
Trabajo Fin de Grado

Desarrollo e implantación de un API Web para
servir contenido multimedia a dispositivos móviles

Development and deployment of a Web API to deliver
multimedia content to mobile devices

Autor

Eduardo Criado Mascaray

Director

Johan Markus
SOBAKA DEVELOPMENTS AB

Ponente

Francisco Javier Fabra Caro
Departamento de Informática e Ingenieŕıa de Sistemas

Universidad de Zaragoza

Escuela de Ingenieŕıa y Arquitectura
2017

I

II

Agradecimientos

Quisiera agradecer a Johan el haberme dado la oportunidad de llevar a cabo este

proyecto y a Javier Fabra por mostrar su interés en él y guiarme durante su realización.

A los profesores de la Universidad de Zaragoza y de la KTH de Estocolmo por los

conocimientos que me han transmitido durante mis años de carrera, que me han

permitido llegar hasta esta etapa final.

A mis compañeros y amigos con los que he compartido estos años de estudio y buenos

momentos.

Por último, a mi familia por hacer todo esto posible.

III

IV

Desarrollo e implantación de un API Web para
servir contenido multimedia a dispositivos móviles

Resumen

La música electrónica se ha convertido en un género con una gran popularidad

desde que comenzó a tener una enorme influencia en la música popular en las décadas

de 1970 y 1980, para finalmente establecerse en la de 1990. Presente en la actualidad

en las discotecas y los festivales de música, también cuenta con una amplia audiencia

en la Web, a través de páginas como SoundCloud o servicios como Spotify y canales en

YouTube. Debido a la gran demanda de contenido relacionado con ella, los pinchadiscos

y sus actuaciones, hay plataformas como Boiler Room que ofrecen sesiones de música

electrónica que cuentan con cifras de visionado de decenas de millones.

Pocketbeat es una plataforma que ofrece contenido de v́ıdeo y audio de distintos

subgéneros como el techno o el house. Esta se puede acceder desde el navegador, tanto

desde ordenadores personales como dispositivos móviles, desde donde proviene la mayor

parte de sus usuarios. Tras el análisis de plataformas y aplicaciones similares se han

detectado ciertas carencias. Para tratar de cubrirlas y dar un mejor soporte a dichos

usuarios se ha decidido invertir en el desarrollo de una aplicación móvil nativa. Esta

necesita un API Web que le sirva el contenido de la plataforma, cuyo proyecto se expone

en la presente memoria. Los objetivos de este son por tanto el desarrollo e implantación

del API y el uso de una infraestructura de integración continua.

Para ello se ha utilizado el framework ASP.NET Web API, utilizando Microsoft

SQL Server como base de datos y ejecutándose en un servidor Windows con IIS. La

infraestructura de integración continua se basa en Atlassian Bitbucket para el control

de versiones y TeamCity y Octopus Deploy como servidores de gestión de compilación,

validación y despliegue.

Tras pasar una fase de pruebas el API se ha puesto en producción de manera

satisfactoria, de forma que se utiliza por la aplicación móvil en actualidad. La

infraestructura de integración continua ha resultado de gran utilidad.

