
 que	
 estamos	
 visualizando.	
 Se	
 va	
 actualizando	
 al	

cambiar	
 de	
 escena.	
 En	
 caso	
 de	
 interrupción	
 de	
 la	
 aplicación	
 permite	
 volver	
 al	
 punto	

previo	
 al	
 iniciar	
 la	
 aplicación	
 de	
 nuevo,	
 en	
 el	
 caso	
 de	
 que	
 estemos	
 visualizando	
 un	
 tema	

dentro	
 de	
 un	
 capitulo	
 de	
 ejemplos	
 o	
 dentro	
 de	
 unos	
 de	
 los	
 capitulos	
 de	
 diapositivas.	

Contiene	
 el	
 nombre	
 de	
 la	
 escena	
 en	
 la	
 cual	
 estamos	
 situados.	
 Este	
 dato	
 es	
 pasado	
 a	

nuestra	
 función	
 de	
 chequeo	
 de	
 posición	
 y	
 este	
 determina	
 en	
 que	
 posición	
 nos	
 habíamos	

quedado	
 anteriomente.	
 Existen	
 2	
 posibilidades	
 a	
 la	
 hora	
 de	
 guardar	
 en	
 el	
 archivo.	
 Si	
 en	
 la	

escena	
 en	
 la	
 que	
 estamos	
 es	
 necesario	
 guardar	
 la	
 posición,	
 escribimos	
 en	
 el	
 archivo	
 el	

nombre	
 de	
 la	
 escena,	
 por	
 ejemplo	
 formas.	
 En	
 el	
 caso	
 de	
 que	
 no	
 sea	
 necesario	
 escribimos	

un	
 “0”.	
 Cuando	
 la	
 función	
 chequea	
 el	
 archivo	
 posición.dat	
 sabe	
 que	
 si	
 obtiene	
 un	
 “0”	
 no	

es	
 necesario	
 preguntar	
 la	
 ultima	
 posición	
 conocida,	
 en	
 el	
 caso	
 que	
 aparezca	
 una	
 cadena	

pregunta	
 si	
 queremos	
 volver	
 a	
 esa	
 escena.	
 A	
 continuación	
 se	
 muestra	
 una	
 pantall	
 con	
 la	

imagen	
 que	
 nos	
 ofrece	
 el	
 simulador.	
 No	
 es	
 la	
 misma	
 que	
 aparece	
 en	
 el	
 dispositivo,	
 solo	

cambia	
 gráficamente	
 la	
 forma	
 de	
 mostrarse.	

	

	

	

Figura	
 3.18	
 Pantalla	
 de	
 acceso	
 a	
 la	
 ultima	
 posición	
 guardada.	

	

	

	

3.3.3 Ficheros	
 de	
 contenido	

Los	
 ficheros	
 de	
 contenido	
 de	
 la	
 aplicación	
 almacenan	
 los	
 datos	
 para	
 la	
 generación	
 de	
 las	

escenas	
 que	
 contienen	
 texto.	
 	
 En	
 nuestro	
 caso	
 todos	
 esos	
 datos	
 se	
 encuentran	
 dentro	
 de	

la	
 librería	
 variables.lua	
 y	
 la	
 explicamos	
 a	
 continuación.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 32	
 -­‐	

3.3.3.1 variables.lua	

El	
 texto	
 esta	
 almacenado	
 dentro	
 del	
 modulo	
 externo	
 variables.lua.	
 La	
 forma	
 de	

selecionarlo	
 es	
 simple.	
 Mediante	
 la	
 función	
 new(cap,tema)	
 selecionamos	
 las	
 cadenas	
 de	

texto	
 a	
 mostrar	
 y	
 las	
 rutas	
 de	
 los	
 títulos	
 de	
 las	
 escena	
 que	
 luego	
 esta	
 gestióna	
 para	
 que	

aparezcan	
 correctamente.	

	

Según	
 el	
 estado	
 de	
 la	
 variable	
 global	
 language_state	
 se	
 carga	
 el	
 idioma	
 de	
 las	
 variables.	

Podemos	
 ver	
 a	
 continuación	
 una	
 fragmento	
 del	
 código	
 de	
 la	
 librería	
 variables.lua,	

exactamente	
 la	
 función	
 new(cap,tema)	

	

	

variables.lua	

	

function	
 new(cap,tema)	

	

	
 if	
 language_state	
 ==	
 false	
 then	

	
 	

	
 if	
 cap	
 ==	
 1	
 then	

	
 	
 tema_tit	
 =	
 "images/titulos/spanish/introduccion.png"	

	
 	
 myImages	
 =	
 {"images/cap1/1.jpg",	
 "images/cap1/2.jpg",	
 "images/cap1/3.jpg",	
 "images/cap1/4.jpg",	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

"images/cap1/5.jpg",	
 "images/cap1/6.jpg",	
 "images/cap1/7.jpg",	
 "images/cap1/8.jpg"}	
 	
 	

	

	
 end	

	
 	

	
 if	
 cap	
 ==	
 2	
 then	

	
 	
 tema_tit	
 =	
 "images/titulos/spanish/lua.png"	

	
 	
 myImages	
 =	
 {"images/cap2/1.jpg",	
 "images/cap2/2.jpg",	
 "images/cap2/3.jpg",	
 "images/cap2/4.jpg"}	

	
 end	

	
 	

	
 if	
 cap	
 ==	
 3	
 then	

	
 	

	
 	
 tema_tit	
 =	
 "images/titulos/spanish/coronaSDK.png"	

	
 	
 myImages	
 =	
 {"images/cap3/1.jpg",	
 "images/cap3/2.jpg",	
 "images/cap3/3.jpg",	
 "images/cap3/4.jpg"}
	
 	
 	

	

	
 end	

	
 	

	
 	

	
 if	
 cap	
 ==	
 4	
 then	

	
 	
 	

	
 	
 titulo	
 =	
 {"Introduccion	
 I","Introduccion	
 II","Introduccion	
 III","Introduccion	

IV","Formas","Imagenes","Texto	
 ","Grupos","Propiedades","Eventos	
 1",	
 "Eventos	
 2",	
 "Eventos	
 3"}	

	
 	
 numero_temas	
 =	
 12	

	
 	
 	

	
 	
 if	
 tema	
 ==	
 0	
 then	

	
 	
 	

	
 	
 	
 tema_tit	
 =	
 "images/titulos/spanish/visualizacion.png"	

	
 	
 	
 string_introduccion	
 =	
 "	
 Este	
 capitulo	
 nos	
 introduce	
 en	
 la	
 visualizacion	
 de	
 objetos	
 asi	

como	
 los	
 eventos	
 que	
 los	
 controlan.	
 Hemos	
 elegido	
 un	
 juego	
 standard	
 conocido	
 como	
 ''Space	
 Shooter''	
 para	
 mostrar	

las	
 posibilidades	
 que	
 nos	
 ofrece	
 Corona	
 SDK.	
 Vamos	
 a	
 aprovechar	
 el	
 siguiente	
 capitulo,	
 Animacion	
 y	
 Movimiento,	

para	
 terminar	
 de	
 rematar	
 el	
 juego	
 y	
 darle	
 una	
 aparencia	
 real	
 de	
 funcionamiento.	
 Antes	
 de	
 comenzar	
 a	
 construir	
 el	

juego	
 se	
 incluye	
 una	
 introduccion	
 sobre	
 la	
 creacion	
 de	
 objetos	
 y	
 eventos."	

	

	
 	
 end	
 	

	
 	
 	

	
 	
 if	
 tema	
 ==	
 1	
 	
 then	

	
 	
 	

	
 	
 	
 strings	
 =	
 {}	

	
 	
 	
 	
 	
 	
 strings[1]	
 =	
 "display.newRect(x,y,width,height)"	

	
 	
 	
 	
 	
 	
 strings[2]	
 =	
 "display.newRoundedRect(x,y,w,h,radius)"	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 33	
 -­‐	

	
 	
 	
 strings[3]	
 =	
 "display.newCircle(x,y,radius)"	

	
 	
 	
 strings[4]	
 =	
 "display.newLine(x1,y1,x2,y3)"	

	
 	
 	
 strings[5]	
 =	
 "line:append(x3,y3)"	

	
 	
 	
 strings[6]	
 =	
 "object:setFillColor(R,G,B,transparency)"	

	
 	
 	
 strings[7]	
 =	
 "line:setColor(R,G,B,transparency)"	

	
 	
 	
 strings2	
 =	
 {}	

	
 	
 	
 strings2[1]	
 =	
 "Ahora	
 un	
 rectangulo	
 con	
 los	
 bordes	
 redondeados:"	

	
 	
 	
 strings2[2]	
 =	
 "El	
 siguiente	
 es	
 un	
 circulo:"	

	
 	
 	
 strings2[3]	
 =	
 "Tambien	
 es	
 posible	
 dibujar	
 una	
 linea:"	

	
 	
 	
 strings2[4]	
 =	
 "Con	
 la	
 siguiente	
 instruccion	
 podemos	
 incluir	
 otra	
 linea	
 al	
 ultimo	
 punto	
 del	

objeto	
 anterior:"	

	
 	
 	
 strings2[5]	
 =	
 "Para	
 cambiar	
 el	
 color	
 de	
 un	
 objeto:"	

	
 	
 	
 strings2[6]	
 =	
 "El	
 metodo	
 de	
 la	
 linea	
 es	
 distinto:"	

	
 	
 	
 y	
 =	
 {180,255,325,395,505,575,645}	

	
 	
 	
 y2	
 =	
 {120,225,295,365,445,545,615}	

	
 	
 	
 tema_tit	
 =	
 "images/titulos/spanish/introduccion1.png"	

	
 	
 	
 string_introduccion	
 =	
 "Comenzamos	
 la	
 introduccion	
 creando	
 objetos	
 de	
 pantalla,	
 en	

primer	
 lugar	
 un	
 rectangulo:"	

	
 	
 	
 escena_anterior	
 =	
 "cap4"	

	
 	
 	
 escena_siguiente	
 =	
 introduccion2	

	
 	
 	
 fin	
 =	
 7	

………………………	

……………………..	

……………………..	

	
 	

3.3.4 Módulos	
 o	
 librerías	

Como	
 se	
 ha	
 comentado	
 en	
 la	
 estructura	
 del	
 programa,	
 a	
 partir	
 del	
 módulo	
 principal,	

main.lua,	
 se	
 han	
 cargado	
 una	
 serie	
 de	
 módulos	
 externos	
 o	
 librerías	
 que	
 nos	
 permiten	

acceder	
 a	
 funciones	
 y	
 a	
 utliidades	
 que	
 a	
 priori	
 Corona	
 SDK	
 no	
 permite	
 y	
 que	
 nos	
 da	
 un	

plus	
 de	
 comodidad	
 a	
 la	
 hora	
 de	
 programas	
 ya	
 que	
 podemoa	
 adaptar	
 librerías	
 especificas	

para	
 otros	
 proyectos	
 a	
 cualquier	
 otro.	

	

La	
 forma	
 de	
 incluir	
 un	
 modulo	
 en	
 un	
 proyecto	
 es	
 la	
 siguiente:	

	

local	
 ejemplo	
 =	
 require(“ejemplo”)	

	

Dentro	
 del	
 modulo	
 es	
 necesario	
 incluir	
 la	
 siguiente	
 línea	
 para	
 que	
 Corona	
 SDK	
 entienda	
 lo	

que	
 es.	

	

module(...,	
 package.seeall)	

	

El	
 archivo	
 principal,	
 main.lua,	
 contiene	
 la	
 llamada	
 a	
 todos	
 esas	
 librerías	
 pero	
 la	
 librería	

imprescindible	
 para	
 nuestra	
 aplicación	
 es	
 director.lua.	
 Vamos	
 a	
 pasar	
 a	
 explicar	
 como	

funcionan	
 los	
 modulos	
 y	
 en	
 primer	
 lugar	
 comenzamos	
 con	
 el	
 mas	
 importante.	

	

3.3.4.1 director.lua	

El	
 funcionamiento	
 de	
 este	
 modulo	
 es	
 muy	
 sencillo.	
 Es	
 necesario	
 que	
 el	
 main.lua	
 contenga	

la	
 siguente	
 parte	
 de	
 código	
 para	
 añadir	
 la	
 librería.	
 Y	
 cada	
 escena	
 es	
 necesario	
 que	
 siga	
 un	

patrón	
 de	
 código	
 para	
 que	
 todo	
 valla	
 perfecto.	

	

Este	
 es	
 el	
 código	
 que	
 presenta	
 el	
 archivo	
 principal	
 main.lua:	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 34	
 -­‐	

local	
 mainGroup	
 =	
 display.newGroup()	

	

local	
 main	
 =	
 function	
 ()	

	

	
 mainGroup:insert(
 director.directorView	
)	

	

	
 director:changeScene("splash")	

	
 	

	
 return	
 true	

end	

main()	

	
 	

En	
 este	
 caso	
 llamamos	
 a	
 la	
 escena	
 splash.lua.	
 	

	

Lo	
 primero	
 que	
 hace	
 el	
 codigo	
 es	
 crear	
 un	
 grupo	
 de	
 objetos.	
 En	
 el	
 incluiremos	
 los	
 objetos	

de	
 pantalla	
 que	
 creemos	
 y	
 que	
 serán	
 llamados	
 “hijos”.	

	

Luego	
 creamos	
 la	
 función	
 principal	
 de	
 la	
 aplicación	
 que	
 mas	
 tarde	
 llamaremos	
 para	

iniciarla.	

	

Para	
 cambiar	
 de	
 escena	
 simplemente	
 utilizamos	
 la	
 siguiente	
 instrucción:	
 	

	

director:changeScene(escena)	

	

Donde	
 escena	
 es	
 un	
 archivo	
 como	
 por	
 ejemplo:	
 scene.lua	

	

El	
 formato	
 de	
 scene.lua	
 es	
 diferente	
 al	
 main.lua	
 a	
 continuación	
 se	
 explica	
 con	
 mas	
 detalle	

tras	
 mostrar	
 un	
 ejemplo	
 de	
 escena:	

	

new	
 =	
 function	
 ()	

	
 local	
 localGroup	
 =	
 display.newGroup()	

	
 -­‐-­‐	
 Codigo	
 escena	

	
 return	
 localGroup	

end	

	

Creamos	
 un	
 grupo	
 local	
 que	
 solo	
 esta	
 dentro	
 de	
 la	
 escena.	
 Es	
 necesario	
 incluir	
 cada	

objetos	
 de	
 pantalla	
 que	
 se	
 cree	
 dentro	
 del	
 grupo	
 porque	
 de	
 cara	
 a	
 una	
 gestión	
 correcta	

de	
 la	
 memoria	
 en	
 la	
 aplicación,	
 que	
 como	
 se	
 ha	
 comentado,	
 es	
 importante	
 en	
 dispositivos	

móviles,	
 se	
 ha	
 utilizado	
 una	
 estructura	
 basada	
 en	
 objetos	
 de	
 visualización	
 o	
 display	

objects.	
 Al	
 cambiar	
 de	
 escena	
 cada	
 uno	
 de	
 los	
 objetos	
 incluidos	
 son	
 eliminados	
 y	

resolvemos	
 del	
 problema	
 de	
 la	
 memoria	
 de	
 un	
 plumazo.	
 Tambien	
 son	
 eliminados	
 los	

posible	
 eventos	
 asociados	
 a	
 los	
 objetos.	

	

Las	
 posibilidades	
 que	
 nos	
 ofrece	
 esta	
 librería	
 para	
 cambiar	
 de	
 escena	
 son	
 las	
 siguientes:	

	

director:changeScene(params,	
 escena,	
 efecto)	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 35	
 -­‐	

params	
 =	
 estos	
 parámetros	
 estarán	
 disponibles	
 en	
 la	
 siguiente	
 escene.	
 Su	
 formato	

solo	
 puede	
 ser	
 el	
 de	
 una	
 tabla.	
 Ha	
 ido	
 predeterminado	
 por	
 el	
 autor.	

	

escena	
 =	
 archivo	
 con	
 extensión	
 punto	
 lua.	

	

efecto	
 =	
 ha	
 sido	
 preconfigurado	
 por	
 el	
 autor,	
 como	
 ejemplos	
 downFlip,	
 fade….	

	
 	

3.3.4.2 util.lua	

En	
 ella	
 estan	
 incluidas	
 ciertas	
 herramientas	
 que	
 utilizamos	
 como	
 complemento	
 de	
 las	

librerias	
 de	
 lua	
 y	
 las	
 propias	
 de	
 Corona	
 SDK.	
 A	
 continuacion	
 enumeramos	
 todas	
 las	

funciones	
 incluidas	
 en	
 este	
 librería:	

	

	

function	
 ParseCSVLine	
 (line,sep)	
 	

	

Esta	
 función	
 lo	
 que	
 hace	
 es	
 separar	
 el	
 contenido	
 de	
 una	
 cadena	
 que	
 esta	
 separada	
 por	
 un	

carácter	
 especifico	
 en	
 varias	
 cadenas	
 dentro	
 de	
 una	
 tabla.	

Parametros	
 de	
 entrada:	
 	
 	
 	

	

line	
 =	
 linea	
 con	
 valores	
 separados	
 con	
 un	
 caracter	

sep	
 =	
 caracter	
 separador.	
 Si	
 no	
 se	
 especifica	
 se	
 usa	
 la	
 coma	
 ','	

	

Parametro	
 de	
 salida:	
 	

	

Devuelve	
 una	
 tabla	
 de	
 strings	
 con	
 los	
 parámetros	
 que	
 antes	
 estaban	

separados.	

	

	

loadValue	
 =	
 function(
 strFilename	
)	

	

Esta	
 función	
 permite	
 cargar	
 en	
 una	
 cadena	
 el	
 contenido	
 de	
 un	
 archivo.	

	

Parametros	
 de	
 entrada:	
 	
 	
 	

	

srtFilename	
 =	
 archivo	
 que	
 va	
 a	
 ser	
 procesado	

	

Parametro	
 de	
 salida:	
 	

	

Devuelve	
 un	
 string	
 con	
 el	
 contenido	
 del	
 archivo	

	

	

saveValue	
 =	
 function(
 strFilename,	
 strValue	
)	

	

Esta	
 función	
 guarda	
 el	
 contenido	
 de	
 una	
 string	
 dentro	
 de	
 un	
 archivo	

	

Parametros	
 de	
 entrada:	
 	
 	
 	

	

srtFilename	
 =	
 archivo	
 que	
 va	
 a	
 ser	
 procesado	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 36	
 -­‐	

srtValue	
 =	
 string	
 que	
 va	
 a	
 ser	
 guardada	

	

Parametro	
 de	
 salida:	
 	

	

No	
 tiene.	

	

	

getPosicionGuardada	
 =	
 function	
 ()	

	

La	
 función	
 se	
 encarga	
 de	
 comprobar	
 si	
 hay	
 alguna	
 posición	
 guardada	
 al	
 entrar	
 en	
 la	

aplicación	
 de	
 nuevo.	

	

Parametros	
 de	
 entrada:	
 	
 	
 	

	

No	
 tiene.	

	

Parametro	
 de	
 salida:	
 	

Devuelve	
 si	
 hay	
 capitulo	
 guardado	
 y	
 en	
 su	
 caso	
 un	
 string	
 con	
 el	
 nombre	
 del	

capitulo	
 guardado.	

	

	

crearConfiguracion	
 =	
 function	
 (language,grupo)	

	

Esta	
 función	
 crea	
 el	
 menú	
 de	
 configuración	
 de	
 la	
 aplicación.	

	

Parametros	
 de	
 entrada:	
 	
 	
 	

	

language	
 =	
 idioma	
 que	
 debe	
 mostrar	
 el	
 menú	

grupo	
 =	
 el	
 grupo	
 local	
 de	
 la	
 escena	

	

Parametro	
 de	
 salida:	
 	

	

Devuelve	
 un	
 grupo,	
 que	
 no	
 es	
 mas	
 que	
 el	
 propio	
 menú.	
 Con	
 su	
 eventos,	

botones…	

	

3.3.4.3 movieClip.lua	

Este	
 modulo	
 es	
 propio	
 de	
 Corona	
 SDK	
 pero	
 no	
 viene	
 incluido	
 en	
 la	
 aplicación	
 y	
 es	

necesario	
 hacerlo	
 manualmente.	
 Es	
 útil	
 para	
 crear	
 animaciones.	
 Hemos	
 explicado	
 su	

funcionamiento	
 en	
 el	
 tema	
 de	
 animación	
 y	
 movimiento	
 y	
 lo	
 hemos	
 utilizado	
 en	
 algún	

juego.	
 Para	
 agregarla	
 al	
 proyecto	
 simplemente	
 basta	
 con	
 copiar	
 el	
 archivo	
 movieClip.lua	

dentro	
 de	
 nuestra	
 carpeta	
 de	
 aplicación.	

	

3.3.4.4 ui.lua	

Otro	
 modulo	
 propio	
 de	
 Corona	
 SDK	
 no	
 incluido	
 inicialmente.	
 Sirve	
 para	
 crear	
 botones	
 con	

animación.	
 Es	
 fácil	
 de	
 usar.	
 Simplemente	
 permite	
 crear	
 el	
 botón	
 al	
 dale	
 como	
 parámetros	

las	
 imágenes	
 y	
 la	
 funciona	
 asociada.	
 Aquí	
 un	
 ejemplo:	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 37	
 -­‐	

local	
 buttonMenu	
 =	
 function	
 (
 event	
)	

	

	
 -­‐-­‐	
 Accion	
 a	
 realizar	
 	

	

end	
 	

	
 	
 	
 	
 	

btmenu	
 =	
 ui.newButton{	

	
 	
 default	
 =	
 “menu.png",	

	
 	
 over	
 =	
 "menu_over.png",	

	
 	
 onEvent	
 =	
 buttonMmenu,	

	
 	
 id	
 =	
 "btmenu"	

	
 	
 }	
 	
 	
 	
 	
 	
 	
 	

	

3.3.4.5 showText	

Este	
 modulo	
 ha	
 sido	
 creado	
 especificacmente	
 para	
 este	
 proyecto.	
 Lo	
 usamos	
 para	
 darle	
 la	

animación	
 a	
 una	
 cadena	
 dentro	
 de	
 los	
 capitulos	
 de	
 ejemplo.	
 Su	
 funcionamiento	
 es	

sencillo.	
 Le	
 puedes	
 pasar	
 como	
 parámetro	
 un	
 string	
 y	
 te	
 carga	
 cada	
 letra	
 del	
 string	

individualmente.	
 Es	
 posible	
 configurar	
 parámetros	
 como	
 el	
 tiempo	
 entre	
 letras,	
 	
 longitud	

del	
 texto,	
 posiciones.	
 La	
 dificultad	
 de	
 este	
 modulo	
 radica	
 en	
 que	
 ha	
 sido	
 necesario	

individualizar	
 el	
 tamaño	
 de	
 cada	
 letra	
 para	
 que	
 al	
 mostrarlas	
 todas	
 juntas	
 den	
 una	

sensación	
 de	
 coesion	
 y	
 parezca	
 que	
 es	
 un	
 string	
 y	
 una	
 suma	
 suma	
 de	
 varios.	
 A	

continuación	
 se	
 detalle	
 la	
 función.	
 	

	

	

function	
 draw(
 string	
 ,	
 x	
 ,	
 y	
 ,	
 color	
 ,	
 tamaño,	
 anchura	
 ,	
 tiempo	
 ,	
 sonido	
 ,	
 cap,	
 tema1,	
 id	
 ,	

tope,	
 flag)	

	

	

Parametros	
 de	
 entrada:	
 	
 	
 	

	

string	
 =	
 cadena	
 a	
 mostrar	

x,	
 y	
 =	
 posiciones	
 del	
 comienzo	
 del	
 string	

color	
 =	
 los	
 colores	
 posibles	
 son	
 “blanco”,	
 “gris”	
 y	
 “negro”	

tamaño	
 =	
 de	
 la	
 fuente	

anchura	
 =	
 el	
 texto	
 cambia	
 de	
 línea	

tiempo	
 =	
 entre	
 letras	

sonido	
 =	
 se	
 reproduce	
 cuando	
 imprime	
 una	
 letra	

cap	
 ,	
 tema1,	
 id	
 =	
 	
 esta	
 relacionado	
 con	
 el	
 tema	
 que	
 visualizamos	

tope	
 =	
 cada	
 tema	
 visualiza	
 un	
 numero	
 de	
 veces	
 este	
 complemento	

flag	
 =	
 depende	
 de	
 esta	
 variable	
 para	
 comportarse	
 de	
 una	
 forma	
 u	
 otra	

	

Parametro	
 de	
 salida:	
 	

	

Devuelve	
 2	
 grupos.	
 El	
 primero	
 con	
 el	
 string	
 cargado	
 y	
 el	
 segundo	
 que	

devuelve	
 es	
 el	
 ejemplo	
 que	
 se	
 carga	
 dentro	
 de	
 la	
 funcion	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 38	
 -­‐	

3.3.4.6 tableView.lua	

Este	
 es	
 necesario	
 para	
 que	
 funcione	
 la	
 tabla	
 de	
 capitulos	
 del	
 menú	
 principal.	
 Es	
 un	
 widget	

que	
 proporciona	
 Corona	
 SDK	
 y	
 va	
 muy	
 bien	
 para	
 este	
 tipo	
 de	
 objetos.	
 Se	
 agrega	
 mediante	

el	
 archivo	
 en	
 la	
 carpeta.	
 Le	
 pasamos	
 los	
 parámetros	
 de	
 configuración	
 mediante	
 una	
 tabla	

de	
 strings	
 donde	
 se	
 incluyen	
 los	
 títulos	
 y	
 subtitulos	
 de	
 la	
 misma.	
 Es	
 nuestro	
 caso	
 se	
 ha	

utilizado	
 una	
 tableView	
 modificada	
 para	
 mostrar	
 una	
 imagen	
 en	
 el	
 lado	
 izquierdo	
 de	
 cada	

línea.	

	

	

	

	

3.3.4.7 slideView.lua	

Otro	
 widget	
 que	
 nos	
 facilita	
 Corona	
 SDK.	
 En	
 nuestro	
 caso	
 se	
 ha	
 modificado	
 internamente	

para	
 adaptarlo	
 a	
 nuestras	
 necesidades.	
 Lo	
 hemos	
 utilizado	
 en	
 los	
 capitulos	
 de	

diapositivas.	
 Nos	
 permite	
 deslizar	
 con	
 el	
 dedo	
 entre	
 las	
 diferentes	
 imágenes	
 hacia	
 un	
 lado	

como	
 para	
 otro.	
 Es	
 necesario	
 incluir	
 el	
 archivo	
 para	
 agregarlo	
 al	
 proyecto.	

3.3.4.8 examples.lua	

Esta librería es la responsable de cargar los ejemplos de los capitulo que se usan para
aprender a programas. Incluye una función que al pasarle unos parámetros nos devuelve un
grupo con el contenido de lo que le estamos solicitando. A continuación se muestra la
función que usamos:

function	
 new(cap,tema,id)	

A	
 través	
 de	
 los	
 parámetros	
 la	
 función	
 sabe	
 que	
 tiene	
 que	
 mostrar.	
 En	
 su	
 interior	
 hay	
 un	

entramado	
 de	
 condicionales	
 que	
 son	
 las	
 encargadas	
 de	
 elegir	
 el	
 objeto	
 a	
 mostrar.	

	

3.3.4.9 variables.lua	

La	
 ultima	
 librería	
 que	
 pasamos	
 a	
 explicar	
 es	
 sin	
 duda	
 es	
 la	
 mas	
 importante	
 después	
 de	
 la	

directoraClass	
 dado	
 su	
 contenido.	
 Anteriomente	
 la	
 hemos	
 comentado	
 como	
 librería	
 de	

contenido.	
 En	
 ella	
 se	
 almacenan	
 todas	
 las	
 variables	
 globales	
 que	
 aparecen	
 en	
 la	
 aplicación	

asi	
 como	
 la	
 funciones	
 que	
 cargan	
 el	
 contenido	
 en	
 la	
 mayoría	
 de	
 las	
 escenas.	
 Ademas	

están	
 guardadas	
 también	
 las	
 tablas	
 que	
 pasamos	
 como	
 parámetro	
 a	
 una	
 escena	
 cuando	
 la	

cambiamos.	
 Vamos	
 a	
 enumerar	
 la	
 funciones	
 que	
 la	
 ocupan	
 y	
 para	
 que	
 sirven	
 cada	
 una	
 de	

ellas	
 asi	
 como	
 todas	
 las	
 variables	
 globales	
 que	
 aparecen.	

	

Variables	
 Globales:	

	

language_state	
 =	
 false	
 	
 -­‐-­‐	
 Estado	
 del	
 idioma	

sound_state	
 =	
 true	
 	
 -­‐-­‐	
 Estado	
 del	
 sonido	

animation_state	
 =	
 true	
 	
 -­‐-­‐	
 Estado	
 de	
 la	
 animacion	

estado_temasGroup	
 =	
 false	
 	
 -­‐-­‐	
 Estado	
 del	
 grupo	
 temasGroup	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 39	
 -­‐	

Funciones:	

	

	

new	
 =	
 function	
 (cap,	
 tema)	

	

Es	
 la	
 encargada	
 de	
 cargar	
 el	
 contenido	
 a	
 mostrar	
 en	
 una	
 escena.	
 Como	
 vemos	
 los	

parámetros	
 de	
 carga	
 son	
 necesarios	
 para	
 que	
 la	
 función	
 sepa	
 que	
 debe	
 mostrar.	
 Esta	

función	
 también	
 detecta	
 el	
 idioma	
 del	
 string	
 y	
 devuelve	
 el	
 correcto.	
 	

	

	

	

new2	
 =	
 function	
 (
)	

	

Se	
 ocupa	
 de	
 cargar	
 la	
 pantalla	
 de	
 configuración.	
 Dependiendo	
 de	
 estado	
 de	
 la	
 variable	

language_state	
 carga	
 un	
 idioma	
 u	
 otro.	

	

	

new2	
 =	
 función	
 ()	

	

En	
 ella	
 esta	
 incluida	
 la	
 tabla	
 necesaria	
 para	
 el	
 objeto	
 tableView.	
 Tambien	
 diferencia	
 entre	

el	
 idioma	
 que	
 necesitemos.	

	

	

new4	
 =	
 función	
 ()	

	

Esta	
 función	
 también	
 se	
 utilizar	
 en	
 la	
 pantalla	
 de	
 configuración	
 y	
 es	
 la	
 encargada	
 de	

determinar	
 en	
 que	
 posición	
 debe	
 situarse	
 los	
 botónes	
 de	
 activado	
 de	
 sonido	
 y	
 de	

animación.	

new5	
 =	
 function	
 ()	

	

Esta	
 función	
 la	
 utilizamos	
 en	
 la	
 pantalla	
 de	
 bienvenida.	
 Determina	
 que	
 idioma	
 debemos	

elegir	
 a	
 la	
 hora	
 de	
 mostrar	
 el	
 titulo	
 y	
 los	
 textos.	

	

content	
 =	
 function(cap,tema,tema_seleccionado)	

	

Crea	
 todos	
 los	
 eventos	
 relacionados	
 con	
 la	
 barra	
 Content.	
 Le	
 damos	
 parámetros	
 dado	
 que	

cada	
 capitulo	
 es	
 distinto	
 y	
 es	
 necesario	
 caracterizarlo	
 individualmente.	

	

Tablas	
 de	
 parámetros:	

	

Como	
 hemos	
 comentado	
 anteriomente	
 podemos	
 pasar	
 parámetros	
 entre	
 escenas	
 pero	

solo	
 mediante	
 tablas.	
 Pues	
 eso	
 es	
 lo	
 que	
 hacemos	
 con	
 estas	
 tablas.	
 Estan	
 configuradas	
 de	

tal	
 forma	
 que	
 cuando	
 llamas	
 a	
 la	
 escena	
 scene.lua	
 le	
 pasas	
 los	
 paremetros	
 necesarios	

para	
 configurar	
 esa	
 escena.	
 La	
 escena	
 es	
 común	
 para	
 todos	
 los	
 	
 capitlos	
 pero	
 su	
 contenido	

no,	
 por	
 lo	
 que	
 después	
 de	
 pasar	
 estos	
 parámetros	
 llamamos	
 a	
 la	
 function	
 de	
 la	
 librería	

variables	
 con	
 esos	
 parámetros	
 y	
 asi	
 conseguimos	
 cargar	
 lo	
 que	
 nos	
 interesa.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 40	
 -­‐	

3.3.5 Titulos	
 de	
 la	
 aplicacion	

	

Para	
 realizar	
 los	
 títulos	
 de	
 la	
 aplicación	
 se	
 ha	
 utlizado	
 un	
 recurso	
 Web	
 gratuito	
 y	
 que	

aparece	
 en	
 http://cooltext.com/	
 Es	
 posible	
 generar	
 miles	
 tipos	
 de	
 fuentes	
 para	
 títulos.	
 A	

continuación	
 se	
 muestra	
 una	
 pantalla	
 de	
 lo	
 pasos	
 para	
 genenar	
 un	
 titulo	
 de	
 la	
 aplicación.	

	

	

	

Figura	
 3.19.	
 Primer	
 paso	
 para	
 creación	
 de	
 titulo	

	

Lo	
 primero	
 es	
 seleccionar	
 el	
 estilo	
 del	
 titulo	
 que	
 queremos.	
 Pulsamos	
 encima	
 del	
 que	
 mas	

nos	
 guste.	
 	

	

	

Figura	
 3.20.	
 Segundo	
 paso	
 para	
 creación	
 de	
 titulo	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 41	
 -­‐	

	

En	
 el	
 siguiente	
 paso	
 introducimos	
 el	
 titulo	
 en	
 el	
 cuadro	
 de	
 texto.	
 Podemos	
 cambiar	
 la	

fuente	
 del	
 titulo	
 asi	
 como	
 el	
 color.	
 	

Elegimos	
 el	
 formato	
 que	
 queremos	
 de	
 la	
 imagen	
 y	
 pulsamo	
 el	
 botón	
 render	
 Logo	
 para	

generar	
 el	
 titulo.	

	

Figura	
 3.21.	
 Aspecto	
 del	
 titulo	
 definitivo	

	

3.3.6 Adaptación	
 dinámica	
 de	
 contenido	

	

	

Figura	
 3.22.	
 Dispositivo	
 móvil	
 Ipad	

	

Para	
 comenzar	
 es	
 necesario	
 decidir	
 el	
 tamaño	
 de	
 contenido,	
 con	
 independencia	
 de	
 las	

dimensiones	
 de	
 la	
 pantalla.	
 Este	
 método	
 proporciona	
 el	
 sistema	
 de	
 coordenadas	
 para	
 el	

código	
 de	
 las	
 aplicaciones	
 realizadas	
 con	
 Corona	
 SDK,	
 que	
 será	
 independiente	
 de	
 la	

cantidad	
 real	
 de	
 píxeles	
 en	
 la	
 pantalla	
 del	
 dispositivo.	

	

Para	
 esto	
 se	
 define	
 el	
 tamaño	
 que	
 queremos	
 al	
 que	
 se	
 adapte	
 nuestra	
 aplicación,	
 el	

tamaño	
 del	
 contenido,	
 en	
 el	
 archivo	
 de	
 la	
 aplicación	
 ubicado	
 config.lua.	
 El	
 código	
 no	
 tiene	

por	
 qué	
 conocer	
 el	
 tamaño	
 real	
 de	
 la	
 pantalla.	

	

Vamos	
 a	
 configurar	
 nuestro	
 archivo	
 config.lua,	
 este	
 se	
 encarga	
 de	
 escalar	
 el	
 contenido	
 de	

la	
 pantalla	
 del	
 dispositivo	
 que	
 visualiza	
 la	
 aplicación	
 debido	
 al	
 modo	
 de	
 escalado	

(parámetro	
 scale	
 definido	
 en	
 config.lua)	

3.3.6.1 config.lua	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 42	
 -­‐	

Hay	
 varios	
 modos:	

	

Ø letterbox:	
 es	
 el	
 modo	
 más	
 común,	
 ya	
 que	
 no	
 se	
 recorta	
 el	
 contenido	
 aunque	
 por	
 el	

contrario	
 puede	
 mostrar	
 zonas	
 negras.	
 En	
 la	
 aplicación	
 se	
 pueden	
 detectar	
 esas	

zonas	
 y	
 definir	
 un	
 contenido	
 genérico,	
 por	
 ejemplo.	

	

Ø ZoomEven:	
 En	
 este	
 modo,	
 el	
 contenido	
 se	
 escala	
 para	
 llenar	
 completamente	
 la	

pantalla,	
 aunque	
 puede	
 que	
 alguna	
 parte	
 de	
 la	
 pantalla	
 vea	
 recortados	
 los	
 bordes.	

Esto	
 significa	
 que	
 nunca	
 habrá	
 zonas,	
 pero	
 puede	
 quedar	
 parte	
 del	
 contenido	

fuera	
 de	
 la	
 pantalla.	

	

Ø ZoomStretch:	
 El	
 contenido	
 se	
 escala	
 para	
 completar	
 totalmente	
 la	
 anchura	
 y	
 altura	

de	
 la	
 pantalla.	
 No	
 se	
 pierde	
 contenido	
 pero	
 se	
 puede	
 distorsionar	
 si	
 el	
 dispositivo	

tiene	
 una	
 relación	
 de	
 aspecto	
 diferente	
 de	
 su	
 contenido.	
 También	
 puede	
 parecer	

extraña	
 cuando	
 se	
 gira,	
 ya	
 que	
 la	
 distorsión	
 es	
 determinada	
 por	
 la	
 orientación	

inicial.	

	

Ø sin	
 parámetro	
 scale:	
 Esto	
 desactiva	
 el	
 modo	
 de	
 escalado	
 de	
 contenidos,	
 y	
 produce	

el	
 mismo	
 resultado	
 que	
 no	
 tener	
 un	
 archivo	
 config.lua.	

	

El	
 fichero	
 config.lua,	
 permite	
 personalizar	
 la	
 configuración	
 por	
 dispositivos.	
 	

	

config.lua	

-- config.lua

-- Autor: CARLOS LORENZO PARICIO --
-- Version: 1.0 --

application =
{
 content =
 {
 width = 768,
 height = 1024,
 scale = "letterbox",
 fps = 30,
 antialias = true,

 },
}

	

Como	
 podemos	
 observar	
 hemos	
 utilizado	
 el	
 modo	
 normal	
 o	
 letterbox.	
 Configuramos	
 las	

dimensiones	
 de	
 la	
 pantalla	
 para	
 nuestro	
 dispositivo.	
 La	
 pantalla	
 del	
 Ipad	
 tiene	
 una	

resolución	
 de	
 768	
 por	
 1024	
 pixeles.	
 El	
 parámetro	
 fps	
 establece	
 que	
 cada	
 30	
 frames	
 por	

segundo	
 se	
 actualiza	
 el	
 entrerframe	
 de	
 la	
 aplicación.	

	

Respecto	
 al	
 paremtetro	
 de	
 configuración	
 antialias,	
 Corona	
 SDK	
 utiliza	
 un	
 software	
 anti-­‐
aliasing	
 para	
 los	
 objetos	
 vectoriales.	
 Anteriormente	
 este	
 sistema	
 estaba	
 implementado	

por	
 defecto	
 pero	
 ahora	
 aparece	
 deshabilitado	
 y	
 es	
 necesario	
 activar,	
 este	
 mejorará	

considerablemente	
 el	
 rendimiento	
 de	
 objetos	
 vectoriales	
 y	
 debería	
 haber	
 poca	
 diferencia	

visual	
 en	
 los	
 dispositivos	
 más	
 actuales	
 que	
 presentan	
 pantallas	
 de	
 alta	
 definición.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 43	
 -­‐	

	

3.3.6.2 build.settings	

	

Este	
 archive	
 es	
 necesario	
 que	
 aparezca	
 en	
 la	
 raiz	
 de	
 nuestro	
 proyecto	
 si	
 queremos	

configurar	
 ciertos	
 parametros	
 de	
 nuestra	
 aplicacion.	

	

build.settings	

--build.settings--

-- Autor: CARLOS LORENZO PARICIO --
-- Version: 1.0 --

settings = {
 orientation =
 {
 default = "landscapeRight",

 supported = { "landscapeLeft", "landscapeRight" },

 },
}

	

Como	
 puede	
 observarse	
 nuestra	
 orientacion	
 por	
 defecto	
 esta	
 configurada	
 como	

landscaprRight.	
 Esto	
 quiere	
 decir	
 la	
 aplicacion	
 esta	
 diseñada	
 para	
 funcionar	

horizontalmente	
 y	
 que	
 ademas	
 admite	
 girarla	
 como	
 se	
 observa	
 en	
 el	
 parametro	

supported.	
 Es	
 posible	
 incluir	
 opciones	
 portrait,	
 portraitUpsideDown	
 o	
 landscape.	
 	
 	

	

3.3.7 Pruebas	
 y	
 verificación	

Antes	
 de	
 decir	
 que	
 la	
 aplicación	
 esta	
 terminada	
 es	
 necesario	
 que	
 esta	
 sea	
 sometida	
 a	
 un	

periodo	
 de	
 prueba	
 y	
 comprobación	
 de	
 su	
 funcionamiento.	

	

Para	
 ello	
 hemos	
 elegido	
 la	
 forma	
 de	
 tradicional	
 de	
 hacerlo	
 y	
 es	
 ir	
 probando	
 todas	
 las	

opciones	
 posibles	
 que	
 admite	
 cada	
 escena	
 de	
 la	
 aplicación.	
 	

	

Dado	
 que	
 hay	
 escenas	
 que	
 son	
 similares	
 el	
 trabajo	
 se	
 simplifica	
 y	
 es	
 posible	
 reducir	

bastante	
 el	
 tiempo	
 de	
 verificación.	
 	

