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Abstract In this work, we report our experience in the application of a
methodology, based on process mining techniques, for the performance assess-
ment of data-intensive software applications. The methodology is an original
contribution of this work, while the system has been developed by Prode-
velop and it is a customizable integrated port operations management system.
The company is a medium-sized enterprise, located in Valencia (Spain), with
high expertise in advanced geospatial technologies. The performance assess-
ment has been carried out by a team composed by Prodevelop’s engineers
and researchers from the University of Zaragoza. The team worked within the
DICE (Developing Data-Intensive Cloud Applications with Iterative Quality
Enhancements) H2020 European project.
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2 S. Bernardi et al.

1 Introduction

This paper is an industrial experience report, since it summarizes results re-
garding the application of a performance assessment methodology to a real
software system, named Posidonia Operations [22]. The system, developed
by Prodevelop, is a customizable Integrated Port Operations Management
System. Prodevelop [27] is a SME (Small and Medium-sized Enterprise)
that employs 80 engineers in Computer Science, Telecommunications, Cartog-
raphy and Geodetics. Prodevelop is specialized in software development and
advanced geospatial technologies.

Posidonia Operations [22] is a commercial product already deployed and
operated by many different port authorities across Europe, Africa and Asia. It
allows port authorities to optimize operational maritime activities related to
the vessels flow within the service area of the port, integrating all the involved
stakeholders and all the relevant information systems. Posidonia Operations
is a data-intensive application implemented in Java. It processes streamed data
from Automatic Identification System (AIS) receivers [5, 6], a system that
gets vessels position and meta-data in real time. An AIS message is a binary
encoded sentence that can be decoded into key-value objects. A Complex event
processing (CEP) engine correlates the subscribed AIS messages in time and
space by means of a set of geospatial rules to identify events produced by the
vessels in the port.

Prodevelop is planning new deployments of Posidonia Operations for
the upcoming years. However, several performance challenges have arisen that
may jeopardise the software product. Consequently, the risk of producing a
version of the product that fails on scalability and on the throughput of some
services is real. The challenges have been collected in [15]. This paper reports
the most relevant ones, which constitute our first objective, O1, the perfor-
mance assessment of Posidonia Operations. This objective, according to [30],
is our mean to carry out an internal validation of our research. In the following
list, the objective is detailed according to the different stakeholders engaged
within the software life-cycle:

O1.1 Software architects are concerned about the scalability of the product.
Being a product already in production, performance has to be guaranteed
under different velocity and volume of data to be processed (requirement
PO.2 in [15]).

O1.2 Software developers are interested in identifying possible bottlenecks in
the processing of the CEP rules as well as in the AIS data parsing imple-
mentation (requirement PO.5 ).

O1.3 Quality engineers need to predict the impact of a business rule on the
CEP performance in order to evaluate different alternative requirements
(requirement PO.1 ).

The DICE project [13] is an asset for Prodevelop to address the afore-
mentioned objective.
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Performance Assessment of Posidonia Operations 3

Moreover, researchers of the University of Zaragoza (Unizar), also involved
in the project and experts in performance solutions, want to take profit from
this experience in order to offer a methodology for performance assessment easy
to be applied by SME practitioners. This constitutes the second objective, O2,
of this paper, which means an external validation of our research according
to [30]. The methodology will leverage mature and state-of-the-art techniques
and tools. The latter is of great importance since our intention is to offer
guidelines, assisted by tools, that can be followed by engineers without the
need of researchers experts on performance evaluation.

The rest of the paper is organised as follows. Section 2 outlines the assess-
ment methodology. Section 3 describes Posidonia Operations. Sections 4, 5
and 6 apply the steps of the methodology to Posidonia Operations. Section 7
discusses the benefits and limitations of the approach. Finally, Section 8 draws
a conclusion and covers some related work. The paper also includes appendices,
that detail input parameters and formal questions about Petri nets.

2 Assessment Methodology

Prodevelop’s engineers and researchers of the Unizar made a team for ad-
dressing O1, i.e., the assessment of Posidonia Operations. The engineers,
who had developed most of the current version of the system, contributed
also with their knowledge in the problem domain. The researchers were spe-
cialists on the construction and evaluation of performance models. From the
very beginning, the team considered the Unified Modeling Language (UML)
as the lingua franca for communication between engineers and researchers.
In fact, most of the system architecture had been already developed using
UML. Hence, UML prevented the engineers to learn the performance lan-
guage, i.e., Petri nets, while the researchers could learn details of the system
without navigating code. Another important objective was the use of state of
the art tools, that enable to automate the processes as much as possible. In
this way, Prodevelop could eventually assess future versions of Posidonia
Operations or even another products, not needing the help of performance ex-
perts. The result was the systematic approach summarized by the assessment
methodology below, which fulfills O2, the second objective of this paper.

Methodology for Performance Assessment
Input: UML-MARTE performance scenario (S), data logs (L)
1: Get a normative model N from S
2: Pre-process L to get event logs EL
3: repeat
4: Filter EL (complete traces)
5: Check for conformance N and EL
6: until fitness ≥ threshold
7: Enhance S with timing & probabilistic perspectives
8: Conduct sensitivity performance analysis: obtain R
Output: Performance results (R)
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4 S. Bernardi et al.

The input of the methodology consists of: 1) a UML-MARTE specifica-
tion that represents a system performance scenario S and 2) data logs L of
real execution traces of the system processes. The scenario can be modelled
either with a Sequence Diagram (SD) or an Activity Diagram (AD). A Deploy-
ment Diagram (DD) can be also included to specify the software component
allocation on computing nodes. Figures 1, 2 and 3 show, respectively, the de-
ployment, sequence and activity diagrams of the case study and they will be
described, in detail, in the next section. Observe that the UML diagrams are
annotated using the MARTE profile [26] to specify performance input param-
eters – such as mean durations of activities, data stream arrival rates and
probabilities of alternative steps execution – and the performance metrics of
interest, according to the objectives of the analysis.

In Step 1, a formal model N (i.e., a Petri net model [8]) is automatically
obtained from S using the DICE simulation tool [19]. This tool applies model-
to-model (M2M) transformations [10, 23]. N represents a normative model
since it is derived from the known behavioural specification of the system.
Figures 4 and 5 depict the two Petri net models that are derived, respec-
tively, from the parsing scenario of Figure 2 and the CEP scenario of Figure 3,
considering the resource restrictions specified in the DD of Figure 1.

Step 2 consists in pre-processing the data logs L to convert them into the
event log XES [37] standard format, where each execution trace is character-
ized by an ordered set of event occurrences together with their timestamps.
The data logs of Posidonia Operations were collected in separate comma
separated values (CSV) files and include the traces of two days of system ex-
ecution, with a total of 12, 331, 320 traces related to the first process (i.e., the
parsing process) and 349, 790 traces related to the second one (i.e., the CEP
process).

The aforementioned two steps are applied to the Posidonia Operations
case study in Section 4.

In Steps 3-6, the event logs and the Petri net models are aligned using
ProM [36] – a tool that provides support to a wide range of process mining
techniques – in order to reach a fitness threshold (i.e., threshold = 1 means
that all the traces in the log can be replayed in the model); the alignment
may require several iterations and may improve the initial system scenario
specification S.

In Step 7, once the required fitness has been reached, the performance
input parameters (e.g., mean time delays, arrival rates, execution step proba-
bilities) of S are set to actual values, which are estimated using the event logs
and the trace-driven simulator of the ProM tool.

Section 5 applies Steps 3-7.

Finally, Step 8 produces the output. Then, S is used to conduct sensi-
tivity analysis with the DICE simulation tool and to get performance results
R. This step is applied in Section 6.
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Performance Assessment of Posidonia Operations 5

3 The POSIDONIA Operations Case Study

In Posidonia Operations the vessel becomes the centre of the system, and all
the actions and data are linked to the vessels through an integrated operator
console that centralizes all the significant information coming from external
sources and systems, like AIS, Radar, VTS, meteorology, communications,
Port Management Systems, Port Community Systems, safety & security or
cartography. The system has been designed to cover all the phases of a vessel:
request, authorization, port approach, port enter, berthing and unberthing,
berth change, anchoring and port leaving. It also fulfills port operations, in-
cluding berth planning, coordination and register of pilots, tugs and moorers
activities, vessel supplies and bunkering, wastes & disposal, incidents, repairs
or port inner traffic.

A real time analysis engine based on spatial information can be configured
to automatize relevant operational events like anchoring, berthing/unberthing,
pilots and tugs operations, bunkering, enter and exit of areas like port service
area, waypoints or inner harbour and port exit with pending requested anchor-
ing. It processes streamed data from Automatic Identification System (AIS)
receivers [5, 6], a system that gets vessels position and meta-data in real time.
The encoding protocol of an AIS sentence can be found in [7]. To get data
from an AIS Network, a TCP connection to the port AIS receiver is used.
Once an AIS stream is parsed, it is published to a message queue as AIS mes-
sages for further processing: analysis, complex event processing (CEP), data
integration, visualization, etc. An AIS message is a binary encoded sentence
that can be decoded into key-value objects. Its size is usually under 100 bytes.
In particular, the CEP goal is to correlate the subscribed AIS messages in time
and space by means of a set of geospatial rules to identify events produced by
the vessels in the port.

