
ScienceDirect

Available online at www.sciencedirect.com

Procedia Engineering 207 (2017) 209–214

1877-7058 © 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the International Conference on the Technology of Plasticity.
10.1016/j.proeng.2017.10.763

10.1016/j.proeng.2017.10.763

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the International Conference on the Technology of Plasticity.

1877-7058

 

Available online at www.sciencedirect.com 

ScienceDirect	
  
Procedia Engineering 00 (2017) 000–000  

  www.elsevier.com/locate/procedia 

 

1877-7058 © 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the International Conference on the Technology of 
Plasticity.  

International Conference on the Technology of Plasticity, ICTP 2017, 17-22 September 2017, 
Cambridge, United Kingdom 

Data-Driven Computational Plasticity 

Francisco Chinestaa*, Pierre Ladevezeb, Ruben Ibaneza, Jose Vicente Aguadoa, 
Emmanuelle Abisset-Chavannea, Elias Cuetoc 

aHigh Performance Computing Institute & ESI Group Chair, Ecole Centrale Nantes, 1 rue de la Noe, 44300 Nantes, France 
bLMT, ENS Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan cedex, France                                                                                      

cI3A, University of Zaragoza, Maria de Luna S/N, 50018 Zaragoza, Spain 

Abstract 

The use of constitutive equations calibrated from data collected from adequate testing has been implemented successfully into 
standard solvers for successfully addressing a variety of problems encountered in SBES (simulation based engineering sciences). 
However, the complexity remains constantly increasing due to the more and more fine models being considered as well as the use 
of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in 
classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to 
balance laws (momentum, mass, energy...), whereas the second one consists of models that scientists have extracted from 
collected, natural or synthetic data. Data-driven simulation consists of directly linking data to computers in order to perform 
numerical simulations. These simulations will use universal laws while minimizing the need of explicit, often phenomenological, 
models. This work revisits our former work on data-driven computational linear and nonlinear elasticity and the rationale is 
extended for addressing computational inelasticity (viscoelastoplasticity). 
 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the International Conference on the Technology 
of Plasticity. 
Keywords: Computational plasticity, Computational inelasticity, Data-Driven, LATIN, Manifold learning 

 

 
* Corresponding author. Tel.: +33670799072. 

E-mail address: Francisco.chinesta@ec-nantes.fr 

 

Available online at www.sciencedirect.com 

ScienceDirect	
  
Procedia Engineering 00 (2017) 000–000  

  www.elsevier.com/locate/procedia 

 

1877-7058 © 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the International Conference on the Technology of 
Plasticity.  

International Conference on the Technology of Plasticity, ICTP 2017, 17-22 September 2017, 
Cambridge, United Kingdom 

Data-Driven Computational Plasticity 

Francisco Chinestaa*, Pierre Ladevezeb, Ruben Ibaneza, Jose Vicente Aguadoa, 
Emmanuelle Abisset-Chavannea, Elias Cuetoc 

aHigh Performance Computing Institute & ESI Group Chair, Ecole Centrale Nantes, 1 rue de la Noe, 44300 Nantes, France 
bLMT, ENS Paris-Saclay, 61 Avenue du Président Wilson, 94235 Cachan cedex, France                                                                                      

cI3A, University of Zaragoza, Maria de Luna S/N, 50018 Zaragoza, Spain 

Abstract 

The use of constitutive equations calibrated from data collected from adequate testing has been implemented successfully into 
standard solvers for successfully addressing a variety of problems encountered in SBES (simulation based engineering sciences). 
However, the complexity remains constantly increasing due to the more and more fine models being considered as well as the use 
of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in 
classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to 
balance laws (momentum, mass, energy...), whereas the second one consists of models that scientists have extracted from 
collected, natural or synthetic data. Data-driven simulation consists of directly linking data to computers in order to perform 
numerical simulations. These simulations will use universal laws while minimizing the need of explicit, often phenomenological, 
models. This work revisits our former work on data-driven computational linear and nonlinear elasticity and the rationale is 
extended for addressing computational inelasticity (viscoelastoplasticity). 
 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the International Conference on the Technology 
of Plasticity. 
Keywords: Computational plasticity, Computational inelasticity, Data-Driven, LATIN, Manifold learning 

 

 
* Corresponding author. Tel.: +33670799072. 