	

Tras	
 someter	
 a	
 prueba	
 la	
 aplicación	
 se	
 detectan	
 fallos	
 de	
 funcionamiento	
 que	
 son	

anotados	
 en	
 un	
 blog	
 de	
 ensayos	
 y	
 que	
 mas	
 tarde	
 son	
 analizados	
 mediante	
 el	
 simulador	

corrigiéndolos	
 a	
 medida	
 que	
 van	
 aparenciendo.	

	

En	
 nuestro	
 caso	
 ha	
 aparecido	
 un	
 fallo	
 bastante	
 grave	
 y	
 para	
 el	
 que	
 ha	
 sido	
 necesario	

bastante	
 tiempo	
 para	
 encontrar	
 su	
 solución.	
 A	
 continuación	
 se	
 explica	
 de	
 que	
 fallo	
 se	

trata	
 y	
 se	
 comenta	
 por	
 encima	
 los	
 fallos	
 comunes	
 y	
 de	
 fácil	
 solución.	

	

El	
 fallo	
 al	
 que	
 nos	
 referimos	
 nos	
 ha	
 costado	
 detectarlo	
 porque	
 en	
 el	
 simulador	
 no	
 aparece	

pero	
 en	
 el	
 dispositivo	
 si.	
 Asi	
 es	
 difícil	
 detectar	
 fallos	
 y	
 solo	
 haciendo	
 pruebas	
 detalladas	
 es	

posible	
 corregirlos.	
 En	
 este	
 caso	
 el	
 problema	
 procede	
 de	
 las	
 imágenes	
 que	
 mostrarmos	
 en	

en	
 pantalla,	
 particularmente	
 en	
 los	
 botones.	
 Tras	
 diseñar	
 los	
 botones	
 con	
 un	
 programa	
 de	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 44	
 -­‐	

diseño	
 conocido	
 nos	
 dimos	
 cuenta	
 que	
 al	
 construir	
 la	
 aplicación	
 aparecia	
 un	
 error	
 que	
 no	

conseguíamos	
 corregir.	
 Nos	
 dimos	
 cuenta	
 que	
 eliminando	
 el	
 objeto	
 el	
 error	
 desaparecia	
 y	

al	
 proceder	
 a	
 cambiar	
 la	
 imagen	
 a	
 mostrar	
 el	
 fallo	
 ya	
 no	
 aparecia	
 mas.	

	

Otros	
 fallos	
 comunes	
 son	
 las	
 rutas	
 de	
 imágenes.	
 Suelen	
 esta	
 equivocadas	
 y	
 simplemente	

basta	
 con	
 corregirlas	
 o	
 colocar	
 los	
 archivos	
 imagen	
 en	
 la	
 ruta	
 correcta.	

	

Tambien	
 son	
 comunes	
 los	
 errores	
 tipográficos.	
 Al	
 cometer	
 un	
 error	
 en	
 la	
 programación	

detecta	
 que	
 algo	
 no	
 va	
 bien	
 y	
 precisa	
 corrección.	

	

	

3.4 Tareas	
 de	
 administración	

Una	
 vez	
 finalizadas	
 las	
 tareas	
 de	
 desarrollo	
 del	
 código	
 de	
 la	
 aplicación,	
 se	
 deben	
 realizar	

una	
 serie	
 de	
 tareas	
 de	
 administración	
 para	
 poder	
 completar	
 la	
 funcionalidad.	

	

3.4.1 Distribuir	
 aplicaciones	

Una	
 vez	
 que	
 se	
 tienen	
 los	
 elementos	
 para	
 construir	
 la	
 aplicación	
 y	
 ha	
 sido	
 probada,	
 se	

deben	
 realizar	
 las	
 tareas	
 para	
 construir	
 la	
 aplicación.	
 	

	

En	
 el	
 fichero	
 build.settings	
 se	
 pueden	
 añadir	
 una	
 serie	
 de	
 valores	
 opcionales	
 para	
 definir	

aspectos	
 de	
 la	
 construcción.	
 Se	
 utiliza	
 para	
 establecer	
 la	
 orientación	
 de	
 la	
 aplicación	
 y	
 el	

comportamiento	
 de	
 auto-­‐rotación,	
 junto	
 con	
 una	
 variedad	
 de	
 plataformas	
 específicas	

parámetros	
 de	
 construcción.	

	

	

	

	

	

Para	
 el	
 caso	
 de	
 dispositivos	
 con	
 iOS	
 la	
 tareas	
 necesarias	
 para	
 obtener	
 la	
 aplicacion:	

1	
 -­‐	
 Developer	
 account	
 y	
 	
 Developer	
 Certificate	

Lo	
 primero	
 es	
 inscribirse	
 en	
 el	
 iPhone	
 Developer	
 Program	
 de	
 Apple	
 en	
 la	
 siguiente	

dirección:	

	

http://developer.apple.com/iphone/program/	
 	

Luego	
 es	
 necesario	
 solicitar	
 un	
 certificado	
 de	
 desarrollador	
 (Developer	
 Certificate)	
 	

	

2	
 -­‐	
 Keychain	
 certificate	

Una	
 vez	
 que	
 se	
 han	
 inscrito	
 en	
 el	
 programa	
 de	
 desarrolladores,	
 se	
 debe	
 utilizar	
 la	

herramienta	
 de	
 "Keychain	
 access",	
 ubicado	
 en	
 la	
 carpeta	
 de	
 servicios	
 con	
 el	
 fin	
 de	
 crear	

una	
 solicitud	
 de	
 certificado.	
 Esto	
 se	
 utiliza	
 para	
 autenticar	
 su	
 equipo.	

	

3	
 -­‐	
 Añadir	
 un	
 dispositivo	

Se	
 debe	
 registrar	
 un	
 dispositivo	
 para	
 el	
 que	
 se	
 va	
 a	
 construer	
 la	
 aplicación	
 por	
 lo	
 que	
 se	

necesita	
 el	
 número	
 Uniques	
 Device	
 Identification	
 (UDID).	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 45	
 -­‐	

4	
 -­‐	
 App	
 IDs	

Con	
 el	
 fin	
 de	
 obtener	
 perfiles	
 de	
 aprovisionamiento,	
 primero	
 se	
 debe	
 crear	
 una	
 ID	
 de	
 la	

aplicación.	
 El	
 ID	
 de	
 la	
 aplicación	
 permite	
 a	
 una	
 aplicación	
 comunicarse	
 con	
 el	
 servicio	
 de	

notificaciones	
 push	
 y	
 /	
 o	
 cualquier	
 otro	
 hardware	
 externo	
 que	
 tiene	
 la	
 aplicación.	
 Un	
 ID	

de	
 la	
 aplicación	
 consiste	
 en	
 un	
 10	
 caracteres	
 " Bundle	
 Seed	
 ID"	
 como	
 prefijo	
 generado	
 por	

Apple,	
 y	
 un	
 sufijo	
 " Bundle	
 Identifier”	
 creado	
 por	
 el	
 administrador	
 del	
 equipo	
 en	
 el	
 portal	

del	
 programa.	

	

5	
 -­‐	
 Provisioning	
 profiles	

Hay	
 tres	
 tipos	
 de	
 perfiles	
 de	
 aprovisionamiento	
 para	
 el	
 programa	
 de	
 iPhone:	
 Ad	
 Hoc,	

desarrollo	
 y	
 distribución.	
 El	
 perfil	
 de	
 distribución	
 es	
 lo	
 que	
 se	
 utiliza	
 para	
 crear	
 una	

aplicación	
 con	
 el	
 propósito	
 expreso	
 de	
 ponerlo	
 en	
 la	
 App	
 Store.	

	

6	
 -­‐	
 Construir	
 la	
 aplicación	

La	
 construcción	
 de	
 su	
 aplicación	
 utilizando	
 Corona	
 es	
 un	
 proceso	
 sencillo	
 una	
 vez	
 que	

haya	
 perfiles	
 de	
 aprovisionamiento	
 en	
 su	
 lugar.	
 Para	
 construir	
 la	
 aplicación,	
 abra	
 el	

simulador	
 de	
 Corona	
 y	
 abrir	
 un	
 proyecto	
 (seleccione	
 File>	
 Open	
 ...	
 para	
 abrir	
 el	
 proyecto).	

A	
 continuación,	
 seleccione	
 File>	
 Build>	
 IOS	
 ...	
 Aparecerá	
 el	
 siguiente	
 diálogo:	

	

	

	

	

Figura	
 3.23.	
 Construcción	
 aplicación	
 en	
 iOS	

	

Una	
 vez	
 que	
 haya	
 introducido	
 toda	
 la	
 información	
 pertinente,	
 se	
 pulsa	
 el	
 botón	
 'Build'.	

Una	
 vez	
 que	
 Corona	
 ha	
 completado	
 la	
 construcción,	
 la	
 salida	
 será	
 una	
 aplicación	
 que	
 se	

guarda	
 en	
 un	
 directorio.	

	

7	
 -­‐	
 Subir	
 la	
 aplicación	
 a	
 la	
 App	
 Store	

Una	
 vez	
 que	
 se	
 han	
 construido	
 y	
 probado	
 la	
 aplicación	
 con	
 Corona,	
 es	
 hora	
 de	
 subirlo	
 a	
 la	

App	
 Store.	
 Para	
 ello,	
 se	
 tiene	
 que	
 acceder	
 a	
 "iTunes	
 Connect"	
 en	
 el	
 iPhone	
 Dev	
 Center.	
 Si	

la	
 aplicación	
 va	
 a	
 ser	
 de	
 pago,	
 se	
 tienen	
 que	
 aceptar	
 los	
 contratos	
 de	
 Apple.	
 	

Después	
 de	
 rellenar	
 toda	
 la	
 información	
 necesaria,	
 subir	
 la	
 aplicación,	
 al	
 menos	
 un	

pantallazo,	
 etc,	
 la	
 aflicción	
 entra	
 en	
 el	
 proceso	
 de	
 revisión	
 por	
 parte	
 de	
 Apple.	

	

4 Conclusiones

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 46	
 -­‐	

En	
 este	
 capítulo	
 se	
 ofrecen	
 una	
 serie	
 de	
 conclusiones	
 acerca	
 del	
 trabajo	
 realizado	
 para	
 la	

consecución	
 de	
 los	
 objetivos	
 que	
 se	
 habían	
 marcado	
 en	
 el	
 Proyecto	
 fin	
 de	
 carrera,	
 tanto	

en	
 el	
 aspecto	
 técnico	
 de	
 la	
 aplicación	
 desarrollada	
 como	
 en	
 lo	
 personal.	
 Además,	
 se	

proponen	
 una	
 serie	
 de	
 posibles	
 mejoras	
 de	
 cara	
 a	
 futuras	
 ampliaciones	
 de	
 la	
 aplicación.	
 	

	

En	
 un	
 futuro	
 la	
 actualización	
 de	
 esta	
 aplicación	
 podría	
 ser	
 una	
 nueva	
 propuesta	
 para	
 un	

proyecto	
 Fin	
 de	
 Carrera	
 para	
 que	
 otro	
 alumno	
 que	
 pueda	
 estar	
 interesado	
 la	
 retome	
 y	

complete	
 una	
 serie	
 de	
 mejoras	
 y	
 actualizaciones	
 que	
 mas	
 tarde	
 enumeraremos.	

Los	
 objetivos	
 planteados	
 en	
 el	
 análisis	
 de	
 requisitos	
 del	
 proyecto	
 han	
 sido	
 cumplidos	
 con	

éxito.	

	

Entre	
 las	
 dificultades	
 del	
 proyecto	
 ha	
 estado	
 el	
 aprendizaje	
 de	
 la	
 programación	
 en	
 Corona	

SDK.	
 Se	
 desconocia	
 totalmente	
 la	
 aplicación	
 y	
 se	
 ha	
 necesitado	
 un	
 curso	
 de	
 formación	

impartido	
 por	
 la	
 Universidad	
 de	
 Zaragoza	
 para	
 iniciarse	
 en	
 la	
 plataforma.	
 	

	

Finalmente	
 en	
 este	
 proyecto	
 se	
 ha	
 optado	
 por	
 obtener	
 un	
 resultado	
 final	
 optimizado	
 para	

el	
 iPad	
 dado	
 que	
 este	
 es	
 el	
 dispotivo	
 que	
 el	
 departamento	
 posee	
 para	
 realizar	
 las	
 pruebas	

de	
 testeo.	

	

La	
 realización	
 de	
 este	
 proyecto	
 ha	
 supuesto	
 una	
 ampliación	
 de	
 mis	
 conocimientos	
 de	

programación	
 sobre	
 dispositivos	
 móviles,	
 sobre	
 todo	
 en	
 cuanto	
 al	
 desarrollo	
 de	

aplicaciones	
 multiplataforma,	
 una	
 tendencia	
 que	
 actualmente	
 se	
 está	
 imponiendo	
 en	
 el	

mercado.	

	

Me	
 ha	
 permitido	
 conocer	
 distintas	
 plataformas	
 para	
 el	
 desarrollo	
 de	
 aplicaciones,	
 cada	

una	
 con	
 sus	
 características	
 y	
 particularidades	
 así	
 como	
 profundizar	
 en	
 Corona	
 SDK,	
 una	

herramienta,	
 todavía	
 en	
 evolución,	
 que	
 en	
 un	
 futuro	
 próximo	
 será	
 un	
 referente	
 en	
 este	

campo.	

	

En	
 definitiva,	
 el	
 desarrollo	
 del	
 proyecto	
 además	
 de	
 incrementar	
 el	
 conocimiento	
 sobre	

herramientas	
 y	
 tecnologías,	
 ha	
 supuesto	
 un	
 reto	
 personal	
 importante	
 una	
 vez	
 superadas	

todas	
 las	
 asignaturas	
 de	
 la	
 carrera.	

	

4.1 Mejoras	
 y	
 ampliaciones	

Desde	
 un	
 principio,	
 el	
 diseño	
 del	
 sistema	
 ha	
 sido	
 orientado	
 a	
 futuras	
 ampliaciones,	
 no	

solo	
 de	
 los	
 contenidos	
 como	
 ya	
 se	
 puede	
 realizar,	
 sino	
 de	
 la	
 aplicación	
 en	
 si.	

	

Así	
 pues,	
 algunas	
 de	
 las	
 posibles	
 mejoras	
 serían:	

	

Ø Mejorar	
 la	
 visualización	
 del	
 contenido.	

Ø Optimizar	
 la	
 visualización	
 para	
 todo	
 tipo	
 de	
 dispositivos	
 móviles	
 y	
 tabletas.	

Ø Actualizaciones	
 del	
 contenido	
 desde	
 la	
 propia	
 aplicacion.	

Ø Los	
 temas	
 para	
 una	
 posible	
 actualización	
 del	
 contenido	
 pueden	
 ser:	

	

o Scrolling	
 lateral.	

o Niveles	
 en	
 los	
 juegos	
 construidos.	

o Efectos	
 graficos.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 47	
 -­‐	

o Multijugador.	

o Openfeint.	

o Publicidad.	

	

5 Bibliografía y referencias

Ø ‘Corona	
 SDK.	
 Language	
 and	
 API	
 Reference’.	
 Ansca	
 mobile,	
 2011	

	

Ø Roberto	
 Ierusalimschy,	
 Luiz	
 Henrique	
 de	
 Figueiredo,	
 	
 Waldemar	
 Celes.	
 ‘Lua	
 5.1	

Reference	
 Manual’	
 .	
 Lua.org,	
 2007	

	

Ø Pagina	
 de	
 recursos	
 de	
 documentación	
 de	
 corona	
 SDK:	
 	

http://developer.anscamobile.com/resources	

	

Ø Índice	
 TIOBE	
 de	
 utilización	
 de	
 lenguajes	
 de	
 programación,	

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html	

	

Ø http://www.imatica.org/bloges/2011/04/190486382011.html	

	

6 Plataformas de programación en dispositivos móviles

6.1 Introducción	

La	
 primera	
 cuestión	
 en	
 este	
 proyecto	
 es	
 determinar	
 las	
 distintas	
 alternativas	
 y	

herramientas	
 para	
 el	
 desarrollo	
 de	
 aplicaciones	
 nativas	
 para	
 móviles.	
 	
 Cada	
 plataforma	

tiene	
 su	
 propio	
 lenguaje,	
 herramientas	
 de	
 desarrollo	
 y	
 APIs	
 con	
 los	
 que	
 crear	
 aplicaciones.	
 	

	

Otra	
 opción	
 es	
 la	
 creación	
 de	
 aplicaciones	
 Web	
 para	
 móvil	
 frente	
 a	
 aplicaciones	
 nativas	

de	
 los	
 dispositivos.	

	
 	

La	
 solución	
 más	
 óptima	
 debe	
 pasar	
 por	
 una	
 herramienta	
 “write	
 once,	
 run	
 everywhere”,	
 es	

decir,	
 	
 un	
 software	
 con	
 el	
 que	
 sea	
 posible	
 programar	
 con	
 un	
 lenguaje	
 determinado	
 y	
 que,	

además,	
 permita	
 que	
 la	
 aplicación	
 funcione	
 en	
 varios	
 dispositivos.	
 	

	

Este	
 tipo	
 de	
 herramientas	
 se	
 están	
 popularizando	
 y	
 se	
 han	
 comparado	
 cuatro	
 de	
 ellas:	
 	

	

Ø Adobe	
 Air	
 Mobile	
 (Adobe)	

Ø PhoneGap	
 (Open	
 source)	

Ø Appcelerator	
 (Titanium)	

Ø Corona	
 SDK	
 (Ansca	
 mobile)	

	

6.2 Dispositivos	
 y	
 sistemas	
 operativos	

El	
 mercado	
 de	
 los	
 dispositivos	
 móviles	
 tiene	
 una	
 gran	
 variabilidad	
 y	
 necesita	
 de	
 una	

constante	
 y	
 lógica	
 adaptación.	
 	
 Las	
 características	
 que	
 lo	
 definen	
 son:	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 48	
 -­‐	

Ø Existencia	
 de	
 una	
 gran	
 heterogeneidad,	
 en	
 el	
 que	
 prácticamente	
 para	
 cada	
 una	

de	
 las	
 principales	
 marcas	
 de	
 dispositivos	
 dispone	
 de	
 su	
 propio	
 sistema.	

	

Ø Una	
 visión	
 de	
 un	
 mercado	
 altamente	
 volátil	
 con	
 cambios	
 muy	
 significativos	
 en	

periodos	
 muy	
 cortos.	
 Las	
 cifras	
 disponibles	
 en	
 cualquier	
 “time	
 to	
 market”,	

resulta	
 difícilmente	
 comparable	
 o	
 extrapolar	
 con	
 el	
 de	
 desarrollos	
 realizados	

en	
 otras	
 épocas.	

	

Los	
 sistemas	
 operativos	
 móviles	
 más	
 utilizados	
 actualmente	
 son:	

	

Android	
 :	
 es	
 un	
 sistema	
 operativo	
 basado	
 en	
 Linux	
 diseñado	
 originalmente	
 para	

dispositivos	
 móviles,	
 tales	
 como	
 teléfonos	
 inteligentes,	
 pero	
 que	
 posteriormente	
 ha	

expandido	
 su	
 desarrollo	
 para	
 soportar	
 otros	
 como	
 tablets,	
 reproductores	
 MP3,	
 netbooks,	

PCs	
 e	
 incluso	
 televisores.	
 Android,	
 al	
 contrario	
 que	
 otros	
 sistemas	
 operativos	
 para	

dispositivos	
 móviles	
 como	
 iOS	
 o	
 Windows	
 Phone,	
 se	
 desarrolla	
 de	
 forma	
 abierta	
 y	
 se	

puede	
 acceder	
 tanto	
 al	
 código	
 fuente	
 como	
 al	
 listado	
 de	
 incidencias	
 donde	
 se	
 pueden	
 ver	

problemas	
 aún	
 no	
 resueltos	
 y	
 reportar	
 problemas	
 nuevos.	

	

iOS	
 :	
 iOS	
 (anteriormente	
 denominado	
 iPhone	
 OS)	
 es	
 un	
 sistema	
 operativo	
 móvil	
 de	
 Apple	

desarrollado	
 originalmente	
 para	
 el	
 iPhone,	
 siendo	
 después	
 usado	
 en	
 todos	
 los	

dispositivos	
 iPhone,	
 iPod	
 Touch	
 e	
 iPad.	
 Es	
 un	
 derivado	
 de	
 Mac	
 OS	
 X.	
 La	
 interfaz	
 de	
 usuario	

de	
 iOS	
 se	
 basa	
 en	
 con	
 el	
 concepto	
 de	
 manipulación	
 mediante	
 gestos	
 multitáctil.	
 Los	

elementos	
 de	
 la	
 interfaz	
 se	
 componen	
 por	
 deslizadores,	
 interruptores	
 y	
 botones.	
 La	

respuesta	
 es	
 inmediata	
 y	
 se	
 provee	
 de	
 una	
 interfaz	
 fluida.	

	

BlackBerry	
 OS:	
 es	
 un	
 sistema	
 operativo	
 móvil	
 desarrollado	
 por	
 Research	
 In	
 Motion	
 (RIM)	

para	
 sus	
 dispositivos	
 BlackBerry.	
 El	
 sistema	
 permite	
 multitarea	
 y	
 tiene	
 soporte	
 para	

diferentes	
 métodos	
 de	
 entrada	
 adoptados	
 por	
 RIM	
 para	
 su	
 uso	
 en	
 computadoras	
 de	

mano,	
 particularmente	
 la	
 trackwheel,	
 trackball,	
 touchpad	
 y	
 pantallas	
 táctiles.	

	

Windows	
 Phone:	
 es	
 un	
 sistema	
 operativo	
 móvil	
 compacto	
 desarrollado	
 por	
 Microsoft,	
 y	

pensado	
 para	
 su	
 uso	
 en	
 dispositivos	
 móviles.	
 Se	
 basa	
 en	
 el	
 núcleo	
 del	
 sistema	
 operativo	

Windows	
 CE	
 y	
 cuenta	
 con	
 un	
 conjunto	
 de	
 aplicaciones	
 básicas	
 utilizando	
 las	
 API	
 de	

Microsoft	
 Windows.	
 Está	
 diseñado	
 para	
 ser	
 similar	
 a	
 las	
 versiones	
 de	
 escritorio	
 de	

Windows	
 estéticamente.	

	

Symbian:	
 es	
 un	
 sistema	
 operativo	
 que	
 fue	
 producto	
 de	
 la	
 alianza	
 de	
 varias	
 empresas	
 de	

telefonía	
 móvil,	
 entre	
 las	
 que	
 se	
 encuentran	
 Nokia,	
 Sony	
 Ericsson,	
 Psion,	
 Samsung,	

Siemens,	
 Arima,	
 Benq,	
 Fujitsu,	
 Lenovo,	
 LG,	
 Motorola,	
 Mitsubishi	
 Electric,	
 Panasonic,	

Sharp,	
 etc.	
 El	
 objetivo	
 de	
 Symbian	
 fue	
 crear	
 un	
 sistema	
 operativo	
 para	
 terminales	
 móviles	

que	
 pudiera	
 competir	
 con	
 los	
 existentes	
 en	
 su	
 momento.	
 Se	
 está	
 dejando	
 de	
 utilizar	

aunque	
 su	
 presencia	
 es	
 todavía	
 importante.	

	

Java	
 ME:	
 La	
 plataforma	
 Java	
 Micro	
 Edition,	
 o	
 anteriormente	
 Java	
 2	
 Micro	
 Edition(J2ME),	

es	
 una	
 especificación	
 de	
 un	
 subconjunto	
 de	
 la	
 plataforma	
 Java	
 orientada	
 a	
 proveer	
 una	

colección	
 certificada	
 de	
 APIs	
 de	
 desarrollo	
 de	
 software	
 para	
 dispositivos	
 con	
 recursos	

restringidos.	
 Está	
 orientado	
 a	
 productos	
 de	
 consumo	
 como	
 PDAs,	
 teléfonos	
 móviles	
 o	

electrodomésticos.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 49	
 -­‐	

	

MeeGo:	
 es	
 una	
 plataforma	
 basada	
 en	
 Linux	
 resultado	
 de	
 la	
 unión	
 de	
 los	
 sistemas	

operativos	
 Maemo	
 y	
 Moblin,	
 con	
 el	
 que	
 Intel	
 y	
 Nokia	
 pretendían	
 competir	
 con	
 el	
 sistema	

Android	
 de	
 Google.	
 El	
 proyecto	
 está	
 auspiciado	
 por	
 la	
 Linux	
 Foundation.	

	

Mobile	
 web	
 (HTML	
 and	
 JavaScript)	
 :	
 desarrollo	
 de	
 aplicaciones	
 web	
 para	
 móviles.	

	

Qt:	
 es	
 una	
 biblioteca	
 multiplataforma	
 ampliamente	
 usada	
 para	
 desarrollar	
 aplicaciones	

con	
 una	
 interfaz	
 gráfica	
 o	
 para	
 programas	
 sin	
 interfaz	
 gráfica	
 como	
 herramientas	
 para	
 la	

línea	
 de	
 comandos	
 y	
 consolas	
 para	
 servidores.	
 Es	
 producido	
 por	
 la	
 división	
 de	
 software	
 Qt	

de	
 Nokia.	
 Qt	
 es	
 utilizada	
 en	
 KDE,	
 un	
 entorno	
 de	
 escritorio	
 para	
 sistemas	
 como	
 GNU/Linux	

o	
 FreeBSD,	
 entre	
 otros.	
 Qt	
 utiliza	
 el	
 lenguaje	
 de	
 programación	
 C++	
 de	
 forma	
 nativa,	

adicionalmente	
 puede	
 ser	
 utilizado	
 en	
 varios	
 otros	
 lenguajes	
 de	
 programación	
 a	
 través	
 de	

bindings.	

	

En	
 la	
 siguiente	
 figura	
 se	
 puede	
 apreciar	
 la	
 evolución	
 del	
 porcentaje	
 de	
 utilización	
 de	
 cada	

sistema	
 operativo.	
 Este	
 estudio	
 se	
 ha	
 realizado	
 en	
 los	
 últimos	
 4	
 años	
 y	
 esta	
 basado	
 en	

encuestas	
 online	
 y	
 entrevistas	
 a	
 	
 desarrolladores	
 de	
 75	
 países	
 y	
 	
 a	
 ejecutivos	
 	
 que	
 trabajan	

en	
 	
 la	
 industria	
 móvil	
 en	
 organizaciones	
 comerciales	
 y	
 agencias	
 digitales.	

	

Se	
 observa	
 que	
 Android	
 e	
 iOS	
 son	
 los	
 más	
 utilizados	
 con	
 un	
 53%	
 y	
 un	
 15%	

respectivamente.	
 El	
 incremento	
 del	
 sistema	
 operativo	
 Android	
 de	
 Google	
 es	
 debido	
 al	

crecimiento	
 exponencial	
 de	
 las	
 ventas	
 de	
 dispositivos	
 con	
 ese	
 sistema	
 operativo.	

	

	

	

Figura	
 3.1.	
 Evolucion	
 de	
 la	
 utilización	
 de	
 S.O.	
 móviles.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 50	
 -­‐	

	

Este	
 mismo	
 estudio	
 muestra	
 que	
 los	
 sistemas	
 operativos	
 que	
 los	
 desarrolladores	
 están	

pensando	
 en	
 utilizar	
 para	
 sus	
 desarrollos	
 futuros	
 son	
 Android	
 e	
 iOS.	
 Así	
 mismo,	
 Symbian	

es	
 la	
 plataforma	
 con	
 las	
 mayor	
 tasa	
 de	
 abandono	
 por	
 parte	
 de	
 los	
 desarrolladores.	
 Casi	
 el	

60%	
 de	
 los	
 desarrolladores	
 utilizando	
 actualmente	
 Symbian	
 está	
 pensando	
 en	
 cambiar	
 a	

otros.	
 Tambien	
 cabe	
 destacar	
 el	
 descenso	
 que	
 la	
 compañía	
 RIM	
 ha	
 sufrido	
 probablemente	

por	
 los	
 fallos	
 que	
 sus	
 servidores	
 sufrieron	
 inexplicablemente	
 a	
 lo	
 largo	
 del	
 año	
 2011.	

6.3 Aplicaciones	
 web	
 versus	
 aplicaciones	
 nativas	

Todos	
 los	
 dispositivos	
 móviles	
 tienen	
 uno	
 o	
 varios	
 navegadores	
 y	
 muchos	
 de	
 ellos	
 ya	

soportan	
 HTML5,	
 por	
 lo	
 que	
 una	
 opción	
 de	
 desarrollo	
 de	
 aplicaciones	
 es	
 simplemente,	

crear	
 una	
 aplicación	
 web	
 y	
 usarla	
 desde	
 el	
 navegador	
 de	
 uno	
 de	
 estos	
 dispositivos.	
 	

	

Ventajas:	

Ø Diseño	
 más	
 sencillo:	
 Es	
 suficiente	
 con	
 solo	
 hacer	
 un	
 diseño	
 adaptado	
 a	
 una	

pantalla	
 y	
 resolución	
 pequeñas,	
 simplemente	
 adaptando	
 un	
 CSS	
 por	
 cada	

dispositivo.	
 Además,	
 las	
 aplicaciones	
 web	
 se	
 pueden	
 “tunear”	
 para	
 que	

parezcan	
 aplicaciones	
 nativas:	
 icono	
 de	
 aplicación,	
 pantalla	
 completa,	
 splash	

screen,	
 barra	
 de	
 estado,	
 etc.	

	

Ø Implementación:	
 las	
 aplicaciones	
 web	
 pueden	
 ser	
 desarrolladas	
 en	
 cualquier	

tecnología	
 de	
 servidor,	
 así	
 que	
 podemos	
 usar	
 cualquier	
 lenguaje	
 que	
 ya	
 se	

conozca	
 (Java,	
 Grails,	
 Php,	
 Ruby,	
 Python,…)	
 con	
 la	
 seguridad	
 de	
 que	
 la	

aplicación	
 se	
 verá	
 prácticamente	
 igual	
 en	
 todos	
 los	
 terminales.	

	

Ø Seguridad:	
 Se	
 controla	
 el	
 acceso	
 a	
 la	
 aplicación	
 y	
 se	
 puedes	
 actualizar	
 sin	

necesidad	
 de	
 acción	
 del	
 usuario.	
 	

	

Desventajas:	

	

Ø Acceso	
 APIs	
 del	
 dispositivo:	
 no	
 hay	
 acceso	
 completo	
 a	
 todas	
 las	
 APIs	
 nativas	

del	
 móvil.	
 Aunque	
 la	
 cámara	
 y	
 el	
 micro	
 son	
 accesibles	
 con	
 Flash,	
 todos	

sabemos	
 que	
 esa	
 tecnología	
 está	
 vetada	
 en	
 iOS.	
 Desde	
 HTML5	
 y	
 Javascript,	
 es	

posible	
 acceder	
 a	
 las	
 coordenadas	
 del	
 GPS,	
 pero	
 no	
 en	
 tiempo	
 real	
 ni	
 de	
 la	

misma	
 manera	
 que	
 si	
 pudiéramos	
 acceder	
 a	
 la	
 API	
 del	
 móvil	
 directamente.	
 Y	
 lo	

mismo	
 con	
 otras	
 funciones	
 de	
 los	
 dispositivos.	

	

Ø Mayor	
 implicación	
 de	
 usuario:	
 para	
 usar	
 una	
 aplicación	
 web	
 en	
 un	
 móvil,	
 es	

necesario	
 que	
 el	
 usuario	
 abra	
 el	
 navegador	
 y	
 teclee	
 la	
 dirección,	
 ya	
 sea	
 porque	

la	
 sepa,	
 la	
 haya	
 encontrado	
 en	
 Google.	
 Una	
 vez	
 abierta	
 la	
 aplicación,	
 debe	

añadirla	
 a	
 favoritos	
 o,	
 mejor	
 todavía,	
 crear	
 un	
 icono	
 de	
 acceso	
 directo	
 en	
 el	

móvil	
 para	
 acceder	
 a	
 ella	
 más	
 tarde.	
 	
 Es	
 mucho	
 más	
 fácil	
 descargar	
 una	

aplicación	
 y	
 que	
 aparezca	
 directamente	
 como	
 un	
 icono	
 en	
 nuestro	
 móvil.	

	

	

Ø Velocidad	
 de	
 ejecución	
 y	
 conectividad:	
 Ejecutar	
 una	
 aplicación	
 nativa	
 es	

menos	
 costoso	
 que	
 renderizar	
 HTML	
 e	
 interpretar	
 JavaScript.	
 Además	
 cada	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 51	
 -­‐	

petición	
 desde	
 nuestra	
 aplicación	
 implicará	
 un	
 acceso	
 contra	
 nuestro	
 servidor.	

Una	
 aplicación	
 nativa	
 tiene	
 todos	
 los	
 recursos	
 y	
 procesos	
 guardados	
 en	
 local,	
 y	

solo	
 accede	
 al	
 servidor	
 para	
 obtener	
 o	
 enviar	
 datos	
 si	
 es	
 que	
 los	
 necesita.	
 Por	

tanto,	
 una	
 aplicación	
 web	
 no	
 tiene	
 la	
 fluidez	
 y	
 velocidad	
 de	
 manejo	
 que	
 una	

aplicación	
 nativa.	

	

Ø Monetización:	
 es	
 más	
 fácil	
 que	
 un	
 usuario	
 pague	
 por	
 nuestros	
 servicios	
 si	

simplemente	
 cobramos	
 por	
 nuestra	
 aplicación	
 al	
 descargarla	
 del	
 App	
 Store,	

que	
 no	
 hacer	
 que	
 el	
 usuario	
 se	
 tenga	
 que	
 registrar	
 y	
 efectuar	
 el	
 pago	
 en	

nuestra	
 web,	
 introduciendo	
 manualmente	
 todos	
 sus	
 datos	
 como	
 el	
 número	

tarjeta,	
 dirección,	
 etc.	
 Apple	
 tiene	
 su	
 App	
 Store	
 para	
 IOS	
 y	
 MacOS,	
 Google	
 su	

Chrome	
 Web	
 Store,	
 Google	
 Apps	
 Marketplace	
 y	
 el	
 Android	
 Market,	
 Amazon	
 su	

Amazon	
 Appstore,	
 incluso	
 hay	
 markets	
 alternativos	
 como	
 OpenAppMkt.	
 Cada	

vez	
 más	
 empresas	
 invierten	
 en	
 crear	
 un	
 entorno	
 fácil	
 y	
 cómodo	
 para	
 que	
 el	

usuario	
 pueda	
 descargar,	
 probar	
 y	
 comprar	
 aplicaciones,	
 repartiéndose	
 los	

beneficios.	

6.4 Desarrollo	
 aplicaciones	
 móviles	
 nativas	
 para	
 iOS	
 y	
 Android	

Como	
 se	
 ha	
 indicado	
 anteriormente,	
 cada	
 plataforma	
 tiene	
 su	
 propio	
 lenguaje,	

herramientas	
 de	
 desarrollo	
 y	
 Apis	
 con	
 los	
 que	
 crear	
 aplicaciones.	
 Se	
 detallan	
 los	
 dos	
 más	

importantes,	
 iOS	
 y	
 Android.	

	

IOS	

Utiliza	
 el	
 lenguaje	
 Objective-­‐C,	
 aunque	
 también	
 se	
 puede	
 utilizar	
 C/C++.	
 Con	
 este	
 lenguaje	

podemos	
 crear	
 aplicaciones	
 para	
 Iphone,	
 Ipad	
 y	
 Ipod	
 Couch	
 en	
 sus	
 distintas	
 versiones.	

Hay	
 también	
 distintas	
 versiones	
 de	
 IOS	
 pero	
 todas	
 ellas	
 se	
 programan	
 usando	
 el	
 mismo	

lenguaje.	
 Objective-­‐C	
 tiene	
 una	
 sintaxis	
 un	
 tanto	
 compleja	
 de	
 escribir	
 y	
 de	
 leer.	

	

Xcode	
 es	
 el	
 entorno	
 de	
 desarrollo	
 oficial	
 de	
 Apple.	
 Con	
 él,	
 podemos	
 crear	
 aplicaciones	
 de	

escritorio	
 para	
 Mac	
 y	
 para	
 IOS.	
 También	
 se	
 pueden	
 utilizar	
 editores	
 de	
 texto	
 plano	
 y	

compilar	
 las	
 aplicaciones	
 “a	
 mano”,	
 es	
 una	
 tarea	
 casi	
 imposible.Se	
 necesita	
 de	
 un	

ordenador	
 Mac	
 con	
 el	
 IPhone	
 SDK	
 y	
 para	
 distribuir	
 aplicaciones	
 en	
 el	
 App	
 Store	
 y	
 para	

poder	
 probar	
 las	
 aplicaciones	
 desarrolladas	
 en	
 nuestro	
 propio	
 Iphone/Ipad,	
 es	
 necesario	

adquirir	
 una	
 licencia	
 de	
 desarrollador.	

	

Android	

Android	
 es	
 menos	
 restrictivo.	
 El	
 lenguaje	
 que	
 se	
 utiliza	
 para	
 programar	
 aplicaciones	
 es	

Java	
 y	
 tiene	
 un	
 SDK	
 multiplataforma	
 que	
 funciona	
 en	
 Windows,	
 Linux	
 y	
 Mac.	
 	

Se	
 puede	
 utilizar	
 como	
 entorno	
 de	
 desarrollo	
 un	
 plugin	
 ADT	
 para	
 Eclipse	
 que	
 incluye	
 un	

simulador,	
 que	
 también	
 es	
 multiplataforma,	
 libre	
 y	
 gratuito	

6.5 Desarrollo	
 móvil	
 multiplataforma	

Existen	
 diversas	
 opciones	
 que	
 permiten	
 desarrollar	
 aplicaciones	
 multiplataforma.	
 Un	

software	
 con	
 el	
 que	
 es	
 posible	
 programar	
 con	
 un	
 lenguaje	
 determinado	
 y	
 que,	
 además,	

permite	
 que	
 la	
 aplicación	
 funcione	
 en	
 varios	
 dispositivos	
 con	
 un	
 mismo	
 código.	
 	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 52	
 -­‐	

6.5.1 PhoneGap	
 	

PhoneGap	
 es	
 un	
 sistema	
 para	
 crear	
 aplicaciones	
 usando	
 HTML5,	
 CSS3	
 y	
 Javascript,	

ejecutadas	
 dentro	
 en	
 un	
 componente	
 WebKit	
 del	
 móvil.	
 Provee	
 una	
 serie	
 de	
 librerías	

Javascript	
 desarrolladas	
 en	
 el	
 lenguaje	
 específico	
 de	
 cada	
 plataforma	
 (Objetctive-­‐C	
 para	

IOS,	
 Java	
 para	
 Android,	
 etc)	
 que	
 permiten	
 acceder	
 a	
 las	
 características	
 del	
 móvil	
 como	

GPS,	
 acelerómetro,	
 cámara,	
 contactos,	
 base	
 de	
 datos,	
 filesystem,	
 etc.	
 	

	

Al	
 ser	
 una	
 página	
 web,	
 se	
 tiene	
 acceso	
 al	
 DOM	
 y	
 se	
 puede	
 usar	
 frameworks	
 web	
 como	

jQuery	
 o	
 cualquier	
 otro.	
 Requiere	
 diseñar	
 la	
 aplicación	
 web	
 con	
 los	
 componentes	
 visuales	

típicos	
 del	
 HTML,	
 etc	
 o	
 usar	
 un	
 framework	
 web	
 mobile	
 como	
 jQuery	
 Mobile	
 o	
 Sencha	

Touch	
 entre	
 otros.	
 Tiene	
 la	
 ventaja	
 de	
 que	
 se	
 puede	
 definir	
 la	
 navegación	
 inicial	
 de	
 la	

aplicación	
 usando	
 un	
 navegador	
 en	
 un	
 ordenador,	
 sin	
 tener	
 que	
 ejecutarla	
 en	
 el	

simulador.	

	

Se	
 puede	
 ver	
 una	
 aplicación	
 PhoneGap	
 como	
 una	
 serie	
 de	
 páginas	
 web	
 que	
 están	

almacenadas	
 y	
 empaquetadas	
 dentro	
 de	
 una	
 aplicación	
 móvil,	
 visualizadas	
 con	
 un	

navegador	
 web,	
 con	
 acceso	
 a	
 la	
 mayoría	
 de	
 APIs	
 del	
 móvil,	
 lo	
 cual	
 lo	
 convierte	
 en	
 una	

alternativa	
 muy	
 sencilla	
 para	
 crear	
 aplicaciones.	

	

Para	
 trabajar	
 con	
 cada	
 plataforma	
 hay	
 que	
 usar	
 un	
 sistema	
 distinto:	
 para	
 Iphone/Ipad	
 es	

necesario	
 usar	
 Xcode	
 (solo	
 disponible	
 en	
 Mac)	
 y	
 una	
 plantilla	
 de	
 proyecto	
 que	

proporciona	
 PhoneGap.	
 Para	
 Android	
 se	
 debe	
 usar	
 Eclipse	
 (Windows,	
 Mac	
 y	
 Linux)	
 y	
 otra	

plantilla	
 de	
 proyecto	
 específica.	
 Y	
 para	
 Blackberry	
 no	
 hay	
 entorno:	
 solo	
 Java	
 SDK,	

BlackBerry	
 SDK	
 y	
 Apache	
 Ant.	

	

Ventajas:	

Ø Es	
 la	
 solución	
 que	
 más	
 plataformas	
 móviles	
 soporta,	
 ya	
 que	
 corre	
 dentro	
 de	
 un	

navegador	
 web.	
 Además	
 de	
 Iphone/Ipad	
 y	
 Android,	
 funciona	
 también	
 en	
 Palm,	

Symbian,	
 WebOS,	
 Windows	
 mobile	
 7	
 y	
 BlackBerry,	

Ø Es	
 muy	
 fácil	
 de	
 desarrollar	
 y	
 proporciona	
 una	
 gran	
 libertad	
 a	
 los	
 que	
 tienen	

conocimientos	
 de	
 HTML	
 y	
 Javascript.	