3.1 Performance goals

In the following, we recall the performance goals established in the Introduc-
tion.

O1.1 Being a product already in production, performance has to be guaran-
teed under different velocity and volume of data to be processed. For a
single port, a velocity of about a hundred of AIS messages per second with
a volume of about five million messages per day can be observed. These
numbers may vary and can be multiplied by the number of ports managed
by the product. Moreover, for a given port authority, several instances of
the CEP engine would be needed, one for each port area. In this case, one
of the challenges of the architects is related to the scalability of the product
in terms of data processing, storage and analysis. In particular, architects
are interested in evaluating the performance impact of changes in the data
stream, in order to refactor the current architecture.
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6 S. Bernardi et al.

O1.2 Developers are interested in identifying possible bottlenecks in the pro-
cessing of the CEP rules as well as in the AIS data parsing implementation.

O1.3 From the quality engineers point of view, it is important to predict the
impact of additional geospatial business rules on the CEP performance in
order to evaluate different alternative requirements.

According to the aforementioned performance challenges, we focused on
the following core components of interest for performance analysis:

– The streaming processor – or AIS parser – that collects the data from the
AIS receiver and parses it. An AIS parser consists of four sub-components:
the Parser, the Station Manager, the Station Processor, and the Parsing-
Task ;

– The message queue for subscribing/publishing data such as AIS messages
or detected events; and

– The complex event processing (CEP) engine that subscribes to AIS mes-
sages, correlates them to identify events. A CEP component includes three
sub-components: the Subscriber AIS Sentence (responsible for the AIS mes-
sages subscription), the AIS Sencence Listener and the Stateful Knowledge
Session (in charge of AIS messages correlation and events identification).

The basic allocation of these components onto processing nodes is shown
in the UML deployment diagram (DD) of Figure 1.

10.1.1.171

«artifact»
«PaLogicalResource»

AIS NMEA Parser

«artifact»
ParsingTask

«artifact»
Parser

«artifact»
StationManager

«artifact»
MessageQueue

«artifact»
StationProcessor

10.1.1.172

«artifact»
«PaLogicalResource»

CEP

«artifact»
AISSentenceListener

«artifact»
StatefulKnowledgeSession

«artifact»
SubscriberAISSentence

«PaLogicalResource»
poolSize = 4;

utilization = (expr=$UParser, source=calc)

«PaLogicalResource»
poolSize = (expr=$cep);

utilization = (expr=$UCep, source=calc)

Fig. 1 UML Deployment Diagram.

3.2 System scenarios

The main parsing scenario, carried out by the AIS parser, is modelled by the
UML sequence diagram of Figure 2. The data stream (NMEAstream) from
the AIS Receiver is initially parsed by the Parser sub-component. Then, the
produced AIS NMEA message is sent to the Station Manager that forwards it

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Performance Assessment of Posidonia Operations 7

«PaRunTInstance»
poolSize = 4

«PaRunTInstance»
StationProcessor

«PaRunTInstance»
ParsingTask

«PaRunTInstance»
StationManager

«PaRunTInstance»
ParserAISReceiver

«GaWorkloadEvent»
pattern = open=(arrivalRate=

(expr=$arrRateParser, unit=MHz,
statQ=mean, source=est))

«GaStep»
hostDemand =

{ (expr=$parse, unit=ms,
statQ=mean, source=est) }

«GaStep»
hostDemand =

{ (expr=$adapt, unit=ms,
statQ=mean, source=est) }

NMEAStream

adapt(ais_nmea)
adapt(ais_nmea)

ais_sentence

«GaAnalysisContext»
contextParams = 

{ in$arrRateParser, in$parse, in$adapt, in$postProc,
out$RTParser, out$XParser, out$UParser }

«GaScenario»
respT = { (expr=$RTParser, source=calc) };

throughput = { (expr=$XParser, source=calc) }

«GaStep»
hostDemand =

{ (expr=$postProc, unit=ms,
statQ=mean, source=est) }

postProcessing(ais_sentence)

reply

reply

Fig. 2 AIS parser scenario.

to the Station Processor to convert it into a business object (AIS Sentence).
The AIS sentence is successively post-processed by the Parsing Task to be
published in the message queue, not explicitly represented in the diagram. The
adaptation and post-processing steps are controlled by the Station Manager.

Figure 3 shows instead the main execution cycle of the CEP. Here, the
AIS sentences – generated by the AIS parser – are analyzed in order to detect
the events produced by the vessels that are of interest for a port authority
(e.g., anchoring, docking, etc.). The AIS Sentence Listener sub-component is
continuously monitoring the message queue and, when a new AIS sentence is
produced, it starts a new execution cycle to handle it (S Handle Message).
In particular, the AIS sentence is added to the Knowledge Base (KB) reposi-
tory and processed by the Stateful Knowledge Session sub-component. First,
as a consequence of the new AIS sentence, the list of active rules is updated
(S UpdateActiveFromZ ), a rule X consists of two parts, the activation condi-
tion and the body. Then, the Stateful Knowledge Session activates the rules
whose condition is satisfied (S RuleX and E RuleX ). The next step is to de-
cide whether it is reasonable to execute the activated rules: if so, the rules
are fired (S FireAllRules) and the AIS events generated by their execution are
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8 S. Bernardi et al.

«GaWorkloadEvent»
pattern = open=(arrivalRate=

(expr=$arrRateCep, unit=MHz,
statQ=mean, source=est))

«GaStep»
hostDemand =

{ (expr=$timeUpdate, unit=ms,
statQ=mean, source=est) }

«GaStep»
hostDemand =

{ (expr=$timeRuleY, unit=ms,
statQ=mean, source=est) }

«GaStep»
hostDemand =

{ (expr=$timePubEvent, unit=ms, statQ=mean, source=est) }

«GaStep»
prob =

(expr=$probActivationLoop, source=est)

«GaAnalysisContext»
contextParams = 

{ in$arrRateCep, in$timeUpdate, in$timeRuleX, in$timeRuleY, in$timePubEvent,
in$probActivationLoop, in$probFireRules?, in$probActivate?,

in$probNewActivationLoop, in$probPublish?, in$cep, out$RTCep, out$UCep}

«GaScenario»
respT = { (expr=$RTCep, source=calc) }

«GaStep»
hostDemand =

{ (expr=$timeRuleX, unit=ms,
statQ=mean, source=est) }

S_HandleMessage

S_RuleX

«GaStep»
E_RuleX

«GaStep»
E_RuleY

«GaStep»
S_UpdateActiveFromZ

S_UpdateActiveFromW

E_UpdateActiveFromW

E_UpdateActiveFromZ

E_HandleMessage

S_FireAllRules

S_RuleY

E_FireAllRules

«GaStep»
E_PublishAISEvent

S_PublishAISEvent

end

no

no

no

yes

yes

yes

yes

fireRules?

activate?

publish?

newActivationLoop

activationLoop

ais_sentence_inMsgQueue

rulesExecuted

«GaStep»

«GaStep» «GaStep»

yes

«GaStep»

«GaStep»

no
«GaStep»

«GaStep»

«GaStep»

«GaStep»

«GaStep»

StatefulKnowledgeSession

CEP

AISSentenceListener

«GaStep»
prob =

(expr=1 - $probActivationLoop, source=est)

Fig. 3 CEP execution cycle.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Performance Assessment of Posidonia Operations 9

added to the KB, otherwise the process terminates (E Handle Message). The
firing of a rule may cause the activation of other rules, then a new update is
carried out (S UpdateActiveFromW ), where each new rule Y that satisfies the
activation condition is added to the list (S RuleY and E RuleY ). Finally, the
Stateful Knowledge Session decides whether to publish an AIS event in the
message queue (S PublishAISEvent and E PublishAISEvent).

3.3 Performance scenarios

The proposed methodology requires an initial UML-based specification of the
system, that represents an execution scenario of interest. However, in order to
obtain a performance model, as required by the Step 1 of the methodology,
the system scenarios need to be transformed into performance scenarios [34].
Basically, the UML diagrams need to be enriched with input parameters to
characterize the workload, the timing and probabilistic specifications – such
as the duration of the computation steps or the probability of alternative
steps – and the performance metrics of interest – such as the response time
and throughput of the scenario and the utilization of the resources.

To that end, we apply the standard MARTE profile (Modeling and Analysis
of Real-time and Embedded Systems) [26], that enables the designer to specify
performance parameters through UML extensions, i.e., stereotypes and tagged
values. A key feature of MARTE is the framework for the specification of
non functional properties (NFP) and the Value Specification Language (VSL).
The former allows the modeller to define several properties of a performance
parameter, such as the source to indicate whether it is an estimated value (i.e.,
est) or a value to be calculated (i.e., calc), or the type of statistical measure
associated to it (e.g., a mean). The VSL enables the specification of variables
and complex expressions according to a well-defined syntax.

