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Using scaling arguments and the property of self-similarity we derive the Casimir energies of Sierpinski
triangles and Sierpinski rectangles. The Hausdorff-Besicovitch dimension (fractal dimension) of the
Casimir energy is introduced and the Berry-Weyl conjecture is discussed for these geometries. We propose
that for a class of fractals, comprising compartmentalized cavities, it is possible to establish a finite value to
the Casimir energy even while the Casimir energy of the individual cavities consists of divergent terms.
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I. INTRODUCTION

Weyl’s law [1], which was originally discussed for the
spectral distribution of the modes allowed inside a Dirichlet
cavity, when extended for the Casimir energy per unit
length EðaÞ of a polygonal cylindrical cavity with a single
characteristic scale a, in natural units of ℏ ¼ c ¼ 1, states
that

EðaÞ ¼ bc
a2

þ lim
τ→0

1

τ2

�
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�
a
τ

�
þ b1P

�
a
τ

�
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�
a
τ

��
;

ð1Þ
where the coefficients of the divergent terms, AðxÞ, PðxÞ,
and CðxÞ, scale like the area of the cavity, the perimeter of
the cavity, and the corner angles of the cavity, respectively.
That is,

AðxÞ ∝ x2; PðxÞ ∝ x1; CðxÞ ∝ x0: ð2Þ

Parameters bc, b2, b1, and b0 in Eq. (1) are dimensionless
constants. The parameter τ is a temporal point-splitting
cutoff parameter introduced in the calculation to regulate
the divergences.
Berry conjectured [2], again in the context of spectral

distribution, that for fractal cavities the Weyl law maintains
the form of Eq. (1) with the only difference that the
coefficients of the divergent terms, AðxÞ, PðxÞ, and
CðxÞ, scale like the Hausdorff-Besicovitch dimension
(fractal dimension) of the area of the cavity, the perimeter
of the cavity, and the corner angles of the cavity, respec-
tively. That is,

AðxÞ ∝ xδ2 ; PðxÞ ∝ xδ1 ; CðxÞ ∝ xδ0 ; ð3Þ

where δ2 is the fractal dimension of the area of the cavity, δ1
is the fractal dimension of the perimeter of the cavity, and
δ0 is the fractal dimension of the corner angles of the cavity.
It is, then, not a long shot to envision that the Casimir

energy per unit length of a fractal cavity need not scale like
the inverse square of length. Thus, presuming that the energy
scales like aδc , we can generalize Weyl’s law in Eq. (1) as

EðaÞ ¼ bcaδc þ lim
τ→0

τδc
�
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τ
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�
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τ

��
;

ð4Þ

where δc is the fractal dimension of the Casimir energy per
unit length of the fractal cavity.
The central theme of this paper is to use the scaling

arguments and the property of self-similarity introduced in
Ref. [3] to derive the Casimir energies of Sierpinski
triangles and Sierpinski rectangles. We also introduce a
class of fractals for which the energy does not scale as
inverse length square, which leads us to introduce a fractal
dimension for the Casimir energy. One usually associates
fractal dimensions to geometrical quantities like perimeter
and area, but being able to introduce fractal dimensions to
Casimir energy for a class of fractals directly relates to the
conventional wisdom that Casimir energy of cavities,
satisfying perfectly conducting boundary conditions (or
Dirichlet boundary conditions for scalar fields), is purely
geometrical. It should not be very surprising, because
energy has been shown to exhibit fractal nature before.
For example, the Hofstadter butterfly is a fractal that
represents the energy of Bloch electrons in a magnetic
field [4].
We consider an equilateral triangle even though most

of our discussion holds true for an arbitrary triangle.
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The Casimir energy of an equilateral triangular cylinder on
which a scalar field satisfies Dirichlet boundary conditions
was calculated exactly, in closed form, in Ref. [5]. This
involves the Casimir energy of five cylindrical cross
sections, namely an equilateral triangle, a hemiequilateral
triangle, an isosceles right triangle, a square, and a
rectangle; see Fig. 1. For all five geometries the authors
of Ref. [5] have shown that the Casimir energy per unit
length obeys the Weyl law in Eq. (1). Using Ref. [5], the
Casimir energy per unit length of an equilateral triangle is
described by the parameters