E-mail address: Francisco.chinesta@ec-nantes.fr 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.proeng.2017.10.763&domain=pdf


210 Francisco Chinesta  et al. / Procedia Engineering 207 (2017) 209–2142 F. Chinesta / Procedia Engineering 00 (2017) 000–000 

1. Introduction 

Big-data is becoming a key protagonist in our lives in many aspects, ranging from e-commerce to social sciences, 
mobile communications, healthcare, etc. However, very little has been done in the field of scientific computing, 
despite some very promising first attempts.  

Advanced clustering techniques, for instance, not only help engineers and analysts, they become crucial in many 
areas where models, approximation bases, parameters, etc. are adapted depending on the local state (in space and 
time senses) of the system [1,2]. Machine learning needs frequently to extract the manifold structure in which the 
solution of complex and coupled engineering problems is living. Thus, uncorrelated parameters can be efficiently 
extracted from the collected data, the last coming from numerical simulations or experiments. As soon as 
uncorrelated parameters are identified (constituting the information level), the solution of the problem can be 
predicted at new locations of the parametric space, by employing adequate interpolation schemes [3,4]. On a 
different setting, parametric solutions can be obtained within an adequate framework able to circumvent the curse of 
dimensionality for any value of the uncorrelated model parameters [5].  

This unprecedented possibility of directly determine knowledge from data or, in other words, to extract models 
from experiments in a automated way, is being followed with great interest in many fields of science and 
engineering. For instance, the possibility of fitting the data to a particular set of models has been explored recently in 
[6]. Closely related, Ortiz has developed a method that works without constitutive models, by finding iteratively the 
experimental data that best satisfies conservation laws [7]. In [8] authors followed a similar rationale extending the 
data-driven framework to nonlinear elasticity and inelasticity, where model-based simulations where replaced by 
data-driven simulations operating on a new kind of constitutive models defined directly from data. Thus, 
experiments become crucial because they are not only used for calibrating pre-assumed models (as it is the case in 
standard simulation approaches) but for driving directly simulations.  Its main drawback is the huge amount of data 
required for running simulations. In the present work we will assume that all the needed data is available. We will 
not address the way of collecting data from adequate experiments and the use of eventual inverse techniques to 
enrich the behavior description, issues that will be reported in incoming works. 

Usual model-based simulations proceeds by solving the equilibrium weak form defined in the domain Ω  with 
boundary Γ   

ε u∗( ) :σ  dx
Ω
∫ = u∗ ⋅ tg  dx

Γt

∫         (1) 

where  Γ = Γu ∪ Γ t  (  Γu ∩ Γ t = ∅ ) representing portions of the domain boundary where, respectively, 
displacements  ug  (essential boundary conditions) and tractions  tg  (natural boundary conditions) are enforced. In 

Eq. (1) u∗  represents an arbitrary displacement field kinematically admissible (regular enough and satisfying the 
essential boundary conditions). In order to solve (1) a relationship linking kinematic and dynamic variables is 
required, the so-called constitutive equation. The simplest one, giving rise to linear elasticity, is known as Hooke's 
law (even if, more than a law, it is simply a model), and writes 

σ = λTr(ε)I + µε     (2) 

where Tr(¥) denotes the trace operator, and λ  and µ  the two elastic coefficients. By introducing the constitutive 
model, Eq. (2), into Eq. (1), a problem is obtained that can be formulated entirely in terms of the displacement field 
u(x) . By discretizing it, using for instance the standard finite element method, after performing numerically the 
integrals involved in Eq. (1), we finally obtain a linear algebraic system of equations, from which the nodal 
displacements can be obtained. 

The biggest challenge could then be formulated as follows: can simulation proceed directly from data by 
circumventing the necessity of establishing a mathematical expression of the constitutive model?  
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In [8] authors explored different possibilities in the context of nonlinear elasticity, the less intrusive from the 
point of view of its implementation in standard simulation software, being the local calculation of a secant or tangent 
elasticity matrix. Another approach based on the direct use of data proceeds from a mixed formulation involving the 
two main fields, the strain ε  and the stress σ  fields respectively, as was successfully proposed in the LaTIn 
method [9]. The solution strategy consists of iterating between two manifolds, the first one related to couples (ε,σ ) 
verifying equilibrium, while the second one is related to couples ( ε̂,σ̂ ) verifying the material behavior.  