In the UML diagrams of Figures 1, 2, and 3 we used the UML note symbol
to show explicitly the tagged values associated to a given stereotyped model
element. However, when a UML tool with profiling facilities is used, the stereo-
types and tagged values can be easily set via the GUI. This is the case, for
example, of the Eclipse Papyrus UML tool [35] which supports MARTE and
has been used to define the UML specification of the case study.

In particular, the behavioral diagrams – SD or AD – are stereoyped with
GaAnalysisContext and GaScenario to declare the variables used in the dia-
grams as input/output parameters and to specify the scenario-related perfor-
mance metrics to be predicted, respectively. In MARTE, variables are defined
by names prefixed by the dollar symbol. The workload characterization is spec-
ified by stereotyping the model element that represents the first step within
the scenario with GaWorkloadEvent. When the scenario is modelled with an
SD, such step is the first message – e.g., NMEAstream in Figure 2 – whereas
in case of a scenario modelled with an AD, the first step is the initial node
– e.g., ais sentence in MsgQueue in Figure 3. Different types of workload are
possible (e.g. open or closed): in the case study, both the parsing and the CEP
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10 S. Bernardi et al.

scenarios are characterized by an open workload, i.e., data stream, with a mean
arrival rate. A step within a performance scenario (GaStep) may represent a
computation step – i.e., an action execution specification or a message in an
SD, an action in an AD – that requires a certain amount of time to be executed
by the host, or a decision step – i.e., a transition outgoing from a decision node
in an AD. Then, a mean duration is associated to computation steps (i.e., a
VSL value or expression is assigned to the hostDemand tag, named tagged
value) and a probability is associated to decision steps (i.e., the prob tagged
value). Finally, the number of logical resources are annotated with the poolSize
tagged value: in an SD-based scenario, the logical resources are the lifelines
participating to the interaction (stereotyped with PArunTinstance) – e.g., the
sub-components of the AIS Parser in Figure 2 – whereas in an AD-based sce-
nario, they are the artifacts in the DD (stereotyped with PaLogicalResource)
represented by the swimlanes in the AD – e.g., CEP in the Figures 1 and
3. In the DD, the resource-specific performance metrics, such as the resource
utilization, can be also annotated.

4 Model Generation and Log Pre-processing

This section explains how to apply the first two steps of the methodology.
The first step (Step 1) corresponds to the generation of normative models
from the performance scenarios of Posidonia Operations. The second step
(Step 2) corresponds to the pre-processing of the data logs, collected during
the system execution, to get event logs, which will be analyzed using process
mining techniques.

4.1 Automatic generation of normative models

The Step 1 is carried out with the support of the DICE Simulation tool [19],
that implements two model-to-model (M2M) transformation approaches from
UML-MARTE specifications. One approach produces a Petri Net (PN) model
from an SD scenario [10]. The other approach produces a PN model from
an AD scenario [23]. In the case of Posidonia Operations, two performance
scenarios were considered: the parsing process, modelled by the SD of Figure 2,
and the CEP execution cycle, modelled by the AD of Figure 3. Therefore,
two separate PN models are produced by the tool, one for each performance
scenario.

Figure 4 depicts the PN as produced by the tool for the parsing scenario,
we have only rearranged the PN places and transitions to facilitate the reading.
Each vertical sequence of places-transitions represents an SD lifeline stereo-
typed with PArunTinstance (cf. Figure 2). The initial place of each sequence
is marked with as many tokens as the poolSize tagged value associated to
the corresponding SD lifeline. The transitions represent message event oc-
currences (send or receive) or action execution specifications. The horizontal
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MessageSend3
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PostProcessingStart

postProcessing(ais_sentence)
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MessageSend0

MessageSend1

Parsing

MessageRecv2

MessageSend4

ParsingTask_last
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Fig. 4 Petri Net model of the Parsing scenario.
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$cepCEP

activationLoop

S_UpdateActiveFromZ

E_FireAllRules

E_HandleMessagerulesExecuted

delay=$timeUpdateS_HandleMessage
ais_sentence_inMsgQueue

delay=1/$arrRateCep

E_UpdateActiveFromZ

S_UpdateActiveFromW

fireRules? end

no

p=$probActivate?

S_FireAllRules

activate?

yes
p=$probFireRules?

E_RuleX

S_RuleX

yes

p=$probActivationLoop

delay=$timeRuleX

yes

no

E_UpdateActiveFromW

E_RuleY

newActivationLoop

publish?

S_RuleY

p=$probNewActivationLoop

yesno

no
E_PublishAISEvent

S_PublishAISEvent

p=$probPublish?
yes delay=$timeRuleYdelay=$timePubEvent

Fig. 5 Petri Net model of the CEP scenario.

sequences of place-transition-place represent instead messages exchanged be-
tween the lifelines – e.g., adapt(ais nmea). The action execution specifications
or the messages stereotyped with GaStep are mapped to timed transitions,
where the firing delay is set to the hostDemand tagged-value associated to the
former. Finally, the PN includes a source transition (MessageSend, at the top-
left of the figure) that models the open workload, where the firing delay is set
to the inverse of the arrivalRate tagged-value associated to the first message
(NMEAstream), sent by the actor AISReceiver, in the SD.

Figure 5 depicts the PN as produced by the tool for the CEP scenario,
again, we have only rearranged the PN places and transitions for reading pur-
poses. This M2M transformation also considers the logical resource restriction
from the DD of Figure 1. The action nodes of the AD are mapped to PN
transitions: those stereotyped with GaStep correspond to timed transitions,
where the firing delay is set to the hostDemand tagged-value associated to the
former. The decision nodes of the AD together with their outgoing transitions
are mapped to free-choice subnets, where the weight of each conflicting PN
transition is set to the prob tagged-value associated to the mapped outgoing
transition. The initial and final nodes of the AD are mapped to timed and
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immediate transitions, respectively. In particular, the timed transition is char-
acterized by a firing delay equal to the inverse of the arrivalRate tagged-value
associated to the initial node. Finally, the CEP logical resource – in the DD
– is mapped to the corresponding place in the PN, where the initial marking
is set to the poolSize tagged value associated to the former. In Figure 5, the
initial marking of the place CEP is an input parameter.

4.2 Tool-assisted log pre-processing

Step 2 can be carried out concurrently with Step 1 and its main goal is to
get event logs EL from the data logs L. Event logs are data logs collected
during the system execution, where each event occurrence is characterized by
at least the identifier of the process instance (the so-called caseID), the type
of event (eventID) and the timestamp. This pre-processing phase produces
event logs specified in CSV format, that are then fed to the ProM tool [36]
and finally converted into the XES [37] standard format, ready to be analyzed
in the further steps.

The data logs of Posidonia Operations, analyzed in this paper, consist of
a set of six CSV files that contain the traces collected during, approximately,
two days of system execution – June, 30th and August, 9th 2016. In particular,
during the second day, the execution traces were collected under two different
system conditions, approx. for a period of half-day each: normal and forced
rule. In the latter case – that affects only the CEP scenario – the processing
time of one of the CEP rules was manipulated to increase it, periodically,
during the observation interval.

The execution traces of the parsing process correspond to the transforma-
tion of an NMEA message, from a unique AIS receiver, to an AIS sentence
(cf. Figure 2), whereas the execution traces of the CEP process represent the
handling of the AIS sentences by the CEP of the Valencia port (cf. Figure 3).

Each line of the data logs corresponds to an event occurrence, within an
execution trace, and it is characterized by the following fields: the name of the
parsing/CEP phase, a tag indicating either the starting or the ending of the
phase, and finally the timestamp – in microseconds – from the latest restart
of the node the application was running. Additionally, in the parsing process
data logs, each line includes also the parsing thread.

The original data logs of Posidonia Operations have been transformed in
event logs using scripts, where the caseID corresponds to either the NMEA
message identifier (parsing process logs) or the AIS sentence identifier (CEP
process logs) that is being processed, and the eventID indicates the starting
or ending of a given phase.

Table 1 summarizes the overall statistics of Posidonia Operations event
logs computed with the ProM tool: in particular, the date and the overall
period of time of the logs (first column), the process of reference (second
column) – i.e., the parsing scenario or the CEP scenario – the total number
of execution traces (third column) and event occurrences (fourth column), the
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14 S. Bernardi et al.

Date - Period Process Cases Events Events per case
Min Mean Max

June 30, 2016 - 22:48:06 Parsing 5,728,367 18,120,165 1 3 8
August 9, 2016 - 11:32:21 Parsing 3,301,479 10,060,661 1 3 8
August 9, 2016 - 11:34:58 Parsing 3,301,474 10,060,213 1 3 8
June 30, 2016 - 22:47:24 CEP 168,687 5,312,354 4 31 3,316

August 9, 2016 - 11:33:52 CEP 90,642 2,792,622 4 31 2,938
August 9, 2016 - 11:36:09 CEP 90,641 2,793,450 4 31 37,718

Table 1 Summary of Posidonia Operations event logs.

minimum, average and maximum number of event occurrences per execution
trace (the last three columns).