Ø Hay	
 buena	
 documentación	
 y	
 bastantes	
 ejemplos.	

Ø Es	
 gratis,	
 soporte	
 de	
 pago.	
 Licencia	
 BSD.	

	

Inconvenientes:	

Ø Requiere	
 Mac	
 con	
 Xcode	
 para	
 empaquetar	
 aplicaciones	
 IOS.	

Ø La	
 aplicación	
 no	
 es	
 más	
 que	
 una	
 página	
 web,	
 por	
 lo	
 que	
 el	
 aspecto	
 dependerá	

del	
 framework	
 web	
 utilizado.	
 Necesitaremos	
 el	
 uso	
 de	
 frameworks	
 HTML	

móviles	
 si	
 queremos	
 que	
 parezca	
 una	
 aplicación	
 nativa.	

Ø No	
 llega	
 al	
 rendimiento	
 de	
 una	
 aplicación	
 nativa,	
 pues	
 el	
 HTML,	
 CSS	
 y	

Javascript	
 debe	
 ser	
 leído	
 e	
 interpretado	
 por	
 el	
 motor	
 del	
 navegador	
 cada	
 vez	

arranca.	

	

6.5.2 Titanium	
 Appcelerator	

Con	
 Appcelerator	
 es	
 posible	
 crear	
 aplicaciones	
 para	
 Android,	
 Iphone	
 y	
 de	
 escritorio,	

usando	
 exclusivamente	
 Javascript	
 (el	
 soporte	
 para	
 Blackberry	
 está	
 en	
 fase	
 beta).	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 53	
 -­‐	

Para	
 programar	
 proporciona	
 Titanium	
 Studio,	
 un	
 IDE	
 basado	
 en	
 Eclipse	
 con	
 el	
 que	
 crear	

los	
 proyectos	
 y	
 editar	
 los	
 ficheros	
 Javascript	
 y	
 el	
 resto	
 de	
 recursos	
 y	
 lanzar	
 los	
 scripts	
 de	

creación.	
 	

	

Las	
 aplicaciones	
 se	
 programan	
 íntegramente	
 con	
 Javascript,	
 creando	
 y	
 colocando	
 “a	

mano”	
 todos	
 los	
 controles,	
 usando	
 para	
 ello	
 una	
 librería	
 que	
 hace	
 de	
 puente	
 entre	
 la	
 	

aplicación	
 Javascript	
 y	
 los	
 controles	
 del	
 sistema.	
 Esto	
 significa	
 que	
 las	
 ventanas	
 y	
 demás	

controles	
 visuales	
 (botones,	
 listas,	
 menús,	
 etc)	
 son	
 nativos:	
 cuando	
 se	
 añade	
 un	
 botón,	
 se	

crea	
 un	
 botón	
 del	
 sistema	
 y	
 se	
 añade	
 a	
 la	
 vista,	
 lo	
 que	
 lo	
 hace	
 más	
 rápido	
 de	
 renderizar	
 y	

la	
 respuesta	
 del	
 usuario	
 es	
 también	
 rápida.	
 	

	

Una	
 de	
 las	
 características	
 más	
 interesantes	
 de	
 Appcelerator	
 es	
 que	
 al	
 empaquetar	
 la	

aplicación,	
 el	
 Javascript	
 es	
 transformado	
 y	
 compilado.	
 Después,	
 cuando	
 se	
 arranca	
 la	

aplicación	
 en	
 el	
 móvil,	
 el	
 código	
 se	
 ejecuta	
 dentro	
 de	
 un	
 engine	
 Javascript,	
 tal	
 y	
 como	
 dice	

la	
 documentación	
 oficial,	
 que	
 será	
 JavaScriptCore	
 en	
 IOS	
 (el	
 intérprete	
 de	
 Webkit,	
 el	

motor	
 de	
 Safari	
 y	
 Chrome)	
 y	
 Mozilla	
 Rhino	
 en	
 Android/Blackberry.	
 	

	

El	
 hecho	
 de	
 que	
 el	
 Javascript	
 esté	
 compilado	
 y	
 que	
 los	
 controles	
 creados	
 sean	
 nativos,	
 le	

hace	
 tener	
 mejor	
 rendimiento	
 posible	
 en	
 comparación	
 con	
 PhoneGap	
 o	
 Adobe	
 Air	
 para	

móviles	
 y	
 similar	
 a	
 Corona	
 SDK.	

	

Con	
 Appcelerator	
 es	
 complicado	
 maquetar,	
 pues	
 no	
 existe	
 un	
 HTML	
 inicial	
 donde	
 añadir	

los	
 controles,	
 sino	
 que	
 hay	
 que	
 crear	
 las	
 ventanas	
 y	
 componentes	
 “a	
 mano”	
 con	

Javascript.	
 	

	

Los	
 desarrollos	
 de	
 las	
 librerías	
 Javascript	
 para	
 cada	
 sistema	
 operativo	
 evolucionan	
 por	

separado	
 por	
 lo	
 que	
 es	
 posible	
 que	
 no	
 funcionen	
 de	
 la	
 misma	
 manera.	
 A	
 diferencia	
 de	

PhoneGap,	
 que	
 solo	
 tiene	
 una	
 librería	
 Javascript	
 para	
 acceder	
 a	
 las	
 características	

especiales	
 del	
 sistema,	
 Appcelerator	
 necesita	
 además	
 librerías	
 para	
 manejar	
 los	
 controles	

nativos	
 y	
 su	
 disposición	
 en	
 la	
 pantalla,	
 por	
 lo	
 que	
 el	
 desarrollo	
 en	
 general	
 es	
 más	
 costoso.	

	

Para	
 iOS,	
 Titanium	
 Studio	
 genera	
 un	
 proyecto	
 Xcode	
 con	
 el	
 Javascript	
 transformado	
 junto	

con	
 todas	
 las	
 librerías	
 necesarias.	
 Después	
 es	
 posible	
 lanzar	
 el	
 simulador	
 con	
 la	
 aplicación	

en	
 Xcode	
 sin	
 salir	
 de	
 Titanium	
 Studio.	
 Una	
 vez	
 generado	
 el	
 proyecto,	
 éste	
 se	
 puede	
 abrir	

con	
 Xcode	
 y	
 continuar	
 empaquetándolo	
 y	
 configurándolo	
 para	
 su	
 distribución	

(certificados,	
 provisioning,	
 logos,	
 splash	
 screen,	
 etc).	
 Desde	
 Xcode	
 no	
 se	
 puede	
 editar	
 el	

JavaScript,	
 se	
 debe	
 volver	
 a	
 editar	
 en	
 Titanium	
 Studio	
 y	
 regenerar	
 el	
 proyecto	
 Xcode	
 otra	

vez.	

	
 	

Sobre	
 el	
 soporte	
 Android,	
 tanto	
 para	
 probar	
 en	
 el	
 simulador	
 como	
 para	
 	
 empaquetar	
 la	

aplicación,	
 solo	
 hay	
 que	
 tener	
 el	
 SDK	
 de	
 Android	
 instalado.	

	

Ventajas:	

Ø Multiplataforma	
 móvil	
 y	
 también	
 de	
 escritorio.	

Ø Aspecto	
 y	
 controles	
 nativos.	
 Buen	
 rendimiento.	

Ø Buenos	
 ejemplos	
 	

Ø Gratis,	
 soporte	
 de	
 pago.	
 Licencia	
 Apache.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 54	
 -­‐	

Desventajas:	

Ø Definición	
 de	
 componentes	
 visuales	
 y	
 ubicación	
 de	
 controles	
 compleja	

Ø Mucha	
 documentación	
 pero	
 poco	
 actualizada	

Ø Requiere	
 Mac	
 y	
 Xcode	
 para	
 empaquetar	
 aplicaciones	
 IOS.	

	

6.5.3 Adobe	
 Air	
 Mobile	

Adobe	
 Air	
 mobile	
 funciona	
 con	
 Flex	
 4	
 y	
 soporta	
 las	
 plataformas	
 IOS,	
 Android	
 y	
 BlackBerry	

Tablet,	
 además	
 de	
 los	
 sistemas	
 de	
 escritorio	
 Windows,	
 Mac	
 y	
 Linux	
 (a	
 través	
 de	
 un	

runtime).	
 Flex	
 4	
 utiliza	
 el	
 lenguaje	
 de	
 programación	
 ActionScript,	
 de	
 tipado	
 fuerte	
 y	
 con	

clases,	
 interfaces,	
 herencia	
 y	
 paquetes	
 muy	
 parecido	
 a	
 Java	
 con	
 el	
 que	
 poder	
 hacer	

complejos	
 desarrollos.	
 	

	

El	
 IDE	
 oficial,	
 Flash	
 Builder	
 4.5	
 es	
 un	
 IDE	
 muy	
 potente	
 y	
 es	
 de	
 pago.	
 Es	
 posible	
 compilar	
 y	

empaquetar	
 las	
 aplicaciones	
 con	
 el	
 Flex	
 SDK	
 opensource	
 y	
 gratuito	
 pero	
 es	
 más	
 complejo.	

Los	
 controles	
 visuales	
 usados	
 durante	
 el	
 desarrollo	
 y	
 ejecución	
 no	
 son	
 los	
 originales	
 de	

cada	
 plataforma,	
 sino	
 que	
 son	
 específicos	
 de	
 Flex	
 4.	
 Esto	
 garantiza	
 que	
 todas	
 las	

aplicaciones	
 tendrán	
 exactamente	
 el	
 mismo	
 aspecto	
 y	
 comportamiento.	

	

Se	
 pueden	
 depurar	
 aplicaciones	
 en	
 remoto.	
 Una	
 de	
 las	
 peculiaridades	
 es	
 que	
 es	
 la	
 única	

herramienta	
 que	
 no	
 requiere	
 ni	
 el	
 Android	
 SDK	
 ni	
 el	
 Xcode	
 para	
 Mac	
 para	
 ejecutar	
 y	
 crear	

las	
 aplicaciones.	

	

Ventajas:	

Ø Multiplataforma	
 móvil	
 y	
 también	
 de	
 escritorio.	

Ø ActionScript	
 es	
 un	
 lenguaje	
 muy	
 potente	
 que	
 permite	
 el	
 uso	
 de	
 patrones	
 y	

estructuras	
 complejas	
 en	
 los	
 desarrollos.	

Ø Desarrollo	
 y	
 definición	
 de	
 las	
 vistas	
 con	
 el	
 editor	
 visual	
 de	
 MXML	
 con	
 Flash	
 Builder.	

El	
 IDE	
 y	
 Flex	
 4	
 son	
 muy	
 potentes,	
 y	
 la	
 documentación	
 buena.	
 	

Ø Flash	
 Builder	
 4.5	
 no	
 requiere	
 el	
 uso	
 de	
 Xcode	
 ni	
 Mac.	

Ø Depuración	
 remota.	

	

Desventajas:	

Ø El	
 precio	
 de	
 Flash	
 Builder	
 4.5.	
 Aunque	
 hay	
 otras	
 herramientas	
 y	
 se	
 puede	
 usar	
 el	

SDK	
 gratuito.	

Ø No	
 funciona	
 en	
 todos	
 los	
 Android,	
 solo	
 en	
 los	
 de	
 gama	
 alta	
 que	
 tengan	

arquitectura	
 Arm7.	
 	

Ø Rendimiento	
 es	
 regular	
 y	
 la	
 renderización	
 no	
 es	
 suave	
 en	
 IOS.	
 	

Ø Aspecto	
 no	
 nativo	
 (aunque	
 homogéneo	
 entre	
 todas	
 las	
 plataformas).	

	

6.5.4 Corona	
 SDK	

Corona	
 es	
 un	
 framework	
 para	
 el	
 desarrollo	
 de	
 aplicaciones	
 gráficas	
 para	
 iOS/Android	
 de	
 la	

compañía	
 Ansca	
 Mobile.	
 Se	
 desarrolla	
 en	
 Lua	
 y	
 no	
 tiene	
 IDE,	
 aunque	
 si	
 viene	
 con	
 un	

interprete-­‐emulador	
 y	
 multitud	
 de	
 ejemplos.	
 	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 55	
 -­‐	

Contiene	
 varios	
 simuladores	
 para	
 cada	
 uno	
 de	
 los	
 dispositivos	
 para	
 los	
 que	
 se	
 puede	

desarrollar	
 y	
 un	
 depurador	
 por	
 línea	
 de	
 comandos.	
 El	
 emulador	
 dispone	
 así	
 mismo	
 de	
 un	

terminal	
 que	
 permite	
 mostrar	
 mensajes	
 de	
 trazas	
 durante	
 la	
 ejecución.	
 	

	

No	
 son	
 necesarios	
 conocimientos	
 de	
 Objective-­‐C/Cocoa,	
 C	
 +	
 +	
 o	
 Java.	
 Lua	
 es	
 un	
 lenguaje	

de	
 programación	
 imperativo,	
 estructurado	
 y	
 bastante	
 ligero	
 que	
 fue	
 diseñado	
 como	
 un	

lenguaje	
 interpretado	
 con	
 una	
 semántica	
 extendible.	
 	

	

Contiene	
 un	
 conjunto	
 limitado	
 de	
 librerías	
 propias	
 de	
 Lua	
 así	
 como	
 otras	
 propias	
 del	
 SDK	

que	
 aportan	
 la	
 funcionalidad	
 y	
 apariencia	
 propia	
 de	
 estos	
 dispositivos	
 móviles,	
 en	
 especial	

de	
 los	
 de	
 Apple.	

	

Hay	
 que	
 pagar	
 una	
 licencia	
 para	
 cada	
 plataforma	
 o	
 una	
 conjunta	
 para	
 IOS/Android.	
 	

	

Ventajas:	

Ø Alto	
 rendimiento	
 en	
 la	
 ejecución	
 de	
 aplicaciones.	

Ø Motor	
 gráfico	
 y	
 físico	
 ideal	
 para	
 juegos.	

Ø Lua	
 es	
 un	
 lenguaje	
 bastante	
 sencillo	
 y	
 potente.	

Ø Buena	
 documentación,	
 ejemplos	
 y	
 plantillas.	
 Amplia	
 comunidad.	

Ø Incorpora	
 elementos	
 nativos,	
 sobre	
 todo	
 de	
 iOS	
 muy	
 sencillos	
 de	
 implementar.	

	

Desventajas:	

Ø El	
 precio	
 de	
 la	
 licencia	
 anual.	

Ø Aunque	
 se	
 puede	
 usar	
 para	
 cualquier	
 tipo	
 de	
 aplicación,	
 realmente	
 es	
 ideal	
 para	

aplicaciones	
 gráficas	
 y	
 juegos.	

Ø Está	
 en	
 evolución.	

	

6.5.5 Plataforma	
 seleccionada	

	

Después	
 del	
 estudio	
 de	
 las	
 características	
 de	
 los	
 distintos	
 entornos	
 multiplataforma,	
 estás	

son	
 las	
 conclusiones.	

	

En	
 todos	
 los	
 casos,	
 	
 los	
 lenguajes	
 de	
 las	
 plataformas,	
 Lua,	
 JavaScript	
 y	
 ActionScipt,	
 son	

suficientemente	
 potentes	
 y	
 además,	
 sencillos	
 de	
 implementar.	
 	
 	

	

Para	
 el	
 diseño	
 de	
 la	
 aplicación,	
 el	
 más	
 avanzado	
 es	
 el	
 de	
 adobe	
 que	
 tiene	
 su	
 propio	
 editor.	

El	
 resto	
 necesitan	
 de	
 una	
 colocación	
 un	
 tanto	
 manual,	
 aunque	
 en	
 Corona	
 SDK	
 se	
 pueden	

crear	
 grupos	
 que	
 facilitan	
 el	
 diseño.	

	

Appcelerator	
 y	
 Corona	
 son	
 los	
 únicos	
 que	
 permiten	
 crear	
 controles	
 nativos	
 de	
 cada	

plataforma	
 aunque	
 la	
 utilización	
 y	
 ubicación	
 gráfica	
 de	
 estos	
 en	
 Appcelerator	
 es	
 más	

compleja.	
 Adobe	
 permite	
 usar	
 sus	
 propios	
 componentes	
 con	
 resultado	
 homogéneo	
 en	

todas	
 las	
 plataformas.	

	

PhoneGap	
 es	
 el	
 que	
 más	
 sistemas	
 operativos	
 soporta.	
 El	
 resto	
 cubren	
 las	
 más	

importantes	
 Android	
 e	
 iOS.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 56	
 -­‐	

El	
 rendimiento	
 de	
 la	
 aplicación	
 es	
 muy	
 bueno	
 en	
 Corona	
 SDK	
 así	
 como	
 también	
 en	

Appcelerator.	
 Las	
 otras	
 dos	
 opciones	
 son	
 menos	
 rápidas	
 aunque	
 con	
 un	
 rendimiento	

aceptable.	

	

Con	
 respecto	
 a	
 la	
 documentación	
 disponible,	
 Corona	
 SDK	
 es	
 la	
 que	
 tiene	
 más	
 disponible	
 y	

con	
 una	
 amplia	
 comunidad	
 en	
 la	
 página	
 web	
 de	
 la	
 compañía.	
 Es	
 una	
 herramienta	
 en	

evolución	
 pero	
 la	
 documentación	
 está	
 siempre	
 actualizada.	
 La	
 documentación	
 en	
 Adobe	

también	
 es	
 bastante	
 completa.	
 Las	
 otras	
 dos	
 son	
 herramientas	
 jóvenes	
 que	
 todavía	
 les	

falta	
 para	
 estar	
 acabadas:	
 sus	
 APIs	
 cambian,	
 están	
 incompletas	
 y	
 a	
 veces	
 fallan	
 y	
 la	

documentación	
 es	
 regular.	

	

En	
 cuanto	
 a	
 la	
 distribución,	
 la	
 plataforma	
 de	
 Adobe	
 es	
 la	
 única	
 que	
 no	
 necesita	
 tener	
 un	

Mac	
 para	
 desarrollar	
 para	
 iOS.	

	

Appcelerator	
 y	
 PhoneGap	
 son	
 gratuitos,	
 solo	
 hay	
 que	
 pagar	
 para	
 el	
 soporte.	
 Flash	
 Builder	

4.5	
 Premium	
 tiene	
 un	
 precio	
 muy	
 elevado,	
 aunque	
 se	
 puede	
 usar	
 la	
 versión	
 de	
 prueba	

durante	
 30	
 días	
 y	
 hay	
 SDK	
 libres.	
 Corona	
 SDK	
 es	
 gratis	
 para	
 desarrollo,	
 pero	
 requiere	

pagar	
 una	
 licencia	
 anual	
 de	
 $199	
 si	
 quieres	
 subir	
 tus	
 aplicaciones	
 al	
 App	
 Store	
 o	
 Market	

de	
 Android	
 o	
 $349	
 para	
 ambos.	

	

Con	
 estos	
 criterios,	
 las	
 dos	
 mejores	
 opciones	
 por	
 rendimiento	
 y	
 por	
 posibilidad	
 de	
 utilizar	

componentes	
 nativos	
 son	
 Corona	
 SDK	
 y	
 Appcelerator.	
 Eliminando	
 la	
 restricción	

económica	
 asociada	
 a	
 las	
 licencias	
 de	
 Corona	
 SDK,	
 y	
 dado	
 que	
 la	
 gestión	
 gráfica	
 es	
 mejor	

y	
 la	
 documentación	
 más	
 completa	
 en	
 esta	
 plataforma,	
 se	
 selecciona	
 Corona	
 SDK	
 como	

base	
 para	
 el	
 desarrollo	
 de	
 la	
 aplicación	
 móvil	
 de	
 este	
 proyecto.	

	

7 Plataforma Corona SDK. Características

7.1 Introducción	
 a	
 la	
 Plataforma	
 Corona	
 SDK	

La	
 plataforma	
 Corona	
 SDK	
 es	
 un	
 entorno	
 de	
 desarrollo	
 de	
 aplicaciones	
 móviles	
 para	
 la	

creación	
 de	
 aplicaciones	
 de	
 altas	
 prestaciones,	
 aplicaciones	
 multimedia	
 y	
 juegos	
 para	

dispositivos	
 iOS,	
 Android	
 y	
 Kindle.	

	

Corona	
 SDK	
 contiene	
 un	
 simulador	
 para	
 cada	
 uno	
 de	
 los	
 dipositivos	
 con	
 sistema	
 operativo	

móvil	
 de	
 Apple,	
 y	
 para	
 varios	
 modelos	
 de	
 dispositivos	
 con	
 sistema	
 operativo	
 Android.	

Tambien	
 contiene	
 un	
 depurador	
 por	
 línea	
 de	
 comandos	
 así	
 como	
 aplicaciones	
 de	
 ejemplo	

y	
 documentación.	

	

Permite	
 a	
 los	
 desarrolladores	
 usar	
 Lua,	
 un	
 lenguaje	
 de	
 scrip	
 de	
 alto	
 rendimiento	

construido	
 sobre	
 un	
 motor	
 de	
 Objective-­‐C/C++.	
 	
 No	
 son	
 necesarios	
 conocimientos	
 de	

Objective-­‐C/Cocoa,	
 C	
 +	
 +	
 o	
 Java.	
 Lua	
 es	
 un	
 lenguaje	
 de	
 programación	
 imperativo,	

estructurado	
 y	
 bastante	
 ligero	
 que	
 fue	
 diseñado	
 como	
 un	
 lenguaje	
 interpretado	
 con	
 una	

semántica	
 extendible.	
 	

	

Contiene	
 un	
 conjunto	
 limitado	
 de	
 librerías	
 propias	
 de	
 Lua	
 así	
 como	
 otras	
 propias	
 del	
 SDK	

que	
 aportan	
 la	
 funcionalidad	
 y	
 apariencia	
 propia	
 de	
 estos	
 dispositivos	
 móviles,	
 en	
 especial	

de	
 los	
 de	
 Apple.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 57	
 -­‐	

7.2 Gestión	
 de	
 proyectos	
 en	
 Corona	
 SDK	

Para	
 crear	
 aplicaciones	
 en	
 Corona	
 SDK	
 se	
 necesita	
 instalar	
 la	
 aplicación	
 Corona	
 SDK	
 en	

entorno	
 Mac	
 o	
 Windows	
 y	
 utilizar	
 un	
 editor	
 de	
 texto	
 para	
 generar	
 los	
 archivos	
 con	
 el	

código.	
 La	
 versión	
 de	
 prueba	
 de	
 Corona	
 SDK	
 nos	
 permite	
 realizar	
 pruebas	
 con	
 el	

simulador	
 en	
 dispositivos	
 Android	
 o	
 iOS	
 (solo	
 en	
 equipos	
 Mac).	
 Para	
 construir	

aplicaciones	
 y	
 distribuirlas	
 en	
 la	
 AppStore	
 o	
 el	
 android	
 Market	
 es	
 necesario	
 comprar	
 una	

licencia.	

	

Para	
 crear	
 un	
 proyecto	
 de	
 Corona	
 es	
 necesario	
 como	
 minimo	
 una	
 carpeta	
 que	
 contenga	

un	
 archivo	
 de	
 texto	
 llamado	
 "main.lua".	
 	
 Este	
 archivo,	
 "main.lua",	
 es	
 	
 el	
 primer	
 archivo	

que	
 lee	
 Corona	
 SDK	
 por	
 lo	
 que	
 si	
 no	
 esta	
 disponible	
 la	
 aplicación	
 no	
 puede	
 iniciarse.	
 Este	

archivo	
 principal,	
 a	
 su	
 vez,	
 puede	
 cargar	
 otros	
 archivos	
 de	
 código	
 externo,	
 o	
 recursos	
 de	

otros	
 programas,	
 tales	
 como	
 sonidos,imágenes	
 o	
 videos.	
 La	
 extensión	
 de	
 archivo	
 ".	
 lua"	

indica	
 que	
 el	
 archivo	
 está	
 escrito	
 en	
 lenguaje	
 en	
 ese	
 lenguaje,	
 que	
 es	
 el	
 que	
 se	
 usa	
 para	

crear	
 aplicaciones	
 en	
 Corona	
 SDK.	

	

De	
 cara	
 a	
 la	
 construcción	
 de	
 la	
 aplicación,	
 en	
 la	
 carpeta	
 del	
 proyecto	
 existen	
 2	

posibilidades	
 de	
 configuración	
 mediante	
 ficheros.	
 El	
 primero	
 es	
 el	
 fichero	
 config.lua	
 con	

las	
 dimensiones	
 del	
 contenido	
 visible	
 y	
 el	
 modo	
 de	
 escalado	
 de	
 la	
 pantalla.	
 Este	
 archivo	
 se	

comenta	
 más	
 adelante	
 en	
 la	
 implementación	
 del	
 proyecto	
 al	
 tratar	
 la	
 adaptación	

dinámica	
 de	
 contenido	
 en	
 la	
 pantalla.	
 También	
 se	
 debe	
 añadir	
 un	
 archivo	
 Icon.png	
 que	

será	
 el	
 icono	
 de	
 la	
 aplicación	
 al	
 instalarse	
 en	
 el	
 dispositivo	
 final	
 .	
 El	
 segundo	
 fichero	
 que	

podemos	
 incluir	
 es	
 el	
 denominado	
 build.settings	
 que	
 describe	
 las	
 propiedades	
 en	
 tiempo	

de	
 construcción.	
 Más	
 adelante,	
 en	
 las	
 tareas	
 de	
 administración	
 se	
 comentarán	
 las	

opciones	
 de	
 este	
 archivo.	

7.3 Lenguaje	
 de	
 Corona	
 SDK:	
 Lua	

7.3.1 Generalidades	

Lua	
 es	
 un	
 lenguaje	
 de	
 programación	
 imperativo,	
 estructurado	
 y	
 bastante	
 ligero	
 que	
 fue	

diseñado	
 como	
 un	
 lenguaje	
 interpretado	
 con	
 una	
 semántica	
 extendible..	
 Fue	
 creado	
 en	

1993	
 en	
 la	
 universidad	
 católica	
 de	
 Rio	
 de	
 Janeiro	
 	
 y	
 cuyo	
 nombre	
 significa	
 “Luna”	
 en	

portugués.	
 	
 Es	
 muy	
 utilizado	
 en	
 programación	
 de	
 videojuegos	
 asi	
 como	
 en	
 aplicaciones	

para	
 videoconsolas	
 como	
 PSP	
 y	
 Wii.	
 	
 	

	

A	
 continuación	
 se	
 detalla	
 el	
 uso	
 del	
 lenguaje	
 asi	
 como	
 las	
 librerías	
 propias	
 que	
 posee	
 Lua	

y	
 se	
 incluyen	
 algunos	
 ejemplos	
 para	
 poder	
 comprender	
 como	
 funciona.	

	

Identificadores	

Puede	
 ser	
 cualquier	
 cadena	
 de	
 caracteres	
 que	
 incluya	
 letras,	
 dígitos	
 y	
 guiones	
 bajos.	
 Los	

identificadores	
 se	
 utilizan	
 como	
 nombres	
 de	
 variables	
 y	
 campos	
 de	
 tablas.	
 Se	
 distinguen	

las	
 mayúsculas	
 y	
 minúsculas	

	

Palabras	
 clave	

Como	
 cualquier	
 otro	
 lenguaje	
 de	
 programación,	
 Lua	
 utiliza	
 una	
 serie	
 de	
 palabras	
 para	

crear	
 las	
 instrucciones	
 que	
 forman	
 cada	
 programa.	
 Por	
 este	
 motivo,	
 estas	
 palabras	
 se	

consideran	
 reservadas	
 y	
 no	
 se	
 pueden	
 utilizar	
 como	
 nombre	
 de	
 una	
 variable	
 o	
 función.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 58	
 -­‐	

	

and break do else elseif
end false for function if
in local nil not or
repeat return then true until while

	

Comentarios	

Los	
 comentarios	
 comienzan	
 con	
 un	
 guión	
 doble	
 (-­‐-­‐)	
 siempre	
 que	
 no	
 esté	
 incluido	
 dentro	

de	
 una	
 cadena.	
 Los	
 bloques	
 de	
 comentarios	
 están	
 delimitados	
 por	
 corchetes.	

	

--[[
 Comentario
]]

	

	

Tipos	
 y	
 valores	

Lua	
 es	
 un	
 lenguaje	
 tipado	
 dinámicamente	
 por	
 lo	
 que	
 no	
 es	
 necesario	
 declarar	
 el	
 tipo	
 de	

variables.	
 Una	
 vez	
 asignado	
 el	
 valor,	
 este	
 define	
 el	
 tipo	
 de	
 la	
 variable.	
 	

	

Los	
 tipos	
 básicos	
 son:	

§ nil	
 –	
 este	
 tipo	
 tiene	
 un	
 sólo	
 valor,	
 nil,	
 que	
 representa	
 la	
 ausencia	
 de	
 valor.	
 Es	

análogo	
 al	
 valor	
 null	
 utilizado	
 en	
 otros	
 lenguajes.	

§ boolean	
 –	
 tiene	
 2	
 valores:	
 false	
 y	
 true.	
 En	
 expresiones	
 condicionales,	
 false	
 y	
 nil	
 son	

evaluados	
 como	
 false	
 mientras	
 que	
 cualquier	
 otro	
 valor	
 es	
 evaluado	
 como	
 true.	

§ number	
 -­‐	
 representa	
 números	
 reales	
 (en	
 coma	
 flotante	
 y	
 doble	
 	
 precisión).	

Ø string	
 -­‐	
 representa	
 un	
 array	
 de	
 caracteres.	
 Lua	
 trabaja	
 con	
 8	
 bits:	
 los	
 strings	

pueden	
 contener	
 cualquier	
 carácter	
 de	
 8	
 bits,	
 incluyendo	
 el	
 carácter	
 cero	
 ('\0').	

Ø function	
 –	
 representa	
 una	
 función	
 dentro	
 del	
 script	
 Lua.	

Ø table	
 -­‐	
 implementa	
 arrays	
 asociativos,	
 esto	
 es,	
 arrays	
 que	
 pueden	
 ser	
 indexados	

no	
 sólo	
 con	
 números,	
 sino	
 también	
 con	
 cualquier	
 valor	
 (excepto	
 nil).	
 Las	
 tablas	

pueden	
 ser	
 heterogéneas,	
 ya	
 que	
 pueden	
 contener	
 valores	
 de	
 todos	
 los	
 tipos	

(excepto	
 nil).	
 Las	
 tablas	
 son	
 el	
 mecanismo	
 de	
 estructuración	
 de	
 datos	
 en	
 Lua.	

Pueden	
 ser	
 usadas	
 para	
 representar	
 arrays	
 ordinarios,	
 tablas	
 de	
 símbolos,	

conjuntos,	
 registros,	
 grafos,	
 árboles,	
 etc.	
 Para	
 representar	
 registros,	
 Lua	
 usa	
 el	

nombre	
 del	
 campo	
 como	
 índice.	
 El	
 lenguaje	
 soporta	
 esta	
 representación	
 haciendo	

la	
 notación	
 b.nombre	
 equivalente	
 a	
 b["nombre"].	

Los	
 valores	
 de	
 las	
 tablas	
 y	
 	
 las	
 funciones	
 son	
 objetos:	
 las	
 variables	
 no	
 contienen	
 realmente	

esos	
 valores,	
 sino	
 que	
 sólo	
 los	
 referencian.	
 La	
 asignación,	
 el	
 paso	
 de	
 argumentos	
 y	
 el	

retorno	
 de	
 las	
 funciones	
 siempre	
 manejan	
 referencias	
 a	
 esos	
 valores;	
 esas	
 operaciones	
 no	

implican	
 ningún	
 tipo	
 de	
 copia.	
 	

La	
 función	
 type	
 retorna	
 un	
 string	
 que	
 describe	
 el	
 tipo	
 de	
 un	
 valor	
 dado.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 59	
 -­‐	

7.3.2 Variables	

Las	
 variables	
 son	
 lugares	
 donde	
 se	
 almacenan	
 valores.	
 Existen	
 tres	
 tipos	
 de	
 variables	
 en	

Lua:	
 globales,	
 locales	
 y	
 campos	
 de	
 tabla.	
 Antes	
 de	
 la	
 primera	
 asignación,	
 el	
 valor	
 de	
 una	

variable	
 es	
 nil.	

	

Variables	
 globales	

Lua	
 asume	
 que	
 las	
 variables	
 son	
 globales,	
 a	
 no	
 ser	
 que	
 sean	
 declaradas	
 explícitamente	

como	
 locales.	
 	

	

print(a) --> nil
a = "this is one pound"
print(a) --> "this is one pound”

	

Variables	
 globales	
 perduran	
 mientras	
 la	
 aplicación	
 está	
 funcionando.	
 Para	
 eliminar	
 una	

variable	
 global	
 de	
 la	
 memoria	
 debe	
 asignarse	
 el	
 valor	
 nil,	
 comportándose	
 como	
 si	
 esa	

variable	
 no	
 hubiera	
 sido	
 inicializada.	

	

Variables	
 locales	

Las	
 variables	
 locales	
 se	
 definen	
 usando	
 la	
 palabra	
 local.	
 Al	
 contrario	
 que	
 las	
 variables	

globales,	
 las	
 variables	
 locales	
 tienen	
 un	
 ámbito	
 definido	
 léxicamente:	
 pueden	
 ser	

accedidas	
 libremente	
 desde	
 dentro	
 de	
 las	
 funciones	
 definidas	
 en	
 su	
 mismo	
 ámbito,	
 que	

empieza	
 con	
 la	
 declaración	
 de	
 la	
 variable	
 y	
 termina	
 con	
 el	
 final	
 del	
 bloque	
 en	
 el	
 que	
 se	

encuentra.	

	

	

	

a = 10
local i = 1

while i <= 10 do
 local a = i*i – la variable a es diferente a la de fuera del bloque
 print(a) --> 1, 4, 9, 16, 25, ...
 i = i + 1
end

print(a) --> 10 (la variable local a)
	

	

Campos	
 de	
 Tabla	

Los	
 campos	
 de	
 tabla	
 son	
 los	
 elementos	
 que	
 componen	
 la	
 tabla.	
 	
 Los	
 valores	
 se	
 asignan	
 a	

los	
 campos	
 que	
 están	
 indexados	
 en	
 un	
 array.	
 Cuando	
 el	
 índice	
 es	
 un	
 string,	
 el	
 campo	
 es	

conocido	
 como	
 propiedad.	

	

t = { foo="hello" } – creamos una table con una propiedad individual "foo"
print(t.foo) --> "hello"
t.foo = "bye" – asignamos un Nuevo valor a la propiedad "foo"
print(t.foo) --> "bye"
t.bar = 10 --> creamos una nueva propiedad llamada “bar”
print(t.bar) --> 10
print(t["bar"]) --> 10

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 60	
 -­‐	

7.3.3 Expresiones	

Operadores	
 aritméticos	

Lua	
 tiene	
 los	
 operadores	
 aritméticos	
 comunes:	
 	

+	
 (adición)	
 	

-­‐	
 (substracción)	

*	
 (multiplicación)	

/	
 (división)	

%	
 (módulo)	

^	
 (exponenciación)	

-­‐ (negación)	

	

Si	
 los	
 operandos	
 son	
 números	
 o	
 strings	
 que	
 se	
 convierten	
 a	
 números,	
 entonces	
 todas	
 las	

operaciones	
 tienen	
 el	
 significado	
 corriente.	
 La	
 exponenciación	
 trabaja	
 con	
 cualquier	

exponente.	
 Por	
 ejemplo,	
 x^(-­‐0.5)	
 calcula	
 la	
 inversa	
 de	
 la	
 raíz	
 cuadrada	
 de	
 x.	
 	

	

El	
 módulo	
 se	
 define	
 como	
 	

	
 	
 	
 	
 	
 	
 	
 a	
 %	
 b	
 ==	
 a	
 -­‐	
 math.floor(a/b)*b	

	

Operadores	
 relacionales	

Los	
 operadores	
 relacionales	
 en	
 Lua	
 son	
 :	

	

	
 	
 	
 	
 	
 	
 	
 ==	
 	
 (igualdad)	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 ~=	
 	
 (no	
 igualdad)	
 	
 	

	
 	
 	
 	
 	
 	
 	
 <	
 	
 	
 (menor	
 que)	

	
 	
 	
 	
 	
 	
 	
 >	
 	
 	
 (mayor	
 que)	

	
 	
 	
 	
 	
 	
 	
 <=	
 	
 (menor	
 o	
 igual	
 que)	

	
 	
 	
 	
 	
 	
 	
 >=	
 	
 (mayor	
 o	
 igual	
 que)	

	

Devuelven	
 siempre	
 un	
 resultado	
 false	
 o	
 true.	
 	

	

La	
 igualdad	
 (==)	
 primero	
 compara	
 el	
 tipo	
 de	
 los	
 operandos.	
 Si	
 son	
 diferentes	
 entonces	
 el	

resultado	
 es	
 false.	
 En	
 otro	
 caso	
 se	
 comparan	
 los	
 valores	
 de	
 los	
 operandos.	
 Los	
 números	
 y	

las	
 cadenas	
 se	
 comparan	
 de	
 la	
 manera	
 usual.	
 Los	
 objetos	
 (tablas	
 y	
 funciones)	
 se	

comparan	
 por	
 referencia:	
 dos	
 objetos	
 se	
 consideran	
 iguales	
 sólo	
 si	
 son	
 el	
 mismo	
 objeto.	

Cada	
 vez	
 que	
 se	
 crea	
 un	
 nuevo	
 objeto	
 (una	
 tabla	
 o	
 función)	
 este	
 nuevo	
 objeto	
 es	

diferente	
 de	
 todos	
 los	
 demás	
 objetos	
 preexistentes.	
 	

	

El	
 operador	
 ~=	
 es	
 exactamente	
 la	
 negación	
 de	
 la	
 igualdad	
 (==).	
 	

	

Operadores	
 lógicos	

Los	
 operadores	
 lógicos	
 en	
 Lua	
 son	
 :	

	
 	
 	
 	
 	
 	
 	
 and	
 	
 (conjunción)	

	
 	
 	
 	
 	
 	
 	
 or	
 	
 	
 	
 	
 (disyunción)	

	
 	
 	
 	
 	
 	
 	
 not	
 	
 	
 (negación)	

	

Como	
 las	
 estructuras	
 de	
 control,	
 todos	
 los	
 operadores	
 lógicos	
 consideran	
 false	
 y	
 nil	
 como	

falso	
 y	
 todo	
 lo	
 demás	
 como	
 verdadero.	
 	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 61	
 -­‐	

El	
 operador	
 negación	
 not	
 siempre	
 retorna	
 false	
 o	
 true.	
 	

	

El	
 operador	
 conjunción	
 and	
 retorna	
 su	
 primer	
 operando	
 si	
 su	
 valor	
 es	
 false	
 o	
 nil;	
 en	
 caso	

contrario	
 and	
 retorna	
 su	
 segundo	
 operando.	
 	

	

El	
 operador	
 disyunción	
 or	
 retorna	
 su	
 primer	
 operando	
 si	
 su	
 valor	
 es	
 diferente	
 de	
 nil	
 y	

false;	
 en	
 caso	
 contrario	
 or	
 retorna	
 su	
 segundo	
 argumento.	
 	

	

Tanto	
 and	
 como	
 or	
 usan	
 evaluación	
 de	
 cortocircuito;	
 esto	
 es,	
 su	
 segundo	
 operando	
 se	

evalúa	
 sólo	
 si	
 es	
 necesario.	
 He	
 aquí	
 varios	
 ejemplos:	
 	

	

 10 or 20 --> 10
 10 or error() --> 10
 nil or "a" --> "a"
 nil and 10 --> nil
 false and error() --> false
 false and nil --> false
 false or nil --> nil
 10 and 20 --> 20

	

Concatenación	

El	
 operador	
 de	
 concatenación	
 de	
 strings	
 en	
 Lua	
 se	
 denota	
 mediante	
 dos	
 puntos	
 seguidos	

('..').	
 Si	
 ambos	
 operandos	
 son	
 números	
 entonces	
 se	
 convierten	
 a	
 strings.	

	

Operador	
 de	
 longitud	

El	
 operador	
 longitud	
 se	
 denota	
 mediante	
 #.	
 La	
 longitud	
 de	
 un	
 string	
 es	
 su	
 número	
 de	

bytes	
 (significado	
 normal	
 de	
 la	
 longitud	
 de	
 un	
 string	
 cuando	
 cada	
 carácter	
 ocupa	
 un	
 byte).	
 	

	

La	
 longitud	
 de	
 una	
 tabla	
 t	
 se	
 define	
 como	
 un	
 índice	
 entero	
 n	
 tal	
 que	
 t[n]	
 no	
 es	
 nil	
 y	
 t[n+1]	

es	
 nil;	
 además,	
 si	
 t[1]	
 es	
 nil	
 entonces	
 n	
 puede	
 ser	
 cero.	
 Para	
 un	
 array	
 regular,	
 con	
 valores	

no	
 nil	
 desde	
 1	
 hasta	
 un	
 n	
 dado,	
 la	
 longitud	
 es	
 exactamente	
 n,	
 el	
 índice	
 es	
 su	
 último	
 valor.	

Si	
 el	
 array	
 tiene	
 "agujeros"	
 (esto	
 es,	
 valores	
 nil	
 entre	
 otros	
 valores	
 que	
 no	
 lo	
 son),	

entonces	
 #t	
 puede	
 ser	
 cualquiera	
 de	
 los	
 índices	
 que	
 preceden	
 a	
 un	
 valor	
 nil	
 (esto	
 es,	
 Lua	

puede	
 considerar	
 ese	
 valor	
 nil	
 como	
 el	
 final	
 del	
 array).	
 	