bc ¼ −
1

72

� ffiffiffi
3
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9

�
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− ψ ð1Þ

�
2
3

��
−
8

π
ζð3Þ

�
; ð5Þ

with a numerical value bc ∼ 0.0237188,

b2 ¼
3

ffiffiffi
3

p

8π2
; b1 ¼ −

3

8π
; b0 ¼

1

6π
; ð6Þ

of Eq. (1), where ψ ðmÞðzÞ is the polygamma function of
order m and ζðzÞ is the Riemann zeta function. The above
evaluation was achieved using the mode summation
method, which presumes that the Casimir energy of a
closed Dirichlet cavity is completely determined by the
modes in the interior of the cavity alone [5]. This should be

contrasted with field theoretic methods of Lifshitz et al. [6]
and Schwinger et al. [7] that incorporate both the interior
and exterior modes in the evaluation. The Casimir energies
for the five geometries of Ref. [5], for empty triangles and
rectangles or squares, due to interior modes only, referred to
as EΔ and E□ in this paper, are summarized in Table I.
Before we proceed with our discussion, we present the

results for the finite part of the Casimir energy for each of
the five geometries presented in Fig. 1, which are expressed
in terms of EΔ and E□ of Table I. The expression Es ¼
−4EΔ=11 is universal for all Sierpinski triangles, and Es ¼
−9E□=71 is universal for all Sierpinski rectangles, and is
not restricted to the five geometries of Ref. [5]. However,
we often confine the analysis to the five geometries of
Ref. [5], because exact expressions were derived for the
Casimir energy per unit length for these geometries there.

II. SIERPINSKI TRIANGLE

The Sierpinski triangle is self-similar. That is, it consists
of copies of the scaled-down versions of itself. Figure 2
shows the Sierpinski triangle of side length a, which may
be viewed as comprised of three Sierpinski triangles of side
length a=2.

FIG. 1. Gallery of Sierpinski cylinders with Casimir energies
per unit length Es for the five integrable cylinders studied in
Ref. [5]. Top row: An isosceles right triangle with the equal sides
of length a, an equilateral triangle of side length a, and a
hemiequilateral triangle with length of hypotenuse a. Bottom
row: A square of side length a, and a rectangle of side lengths a
and b. The Casimir energy per unit length of a Sierpinski triangle
is −4=11 times the Casimir energy per unit length of the
respective triangle, EΔ, and the Casimir energy per unit length
of a Sierpinski rectangle or square is −9=71 times the Casimir
energy per unit length of the respective rectangle or square, E□.
The Casimir energy per unit length, EΔ and E□, for the five
integrable cylinders are summarized in Table I.

TABLE I. Casimir energy per unit length for cylinders of five
cross sections from Ref. [5], referred to as EΔ and E□ in this
paper. The cutoff independent finite part is presented. The
numbers correspond to the constant bc in Eq. (1) for the
respective cross sections, presented here to three significant
digits without rounding. The second, third, and fourth columns
correspond to the boundary conditions imposed on the fields.

Cross section Dirichlet Neumann EM

Equilateral triangle 0.0237
a2 − 0.0613

a2 − 0.0375
a2

Hemiequilateral triangle 0.0756
a2

− 0.0944
a2 − 0.0187

a2

Isosceles triangle 0.0263
a2 − 0.0454

a2
− 0.0190

a2

Square 0.00483
a2 − 0.0429

a2 − 0.0381
a2

Rectangle Refer Ref. [5].

FIG. 2. Sierpinski triangle. The white regions in the interior are
triangular cavities, each of which contributes to the Casimir
energy per unit length of the Sierpinski triangle. The matter
bounding each of the triangles (in blue) is perfectly conducting
for the case of electromagnetic fields.
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A. Area and δ2
Using the self-similarity of a Sierpinski triangle we can

write the following recursion relation for the area AsðaÞ of
the cavities inside a Sierpinski triangle:

AsðaÞ ¼ AΔ

�
a
2

�
þ 3As

�
a
2

�
; ð7Þ

where AΔðaÞ is the area of an equilateral triangle of side
length a. Using Eq. (7) recursively in itself we obtain the
series

AsðaÞ ¼ AΔ

�
a
2

�
þ 3AΔ

�
a
22

�
þ 32AΔ

�
a
23

�
þ � � � : ð8Þ

Then, using the scaling relation of the area of a triangle,

AΔ

�
a
2

�
¼ 1

22
AΔðaÞ; ð9Þ

we obtain the area of the Sierpinski triangle in Fig. 2 to be
exactly equal to the area of a triangle. That is,