At a first glance, there are not important differences neither between the
two dates nor between the two half-days of August in the logs of the parsing
process. On the other hand, there is a high variability in the number of events
per case in the logs of the CEP process, especially in the log that collects
the execution traces under the forced rule condition assumption. Such raw
statistics deserve further investigation in the next step.

5 Model Enhancement

This section explains how to apply Steps 3–7 of the methodology. First, in
subsection 5.1, Steps 3–6 align the normative models and the event logs for
the Posidonia Operations case study. Then, in subsection 5.2, Step 7 uses a
trace-driven simulator to estimate the input parameter values that are needed
for performance analysis. Finally, Step 7 validates the normative models, N ,
and the already estimated input parameter values, using a statistical approach
based on the computation of confidence intervals.

5.1 Alignment of models and event logs

The purpose of the alignment is threefold: 1) provide insight on the correctness
of the system behavior represented by the normative models, 2) filter those
execution traces that are significant from the performance evaluation point of
view, and 3) discover new system behaviors from the logs that can improve the
initial UML specification, considering the goals of the performance assessment.

The normative model is a formal representation of the system scenarios,
while the event logs consist of sets of execution traces, where each trace de-
scribes a real concrete behavior. Therefore, the normative model is not exhaus-
tive, since it considers a (sub-set of) system behaviors. Similarly, the event logs
provide information about the running system, however they do not include a
full description of the system behavior, but only those paths actually executed.

In Step 4, the trace filtering stage, only complete execution traces will
be considered. That is, traces that correspond to the performance scenarios
modelled with the initial UML specification. In the Posidonia Operations case
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Date - Period Process Cases Events Events per case
Min Mean Max

June 30, 2016 - 22:48:06 Parsing 1,110,572 8,884,576 8 8 8
August 9, 2016 - 11:32:21 Parsing 576,284 4,610,272 8 8 8
August 9, 2016 - 11:34:58 Parsing 576,211 4,609,688 8 8 8
June 30, 2016 - 22:47:24 CEP 163,917 3,045,446 4 19 141

August 9, 2016 - 11:32:19 CEP 89,565 1,655,926 16 18 40
August 9, 2016 - 11:34:56 CEP 89,476 1,655,004 16 18 60

Table 2 Summary of Posidonia Operations event logs after filtering (complete traces).

study, the parsing scenario (Figure 2) starts with the reception of an NMEA
stream, by the Parser component, and terminates when the latter receives a
reply message. On the other hand, in the event logs of the parsing process, the
first traces of each log include just one event (cf. Table 1, minimum event per
case column) – this was due to the fact that the initial instant of data collection
did not correspond to the beginning of a parsing process instance – and about
80% of the rest of the cases are partial execution traces. Such cases correspond
actually to a no time-consuming alternative scenario – not explicitly modelled
in the initial UML specification – where the Parser component is collecting
information about a given vessel (e.g., the first action execution carried out
by the Parser, in Figure 2) before producing the corresponding AIS sentence.

The CEP execution cycle (Figure 3) models the complete execution of the
message handling by the AIS Sentence Listener component and, unlike the
parsing scenario, includes several alternative scenarios. However, the event
logs of the CEP include execution traces that represent behavior not modelled
in the UML specification of Fig. 3. Such traces correspond to the removal
of old AIS messages from the Knowledge Base (KB), that is not a scenario
of interest considering the performance goals, and they are not statistically
significatives (lower than 3% of the overall traces in the event logs).

Table 2 summarizes the overall statistics, gathered by Step 4, of the event
logs after being filtered with the ProM tool. Observe that the complete traces
of the parsing process now include exactly eight events and that the variability
of the CEP traces has been drastically reduced.

In Step 5, the execution traces in the already filtered event logs are
then “replayed” on the normative model using the conformance checking al-
gorithm [3], that is implemented as plugin of the ProM tool [36]. The confor-
mance checking provides feedback about the level of alignment of the normative
model and the event logs. In particular, it enables both: 1) to discover anoma-
lous traces, that may indicate either bugs in the implementation or flaws in
the design specifications, and 2) to refine the behavior modeled in the UML
specification.

The conformance checker of ProM requires a mapping between the transi-
tions in the normative model N and the events in the logs. Table 3 summarizes
the mapping for the PN model of the Parsing scenario (Figure 4). The table
only shows those transitions that have a counterpart event in the logs, the rest
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16 S. Bernardi et al.

PN transition (N ) Event (EL)
ParsingStart Parser Parse Start

MessageSend0 Parser Parse End
MessageRecv0 Station Manager Process Start
AdaptingStart Station Processor Process Start
MessageSend2 Station Processor Process End

PostProcessingStart Parsing Task After Station Processed Start
MessageSend4 Parsing Task After Station Processed End
MessageSend5 Station Manager Process Start

Table 3 Parsing scenario: mapping PN transitions and log events.

of the transitions are assumed not observable since they are not related to log
events.

In the case of the CEP scenario, the mapping is more complex since there
are transitions in the PN model that have correspondence with more than one
event in the logs. This is because the initial UML specification abstracts from
a specific rule activation and updating, and AIS event publication. Table 4
summarizes the mapping, where each transition type represents the starting
and ending of the action (e.g., RuleX indicates the two transitions in the
PN model, respectively S RuleX and E RuleX ). Similarly, each event type
represents the starting and ending of the event (e.g., Simple Dock Start Out
indicates the two events in the log, respectively Simple Dock Start Out Start
and Simple Dock Start Out End) and the starting (ending) actions correspond
to starting (ending) events. Like in the parsing scenario, there are transitions
in the PN model of Figure 5 that have not counterpart events in the log, then
they are assumed not observable.

The conformance checker returns a fitness score that estimates the align-
ment of the execution traces with respect to the normative model, e.g., a 100%
of fitness means that all the execution traces in the log can be replayed in the
normative model.

After filtering the event logs, the PN model of the parsing scenario presents
a perfect fitness (i.e., 100%) and the PN model of the CEP presents a 99.999%
fitness. The fitness is not perfect in the latter, since there are 24 out of 342, 931
traces where the termination (starting) of an activation rule occurs at the
beginning (end) of the cycle. Figure 6 represents one of such traces, which all
belong to the forced rule log: the two mentioned events are emphasized in bold
and correspond to the end/start of the forced rule (i.e., Simple Anchor In).

Finally, just one filtering iteration was carried out, Step 6 of the method-
ology. It already enabled to reach a fitness of at least 99%, in both the parsing
and CEP scenarios, that is an acceptable threshold when the final objective is
to enhance the latter with timing and frequency information [4].

It is worth observing that the conformance checking allowed us also to
refine the original specification of the CEP execution cycle, provided by the
designers, that was at a higher abstraction level with respect to the final
model (cf. Figures 7 and 3). Indeed, one of the features of the conformance
checker implemented in ProM is the visualization of the log-model alignments
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PN transition type (N ) Event type (EL)
HandleMessage AIS Sentence Listener Handle Message

UpdateActiveFromZ Update Active From Insert AIS Geomdata
FireAllRules Session Fire All Rules

RuleX

Simple Dock Start Out
Simple Dock Stop

Stop Over Out
Stop Over In

Simple Anchor In
Simple Anchor Out

RuleY

Simple Dock Start Out
Simple Dock Stop

Stop Over Out
Stop Over In

Simple Anchor In
Simple Anchor Out

UpdateActiveFromW

Update Active From Simple Dock Start Out
Update Active From Simple Dock Stop

Update Active From Insert Ship
Update Active From Simple Anchor In

Update Active From Simple Anchor Out

PublishAISEvent

Dock Start Out Publish
Dock Stop Publish
Anchor In Publish

Anchor Out Publish

Table 4 CEP execution cycle: mapping PN transitions and log events.
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Fig. 6 CEP anomalous trace.

that shows, for each trace, the sequence of event occurrences characterized
by different colors depending on the type of alignment with the model. In
particular, the events in the traces that have not been mapped to transitions
in the model can be also identified and provide useful information for the
refinement. In the case of the CEP, one of the objectives of the performance
analysis is to evaluate the cost associated to the rules so the events related to
the rule activation and the AIS event publication have been explicitly modelled
in the refined UML specification.
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CEP

Update list of
active rules X

Update list of
active rules Y

ais_sentence_inMsgQueue

Adding AIS sentence
to KB

rulesExecuted

Fire all rules

fireRules?

Fig. 7 CEP execution cycle (high level view).

5.2 Estimation of the input parameters

In Step 7, S is enhanced with timing and probabilistic perspectives. Indeed,
the UML models of Figures 2 and 3 are characterized by several input param-
eters – i.e., workload arrival rates, step durations and step execution proba-
bilities – that need to be set to actual values prior to carry out performance
analysis in Step 8. Hence, we now obtain reference values by using the trace-
driven simulator [3] of the ProM tool [36]. This tool “replays” the event logs
(which had been filtered, in Step 4, to consider only complete traces) on the
Petri Net models (automatically generated from the UML specifications, in
Step 1). Then, it collects several statistics, such as the average, minimum,
maximum and standard deviation of the time between the firing of two tran-
sitions, and the absolute firing frequency of transitions.