	

Precedencia	
 de	
 los	
 operadores	

La	
 precedencia	
 de	
 los	
 operadores	
 en	
 Lua	
 sigue	
 lo	
 expuesto	
 en	
 la	
 tabla	
 siguiente	
 de	
 menor	

a	
 mayor	
 prioridad:	

	

or	

and	

<	
 >	
 <=	
 >=	
 ~=	
 ==	

..	

+	
 -­‐	

*	
 /	
 %	

Not	
 #	
 -­‐	
 (unario)	

^	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 62	
 -­‐	

Se	
 pueden	
 usar	
 paréntesis	
 para	
 cambiar	
 la	
 precedencia	
 en	
 una	
 expresión.	
 Los	
 operadores	

de	
 concatenación	
 ('..')	
 y	
 de	
 exponenciación	
 ('^')	
 son	
 asociativos	
 por	
 la	
 derecha.	
 Todos	
 los	

demás	
 operadores	
 son	
 asociativos	
 por	
 la	
 izquierda.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 63	
 -­‐	

7.4 Estructuras	
 de	
 control	

Estructura	
 condicional,	
 if	
 …	
 else	
 	

La	
 sintaxis	
 de	
 la	
 estructura	
 condicional	
 es:	

	

if	
 exp	
 then	
 	

bloque	
 	

elseif	
 exp	
 then	
 	

bloque	
 	

else	
 	

bloque	

end	

	

Tanto	
 else	
 como	
 elseif	
 son	
 opcionales.	

	

La	
 condición	
 de	
 una	
 expresión	
 (exp)	
 de	
 una	
 estructura	
 de	
 control	
 puede	
 retornar	

cualquier	
 valor.	
 Como	
 se	
 ha	
 indicado	
 anteriormente,	
 tanto	
 false	
 como	
 nil	
 se	
 consideran	

falsos.	
 Todos	
 los	
 valores	
 diferentes	
 de	
 nil	
 y	
 false	
 se	
 consideran	
 verdaderos	
 (en	
 particular,	

el	
 número	
 0	
 y	
 el	
 string	
 vacío	
 son	
 también	
 verdaderos).	
 	

	

Estructura	
 repetitivas,	
 while	
 y	
 until	

La	
 sintaxis	
 de	
 estas	
 estructuras	
 es:	

	

while	
 exp	
 do	
 	

bloque	
 	

end	

	

repeat	
 	

bloque	
 	

until	
 exp	

	

En	
 ambos	
 casos	
 se	
 ejecuta	
 el	
 bloque	
 de	
 forma	
 repetitiva.	
 En	
 el	
 primer	
 caso,	
 la	
 expresión	

se	
 evalúa	
 al	
 principio	
 y	
 en	
 el	
 segundo	
 al	
 final.	
 En	
 el	
 bucle	
 repeat–until	
 el	
 bloque	
 interno	

no	
 acaba	
 en	
 la	
 palabra	
 clave	
 until	
 sino	
 detrás	
 de	
 la	
 condición.	
 De	
 esta	
 manera	
 la	
 condición	

puede	
 referirse	
 a	
 variables	
 locales	
 declaradas	
 dentro	
 del	
 bloque	
 del	
 bucle.	
 	

	

Estructura	
 for	

La	
 sentencia	
 for	
 tiene	
 dos	
 formas:	
 una	
 numérica	
 y	
 otra	
 genérica.	
 	

	

La	
 forma	
 numérica	
 del	
 bucle	
 for	
 repite	
 un	
 bloque	
 mientras	
 una	
 variable	
 de	
 control	
 sigue	

una	
 progresión	
 aritmética.	
 Tiene	
 la	
 sintaxis	
 siguiente:	
 	

	

for	
 nombre	
 '='	
 exp1	
 ','	
 exp2	
 [','	
 exp3]	
 do	
 	

bloque	
 	

end	

	

El	
 bloque	
 se	
 repite	
 para	
 los	
 valores	
 de	
 nombre	
 comenzando	
 en	
 exp1	
 hasta	
 que	
 sobrepasa	

exp2	
 usando	
 como	
 paso	
 exp3.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 64	
 -­‐	

	

 for i=1, 25, 5 do
 print (i)
 end

	

La	
 sentencia	
 for	
 genérica	
 trabaja	
 con	
 funciones,	
 denominadas	
 iteradores.	
 En	
 cada	

iteración	
 se	
 invoca	
 a	
 la	
 función	
 iterador	
 que	
 produce	
 un	
 nuevo	
 valor,	
 parándose	
 la	

iteración	
 cuando	
 el	
 nuevo	
 valor	
 es	
 nil.	
 El	
 bucle	
 for	
 genérico	
 tiene	
 la	
 siguiente	
 sintaxis:	
 	

	
 	

for	
 lista_de_nombres	
 in	
 explist	
 do	
 	

bloque	
 	

end	

	

for	
 lista_de_nombres	
 in	
 explist	
 do	
 bloque	
 end	

	
 	
 	
 lista_de_nombres	
 ::=	
 nombre	
 {','	
 nombre}	

	

Por	
 ejemplo,	
 este	
 bucle	
 recorre	
 las	
 líneas	
 de	
 un	
 fichero	

	

 for line in io.lines(filename) do
 print (line)
 end

	

break	

La	
 orden	
 break	
 se	
 usa	
 para	
 terminar	
 la	
 ejecución	
 de	
 los	
 bucles	
 while,	
 repeat	
 y	
 for,	

saltando	
 a	
 la	
 sentencia	
 que	
 sigue	
 después	
 del	
 bucle.	

	

Un	
 break	
 finaliza	
 el	
 bucle	
 más	
 interno	
 que	
 esté	
 activo.	

7.4.1 Funciones	

La	
 sintaxis	
 para	
 la	
 definición	
 de	
 funciones	
 es	
 :	

	
 	
 	
 function	
 nombre_de_func	
 (
 [lista_de_argumentos]	
)	
 bloque	
 end	

	

Así	
 mismo	
 se	
 puede	
 utilizar.	

	
 	
 	
 nombre_de_func	
 =	
 function	
 (
 [lista_de_argumentos]	
)	
 bloque	
 end	

	

Una	
 definición	
 de	
 función	
 es	
 una	
 expresión	
 ejecutable,	
 cuyo	
 valor	
 tiene	
 el	
 tipo	
 function.	
 	
 	

	

Los	
 argumentos	
 formales	
 de	
 una	
 función	
 actúan	
 como	
 variables	
 locales	
 que	
 son	

inicializadas	
 con	
 los	
 valores	
 actuales	
 de	
 los	
 argumentos.	

	

La	
 orden	
 return	
 se	
 usa	
 para	
 devolver	
 valores	
 desde	
 una	
 función.	
 Las	
 funciones	
 pueden	

retornar	
 más	
 de	
 un	
 valor.	

7.4.2 Objetos,	
 propiedades	
 y	
 funciones	

Muchas	
 de	
 las	
 API’s	
 de	
 Corona	
 SDK	
 devuelven	
 objetos.	
 Las	
 propiedades	
 de	
 esos	
 objetos	

son	
 manipulables	
 (datos,	
 posición,	
 visibilidad,	
 escala…	
)	
 y	
 se	
 pueden	
 añadir	
 nuevas	
 como	

si	
 tratara	
 de	
 una	
 tabla.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 65	
 -­‐	

	

Las	
 nuevas	
 propiedades	
 no	
 pueden	
 comenzar	
 con	
 el	
 carácter	
 guión	
 bajo	
 ("_"),	
 ya	
 que	
 está	

reservado	
 para	
 el	
 sistema.Todas	
 las	
 propiedades	
 se	
 puede	
 acceder	
 a	
 través	
 de	
 la	
 cadena	

que	
 representa	
 el	
 índice,	
 	
 	
 tabla[“propiedad”]	
 o	
 del	
 operador	
 punto	
 ("."),	
 tabla.propiedad	

.	
 	

	

Dado	
 que	
 las	
 funciones	
 pueden	
 ser	
 variables,	
 una	
 tabla	
 puede	
 almacenar	
 estas	
 como	

propiedades.	
 Esto	
 permite	
 que	
 una	
 tabla	
 pueda	
 ser	
 utilizada	
 para	
 agrupar	
 lógicamente	

una	
 familia	
 de	
 funciones,	
 por	
 ejemplo,	
 la	
 biblioteca	
 matemática	
 (math).	
 Las	
 funciones	

pueden	
 utilizarse	
 también	
 como	
 los	
 métodos	
 asociados	
 al	
 objeto.	

	

Una	
 diferencia	
 clave	
 entre	
 una	
 función	
 almacenada	
 como	
 propiedad	
 o	
 un	
 método	
 de	
 un	

objeto,	
 es	
 la	
 sintaxis.	
 Se	
 necesita	
 decirle	
 a	
 Lua	
 que	
 tiene	
 la	
 intención	
 de	
 llamar	
 a	
 esta	

función	
 como	
 un	
 método	
 de	
 objeto,	
 no	
 sólo	
 una	
 función	
 normal.	
 Para	
 ello,	
 es	
 necesario	

utilizar	
 el	
 operador	
 dos	
 puntos	
 (":")	
 en	
 lugar	
 del	
 operador	
 punto	
 (".").	

	

Objeto:funcion(
 arg1,	
 arg2	
)	

	

El	
 operador	
 dos	
 puntos	
 es	
 en	
 realidad	
 un	
 acceso	
 directo.	
 En	
 la	
 mayoría	
 de	
 lenguajes,	
 una	

llamada	
 al	
 método	
 objeto	
 es	
 como	
 una	
 llamada	
 a	
 la	
 función	
 normal,	
 excepto	
 que	
 hay	
 un	

argumento	
 oculto	
 para	
 la	
 función	
 que	
 es	
 el	
 objeto	
 mismo.	
 Este	
 argumento	
 oculto	
 que	
 se	

conoce	
 como	
 this	
 en	
 Javascript	
 y	
 self	
 en	
 Lua.	
 Igualmente	
 se	
 podría	
 llamar	
 un	
 método	
 de	

objeto	
 mediante	
 el	
 operador	
 punto,	
 si	
 se	
 pasa	
 el	
 objeto	
 como	
 primer	
 argumento:	

	

Objeto.funcion(
 Objeto,	
 arg1,	
 arg2	
)	

	

7.5 Librerías	
 estándar	
 de	
 Lua	

Corona	
 SDK	
 incluye	
 las	
 mismas	
 bibliotecas	
 Lua	
 que	
 son	
 parte	
 del	
 estándar.	
 Estas	

bibliotecas	
 proporcionan	
 una	
 funcionalidad	
 útil	
 y	
 básica.	
 Se	
 agrupan	
 en	
 las	
 siguientes	

categorías:	

	

Ø Biblioteca	
 básica:	
 	
 proporciona	
 algunas	
 funciones	
 del	
 núcleo	
 de	
 Lua	

	

Ø Manipulación	
 de	
 cadenas:	
 proporciona	
 funciones	
 para	
 tratamiento	
 de	
 cadenas,	

búsquedas	
 y	
 detección	
 de	
 patrones.	

	

Ø Manipulación	
 de	
 tablas:	
 proporciona	
 funciones	
 genéricas	
 para	
 manejo	
 de	
 tablas	

	

Ø Funciones	
 matemáticas:	
 Esta	
 biblioteca	
 es	
 una	
 interfaz	
 a	
 la	
 biblioteca	
 matemática	

estándar	
 de	
 C.	
 	

	

Ø Funciones	
 de	
 entrada	
 y	
 salida:	
 proporciona	
 dos	
 estilos	
 diferentes	
 de	
 manejo	
 de	

ficheros.	
 El	
 primero	
 de	
 ellos	
 usa	
 descriptores	
 de	
 fichero	
 implícitos;	
 esto	
 es,	
 existen	

dos	
 ficheros	
 por	
 defecto,	
 uno	
 de	
 entrada	
 y	
 otro	
 de	
 salida,	
 y	
 las	
 operaciones	
 se	

realizan	
 sobre	
 éstos.	
 El	
 segundo	
 estilo	
 usa	
 descriptores	
 de	
 fichero	
 explícitos.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 66	
 -­‐	

Ø Funciones	
 de	
 sistema	
 operativo:	
 proporciona	
 funciones	
 asociadas	
 al	
 sistema	

operativo	
 del	
 dispositivo.	

	

	
 A	
 excepción	
 de	
 la	
 biblioteca	
 básica,	
 cada	
 biblioteca	
 ofrece	
 todas	
 sus	
 funciones	
 como	

propiedades	
 de	
 una	
 tabla	
 o	
 como	
 los	
 métodos	
 de	
 sus	
 objetos.	
 Esto	
 crea	
 una	
 agrupación	

lógica	
 de	
 funciones	
 y	
 es	
 la	
 manera	
 de	
 crear	
 en	
 Lua	
 un	
 espacio	
 de	
 nombres	
 de	
 diferente	

funcionalidad.	

	

Los	
 detalles	
 de	
 las	
 funciones	
 de	
 cada	
 biblioteca	
 se	
 especifican	
 en	
 el	
 Anexo	
 I	
 de	
 esta	

memoria.	

7.6 Librerías	
 de	
 Corona	
 SDK	

Corona	
 SDK	
 posee	
 su	
 propio	
 conjunto	
 de	
 bibliotecas	
 sobre	
 las	
 bibliotecas	
 estándar	
 de	
 Lua.	

Algunas	
 bibliotecas	
 están	
 incorporadas	
 internamente,	
 mientras	
 que	
 otras	
 deben	
 ser	

cargadas	
 explícitamente.	

	

	
 Las	
 siguientes	
 son	
 las	
 bibliotecas	
 centrales	
 de	
 Corona	
 SDK	
 y	
 se	
 cargan	
 automáticamente	

cuando	
 se	
 inicia	
 la	
 aplicación:	

	

Ø display	
 	
 -­‐	
 proporciona	
 todas	
 las	
 rutinas	
 para	
 la	
 creación	
 de	
 objetos	
 de	

visualización.	

	

Ø transition	
 	
 -­‐	
 funciones	
 para	
 la	
 animación	
 de	
 objetos	
 de	
 visualización,	
 lo	
 que	

simplifica	
 el	
 proceso	
 de	
 creación	
 de	
 movimientos	
 básicos.	

	

Ø timer	
 -­‐	
 ofrece	
 funciones	
 básicas	
 de	
 tiempo.	

	

Ø media	
 -­‐	
 permite	
 el	
 acceso	
 a	
 las	
 capacidades	
 multimedia	
 del	
 dispositivo.	

	

Ø native	
 -­‐	
 proporciona	
 acceso	
 a	
 los	
 elementos	
 de	
 la	
 interfaz	
 nativa	
 de	
 los	

dispositivos.	

	

Ø system	
 -­‐	
 es	
 un	
 conjunto	
 de	
 funciones	
 de	
 sistema.	

	

Los	
 detalles	
 de	
 las	
 funciones	
 de	
 cada	
 una	
 de	
 estas	
 bibliotecas	
 se	
 especifican	
 en	
 el	
 Anexo	
 I	

de	
 esta	
 memoria.	

	

	

	

7.7 Visualización	
 de	
 objetos	
 en	
 pantalla	

Como	
 se	
 ha	
 comentado,	
 la	
 biblioteca	
 display	
 contiene	
 las	
 funciones	
 para	
 crear	
 los	
 objetos	

gráficos,	
 tanto	
 imágenes,	
 texto	
 o	
 formas	
 geométricas.	
 	

	

Para	
 gestionar	
 el	
 orden	
 en	
 que	
 se	
 dibujan	
 los	
 objetos	
 gráficos,	
 están	
 organizados	
 en	
 una	

jerarquía	
 que	
 determina	
 que	
 objetos	
 aparecen	
 por	
 encima	
 de	
 otros.	
 La	
 jerarquía	
 es	

posible	
 gracias	
 a	
 la	
 existencia	
 de	
 objetos	
 de	
 grupo,	
 GroupObjects.	
 Son	
 un	
 tipo	
 especial	
 de	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 67	
 -­‐	

DisplayObject	
 que	
 pueden	
 contener	
 otros	
 objetos	
 hijos.	
 Permiten	
 organizar	
 los	
 objetos	

gráficos	
 para	
 poder	
 establecer	
 relaciones	
 entre	
 ellos.	
 	

	

Los	
 objetos	
 pertenecientes	
 a	
 un	
 grupo,	
 es	
 decir,	
 los	
 hijos,	
 están	
 organizados	
 en	
 un	
 array	

por	
 lo	
 que	
 el	
 primer	
 hijo	
 (índice	
 1)	
 está	
 por	
 debajo	
 del	
 siguiente	
 hijo,	
 y	
 así	
 sucesivamente,	

el	
 último	
 hijo	
 está	
 siempre	
 por	
 encima	
 de	
 todos	
 los	
 demás.	

	

group:insert()	
 es	
 el	
 método	
 para	
 insertar	
 objetos	
 dentro	
 de	
 un	
 determinado	
 grupo	

existente	
 y	
 el	
 acceso	
 a	
 los	
 objetos	
 se	
 puede	
 realizar	
 con	
 el	
 índice	
 correspondiente,	

group[1]	
 .	
 	

	

-- se crean objetos
local square = display.newRect(0, 0, 100, 100)
local rect = display.newRect(0, 0, 100, 100)

-- se crea el grupo
local group = display.newGroup()

-- se insertan objetos
group:insert(square)
group:insert(rect)

-- acceso indexado a los objetos
assert((group[1] == square) and (group[2] == rect))

	

Para	
 mover	
 objetos	
 hacia	
 adelante	
 y	
 hacia	
 atrás	
 se	
 puede	
 cambiar	
 el	
 índice	
 asociado	
 a	
 los	

mismos	
 o	
 bien	
 utilizar	
 los	
 métodos	
 object:toBack()	
 y	
 object:toFront()	

	

Las	
 modificaciones	
 realizadas	
 en	
 las	
 propiedades	
 de	
 los	
 objetos	
 son	
 actualizadas	
 en	
 la	

pantalla	
 de	
 acuerdo	
 al	
 ciclo	
 definido	
 en	
 el	
 sistema.	
 Este	
 se	
 ejecuta	
 30	
 o	
 60	
 veces	
 por	

segundo	
 de	
 acuerdo	
 al	
 valor	
 de	
 velocidad	
 de	
 actualización	
 de	
 la	
 pantalla	
 (frame	
 rate)	

establecido	
 en	
 el	
 fichero	
 config.lua.	
 Cada	
 ciclo	
 genera	
 un	
 evento	
 “enterframe”	
 que	
 es	

capturable	
 por	
 un	
 listener	
 del	
 código	
 Lua.	

	

La	
 pantalla	
 representa	
 el	
 sistema	
 de	
 coordenadas	
 base	
 para	
 los	
 objetos.	
 Cada	
 objeto	
 o	

grupo	
 de	
 visualización	
 opera	
 con	
 su	
 propio	
 sistema	
 de	
 coordenadas	
 local	
 y	
 se	
 debe	

relacionar	
 con	
 las	
 coordenadas	
 de	
 la	
 pantalla.	

	

Para	
 definir	
 la	
 posición	
 se	
 utiliza	
 el	
 sistema	
 de	
 coordenadas	
 cartesianas.	
 El	
 origen	
 de	
 la	

pantalla	
 se	
 encuentra	
 en	
 la	
 esquina	
 superior	
 izquierda,	
 como	
 se	
 observa	
 en	
 la	
 figura	
 4.2,	

de	
 modo	
 que	
 valores	
 positivos	
 de	
 y,	
 desplazan	
 la	
 posición	
 hacia	
 abajo	
 y	
 valores	
 positivos	

de	
 x,	
 la	
 desplazan	
 a	
 la	
 derecha.	
 Todas	
 las	
 coordenadas	
 de	
 la	
 pantalla	
 se	
 definen	
 en	

relación	
 con	
 este	
 origen.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 68	
 -­‐	

	

	

Figura	
 4.1.	
 Origen	
 de	
 coordenadas	
 en	
 las	
 pantallas	
 de	
 los	
 dispositivos	

	

Cuando	
 un	
 objeto	
 es	
 creado,	
 sus	
 coordenadas	
 son	
 relativas	
 a	
 la	
 pantalla	
 principal.	
 Cuando	

se	
 añade	
 un	
 listener	
 para	
 eventos	
 táctiles	
 (touch	
 events)	
 al	
 objeto,	
 este	
 devuelve	
 la	

posición	
 en	
 la	
 pantalla.	
 Cuando	
 el	
 objeto	
 es	
 añadido	
 a	
 un	
 grupo,	
 las	
 coordenadas	
 de	
 este	

objeto	
 son	
 relativas	
 a	
 las	
 del	
 grupo	
 y	
 no	
 a	
 las	
 de	
 la	
 pantalla.	
 Para	
 poder	
 obtener	
 las	

coordenadas	
 de	
 pantalla	
 podemos	
 llamar	
 al	
 método	
 object.contentBounds()	

	

Dado	
 que	
 los	
 dispositivos	
 tienen	
 recursos	
 limitados,	
 es	
 importante	
 eliminar	
 los	
 objetos	
 de	

visualización	
 de	
 la	
 jerarquía	
 de	
 la	
 pantalla	
 cuando	
 ya	
 no	
 se	
 usan.	
 Esto	
 ayuda	
 al	

rendimiento	
 general	
 del	
 sistema	
 al	
 reducir	
 el	
 consumo	
 de	
 memoria	
 (especialmente	
 las	

imágenes).	
 En	
 el	
 apartado	
 de	
 gestión	
 de	
 la	
 memoria	
 de	
 este	
 capítulo	
 se	
 explica	
 como	

eliminar	
 los	
 objetos	
 de	
 visualización	
 de	
 la	
 forma	
 más	
 adecuada.	

	

Los	
 objetos	
 gráficos	
 son	
 instancias	
 de	
 la	
 clase	
 DisplayObject	
 que	
 posee	
 propiedades	
 y	

métodos	
 comunes	
 para	
 todos	
 ellos	
 y	
 como	
 todos	
 los	
 objetos	
 en	
 Lua,	
 puede	
 ser	
 tratado	

como	
 una	
 tabla	
 añadiendo	
 propiedades	
 nuevas.	

	

Estas	
 son	
 las	
 propiedades	
 comunes	
 de	
 los	
 objetos:	

	

object.alpha	
 Opacidad	
 del	
 objeto.	
 Con	
 valor	
 0	
 el	
 objeto	
 es	

transparente	
 y	
 con	
 valor	
 1	
 es	
 opaco.	
 Por	
 defecto	
 valor	
 1.	

object.height	
 Altura	
 del	
 objeto	
 (coordenadas	
 locales)	

object.isVisible	
 Controla	
 si	
 el	
 objeto	
 es	
 visible.	
 Valor	
 booleano	
 (true	
 es	

visible,	
 false	
 no	
 es	
 visible).	

object.isHitTestable	
 Permite	
 recibir	
 eventos	
 aun	
 cuando	
 el	
 objeto	
 no	
 es	

visible.	
 Valor	
 booleano.	
 Por	
 defecto	
 false	

object.parent	
 Devuelve	
 el	
 grupo	
 padre	
 del	
 objeto.	

object.rotation	
 	
 Angulo	
 de	
 rotación	
 del	
 objeto	
 (grados)	

object.contentBounds	
 Tabla	
 que	
 contiene	
 las	
 propiedades	
 xMin,	
 xMax,	
 yMin,	

yMax	
 en	
 coordenadas	
 de	
 pantalla.	

object.contentHeight	
 	
 Altura	
 (coordenadas	
 de	
 pantalla)	

object.contentWidth	
 Anchura	
 (coordenadas	
 de	
 pantalla)	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 69	
 -­‐	

object.width	
 Anchura	
 (coordenadas	
 locales)	

object.x	
 Especifica	
 la	
 posición	
 x	
 (en	
 coordenadas	
 locales)	
 del	

objeto	
 relativa	
 al	
 origen	
 del	
 padre.	
 Específicamente,	

proporciona	
 la	
 posición	
 x	
 del	
 punto	
 de	
 referencia	
 del	

objeto	
 relativa	
 al	
 padre.	

object.xOrigin	
 Especifica	
 la	
 posición	
 x	
 de	
 origen	
 del	
 objeto	
 relativa	
 al	

origen	
 del	
 padre.	
 En	
 coordenadas	
 locales.	

object.xReference	
 Define	
 la	
 posición	
 x	
 de	
 referencia	
 con	
 respecto	
 a	
 la	

posición	
 x	
 de	
 origen.	
 Es	
 relativa	
 a	
 otro	
 punto	
 del	
 objeto,	

no	
 del	
 padre.	
 	

Conceptualmente,	
 el	
 punto	
 de	
 referencia	
 es	
 aquel	
 sobre	

el	
 que	
 se	
 suceden	
 las	
 rotaciones	
 y	
 los	
 cambios	
 de	
 escala.	

Cambiando	
 este	
 valor	
 no	
 se	
 modifica	
 la	
 posición	
 del	

objeto.	
 Únicamente	
 es	
 un	
 punto	
 de	
 referencia.	

object.xScale	
 	
 Valor	
 del	
 factor	
 de	
 escalado	
 en	
 la	
 dirección	
 x.	
 Un	
 valor	

0.5	
 escalará	
 el	
 objeto	
 un	
 50%	
 en	
 la	
 dirección	
 x.	

object.y	
 Especifica	
 la	
 posición	
 y	
 (en	
 coordenadas	
 locales)	
 del	

objeto	
 relativa	
 al	
 origen	
 del	
 padre.	
 Específicamente,	

proporciona	
 la	
 posición	
 x	
 del	
 punto	
 de	
 referencia	
 del	

objeto	
 relativa	
 al	
 padre.	

object.yOrigin	
 Especifica	
 la	
 posición	
 y	
 de	
 origen	
 del	
 objeto	
 relativa	
 al	

origen	
 del	
 padre.	
 En	
 coordenadas	
 locales.	

object.yReference	
 Define	
 la	
 posición	
 y	
 de	
 referencia	
 con	
 respecto	
 a	
 la	

posición	
 y	
 de	
 origen.	
 Es	
 relativa	
 a	
 otro	
 punto	
 del	
 objeto,	

no	
 del	
 padre.	
 	

Conceptualmente,	
 el	
 punto	
 de	
 referencia	
 es	
 aquel	
 sobre	

el	
 que	
 se	
 suceden	
 las	
 rotaciones	
 y	
 los	
 cambios	
 de	
 escala.	

Cambiando	
 este	
 valor	
 no	
 se	
 modifica	
 la	
 posición	
 del	

objeto.	
 Únicamente	
 es	
 un	
 punto	
 de	
 referencia.	

object.yScale	
 	
 Valor	
 del	
 factor	
 de	
 escalado	
 en	
 la	
 dirección	
 y.	
 Un	
 valor	

0.5	
 escalará	
 el	
 objeto	
 un	
 50%	
 en	
 la	
 dirección	
 y.	

	

Estas	
 son	
 los	
 métodos	
 comunes	
 de	
 los	
 objetos:	

	

object:rotate(deltaAngle)	
 Añade	
 el	
 valor	
 deltaAngle	
 (en	
 grados)	
 a	
 la	
 actual	

propiedad	
 de	
 rotación.	

object:scale(
 x,	
 y	
)	
 Multiplica	
 las	
 propiedades	
 de	
 escala	
 xScale	
 y	
 yScale	
 por	

los	
 valores	
 sx	
 y	
 sy	
 respectivamente.	

object:setReferencePoint(

referencePoint	
)	

Establece	
 la	
 referencia	
 del	
 objeto	
 en	
 el	
 punto	

especificado	
 en	
 el	
 parámetro.	
 El	
 argumento	
 puede	
 ser:	

§ display.CenterReferencePoint	

§ display.TopLeftReferencePoint	

§ display.TopCenterReferencePoint	

§ display.TopRightReferencePoint	

§ display.CenterRightReferencePoint	

§ display.BottomRightReferencePoint	

§ display.BottomCenterReferencePoint	

§ display.BottomLeftReferencePoint	

§ display.CenterLeftReferencePoint	

Cambiando	
 la	
 referencia	
 del	
 objeto	
 se	
 cambiarán	
 los	

valores	
 de	
 x	
 e	
 y	
 sin	
 mover	
 el	
 objeto.	

object:translate(
 deltaX,	

deltaY	
)	

Añade	
 los	
 valores	
 deltaX	
 y	
 deltaY	
 a	
 las	
 propiedades	
 x	
 e	
 y	

del	
 objeto	
 desplazando	
 el	
 objeto	
 de	
 su	
 posición	
 actual.	

object:removeSelf(
)	
 Borra	
 el	
 objeto	
 y	
 libera	
 su	
 memoria,	
 asumiendo	
 que	
 no	

hay	
 otras	
 referencias	
 a	
 él.	
 	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 70	
 -­‐	

Para	
 objetos	
 de	
 texto,	
 hay	
 algunas	
 propiedades	
 y	
 métodos	
 específicos:	

	

object.size	
 Tamaño	
 del	
 texto	

object.text	
 Cadena	
 que	
 contiene	
 el	
 texto	
 del	
 campo	
 de	
 texto.	
 Es	

usado	
 para	
 actualizar	
 la	
 cadena	
 de	
 texto	
 del	
 objeto.	

object:setTextColor(
 r,	
 g,	
 b	

[,	
 a]	
)	

Establece	
 el	
 color	
 de	
 un	
 objeto	
 de	
 texto.	
 Todos	
 los	

valores	
 deben	
 estar	
 entre	
 0	
 y	
 255.	
 El	
 valor	
 a	
 es	
 opcional	

y	
 representa	
 Alpha	
 (opacidad);	
 por	
 defecto	
 es	
 255	

(opaco).	

	

7.8 Gestión	
 de	
 eventos	

La	
 manera	
 de	
 crear	
 aplicaciones	
 interactivas	
 en	
 Corona	
 SDK	
 es	
 mediante	
 la	
 gestión	
 de	
 	

eventos.	
 Estos	
 desencadenan	
 acciones	
 que	
 provocan	
 una	
 respuesta	
 del	
 programa.	
 Por	

ejemplo,	
 cualquier	
 objeto	
 que	
 se	
 muestre	
 en	
 la	
 pantalla,	
 puede	
 convertirse	
 en	
 un	
 botón	

interactivo.	
 Esta	
 flexibilidad	
 es	
 uno	
 de	
 las	
 ventajas	
 más	
 importantes	
 que	
 tiene	
 esta	

plataforma	
 de	
 desarrollo.	

	

Hay	
 eventos	
 globales	
 que	
 no	
 están	
 asociados	
 a	
 ningún	
 objeto	
 en	
 particular	
 y	
 que	
 son	

difundidos	
 a	
 todos	
 los	
 listeners	
 integrados.	
 Se	
 entiende	
 por	
 listener,	
 aquellas	
 funciones	

capaces	
 de	
 recibir	
 y	
 tratar	
 los	
 eventos.	
 Estos	
 eventos	
 globales	
 son:	

	

enterFrame	
 	

Eventos	
 que	
 ocurren	
 en	
 el	
 intervalo	
 de	
 actualización	
 de	
 la	
 aplicación.	
 Este	
 se	
 ejecuta	
 30	
 o	

60	
 veces	
 por	
 segundo	
 de	
 acuerdo	
 al	
 valor	
 de	
 velocidad	
 de	
 actualización	
 de	
 la	
 pantalla	

(frame	
 rate)	
 establecido	
 en	
 el	
 fichero	
 config.lua.	
 Se	
 genera	
 en	
 el	
 objeto	
 Runtime:	

	

Runtime:addEventListener("enterFrame", myObject)

	

Las	
 propiedades	
 asociadas	
 a	
 este	
 evento	
 son:	

Ø event.name	
 :	
 cadena	
 "enterFrame".	

Ø event.time	
 :	
 tiempo	
 en	
 milisegundos	
 desde	
 el	
 inicio	
 de	
 la	
 aplicación.	
 	

	
 	

system	

Los	
 eventos	
 de	
 sistema	
 son	
 distribuidos	
 para	
 notificar	
 a	
 la	
 aplicación	
 de	
 acciones	
 externas	

como	
 la	
 interrupción	
 del	
 programa	
 por	
 una	
 llamada	
 entrante	
 al	
 dispositivo.	
 Son	

generados	
 también	
 por	
 el	
 objeto	
 Runtime.	

	

Las	
 propiedades	
 asociadas	
 a	
 este	
 evento	
 son:	

§ event.name:	
 cadena	
 "system".	

§ event.type:	
 cadena	
 que	
 identifica	
 el	
 tipo	
 de	
 evento.	
 Los	
 posibles	
 valores	
 son:	

o "applicationStart":	
 ocurre	
 cuando	
 la	
 aplicación	
 es	
 lanzada	
 y	
 se	
 ejecuta	
 el	

código	
 de	
 main.lua	

o "applicationExit":	
 ocurre	
 cuando	
 el	
 usuario	
 cierra	
 la	
 aplicación.	

o "applicationSuspend":	
 ocurre	
 cuando	
 el	
 dispositivo	
 necesita	
 suspender	
 la	

aplicación	
 por	
 entrada	
 de	
 una	
 llamada	
 o	
 por	
 inactividad.	

o "applicationResume":	
 ocurre	
 cuando	
 una	
 aplicación	
 se	
 reanuda	
 tras	
 una	

suspensión.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 71	
 -­‐	

orientation	

Los	
 eventos	
 de	
 orientación	
 se	
 producen	
 cuando	
 se	
 cambia	
 la	
 orientación	
 del	
 dispositivo	

en	
 aquellos	
 que	
 disponen	
 de	
 acelerómetro	
 que	
 permite	
 detectarlos.	
 Son	
 generados	

también	
 por	
 el	
 objeto	
 Runtime.	

	

Las	
 propiedades	
 asociadas	
 a	
 este	
 evento	
 son:	

Ø event.name:	
 cadena	
 "orientation".	

Ø event.type:	
 cadena	
 que	
 representa	
 la	
 orientación	
 del	
 dispositivo:	

o "portrait"	

o "landscapeLeft"	

o "portraitUpsideDown"	

o "landscapeRight"	

o "faceUp"	

o "faceDown"	

Ø event.delta:	
 Es	
 el	
 ángulo	
 de	
 diferencia	
 entre	
 el	
 fin	
 y	
 el	
 inicio	
 del	
 cambio	
 de	

orientación.	

	

Hay	
 también	
 otros	
 eventos	
 globales	
 asociados	
 al	
 acelerómetro,	
 al	
 GPS,	
 a	
 la	
 brújula	
 y	
 a	

niveles	
 bajos	
 de	
 memoria	
 que	
 dependen	
 también	
 de	
 si	
 los	
 dispositivos	
 tienen	
 esas	

funcionalidades.	

	

El	
 resto	
 de	
 eventos	
 se	
 consideran	
 locales	
 ya	
 que	
 son	
 gestionados	
 por	
 un	
 listener	
 concreto.	

	

Cuando	
 el	
 usuario	
 toca	
 la	
 pantalla	
 con	
 el	
 dedo,	
 se	
 genera	
 un	
 evento	
 de	
 golpeo	
 (hit	
 event)	

que	
 se	
 distribuye	
 a	
 todos	
 los	
 objetos	
 de	
 la	
 jerarquía	
 de	
 visualización	
 que	
 intersectan	
 con	

el	
 punto	
 de	
 toque	
 de	
 la	
 pantalla.	
 Este	
 evento	
 es	
 propagado	
 desde	
 el	
 objeto	
 que	
 está	
 más	

arriba	
 en	
 la	
 jerarquía	
 hasta	
 el	
 que	
 está	
 más	
 abajo.	

	

Esa	
 propagación	
 se	
 puede	
 parar	
 indicándole	
 al	
 sistema	
 que	
 el	
 evento	
 está	
 tratado,	

devolviendo	
 true	
 en	
 la	
 función	
 listener	
 (return	
 true).	
 Si	
 el	
 evento	
 no	
 es	
 tratado	
 por	

ninguno	
 de	
 los	
 objetos	
 transversales,	
 es	
 difundido	
 como	
 un	
 evento	
 global	
 al	
 objeto	

Runtime.	
 	

	

Los	
 eventos	
 táctiles	
 (touch	
 events)	
 son	
 otro	
 tipo	
 especial	
 de	
 los	
 “hit	
 events”	
 que	

desencadenan	
 una	
 secuencia	
 de	
 eventos	
 con	
 diferentes	
 fases.	
 	

	

Las	
 	
 propiedades	
 asociadas	
 a	
 estos	
 eventos	
 son:	

Ø event.name:	
 Cadena	
 "touch".	

Ø event.x:	
 posición	
 x	
 del	
 toque	
 en	
 las	
 coordenadas	
 de	
 la	
 pantalla.	

Ø event.y:	
 posición	
 y	
 del	
 toque	
 en	
 las	
 coordenadas	
 de	
 la	
 pantalla.	

Ø event.xStart:	
 posición	
 x	
 en	
 el	
 inicio	
 del	
 toque.	

Ø event.yStart:	
 posición	
 y	
 en	
 el	
 inicio	
 del	
 toque.	

Ø event.phase:	
 cadena	
 que	
 identifica	
 las	
 fases	
 de	
 la	
 secuencia	
 de	
 toque.	
 Los	
 valores	

son:	

o "began":	
 un	
 dedo	
 toca	
 la	
 pantalla,	
 inicia	
 el	
 evento.	

o "moved":	
 un	
 dedo	
 se	
 mueve	
 por	
 la	
 pantalla.	

o "ended":	
 un	
 dedo	
 es	
 levantado	
 de	
 la	
 pantalla,	
 finaliza	
 el	
 evento.	

o "cancelled":	
 el	
 sistema	
 cancela	
 la	
 secuencia	
 del	
 evento.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 72	
 -­‐	

7.9 Animación	
 y	
 movimiento	

Además	
 de	
 aplicaciones,	
 Corona	
 SDK	
 es	
 una	
 herramienta	
 muy	
 potente	
 para	
 el	
 desarrollo	

de	
 juegos	
 y	
 una	
 de	
 sus	
 grandes	
 ventajas	
 es	
 que	
 cualquier	
 objeto	
 que	
 se	
 muestra	
 en	
 la	

pantalla	
 se	
 puede	
 animar	
 y	
 dotarlo	
 de	
 movimiento.	

	

La	
 biblioteca	
 de	
 transiciones	
 contiene	
 las	
 funciones	
 para	
 animar	
 un	
 objeto	
 de	

visualización	
 por	
 interpolación	
 de	
 una	
 o	
 más	
 propiedades	
 durante	
 un	
 tiempo	

determinado.	

	

La	
 manera	
 más	
 simple	
 es	
 utilizar	
 el	
 método	
 transition.to	
 cuyo	
 primer	
 argumento	
 es	
 el	

objeto	
 sobre	
 el	
 que	
 se	
 van	
 a	
 modificar	
 las	
 propiedades	
 y	
 el	
 segundo	
 es	
 una	
 tabla	
 con	
 los	

parámetros	
 de	
 control.	
 Estos	
 determinan,	
 entre	
 otros,	
 	
 la	
 duración	
 de	
 la	
 animación	
 y	
 los	

valores	
 finales	
 de	
 las	
 propiedades	
 del	
 objeto.	
 Los	
 valores	
 intermedios	
 de	
 las	
 propiedades	

son	
 determinados	
 por	
 unas	
 funciones	
 de	
 ajuste	
 que	
 se	
 especifican	
 también	
 como	

parámetro	
 de	
 control.	
 Se	
 pueden	
 ver	
 en	
 la	
 siguiente	
 tabla:	

	

easing.linear	
 Define	
 un	
 movimiento	
 constante	
 sin	

aceleración.	

easing.inExpo	
 Inicia	
 el	
 movimiento	
 desde	
 la	
 velocidad	

cero	
 y,	
 a	
 continuación,	
 lo	
 acelera	

conforme	
 se	
 ejecuta.	

easing.inOutExpo	
 Inicia	
 el	
 movimiento	
 desde	
 una	
 velocidad	

cero,	
 acelera	
 y	
 luego	
 desacelera	
 de	
 nuevo	

hasta	
 cero	
 utilizando	
 una	
 ecuación	
 de	

aceleración	
 exponencial.	

easing.inOutQuad	
 Inicia	
 la	
 animación	
 desde	
 una	
 velocidad	

cero,	
 se	
 acelera,	
 y	
 entonces	
 desacelera	

de	
 nuevo	
 hasta	
 cero.	

easing.inQuad	
 Realiza	
 una	
 interpolación	
 cuadrática	
 de	

los	
 valores	
 de	
 la	
 propiedad	
 de	
 animación	

en	
 una	
 transición	
 empezando	
 desde	
 cero.	

easing.outExpo	
 Inicia	
 movimiento	
 rápido	
 y	
 luego	

desacelera	
 hasta	
 la	
 velocidad	
 cero	

conforme	
 se	
 ejecuta.	

easing.outQuad	
 Inicia	
 movimiento	
 rápido	
 y	
 desacelera	

mientras	
 realiza	
 una	
 interpolación	

cuadrática	
 de	
 los	
 valores	
 de	
 la	
 propiedad	

de	
 animación	

	

Estos	
 son	
 algunos	
 de	
 los	
 parámetros	
 que	
 se	
 pueden	
 definir	
 en	
 la	
 tabla	
 de	
 control:	

Ø params.time	
 –	
 duración	
 de	
 la	
 transición	
 en	
 milisegundos.	

Ø params.transition	
 –	
 funciones	
 de	
 ajuste	
 de	
 la	
 transición.	
 Por	
 defecto	
 es	

easing.linear	
 	

Ø params.delay	
 –	
 especifica	
 el	
 retraso	
 desde	
 el	
 comienzo	
 de	
 la	
 transición.	
 	

Ø params.onStart	
 	
 -­‐	
 es	
 una	
 función	
 o	
 listener	
 que	
 se	
 invoca	
 al	
 comenzar	
 la	
 transición.	
 	