V

VI

Índice

Glosario IX

1. Introducción 1

1.1. Contexto y motivación . 1

1.2. Objetivos . 4

1.3. Estructura de la memoria . 5

2. Estado del arte 7

2.1. Boiler Room . 7

2.2. WAV . 8

2.3. BE-AT.TV . 9

2.4. Valor añadido en la aplicación de Pocketbeat 11

3. Análisis del sistema 13

3.1. Requisitos funcionales de la aplicación móvil 13

3.2. Análisis de requisitos . 13

3.2.1. Requisitos funcionales . 13

3.2.2. Requisitos no funcionales . 13

3.3. Arquitectura . 18

3.4. Tecnoloǵıas utilizadas . 19

3.4.1. Amazon Web Services (AWS) 19

3.4.2. ASP.NET Web API . 19

3.4.3. Microsoft SQL Server . 21

3.4.4. Microsoft IIS . 21

3.4.5. Wowza Streaming Engine, en servidor Ubuntu 21

3.4.6. Git y Atlassian Bitbucket . 22

3.4.7. TeamCity y Octopus Deploy . 22

3.4.8. Visual Studio 2017 . 22

VII

4. Desarrollo 25

4.1. Desarrollo del API RESTful . 25

4.1.1. Conjunto de recursos . 26

4.1.2. Modelos de datos . 26

4.1.3. Separación en controladores . 30

4.1.4. Seguridad . 32

4.1.5. Gestión de imágenes . 33

4.2. Infraestructura de integración continua 33

4.2.1. Instancias en Amazon Web Services 37

5. Validación 39

5.1. Debug mediante Visual Studio y Postman 39

5.2. Conjunto de pruebas unitarias . 40

5.3. Despliegue de aplicación en servidor de prueba 41

6. Conclusiones 43

6.1. Gestión del proyecto . 43

6.2. Conclusiones . 44

6.3. Trabajo futuro . 44

6.4. Opinión personal . 45

7. Bibliograf́ıa 47

Anexos 50

A. Mapa de la aplicación móvil 53

B. API RESTful de Pocketbeat 71

Lista de Figuras 73

Lista de Tablas 75

VIII

Glosario

En este caṕıtulo se explican términos importantes que se repiten a lo largo de toda

la memoria. Estos son:

− Application programming interface (API): conjunto de métodos, procedimientos

y herramientas que se proporcionan para construir aplicaciones o programas. En

este proyecto se habla de un API Web, es decir, del conjunto de métodos que se

han creado para construir aplicaciones (la aplicación móvil), mediante tecnoloǵıas

propias de la Web.

− Create, read, update and delete (CRUD): en español, crear, leer, actualizar y

borrar. Son las cuatro operaciones básicas de un sistema de almacenamiento

persistente. En el desarrollo de un API RESTful tienen una correlación con los

métodos HTTP utilizados.

− Framework : en el desarrollo de software, abstracción que proporciona un conjunto

de conceptos y prácticas genéricas que se pueden adaptar para un problema en

particular.

− Integración continua: práctica de programación que promueve el lanzamiento de

código con nuevas funcionalidades con alta frecuencia, más de una vez al d́ıa, con

automatización en los procesos del lanzamiento. En este proyecto se adopta el

concepto para referirse a la arquitectura que permite el despliegue del API.

− Modelo-vista-controlador (MVC): patrón de diseño software tradicionalmente

utilizado en aplicaciones que incluyen una interfaz de usuario. Organiza la

aplicación en tres tipos de componentes (modelos, vistas y controladores) con

funciones distintas y que se comunican entre śı. Los modelos contienen la lógica

de negocio y datos, las vistas presentan la información y los controladores reciben

la entrada del usuario que transforma en acciones para los modelos o las vistas.

El framework utilizado para este proyecto (ASP.NET Web API) cuenta con una

estructura inicial basada en este patrón pero sin contar con las vistas, que seŕıan

propias de por ejemplo una página Web.

IX

− Representational State Transfer (REST): arquitectura software utilizada en

sistemas distribuidos. Define un conjunto de restricciones y prácticas que generan

ventajas como escalabilidad o su consumo independiente de la plataforma del

cliente. Un API Web que sigue la arquitectura REST se conoce como RESTful.

Se explica en mayor profundidad en la sección 4.1.

− Sistema de control de versiones: gestiona los cambios que se producen en los

ficheros que componen un programa informático (generalmente ficheros de código

fuente, pero no únicamente). Hay de distintos tipos: locales, que siguen un

modelo cliente-servidor, distribuidos, etc. En este proyecto se utiliza un sistema

distribuido, detallado en la subsección 3.4.6.