Similarly to the conformance checking algorithm, also the trace-driven sim-
ulator requires a mapping between transitions in N and events in EL. The
mapping already obtained has been reused (see Table 3 for the parsing sce-
nario, and Table 4 for the CEP execution cycle).

Tables 5 and 6 show the input parameter values obtained, respectively,
for the parsing and the CEP scenarios, by “replaying” the event logs of June
(column EL1) and August (columns EL2 – normal condition – and EL3 – forced
rule condition). In each table, the first column specifies a model element in
the UML model S, that corresponds to a transition in N , and the second
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column indicates the input parameter in the expression property of the VSL
annotation in S.

S(SD) Input parameter values
First message arrivalRate (1/ms) EL2 EL2 EL3
NMEA stream $arrRateParser 0.013529 0.013873 0.013817

Message hostDemand (ms) EL1 EL2 EL3
adapt(ais nmea) to SM $msgDelay1 0.177595 0.086282 0.092299
adapt(ais nmea) to SP $msgDelay2 0.160340 0.266934 0.271289

ais sentence $msgDelay2 0.160340 0.266934 0.271289
postProcessing(ais sentence) $msgDelay2 0.160340 0.266934 0.271289

replay to SM $msgDelay2 0.160340 0.266934 0.271289
ActionExecution hostDemand (ms) EL1 EL2 EL3

parsing $parse 0.433219 0.335267 0.363914
adapting $adapt 0.331089 0.369738 0.372322

postProcessing $postProc 0.891405 0.976893 1.030288

Table 5 Parsing scenario: setting input parameter values.

Two types of statistics, computed with the trace-driven simulator, have
been considered to set the input parameter values:

– The average values that estimate the mean duration of steps (cf., the mean
statistical qualifier set in the hostDemand tagged values in Figures 2 and 3),
and

– The absolute frequency values that, once converted in relative frequencies
values, enable to estimate the probabilities of step execution (cf., the prob
tagged values in Figure 3).

Concerning the mean arrival rates (arrivalRate tagged values), they have been
estimated by dividing the number of traces by the log period.

It is worth noting that the trace-driven simulation enables to refine the
VSL annotations in the UML models, such as timing delays to execution steps
that were initially assumed negligible.

In the CEP execution cycle, the rules activation in the first activation
loop, the firing of the rules and the last step before the cycle termination are
characterized by not negligible time delays (the light grey rows in Table 6).
Similarly, in the parsing scenario, we discovered that there are delays between
the action executions that were eventually associated to the messages (the light
grey rows in Table 5). In particular, the overall delay of the interaction between
the Station Manager, Station Processor and Parsing Task (cf. Figure 2) has
been equally distributed to the exchanged messages.

Finally, the trace-driven simulator enables to compute statistics for event
types in the logs that are mapped to a single transition of the Petri Net
model, such as in the case of the CEP model (cf., Table 4). Appendix A
includes detailed performance results concerning the single rules activation
and updating, and the AIS events publication.
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S(AD) Input parameter values
Initial node arrivalRate (1/ms) EL1 EL2 EL3

ais sentence inMsgQueue $arrRateCep 0.001998 0.002156 0.002146
Action hostDemand (ms) EL1 EL2 EL3

S UpdateActiveFromZ $timeUpdate 0.840358 1.021727 1.068320
E RuleX $timeRuleX 0.408430 0.387228 5.688869

E UpdateActiveFromZ $timeUpdate2 4.970570 4.833462 5.205351
E FireAllRules $timeFire 5.197355 4.781439 5.326718

E RuleY $timeRuleY 0.416560 0.336991 1.520000
E publishAISEvent $timePubEvent 2.310345 2.583333 4.115385
E HandleMessage $timeHandle 1.023043 0.827306 0.926749

Transition prob EL1 EL2 EL3

activationLoop–yes $probActivationLoop 0.873800 0.873440 0.873476
activationLoop–end 1-$probActivationLoop 0.126200 0.126560 0.126524

fireRules?–yes $probFireRules? 0.264607 0.250628 0.250664
fireRules?–no 1-$probFireRules? 0.735393 0.749372 0.749336
activate?–yes $probActivate? 0.001916 0.003071 0.003541
activate?–no 1-$probActivate? 0.998084 0.996929 0.996459

newActivationLoop–yes $probNewActivationLoop 0.872460 0.873973 0.872443
newActivationLoop–no 1-$probNewActivationLoop 0.127540 0.126027 0.127557

publish?–yes $probPublish? 0.256637 0.130435 0.245283
publish?–no 1-$probPublish? 0.743363 0.869565 0.754717

Table 6 CEP execution cycle: setting input parameter values.

5.2.1 Validation of the normative models

The trace-driven simulation has enabled us to get statistical performance re-
sults. However, for performance prediction purposes, we will rely on stochas-
tic models, concretely Generalized Stochastic Petri Nets (GSPN – see Ap-
pendix B). GSPN allows us to carry out sensitivity analysis by varying (some
of) the input parameters, so to analyze the effects on the metrics of interest
– e.g., the parsing or the CEP response times (cf., the respT tagged values in
Figures 2 and 3).

Before conducting sensitivity performance analysis, the GSPN models need
to be validated first [29]. To this aim we follow a statistical approach that,
instead of using test hypothesis such as in [31], it is based on the computation
of confidence intervals. The approach can be summarized as follows:

1. Choose, as a metric of reference, the scenario execution time.
2. Compute the 99% confidence interval of the average of the scenario ex-

ecution time µs, obtained from the trace-driven simulation of the event
logs.

3. Compute the mean of the scenario execution time µm with the event-driven
simulation of the GSPN models, with the same confidence level.

4. Check whether µm falls in the confidence interval of µs.

In the parsing scenario, the metric of reference is the parsing processing
time, whereas in the CEP scenario it corresponds to the CEP execution cycle
time.

The trace driven simulation of the filtered event logs enables to compute
the average µs and the standard deviation σs of the time between the first
and the last event of the traces. In the case of the parsing scenario such events
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correspond to the reception of the NMEA stream and the reply messages
by the Parser, respectively (cf., Figure 2). Instead, in the CEP scenario the
first and the last event correspond to the execution of the S HandleMessage
and the E HandleMessage actions, respectively (cf., Figure 3). Therefore, we
can compute a 100(1− α)% confidence interval for the estimated averages by
applying the formula [25]:

µs ±
z1−α/2σ

s

√
N

(1)

where z1−α/2 is the 1− α
2 value of the standard normal distribution and N is

the number of traces in the log.1

Parsing processing time (ms)
Logs Trace-driven simulation Event-driven simulation

µs ± z0.995σ
s

√
N

µm

EL1 2.474667 ±0.007360 2.478704 X
EL2 2.835916 ±0.007154 2.836631 X
EL3 2.943979 ±0.026928 2.942335 X

CEP execution cycle time (ms)
Logs Trace-driven simulation Event-driven simulation

µs ± z0.995σ
s

√
N

µm

EL1 11.044730 ±0.050825 11.044548 X
EL2 10.555474 ±0.066901 10.557024 X
EL3 47.820008 ±1.185844 47.855911 X

Table 7 Validation of the Parser and CEP models.

Table 7 shows, for each event log, the average (second column) and the
99% confidence interval (third column) of the parsing processing time and
the CEP execution cycle time. Observe that the CEP execution cycle time
increases considerably in the forced rule log, due to the manipulation of the
processing time of the Simple Anchor In rule, while for the other logs the
statistical results are similar.

The mean execution time µm of the parsing scenario and the CEP execu-
tion cycle has been computed using the DICE Simulation tool [19], considering
a 99% confidence level. In particular, for each configuration of the input pa-
rameters in Tables 5 and 6, a simulation experiment has been conducted. For
each experiment, the tool automatically generates a GSPN model – i.e., a Petri
Net model enriched with the timing and probabilistic specification that are de-
rived from the input parameter configuration – and launches the event-driven
stochastic simulator of GreatSPN [16] with the GSPN model as input.

Finally, as shown in Table 7 (fourth column), the mean values (µm) fall
in the confidence interval of the average values (µs), in all the experiments.
Therefore, we can rely on the GSPN models produced by the tool.

1 Observe that the normal distribution is considered instead of the Student’s one since
the sample size is large (i.e., N � 30).

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22 S. Bernardi et al.

6 Performance Analysis and Assessment

This section applies the Step 8 of the methodology, that is carried out with
the support of the DICE Simulation tool [19]. For the Posidonia Operations
case study we conducted the performance analysis considering the three goals:

O1.1 The scalability of the product (in Subsection 6.1),
O1.2 The detection of bottlenecks (in Subsection 6.2), and
O1.3 The cost of a business rule (in Subsection 6.3).