Ø params.onComplete	
 -­‐	
 es	
 una	
 función	
 o	
 listener	
 que	
 se	
 invoca	
 al	
 finalizar	
 la	

transición.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 73	
 -­‐	

Este	
 es	
 un	
 ejemplo	
 de	
 transición	
 de	
 un	
 objeto	
 en	
 la	
 dirección	
 vertical	
 durante	
 3	
 segundos	

con	
 un	
 ajuste	
 lineal:	

	

 circle2 = display.newCircle(65, 60, 10)
 circle2:setFillColor(255,0,255,255)
 transition.to(circle2, {time=3000, y=460, transition = easing.linear})

	

Para	
 cancelar	
 una	
 transición	
 se	
 utiliza	
 la	
 función	
 transition.cancel(
 tween	
).	

	

Hay	
 otra	
 biblioteca	
 externa,	
 movieclip,	
 que	
 permite	
 crear	
 sprites	
 animados	
 o	
 movieclips,	
 a	

partir	
 de	
 secuencias	
 de	
 imágenes,	
 que	
 luego	
 se	
 puede	
 mover	
 por	
 la	
 pantalla	
 usando	
 las	

mismas	
 técnicas	
 que	
 cualquier	
 objeto	
 de	
 visualización	
 de	
 Corona.	

	

Las	
 funciones	
 de	
 esta	
 biblioteca	
 están	
 disponibles	
 para	
 reproducir	
 estas	
 animaciones	
 de	

forma	
 total	
 o	
 parcial,	
 en	
 dirección	
 hacia	
 adelante	
 o	
 hacia	
 atrás,	
 saltando	
 a	
 ciertos	

fotogramas,	
 eliminando	
 automáticamente	
 la	
 animación	
 en	
 el	
 término	
 de	
 una	
 secuencia	
 e	

incluso	
 permitiendo	
 que	
 se	
 pueda	
 arrastrar	
 la	
 animación	
 mediante	
 eventos	
 de	
 arrastrar	
 y	

soltar.	
 Este	
 marco	
 ofrece	
 una	
 manera	
 rápida	
 y	
 ligera	
 para	
 crear	
 animaciones.	

	

La	
 biblioteca	
 no	
 viene	
 precargada	
 en	
 Corona,	
 por	
 lo	
 que	
 se	
 debe	
 cargar	
 el	
 módulo	
 externo	

movieclip.lua	
 en	
 aquellas	
 aplicaciones	
 que	
 lo	
 precisen.	

	

Para	
 crear	
 un	
 nueva	
 animación,	
 se	
 resalía	
 con	
 la	
 función	
 movieclip.newAnim(
 frames	
)	

donde	
 se	
 pasa	
 como	
 parámetros	
 las	
 distintas	
 imágenes	
 que	
 forman	
 la	
 animación.	

	

 myAnim = movieclip.newAnim{ "img1.png", "img2.png", "img3.png", "img4.png" }

	

Esta	
 animación	
 se	
 puede	
 reproducir	
 hacia	
 adelante	
 con	
 la	
 función	
 object:play()	
 de	
 forma	

cíclica	
 hasta	
 que	
 es	
 detenida	
 por	
 la	
 función	
 object:stop().	
 Para	
 reproducir	
 de	
 manera	
 más	

particularizada,	
 se	
 pueden	
 establecer	
 los	
 siguientes	
 parámetros	
 	

	

object:play{	
 startFrame=a,	
 endFrame=b,	
 loop=c,	
 remove=shouldRemove	
 }	

	

Con	
 loop	
 se	
 indica	
 el	
 número	
 de	
 ciclos	
 de	
 repetición	
 siendo	
 el	
 valor	
 0	
 para	
 un	
 ciclo	
 sin	
 fin.	

El	
 parámetro	
 remove	
 es	
 un	
 valor	
 booleano	
 que	
 si	
 tienen	
 el	
 valor	
 true,	
 elimina	
 el	
 objeto	

cuando	
 la	
 secuencia	
 se	
 ha	
 completado.	
 El	
 valor	
 por	
 defecto	
 es	
 false.	

Similar	
 a	
 estas	
 funciones,	
 existe	
 object:reverse()	
 para	
 reproducir	
 la	
 animación	
 en	
 sentido	

contrario	
 al	
 definido.	
 Así	
 mismo	
 se	
 pueden	
 definir	
 parámetros	
 en	
 esta	
 función:	

	

object:reverse{	
 startFrame=a,	
 endFrame=b,	
 loop=c,	
 remove=shouldRemove	
 }	

	

Se	
 reproducen	
 los	
 ciclos	
 desde	
 b	
 (endFrame)	
 hasta	
 a	
 (startFrame).	

	

Para	
 acceder	
 a	
 frames	
 concretos	
 de	
 los	
 definidos	
 en	
 la	
 animación	
 se	
 utilizan	
 las	
 funciones	
 	

object:nextFrame()	
 y	
 object:previousFrame().	
 También	
 es	
 posible	
 definir	
 un	
 punto	
 de	

ruptura	
 en	
 un	
 frame	
 en	
 concreto	
 con	
 object:stopAtFrame(
 frame	
).	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 74	
 -­‐	

Para	
 hacer	
 que	
 un	
 objeto	
 de	
 animación	
 se	
 pueda	
 desplazar	
 por	
 el	
 usuario,	
 se	
 usa	
 la	

función	
 object:setDrag.	
 Con	
 el	
 parámetro	
 booleano	
 drag,	
 se	
 indica	
 si	
 se	
 puede	
 desplazar	
 o	

no.	
 Con	
 limitX	
 y	
 limitY	
 se	
 limita	
 el	
 desplazamiento	
 en	
 los	
 ejes	
 x	
 e	
 y	
 o	
 con	
 una	
 tabla	
 de	

puntos	
 {left,	
 top,	
 width,	
 height}	
 se	
 especifica	
 una	
 determinada	
 superficie	
 de	

desplazamiento.	
 	

	

De	
 cara	
 a	
 controlar	
 la	
 animación	
 y	
 el	
 desplazamiento,	
 los	
 parámetros	
 onPress,	
 onDrag	
 y	

onRelease	
 permiten	
 definir	
 funciones	
 o	
 listeners	
 para	
 controlar	
 los	
 eventos	
 con	
 el	
 mismo	

nombre.	

	

 myAnim:setDrag{ drag=true, limitX=false, limitY=false,

onPress=myPressFunction, onDrag=myDragFunction,
 onRelease=myReleaseFunction, bounds={ 10, 10, 200, 50 }}

	

Es	
 posible	
 definir	
 también	
 animaciones	
 personalizadas,	
 definiendo	
 las	
 trayectorias	
 y	

movimientos	
 de	
 los	
 objetos.	
 Se	
 deben	
 generar	
 llamando	
 de	
 forma	
 repetida	
 a	
 un	
 listener	

que	
 gestione	
 los	
 eventos	
 “enterframe”	
 del	
 sistema,	
 es	
 decir,	
 el	
 evento	
 que	
 se	
 genera	
 por	

el	
 numero	
 de	
 fotogramas	
 por	
 segundos	
 definidos	
 en	
 la	
 aplicación	
 (con	
 un	
 valor	
 por	

defecto	
 de	
 30	
 modificable	
 a	
 60).	

	

Este	
 es	
 un	
 ejemplo	
 de	
 una	
 animación	
 personalizada:	

	

local xdirection,ydirection = 1,1
local xpos,ypos = display.contentWidth*0.5,display.contentHeight*0.5
local circle = display.newCircle(xpos, ypos, 20);
circle:setFillColor(255,0,0,255);

local function animate(event)
 xpos = xpos + (2.8 * xdirection);
 ypos = ypos + (2.2 * ydirection);

 if (xpos > display.contentWidth - 20 or xpos < 20) then
 xdirection = xdirection * -1;
 end
 if (ypos > display.contentHeight - 20 or ypos < 20) then
 ydirection = ydirection * -1;
 end

 circle:translate(xpos - circle.x, ypos - circle.y)
end

Runtime:addEventListener("enterFrame", animate);

7.10 Motor	
 físico	

Como	
 se	
 ha	
 comentado	
 en	
 el	
 apartado	
 anterior,	
 Corona	
 SDK	
 permite	
 realizar	
 de	
 forma	

sencilla	
 y	
 potente	
 la	
 animación	
 de	
 objetos.	
 Igual	
 de	
 simple	
 es	
 la	
 capacidad	
 de	
 dotar	
 a	

cualquier	
 objeto	
 de	
 un	
 motor	
 físico	
 que	
 le	
 permite	
 	
 interactuar	
 con	
 otros	
 objetos	
 de	
 la	

aplicación.	
 	

	

Corona	
 traduce	
 automáticamente	
 desde	
 las	
 unidades	
 establecidas	
 en	
 la	
 pantalla	
 hasta	
 las	

unidades	
 internas	
 métricas	
 de	
 la	
 simulación	
 física.	
 Todos	
 los	
 valores	
 de	
 posición	
 son	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 75	
 -­‐	

declarados	
 en	
 píxeles,	
 que	
 se	
 convierten	
 internamente	
 en	
 metros	
 a	
 una	
 ratio	
 de	
 30	

píxeles	
 por	
 metro	
 (esta	
 proporción	
 es	
 configurable	
 por	
 el	
 usuario	
 en	
 physics.setScale).	

	

Para	
 utilizar	
 las	
 características	
 del	
 motor	
 físico	
 de	
 Corona	
 SDK,	
 se	
 debe	
 cargar	
 el	
 módulo	

“physics”	

	

 local physics = require "physics"

	

Para	
 controlar	
 la	
 simulación	
 física	
 dentro	
 de	
 la	
 aplicación	
 están	
 las	
 funciones	

physics.start(),	
 physics.pause()	
 y	
 physics.stop().	
 La	
 función	
 start	
 crea	
 una	
 instancia	
 o	

reanuda	
 el	
 mundo	
 físico,	
 pause	
 realiza	
 una	
 parada	
 momentánea	
 de	
 la	
 simulación	
 y	
 stop	

destruye	
 el	
 mundo	
 físico.	

	

	
 El	
 motor	
 físico	
 permite	
 definir	
 el	
 valor	
 de	
 la	
 gravedad	
 que	
 aplica	
 tanto	
 en	
 la	
 componente	

horizontal	
 como	
 en	
 la	
 vertical	
 de	
 los	
 objetos.	
 La	
 función	
 es	
 physics.setGravity(
 x,	
 y	
).	
 Por	

defecto	
 (0,	
 9.8).	
 physics.getGravity	
 devuelve	
 los	
 valores	
 usados	
 en	
 x	
 e	
 y	
 respectivamente.	

	

Usando	
 esta	
 propiedad	
 y	
 la	
 API	
 del	
 acelerómetro	
 de	
 Corona,	
 se	
 puede	
 hacer	
 una	
 function	

basada	
 en	
 la	
 gravedad	
 dinámica	
 de	
 acuerdo	
 al	
 valor	
 de	
 inclinación	
 del	
 dispositivo:	

	

local function onTilt(event)
 physics.setGravity(10 * event.xGravity, -10 * event.yGravity)
end

Runtime:addEventListener("accelerometer", onTilt)

	

Cuerpos	
 físicos	

El	
 mundo	
 de	
 la	
 física	
 se	
 basa	
 en	
 las	
 interacciones	
 de	
 los	
 cuerpos	
 rígidos.	
 Los	
 objetos	

creados	
 con	
 corona	
 SDK	
 pueden	
 ser	
 dotados	
 de	
 ciertas	
 características	
 físicas	
 que	

permiten	
 modelar	
 su	
 comportamiento	
 y	
 su	
 relación	
 con	
 otros	
 objetos.	
 Es	
 por	
 esto,	
 que	
 al	

invocar	
 al	
 constructor	
 physics.addBody	
 para	
 definir	
 las	
 características	
 físicas	
 de	
 un	
 objeto	

no	
 se	
 crea	
 un	
 objeto	
 nuevo,	
 sino	
 que	
 se	
 extienden	
 las	
 propiedades	
 del	
 mismo.	

	

Las	
 propiedades	
 del	
 objeto	
 como	
 posición	
 x,y	
 o	
 rotación	
 siguen	
 trabajando	
 normalmente	

auque	
 se	
 implemente	
 el	
 cuerpo	
 físico	
 pero	
 los	
 movimientos	
 se	
 pueden	
 ver	
 condicionados	

por	
 la	
 fuerza	
 de	
 la	
 gravedad	
 u	
 otro	
 tipo	
 de	
 interacciones	
 físicas.	

Un	
 objeto	
 de	
 visualización	
 con	
 atributos	
 físicos	
 puede	
 ser	
 eliminado	
 de	
 la	
 forma	
 habitual,	

con	
 object:removeSelf(),	
 eliminándolo	
 de	
 la	
 pantalla	
 visible	
 y	
 de	
 la	
 simulación	
 física.	
 Una	

vez	
 asignadas	
 propiedades	
 físicas,	
 no	
 se	
 pueden	
 eliminar	
 de	
 forma	
 independiente.	

	

Los	
 cuerpos	
 físicos	
 tienen	
 tres	
 propiedades	
 principales:	

	

Ø density	
 (densidad)	
 –	
 valor	
 que	
 permite	
 calcular	
 la	
 masa	
 al	
 multiplicarlo	
 por	
 la	

superficie.	
 Este	
 parámetro	
 se	
 basa	
 en	
 un	
 valor	
 de	
 1,0	
 para	
 el	
 agua,	
 es	
 decir,	
 los	

materiales	
 más	
 ligeros	
 que	
 el	
 agua	
 (como	
 la	
 madera)	
 tienen	
 una	
 densidad	
 inferior	

a	
 1,0,	
 y	
 los	
 materiales	
 más	
 pesados	
 (como	
 las	
 piedras)	
 tienen	
 una	
 densidad	

superior	
 a	
 1,0.	
 Sin	
 embargo,	
 el	
 comportamiento	
 del	
 objeto	
 global	
 dependerá	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 76	
 -­‐	

también	
 de	
 la	
 gravedad	
 y	
 de	
 la	
 escala	
 píxeles-­‐metros	
 (pixels-­‐to-­‐meter)	
 definida	
 en	

el	
 motor	
 físico.	
 El	
 valor	
 por	
 defecto	
 es	
 de	
 1,0.	

	

Ø friction	
 (fricción)	
 -­‐	
 puede	
 ser	
 cualquier	
 valor	
 no	
 negativo,	
 un	
 valor	
 de	
 0	
 significa	

que	
 no	
 hay	
 fricción	
 y	
 un	
 valor	
 1	
 se	
 corresponde	
 con	
 una	
 fricción	
 fuerte.	
 El	
 valor	

por	
 defecto	
 es	
 de	
 0,3.	

	

Ø bounce	
 (rebote)	
 -­‐	
 determina	
 la	
 velocidad	
 con	
 que	
 un	
 objeto	
 es	
 devuelto	
 después	

de	
 una	
 colisión.	
 Los	
 valores	
 mayores	
 que	
 0,3	
 tienen	
 un	
 rebote	
 alto.	
 Un	

rebote	
 superior	
 a	
 1,0	
 es	
 válido,	
 pero	
 produce	
 comportamientos	
 extraños.	
 El	
 valor	

por	
 defecto	
 es	
 de	
 0,2.	

	

Por	
 defecto,	
 el	
 constructor	
 physics.addBody	
 supone	
 que	
 el	
 objeto	
 físico	
 es	
 rectangular,	

con	
 los	
 límites	
 de	
 colisión	
 que	
 se	
 ajustan	
 automáticamente	
 a	
 los	
 bordes	
 de	
 la	
 imagen	

asociada	
 o	
 un	
 objeto	
 vectorial.	
 Esto	
 funciona	
 bien	
 para	
 las	
 cajas,	
 plataformas,	
 grandes	

masas	
 de	
 tierra,	
 y	
 otros	
 sprites	
 de	
 forma	
 rectangular.	
 Todos	
 los	
 parámetros	
 de	
 la	
 tabla	

son	
 opcionales,	
 y	
 si	
 no	
 se	
 indican	
 se	
 toman	
 los	
 valores	
 por	
 defecto.	
 Para	
 varios	
 objetos	

con	
 las	
 mismas	
 propiedades	
 es	
 recomendable	
 el	
 uso	
 de	
 una	
 tabla	
 común	
 como	
 se	
 ve	
 en	

los	
 ejemplos:	

	

local crate = display.newImage("crate.png", 100, 200)
physics.addBody(crate, { density = 1.0, friction = 0.3, bounce = 0.2 })

local crate1 = display.newImage("crate.png", 100, 200)
local crate2 = display.newImage("crate.png", 180, 280)

local crateMaterial = { density = 1.0, friction = 0.3, bounce = 0.2 }

physics.addBody(crate1, crateMaterial)
physics.addBody(crate2, crateMaterial)

	

Cuando	
 el	
 cuerpo	
 físico	
 no	
 se	
 ajusta	
 a	
 un	
 contenido	
 rectangular	
 se	
 pueden	
 usar	
 las	

estructuras	
 circulares	
 o	
 poligonales.	

	

Los	
 cuerpos	
 circulares	
 requieren	
 un	
 parámetro	
 radio	
 (radius)	
 adicional.	
 Esto	
 funciona	
 bien	

para	
 bolas,	
 piedras	
 y	
 otros	
 objetos	
 que	
 pueden	
 ser	
 tratados	
 como	
 perfectamente	

redondos	
 en	
 el	
 cálculo	
 de	
 colisiones.	
 Para	
 objetos	
 redondos	
 “irregulares”	
 es	

recomendable	
 utilizar	
 un	
 radio	
 menor	
 al	
 objeto	
 o	
 la	
 definición	
 de	
 una	
 forma	
 poligonal.	

	

local ball = display.newImage("ball.png", 100, 200)
physics.addBody(ball, { density = 1.0, friction = 0.3, bounce = 0.2,
 radius = 25 })

	

Para	
 aquellos	
 casos	
 en	
 los	
 que	
 los	
 cuerpos	
 rectangulares	
 y	
 circulares	
 no	
 encajan	
 con	
 la	

forma	
 del	
 objeto,	
 se	
 deben	
 utilizar	
 los	
 cuerpos	
 poligonales.	
 Estos	
 tienen	
 un	
 parámetro	

shape	
 que	
 es	
 una	
 tabla	
 de	
 coordenadas	
 de	
 puntos	
 que	
 definen	
 la	
 silueta	
 de	
 la	
 forma.	

Estas	
 coordenadas	
 son	
 relativas	
 al	
 objeto	
 cuyo	
 origen	
 es	
 situado	
 por	
 Corona	
 SDK	
 en	
 el	

centro	
 de	
 la	
 imagen.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 77	
 -­‐	

	

Por	
 ejemplo,	
 para	
 dibujar	
 una	
 forma	
 rectangular	
 de	
 20	
 píxeles	
 de	
 altura	
 y	
 40	
 de	
 anchura	

con	
 origen	
 en	
 el	
 centro,	
 se	
 debería	
 usar	
 la	
 siguiente	
 forma:	

	

squareShape = { -20,-10, 20,-10, 20,10, -20,10 }

	

El	
 número	
 máximo	
 de	
 puntos	
 (y	
 por	
 lo	
 tanto,	
 de	
 lados	
 del	
 polígono)	
 permitido	
 por	
 la	

forma	
 de	
 colisión	
 es	
 de	
 ocho.	
 Una	
 definición	
 de	
 una	
 forma	
 se	
 puede	
 volver	
 a	
 utilizar	
 varias	

veces.	
 Las	
 coordenadas	
 del	
 polígono	
 debe	
 estar	
 definido	
 en	
 sentido	
 horario,	
 y	
 la	
 forma	

resultante	
 debe	
 ser	
 convexa.	

	

También	
 es	
 posible	
 construir	
 un	
 cuerpo	
 de	
 múltiples	
 elementos.	
 En	
 este	
 contexto,	
 cada	

elemento	
 del	
 cuerpo	
 se	
 especifica	
 como	
 una	
 forma	
 de	
 polígono	
 por	
 separado	
 con	
 sus	

propiedades	
 físicas.	
 La	
 estructura	
 sería:	

	

 physics.addBody(displayObject, [bodyType,] bodyElement1, [bodyElement2, ...])
	

Hay	
 un	
 caso	
 especial	
 de	
 cuerpos	
 físicos	
 denominados	
 sensores,	
 que	
 no	
 se	
 relacionan	

físicamente	
 con	
 otros	
 objetos	
 físicos,	
 sino	
 que	
 solo	
 producen	
 los	
 eventos	
 de	
 colisión	

cuando	
 otros	
 objetos	
 pasan	
 por	
 ellos.	
 Este	
 sería	
 un	
 ejemplo	
 de	
 un	
 sensor	
 invisible	
 en	
 la	

pantalla:	

	

local rect = display.newRect(50, 50, 100, 100)
rect:setFillColor(255, 255, 255, 100)
rect.isVisible = false -- optional
physics.addBody(rect, { isSensor = true })

	

Estas	
 son	
 las	
 propiedades	
 de	
 los	
 cuerpos	
 físicos:	

	

Ø body.isAwake	
 –	
 (booleano)	
 	
 estado	
 “despierto”	
 del	
 objeto.	
 Por	
 defecto,	
 todos	
 los	

cuerpos	
 se	
 van	
 de	
 forma	
 automática	
 "a	
 dormir"	
 cuando	
 no	
 se	
 interactúa	
 con	
 ellos	

durante	
 un	
 par	
 de	
 segundos	
 hasta	
 que	
 algo	
 (por	
 ejemplo,	
 una	
 colisión)	
 los	

despierta.	
 	

	

Ø body.isBodyActive	
 –	
 (booleano)	
 	
 estado	
 de	
 actividad	
 actual.	
 Cuerpos	
 inactivos	
 no	

se	
 destruyen,	
 sino	
 que	
 se	
 retiran	
 de	
 la	
 simulación	
 y	
 dejar	
 de	
 interactuar	
 con	
 otros	

organismos.	

	

Ø body.isBullet	
 –	
 (booleano)	
 	
 determina	
 si	
 el	
 cuerpo	
 debe	
 ser	
 entendido	
 como	
 una	

"bala".	
 Las	
 balas	
 están	
 sujetas	
 a	
 la	
 detección	
 de	
 colisiones	
 continua,	
 en	
 lugar	
 de	
 la	

detección	
 de	
 colisiones	
 periódicas	
 en	
 timesteps.	
 Evita	
 que	
 objetos	
 en	
 movimiento	

rápido	
 pasen	
 por	
 barreras	
 sólidas.	
 El	
 valor	
 predeterminado	
 es	
 falso.	

	

Ø body.isSensor–	
 (booleano)	
 	
 propiedad	
 de	
 solo	
 escritura.	
 Un	
 sensor	
 pasa	
 a	
 través	

de	
 otros	
 objetos	
 sin	
 rebotar	
 pero	
 también	
 desencadena	
 eventos	
 de	
 colisión.	
 	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 78	
 -­‐	

Ø body.isSleepingAllowed	
 –	
 (booleano)	
 	
 permite	
 que	
 los	
 objetos	
 se	
 “duerman”.	

Valor	
 por	
 defecto	
 es	
 verdadero.	

	

Ø body.isFixedRotation	
 –	
 (booleano)	
 	
 rotación	
 del	
 cuerpo	
 está	
 bloqueada.	
 El	
 valor	

predeterminado	
 es	
 falso.	

	

Ø body.angularVelocity	
 -­‐	
 valor	
 numérico	
 de	
 la	
 velocidad	
 actual	
 angular	
 (rotación),	
 en	

grados	
 por	
 segundo.	

	

Ø body.linearDamping	
 -­‐	
 valor	
 numérico	
 de	
 la	
 cantidad	
 de	
 movimiento	
 lineal	
 del	

cuerpo	
 que	
 es	
 amortiguado	
 es	
 amortiguado.	
 El	
 valor	
 predeterminado	
 es	
 cero.	

	

Ø body.angularDamping	
 -­‐	
 valor	
 numérico	
 de	
 cuanta	
 rotación	
 del	
 cuerpo	
 debe	
 ser	

amortiguada.	
 El	
 valor	
 predeterminado	
 es	
 cero.	

	

Ø body.bodyType	
 –	
 cadena	
 que	
 identifica	
 el	
 tipo	
 de	
 objeto.	
 Los	
 posibles	
 valores	
 son	

"static"	
 (por	
 defecto),	
 "dynamic"(por	
 defecto)	
 	
 y	
 "kinematic".	

	

o "static"	
 	
 -­‐	
 no	
 se	
 mueven,	
 y	
 no	
 interactúan	
 unos	
 con	
 otros.	
 Ejemplos	
 de	

objetos	
 estáticos	
 incluyen	
 suelo,	
 o	
 	
 paredes	
 de	
 una	
 máquina	
 de	
 pinball.	

	

o "dynamic"	
 -­‐	
 se	
 ven	
 afectados	
 por	
 la	
 gravedad	
 y	
 las	
 colisiones	

con	
 otros	
 cuerpos.	

	

o "kinematic"	
 -­‐	
 se	
 ven	
 afectados	
 por	
 fuerzas,	
 pero	
 no	
 por	
 la	
 gravedad.	
 Se	

establece	
 generalmente	
 para	
 objetos	
 que	
 se	
 pueden	
 arrastrar,	
 al	
 menos	

durante	
 la	
 duración	
 del	
 evento	
 de	
 arrastre.	

	

Estos	
 son	
 los	
 métodos	
 de	
 los	
 cuerpos	
 físicos:	

	

Ø body:setLinearVelocity	
 –	
 función	
 que	
 establece	
 en	
 los	
 componentes	
 x	
 e	
 y,	
 la	

velocidad	
 lineal	
 del	
 objeto	
 en	
 píxeles	
 por	
 segundo.	

	

Ø body:getLinearVelocity	
 -­‐	
 función	
 que	
 devuelve	
 la	
 velocidad	
 lineal	
 del	
 objeto	
 en	
 x	
 e	

y	
 en	
 píxeles	
 por	
 segundo	

	

Ø body:applyForce	
 -­‐	
 	
 función	
 que	
 se	
 le	
 pasa	
 como	
 parámetro	
 los	
 valores	
 de	
 fuerza	

lineal	
 aplicada	
 en	
 los	
 ejes	
 x	
 e	
 y	
 las	
 coordenadas	
 del	
 objeto	
 en	
 las	
 que	
 se	
 aplica	
 la	

fuerza.	
 Si	
 el	
 punto	
 de	
 destino	
 es	
 el	
 centro	
 de	
 masas	
 del	
 cuerpo,	
 el	
 cuerpo	
 será	

empujado	
 en	
 una	
 línea	
 recta;	
 si	
 el	
 objetivo	
 es	
 un	
 punto	
 desplazado	
 del	
 centro	
 de	

masas,	
 el	
 cuerpo	
 girará	
 alrededor	
 de	
 este	
 centro.	
 Para	
 objetos	
 simétricos	
 el	
 centro	

de	
 masas	
 coincide	
 con	
 el	
 centro	
 del	
 objeto	
 (object.x,	
 object.y).	
 Ejemplo:	

myBody:applyForce(
 500,	
 2000,	
 myBody.x,	
 myBody.y	
)	

	

Ø body:applyTorque	
 -­‐	
 un	
 valor	
 numérico	
 para	
 la	
 fuerza	
 aplicada	
 de	
 rotación.	
 El	

cuerpo	
 rotará	
 sobre	
 su	
 centro	
 de	
 masas.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 79	
 -­‐	

Ø body:applyLinearImpulse	
 -­‐	
 igual	
 que	
 función	
 applyForce,	
 excepto	
 que	
 da	
 solo	
 un	

impulso	
 en	
 un	
 choque	
 único	
 y	
 momentáneo.	

	

Ø body:applyAngularImpulse	
 -­‐	
 igual	
 que	
 función	
 applyTorque,	
 excepto	
 que	
 da	
 solo	

un	
 impulso	
 angular	
 en	
 un	
 choque	
 único	
 y	
 momentáneo.	

Ø body:resetMassData	
 -­‐	
 Si	
 los	
 datos	
 de	
 masa	
 por	
 defecto	
 para	
 el	
 cuerpo	
 han	
 sido	

anulados,	
 esta	
 función	
 establece	
 la	
 masa	
 calculada	
 a	
 partir	
 de	
 las	
 formas.	

	

Colisiones	

La	
 collision	
 entre	
 objetos	
 que	
 propicia	
 el	
 motor	
 físico,	
 es	
 tratado	
 a	
 través	
 del	
 modelo	

estándar	
 de	
 eventos	
 –	
 listeners	
 de	
 Corona,	
 con	
 tres	
 nuevos	
 tipos	
 de	
 eventos	
 específicos.	
 	

	

Para	
 detección	
 de	
 colisiones	
 generales	
 se	
 debe	
 usar	
 el	
 evento	
 “collision”	
 que	
 incluye	
 dos	

fases,	
 “began”	
 y	
 “ended”	
 para	
 el	
 momento	
 inicial	
 y	
 final	
 del	
 contacto.	
 Estas	
 fases	
 existen	

para	
 colisiones	
 normales	
 entre	
 dos	
 cuerpos	
 y	
 como	
 sensor	
 de	
 colisiones.	
 Para	
 que	
 pueda	

ser	
 tratado	
 se	
 debe	
 implementar	
 un	
 “collision”	
 listener.	

	

Hay	
 otros	
 dos	
 tipos	
 de	
 eventos	
 que	
 se	
 usan	
 para	
 el	
 choque	
 entre	
 dos	
 cuerpo	
 (no	
 en	

sensores),	
 “preCollision”	
 y	
 “postCollision”.	
 El	
 primero	
 es	
 un	
 tipo	
 de	
 evento	
 que	
 se	
 dispara	

antes	
 de	
 que	
 los	
 objetos	
 comiencen	
 a	
 interactuar	
 y	
 el	
 segundo	
 es	
 un	
 tipo	
 de	
 evento	
 que	

se	
 activa	
 inmediatamente	
 después	
 que	
 los	
 objetos	
 que	
 han	
 interactuado.	

	

Las	
 colisiones	
 se	
 transmiten	
 entre	
 pares	
 de	
 objetos,	
 y	
 pueden	
 ser	
 detectados	
 de	
 forma	

global,	
 usando	
 un	
 detector	
 de	
 tiempo	
 de	
 ejecución	
 (Runtime	
 listener),	
 o	
 localmente	
 en	

cada	
 uno	
 de	
 los	
 objetos,	
 utilizando	
 una	
 tabla	
 de	
 listeners.	

	

7.11 Conectividad	

Corona	
 incluye	
 la	
 última	
 versión	
 (v2.02)	
 de	
 las	
 bibliotecas	
 LuaSocket.	
 Estos	
 módulos	
 Lua	

permiten	
 aplicar	
 los	
 protocolos	
 de	
 red	
 comunes	
 como	
 SMTP	
 (envío	
 de	
 mensajes	
 de	

correo	
 electrónico),	
 HTTP	
 (acceso	
 a	
 la	
 WWW)	
 y	
 FTP	
 (carga	
 y	
 descarga	
 de	
 archivos).	

También	
 se	
 incluyen	
 funciones	
 de	
 apoyo	
 MIME	
 (codificación	
 común),	
 la	
 manipulación	
 de	

URL	
 y	
 LTN12	
 (transferencia	
 y	
 filtrado	
 de	
 datos).	

	

Luasocket	
 es	
 una	
 colección	
 de	
 bibliotecas	
 externas	
 que	
 son	
 preinstaladas	
 en	
 aplicaciones	

de	
 Corona	
 y	
 	
 no	
 se	
 cargan	
 automáticamente	
 por	
 defecto.	
 Para	
 utilizarlas,	
 debe	
 cargarse	

de	
 forma	
 explícita	
 cada	
 uno	
 de	
 ellos	
 para	
 que	
 las	
 funciones	
 de	
 las	
 bibliotecas	
 estén	

disponibles	
 para	
 la	
 aplicación:	

local	
 socket	
 =	
 require	
 ("socket")	
 o	
 local	
 http	
 =	
 require	
 ("http")	
 	

	

Corona	
 permite	
 realizar	
 conexiones	
 http	
 asíncronas.	
 Esta	
 característica	
 le	
 permite	
 realizar	

llamadas	
 	
 HTTP	
 y	
 HTTPS/SSL	
 asíncronas,	
 utilizando	
 cualquier	
 método	
 válido	
 HTTP	
 ("GET",	

"POST",	
 etc),	
 así	
 como	
 la	
 adición	
 de	
 encabezados	
 y	
 contenidos.	
 No	
 hace	
 falta	
 dejar	
 el	

programa	
 a	
 la	
 espera	
 de	
 respuesta	
 desde	
 el	
 servidor	
 sino	
 que	
 una	
 vez	
 se	
 obtiene	
 esta,	
 se	

genera	
 un	
 evento	
 que	
 nos	
 permite	
 tratar	
 la	
 respuesta.	

	

Para	
 enviar	
 una	
 petición	
 a	
 un	
 servidor,	
 se	
 debe	
 especificar	
 una	
 URL,	
 un	
 método	
 y	
 un	

detector	
 para	
 el	
 resultado:	
 	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 80	
 -­‐	

	

network.request(
 url,	
 method,	
 listener	
 [,	
 params]	
)	

	

El	
 método	
 por	
 defecto	
 es	
 GET	
 y	
 las	
 propiedades	
 del	
 evento	
 respuesta	
 son	
 dos:	

	

Ø event.response	
 –	
 Una	
 cadena	
 que	
 contiene	
 la	
 respuesta	
 desde	
 el	
 servidor.	

Ø event.isError	
 –	
 valor	
 booleano	
 que	
 devuelve	
 true	
 en	
 caso	
 de	
 error	
 de	
 red	
 o	
 false	

en	
 caso	
 contrario.	

	

Este	
 es	
 un	
 ejemplo	
 petición	
 http:	

	

local function networkListener(event)
 if (event.isError) then
 print("Network error!")
 else
 print ("RESPONSE: " .. event.response)
 end
end

-- Access Google over SSL:
network.request("https://encrypted.google.com", "GET", networkListener)

	

En	
 ciertas	
 ocasiones	
 es	
 necesario	
 especificar	
 cabeceras	
 adicionales	
 en	
 la	
 petición.	
 Ambos	

pueden	
 especificarse	
 en	
 la	
 tabla	
 de	
 parámetros	
 opcional:	

Ø params.headers	
 –	
 Tabla	
 especificando	
 los	
 valores	
 de	
 cabecera	
 con	
 claves	
 de	
 tipo	

cadena.	

Ø params.body	
 –	
 Una	
 cadena	
 conteniendo	
 el	
 cuerpo	
 (body)	
 HTTP.	

	

headers = {}
headers["Content-Type"] = "application/json"
headers["Accept-Language"] = "en-US"
headers.body = "This is an example request body."

	

Para	
 realizar	
 una	
 descarga,	
 se	
 utiliza	
 una	
 función	
 similar	
 a	
 la	
 anterior	
 salvo	
 que	
 se	

descarga	
 la	
 respuesta	
 a	
 un	
 archivo	
 local	
 en	
 la	
 ruta	
 que	
 se	
 especifique,	
 en	
 lugar	
 de	
 en	
 la	

memoria	
 caché.	
 Esto	
 se	
 recomienda	
 para	
 respuestas	
 de	
 gran	
 tamaño	
 (por	
 ejemplo,	

documentos	
 XML),	
 y	
 también	
 puede	
 ser	
 utilizado	
 para	
 la	
 descarga	
 de	
 imágenes	
 a	

distancia.	
 Este	
 es	
 el	
 formato:	

	

network.download(
 url,	
 method,	
 listener	
 [,	
 params],	
 destFilename	
 [,	
 baseDir]	
)	

	

El	
 parámetro	
 opcional	
 baseDir	
 puede	
 ser	
 system.DocumentsDirectory	
 (por	
 defecto)	
 o	

system.TemporaryDirectory.	

	

 local function networkListener(event)
 if (event.isError) then
 print ("Network error - download failed")
 else
 myImage = display.newImage("helloCopy.png",

system.TemporaryDirectory, 60, 40)
 myImage.alpha = 0

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 81	
 -­‐	

 transition.to(myImage, { alpha = 1.0 })
 end

 print ("RESPONSE: " .. event.response)
 end

 network.download("http://developer.anscamobile.com/demo/hello.png", "GET",

networkListener, "helloCopy.png", system.TemporaryDirectory)

	

Si	
 lo	
 que	
 se	
 desea	
 es	
 descargar	
 específicamente	
 imágenes	
 para	
 mostrarlas	
 en	
 pantalla,	

existe	
 la	
 siguiente	
 función:	

	

display.loadRemoteImage(
 url,	
 method,	
 listener	
 [,	
 params],	
 destFilename	
 [,	

baseDir]	
 [,	
 x,	
 y]	
)	

	

Contiene	
 las	
 coordenadas	
 x	
 e	
 y	
 para	
 situar	
 la	
 imagen	
 en	
 la	
 pantalla.	
 	

	

Las	
 propiedades	
 del	
 evento	
 respuesta	
 son	
 las	
 mismas	
 que	
 los	
 casos	
 anteriores	
 y	
 además	

tiene	
 una	
 tercera:	

	

Ø event.target	
 –	
 representa	
 el	
 Nuevo	
 objeto	
 creado	
 después	
 de	
 que	
 la	
 imagen	
 es	

descargada.	

	

Corona	
 SDK	
 permite	
 mostrar	
 contenido	
 web	
 directamente	
 a	
 través	
 de	
 los	
 denominados	

web	
 popup,	
 que	
 carga	
 local	
 o	
 remotamente	
 páginas	
 web.	

	

La	
 función	
 es:	

native.showWebPopup(
 url	
 [,	
 options]	
)	
 	
 	

native.showWebPopup(
 x,	
 y,	
 width,	
 height,	
 url	
 [,	
 options]	
)	

	

y	
 los	
 parámetros	
 son:	

Ø url	
 –	
 URL	
 de	
 la	
 página	
 web	
 local	
 o	
 remota.	
 Por	
 defecto,	
 la	
 URL	
 es	
 una	
 ruta	
 absoluta	

a	
 un	
 servidor	
 remoto.	
 	

	

Ø x,	
 y,	
 width,	
 height	
 –	
 parámetros	
 de	
 posición	
 y	
 tamaño	
 de	
 la	
 ventana	
 del	
 popup.	
 Si	

no	
 se	
 especifica	
 se	
 asume	
 que	
 ocupa	
 toda	
 la	
 pantalla.	

	

Ø Options	
 –	
 tabla	
 que	
 contiene	
 valores	
 opcionales.	
 options.baseUrl	
 para	
 determinar	

si	
 la	
 url	
 es	
 relativa	
 o	
 absoluta,	
 options.hasBackground	
 para	
 indicar	
 si	
 tiene	
 un	

fondo	
 opaco	
 o	
 no	
 y	
 options.urlRequest	
 que	
 designa	
 una	
 función	
 para	
 interceptar	

los	
 eventos	
 generados	
 en	
 el	
 web	
 popup.	

	

7.12 Gestión	
 de	
 la	
 memoria	

Los	
 dispositivos	
 móviles	
 tienen	
 una	
 memoria	
 limitada	
 disponible	
 para	
 su	
 uso,	
 por	
 lo	
 que	

se	
 debe	
 tener	
 cuidado	
 para	
 asegurarse	
 de	
 que	
 el	
 uso	
 total	
 de	
 la	
 memoria	
 de	
 su	
 aplicación	

se	
 mantiene	
 al	
 mínimo	
 y	
 se	
 gestiona	
 de	
 forma	
 correcta.	

	

Lua	
 realiza	
 automáticamente	
 la	
 gestión	
 de	
 la	
 memoria.	
 Esto	
 significa	
 que	
 no	
 debemos	

preocuparnos	
 ni	
 de	
 asignar	
 (o	
 reservar)	
 memoria	
 para	
 nuevos	
 objetos	
 ni	
 de	
 liberarla	

cuando	
 los	
 objetos	
 dejan	
 de	
 ser	
 necesarios.	
 Lua	
 gestiona	
 la	
 memoria	
 automáticamente	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 82	
 -­‐	

ejecutando	
 un	
 recolector	
 de	
 basura	
 (garbage	
 collector)	
 de	
 cuando	
 en	
 cuando	
 para	

eliminar	
 todos	
 los	
 objetos	
 muertos	
 (esos	
 objetos	
 que	
 ya	
 no	
 son	
 accesibles	
 desde	
 Lua).	

Todos	
 los	
 objetos	
 en	
 Lua	
 son	
 susceptibles	
 de	
 gestión	
 automática:	
 tablas,	
 funciones	
 y	

cadenas.	

	

Sin	
 embargo,	
 hay	
 ciertos	
 puntos	
 que	
 se	
 deben	
 tener	
 en	
 cuenta	
 ya	
 que	
 se	
 debe	
 indicar	
 al	

sistema	
 que	
 se	
 debe	
 considerar	
 como	
 	
 basura,	
 es	
 decir,	
 hay	
 que	
 preocuparse	
 por	
 la	

gestión	
 lógica	
 de	
 la	
 memoria.	
 Por	
 ejemplo,	
 cualquier	
 valor	
 almacenado	
 en	
 una	
 variable	

global	
 no	
 se	
 considera	
 basura,	
 aunque	
 la	
 aplicación	
 no	
 lo	
 vuelva	
 a	
 utilizar	
 de	
 nuevo.	

	

La	
 gestión	
 de	
 memoria	
 en	
 Corona	
 SDK	
 se	
 debe	
 aplicar	
 sobre	
 los	
 siguientes	
 cinco	
 aspectos:	
 	

Ø Objetos	
 de	
 visualización	

Ø Variables	
 globales	

Ø Runtime	
 listeners	

Ø Temporizadores	
 (Timers)	

Ø Transiciones	

	

La	
 forma	
 de	
 monitorizar	
 la	
 utilización	
 de	
 la	
 memoria	
 en	
 la	
 aplicación	
 es	
 añadir	
 en	
 la	

aplicación,	
 en	
 el	
 fichero	
 main.lua,	
 el	
 siguiente	
 código	
 que	
 visualiza	
 su	
 utilización	

 local monitorMem = function()

 collectgarbage()
 print("MemUsage: " .. collectgarbage("count"))

 local textMem = system.getInfo("textureMemoryUsed") / 1000000
 print("TexMem: " .. textMem)
end

Runtime:addEventListener("enterFrame", monitorMem)

	

Objetos	
 de	
 visualización	

Estos	
 son	
 los	
 más	
 fáciles	
 de	
 gestionar,	
 ya	
 que	
 son	
 directamente	
 responsables	
 de	
 la	

creación	
 de	
 objetos	
 de	
 visualización.	
 La	
 forma	
 en	
 que	
 puede	
 evitar	
 las	
 pérdidas	
 de	

memoria	
 al	
 mostrar	
 objetos	
 es	
 asegurarse	
 de	
 que	
 se	
 quitan	
 aquellos	
 que	
 ya	
 no	
 son	

necesarios.	