AsðaÞ ¼ AΔðaÞ: ð10Þ

Since the area of a triangleAΔðaÞ scales like a2, dimensional
analysis of Eq. (10) implies that the fractal dimension of the
area, defined in Eq. (3), of the Sierpinski triangle is

δ2 ¼ 2: ð11Þ

B. Perimeter and δ1
Similarly, the interior perimeter of the cavities inside a

Sierpinski triangle satisfies the recursion relation

PsðaÞ ¼ PΔ

�
a
2

�
þ 3Ps

�
a
2

�
; ð12Þ

where PΔðaÞ is the interior perimeter of a triangular cavity
of side length a and PsðaÞ is the sum of the interior
perimeter of all the individual cavities constituting the
Sierpinski triangle. The series constructed from the recur-
sion relation, after using the scaling argument for PΔðaÞ, is
divergent and leads to

PsðaÞ ¼ −PΔðaÞ ð13Þ
after using the divergent sum

1

2
þ 3

22
þ 32

23
þ � � � ¼ −1; ð14Þ

which can be deduced using the property of self-similarity
of the series [8]. Ignoring the counterintuitive nature of a
negative perimeter, we learn from Eq. (13) that the fractal

dimension for the perimeter, defined in Eq. (3), of the
Sierpinski triangle in Fig. 2 is

δ1 ¼ 1; ð15Þ

because the perimeter of a triangle PΔðaÞ scales like a.

C. Corner angle and δ0
The interior corner angles of a Sierpinski triangle satisfy

CsðaÞ ¼ CΔ

�
a
2

�
þ 3Cs

�
a
2

�
; ð16Þ

which leads to the series

CsðaÞ ¼ CΔ

�
a
2

�
þ 3CΔ

�
a
22

�
þ 32CΔ

�
a
23

�
þ � � � : ð17Þ

The corner term for a triangle is given by [5]

CΔðaÞ ¼
X
i

�
π

αi
−
αi
π

�
; ð18Þ

where αi are the angles of a triangle, which is independent
of the scale a. Thus, we can derive

CsðaÞ ¼ −
1

2
CΔðaÞ; ð19Þ

after using the divergent sum 1þ 3þ 32 þ � � � ¼ −1=2.
We learn from Eq. (19) that the fractal dimension for the
corner angle of the Sierpinski triangle in Fig. 2 is

δ0 ¼ 0; ð20Þ

because the corner angle of a triangle CΔðaÞ is scale
independent.

D. Casimir energy and δc
Using the decomposition of Casimir energies into single-

body energy and the respective interaction energy between
the bodies [9], the Casimir energy per unit length of a
Sierpinski triangle EsðaÞ can be decomposed as

EsðaÞ ¼ Eint

�
a
2

�
þ 3Es

�
a
2

�
; ð21Þ

where 3Esða=2Þ is the single-body Casimir energy of three
Sierpinski triangles of side a=2 in Fig. 2, and EintðaÞ is the
interaction energy between the three Sierpinski triangles.
Arguably, in general, the interaction energy Eint depends on
both the interior and exterior modes. But the Casimir
energies of the cavities we are considering are all due to
interior modes. Thus, for consistency, we presume that
the interaction energy involves only the interior modes.
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We further justify the consistency of this presumption in the
following discussion.
Using Eq. (21) recursively we obtain the series

EsðaÞ¼ Eint

�
a
2

�
þ3Eint

�
a
22

�
þ32Eint

�
a
23

�
þ��� : ð22Þ

Thus, the evaluation of the Casimir energy reduces to
computing the interaction energy Eint.
Dirichlet boundary conditions require a scalar field to be

0 on the boundary. This restriction essentially separates the
physical phenomena on the two sides of the boundary.
Thus, the modes and the associated physical phenomena
inside Dirichlet cavities are essentially independent of its
surroundings. Extending this argument to Sierpinski tri-
angles we learn that the interaction energy between two or
more Sierpinski triangles is independent of the internal
structure of each of them. We can thus infer that the
interaction energy of the three Dirichlet Sierpinski triangles
in Fig. 2 is identical to the interaction energy of the three
Dirichlet triangles in Fig. 3. We can determine the total
energy of the four triangles in Fig. 3 in two independent
methods. In the first method we argue that the energy is the
sum of the four triangular cavities, 4EΔða2Þ. In the second
method we argue that the total energy is the sum of the
energies of the three outer triangles, 3EΔða2Þ, plus the
interaction energy Eintða=2Þ between the three triangles.
That is,