The DICE Simulation tool enables to model the UML-MARTE specifi-
cation, through a Papyrus [35] GUI, and to define the configuration of the
simulation experiments, i.e., to set the values of the model and simulation
parameters, via a proper GUI. In particular, the tool provides support to sen-
sitivity analysis by allowing the user to assign a range of values to a (set of)
model parameter(s), therefore a configuration may lead to a set of simulation
experiments. Then, for each experiment, the tool automatically transforms
the inputs into a GSPN model and launches the simulation to estimate the
performance metrics, which were defined using VSL in the UML-MARTE spec-
ification. The simulation is eventually run by the GreatSPN [16] event-driven
stochastic simulator. Finally, the performance results are synthetized by the
DICE Simulation tool and presented to the user both in a textual and graph-
ical formats.

The UML-to-GSPN transformation and the GSPN simulation steps are
completely transparent to the user, therefore no knowledge on the GSPN for-
malism is needed to get the performance analysis. However, the user needs to
interpret, in terms of the problem domain, the results produced by the tool.

S(SD) Input parameter values
First message arrivalRate (1/ms) value
NMEA stream $arrRateParser [0.01,1.7]

Message hostDemand (ms) value
adapt(ais nmea) to SM $msgDelay1 0.146399
adapt(ais nmea) to SP

$msgDelay2 0.196756
ais sentence

postProcessing(ais sentence)
replay to SM

ActionExecution hostDemand (ms) value
parsing $parse 0.399755

adapting $adapt 0.344292
postProcessing $postProc 0.920610

Table 8 Parsing scenario: basic configuration parameters.

Concerning the model input parameters, we have considered a basic con-
figuration where (see Tables 8, 9 and 10):

– There are four parser threads and there is one CEP resource (i.e., $CEP
parameter in Table 10).
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S(AD) Input parameter values
Initial node arrivalRate (1/ms) value

ais sentence inMsgQueue $arrRateCep [0.002,0.168]
Action hostDemand (ms) value

S UpdateActiveFromZ $timeUpdate 0.904443
E RuleX $timeRuleX 0.400954

E UpdateActiveFromZ $timeUpdate2 4.922125
E FireAllRules $timeFire 5.057267

E RuleY $timeRuleY 0.380581
E publishAISEvent $timePubEvent 2.390244
E HandleMessage $timeHandle 0.953882

Transition prob value
activationLoop–yes $probActivationLoop 0.873673
activationLoop–end 1-$probActivationLoop 0.126327

fireRules?–yes $probFireRules? 0.259727
fireRules?–no 1-$probFireRules? 0.740273
activate?–yes $probActivate? 0.002305
activate?–no 1-$probActivate? 0.997695

newActivationLoop–yes $probNewActivationLoop 0.873144
newActivationLoop–no 1-$probNewActivationLoop 0.126856

publish?–yes $probPublish? 0.2
publish?–no 1-$probPublish? 0.8

Table 9 CEP execution cycle: basic configuration parameters.

PALogicalResouce poolSize value
AIS NMEA Parser – 4

CEP $CEP 1

Table 10 Deployment: basic configuration.

– The mean duration of a step (i.e., action) is the weighted mean of the step
average values obtained from the logs EL1 and EL2. The weight is given
by the frequency of the step in the two logs.

– The probability of a step execution is the overall relative frequency of the
step in the two logs EL1 and EL2.

– The parser and CEP workloads will range in intervals2. Tables 8 and 9 show
the largest intervals considered for the arrival rate of the NMEA stream
to the parsing process (i.e., $arrRateParser) and the AIS sentences to the
CEP (i.e., $arrRateCep), respectively.

The statistical results obtained from the forced rule log (i.e., EL3) will be
considered in the third goal (i.e., cost of a business rule). Finally, the confidence
level of the simulation has been set to 99% for all the experiments, through
the Simulation tool GUI.

2 Different intervals will be considered in the graphical representations, depending on the
aim of the analysis.
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6.1 Scalability of the product

From the point of view of the software architects, it is important to evaluate
the impact on the performance of the changes in the data stream, both in the
parsing and CEP scenarios in order to choose a deployment configuration (i.e.,
the number of logical resources to be assigned). The performance metrics of
interest are the response time, for both the scenarios, and the throughput of the
parsing process which is related to the workload of the CEP. The performance
metrics have been explicitly declared in the two scenarios of Figures 2 and 3
with a UML-MARTE annotation (i.e., the respT and throughput tagged values
associated to the GaScenario stereotyped diagrams).

Performance analysis. The analysis of the parsing process has been carried
out considering the arrival rate of the NMEA stream ($arrRateParser) as
varying parameter, (cf. Table 8). The minimum value of the sentivity interval
corresponds to the weighted mean of the arrival rates computed from the two
logs (EL1 and EL1), whereas the maximum has been set by considering a
workload increase of two orders of magnitude.

Figure 8(A) plots the curve of the response time versus the NMEA stream
arrival rate. The trend is basically constant until 0.7 msg/ms, i.e., its value
ranges between 2.6 and 2.7 msg/ms, when the arrival rate is greater than
0.7 msg/ms the response time starts to increase. On the other hand – cf.
Figure 8(B) – the parsing is carried out under stable conditions in the interval
[0.1, 1.6] msg/ms, i.e., the rate of generation of the AIS sentences is equal to
the arrival rate, and the system becomes unstable when the arrival rate is
greater than 1.6 msg/ms. Since the expected arrival rate is lower than such
stability threshold, we can conclude that the parsing process with four threads
is scalable.
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Fig. 8 Parser response time (A) and throughput (B).

In the analysis of the CEP scenario, the arrival rate of the AIS sentences
($arrRateCep) is one of the varying parameters. The other parameter is the
number of CEP instances ($CEP). Indeed, we are interested to figure out
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whether only one CEP is sufficient to process the workload related to a port
or, instead, several instances of the CEP engine are needed to manage it. In
particular, the arrival rate of AIS sentences to the CEP of the Valencia port
is about the 24% of the throughput of the parsing process.

Let us consider the arrival rate of the NMEA stream to the parsing process
in [0.01, 0.7] msg/ms, where the response time of the parsing process is almost
constant, as mentioned above. Therefore, for such interval, the arrival rate of
the AIS sentences to the CEP of Valencia ranges in [0.0024, 0.168] msg/ms.
In the latter interval, the response time of one CEP increases considerably,
as shown by the 1 CEP -labelled curve in Figure 9. The figure also shows the
trend of the CEP response time in case of five and seven instances of the CEP
(labelled 5-7 CEP), that remains basically constant (≈ 10.8 ms) within the
considered interval.

Assessment. From the analysis above, we assess O1.1 as follows. In general,
for a single a port, a workload of about 0.1 msg/ms can be observed, there-
fore it is necessary to configure a CEP with multiple instances in order to
maintain the CEP response time between [10, 11] msg/ms and, considering
the two deployment configurations, the one with 5 CEP instances is sufficient
to guarantee the response time requirement.
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Fig. 9 CEP response time.
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6.2 Detection of bottlenecks

We analysed the two scenarios with the same basic configuration and varying
parameters considered in O1.1, whereas the performance metric of interest
was the utilization of the logical resources assigned to the parsing and CEP
processes (cf., the utilization tagged values associated to the PAlogicalResource
artifacts in Figure 1). The utilization curves of the AIS NMEA Parser and the
CEP are shown in Figure 10(A) and (B), respectively.

Assessment. From the analysis, we assessed O1.2 as follows. The AIS NMEA
Parser becomes saturated when the arrival rate of the data stream reaches
1.6 msg/ms, indeed this arrival rate is the stability threshold of the parsing
process, as already observed for the throughput (cf., Figure 8(B)).

Considering the CEP, when the expected workload is about 0.1 msg/ms,
just one instance of a CEP represents a bottleneck, indeed its utilization
reaches 100% (Figure 10(B) – curve labelled 1 CEP). This is not the case
for a CEP with five or seven instances, where the utilization is 22% (curve
labelled 5 CEP) and 16% (curve labelled 7 CEP), respectively.
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Fig. 10 AIS NMEA Parser (A) and CEP utilization (B).

6.3 Cost of a business rule

The experiments have been conducted to evaluate the scalability of the CEP
scenario with respect to two different criteria: the number of rules to be pro-
cessed and the mean execution time of the rule activation. In both cases, the
performance metrics of reference are the response time and utilization, which
have been already considered in the analysis of the two previous goals.

6.3.1 Number of rules

The analyzed logs collect the execution traces of a CEP with 6 different busi-
ness rules (cf., Table 4, where first two rows indicate the activation of the
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different rules which have been mapped to the type of actions RuleX and Ru-
leY, respectively). However, Posidonia Operations is expected to manage an
undetermined number of rules.