If we assume that, at iteration n, the couple ( ε n ,σ n ) verifies the equilibrium, and that it does not belong to the 
constitutive manifold, a new couple ( ε̂,σ̂ ) is sought by considering an appropriate search direction. In fact the 
searched couple is no more that the intersection of the search direction with the constitutive manifold. The just 
updated stress-strain couple belongs to the constitutive manifold, but it does not verify equilibrium. Thus, a new 
equilibrated solution ( ε n+1,σ n+1 ) is searched from the former one, being the intersection of a new search direction 
and the equilibrium manifold. The iteration process continues until reaching the problem solution at the intersection 
of both manifolds. Both steps are summarized below: 

¥ Local step. At each integration point xg ,  g = 1,…,G , we consider ε n (xg ),σ n (xg )( )  and look for 

ε̂(xg ),σ̂ (xg )( ) . Even if there are infinite possible search directions, in [8] we considered the simple projection 

of it onto the constitutive manifold. 
 

¥ Global step. From the strain-stress couples satisfying the constitutive law at every integration point, we come 
back to the weak form, Eq. (1), in order to obtain updated strain-stress couples satisfying equilibrium 

ε n+1(x),σ n+1(x)( ) , x ∈Ω .  The generic search direction can be written as 

σ n+1(x) − σ̂ (x) = D ε n+1(x) − ε̂(x)( )        (3) 

with D  a symmetric positive-definite matrix to ensure the problem ellipticity. Enforcing now the equilibrium, it 
results: 

ε∗(x)
Ω
∫ : D ε n+1(x) − ε̂(x)( ) + σ̂ (x)⎡⎣ ⎤⎦  dx = u∗ ⋅ tg  dx

Γt

∫          (4) 

2. Data-Driven Inelasticity 

2.1. Non-isothermal elasto-visco-plastic behavior 

In the context of continuum-thermodynamics it is assumed that the state of the system can be defined at each time 
by a set of variables know as state-variables, some of them observable, like the total strain ε , and other internal like 
the elastic ε e  and inelastic ε p strain components (in what follows we assumed an additive decomposition, i.e. 
ε = ε e + ε p ), as well as the variables describing the isotropic and kinematic hardening, the scalar p  and the tensor  

α  respectively. It is assumed the existence of a free energy depending on the state variables ρΨ(ε e, p,α;T ) , 
whose derivative allows defining the state-laws and the associated variables, the stress σ  and both, the isotropic R  
and kinematic X  hardening: 
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σ = ρ ∂Ψ
∂ε e

R = ρ ∂Ψ
∂p

X = ρ ∂Ψ
∂α

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

                    (5) 

 
In order to obtain the evolution laws we consider the derivatives of the dissipation potential, the last depending on 

the associated variables ϕ *(σ , R, X;T ) : 

 

!ε p =
∂ϕ *

∂σ

!p = −
∂ϕ *

∂R

!α = −
∂ϕ *

∂X

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

                    (6) 

 
A simple elastoviscoplastic model consists of choosing as free energy and dissipation potentials: 

ρΨ =
1
2

K(T )ε e :ε e −α th (T − T0 )K(T )I :ε e + h(T )g(p) +
1
2

C(T )α :α

ϕ * =
κ (T )

n(T ) −1
f

κ (T ) +

n(T )−1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

 (7)   (7) 

with the simplest yield function 

f = σ − X − R − R0 (T )   (8)   

that leads to the evolution laws 

 

!ε p = !ε p (σ , R, X)
!p = !p(σ , R, X)
!α = !α(σ , R, X)

⎧

⎨
⎪

⎩
⎪

                   (9) 

Model-based simulations consist of considering adequate free energy and dissipation potentials to derive the state 
and evolution laws.  As soon as they are available different solvers can be employed.  An appealing strategy, the 
LaTIn, decouples the local and nonlinear equations related to the constitutive behavior from the global and linear 
ones, related to the equilibrium. When applying this strategy state equations are linearized by using an adequate 
change of variables, in order to transfer all the nonlinearities to the local step, that is to the evolution equations.  
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In the global step the normalized state-laws for ( p, R ) and (α, X ) are enforced in a weak sense, as well as the 
kinematic admissibility of the total strain, whose elastic component has its own state-law. In order to use the rate of 
the plastic strain (coming from the behavior) the stress-formulation of the principle of virtual power is considered 

 
!ε :σ∗

Ω
∫ dx = !ug ⋅ σ

∗ ⋅n( )  
Γu

∫ dx    (10) 

The weak form (10) and the ones related to the verification of the state laws for ( p, R ) and (α, X ) do not 
suffice for calculating the mechanical state (state and associated variables). For this reason a search direction is 
used. The local step uses the evolution laws complemented by an adequate search direction. 