	

Dado	
 un	
 objeto	
 círculo,	
 lo	
 podemos	
 eliminar	
 de	
 la	
 siguiente	
 manera:	

	

-- Creación del objeto
local redBall = display.newCircle(100, 100, 25)

-- eliminacion del objeto
redBall:removeSelf()
 o
display.remove(redBall)

-- elminación de la referencia
redBall=nil

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 83	
 -­‐	

La	
 diferencia	
 entre	
 display.remove()	
 y	
 el	
 método	
 de	
 objeto	
 removeSelf()	
 es	
 que	
 en	
 primer	

caso	
 se	
 comprueba	
 que	
 el	
 objeto	
 no	
 ha	
 sido	
 eliminado	
 previamente.	
 Es	
 sólo	
 una	
 manera	

más	
 segura	
 de	
 eliminar	
 los	
 objetos	
 en	
 Corona.	

	

	
 Las	
 fugas	
 en	
 este	
 caso	
 se	
 presentan	
 con	
 mayor	
 frecuencia	
 cuando	
 los	
 objetos	
 se	
 crean	

dentro	
 de	
 un	
 bucle,	
 o	
 en	
 alguna	
 parte	
 que	
 es	
 difícil	
 hacer	
 un	
 seguimiento	
 de	
 cada	
 objeto	

individual.	
 Se	
 debe	
 asegurar	
 que	
 los	
 objetos	
 de	
 visualización	
 son	
 liberados	
 de	
 la	
 memoria	

cuando	
 ya	
 no	
 son	
 necesarios,	
 especialmente	
 al	
 cambiar	
 de	
 imagen	
 o	
 pantalla.	

	

Variables	
 globales	

En	
 Corona	
 SDK	
 se	
 recomienda	
 que	
 se	
 usen	
 la	
 menor	
 cantidad	
 de	
 variables	
 globales	

(aquellas	
 que	
 se	
 declaran	
 sin	
 usar	
 la	
 palabra	
 local).	
 En	
 el	
 momento	
 que	
 esas	
 variables	

haya	
 dejado	
 de	
 ser	
 útiles	
 o	
 no	
 vaya	
 a	
 usarse	
 más,	
 se	
 debe	
 asegurar	
 que	
 se	
 les	
 asigna	
 el	

valor	
 nil	
 para	
 que	
 el	
 recolector	
 pueda	
 liberar	
 su	
 memoria.	

	

Runtime	
 listeners	

Cuando	
 se	
 elimina	
 un	
 objeto	
 de	
 visualización,	
 los	
 listeners	
 para	
 captar	
 los	
 eventos	
 que	

están	
 asociados,	
 también	
 se	
 liberan	
 de	
 la	
 memoria.	
 Sin	
 embargo,	
 cuando	
 se	
 agregan	
 	

listeners	
 al	
 objeto	
 Runtime	
 (tiempo	
 de	
 ejecución),	
 por	
 ejemplo,	
 el	
 listener	
 enterFrame,	

nunca	
 se	
 liberan	
 hasta	
 que	
 se	
 eliminan	
 manualmente.	

	

Una	
 pérdida	
 de	
 memoria	
 común	
 que	
 ocurre	
 con	
 los	
 listeners	
 en	
 el	
 Runtime	
 es	
 cuando	
 un	

desarrollador	
 añade	
 en	
 una	
 pantalla	
 en	
 particular,	
 pero	
 que	
 se	
 olvida	
 de	
 quitarlo	
 cuando	

el	
 usuario	
 sale	
 de	
 la	
 pantalla.	
 Cuando	
 vuelve	
 a	
 ella,	
 hay	
 dos	
 listeners	
 en	
 el	
 Runtime	
 que	
 se	

ejecutan	
 en	
 uno	
 encima	
 del	
 otro.	

	

Además	
 de	
 poder	
 provocar	
 un	
 error	
 por	
 falta	
 de	
 memoria,	
 se	
 pueden	
 producir	
 errores	
 en	

la	
 gestión	
 de	
 los	
 eventos	
 con	
 resultados	
 inesperados.	

	

	

Temporizadores	
 y	
 transiciones	
 	

Temporizadores	
 y	
 transiciones	
 son	
 probablemente	
 una	
 de	
 las	
 causas	
 más	
 comunes	
 de	

errores	
 por	
 memoria.	
 	

Un	
 método	
 para	
 manejar	
 estas	
 es	
 almacenar	
 todos	
 los	
 temporizadores	
 y	
 las	
 transiciones	

en	
 una	
 tabla,	
 de	
 modo	
 que	
 cuando	
 se	
 sabe	
 que	
 han	
 terminado,	
 se	
 puedan	
 cancelar	
 todos	

ellos	
 a	
 la	
 vez.	

	

	
 Si	
 se	
 agrega	
 el	
 siguiente	
 código	
 al	
 archivo	
 main.lua	
 (u	
 otro	
 módulo),	
 se	
 puede	
 hacer	

fácilmente	
 un	
 seguimiento	
 de	
 los	
 temporizadores	
 /	
 transiciones	
 y	
 cancelarlos	
 todos	
 a	
 la	

vez,	
 siempre	
 y	
 cuando	
 sea	
 necesario:	

	

timerStash = {}
transitionStash = {}

function cancelAllTimers()
 local k, v

 for k,v in pairs(timerStash) do
 timer.cancel(v)
 v = nil; k = nil

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 84	
 -­‐	

 end

 timerStash = nil
 timerStash = {}
end

--

function cancelAllTransitions()
 local k, v

 for k,v in pairs(transitionStash) do
 transition.cancel(v)
 v = nil; k = nil
 end

 transitionStash = nil
 transitionStash = {}
end

	

Y	
 entonces	
 cuando	
 se	
 crea	
 un	
 nuevo	
 temporizador	
 o	
 una	
 transición:	

	

timerStash.newTimer = timer.performWithDelay(...

transitionStash.newTransition = transition.to(myObject { ...

	

Entonces	
 se	
 puede	
 llamar	
 a	
 las	
 funciones	
 cancelAllTimers()	
 y	
 	
 cancelAllTransitions()	
 para	

pararlos	
 de	
 una	
 vez.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 85	
 -­‐	

8 ANEXO I – Detalle de funciones en Corona SDK

8.1 Librerías	
 estándar	
 de	
 Lua	

Corona	
 incluye	
 las	
 mismas	
 bibliotecas	
 estándar	
 Lua	
 que	
 son	
 parte	
 del	
 estándar	
 de	
 Lua.	

Estas	
 bibliotecas	
 proporcionan	
 una	
 funcionalidad	
 útil	
 y	
 básica.	
 Se	
 agrupan	
 en	
 las	

siguientes	
 categorías:	

	

Ø Biblioteca	
 básica	

Ø Módulos	
 (bibliotecas	
 externas)	

Ø Manipulación	
 de	
 cadenas	

Ø Manipulación	
 de	
 tablas	

Ø Funciones	
 matemáticas	

Ø Funciones	
 de	
 entrada	
 y	
 salida	

Ø Funciones	
 de	
 sistema	
 operativo	

	

	
 A	
 excepción	
 de	
 la	
 biblioteca	
 básica,	
 cada	
 biblioteca	
 ofrece	
 todas	
 sus	
 funciones	
 como	

propiedades	
 de	
 una	
 tabla	
 o	
 como	
 los	
 métodos	
 de	
 sus	
 objetos.	
 Esto	
 crea	
 una	
 agrupación	

lógica	
 de	
 funciones	
 y	
 es	
 la	
 manera	
 de	
 crear	
 Lua	
 un	
 espacio	
 de	
 nombres	
 de	
 conjuntos	

diferentes	
 de	
 funcionalidad.	

8.1.1 Biblioteca	
 básica	

La	
 biblioteca	
 básica	
 proporciona	
 algunas	
 funciones	
 del	
 núcleo	
 de	
 Lua.	

	

assert	
 (v	
 [,	
 mensaje])	

Activa	
 un	
 error	
 cuando	
 el	
 valor	
 de	
 su	
 argumento	
 v	
 es	
 falso	
 (por	
 ejemplo,	
 nil	
 o	
 false);	
 en	

otro	
 caso	
 retorna	
 todos	
 sus	
 argumentos.	
 mensaje	
 es	
 un	
 mensaje	
 de	
 error;	
 cuando	
 está	

ausente	
 se	
 utiliza	
 por	
 defecto	
 "assertion	
 failed!".	

	

error	
 (mensaje	
 [,	
 nivel])	

Termina	
 la	
 última	
 función	
 protegida	
 llamada,	
 estableciendo	
 mensaje	
 como	
 mensaje	
 de	

error.	
 La	
 función	
 error	
 nunca	
 retorna.	
 	

Normalmente	
 error	
 añade,	
 al	
 comienzo	
 del	
 mensaje,	
 cierta	
 información	
 acerca	
 de	
 la	

posición	
 del	
 error.	
 El	
 argumento	
 nivel	
 especifica	
 cómo	
 obtener	
 la	
 posición	
 del	
 error.	
 Con	

nivel	
 1	
 (por	
 defecto)	
 la	
 posición	
 del	
 error	
 es	
 donde	
 fue	
 invocada	
 la	
 función	
 error.	
 Nivel	
 2	

apunta	
 el	
 error	
 hacia	
 el	
 lugar	
 en	
 que	
 fue	
 invocada	
 la	
 función	
 que	
 llamó	
 a	
 error;	
 y	
 así	

sucesivamente.	
 Pasar	
 un	
 valor	
 0	
 como	
 nivel	
 evita	
 la	
 adición	
 de	
 la	
 información	
 de	
 la	

posición	
 al	
 mensaje.	

	

_G	

Una	
 variable	
 global	
 (no	
 una	
 función)	
 que	
 almacena	
 el	
 entorno	
 global	
 (o	
 sea,	
 _G._G	
 =	
 _G).	

Lua	
 mismo	
 no	
 usa	
 esta	
 variable;	
 cambiar	
 su	
 valor	
 no	
 afecta	
 ningún	
 entorno,	
 ni	
 viceversa.	
 (

Se	
 usa	
 setfenv	
 para	
 cambiar	
 entornos.)	

	

getfenv	
 ([f])	

Retorna	
 el	
 entorno	
 actualmente	
 en	
 uso	
 por	
 la	
 función.	
 f	
 puede	
 ser	
 una	
 función	
 Lua	
 o	
 un	

número	
 que	
 especifica	
 la	
 función	
 a	
 ese	
 nivel	
 de	
 la	
 pila:	
 nivel	
 1	
 es	
 la	
 función	
 que	
 invoca	
 a	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 86	
 -­‐	

getfenv.	
 Si	
 la	
 función	
 dada	
 no	
 es	
 una	
 función	
 Lua	
 o	
 si	
 f	
 es	
 0,	
 getfenv	
 retorna	
 el	
 entorno	

global.	
 El	
 valor	
 por	
 defecto	
 de	
 f	
 es	
 1.	
 	

	

getmetatable	
 (objeto)	

Si	
 objeto	
 no	
 tiene	
 una	
 metatabla	
 devuelve	
 nil.	
 En	
 otro	
 caso,	
 si	
 la	
 metatabla	
 del	
 objeto	

tiene	
 un	
 campo	
 "__metatable"	
 retorna	
 el	
 valor	
 asociado,	
 o	
 si	
 no	
 es	
 así	
 retorna	
 la	

metatabla	
 del	
 objeto	
 dado.	
 	

	

ipairs	
 (t)	

Retorna	
 tres	
 valores:	
 una	
 función	
 iteradora,	
 la	
 tabla	
 t,	
 y	
 0,	
 de	
 tal	
 modo	
 que	
 la	

construcción	
 	

	

	
 	
 	
 	
 	
 	
 	
 for	
 i,v	
 in	
 ipairs(t)	
 do	
 bloque	
 end	

	

iterará	
 sobre	
 los	
 pares	
 (1,t[1]),	
 (2,t[2]),	
 ·∙·∙·∙,	
 hasta	
 la	
 primera	
 clave	
 entera	
 con	
 un	
 valor	
 nil	

en	
 la	
 tabla.	

	

next	
 (tabla	
 [,	
 índice])	

Permite	
 al	
 programa	
 recorrer	
 todos	
 los	
 campos	
 de	
 una	
 tabla.	
 Su	
 primer	
 argumento	
 es	
 una	

tabla	
 y	
 su	
 segundo	
 argumento	
 es	
 un	
 índice	
 en	
 esta	
 tabla.	
 next	
 retorna	
 el	
 siguiente	
 índice	

de	
 la	
 tabla	
 y	
 su	
 valor	
 asociado.	
 Cuando	
 se	
 invoca	
 con	
 nil	
 como	
 segundo	
 argumento	
 next	

retorna	
 un	
 índice	
 inicial	
 y	
 su	
 valor	
 asociado.	
 Cuando	
 se	
 invoca	
 con	
 el	
 último	
 índice	
 o	
 con	

nil	
 en	
 una	
 tabla	
 vacía	
 next	
 retorna	
 nil.	
 Si	
 el	
 segundo	
 argumento	
 está	
 ausente	
 entonces	
 se	

interpreta	
 como	
 nil.	
 En	
 particular	
 se	
 puede	
 usar	
 next(t)	
 para	
 comprobar	
 si	
 una	
 tabla	
 está	

vacía.	
 	

	

El	
 orden	
 en	
 que	
 se	
 enumeran	
 los	
 índices	
 no	
 está	
 especificado,	
 incluso	
 para	
 índices	

numéricos.	
 (Para	
 recorrer	
 una	
 tabla	
 en	
 orden	
 numérico	
 úsese	
 el	
 for	
 numérico	
 o	
 la	
 función	

ipairs.)	
 	

	

El	
 comportamiento	
 de	
 next	
 es	
 indefinido	
 si	
 durante	
 el	
 recorrido	
 se	
 asigna	
 un	
 valor	
 a	
 un	

campo	
 no	
 existente	
 previamente	
 en	
 la	
 tabla.	
 No	
 obstante	
 se	
 pueden	
 modificar	
 campos	

existentes.	
 En	
 particular	
 se	
 pueden	
 borrar	
 campos	
 existentes.	
 	

	

pairs	
 (t)	

Retorna	
 tres	
 valores:	
 la	
 función	
 next,	
 la	
 tabla	
 t,	
 y	
 nil,	
 por	
 lo	
 que	
 la	
 construcción	
 	

	

	
 	
 	
 	
 	
 	
 	
 for	
 k,v	
 in	
 pairs(t)	
 do	
 bloque	
 end	

	

iterará	
 sobre	
 todas	
 las	
 parejas	
 clave-­‐valor	
 de	
 la	
 tabla	
 t.	
 	

	

Véase	
 next	
 para	
 las	
 precauciones	
 a	
 tomar	
 cuando	
 se	
 modifica	
 la	
 tabla	
 durante	
 las	

iteraciones.	
 	

	

pcall	
 (f,	
 arg1,	
 ·∙·∙·∙)	

Invoca	
 la	
 función	
 f	
 con	
 los	
 argumentos	
 dados	
 en	
 modo	
 protegido.	
 Esto	
 significa	
 que	

ningún	
 error	
 dentro	
 de	
 f	
 se	
 propaga;	
 en	
 su	
 lugar	
 pcall	
 captura	
 el	
 error	
 y	
 retorna	
 un	
 código	

de	
 estatus.	
 Su	
 primer	
 resultado	
 es	
 el	
 código	
 de	
 estatus	
 (booleano),	
 el	
 cual	
 es	
 verdadero	
 si	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 87	
 -­‐	

la	
 llamada	
 tiene	
 éxito	
 sin	
 errores.	
 En	
 ese	
 caso	
 pcall	
 también	
 devuelve	
 todos	
 los	
 resultados	

de	
 la	
 llamada	
 después	
 del	
 primer	
 resultado.	
 En	
 caso	
 de	
 error	
 pcall	
 retorna	
 false	
 más	
 un	

mensaje	
 de	
 error.	
 	

	

print	
 (·∙·∙·∙)	

Recibe	
 cualquier	
 número	
 de	
 argumentos	
 e	
 imprime	
 sus	
 valores	
 en	
 el	
 fichero	
 estándar	
 de	

salida	
 (stdout),	
 usando	
 tostring	
 como	
 función	
 para	
 convertir	
 los	
 argumentos	
 a	
 strings.	

print	
 no	
 está	
 diseñada	
 para	
 salida	
 formateada	
 sino	
 sólo	
 como	
 una	
 manera	
 rápida	
 de	

mostrar	
 valores,	
 típicamente	
 para	
 la	
 depuración	
 del	
 código.	
 Para	
 salida	
 formateada	
 úsese	

string.format.	

	

rawequal	
 (v1,	
 v2)	

Verifica	
 si	
 v1	
 es	
 igual	
 a	
 v2,	
 sin	
 invocar	
 ningún	
 metamétodo.	
 Devuelve	
 un	
 booleano.	
 	

	

rawget	
 (tabla,	
 índice)	

Obtiene	
 el	
 valor	
 real	
 de	
 tabla[índice]	
 sin	
 invocar	
 ningún	
 metamétodo.	
 tabla	
 debe	
 ser	
 una	

tabla	
 e	
 índice	
 cualquier	
 valor	
 diferente	
 de	
 nil.	
 	

	

rawset	
 (tabla,	
 índice,	
 valor)	

Asigna	
 valor	
 a	
 tabla[índice]	
 sin	
 invocar	
 ningún	
 metamétodo.	
 tabla	
 debe	
 ser	
 una	
 tabla,	

índice	
 cualquier	
 valor	
 diferente	
 de	
 nil	
 y	
 valor	
 un	
 valor	
 cualquiera	
 de	
 Lua.	
 	

	

select	
 (índice,	
 ·∙·∙·∙)	

Si	
 índice	
 es	
 un	
 número	
 retorna	
 todos	
 los	
 argumentos	
 después	
 del	
 número	
 índice.	
 En	
 otro	

caso	
 índice	
 debe	
 ser	
 el	
 string	
 "#",	
 y	
 select	
 retorna	
 el	
 número	
 total	
 de	
 argumentos	
 extra	

que	
 recibe.	
 	

	

setfenv	
 (f,	
 tabla)	

Establece	
 el	
 entorno	
 que	
 va	
 a	
 ser	
 usado	
 por	
 una	
 función.	
 f	
 puede	
 ser	
 una	
 función	
 Lua	
 o	
 un	

número	
 que	
 especifica	
 la	
 función	
 al	
 nivel	
 de	
 pila:	
 nivel	
 1	
 es	
 la	
 función	
 que	
 invoca	
 a	

setfenv.	
 setfenv	
 retorna	
 la	
 función	
 dada.	
 	

	

Como	
 caso	
 especial,	
 cuando	
 f	
 es	
 0	
 setfenv	
 cambia	
 el	
 entorno	
 del	
 proceso	
 que	
 está	
 en	

ejecución.	
 En	
 este	
 caso	
 setfenv	
 no	
 retorna	
 valores.	
 	

	

setmetatable	
 (tabla,	
 metatabla)	

Establece	
 la	
 metatabla	
 de	
 una	
 tabla	
 dada.	
 (No	
 se	
 puede	
 cambiar	
 la	
 metatabla	
 de	
 otros	

tipos	
 desde	
 Lua,	
 sino	
 sólo	
 desde	
 C.)	
 Si	
 metatabla	
 es	
 nil	
 entonces	
 se	
 elimina	
 la	
 metatabla	

de	
 la	
 tabla	
 dada.	
 Si	
 la	
 metatabla	
 original	
 tiene	
 un	
 campo	
 "__metatable"	
 se	
 activa	
 un	
 error.	
 	

	

Esta	
 función	
 retorna	
 tabla.	
 	

	

	

	

	

tonumber	
 (e	
 [,	
 base])	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 88	
 -­‐	

Intenta	
 convertir	
 su	
 argumento	
 en	
 un	
 número.	
 Si	
 el	
 argumento	
 es	
 ya	
 un	
 número	
 o	
 un	

string	
 convertible	
 a	
 un	
 número	
 entonces	
 tonumber	
 retorna	
 este	
 número;	
 en	
 otro	
 caso	

devuelve	
 nil.	
 	

	

Un	
 argumento	
 opcional	
 especifica	
 la	
 base	
 para	
 interpretar	
 el	
 número.	
 La	
 base	
 puede	
 ser	

cualquier	
 entero	
 entre	
 2	
 y	
 36,	
 ambos	
 inclusive.	
 En	
 bases	
 por	
 encima	
 de	
 10	
 la	
 letra	
 'A'	
 (en	

mayúscula	
 o	
 minúscula)	
 representa	
 10,	
 'B'	
 representa	
 11,	
 y	
 así	
 sucesivamente,	
 con	
 'Z'	

representando	
 35.	
 En	
 base	
 10	
 (por	
 defecto),	
 el	
 número	
 puede	
 tener	
 parte	
 decimal,	
 así	

como	
 un	
 exponente	
 opcional	
 (véase	
 §2.1).	
 En	
 otras	
 bases	
 sólo	
 se	
 aceptan	
 enteros	
 sin	

signo.	
 	

	

tostring	
 (e)	

Recibe	
 un	
 argumento	
 de	
 cualquier	
 tipo	
 y	
 lo	
 convierte	
 en	
 un	
 string	
 con	
 un	
 formato	

razonable.	
 Para	
 un	
 control	
 completo	
 de	
 cómo	
 se	
 convierten	
 los	
 números,	
 úsese	

string.format.	
 	

	

Si	
 la	
 metatabla	
 de	
 e	
 tiene	
 un	
 campo	
 "__tostring"	
 entonces	
 tostring	
 invoca	
 al	

correspondiente	
 valor	
 con	
 e	
 como	
 argumento	
 y	
 usa	
 el	
 resultado	
 de	
 la	
 llamada	
 como	
 su	

propio	
 resultado.	
 	

	

type	
 (v)	

Retorna	
 el	
 tipo	
 de	
 su	
 único	
 argumento,	
 codificado	
 como	
 string.	
 Los	
 posibles	
 resultados	
 de	

esta	
 función	
 son	
 "nil"	
 (un	
 string,	
 no	
 el	
 valor	
 nil),	
 "number",	
 "string",	
 "boolean,	
 "table",	

"function",	
 "thread"	
 y	
 "userdata".	
 	

	

unpack	
 (lista	
 [,	
 i	
 [,	
 j]])	

Retorna	
 los	
 elementos	
 de	
 una	
 tabla	
 dada.	
 Esta	
 función	
 equivale	
 a	
 	

	

	
 	
 return	
 lista[i],	
 lista[i+1],	
 ·∙·∙·∙,	
 lista[j]	

	

excepto	
 que	
 este	
 código	
 puede	
 ser	
 escrito	
 sólo	
 para	
 un	
 número	
 fijo	
 de	
 elementos.	
 Por	

defecto	
 i	
 es	
 1	
 y	
 j	
 es	
 la	
 longitud	
 de	
 la	
 lista,	
 como	
 se	
 define	
 a	
 través	
 del	
 operador	
 longitud	
 .	

8.1.2 Módulos	
 (bibliotecas	
 externas)	

Corona	
 admite	
 la	
 funcionalidad	
 de	
 módulos	
 de	
 Lua	
 para	
 crear	
 y	
 cargar	
 bibliotecas	

externas.	

En	
 la	
 actualidad,	
 el	
 SDK	
 incluye	
 varias	
 bibliotecas	
 externas	
 como	
 "ui.lua"	
 (para	
 la	
 creación	

de	
 los	
 botones	
 con	
 rollover)	
 y	
 "sprite.lua"	
 (para	
 crear	
 sprites	
 animados,	
 o	
 "clips	
 de	

película").	

	

Estas	
 librerías	
 se	
 pueden	
 encontrar	
 en	
 los	
 proyectos	
 de	
 muestra	
 "Button"	
 y	
 "clip	
 de	

película",	
 ubicado	
 en	
 el	
 directorio	
 del	
 código	
 de	
 ejemplo	
 del	
 SDK.	
 	

	

	

	

Crear	
 bibliotecas	
 externas	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 89	
 -­‐	

Se	
 pueden	
 crear	
 módulos	
 externos	
 de	
 Lua,	
 lo	
 cual	
 es	
 útil	
 para	
 la	
 organización	
 de	
 grandes	

proyectos	
 en	
 varios	
 archivos,	
 o	
 la	
 creación	
 de	
 bibliotecas	
 reutilizables	
 de	
 código	
 para	

futuros	
 proyectos.	

	

La	
 forma	
 más	
 fácil	
 de	
 crear	
 un	
 módulo	
 es	
 utilizar	
 el	
 siguiente	
 formato	
 y	
 guardarlo	
 en	
 un	

fichero	
 con	
 extensión	
 .lua	
 en	
 el	
 mismo	
 directorio	
 que	
 el	
 archivo	
 del	
 proyecto	
 main.lua:	

	

module(..., package.seeall)

-- Declare the functions you want in your module
function hello()
 print ("Hello, module")
end

	

Cargar	
 bibliotecas	
 externas	

Para	
 cargar	
 un	
 módulo	
 de	
 directorio	
 de	
 su	
 proyecto,	
 se	
 usa	
 require(NombreModulo)	
 al	

comienzo	
 del	
 archivo	
 main.lua.	
 Las	
 funciones	
 en	
 el	
 módulo,	
 estarán	
 disponibles	
 con	
 el	

formato	
 NombreModulo.nombreFuncion	
 ().	

	

-- Carga biblioteca
local testlib = require("testlib")

-- llamada a función hello().
testlib.hello()

-- la misma function en el cache same function
local hello = testlib.hello()

-- invocaciones futuras a la función son más rápidas
hello()

	

8.1.3 Manipulación	
 de	
 cadenas	

Esta	
 biblioteca	
 proporciona	
 funciones	
 genéricas	
 de	
 manejo	
 de	
 strings,	
 tales	
 como	

encontrar	
 y	
 extraer	
 substrings	
 y	
 detectar	
 patrones.	
 Cuando	
 se	
 indexa	
 un	
 string	
 en	
 Lua	
 el	

primer	
 carácter	
 está	
 en	
 la	
 posición	
 1	
 (no	
 en	
 0	
 como	
 en	
 C).	
 Se	
 permite	
 el	
 uso	
 de	
 índices	

negativos	
 que	
 se	
 interpretan	
 como	
 indexado	
 hacia	
 atrás,	
 desde	
 el	
 final	
 del	
 string.	
 Por	

tanto	
 el	
 último	
 carácter	
 del	
 string	
 está	
 en	
 la	
 posición	
 -­‐1,	
 y	
 así	
 sucesivamente.	
 	

	

La	
 biblioteca	
 de	
 strings	
 proporciona	
 todas	
 sus	
 funciones	
 en	
 la	
 tabla	
 string.	
 También	

establece	
 una	
 metatabla	
 para	
 string	
 donde	
 el	
 campo	
 __index	
 apunta	
 a	
 la	
 misma	

metatabla.	
 Por	
 tanto,	
 se	
 pueden	
 usar	
 las	
 funciones	
 de	
 manejo	
 de	
 string	
 en	
 un	
 estilo	

orientado	
 a	
 objetos.	
 Por	
 ejemplo,	
 string.byte(s,	
 i)	
 puede	
 ponerse	
 s:byte(i).	
 	

	

string.byte	
 (s	
 [,	
 i	
 [,	
 j]])	

Devuelve	
 los	
 códigos	
 numéricos	
 internos	
 de	
 los	
 caracteres	
 s[i],	
 s[i+1],	
 ·∙·∙·∙,	
 s[j].	
 El	
 valor	
 por	

defecto	
 de	
 i	
 es	
 1;	
 el	
 valor	
 por	
 defecto	
 de	
 j	
 es	
 i.	
 	

	

Téngase	
 en	
 cuenta	
 que	
 los	
 códigos	
 numéricos	
 no	
 son	
 necesariamente	
 portables	
 de	
 unas	

plataformas	
 a	
 otras.	
 	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 90	
 -­‐	

string.char	
 (·∙·∙·∙)	

Recibe	
 cero	
 o	
 más	
 enteros.	
 Devuelve	
 un	
 string	
 con	
 igual	
 longitud	
 que	
 el	
 número	
 de	

argumentos,	
 en	
 el	
 que	
 cada	
 carácter	
 tiene	
 un	
 código	
 numérico	
 interno	
 igual	
 a	
 su	

correspondiente	
 argumento.	
 	

	

Téngase	
 en	
 cuenta	
 que	
 los	
 códigos	
 numéricos	
 no	
 son	
 necesariamente	
 portables	
 de	
 unas	

plataformas	
 a	
 otras.	
 	

	

string.dump	
 (function)	

Devuelve	
 un	
 string	
 que	
 contiene	
 la	
 representación	
 binaria	
 de	
 la	
 función	
 dada,	
 de	
 tal	

manera	
 que	
 una	
 llamada	
 posterior	
 a	
 loadstring	
 con	
 este	
 string	
 devuelve	
 una	
 copia	
 de	
 la	

función.	
 func	
 debe	
 ser	
 una	
 función	
 Lua	
 sin	
 upvalues.	
 	

	

string.find	
 (s,	
 patrón	
 [,	
 inicio	
 [,	
 básica]])	

Busca	
 la	
 primera	
 aparición	
 de	
 patrón	
 en	
 el	
 string	
 s.	
 Si	
 la	
 encuentra,	
 find	
 devuelve	
 los	

índices	
 de	
 s	
 donde	
 comienza	
 y	
 acaba	
 la	
 aparación;	
 en	
 caso	
 contrario	
 retorna	
 nil.	
 Un	
 tercer	

argumento	
 numérico	
 opcional	
 inicio	
 especifica	
 dónde	
 comenzar	
 la	
 búsqueda;	
 su	
 valor	
 por	

defecto	
 es	
 1	
 y	
 puede	
 ser	
 negativo.	
 Un	
 valor	
 true	
 como	
 cuarto	
 argumento	
 opcional	
 básica	

desactiva	
 las	
 utilidades	
 de	
 detección	
 de	
 patrones,	
 realizando	
 entonces	
 la	
 función	
 una	

operación	
 de	
 "búsqueda	
 básica	
 de	
 substring",	
 sin	
 caracteres	
 "mágicos"	
 en	
 el	
 patrón.	

Téngase	
 en	
 cuenta	
 que	
 si	
 se	
 proporciona	
 el	
 argumento	
 básica	
 también	
 debe	

proporcionarse	
 el	
 argumento	
 inicio.	
 	

	

Si	
 el	
 patrón	
 tiene	
 capturas	
 entonces	
 en	
 una	
 detección	
 con	
 éxito	
 se	
 devuelven	
 los	
 valores	

capturados,	
 después	
 de	
 los	
 dos	
 índices.	
 	

	

string.format	
 (formato,	
 ·∙·∙·∙)	

Devuelve	
 una	
 versión	
 formateada	
 de	
 sus	
 argumentos	
 (en	
 número	
 variable)	
 siguiendo	
 la	

descripción	
 dada	
 en	
 su	
 primer	
 argumento	
 (formato,	
 que	
 debe	
 ser	
 un	
 string).	
 El	
 string	
 de	

formato	
 sigue	
 las	
 mismas	
 reglas	
 que	
 la	
 familia	
 de	
 funciones	
 C	
 estándar	
 printf.	
 Las	
 únicas	

diferencias	
 son	
 que	
 las	
 opciones/modificadores	
 *,	
 l,	
 L,	
 n,	
 p,	
 y	
 h	
 no	
 están	
 soportadas,	
 y	
 que	

existe	
 una	
 opción	
 extra	
 q.	
 Esta	
 última	
 opción	
 da	
 formato	
 a	
 un	
 string	
 en	
 una	
 forma	

adecuada	
 para	
 ser	
 leída	
 de	
 manera	
 segura	
 de	
 nuevo	
 por	
 el	
 intérprete	
 de	
 Lua:	
 el	
 string	
 es	

escrito	
 entre	
 dobles	
 comillas,	
 y	
 todas	
 las	
 dobles	
 comillas,	
 nuevas	
 líneas,	
 ceros	
 y	
 barras	

inversas	
 del	
 string	
 se	
 sustituyen	
 por	
 las	
 secuencias	
 de	
 escape	
 adecuadas	
 en	
 la	
 escritura.	

Por	
 ejemplo,	
 la	
 llamada	
 	

	

	
 	
 	
 	
 	
 	
 	
 string.format('%q',	
 'un	
 string	
 con	
 "comillas"	
 y	
 \n	
 nueva	
 línea')	

	

producirá	
 el	
 string:	
 	

"un	
 string	
 con	
 \"comillas\"	
 y	
 \	

	
 nueva	
 línea"	

	

Las	
 opciones	
 c,	
 d,	
 E,	
 e,	
 f,	
 g,	
 G,	
 i,	
 o,	
 u,	
 X	
 y	
 x	
 esperan	
 un	
 número	
 como	
 argumento,	
 mientras	

que	
 q	
 y	
 s	
 esperan	
 un	
 string.	
 	

	

Esta	
 función	
 no	
 acepta	
 valores	
 de	
 string	
 que	
 contengan	
 caracteres	
 cero,	
 excepto	
 como	

argumentos	
 de	
 la	
 opción	
 q.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 91	
 -­‐	

	

string.gmatch	
 (s,	
 patrón)	

Devuelve	
 una	
 función	
 iteradora	
 que,	
 cada	
 vez	
 que	
 se	
 invoca,	
 retorna	
 las	
 siguientes	

capturas	
 del	
 patrón	
 en	
 el	
 string	
 s.	
 	

	

Si	
 el	
 patrón	
 no	
 produce	
 capturas	
 entonces	
 la	
 coincidencia	
 completa	
 se	
 devuelve	
 en	
 cada	

llamada.	
 	

	

Como	
 ejemplo,	
 el	
 siguiente	
 bucle	
 	

	

 s = "hola mundo desde Lua"

 for w in string.gmatch(s, "%a+") do
 print(w)
 end

	

iterará	
 sobre	
 todas	
 las	
 palabras	
 del	
 string	
 s,	
 imprimiendo	
 una	
 por	
 línea.	
 El	
 siguiente	

ejemplo	
 devuelve	
 en	
 forma	
 de	
 tabla	
 todos	
 los	
 pares	
 clave=valor	
 del	
 string	
 dado:	
 	

	

 t = {}
 s = "desde=mundo, a=Lua"
 for k, v in string.gmatch(s, "(%w+)=(%w+)") do
 t[k] = v
 end

	

Para	
 esta	
 función,	
 un	
 '^'	
 al	
 principio	
 de	
 un	
 patrón	
 no	
 funciona	
 como	
 un	
 ancla,	
 sino	
 que	

previene	
 la	
 iteración.	

string.gsub	
 (s,	
 patrón,	
 reemplazamiento	
 [,	
 n])	

Devuelve	
 una	
 copia	
 de	
 s	
 en	
 la	
 que	
 todas	
 (o	
 las	
 n	
 primeras,	
 si	
 se	
 especifica	
 el	
 argumento	

opcional)	
 las	
 apariciones	
 del	
 patrón	
 han	
 sido	
 reemplazadas	
 por	
 el	
 reemplazamiento	

especificado,	
 que	
 puede	
 ser	
 un	
 string,	
 una	
 tabla	
 o	
 una	
 función.	
 gsub	
 también	
 devuelve,	

como	
 segundo	
 valor,	
 el	
 número	
 total	
 de	
 coincidencias	
 detectadas.	
 	

	

Si	
 reemplazamiento	
 es	
 un	
 string	
 entonces	
 su	
 valor	
 se	
 usa	
 en	
 la	
 sustitución.	
 El	
 carácter	
 %	

funciona	
 como	
 un	
 carácter	
 de	
 escape:	
 cualquier	
 secuencia	
 en	
 reemplazamiento	
 de	
 la	

forma	
 %n,	
 con	
 n	
 entre	
 1	
 y	
 9,	
 significa	
 el	
 valor	
 de	
 la	
 captura	
 número	
 n	
 en	
 el	
 substring	

(véase	
 más	
 abajo).	
 La	
 secuencia	
 %0	
 significa	
 toda	
 la	
 coincidencia.	
 La	
 secuencia	
 %%	

significa	
 un	
 carácter	
 porcentaje	
 %.	
 	

	

Si	
 reemplazamiento	
 es	
 una	
 tabla	
 entonces	
 en	
 cada	
 captura	
 se	
 devuelve	
 el	
 elemento	
 de	
 la	

tabla	
 que	
 tiene	
 por	
 clave	
 la	
 primera	
 captura;	
 si	
 el	
 patrón	
 no	
 proporciona	
 ninguna	
 captura	

entonce	
 toda	
 la	
 coincidencia	
 se	
 utiliza	
 como	
 clave.	
 	

	

Si	
 reemplazamiento	
 es	
 una	
 función	
 entonces	
 la	
 misma	
 es	
 invocada	
 cada	
 vez	
 que	
 exista	

una	
 captura	
 con	
 todos	
 los	
 substrings	
 capturados	
 pasados	
 como	
 argumentos	
 en	
 el	
 mismo	

orden;	
 si	
 no	
 existen	
 capturas	
 entonces	
 toda	
 la	
 coincidencia	
 se	
 pasa	
 como	
 un	
 único	

argumento.	
 	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 92	
 -­‐	

Si	
 el	
 valor	
 devuelto	
 por	
 la	
 tabla	
 o	
 por	
 la	
 llamada	
 a	
 la	
 función	
 es	
 un	
 string	
 o	
 un	
 número,	

entonces	
 se	
 usa	
 como	
 string	
 de	
 reemplazamiento;	
 en	
 caso	
 contrario	
 si	
 es	
 false	
 o	
 nil,	

entonces	
 no	
 se	
 realiza	
 ninguna	
 sustitución	
 (esto	
 es,	
 la	
 coincidencia	
 original	
 se	
 mantiene	

en	
 el	
 string).	
 	

	

He	
 aquí	
 algunos	
 ejemplos:	
 	

	

 x = string.gsub("hola mundo", "(%w+)", "%1 %1")
 --> x="hola hola mundo mundo"

 x = string.gsub("hola mundo", "%w+", "%0 %0", 1)
 --> x="hola hola mundo"

 x = string.gsub("hola mundo desde Lua", "(%w+)%s*(%w+)", "%2 %1")
 --> x="mundo hola Lua desde"

 x = string.gsub("casa = $HOME, usuario = $USER", "%$(%w+)", os.getenv)
 --> x="casa = /home/roberto, usuario = roberto"

 x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s)
 return loadstring(s)()
 end)
 --> x="4+5 = 9"

 local t = {nombre="lua", versión="5.1"}
 x = string.gsub("$nombre-$versión.tar.gz", "%$(%w+)", t)
 --> x="lua-5.1.tar.gz"

	

string.len	
 (s)	

Recibe	
 un	
 string	
 y	
 devuelve	
 su	
 longitud.	
 El	
 string	
 vacío	
 ""	
 tiene	
 longitud	
 0.	
 Los	
 caracteres	

cero	
 dentro	
 del	
 string	
 también	
 se	
 cuentan,	
 por	
 lo	
 que	
 "a\000bc\000"	
 tiene	
 longitud	
 5.	
 	

	

string.lower	
 (s)	

Recibe	
 un	
 string	
 y	
 devuelve	
 una	
 copia	
 del	
 mismo	
 con	
 todas	
 las	
 letras	
 mayúsculas	

cambiadas	
 a	
 minúsculas.	
 El	
 resto	
 de	
 los	
 caracteres	
 permanece	
 sin	
 cambios.	
 La	
 definición	

de	
 letra	
 mayúscula	
 depende	
 del	
 sistema	
 local.	
 	

	

string.match	
 (s,	
 patrón	
 [,	
 inicio])	

Busca	
 la	
 primera	
 aparición	
 del	
 patrón	
 en	
 el	
 string	
 s.	
 Si	
 encuentra	
 una,	
 entonces	
 match	

retorna	
 la	
 captura	
 del	
 patrón;	
 en	
 caso	
 contrario	
 devuelve	
 nil.	
 Si	
 el	
 patrón	
 no	
 produce	

ninguna	
 captura	
 entonces	
 se	
 devuelve	
 la	
 coincidencia	
 completa.	
 Un	
 tercer	
 y	
 opcional	

argumento	
 numérico	
 inicio	
 especifica	
 dónde	
 comenzar	
 la	
 búsqueda;	
 su	
 valor	
 por	
 defecto	

es	
 1	
 y	
 puede	
 ser	
 negativo.	
 	

	

string.rep	
 (s,	
 n)	

Devuelve	
 un	
 string	
 que	
 es	
 la	
 concatenación	
 de	
 n	
 copias	
 del	
 string	
 s.	
 	

	

string.reverse	
 (s)	

Devuelve	
 un	
 string	
 que	
 es	
 el	
 original	
 s	
 invertido.	
 	

	

string.sub	
 (s,	
 i	
 [,	
 j])	

Retorna	
 el	
 substring	
 de	
 s	
 que	
 comienza	
 en	
 i	
 y	
 continúa	
 hasta	
 j;	
 i	
 y	
 j	
 pueden	
 ser	
 negativos.	