4EΔ

�
a
2

�
¼ 3EΔ

�
a
2

�
þ Eint

�
a
2

�
: ð23Þ

This immediately suggests that the interaction energy of
three outer triangles is completely given by the energy of
the inner triangle,

Eint

�
a
2

�
¼ EΔ

�
a
2

�
¼ 22EΔðaÞ; ð24Þ

where in the second equality we used the fact that the
Casimir energy of a triangle EΔðaÞ scales like the inverse
square of length.
Using Eq. (24) in Eq. (22) we derive the Casimir energy

of the Dirichlet Sierpinski triangle in terms of the Casimir
energy of the equilateral triangle as

EsðaÞ ¼ −
4

11
EΔðaÞ ð25Þ

using the divergent sum

1þ 12þ 122 þ � � � ¼ −
1

11
: ð26Þ

Since the energy per unit length of a triangle EΔðaÞ scales
like inverse length square, Eq. (25) implies that the energy
per unit length of the Sierpinski triangle also scales
similarly, that is,

δc ¼ −2: ð27Þ

The Casimir energy per unit length for the Sierpinski
extension of a cylinder with arbitrary triangular cross section
is also given using Eq. (25). The expression for EΔ, without
the cutoff dependent part, for the three cylinders with
triangular cross sections, for which closed-form solutions
has been achieved, has been summarized in Table I.

III. INVERSE SIERPINSKI TRIANGLE

We define the inverse Sierpinski triangle as the object
obtained by swapping the empty space with the perfectly
conductingmaterial in the Sierpinski triangle. In Fig. 2 this is
obtained by swapping the white color representing empty
space with blue color representing perfectly conducting
material. See Fig. 4. The outer region in Fig. 4 is unbounded.
The area of the inverse Sierpinski triangle satisfies the

relation

AsðaÞ ¼ 3nAs

�
a
2n

�
; ð28Þ

for any non-negative integer n. Presuming that this area
scales like aδ2 we obtain the relation

AsðaÞ ¼
3n

ð2nÞδ2 AsðaÞ; ð29Þ

FIG. 3. Four triangles constituting the Sierpinski triangle.

FIG. 4. Inverse Sierpinski triangle. It is obtained from the
Sierpinski triangle in Fig. 2 by swapping the empty space with
perfectly conducting material there. The blue region extends to
infinity.
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for any positive integer n. The central idea of nontrivial
fractal dimensions stems from Eq. (29) and its solutions.
The trivial solution is AsðaÞ ¼ 0, which can be envisioned
to be a possible scenario by extending Fig. 4 (drawn to five
iterations) to infinite iterations. This trivial solution agrees
with the notion that the perfectly conducting material in
Fig. 4 fills all space in this limit. But Eq. (29) also admits a
nontrivial solution, namely

1 ¼
�

3

2δ2

�
n
; ð30Þ

for any positive integer n, which immediately implies that

δ2 ¼
ln 3
ln 2

∼ 1.58496: ð31Þ

The nontrivial solution here is probably a consequence of
the nontrivial solution of a divergent series as a regularized
sum, which has the trivial solution to be infinity [8].
The perimeter also satisfies the relation in Eq. (28) with

the areas A now replaced with perimeters P. The corner
angles also satisfy Eq. (28). Further, the Casimir energy per
unit length also satisfies Eq. (28). Thus, we learn that

δc ¼ δ2 ¼ δ1 ¼ δ0 ¼
ln 3
ln 2

; ð32Þ

unless we confine to the trivial solution that area, perimeter,
angles, and the energy per unit length are all 0.
The fact that the fractal dimensions of all the relevant

physical quantities, the area, the perimeter, the corner
angle, and the Casimir energy per unit length, scale the
same way, in conjunction with the generalized Berry
conjecture of Eq. (4) implies that there are no divergent
terms in the Casimir energy per unit length of the inverse
Sierpinski triangle. That is,

EðaÞ ¼ bcaδc þ lim
τ→0

τδc
�
b02

�
a
τ

�
δc þ b01

�
a
τ

�
δc þ b00

�
a
τ

�
δc
�
;

¼ ðbc þ b02 þ b01 þ b00Þaδc ; ð33Þ

where b02, b
0
1, and b

0
0 are redefined constants with respect to

the constants b2, b1, and b0, in Eq. (4), to accommodate
numerical constants inside AðxÞ, PðxÞ, and CðxÞ,
respectively.