The implementation of a new rule impacts in several steps of the CEP
execution cycle (Figure 3). In particular, for each new rule we assume a linear
increment in:

1. The number of iterations of the two loops of rules activation (activation-
Loop and newActivationLoop decision nodes),

2. The probability of activating the second loop (activate? decision node),
and

3. The probability of publicating new AIS events (publish? decision node).

Therefore, the varying parameters include the probabilities associated to
such steps and to their complementary ones. Table 11 shows the configurations
that have been set for the sensitivity analysis. The other varying parameters
are the AIS sentences arrival rate ($arrRateCep) and the number of CEP
instances ($CEP). The rest of the parameters have fixed values, according to
the basic configuration in Table 9.

number of rules 6 7 8 9 10 11 12
$prob(New)ActivationLoop 0.873 0.888 0.899 0.908 0.916 0.922 0.928

1-$prob(New)ActivationLoop 0.127 0.112 0.101 0.092 0.084 0.078 0.172
$probActivate? 0.002 0.003 0.003 0.003 0.004 0.004 0.005

1-$probActivate? 0.998 0.997 0.997 0.997 0.996 0.996 0.995
$probPublish? 0.200 0.233 0.266 0.300 0.333 0.367 0.400

1-$probPublish? 0.800 0.767 0.734 0.700 0.667 0.633 0.600

Table 11 Number of rules sensitivity parameters

Figure 11 shows four plots of the CEP performance versus the number
of rules (from 6 to 12) and the AIS sentences arrival rate. Since we are in-
terested in analyzing the CEP under stable conditions, the interval of the
arrival rate has been set considering a low utilization (< 22%) of the CEP
resources with 6 rules, which has been already analyzed in the performance
goal O1.2. Therefore, the surfaces (A) and (B) that represent the response
time and the utilization of the CEP with one instance, respectively, are plotted
in the interval [0.002, 0.02] msg/ms, whereas in the case of multiple instances
the corresponding surfaces (C and D) are plotted in the interval [0.01, 0.1]
msg/ms.

Assessment. From this analysis, we assessed O1.3 w.r.t. the number of rules as
follows. The number of rules processed by the CEP affects both the response
time and utilization. In the case of one CEP instance, the former (plot A)
increases between 23% (arrival rate of 0.002 msg/ms, 11.043 ms for 6 rules
and 13.551 ms for 12 rules) and 28% (arrival rate of 0.02 msg/ms, 13.064 ms
for 6 rules and 16.755 ms for 12 rules) when the number of rules are doubled –
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Fig. 11 CEP response time (left) and utilization (right) vs/ no. of rules and arrival rate

i.e., from 6 to 12 rules. Such increase changes according to the arrival rate of
the AIS sentences, as it can be observed by the different slope of the surface
when fixing two (different) arrival rates, e.g., the minimum and the maximum
of the considered interval. The CEP utilization (plot B) also increases about
22− 23% by doubling the number of rules.

The plot C shows the trend of the response time in case of multiple in-
stances (i.e., 5 and 7): the two surfaces, drawn with different color shading,
basically coincide and, like the case of one CEP, the response time increases
when the number of rules grows. However, the overall increment is lower than
the one CEP case, since it is around the 22 − 23% in the considered interval
of arrival rate. On the other hand, the increase of the CEP utilization (plot
D), when the number of rules is doubled is also around 22− 23%. In the plot
D, the two surfaces are distinguishable: the surface on the top corresponds to
5 instances – where the maximum CEP utilization of 26% is reached for 12
rules and an arrival rate of 0.1 msg/ms – whereas the bottom one corresponds
to 7 instances – where the maximum is instead 19%.

6.3.2 Mean execution time of the rule activation

The mean execution time of the rule activation affects the CEP performance,
as observed in the case of the forced rule log EL3 (cf., Table 6, the values of
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the time parameters $timeRuleX and $timeRuleY ), where the CEP execution
time is about 3.5 times greater than the one estimated in the other two logs
EL1 and EL2 (cf., Table 7).

In this set of experiments, we have focused on the first activation of the rules
and the sensitivity analysis has been carried out by varying two parameters:
the mean execution time of the first activation ($timeRuleX parameter) and
the AIS message arrival rate. We assume one CEP instance and, for the rest of
the parameters, the basic configuration of Table 9. Figure 12 shows the plots
that represent the trend of the response time (A) and utilization (B) of the
CEP versus the two varying parameters.
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Fig. 12 CEP response time (left) and utilization (right) vs/ rule mean time (ms) and arrival
rate (msg/ms).

Assessment. From the analysis, we assessed O1.3 w.r.t. the mean execution
time of the rule activation as follows. When the mean execution time of the
first activation increases from 0.4 to 5.15 ms, the slope of the surface (A)
augments, revealing an exponential grow of the response time. Accordingly,
also the utilization of the CEP increases (plot B) considerably and the CEP
saturates for a mean execution time of 6.15 ms and an arrival rate of 0.02
msg/ms.

7 Discussion

The assessment of performance is a process of increasing importance in the
industrial practice. For the case of our industrial partner, the success of next
releases of the product strongly depends on the scalability. The work reported
here has concluded the needs for the product to address such performance
objectives. Moreover, the amount of work developed, during the year and a
half that this experience has lasted, also allows us to report many other aspects
of interest for practitioners. In the following, as suggested in [30], we discuss
limitations of the results obtained, lessons learned and issues disclosed while
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applying the assessment process, we also explain some of the consequences of
all these matters.

7.1 Discussion of the research

The outcomes of an empirical research, as indicated by [30], should be inter-
preted from two perspectives: the internal and external validations.

Regarding the internal validation, it was established as the objective O1
of the paper. In terms of our research, this means to analyse the usefulness of
the performance assessment for Prodevelop. The assessment carried out in
Section 6 has found the needs for ensuring the fulfilment of each sub-objective
and it has determined the thresholds for improving each component of the
architecture.

In particular, with respect to the scalability of the parsing process, we found
that the NMEA stream arrival rate of 1.6msg/ms is the maximum threshold
beyond which the system becomes unstable. Although this threshold has been
never reached with the product that is currently operated – and then one
instance of the AIS NMEA Parser component with four threads is sufficient to
process the data stream – the software architects need to learn about it. Indeed,
there are versions of the product under development that will monitorize new
port areas, therefore they are expected to operate under higher NMEA stream
workloads.

On the other hand, the assessment of the CEP revelead that the product
in charge of managing a port, with just one instance of the CEP component, is
not scalable under the expected workload (i.e., an AIS messages arrival rate of
0.1 msg/ms) and that multiple instances are needed. By estimating the cost of
the business rules, the engineers can figure out finer solutions which consider
– besides the multiple instances – also the number and mean execution times
of the rules to be processed by each instance.

Summarising, the joint experience between engineers and researchers has
been a success for clarifying where to focus the development efforts for the
next releases of Posidonia Operations.

Regarding the external validation, it was addressed by O2, that estab-
lished to offer a methodology for performance assessment easy to be applied
by SME practitioners. In this paper, we have achieved to summarize the work
carried out by the joint team of software engineers, from Prodevelop, and re-
searchers, from Unizar, in eight steps that comprehend a substantial amount
of models, data, analysis and discussions. Finally, we consider that O2 has
been achieved since each proposed step has been developed systematically,
using software tools, an established methodology or a combination of both.
Next paragraphs evaluate methodologies, whereas the tools are addressed in
the next subsection.

Concerning UML, we can say that it is a mature language that has offered
all the modelling features needed for our purposes. Moreover, it has been
the vehicle for communication between the Prodevelop’s engineers and the
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Unizar researchers. Regarding the introduction of performance information
in the UML models, we adopted MARTE since the DICE Simulation tool
uses the VSL annotations. MARTE certainly also fulfilled all our needs. The
combination of UML and MARTE was also advised by [20].

Process mining [1] provides methods for: process discovery, that is deriving
process models from logs, conformance checking, that is checking the alignment
of an existing/derived process model and logs, and process enhancement, that
is enriching the process model through mining additional perspectives such as
timing. The conformance checking and process enhancement techniques, ap-
plied in Steps 3–7 of the methodology, require expertise in formal modelling;
in particular, such techniques consider as input the Petri Net models obtained
automatically from the UML-based specifications. This choice was mainly due
to the unavailability of process mining tools that implement similar techniques
at higher modelling levels, i.e., for UML activity or sequence diagrams. Nev-
ertheless, the use of M2M transformations (Step 1), that keep track of the
mapping between UML and Petri Net model elements, has reduced the effort
of their application.

The log pre-processing (Step 2) to get event logs is the preliminary phase
of the process mining and it is also crucial for the construction of a useful
performance model in the proposed methodology. In particular, to produce
event logs three characteristics need to be identified, i.e., the process instance
identifier (caseID), the type of events (eventID), and the timestamp. Even
though the definition of the caseID is not always straighforward, this step
has been easy to carry out since the Prodevelop engineers have expertise in
their products in operation and they have a clear vision of the objective of the
performance assessment.