Si	
 j	
 está	
 ausente	
 entonces	
 se	
 asume	
 que	
 vale	
 -­‐1	
 (equivalente	
 a	
 la	
 longitud	
 del	
 string).	
 En	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 93	
 -­‐	

particular,	
 la	
 llamada	
 string.sub(s,1,j)	
 retorna	
 un	
 prefijo	
 de	
 s	
 con	
 longitud	
 j,	
 y	
 string.sub(s,	

-­‐i)	
 retorna	
 un	
 sufijo	
 de	
 s	
 con	
 longitud	
 i.	
 	

	

string.upper	
 (s)	

Recibe	
 un	
 string	
 y	
 devuelve	
 una	
 copia	
 del	
 mismo	
 con	
 todas	
 las	
 letras	
 minúsculas	

cambiadas	
 a	
 mayúsculas.	
 El	
 resto	
 de	
 los	
 caracteres	
 permanece	
 sin	
 cambios.	
 La	
 definición	

de	
 letra	
 minúscula	
 depende	
 del	
 sistema	
 local.	

	

Patrones	

Clases	
 de	
 caracteres:	

Se	
 usan	
 clases	
 de	
 caracteres	
 para	
 representar	
 conjuntos	
 de	
 caracteres.	
 Están	
 permitidas	

las	
 siguientes	
 combinaciones	
 para	
 describir	
 una	
 clase	
 de	
 caracteres:	
 	

	

Ø x:	
 (donde	
 x	
 no	
 es	
 uno	
 de	
 los	
 caracteres	
 mágicos	
 ^$()%.[]*+-­‐?)	
 representa	
 el	
 propio	

caracter	
 x.	
 	

Ø .:	
 (un	
 punto)	
 representa	
 cualquier	
 carácter.	
 	

Ø %a:	
 representa	
 cualquier	
 letra.	
 	

Ø %c:	
 representa	
 cualquier	
 carácter	
 de	
 control.	
 	

Ø %d:	
 representa	
 cualquier	
 dígito.	
 	

Ø %l:	
 representa	
 cualquier	
 letra	
 minúscula.	
 	

Ø %p:	
 representa	
 cualquier	
 carácter	
 de	
 puntuación.	
 	

Ø %s:	
 representa	
 cualquier	
 carácter	
 de	
 espacio.	
 	

Ø %u:	
 representa	
 cualquier	
 letra	
 mayúscula.	
 	

Ø %w:	
 representa	
 cualquier	
 carácter	
 alfanumérico.	
 	

Ø %x:	
 representa	
 cualquier	
 dígito	
 hexadecimal.	
 	

Ø %z:	
 representa	
 el	
 carácter	
 con	
 valor	
 interno	
 0	
 (cero).	
 	

Ø %x:	
 (donde	
 x	
 es	
 cualquier	
 carácter	
 no	
 alfanumérico)	
 representa	
 el	
 carácter	
 x.	
 Ésta	

es	
 la	
 manera	
 estándar	
 de	
 "escapar"	
 los	
 caracteres	
 mágicos.	
 Cualquier	
 caracter	
 de	

puntuación	
 (incluso	
 los	
 no	
 mágicos)	
 pueden	
 ser	
 precedidos	
 por	
 un	
 signo	
 de	

porcentaje	
 '%'	
 cuando	
 se	
 quieran	
 representarse	
 a	
 sí	
 mismos	
 en	
 el	
 patrón.	
 	

	

[conjunto]:	
 representa	
 la	
 clase	
 que	
 es	
 la	
 unión	
 de	
 todos	
 los	
 caracteres	
 en	
 el	
 conjunto.	
 Un	

rango	
 de	
 caracteres	
 puede	
 ser	
 especificado	
 separando	
 el	
 carácter	
 del	
 principio	
 y	
 del	
 final	

mediante	
 un	
 guión	
 '-­‐'.	
 Todas	
 las	
 clases	
 del	
 tipo	
 %x	
 descritas	
 más	
 arriba	
 pueden	
 ser	

también	
 utilizadas	
 como	
 componentes	
 del	
 conjunto.	
 Todos	
 los	
 otros	
 caracteres	
 en	
 el	

conjunto	
 se	
 representan	
 a	
 sí	
 mismos.	
 Por	
 ejemplo,	
 [%w_]	
 (o	
 [_%w])	
 representa	
 cualquier	

carácter	
 alfanumérico	
 o	
 el	
 subrayado,	
 [0-­‐7]	
 representa	
 un	
 dígito	
 octal,	
 y	
 [0-­‐7%l%-­‐]	

representa	
 un	
 dígito	
 octal,	
 una	
 letra	
 minúscula	
 o	
 el	
 carácter	
 '-­‐'.	
 	

La	
 interacción	
 entre	
 los	
 rangos	
 y	
 las	
 clases	
 no	
 está	
 definida.	
 Por	
 tanto,	
 patrones	
 como	

[%a-­‐z]	
 o	
 [a-­‐%%]	
 carecen	
 de	
 significado.	
 	

	

	

[^conjunto]:	
 representa	
 el	
 complemento	
 de	
 conjunto,	
 donde	
 conjunto	
 se	
 interpreta	
 como	

se	
 ha	
 indicado	
 más	
 arriba.	
 	

Para	
 todas	
 las	
 clases	
 representadas	
 por	
 letras	
 simples	
 (%a,	
 %c,	
 etc.)	
 las	
 correspondientes	

letras	
 mayúsculas	
 representan	
 la	
 clase	
 complementaria.	
 Por	
 ejemplo,	
 %S	
 representa	

cualquier	
 carácter	
 no	
 espacio.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 94	
 -­‐	

Las	
 definiciones	
 de	
 letra,	
 espacio	
 y	
 otros	
 grupos	
 de	
 caracteres	
 dependen	
 del	
 sistema	

local.	
 En	
 particular,	
 la	
 clase	
 [a-­‐z]	
 puede	
 no	
 ser	
 equivalente	
 a	
 %l.	
 	

	

Cada	
 elemento	
 de	
 un	
 patrón	
 puede	
 ser	
 :	

Ø una	
 clase	
 de	
 carácter	
 simple,	
 que	
 equivale	
 a	
 cualquier	
 carácter	
 simple	
 de	
 la	
 clase;	
 	

Ø una	
 clase	
 de	
 carácter	
 simple	
 seguida	
 por	
 '*',	
 que	
 equivale	
 a	
 0	
 ó	
 más	
 repeticiones	

de	
 los	
 caracteres	
 de	
 la	
 clase.	
 Estos	
 elementos	
 de	
 repetición	
 siempre	
 equivaldrán	
 a	

la	
 secuencia	
 de	
 caracteres	
 más	
 larga	
 posible;	
 	

Ø un	
 clase	
 de	
 carácter	
 simple	
 seguida	
 por	
 '+',	
 que	
 equivale	
 a	
 1	
 ó	
 más	
 repeticiones	
 de	

los	
 caracteres	
 de	
 la	
 clase.	
 Estos	
 elementos	
 de	
 repetición	
 siempre	
 equivaldrán	
 a	
 la	

secuencia	
 de	
 caracteres	
 más	
 larga	
 posible;	
 	

Ø un	
 clase	
 de	
 carácter	
 simple	
 seguida	
 por	
 '-­‐',	
 que	
 también	
 equivale	
 a	
 0	
 ó	
 más	

repeticiones	
 de	
 los	
 caracteres	
 de	
 la	
 clase.	
 Al	
 contrario	
 que	
 '*',	
 Estos	
 elementos	
 de	

repetición	
 siempre	
 equivaldrán	
 a	
 la	
 secuencia	
 de	
 caracteres	
 más	
 corta	
 posible;	
 	

Ø una	
 clase	
 de	
 carácter	
 simple	
 seguida	
 por	
 '?',	
 que	
 equivale	
 a	
 0	
 ó	
 1	
 apariciones	
 de	
 un	

carácter	
 de	
 la	
 clase;	
 	

Ø %n,	
 para	
 n	
 entre	
 1	
 y	
 9;	
 este	
 elemento	
 equivale	
 a	
 un	
 substring	
 igual	
 a	
 la	
 captura	

número	
 n;	
 	

Ø %bxy,	
 donde	
 x	
 e	
 y	
 son	
 dos	
 caracteres	
 diferentes;	
 este	
 elemento	
 equivale	
 a	
 strings	

que	
 comienzan	
 con	
 x,	
 finalizan	
 con	
 y,	
 estando	
 equilibrados	
 x	
 e	
 y.	
 Esto	
 significa	
 que,	

iniciando	
 un	
 contador	
 a	
 0,	
 si	
 se	
 lee	
 el	
 string	
 de	
 izquierda	
 a	
 derecha,	
 sumando	
 +1	

por	
 cada	
 x	
 que	
 aparezca	
 y	
 -­‐1	
 por	
 cada	
 y,	
 el	
 y	
 final	
 es	
 el	
 primero	
 donde	
 el	
 contador	

alcanza	
 0.	
 Por	
 ejemplo,	
 el	
 elemento	
 %b()	
 equivale	
 a	
 una	
 expresión	
 con	
 paréntesis	

emparejados.	
 	

	

Patrón:	

Un	
 patrón	
 es	
 una	
 secuencia	
 de	
 elementos	
 de	
 patrón.	
 Un	
 '^'	
 al	
 comienzo	
 de	
 un	
 patrón	

ancla	
 la	
 búsqueda	
 del	
 patrón	
 al	
 comienzo	
 del	
 string	
 en	
 el	
 que	
 se	
 produce	
 la	
 búsqueda.	
 Un	

'$'	
 al	
 final	
 de	
 un	
 patrón	
 ancla	
 la	
 búsqueda	
 del	
 patrón	
 al	
 final	
 del	
 string	
 en	
 el	
 que	
 se	

produce	
 la	
 búsqueda.	
 En	
 otras	
 posiciones	
 '^'	
 y	
 '$'	
 no	
 poseen	
 un	
 significado	
 especial	
 y	
 se	

representan	
 a	
 sí	
 mismos.	
 	

	

Capturas:	

Un	
 patrón	
 puede	
 contener	
 subpatrones	
 encerrados	
 entre	
 paréntesis	
 que	
 describen	

capturas.	
 Cuando	
 sucede	
 una	
 coincidencia	
 entre	
 un	
 patrón	
 y	
 un	
 string	
 dado,	
 los	

substrings	
 que	
 concuerdan	
 con	
 lo	
 indicado	
 entre	
 paréntesis	
 en	
 el	
 patrón,	
 son	

almacenados	
 (capturados)	
 para	
 uso	
 futuro.	
 Las	
 capturas	
 son	
 numeradas	
 de	
 acuerdo	
 a	
 sus	

paréntesis	
 izquierdos.	
 Por	
 ejemplo,	
 en	
 el	
 patrón	
 "(a*(.)%w(%s*))",	
 la	
 parte	
 del	
 string	
 que	

concuerda	
 con	
 "a*(.)%w(%s*)"	
 se	
 guarda	
 en	
 la	
 primera	
 captura	
 (y	
 por	
 tanto	
 tiene	
 número	

1);	
 el	
 carácter	
 que	
 concuerda	
 con	
 "."	
 se	
 captura	
 con	
 el	
 número	
 2,	
 y	
 la	
 parte	
 que	

concuerda	
 con	
 "%s*"	
 tiene	
 el	
 número	
 3.	
 	

	

Como	
 caso	
 especial,	
 la	
 captura	
 vacía	
 ()	
 retorna	
 la	
 posición	
 actual	
 en	
 el	
 string	
 (un	
 número).	

Por	
 ejemplo,	
 si	
 se	
 aplica	
 el	
 patrón	
 "()aa()"	
 al	
 string	
 "flaaap",	
 dará	
 dos	
 capturas:	
 3	
 y	
 5.	
 	

	

Un	
 patrón	
 no	
 puede	
 contener	
 caracteres	
 cero.	
 Se	
 debe	
 usar	
 %z	
 en	
 su	
 lugar	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 95	
 -­‐	

8.1.4 Manipulación	
 de	
 tablas	

Esta	
 biblioteca	
 proporciona	
 funciones	
 genéricas	
 para	
 manejo	
 de	
 tablas.	
 Todas	
 estas	

funciones	
 están	
 definidas	
 dentro	
 de	
 la	
 tabla	
 table.	
 	

La	
 mayoría	
 de	
 las	
 funciones	
 en	
 la	
 biblioteca	
 de	
 tablas	
 asume	
 que	
 las	
 mismas	
 representan	

arrays	
 o	
 listas	
 (o	
 sea,	
 están	
 indexadas	
 numéricamente).	
 Para	
 estas	
 funciones,	
 cuando	

hablamos	
 de	
 la	
 "longitud"	
 de	
 una	
 tabla	
 queremos	
 decir	
 el	
 resultado	
 del	
 operador	
 longitud	

(#).	

	

table.concat	
 (tabla	
 [,	
 separador	
 [,	
 i	
 [,	
 j]]])	

Dado	
 una	
 table	
 donde	
 todos	
 sus	
 elementos	
 son	
 strings	
 o	
 números	
 devuelve	

tabla[i]..separador..tabla[i+1]	
 ·∙·∙·∙	
 separador..tabla[j].	
 El	
 valor	
 por	
 defecto	
 de	
 separador	
 es	

el	
 string	
 vacío,	
 el	
 valor	
 por	
 defecto	
 de	
 i	
 es	
 1	
 y	
 el	
 valor	
 por	
 defecto	
 de	
 j	
 es	
 la	
 longitud	
 de	
 la	

tabla.	
 Si	
 i	
 es	
 mayor	
 que	
 j,	
 la	
 función	
 devuelve	
 un	
 string	
 vacío.	
 	

	

table.insert	
 (tabla,	
 [posición,]	
 valor)	

Inserta	
 el	
 elemento	
 valor	
 en	
 la	
 posición	
 dada	
 en	
 la	
 tabla,	
 desplazando	
 hacia	
 adelante	

otros	
 elementos	
 para	
 abrir	
 hueco,	
 si	
 es	
 necesario.	
 El	
 valor	
 por	
 defecto	
 de	
 posición	
 es	
 n+1,	

donde	
 n	
 =	
 #tabla	
 es	
 la	
 longitud	
 de	
 la	
 tabla	
 (véase	
 §2.5.5),	
 de	
 tal	
 manera	
 que	

table.insert(t,x)	
 inserta	
 x	
 al	
 final	
 de	
 la	
 tabla	
 t.	
 	

	

table.maxn	
 (tabla)	

Devuelve	
 el	
 mayor	
 índice	
 numérico	
 positivo	
 de	
 una	
 tabla	
 dada	
 o	
 cero	
 si	
 la	
 tabla	
 no	
 tiene	

índices	
 numéricos	
 positivos.	
 (Para	
 hacer	
 su	
 trabajo	
 esta	
 función	
 realiza	
 un	
 barrido	
 lineal	

de	
 la	
 tabla	
 completa.)	
 	

	

table.remove	
 (tabla	
 [,	
 posición])	

Elimina	
 de	
 tabla	
 el	
 elemento	
 situado	
 en	
 la	
 posición	
 dada,	
 desplazando	
 hacia	
 atrás	
 otros	

elementos	
 para	
 cerrar	
 espacio,	
 si	
 es	
 necesario.	
 Devuelve	
 el	
 valor	
 del	
 elemento	
 eliminado.	

El	
 valor	
 por	
 defecto	
 de	
 posición	
 es	
 n,	
 donde	
 n	
 es	
 la	
 longitud	
 de	
 la	
 tabla,	
 por	
 lo	
 que	
 la	

llamada	
 table.remove(t)	
 elimina	
 el	
 último	
 elemento	
 de	
 la	
 tabla	
 t.	
 	

	

table.sort	
 (tabla	
 [,	
 comparador])	

Ordena	
 los	
 elementos	
 de	
 la	
 tabla	
 en	
 un	
 orden	
 dado	
 modificando	
 la	
 propia	
 tabla,	
 desde	

table[1]	
 hasta	
 table[n],	
 donde	
 n	
 es	
 la	
 longitud	
 de	
 la	
 tabla.	
 Si	
 se	
 proporciona	
 el	
 argumento	

comparador	
 éste	
 debe	
 ser	
 una	
 función	
 que	
 recibe	
 dos	
 elementos	
 de	
 la	
 tabla	
 y	
 devuelve	

verdadero	
 cuando	
 el	
 primero	
 es	
 menor	
 que	
 el	
 segundo	
 (por	
 lo	
 que	
 not	

comparador(a[i+1],a[i])	
 será	
 verdadero	
 después	
 de	
 la	
 ordenación).	
 Si	
 no	
 se	
 proporciona	

una	
 función	
 comparador	
 entonces	
 se	
 usa	
 el	
 operador	
 estándar	
 <	
 de	
 Lua.	
 	

	

El	
 algoritmo	
 de	
 ordenación	
 no	
 es	
 estable;	
 esto	
 es,	
 los	
 elementos	
 considerados	
 iguales	
 por	

la	
 ordenación	
 dada	
 pueden	
 sufrir	
 cambios	
 de	
 orden	
 relativos	
 después	
 de	
 la	
 ordenación.	

8.1.5 Funciones	
 matemáticas	

Esta	
 biblioteca	
 es	
 una	
 interface	
 a	
 la	
 biblioteca	
 matemática	
 estándar	
 de	
 C.	
 Proporciona	

todas	
 sus	
 funciones	
 dentro	
 de	
 la	
 tabla	
 math.	
 	

	

math.abs	
 (x)	

Devuelve	
 el	
 valor	
 absoluto	
 de	
 x.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 96	
 -­‐	

	

math.acos	
 (x)	

Devuelve	
 el	
 arco	
 coseno	
 de	
 x	
 (en	
 radianes).	
 	

	

math.asin	
 (x)	

Devuelve	
 el	
 arco	
 seno	
 de	
 x	
 (en	
 radianes).	
 	

	

math.atan	
 (x)	

Devuelve	
 el	
 arco	
 tangente	
 de	
 x	
 (en	
 radianes).	
 	

	

math.atan2	
 (y,	
 x)	

Devuelve	
 el	
 arco	
 tangente	
 de	
 y/x	
 (en	
 radianes),	
 pero	
 usa	
 los	
 signos	
 de	
 ambos	
 argumentos	

para	
 determinar	
 el	
 cuadrante	
 del	
 resultado.	
 (También	
 maneja	
 correctamente	
 el	
 caso	
 en	

que	
 x	
 es	
 cero.)	
 	

	

math.ceil	
 (x)	

Devuelve	
 el	
 menor	
 entero	
 mayor	
 o	
 igual	
 que	
 x.	
 	

	

math.cos	
 (x)	

Devuelve	
 el	
 coseno	
 de	
 x	
 (se	
 asume	
 que	
 está	
 en	
 radianes).	
 	

	

math.cosh	
 (x)	

Devuelve	
 el	
 coseno	
 hiperbólico	
 de	
 x.	
 	

	

math.deg	
 (x)	

Devuelve	
 en	
 grados	
 sexagesimales	
 el	
 valor	
 de	
 x	
 (dado	
 en	
 radianes).	
 	

	

math.exp	
 (x)	

Devuelve	
 el	
 valor	
 de	
 ex.	
 	

	

math.floor	
 (x)	

Devuelve	
 el	
 mayor	
 entero	
 menor	
 o	
 igual	
 que	
 x.	
 	

	

math.fmod	
 (x,	
 y)	

Devuelve	
 el	
 resto	
 de	
 la	
 división	
 de	
 x	
 por	
 y.	
 	

	

math.frexp	
 (x)	

Devuelve	
 m	
 y	
 e	
 tales	
 que	
 x	
 =	
 m	
 2e,	
 e	
 es	
 un	
 entero	
 y	
 el	
 valor	
 absoluto	
 de	
 m	
 está	
 en	
 el	

intervalo	
 [0.5,	
 1)	
 (o	
 cero	
 cuando	
 x	
 es	
 cero).	
 	

	

math.huge	

El	
 valor	
 HUGE_VAL,	
 un	
 valor	
 más	
 grande	
 o	
 igual	
 que	
 otro	
 valor	
 numérico	
 cualquiera.	
 	

	

math.ldexp	
 (m,	
 e)	

Devuelve	
 m	
 2	
 e	
 (e	
 debe	
 ser	
 un	
 entero).	
 	

	

math.log	
 (x)	

Devuelve	
 el	
 logaritmo	
 natural	
 de	
 x.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 97	
 -­‐	

	

math.log10	
 (x)	

Devuelve	
 el	
 logaritmo	
 decimal	
 (base	
 10)	
 de	
 x.	
 	

	

math.max	
 (x,	
 ·∙·∙·∙)	

Devuelve	
 el	
 mayor	
 valor	
 de	
 entre	
 sus	
 argumentos.	
 	

	

math.min	
 (x,	
 ·∙·∙·∙)	

Devuelve	
 el	
 menor	
 valor	
 de	
 entre	
 sus	
 argumentos.	
 	

	

math.modf	
 (x)	

Devuelve	
 dos	
 números,	
 las	
 partes	
 entera	
 y	
 fraccional	
 de	
 x	
 .	
 	

	

math.pi	

El	
 valor	
 de	
 pi.	
 	

	

math.pow	
 (x,	
 y)	

Devuelve	
 xy.	
 (Se	
 puede	
 también	
 usar	
 la	
 expresión	
 x^y	
 para	
 calcular	
 este	
 valor.)	
 	

	

math.rad	
 (x)	

Devuelve	
 en	
 radianes	
 el	
 valor	
 del	
 ángulo	
 x	
 (dado	
 en	
 grados	
 sexagesimales).	
 	

	

math.random	
 ([m	
 [,	
 n]])	

Esta	
 función	
 es	
 un	
 interface	
 a	
 rand,	
 generador	
 simple	
 de	
 números	
 pseudo-­‐aleatorios	

proporcionado	
 por	
 el	
 ANSI	
 C.	
 (Sin	
 garantías	
 de	
 sus	
 propiedades	
 estadísticas.)	
 	

	

Cuando	
 se	
 invoca	
 sin	
 argumentos	
 devuelve	
 un	
 número	
 pseudoaleatorio	
 real	
 uniforme	
 en	

el	
 rango	
 [0,1).	
 Cuando	
 se	
 invoca	
 con	
 un	
 número	
 entero	
 m,	
 math.random	
 devuelve	
 un	

número	
 pseudoaleatorio	
 entero	
 uniforme	
 en	
 el	
 rango	
 [1,	
 m].	
 Cuando	
 se	
 invoca	
 con	
 dos	

argumentos	
 m	
 y	
 n	
 enteros,	
 math.random	
 devuelve	
 un	
 número	
 pseudoaleatorio	
 entero	

uniforme	
 en	
 el	
 rango	
 [m,	
 n].	
 	

	

math.randomseed	
 (x)	

Establece	
 x	
 como	
 "semilla"	
 para	
 el	
 generador	
 de	
 números	
 pseudoaleatorios:	
 iguales	

semillas	
 producen	
 iguales	
 secuencias	
 de	
 números.	
 	

	

math.sin	
 (x)	

Devuelve	
 el	
 seno	
 de	
 x	
 (se	
 asume	
 que	
 está	
 en	
 radianes).	
 	

	

math.sinh	
 (x)	

Devuelve	
 el	
 seno	
 hiperbólico	
 de	
 x.	
 	

	

math.sqrt	
 (x)	

Devuelve	
 la	
 raiz	
 cuadrada	
 de	
 x.	
 (Se	
 puede	
 usar	
 también	
 la	
 expresión	
 x^0.5	
 para	
 calcular	

este	
 valor.)	
 	

	

math.tan	
 (x)	

Devuelve	
 la	
 tangente	
 de	
 x	
 (se	
 asume	
 que	
 está	
 en	
 radianes).	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 98	
 -­‐	

	

math.tanh	
 (x)	

Devuelve	
 la	
 tangente	
 hiperbólica	
 de	
 x.	
 	

	

8.1.6 Funciones	
 de	
 entrada	
 y	
 salida	

La	
 biblioteca	
 de	
 entrada/salida	
 (I/O	
 de	
 sus	
 siglas	
 en	
 inglés)	
 proporciona	
 dos	
 estilos	

diferentes	
 de	
 manejo	
 de	
 ficheros.	
 El	
 primero	
 de	
 ellos	
 usa	
 descriptores	
 de	
 fichero	

implícitos;	
 esto	
 es,	
 existen	
 dos	
 ficheros	
 por	
 defecto,	
 uno	
 de	
 entrada	
 y	
 otro	
 de	
 salida,	
 y	
 las	

operaciones	
 se	
 realizan	
 sobre	
 éstos.	
 El	
 segundo	
 estilo	
 usa	
 descriptores	
 de	
 fichero	

explícitos.	
 	

	

Cuando	
 se	
 usan	
 descriptores	
 implícitos	
 todas	
 las	
 operaciones	
 soportadas	
 están	
 en	
 la	
 tabla	

io.	
 Cuando	
 se	
 usan	
 descriptores	
 explícitos,	
 la	
 operación	
 io.open	
 devuelve	
 un	
 descriptor	
 de	

fichero	
 y	
 todas	
 las	
 operaciones	
 se	
 proporcionan	
 como	
 métodos	
 asociados	
 al	
 descriptor.	
 	

	

La	
 tabla	
 io	
 también	
 proporciona	
 tres	
 descriptores	
 de	
 fichero	
 predefinidos	
 con	
 sus	

significados	
 usuales	
 en	
 C:	
 io.stdin,	
 io.stdout	
 e	
 io.stderr.	
 La	
 biblioteca	
 de	
 entrada/salida	

nunca	
 cierra	
 esos	
 ficheros.	
 	

	

A	
 no	
 ser	
 que	
 se	
 especifique,	
 todas	
 las	
 funciones	
 de	
 entrada/salida	
 devuelven	
 nil	
 en	
 caso	

de	
 fallo	
 (más	
 un	
 mensaje	
 de	
 error	
 como	
 segundo	
 resultado	
 y	
 un	
 código	
 de	
 error	

dependiente	
 del	
 sistema	
 como	
 un	
 tercer	
 resultado)	
 y	
 valores	
 diferentes	
 de	
 nil	
 si	
 hay	
 éxito.	

	

Manipulación	
 de	
 ficheros	
 implícita	

	

io.close	
 ([descriptor_de_fichero])	

Equivalente	
 a	
 descriptor_de_fichero:close().	
 Sin	
 argumento	
 cierra	
 el	
 fichero	
 de	
 salida	
 por	

defecto.	
 	

	

io.flush	
 ()	

Equivalente	
 a	
 descriptor_de_fichero:flush	
 aplicado	
 al	
 fichero	
 de	
 salida	
 por	
 defecto.	
 	

	

io.input	
 ([descriptor_de_fichero	
 |	
 nombre_de_fichero])	

Cuando	
 se	
 invoca	
 con	
 un	
 nombre	
 de	
 fichero	
 entonces	
 lo	
 abre	
 (en	
 modo	
 texto),	
 y	

establece	
 su	
 manejador	
 de	
 fichero	
 como	
 fichero	
 de	
 entrada	
 por	
 defecto.	
 Cuando	
 se	
 llama	

con	
 un	
 descriptor	
 de	
 fichero	
 simplemente	
 lo	
 establece	
 como	
 manejador	
 para	
 el	
 fichero	
 de	

entrada	
 por	
 defecto.	
 Cuando	
 se	
 invoca	
 sin	
 argumento	
 devuelve	
 el	
 fichero	
 por	
 defecto	

actual.	
 	

	

En	
 caso	
 de	
 errores	
 esta	
 función	
 activa	
 error	
 en	
 lugar	
 de	
 devolver	
 un	
 código	
 de	
 error.	
 	

	

io.lines	
 ([nombre_de_fichero])	

Abre	
 el	
 fichero	
 de	
 nombre	
 dado	
 en	
 modo	
 lectura	
 y	
 devuelve	
 una	
 función	
 iteradora	
 que,	

cada	
 vez	
 que	
 es	
 invocada,	
 devuelve	
 una	
 nueva	
 línea	
 del	
 fichero.	
 Por	
 tanto,	
 la	
 construcción	
 	

	

	
 	
 	
 	
 	
 	
 	
 for	
 linea	
 in	
 io.lines(nombre_de_fichero)	
 do	
 bloque	
 end	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 99	
 -­‐	

iterará	
 sobre	
 todas	
 las	
 líneas	
 del	
 fichero.	
 Cuando	
 la	
 función	
 iteradora	
 detecta	
 el	
 final	
 del	

fichero	
 devuelve	
 nil	
 (para	
 acabar	
 el	
 bucle)	
 y	
 cierra	
 automáticamente	
 el	
 fichero.	
 	

La	
 llamada	
 a	
 io.lines()	
 (sin	
 nombre	
 de	
 fichero)	
 equivale	
 a	
 io.input():lines();	
 esto	
 es,	
 itera	

sobre	
 todas	
 las	
 líneas	
 del	
 fichero	
 por	
 defecto	
 de	
 entrada.	
 En	
 ese	
 caso	
 no	
 cierra	
 el	
 fichero	

cuando	
 acaba	
 el	
 bucle.	
 	

	

io.open	
 (nombre_de_fichero	
 [,	
 modo])	

Esta	
 función	
 abre	
 un	
 fichero,	
 en	
 el	
 modo	
 especificado	
 en	
 el	
 string	
 mode.	
 Devuelve	
 un	

descriptor	
 de	
 fichero	
 o,	
 en	
 caso	
 de	
 error,	
 nil	
 además	
 de	
 un	
 mensaje	
 de	
 error.	
 	

	

El	
 string	
 que	
 indica	
 modo	
 puede	
 ser	
 uno	
 de	
 los	
 siguientes:	
 	

	

Ø "r":	
 modo	
 lectura	
 (por	
 defecto);	
 	

Ø "w":	
 modo	
 escritura;	
 	

Ø "a":	
 modo	
 adición;	
 	

Ø "r+":	
 modo	
 actualización,	
 todos	
 los	
 datos	
 preexistentes	
 se	
 mantienen;	
 	

Ø "w+":	
 modo	
 actualización,	
 todos	
 los	
 datos	
 preexistentes	
 se	
 borran;	
 	

Ø "a+":	
 modo	
 adición	
 con	
 actualización,	
 todos	
 los	
 datos	
 preexistentes	
 se	
 mantienen,	

y	
 la	
 escritura	
 se	
 permite	
 sólo	
 al	
 final	
 del	
 fichero.	
 	

El	
 string	
 que	
 indica	
 el	
 modo	
 puede	
 contener	
 también	
 'b'	
 al	
 final,	
 lo	
 que	
 es	
 necesario	
 en	

algunos	
 sistemas	
 para	
 abrir	
 el	
 fichero	
 en	
 modo	
 binario.	
 Este	
 string	
 es	
 exactamente	
 el	
 que	

se	
 usa	
 en	
 la	
 función	
 estándar	
 de	
 C	
 fopen.	
 	

	

io.output	
 ([descriptor_de_fichero	
 |	
 nombre_de_fichero])	

Similar	
 a	
 io.input,	
 pero	
 operando	
 sobre	
 el	
 fichero	
 por	
 defecto	
 de	
 salida.	
 	

	

	

io.popen	
 (prog	
 [,	
 modo])	

Comienza	
 a	
 ejecutar	
 el	
 programa	
 prog	
 en	
 un	
 proceso	
 separado	
 y	
 retorna	
 un	
 descriptor	
 de	

fichero	
 que	
 se	
 puede	
 usar	
 para	
 leer	
 datos	
 que	
 escribe	
 prog	
 (si	
 modo	
 es	
 "r",	
 el	
 valor	
 por	

defecto)	
 o	
 para	
 escribir	
 datos	
 que	
 lee	
 prog	
 (si	
 modo	
 es	
 "w").	
 	

	

Esta	
 función	
 depende	
 del	
 sistema	
 operativo	
 y	
 no	
 está	
 disponible	
 en	
 todas	
 las	
 plataformas.	
 	

	

io.read	
 (·∙·∙·∙)	

Equivalente	
 a	
 io.input():read.	
 	

	

io.tmpfile	
 ()	

Devuelve	
 un	
 descriptor	
 de	
 fichero	
 para	
 un	
 fichero	
 temporal.	
 Éste	
 se	
 abre	
 en	
 modo	

actualización	
 y	
 se	
 elimina	
 automáticamente	
 cuando	
 acaba	
 el	
 programa.	
 	

	

io.type	
 (objeto)	

Verifica	
 si	
 objeto	
 es	
 un	
 descriptor	
 válido	
 de	
 fichero.	
 Devuelve	
 el	
 string	
 "file"	
 si	
 objeto	
 es	

un	
 descriptor	
 de	
 fichero	
 abierto,	
 "closed	
 file"	
 si	
 objeto	
 es	
 un	
 descriptor	
 de	
 fichero	

cerrado,	
 o	
 nil	
 si	
 objeto	
 no	
 es	
 un	
 descriptor	
 de	
 fichero.	
 	

	

io.write	
 (·∙·∙·∙)	

Equivalente	
 a	
 io.output():write.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 100	
 -­‐	

	

Manipulación	
 de	
 ficheros	
 explícita	

fichero:close	
 ()	

Cierra	
 el	
 descriptor	
 de	
 fichero.	
 Téngase	
 en	
 cuenta	
 que	
 los	
 ficheros	
 son	
 cerrados	

automáticamente	
 cuando	
 sus	
 descriptores	
 se	
 eliminan	
 en	
 un	
 ciclo	
 de	
 liberación	
 de	

memoria,	
 pero	
 que	
 esto	
 toma	
 un	
 tiempo	
 impredecible	
 de	
 ejecución.	
 	

	

fichero:flush	
 ()	

Salva	
 cualquier	
 dato	
 escrito	
 en	
 fichero.	
 	

	

fichero:lines	
 ()	

Devuelve	
 una	
 función	
 iteradora	
 que,	
 cada	
 vez	
 que	
 es	
 invocada,	
 devuelve	
 una	
 nueva	
 línea	

leída	
 del	
 fichero.	
 Por	
 tanto,	
 la	
 construcción	
 	

	

	
 	
 	
 	
 	
 	
 	
 for	
 linea	
 in	
 fichero:lines()	
 do	
 bloque	
 end	

	

iterará	
 sobre	
 todas	
 las	
 líneas	
 del	
 fichero.	
 (A	
 diferencia	
 de	
 io.lines,	
 esta	
 función	
 no	
 cierra	
 el	

fichero	
 cuando	
 acaba	
 el	
 bucle.)	
 	

	

fichero:read	
 (·∙·∙·∙)	

Lee	
 en	
 el	
 fichero,	
 de	
 acuerdo	
 el	
 formato	
 proporcionado,	
 el	
 cual	
 especifica	
 qué	
 leer.	
 Para	

cada	
 formato,	
 la	
 función	
 devuelve	
 un	
 string	
 (o	
 un	
 número)	
 con	
 los	
 caracteres	
 leídos,	
 o	
 nil	

si	
 no	
 pudo	
 leer	
 los	
 datos	
 con	
 el	
 formato	
 especificado.	
 Cuando	
 se	
 invoca	
 sin	
 formato	
 se	
 usa	

uno	
 por	
 defecto	
 que	
 lee	
 la	
 próxima	
 línea	
 completa	
 (véase	
 más	
 abajo).	
 	

	

Los	
 formatos	
 disponibles	
 son	
 	

	

§ "*n":	
 lee	
 un	
 número;	
 éste	
 es	
 el	
 único	
 formato	
 que	
 devuelve	
 un	
 número	
 en	
 lugar	

de	
 un	
 string.	
 	

§ "*a":	
 lee	
 el	
 resto	
 del	
 fichero	
 completo,	
 empezando	
 en	
 la	
 posición	
 actual.	
 Al	
 final	

del	
 fichero	
 devuelve	
 un	
 string	
 vacío.	
 	

§ "*l":	
 lee	
 la	
 próxima	
 línea	
 (saltándose	
 el	
 final	
 de	
 línea),	
 retornando	
 nil	
 al	
 final	
 del	

fichero.	
 Éste	
 es	
 el	
 formato	
 por	
 defecto.	
 	

§ un	
 número:	
 lee	
 un	
 string	
 con	
 como	
 máximo	
 este	
 número	
 de	
 caracteres,	

devolviendo	
 nil	
 si	
 se	
 llega	
 al	
 final	
 del	
 fichero.	
 Si	
 el	
 número	
 es	
 cero	
 no	
 lee	
 nada	
 y	

devuelve	
 un	
 string	
 vacío,	
 o	
 nil	
 si	
 se	
 alcanza	
 el	
 final	
 del	
 fichero.	
 	

	

fichero:seek	
 ([de_dónde]	
 [,	
 desplazamiento])	

Establece	
 (o	
 solicita)	
 la	
 posición	
 actual	
 (del	
 puntero	
 de	
 lectura/escritura)	
 en	
 el	
 fichero,	

medida	
 desde	
 el	
 principio	
 del	
 fichero,	
 en	
 la	
 posición	
 dada	
 por	
 desplazamiento	
 más	
 la	
 base	

especificada	
 por	
 el	
 string	
 dónde,	
 como	
 se	
 especifica	
 a	
 continuación:	
 	

§ "set":	
 sitúa	
 la	
 posición	
 base	
 en	
 0	
 (comienzo	
 del	
 fichero);	
 	

§ "cur":	
 sitúa	
 la	
 posición	
 base	
 en	
 la	
 actual;	
 	

§ "end":	
 sitúa	
 la	
 posición	
 base	
 al	
 final	
 del	
 fichero.	
 	

	

En	
 caso	
 de	
 éxito	
 la	
 función	
 seek	
 retorna	
 la	
 posición	
 final	
 (del	
 puntero	
 de	
 lectura/escritura)	

en	
 el	
 fichero	
 medida	
 en	
 bytes	
 desde	
 el	
 principio	
 del	
 fichero.	
 Si	
 la	
 llamada	
 falla	
 retorna	
 nil,	

más	
 un	
 string	
 describiendo	
 el	
 error.	
 	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 101	
 -­‐	

El	
 valor	
 por	
 defecto	
 de	
 dónde	
 es	
 "cur",	
 y	
 para	
 desplazamiento	
 es	
 0.	
 Por	
 tanto,	
 la	
 llamada	

fichero:seek()	
 devuelve	
 la	
 posición	
 actual,	
 sin	
 cambiarla;	
 la	
 llamada	
 fichero:seek("set")	

establece	
 la	
 posición	
 al	
 principio	
 del	
 fichero	
 (y	
 devuelve	
 0);	
 y	
 la	
 llamada	

fichero:seek("end")	
 establece	
 la	
 posición	
 al	
 final	
 del	
 fichero	
 y	
 devuelve	
 su	
 tamaño.	
 	

	

fichero:setvbuf	
 (modo	
 [,	
 tamaño])	

Establece	
 un	
 modo	
 buffer	
 para	
 un	
 fichero	
 de	
 salida.	
 El	
 argumento	
 modo	
 puede	
 ser	
 uno	
 de	

estos	
 tres:	
 	

Ø "no":	
 sin	
 buffer;	
 el	
 resultado	
 de	
 cualquier	
 operación	
 de	
 salida	
 se	
 produce	

inmediatamente.	
 	

Ø "full":	
 con	
 buffer	
 completo;	
 la	
 operación	
 de	
 salida	
 se	
 realiza	
 sólo	
 cuando	
 el	
 buffer	

está	
 lleno	
 o	
 cuando	
 se	
 invoca	
 explícitamente	
 la	
 función	
 flush	
 en	
 el	
 descriptor	
 del	

fichero.	
 	

Ø "line":	
 con	
 buffer	
 de	
 línea;	
 la	
 salida	
 se	
 demora	
 hasta	
 que	
 se	
 produce	
 una	
 nueva	

línea	
 en	
 la	
 salida	
 o	
 existe	
 una	
 entrada	
 de	
 algún	
 fichero	
 especial	
 (como	
 una	

terminal).	
 	

Para	
 los	
 dos	
 últimos	
 casos,	
 tamaño	
 especifica	
 el	
 tamaño	
 del	
 buffer,	
 en	
 bytes.	
 El	
 valor	
 por	

defecto	
 es	
 un	
 tamaño	
 adecuado.	
 	

	

fichero:write	
 (·∙·∙·∙)	

Escribe	
 el	
 valor	
 de	
 sus	
 argumentos	
 en	
 el	
 fichero	
 dado	
 por	
 su	
 fichero.	
 Los	
 argumentos	

pueden	
 ser	
 strings	
 o	
 números.	
 Para	
 escribir	
 otros	
 valores	
 úsese	
 tostring	
 o	
 string.format	

antes	
 que	
 write.	

8.1.7 Funciones	
 de	
 sistema	
 operativo	

Esta	
 biblioteca	
 está	
 implementada	
 a	
 través	
 de	
 la	
 tabla	
 os.	
 	

	

os.clock	
 ()	

Devuelve	
 una	
 aproximación	
 al	
 total	
 de	
 segundos	
 de	
 CPU	
 usados	
 por	
 el	
 programa.	
 	

	

os.date	
 ([formato	
 [,	
 tiempo]])	

Devuelve	
 un	
 string	
 o	
 una	
 tabla	
 conteniendo	
 la	
 fecha	
 y	
 hora,	
 formateada	
 de	
 acuerdo	
 con	
 el	

string	
 dado	
 en	
 formato.	
 	

	

Si	
 el	
 argumento	
 tiempo	
 está	
 presente	
 entonces	
 ese	
 tiempo	
 concreto	
 es	
 el	
 que	
 se	

formatea	
 (véase	
 la	
 función	
 os.time	
 para	
 una	
 descripción	
 de	
 este	
 valor).	
 En	
 caso	
 contrario,	

date	
 formatea	
 el	
 tiempo	
 actual.	
 	