IV. SIERPINSKI CARPET

The Sierpinski carpet, or a Sierpinski rectangle or square,
is the rectangular version of a Sierpinski triangle; see the
rectangle and square version in Fig. 1. A Sierpinski carpet
satisfies the energy decomposition

EcðaÞ ¼ Eint

�
a
3

�
þ 8Ec

�
a
3

�
; ð34Þ

which leads to EcðaÞ ¼ −Eintða=3Þ=71. Again, to be
consistent with the fact that we are including only the
interior modes, the interaction energy Eintða=3Þ is equal to
the Casimir energy of a square enclosed between the eight
surrounding squares. Thus, we have

Eint

�
a
3

�
¼ E□

�
a
3

�
¼ 32E□ðaÞ; ð35Þ

where E□ðaÞ is the Casimir energy per unit length of a
square of side length a. Hence, the Casimir energy of the
Sierpinski square is evaluated as

EcðaÞ ¼ −
9

71
E□ðaÞ: ð36Þ

The calculation for the Sierpinski rectangle goes through
the same procedure, because the length and width have a
fixed aspect ratio. The Casimir energy per unit length for
the Sierpinski extension of a cylinder with arbitrary
rectangular cross section is also given using Eq. (36).
The expression for E□, without the cutoff dependent part,
for the cylinders with rectangular cross sections, for which
closed-form solutions have been found, is summarized in
Table I.
The vacuum energy of the inverse Sierpinski square or

rectangle satisfies the relation

EcðaÞ ¼ 8nEc

�
a
3n

�
; ð37Þ

which implies δc ¼ ln 8= ln 3. Since the area, the perimeter,
and the corner angles satisfy the same relation, of Eq. (37),
we also learn that δc ¼ δ2 ¼ δ1 ¼ δ0. Thus, using the same
arguments used to derive Eq. (33), the Casimir energy per
unit length of the inverse Sierpinski rectangle or square
does not have divergent terms.
We can also extend our discussion to non-Sierpinski

fractals. The Vicsek fractal, illustrated in Fig. 5, is obtained
by starting from a square, dividing it into nine equal squares
of one-third side, and removing four of them. The inverse
Vicsek fractal is obtained by swapping the empty space

FIG. 5. Vicsek fractal.
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with perfectly conducting material, such that the Casimir
energy is given in terms of the energies of the individual
cavities. The vacuum energy of the inverse Vicsek fractal
satisfies the relation

EvðaÞ ¼ 5nEv

�
a
3n

�
; ð38Þ

and the area, the perimeter, and the corner angles of the
Vicsek fractal also satisfy the same relation. Like in the case
of the inverse Sierpinski triangle, Eq. (38) for energy and
the corresponding relations admits the nontrivial solution

δc ¼ δ2 ¼ δ1 ¼ δ0 ¼
ln 5
ln 3

∼ 1.46497: ð39Þ

Thus, using the generalized Berry conjecture of Eq. (4) we
can conclude that the Casimir energy per unit length of the
inverse Vicsek fractal will not have divergent terms.

V. DISCUSSION

We list the fractal dimensions of the geometries dis-
cussed here in Table II. For the Sierpinski triangle and the
Sierpinski carpet we have shown that the Berry conjecture
holds true. But these are relatively trivial cases because the
fractal dimensions for these cases are equal to the respective
topological dimensions. For the inverse Sierpinski triangle,
the inverse Sierpinski carpet, and the inverse Vicsek fractal,
even though we encounter nontrivial fractal dimensions,
these dimensions (for area, perimeter, corner angle, and
Casimir energy) turn out to be all equal. This, in turn,
remarkably, gives no room for the divergent terms in the
Weyl expansion. Thus, in the absence of the divergent
terms, even though the Berry’s conjecture holds in prin-
ciple, we cannot conclude this to be a nontrivial verification
of the conjecture.
Berry’s conjecture was probably motivated for fractals

like the Koch snowflake [10], a simply connected domain,

in which the perimeter encloses a single continuously
connected region. The area and the corner angles of a
Koch curve scale normally, but the perimeter scales like a
fractal with a fractal dimension of ln 4= ln 3 ∼ 1.26. This
difference in the scaling behavior between area and
perimeter, we believe, is suitable for studying the Berry
conjecture. The methods presented here do not seem to
yield the Casimir energy of a Koch snowflake.
The perimeter of a Koch snowflake scales like