Finally, concerning the sensitivity performance analysis (Step 8), the crit-
ical point is the assignment of the range of values to the varying parameters in
order to obtain informational results for the assessment of the performance ob-
jectives. Indeed, besides the setting of the minimum and maximum value of a
given input parameter, also the number of values (or the increment step) in the
range need to be fixed. In the performance analysis of Posidonia Operations,
a constant increment step has been set for all the ranges of the sensitivity pa-
rameters since the performance behavior of the system is monotonic. However,
in general, this may require several iterations of the simulation experiments.

7.2 Evaluation of the tools

The achievements above described regarding the assessment and the definition
of a methodology are surely important. However, in our view, these would not
be feasible for practitioners if experts are needed for applying the steps manu-
ally. Hence, most of our efforts, developing the methodology, have been focused
on the selection of appropriate state-of-the-art tools and in the development
of our own tool, also we cared the interaction of our tool with others, which
were mature enough for relying on them instead of accomplish in-house de-
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velopments. Finally, if some step could not be automated we tried to clearly
explain how it should be applied, the subsection above has discussed issues at
this regard concerning some steps of the process mining methodology.

In the following paragraphs we critically review the different tools advised
by the methodology.

ProM tool. We have used the academic version of the ProM tool [28], although
there exists a commercial one [17]. ProM tool includes a wide range of process
mining techniques and it is constantly updated with new implementations
from the process mining community. Within the methodology, it has been
useful for the preliminary analysis of the event logs and the enhancement
of the UML performance models. It also provides export functionalities, in
different formats, of the results.

From the SME practitioners point of view, the main drawback of the tool
is its usability, especially for what concerns the mapping of model elements
and events in the log (in conformance checking and trace-driven simulation)
and the presentation of the results. Another drawback refers to the limitation
of the size of the logs that can be fed into and processed by the tool. Indeed, in
the case study, we had to partition the event logs into sub-logs of smaller size
(≈ 250MB for the parser and ≈ 100MB for the CEP) with the inconvenience
of having to spend more time in the synthesis of the results.

DICE Simulation tool. An important part of this work has been carried out
using this tool [19]. The tool has been developed by the Unizar team in
the context of the DICE project. The work on Posidonia Operations has
helped a lot for improving our tool, in fact, some of its current features have
been developed due to a need of the assessment, for example the graphical
presentation of the analysis results, i.e., the computation of the metrics.

The Simulation tool is an Eclipse [18] plug-in [32] that complements the
Papyrus modelling tool. So, the graphical modelling of the UML diagrams and
the MARTE annotations are supported by Papyrus (see its evaluation next).
Our plugin implements mature transformation approaches [23] and [10] that
generate GSPN models from UML activity diagrams and sequence diagrams,
respectively. The GSPN models are analysed by the GreatSPN tool (see also
its evaluation next). However, our plugin provides a GUI, see Figure 13, that
completely abstracts the user from GreatSPN. In fact, the latter can be in-
stalled elsewhere in a cloud, only the hostname/IP and port number need to
be provided. Our tool processes the VSL and for example enables to assign
complex VSL expressions to model input parameters. This feature is especially
useful in the sensitivity analysis where the varying parameters are dependent
(see our performance analysis when a different number of rules are considered).
Another strong point of the tool is the support for the synthesis of the results
and the automatic generation of 2D plots. Finally, we recognise as a practical
limitation the number of varying parameters for sensitivity analysis.
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Fig. 13 Simulation tool: Setting input parameters.

Eclipse Papyrus is an UML 2.5 modeller that implements the MARTE profile.
We have found two major drawbacks in Papyrus. First, the “learning curve”,
especially in the use of the stereotypes and tags. Indeed, it is somehow cumber-
some the editing of the VSL expressions. Second, and probably the Papyrus’
Achilles heel, refers to the usability of the sequence diagram modeller. Around
180 bugs have been reported, half of them are still open [12].

GreatSPN incorporates a mature event-driven simulator, which is successfully
leveraged by our Simulation tool. This simulator is able to manage GSPNs with
hundreds of places and transitions, which makes it a very useful tool for Petri
net analysis.

8 Conclusion and Related Work

This paper has presented the activities carried out for the performance assess-
ment of the Posidonia Operations system and the results achieved. The goal
of the assessment was twofold: first, to find the actions needed for fulfilling the
upcoming performance goals for the next versions of Posidonia Operations
and, second, to propose and validate a methodology that can be applied by
practitioners with tool support. The work has been developed by a joint team
of software engineers, from Prodevelop, and researchers, from Unizar.
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Detailed results of the performance analysis of the Posidonia Operations
are available at the Zenodo open source repository: https://doi.org/10.

5281/zenodo.264286.

Related work The assessment of non-functional (or quality) requirements of
software systems is a well-established discipline due to a broad contribution
of the software engineering community [9, 11, 33, 14]. Concerning specifica-
tions based on UML, most of the approaches define ad-hoc UML profiles to
specify requirements and propose transformation methods to get formal mod-
els suitable for the analysis (such as Petri nets, queuing networks, fault trees
or process algebras). Such efforts, especially the ones addressing performance
and schedulability assessment, contributed to the definition of standard OMG
UML profiles, concretely MARTE [26].

Although process mining mainly addresses the context of business pro-
cesses, recent works apply such a discipline to also other domains such as soft-
ware systems and, in particular, data-intensive software applications. In [24] a
discovery technique is proposed that extracts constraint-based reference mod-
els from logs generated by a maritime safety and security system. The work
also proposes an on-line monitoring technique to detect constraint violations of
the reference model. The use of process mining for data-intensive applications
is nowadays challenging, since there is a need of efficient and highly scalable
techniques [2] to deal with event logs of several hundreds of gigabytes. Some
contributions have been proposed to address this issue, such as [21] where a
framework has been developed to enable the execution of Map Reduce-based
process mining tasks.

A CEP input parameters: refined performance values

In this appendix, refined performance results from the trace-driven simulation of the CEP
execution cycle model are provided. In particular, Table 12 shows the estimated mean du-
rations of the CEP rules activation and AIS events publication for each event log.

Table 13 shows the relative frequencies of the rule updating and activation, and of the
AIS events publication for each event log.

B Generalized Stochastic Petri Nets

In this appendix, we introduce the modelling formalism of Generalized Stochastic Petri Nets
(GSPN).

A Generalized Stochastic Petri net (GSPN) [8] is a bipartite graph, formally defined as
a 8-tuple N = (P, T, I, O,H,Φ,W,M0) where:

– P is the set of places,
– T = Ti ∪ Tt is the set of transitions, divided into immediate (Ti) and timed (Tt) tran-

sitions,
– I,O,H : P × T → IN are, respectively, the input, output and inhibitor arc multiplicity

functions,
– Φ : T → IN assigns a priority to each transitions: timed transitions have zero priority,

while immediate transitions have priority greater than zero,
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Action (S) Event type (EL) EL1 EL2 EL3
hostDemand (ms)

E RuleX

Simple Dock Start Out 0.293333 0.560000 0.668000
Simple Dock Stop 0.384433 0.393895 0.409126
Stop Over Out 0.404627 0.389558 0.389563
Stop Over In 0.400189 0.364337 0.389563
Simple Anchor In 0.523323 0.390454 40.682050
Simple Anchor Out 0.500000 0.500000 0.500000

E RuleY

Simple Dock Start Out - - -
Simple Dock Stop 0.415221 0.296957 0.344811
Stop Over Out 0.362478 0.446087 0.333208
Stop Over In 0.456283 0.365652 0.317642
Simple Anchor In 0.442737 0.376279 9.965955
Simple Anchor Out - - -

E PublishAISEvent

Dock Start Out Publish 1.777778 2.170000 2.857143
Dock Stop Publish 3.170000 3.000000 4.843077
Anchor In Publish 1.833333 3.000000 4.000000
Anchor Out Publish 1.000000 - 4.000000

Table 12 Mean durations for rule activation and AIS event publication

– W : T → IR assigns to each immediate transition a weight, and to each timed transition
a firing time delay. The firing time delay is the mean value of the negative exponential
distribution,

– M0 : P → IN assigns the initial number of tokens to each place.

Figures 4 and 5 show the graphical representation of two GSPN models, where places
are depicted as circles, immediate transition as thin black bars and timed ones as thick white
bars.

Transitions of a GSPN model represent actions or events in the modelled system, whereas
places represent pre- and post-conditions for the actions/events occurrence. The dynamic
of a GSPN model is governed by the concession, enabling and firing rules of transitions in
a marking M : P → IN, which is reachable from the initial marking M0 due to the firing of
a sequence of transitions.

A transition has concession in a marking M , when its input places contain at least
as many tokens as the corresponding arc multiplicities and its inhibitor places contain less
tokens than the corresponding arc multiplicities.

A transition is enabled in a marking M iff it has concession in M and its priority is
greater or equal to the one of the transitions t′ having also concession in M .

Consequently, only transitions of the same priority level can be enabled in a marking. A
transition t, enabled in marking M , may fire then leading to a new marking M ′, according
to the equation:

M ′(p) = M(p) +O(p, t)− I(p, t), p ∈ P.
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