	

Si	
 formato	
 comienza	
 con	
 '!'	
 entonces	
 el	
 tiempo	
 se	
 formatea	
 de	
 acuerdo	
 al	
 Tiempo	

Universal	
 Coordinado.	
 Después	
 de	
 este	
 carácter	
 opcional,	
 si	
 formato	
 es	
 *t	
 entonces	
 date	

devuelve	
 una	
 tabla	
 con	
 los	
 siguientes	
 campos:	
 	

Ø year	
 (cuatro	
 dígitos),	
 	

Ø month	
 (1-­‐-­‐12),	
 	

Ø day	
 (1-­‐-­‐31),	
 	

Ø hour	
 (0-­‐-­‐23),	
 	

Ø min	
 (0-­‐-­‐59),	
 	

Ø sec	
 (0-­‐-­‐61),	
 	

Ø wday	
 (día	
 de	
 la	
 semana,	
 el	
 domingo	
 es	
 1),	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 102	
 -­‐	

Ø yday	
 (día	
 dentro	
 del	
 año),	
 	

Ø e	
 isdst	
 (booleano,	
 verdadero	
 si	
 es	
 horario	
 de	
 verano).	
 	

	

Si	
 formato	
 no	
 es	
 *t	
 entonces	
 date	
 devuelve	
 el	
 tiempo	
 como	
 un	
 string,	
 formateado	
 de	

acuerdo	
 con	
 las	
 mismas	
 reglas	
 que	
 la	
 función	
 strftime	
 de	
 C.	
 	

	

Cuando	
 se	
 invoca	
 sin	
 argumentos	
 date	
 devuelve	
 una	
 representación	
 razonable	
 de	
 la	
 fecha	

y	
 la	
 hora	
 que	
 depende	
 de	
 la	
 máquina	
 y	
 del	
 sistema	
 local	
 (esto	
 es,	
 os.date()	
 equivale	
 a	

os.date("%c")).	
 	

	

os.difftime	
 (t2,	
 t1)	

Devuelve	
 el	
 número	
 de	
 segundos	
 desde	
 el	
 instante	
 t1	
 hasta	
 el	
 t2.	
 En	
 POSIX,	
 Windows	
 y	

algunos	
 otros	
 sistemas	
 este	
 valor	
 es	
 exactamente	
 t2-­‐t1.	
 	

	

os.exit	
 ([código])	

Invoca	
 la	
 función	
 exit	
 de	
 C,	
 con	
 un	
 código	
 entero	
 opcional,	
 para	
 terminar	
 el	
 programa	

anfitrión.	
 El	
 valor	
 por	
 defecto	
 de	
 código	
 es	
 el	
 valor	
 correspondiente	
 a	
 éxito.	
 	

	

os.remove	
 (nombre_de_fichero)	

Elimina	
 el	
 fichero	
 o	
 directorio	
 dado.	
 Los	
 directorios	
 deben	
 estar	
 vacíos	
 para	
 poder	
 ser	

eliminados.	
 Si	
 la	
 función	
 falla	
 retorna	
 nil,	
 más	
 un	
 string	
 describiendo	
 el	
 error.	
 	

	

	

os.rename	
 (nombre_viejo,	
 nombre_nuevo)	

Renombra	
 un	
 fichero	
 o	
 directorio	
 de	
 nombre_viejo	
 a	
 nombre_nuevo.	
 Si	
 la	
 función	
 falla	

retorna	
 nil,	
 más	
 un	
 string	
 describiendo	
 el	
 error.	
 	

	

os.time	
 ([tabla])	

Devuelve	
 el	
 tiempo	
 actual	
 cuando	
 se	
 llama	
 sin	
 argumentos,	
 o	
 un	
 tiempo	
 representando	
 la	

fecha	
 y	
 hora	
 especificadas	
 en	
 la	
 tabla	
 dada.	
 Ésta	
 debe	
 tener	
 los	
 campos	
 year,	
 month	
 y	

day,	
 y	
 puede	
 tener	
 los	
 campos	
 hour,	
 min,	
 sec	
 e	
 isdst	
 (para	
 una	
 descripción	
 de	
 esos	

campos,	
 véase	
 la	
 función	
 os.date).	
 	

	

El	
 valor	
 retornado	
 es	
 un	
 número,	
 cuyo	
 significado	
 depende	
 del	
 sistema.	
 En	
 POSIX,	

Windows	
 y	
 algunos	
 otros	
 sistemas	
 este	
 número	
 cuenta	
 el	
 número	
 de	
 segundos	
 desde	

alguna	
 fecha	
 inicial	
 dada	
 (la	
 "época").	
 En	
 otros	
 sistemas	
 el	
 significado	
 no	
 está	

especificado,	
 y	
 el	
 número	
 retornado	
 por	
 time	
 puede	
 ser	
 usado	
 sólo	
 como	
 argumento	
 de	

las	
 funciones	
 date	
 y	
 difftime.	

	

8.2 Librerías	
 de	
 Corona	
 SDK	

Corona	
 SDK	
 posee	
 su	
 propio	
 conjunto	
 de	
 bibliotecas	
 sobre	
 las	
 bibliotecas	
 estándar	
 de	
 Lua.	

Algunas	
 bibliotecas	
 están	
 incorporadas	
 internamente,	
 mientras	
 que	
 otras	
 deben	
 ser	

cargadas	
 explícitamente.	

	

	
 Las	
 siguientes	
 son	
 las	
 bibliotecas	
 centrales	
 de	
 Corona	
 y	
 se	
 cargan	
 automáticamente	

cuando	
 se	
 inicia	
 la	
 aplicación:	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 103	
 -­‐	

Ø display	
 	
 -­‐	
 proporciona	
 todas	
 las	
 rutinas	
 para	
 la	
 creación	
 de	
 objetos	
 de	

visualización.	

Ø transition	
 	
 -­‐	
 funciones	
 para	
 la	
 animación	
 de	
 objetos	
 de	
 visualización,	
 lo	
 que	

simplifica	
 el	
 proceso	
 de	
 creación	
 de	
 movimientos	
 básicos.	

Ø timer	
 -­‐	
 ofrece	
 funciones	
 básicas	
 de	
 tiempo.	

Ø media	
 -­‐	
 permite	
 el	
 acceso	
 a	
 las	
 capacidades	
 multimedia	
 del	
 dispositivo.	

Ø native	
 -­‐	
 proporciona	
 acceso	
 a	
 los	
 elementos	
 de	
 la	
 interfaz	
 nativa	
 de	
 los	

dispositivos.	

Ø system	
 -­‐	
 es	
 un	
 conjunto	
 de	
 funciones	
 de	
 sistema.	

	

8.2.1 Biblioteca	
 display	

La	
 biblioteca	
 display	
 contiene	
 todas	
 las	
 funciones	
 relacionadas	
 con	
 la	
 creación	
 de	
 objetos	

de	
 visualización.	

	

Esta	
 biblioteca	
 está	
 organizada	
 en	
 3	
 grupos	
 de	
 funciones	
 que	
 permiten	
 crear	
 objetos	
 en	

pantalla,	
 la	
 modificación	
 de	
 las	
 propiedades	
 de	
 la	
 pantalla	
 en	
 sí,	
 y	
 otras	
 funciones	

funciones	
 de	
 utilidad.	

	

Crear	
 objetos	
 de	
 visualización	

Todo	
 lo	
 que	
 se	
 dibuja	
 en	
 la	
 pantalla	
 es	
 un	
 DisplayObject.	
 Todos	
 tienen	
 propiedades	
 y	

métodos	
 comunes.	

	

display.newGroup()	

Crea	
 un	
 grupo	
 en	
 el	
 que	
 se	
 pueden	
 anadir	
 y	
 borrar	
 objetos	
 hijos.	
 Devuelve	
 un	
 objeto	

grupo	
 (GroupObject)	
 que	
 lo	
 representa.	

	

display.newImage(
 filename	
 [,	
 baseDirectory]	
 [,	
 left,	
 top]	
)	

Devuelve	
 un	
 objeto	
 con	
 la	
 imagen	
 cargada	
 desde	
 el	
 fichero	
 especificado	
 en	
 filename.	

	

display.newImageRect(
 [parentGroup,]	
 filename	
 [,	
 baseDirectory]	
 width,	
 height	
)	

Devuelve	
 un	
 objeto	
 con	
 la	
 imagen	
 cargada	
 desde	
 el	
 fichero	
 especificado	
 en	
 filename	

utilizando	
 aquella	
 cuya	
 resolución	
 está	
 de	
 acuerdo	
 a	
 la	
 escala	
 de	
 contenido	
 actual,	

determinada	
 por	
 Corona,	
 que	
 es	
 la	
 relación	
 entre	
 la	
 pantalla	
 actual	
 y	
 las	
 dimensiones	
 de	

contenido	
 de	
 la	
 base	
 se	
 define	
 en	
 config.lua.	
 En	
 base	
 a	
 esta	
 escala,	
 Corona	
 utiliza	
 la	
 tabla	

imageSuffix	
 (también	
 definida	
 en	
 config.lua),	
 que	
 enumera	
 los	
 sufijos	
 de	
 la	
 misma	
 familia	

de	
 las	
 imágenes,	
 para	
 encontrar	
 la	
 mejor	
 combinación	
 de	
 las	
 opciones	
 de	
 imagen	

disponibles.	

	

display.loadRemoteImage(
 url,	
 method,	
 listener	
 [,	
 params],	
 destFilename	
 [,	
 baseDir]	
 [,	

x,	
 y]	
)	

Este	
 método	
 devuelve	
 un	
 objeto	
 con	
 la	
 imagen	
 que	
 se	
 obtiene	
 de	
 forma	
 remota	
 de	

acuerdo	
 a	
 los	
 parámetros.	

	

display.newCircle(
 xCenter,	
 yCenter,	
 radius	
)	

Crea	
 un	
 círculo	
 con	
 radio	
 radius	
 centrado	
 en	
 (xCenter,	
 yCenter).	
 Devuelve	
 un	
 objeto	

vector	
 (vectorObject)	
 que	
 lo	
 representa.	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 104	
 -­‐	

display.newRect(
 left,	
 top,	
 width,	
 height	
)	

Crea	
 un	
 rectángulo	
 con	
 las	
 dimensiones	
 especificadas	
 (width,	
 height)	
 con	
 la	
 esquina	

superior	
 situada	
 en	
 las	
 coordenadas	
 (left,	
 top)	
 .	
 	
 Devuelve	
 un	
 objeto	
 vector	
 (vectorObject)	

que	
 lo	
 representa.	

	

display.newRoundedRect(
 left,	
 top,	
 width,	
 height,	
 cornerRadius	
)	

Es	
 similar	
 al	
 caso	
 anterior	
 pero	
 devuelve	
 el	
 rectangulo	
 con	
 las	
 esqueinas	
 redondeadas	
 de	

acuerdo	
 al	
 valor	
 cornerRadius.	

	

display.newLine(
 [parent,]	
 x1,y1,	
 x2,y2	
)	

Dibuja	
 una	
 linea	
 desde	
 un	
 punto	
 a	
 otro.	
 Opcionalmente	
 se	
 pueden	
 añadir	
 nuevos	
 puntos	

al	
 final	
 de	
 la	
 línea	
 (metodo	
 object:append)	

	

display.newText(
 string,	
 x,	
 y,	
 font,	
 size	
)	

Crea	
 un	
 objeto	
 de	
 texto	
 con	
 la	
 cadena	
 string	
 con	
 su	
 esquina	
 superior	
 izquierda	
 en	
 (x,	
 y).	

Devuelve	
 un	
 TextObject	
 que	
 lo	
 representa.	

Se	
 debe	
 especificar	
 el	
 nombre	
 de	
 la	
 fuente	
 y	
 el	
 tamaño.	

	

	

	

	

	

Propiedades	
 de	
 la	
 pantalla	

	

Propiedad	
 Descripción	

display.contentCenterX	
 Equivalente	
 a	
 display.contentWidth/2	

display.contentCenterY	
 Equivalente	
 a	
 display.contentHeight/2	

display.contentHeight	
 Altura	
 original	
 del	
 contenido	
 en	
 pixels.	
 Este	
 valor	
 por	

defecto	
 coincide	
 con	
 la	
 altura	
 de	
 la	
 pantalla,	
 pero	
 puede	

ser	
 otro	
 valor	
 si	
 se	
 utiliza	
 la	
 escala	
 de	
 contenido	
 en	

config.lua.	

display.contentWidth	
 Ancho	
 original	
 del	
 contenido	
 en	
 pixels.	
 Este	
 valor	
 por	

defecto	
 coincide	
 con	
 el	
 ancho	
 de	
 la	
 pantalla,	
 pero	
 puede	

ser	
 otro	
 valor	
 si	
 se	
 utiliza	
 la	
 escala	
 de	
 contenido	
 en	

config.lua.	

display.viewableContent
Width	

Una	
 propiedad	
 de	
 sólo	
 lectura	
 que	
 contiene	
 la	
 anchura	

en	
 píxeles	
 de	
 la	
 zona	
 visible	
 de	
 la	
 pantalla,	
 en	
 el	
 sistema	

de	
 coordenadas	
 del	
 contenido	
 original.	
 Esto	
 es	
 útil	
 ya	
 que	

dependiendo	
 del	
 modo	
 de	
 adaptación	
 dinámica	
 de	
 la	

escala	
 que	
 se	
 utiliza,	
 y	
 la	
 relación	
 de	
 aspecto	
 del	

dispositivo	
 que	
 se	
 utiliza,	
 algunos	
 de	
 los	
 contenidos	

originales	
 se	
 pueden	
 escalar	
 de	
 manera	
 que	
 las	
 porciones	

queden	
 fuera	
 de	
 la	
 pantalla.	

display.viewableContentH
eight	

Una	
 propiedad	
 de	
 sólo	
 lectura	
 que	
 contiene	
 la	
 altura	
 en	

píxeles	
 de	
 la	
 zona	
 visible	
 de	
 la	
 pantalla,	
 en	
 el	
 sistema	
 de	

coordenadas	
 del	
 contenido	
 original.	

display.contentScaleX	
 Es	
 la	
 proporción	
 entre	
 la	
 anchura	
 del	
 contenido	
 y	
 de	
 la	

pantalla	
 en	
 pixels.	
 Este	
 valor	
 por	
 defecto	
 es	
 1,	
 pero	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 105	
 -­‐	

puede	
 ser	
 otro	
 valor	
 si	
 se	
 utiliza	
 la	
 escala	
 de	
 contenido	
 en	

config.lua.	

display.contentScaleY	
 Es	
 la	
 proporción	
 entre	
 la	
 altura	
 del	
 contenido	
 y	
 de	
 la	

pantalla	
 en	
 pixels.	
 Este	
 valor	
 por	
 defecto	
 es	
 1,	
 pero	

puede	
 ser	
 otro	
 valor	
 si	
 se	
 utiliza	
 la	
 escala	
 de	
 contenido	
 en	

config.lua.	

display.screenOriginX	
 Devuelve	
 la	
 distancia	
 x	
 desde	
 la	
 izquierda	
 de	
 la	
 pantalla	

de	
 referencia	
 a	
 la	
 izquierda	
 de	
 la	
 pantalla	
 actual,	
 en	

unidades	
 de	
 pantalla	
 de	
 referencia.	
 En	
 los	
 modos	

"letterbox"	
 o	
 "zoomEven"	
 la	
 escala	
 hace	
 que	
 se	
 puedan	

modificar	
 la	
 superficie	
 visible	
 en	
 la	
 pantalla	
 del	

dispositivo	
 actual.	
 Estos	
 métodos	
 permiten	
 averiguar	
 la	

cantidad	
 de	
 área	
 visible	
 se	
 ha	
 añadido	
 o	
 eliminado	
 en	
 el	

dispositivo	
 actual.	

display.screenOriginY	
 Devuelve	
 la	
 distancia	
 y	
 desde	
 la	
 parte	
 superior	
 de	
 la	

pantalla	
 de	
 referencia	
 a	
 la	
 parte	
 superior	
 de	
 la	
 pantalla	

actual,	
 en	
 unidades	
 de	
 pantalla	
 de	
 referencia.	
 	

display.statusBarHeight	
 Altura	
 de	
 la	
 barra	
 de	
 estado.	

	

	

	

Otras	
 funciones	

	

display.save(
 displayObject,	
 filename	
 [,	
 baseDirectory]	
)	

Hace	
 que	
 el	
 objeto	
 de	
 visualización	
 referencia	
 DisplayObject	
 se	
 guarde	
 en	
 una	
 imagen	

JPEG	
 y	
 lo	
 guarda	
 en	
 el	
 nombre	
 de	
 archivo	
 filename.	

	

display.captureScreen(
 saveToAlbum	
)	

Captura	
 el	
 contenido	
 de	
 la	
 pantalla	
 y	
 lo	
 devuelve	
 como	
 un	
 objeto	
 de	
 imagen	
 con	
 origen	

en	
 la	
 parte	
 superior	
 izquierda	
 de	
 la	
 pantalla.	

	

display.setStatusBar(
 mode	
)	

cambia	
 la	
 apariencia	
 de	
 la	
 barra	
 de	
 esado	
 del	
 iPhone	
 y	
 iPod	
 Touch.	
 El	
 valor	
 mode	
 puede	

ser:	

§ display.HiddenStatusBar	

§ display.DefaultStatusBar	

§ display.TranslucentStatusBar	

§ display.DarkStatusBar	

8.2.2 Biblioteca	
 transition	

La	
 biblioteca	
 de	
 transiciones	
 permite	
 animar	
 un	
 objeto	
 de	
 visualización	
 por	
 interpolación	

de	
 una	
 o	
 más	
 propiedades	
 durante	
 un	
 tiempo	
 determinado.	

	

transition.to(
 target,	
 params	
)	

Devuelve	
 una	
 transición	
 que	
 anima	
 las	
 propiedades	
 de	
 un	
 objeto	
 de	
 visualización	
 durante	

un	
 tiempo.	
 El	
 valor	
 de	
 las	
 propiedades	
 se	
 especifica	
 en	
 la	
 tabla	
 de	
 parámetros	
 params.	

Para	
 personalizar	
 la	
 transición	
 se	
 pueden	
 especificar	
 las	
 siguientes	
 propiedades:	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 106	
 -­‐	

Ø params.time	
 –	
 duración	
 de	
 la	
 transición	
 expresada	
 en	
 milisegundos.	
 Por	
 defecto	
 la	

duración	
 es	
 de	
 500	
 ms	
 (0.5	
 segundos).	

Ø params.transition	
 –	
 define	
 la	
 transición.	
 Utiliza	
 la	
 biblioteca	
 easing	
 .	
 Por	
 defecto	
 es	

easing.linear	
 .	
 Otras	
 opciones	
 son:	

o easing.inQuad	

o easing.outQuad	

o easing.inOutQuad	

o easing.inExpo	

o easing.outExpo	

o easing.inOutExpo	

	

Ø params.delay	
 –	
 especifica	
 el	
 retraso	
 desde	
 el	
 comienzo	
 de	
 la	
 transición.	
 	

Ø params.onStart	
 	
 -­‐	
 es	
 una	
 función	
 o	
 listener	
 que	
 se	
 invoca	
 al	
 comenzar	
 la	
 transición.	
 	

Ø params.onComplete	
 -­‐	
 es	
 una	
 función	
 o	
 listener	
 que	
 se	
 invoca	
 al	
 finalizar	
 la	

transición.	

	

	

	

	

transition.cancel(
 tween	
)	

Cancela	
 la	
 transición	
 tween	

	

Biblioteca	
 timer	

Esta	
 biblioteca	
 ofrece	
 las	
 funciones	
 básicas	
 para	
 ejecutar	
 acciones	
 con	
 cierto	
 tiempo	
 de	

retraso.	

	

timer.performWithDelay(
 delay,	
 listener	
 [,	
 iterations]	
)	

Invoca	
 a	
 la	
 function	
 listener	
 despues	
 del	
 tiempo	
 especificado	
 en	
 delay	
 (milisegundos).	

Existe	
 un	
 parámetro	
 opcional	
 que	
 indica	
 el	
 número	
 de	
 iteraciones	
 que	
 se	
 invocará	
 la	

función	
 listener.	
 Por	
 defecto	
 es	
 1	
 y	
 el	
 valor	
 0	
 representa	
 un	
 número	
 infinito	
 de	

invocaciones	
 por	
 lo	
 que	
 esta	
 función	
 debe	
 tener	
 la	
 condición	
 de	
 cancelación.	

	

timer.cancel(
 timerId	
)	

Cancela	
 el	
 temporizador	
 asociado	
 con	
 timerId.	

	

Ejemplo:	

	

local t = {}
function t:timer(event)
 local count = event.count
 print("Table listener called " .. count .. " time(s)")
 if count >= 3 then
 timer.cancel(self.source) -- after 3rd invocation, cancel timer
 end
end

-- Invoca metodo timer de t un número infinito de veces
timer.performWithDelay(1000, t, 0)

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 107	
 -­‐	

8.2.3 Biblioteca	
 media	

La	
 biblioteca	
 media	
 proporciona	
 acceso	
 a	
 las	
 funciones	
 multimedia	
 del	
 dispositivo	

Audio	

Para	
 reproducir	
 sonidos	
 cortos	
 (1	
 a	
 3	
 segundos)	

media.newEventSound(
 soundFile	
)	

media.playEventSound(
 sound	
)	

	

Para	
 sonidos	
 más	
 largos	

media.playSound(
 soundFile	
)	

media.pauseSound()	

media.stopSound()	

	

Vídeo	

Para	
 reproducir	
 un	
 vídeo:	

media.playVideo(
 path	
 [,	
 baseSource	
],	
 showControls,	
 listener	
)	

	

Cámara	
 y	
 biblioteca	
 de	
 fotos	

Muestra	
 las	
 funciones	
 de	
 cámara	
 o	
 las	
 bibliotecas	
 de	
 fotos	
 del	
 dispositivo.	

media.show(
 imageSource,	
 listener	
)	

	

imageSource	
 puede	
 ser	
 uno	
 de	
 estos	
 valores	

Ø media.PhotoLibrary	

Ø media.Camera	

Ø media.SavedPhotosAlbum	

	

8.2.4 Biblioteca	
 native	

La	
 biblioteca	
 native	
 proporciona	
 acceso	
 a	
 varias	
 funciones	
 de	
 la	
 interfaz	
 nativa	
 de	
 usuario	

en	
 el	
 dispositivo.	

	

native.setActivityIndicator(
 visible	
)	

Muestra	
 u	
 oculta	
 el	
 indicador	
 de	
 actividad	
 de	
 la	
 plataforma.	
 	

	

native.showAlert(
 title,	
 message	
 [,	
 buttonLabels	
 [,	
 listener]]	
)	

Muestra	
 un	
 cuadro	
 de	
 alerta	
 emergente	
 con	
 uno	
 o	
 más	
 botones,	
 utilizando	
 un	
 control	

nativo	
 de	
 alerta.	
 	

	

native.cancelAlert(
 alert	
)	

Cierra	
 el	
 cuadro	
 de	
 alerta	
 mediante	
 programación.	

	

native.newFont(
 name	
 [,	
 size]	
)	

Crea	
 un	
 objeto	
 de	
 fuente	
 que	
 se	
 puede	
 utilizar	
 para	
 especificar	
 la	
 fuente	
 de	
 texto	
 nativo	

en	
 campos	
 y	
 marcos	
 de	
 texto.	

native.systemFont	
 y	
 native.systemFontBold	
 representan	
 las	
 fuentes	
 del	
 sistema	
 (normal	

y	
 negrita).	

	

native.getFontNames()	
 –	
 devuelve	
 un	
 array	
 con	
 los	
 nombres	
 de	
 todas	
 las	
 fuentes	

disponibles	
 en	
 el	
 sistema.	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 108	
 -­‐	

	

native.newTextField(
 left,	
 top,	
 width,	
 height	
 [,	
 listener]	
)	

Crea	
 un	
 campo	
 de	
 entrada	
 de	
 texto	
 de	
 una	
 línea.	

	

native.setKeyboardFocus(
 textField	
)	

Pone	
 el	
 foco	
 sobre	
 un	
 campo	
 de	
 texto	
 y	
 muestra	
 el	
 teclado	
 del	
 dispositivo.	
 Pasando	
 el	

valor	
 false,	
 se	
 oculta	
 el	
 teclado.	

	

native.newTextBox(
 left,	
 top,	
 width,	
 height	
)	

Crea	
 un	
 cuadro	
 de	
 texto	
 de	
 varias	
 líneas	
 con	
 desplazamiento.	

	

native.showWebPopup(
 url	
 [,	
 options]	
)	

Crea	
 una	
 ventana	
 emergente	
 con	
 una	
 pantalla	
 completa	
 para	
 la	
 carga	
 local	
 o	
 remota	
 de	

páginas	
 web.	

	

native.cancelWebPopup()	

Oculta	
 la	
 ventana	
 emergente	
 para	
 paginas	
 web.	

	

native.showPopup(name,	
 options)	

Muestra	
 las	
 aplicaciones	
 nativas	
 de	
 envio	
 de	
 e-­‐mail	
 o	
 sms.	
 	

name:	
 “sms”	
 o	
 “mail”	

options:	
 tabla	
 con	
 las	
 opciones	
 de	
 configuracion	

	

8.2.5 Biblioteca	
 system	

system.getInfo(
 param	
)	

Devuelve	
 información	
 sobre	
 el	
 sistema	
 en	
 el	
 que	
 se	
 ejecuta	
 la	
 aplicación.	
 El	
 argumento	
 es	

una	
 cadena	
 que	
 determina	
 la	
 información	
 que	
 se	
 devuelve.	
 Estos	
 son	
 los	
 valores	
 válidos	

para	
 el	
 parámetro.	

	

Parámetro	
 Información	

name	
 Nombre	
 legible	
 del	
 dispositivo	

model	
 Modelo	
 del	
 dispositivo:	
 “Iphone”,	
 “Ipad”….	

deviceID	
 devuelve	
 el	
 identificador	
 único	
 del	
 dispositivo	

(IMEI)	
 	

environment	
 Entorno	
 en	
 el	
 que	
 está	
 corriendo	
 la	
 aplicación:	

"simulator"	
 -­‐	
 Simulador	
 de	
 Corona	

	
 "device"	
 -­‐	
 dispositivo	

platformName	
 Nombre	
 de	
 la	
 plataforma	
 o	
 SO:	

"Mac	
 OS	
 X"	

	
 "iPhone	
 OS"	

	
 "Android"	

platformVersion	
 Versión	
 de	
 la	
 plataforma	
 o	
 SO	

version	
 Versión	
 del	
 corona	
 SDK	

textureMemoryUsed	
 Uso	
 de	
 memoria	
 en	
 bytes	

maxTextureSize	
 Tamaño	
 máximo	
 de	
 memoria	
 del	
 dispositivo	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 109	
 -­‐	

system.getPreference(
 category,	
 name	
)	

Devuelve	
 el	
 valor	
 una	
 preferencia	
 de	
 sistema	
 como	
 una	
 cadena.	
 Las	
 categorías	
 son:	

Ø Categoría	
 "ui"	
 –	
 preferencias	
 de	
 las	
 aplicaciones	
 generales.	
 En	
 esta	
 categoría,	
 con	

el	
 nombre	
 	
 “language”	
 se	
 puede	
 obtener	
 el	
 idioma	
 preferido	
 en	
 el	
 dispositivo.	

Ø Categoría	
 " locale"	
 –	
 preferncias	
 locales.	
 Podemos	
 obtener	
 los	
 nombres	
 "country",	

"identifier"	
 y	
 "language".	

	

system.getTimer()	
 	

Devuelve	
 el	
 tiempo	
 en	
 milisegundos	
 desde	
 que	
 se	
 lanzo	
 la	
 apliacción.	

	

system.pathForFile(
 filename	
 [,	
 baseDirectory]	
)	

Genera	
 una	
 ruta	
 absoluta	
 usando	
 como	
 base	
 el	
 directorio	
 de	
 la	
 aplicación.	
 Un	
 segundo	

parámetro	
 opcional	
 especifica	
 que	
 directorio	
 utilizar	
 para	
 construir	
 la	
 ruta	
 completa,	
 y	
 su	

valor	
 por	
 defecto	
 es	
 system.ResourceDirectory.	
 Si	
 el	
 directorio	
 base	
 es	

system.ResourceDirectory	
 y	
 ruta	
 generada	
 apunta	
 a	
 un	
 archivo	
 que	
 no	
 existe,	
 se	
 devuelve	

nil.	

	

Los	
 directorios	
 que	
 pueden	
 ser	
 usados	
 como	
 base	
 se	
 definen	
 en	
 las	
 siguientes	
 constantes:	

§ system.ResourceDirectory	
 –	
 es	
 el	
 directorio	
 donde	
 están	
 las	
 herramientas	
 de	
 la	

aplicación.	
 	
 En	
 el	
 simulador	
 se	
 corresponde	
 con	
 la	
 carpeta	
 de	
 proyecto.	

	

§ system.DocumentsDirectory	
 –	
 debe	
 ser	
 usado	
 para	
 ficheros	
 que	
 precisan	

persistencia	
 entre	
 varias	
 sesiones	
 de	
 la	
 aplicación.	
 	

	

§ system.TemporaryDirectory	
 –	
 es	
 un	
 directorio	
 temporal.	
 Los	
 ficheros	
 creados	
 en	

este	
 directorio	
 no	
 tienen	
 asegurada	
 su	
 permanencia	
 entre	
 sesiones.	

	

8.2.6 Biblioteca	
 widget	

La	
 biblioteca	
 widget	
 proporciona	
 herramientas	
 útiles	
 para	
 dar	
 a	
 nuestra	
 aplicación	
 un	

aspecto	
 mas	
 dinamico.	
 Dentro	
 de	
 la	
 biblioteca	
 podemos	
 diferencias	
 varios	
 objetos,	
 a	

continuación	
 los	
 enumeramos:	

	

	

widget.setTheme(
 themeFilename	
)	
 	

Nos	
 permite	
 dar	
 un	
 aspecto	
 IOS	
 a	
 la	
 aplicación.	
 El	
 tema	
 grafico	
 que	
 tiene	
 un	
 dispositivo	

con	
 IOS	
 no	
 se	
 puede	
 modifcar,	
 con	
 esta	
 opción	
 la	
 aplicación	
 parece	
 mas	
 integrada	
 en	
 el	

sistema	
 operativo	
 móvil.	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 110	
 -­‐	

widget.newButton(
 [options]	
)	

Para	
 agregar	
 botones	
 animados	
 con	
 aspecto	
 IOS.	
 Es	
 similar	
 a	
 la	
 librería	
 ui.	

	

Figura	
 8.1.	
 Boton	
 de	
 la	
 biblioteca	
 widget	

widget.newSlider(
 [options]	
)	
 	

Introduce	
 un	
 objeto	
 slider	
 deslizable	
 con	
 el	
 dedo.	
 Suele	
 usarse	
 para	
 ampliar/reducir	

objetos,	
 sonido…

Figura	
 8.2.	
 Slider	
 de	
 la	
 biblioteca	
 widget	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 111	
 -­‐	

	

widget.newScrollView(
 [options]	
)	
 	

Se	
 crea	
 un	
 objeto	
 mas	
 grande	
 que	
 la	
 pantalla	
 y	
 es	
 necesario	
 deslizarlo.	
 Este	
 widget	
 nos	

permite	
 hacer	
 esa	
 función	
 de	
 forma	
 fácil	
 y	
 sencilla.	

	

Figura	
 8.3.	
 ScrollView	
 de	
 la	
 biblioteca	
 widget	

widget.newTableView(
 [options]	
)	
 	

Se	
 crea	
 una	
 tabla	
 en	
 forma	
 de	
 lista.	
 Puede	
 ocupar	
 bastante	
 espacio	
 y	
 nos	
 permite	
 bajar	
 o	

subir	
 entre	
 sus	
 líneas	
 asi	
 como	
 eliminarlas.

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 112	
 -­‐	

Figura	
 8.4.	
 TableView	
 de	
 la	
 biblioteca	
 widget	

widget.newTabBar(
 [options]	
)	
 	

Si	
 queremos	
 que	
 nuestra	
 aplicación	
 tenga	
 pestañas	
 esta	
 es	
 una	
 opción	
 muy	
 útil.	
 Nos	

permite	
 cambiar	
 entre	
 ellas	
 con	
 solo	
 pulsar	
 el	
 botón	
 correspondiente.	

	

	

Figura	
 8.5.	
 TabBar	
 de	
 la	
 biblioteca	
 widget	

	

widget.newPickerWheel(
 [options]	
)	
 	

Crea	
 un	
 objeto	
 que	
 puede	
 servirnos	
 para	
 seleccionar	
 una	
 fecha.	
 Deslizando	
 entre	
 sus	

cifras	
 seleccionamos	
 el	
 dia	
 ,	
 mes	
 y	
 año	
 que	
 estamos.	
 Puede	
 adaptarse	
 para	
 otros	

menesteres	
 como	
 por	
 ejemplo	
 seleccionar	
 peso,	
 altura	
 ,	
 edad.	
 Es	
 muy	
 configurable.	

	

	

Figura	
 8.6.	
 Picker	
 Wheel	
 de	
 la	
 biblioteca	
 widget	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 113	
 -­‐	

8.2.7 Bibioteca	
 StoryBoard	

	

Es	
 la	
 nueva	
 librería	
 nativa	
 que	
 Corona	
 SDK	
 ha	
 implementado	
 recientemente.	
 Ha	
 incluido	

esta	
 aplicación	
 tras	
 la	
 versión	
 no	
 oficial	
 de	
 gestión	
 de	
 escenas,	
 la	
 directorClass	
 que	
 lleva	

utilizándose	
 prácticamente	
 desde	
 que	
 apareció	
 Corona	
 SDK.	
 A	
 continuación	
 se	
 explica	
 en	

detalle	
 su	
 funcionamiento.	

	

Lo	
 primero	
 es	
 añadir	
 la	
 librería	
 a	
 nuestra	
 aplicación:	

	

local	
 storyboard	
 =	
 require	
 "storyboard"	

	

El	
 siguiente	
 paso	
 es	
 cargar	
 la	
 primera	
 escena	
 de	
 la	
 aplicación:	

	

storyboard.gotoScene(escena,efecto,tiempo)	

	

La	
 estructura	
 que	
 presenta	
 una	
 escena	
 es	
 la	
 siguiente:	

	

local	
 storyboard	
 =	
 require(
 "storyboard"	
)	

local	
 scene	
 =	
 storyboard.newScene()	

	

function	
 scene:createScene(
 event	
)	

	
 local	
 group	
 =	
 self.view	

	
 	

end	

	

function	
 scene:enterScene(
 event	
)	

	
 local	
 group	
 =	
 self.vie	

	
 	

end	

	

function	
 scene:exitScene(
 event	
)	

	
 local	
 group	
 =	
 self.view	

	
 	

end	

	

function	
 scene:destroyScene(
 event	
)	

	
 local	
 group	
 =	
 self.view	

	
 	

end	

	

scene:addEventListener(
 "createScene",	
 scene	
)	

scene:addEventListener(
 "enterScene",	
 scene	
)	

scene:addEventListener(
 "exitScene",	
 scene	
)	

scene:addEventListener(
 "destroyScene",	
 scene	
)	

	

return	
 scene	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 114	
 -­‐	

Las	
 escenas	
 son	
 archivos	
 que	
 están	
 dentro	
 del	
 directorio	
 principal	
 de	
 la	
 aplicación	
 y	
 cuya	

extensión	
 es	
 la	
 misma	
 que	
 el	
 archivo	
 main.lua.	
 	

	

Como	
 vemos	
 la	
 estructura	
 de	
 las	
 escenas	
 esta	
 definida.	
 En	
 la	
 función	
 createScene	
 se	

introduce	
 lo	
 referido	
 a	
 la	
 creación	
 de	
 la	
 escena.	
 	

	

En	
 la	
 función	
 enterScene	
 colocamos	
 el	
 código	
 que	
 queremos	
 que	
 se	
 ejecute	
 al	
 entrar	
 en	
 la	

escena.	

	

En	
 la	
 función	
 exitScene	
 es	
 necesario	
 eliminar	
 todos	
 los	
 objetos	
 creados	
 para	
 las	
 escena	
 asi	

como	
 los	
 listeners.	
 	

	

Para	
 finalizar	
 la	
 función	
 detroyScene	
 nos	
 permite	
 ejecutar	
 código	
 cuando	
 la	
 escena	
 es	

eliminada.	
 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Curso	
 de	
 introducción	
 a	
 la	
 programación	
 de	
 videojuegos	
 para	
 dispositivos	
 móviles	
 en	
 Corona	
 SDK	

-­‐	
 115	
 -­‐	

ÍNDICE	
 DE	
 FIGURAS	

FIGURA	
 1.1	
 .	
 ESQUEMA	
 DEL	
 OBJETIVO	
 DEL	
 PROYECTO	
 9	

FIGURA	
 2.1	
 .	
 ESQUEMA	
 DE	
 REALIZACIÓN	
 DEL	
 PROYECTO	
 BASADO	
 EN	
 CICLO	
 DE	
 VIDA	
 EVOLUTIVO	
 11	

FIGURA	
 2.2	
 .	
 DIAGRAMA	
 DE	
 GANTT	
 EN	
 EL	
 CUAL	
 PUEDE	
 VERSE	
 LA	
 PLANIFICACIÓN	
 DEL	
 PROYECTO	
 12	

FIGURA	
 3.1.	
 OPCIONES	
 DE	
 LA	
 APLICACIÓN	
 14	

FIGURA	
 3.2.	
 DIAGRAMA	
 DE	
 ACTIVIDAD	
 DE	
 LA	
 CARGA	
 DE	
 LA	
 PANTALLA	
 PRINCIPAL	
 16	

FIGURA	
 3.3.	
 DIAGRAMA	
 DE	
 ACTIVIDAD	
 DE	
 LA	
 CARGA	
 DEL	
 CONTENIDO	
 DE	
 LA	
 ESCENA	
 TIPO	
 1	
 17	

FIGURA	
 3.4.	
 DIAGRAMA	
 DE	
 ACTIVIDAD	
 DE	
 LA	
 CARGA	
 DEL	
 CONTENIDO	
 TIPO	
 2	
 18	

FIGURA	
 3.5.	
 PANTALLA	
 DE	
 CARGA	
 DE	
 LA	
 APLICACION	
 19	

FIGURA	
 3.6.	
 PANTALLA	
 DE	
 BIENVENIDA	
 DE	
 LA	
 APLICACION	
 20	

FIGURA	
 3.7.	
 PANTALLA	
 DEL	
 MENU	
 PRINCIPAL	
 DE	
 LA	
 APLICACION	
 21	

FIGURA	
 3.8.	
 PANTALLA	
 DE	
 PRESENTACIÓN	
 DE	
 DIAPOSITIVAS	
 22	

FIGURA	
 3.9.	
 PANTALLA	
 DE	
 INTRODUCCIÓN	
 A	
 UN	
 CAPITULO	
 DE	
 EJEMPLOS	
 23	

FIGURA	
 3.10.	
 PANTALLA	
 DE	
 VISUALIZACIÓN	
 DE	
 UN	
 CAPITULO	
 DE	
 EJEMPLOS	
 24	

FIGURA	
 3.11.	
 PANTALLA	
 CON	
 LA	
 BARRA	
 DE	
 CONTENIDO	
 26	

FIGURA	
 3.12.	
 PANTALLA	
 DE	
 CONFIGURACIÓN	
 DE	
 LA	
 APLICACION	
 26	

FIGURA	
 3.13.	
 PANTALLA	
 DE	
 REINICIO	
 DE	
 APLICACIÓN.	
 27	

FIGURA	
 3.14.	
 PANTALLA	
 DE	
 INICIO	
 DEL	
 JUEGO	
 BUBBLE	
 BALL	
 27	

FIGURA	
 3.15.	
 PANTALLA	
 DEL	
 JUEGO	
 SPACE	
 SHOOTER	
 28	

FIGURA	
 3.16	
 ESTRUCTURA	
 DE	
 ESCENAS	
 DE	
 LA	
 APLICACION	
 29	

FIGURA	
 3.17.	
 ESTRUCTURA	
 DE	
 DIRECTORIOS	
 DEL	
 PROYECTO	
 EN	
 CORONA	
 SDK	
 30	

FIGURA	
 3.18	
 PANTALLA	
 DE	
 ACCESO	
 A	
 LA	
 ULTIMA	
 POSICIÓN	
 GUARDADA.	
 31	

FIGURA	
 3.19.	
 PRIMER	
 PASO	
 PARA	
 CREACIÓN	
 DE	
 TITULO	
 40	

FIGURA	
 3.20.	
 SEGUNDO	
 PASO	
 PARA	
 CREACIÓN	
 DE	
 TITULO	
 40	

FIGURA	
 3.21.	
 ASPECTO	
 DEL	
 TITULO	
 DEFINITIVO	
 41	

FIGURA	
 3.22.	
 DISPOSITIVO	
 MÓVIL	
 IPAD	
 41	

FIGURA	
 3.23.	
 CONSTRUCCIÓN	
 APLICACIÓN	
 EN	
 IOS	
 45	

FIGURA	
 3.1.	
 EVOLUCION	
 DE	
 LA	
 UTILIZACIÓN	
 DE	
 S.O.	
 MÓVILES.	
 49	

FIGURA	
 4.1.	
 ORIGEN	
 DE	
 COORDENADAS	
 EN	
 LAS	
 PANTALLAS	
 DE	
 LOS	
 DISPOSITIVOS	
 68	

FIGURA	
 8.1.	
 BOTON	
 DE	
 LA	
 BIBLIOTECA	
 WIDGET	
 110	

FIGURA	
 8.2.	
 SLIDER	
 DE	
 LA	
 BIBLIOTECA	
 WIDGET	
 110	

FIGURA	
 8.3.	
 SCROLLVIEW	
 DE	
 LA	
 BIBLIOTECA	
 WIDGET	
 111	

FIGURA	
 8.4.	
 TABLEVIEW	
 DE	
 LA	
 BIBLIOTECA	
 WIDGET	
 112	

FIGURA	
 8.5.	
 TABBAR	
 DE	
 LA	
 BIBLIOTECA	
 WIDGET	
 112	

FIGURA	
 8.6.	
 PICKER	
 WHEEL	
 DE	
 LA	
 BIBLIOTECA	
 WIDGET	
 112	

	