PkðaÞ ¼ 4nPkða=3nÞ, which implies that for a Koch
snowflake δ1 ¼ ln 4= ln 3. In contrast, the area of a Koch
snowflake AkðaÞ is given by AkðaÞ ¼ AΔðaÞ þ 3A0

kðaÞ,
expressed in terms of a reduced area A0

kðaÞ that satisfies the
recursion relation A0

kðaÞ ¼ AΔða=3Þ þ 4A0
kða=3Þ, which

leads to AkðaÞ ¼ 8AΔðaÞ=5 and implies that for a Koch
snowflake δ2 ¼ 2. Further, the corner angles ckðaÞ of a
Koch snowflake satisfy ckðaÞ ¼ 6π þ 4ckða=3Þ, which
leads to ckðaÞ ¼ −2π. Thus, for a Koch snowflake δ0 ¼ 0.
It seems that it would be more appropriate to analyze the

Berry conjecture for a Koch snowflake, because of the fact
that its perimeter scales like a fractal while its area scales
normally. In the Sierpinski triangle, and in the inverse
Sierpinski triangle, the cavities are compartmentalized.
These geometries are not simply connected. This feature
in conjunction with the idea of self-similarity was the key to
our evaluation of the Casimir energies of the fractal
geometries considered here. Without the feature of com-
partmentalization we are unable to calculate the Casimir
energy of a Koch snowflake as yet. Thus, we are unable to
analyze the Berry conjecture for a Koch snowflake.
In the literature, the Berry conjecture was formulated and

has been studied for the distribution of the modes of a
cavity. Casimir energy is directly related to the sum of all
modes of a cavity, and gets divergent contributions dictated
by the distribution of the modes for large frequencies.
There seems to be an extensive literature on the Weyl law
and the associated Berry conjecture. We found the review in
Ref. [11] very resourceful. Nevertheless, to our knowledge,
Berry’s conjecture has not been addressed in the context of
Casimir energies before. The only exception seems to be
the discussion in Ref. [12] where fractal geometries are
discussed in the context of heat kernels, which is a powerful
technique used to extract divergent terms in Casimir energy.
Our method exploits the formalism of Green’s functions
that was described in the context of self-similar plates in
Ref. [3], and its correspondence with the heat kernel
method is well known in the community. In Ref. [5], the
method of mode summation was used, so the connection
with heat-kernel methods should not be so remote. In our
understanding, there is no direct overlap between the
discussions we have presented here with those in
Ref. [12], but the connections should be worth pursuing.
In the studies on distribution of modes, without con-

cerning Casimir energy, it has been argued in Ref. [13] that
the dimensions of the regions and surfaces should be

TABLE II. Fractal dimensions of the area of cavities, δ2, of the
perimeter of cavities, δ1, of the corner angles of cavities, δ0, and
of the Casimir energy per unit length, δc, for a few geometries.
We note that ln 3= ln 2 ∼ 1.58496, ln 8= ln 3 ∼ 1.89279,
ln 5= ln 3 ∼ 1.46497, and ln 4= ln 3 ∼ 1.26186. The question mark
indicates the value that remains to be calculated, the Casimir
energy per unit length of a cylinder with the cross section of the
shape of a Koch snowflake.

Geometry δ2 δ1 δ0 δc

Sierpinski triangle 2 1 0 −2
Inverse Sierpinski triangle ln 3

ln 2
ln 3
ln 2

ln 3
ln 2

ln 3
ln 2

Sierpinski carpet 2 1 0 −2
Inverse Sierpinski carpet ln 8

ln 3
ln 8
ln 3

ln 8
ln 3

ln 8
ln 3

Inverse Vicsek fractal ln 5
ln 3

ln 5
ln 3

ln 5
ln 3

ln 5
ln 3

Koch snowflake 2 ln 4
ln 3

0 ?
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interpreted as the Minkowski-Bouligand dimension instead
of the Hausdorff-Besicovitch dimension as originally
proposed by Berry. This was further promoted in Ref. [14].
Counterexamples involving domains that are not simply
connected were presented in Ref. [15], but it has been
suggested that the conjecture is expected to hold for simply
connected fractals like the Koch snowflake. These con-
clusions seem to be in agreement with our results here in
the context of Casimir energies. No doubt, Berry’s con-
jecture needs to be explored further.
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