2.2. Data-Driven Inelastic Simulation 

From the previous analysis, it seems clear that simulation can proceed as soon as the evolution equations (9) are 
known. Data-driven simulations can proceed in different manner but the simplest and minimally-invasive one 

consists of defining the behavior manifold from data, that is by a set of sextuplets   Ŝm = ( !̂εm
p , !̂p, !̂α,σ̂ , R̂, X̂)  

properly collected (the question related to its collection will be addressed later).  
Now different possibilities exist: (i) from the sextuplet  Sn  verifying the equilibrium and the state-laws at 

iteration n, defined at each position any time, and using an adequate search direction determine the sextuplet 
verifying the behavior and then computing from the global step  Sn+1 (usual LaTIn); (ii) from the behavior manifold 

determine locally around each position  Ŝm  a linear relation between the rates of kinematic variables and the 
associate variables; and (iii) looking for polynomial approximations of the evolution laws.  

It is important to note that alternatives (ii) and (iii) can be easily use in any usual nonlinear solver because here 
physically inspired mathematical expressions have been replaced by local or global polynomial expressions without 
direct physical content. 

2.3. Example involving elastoplastic behavior  

In this example we consider an elasto-plastic behavior with isotropic hardening. We generated the synthetic data 
by using associate plasticity, a yield function expressed from the Von-Mises yield criterion and a linear hardening. 
Now, we considered the usual incremental weak form 

 

ε* : KΔε dx
Ω
∫ = u* ⋅ Δt

ΓN

∫ + ε* : KΔε p dx
Ω
∫              (11) 

If the displacement is measurable everywhere in Ω  the first integral in (11) becomes fully determined allowing 
the calculation of the plastic strains (involved in the last integral in (11)). This procedure allows calculating the 
elastic and plastic strain, and more particularly the plastic strain rate, as well as the stress. Now, we define the 
internal variable related to the isotropic hardening p  from the accumulated plastic strain. Thus we have 

 

!ε p = λ ∂f
∂σ

f (σ , R)
!p = λ

⎧

⎨
⎪
⎪

⎩
⎪
⎪

                 (12) 

where the yield function can be easily determined experimentally from the limit of the elastic domain. Figure 1 (left) 
depicts the yield surface based on data (expected representing the Von-Mises criterion). The normal to the yield 
surface represents the term ∂f / ∂σ in (12), that allows calculating λ  (that follows also from the total strain rate 
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where the yield function can be easily determined experimentally from the limit of the elastic domain. Figure 1 (left) 
depicts the yield surface based on data (expected representing the Von-Mises criterion). The normal to the yield 
surface represents the term ∂f / ∂σ in (12), that allows calculating λ  (that follows also from the total strain rate 
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and the elastic tensor, by making use of the persistency condition) and consequently  !p . For calculating the 
associated variable, the hardening R  it suffices considering the relation  
 

 
!R =

∂f
∂λ

=
∂f
∂σ

∂σ
∂λ

                (12) 

 
that allows determining the hardening law illustrated in Fig. 1 (right), that coincides with the one used to generate 
the synthetic data. 
 

 
 

 
Figure 1. Measured yield stress (left) and identified hardening (right). 

3. Conclusions 

This work succeeded to extend the data-driven strategy proposed in our former works for addressing nonlinear 
elasticity to more complex scenarios involving internal variables. The proposed approach combines a rich enough 
behavior manifold, inspired from thermo-mechanics of continuous media, that for the simplest inelastic behaviors 
(e.g. elastoplastic, viscoelastoplastic, …) include the plastic strain rate, the rate of accumulated plastic deformation, 
and the kinematic variable associated to the kinematic hardening rate as well as their associated thermodynamic 
forces. In order to perform the problem discretization many techniques are available, the LaTIn being an appealing 
candidate because its facility to consider alternatively the enforcement of the global equilibrium and the local 
behavior, the last expressed from the only knowledge of the data. 
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