X

1. Introducción

En este caṕıtulo se describe el contexto en el cual el proyecto se ha desarrollado

y las razones de su existencia. Después se enumeran los objetivos que se pretenden

alcanzar con el mismo, y por último la estructura de la presente memoria.

1.1. Contexto y motivación

La empresa SOBAKA DEVELOPMENTS AB[1], situada en Suecia, desarrolla

proyectos tecnológicos, como aplicaciones móviles o páginas Web, y ofrece servicios

de publicidad en Internet. Uno de estos proyectos, y el que más importancia tiene

actualmente, es Pocketbeat [2]. Pocketbeat es una plataforma de contenido de v́ıdeo

y audio centrada en distintos subgéneros de la música electrónica. Intenta ofrecer

una experiencia lo más cercana posible a los aficionados de estos géneros de fiestas y

actuaciones de DJs. El contenido más frecuente es de tipo v́ıdeo, con una duración de

entre una hora a dos, que corresponde al tiempo medio de las sesiones de pinchadiscos.

Esta plataforma se puede acceder desde el navegador, tanto desde ordenadores

personales como dispositivos móviles, ya que cuenta con un diseño adaptativo. En las

figuras 1.1 y 1.2 se observa el aspecto de la página Web desde el navegador de un

ordenador personal. En las figuras 1.3 y 1.4 el mismo pero desde un dispositivo móvil.

La plataforma cuenta con un gran porcentaje de usuarios que principalmente

acceden a ella utilizando dispositivos móviles1. A pesar de los grandes avances en

diseño de aplicaciones Web para móviles, el desarrollo de aplicaciones nativas sigue

ofreciendo ciertas ventajas, que sin embargo conllevan un mayor coste de desarrollo.

Algunas de estas ventajas son:

− Contenido offline disponible: aunque no se ha incluido en esta iteración de

desarrollo, es una de las funcionalidades que se prevé que atraiga a un número

importante de usuarios.

− Acceso a mayores funcionalidades y sensores del dispositivo: de una forma más

1Mediante la herramienta Google Analytics se comprobó que desde el 1 de agosto al 1 de Septiembre
de 2017, el porcentaje de acceso desde dispositivos móviles era del 64 %.

1

Figura 1.1: Captura de pantalla de la página de Pocketbeat accedida desde un
ordenador de escritorio.

Figura 1.2: Captura de pantalla de la página de Pocketbeat accedida desde un
ordenador de escritorio. Vista de v́ıdeos.

2

Figura 1.3: Vista inicial. Figura 1.4: Vista de v́ıdeos.

sencilla poder acceder a la cámara o el GPS. Las libreŕıas nativas, como la de

reproducción de v́ıdeo en iOS, ofrecen una alta libertad de configuración y un

rendimiento superior.

− Visibilidad en el dispositivo del usuario: si la aplicación se encuentra instalada y

el usuario observa el icono mientras realiza otras tareas es más probable que la

utilice con mayor frecuencia, frente a quizás encontrarse como un marcador en el

navegador Web del teléfono.

− Aparición en la tienda de aplicaciones de la plataforma: mayor confianza por

parte del usuario al utilizar la plataforma, al haberse aprobado según los criterios

de la tienda. Se trata de una aplicación nativa y no de una aplicación h́ıbrida

donde se ha encapsulado la página Web en un una vista de navegador.

− Interfaz que aproveche los principios de diseño y recursos, como transiciones o

botones, que proporciona la plataforma.

Por estas razones se decicidió desarrollar una aplicación móvil para acceder a la

plataforma.

El API Web desarrollado pretende proporcionar la información necesaria a la

3

aplicación móvil mediante el uso de un API Web. Dado que el API con el que cuenta la

aplicación Web está fuertemente ligado a las vistas2, no se ha podido reutilizar para la

aplicación móvil. La aplicación móvil se encuentra actualmente en desarrollo. Aunque

se está desarrollando mediante Xamarin[3] para cubrir tanto iOS como Android, el

lanzamiento inicial se va a realizar centrándose en iOS, que cuenta con una mayor cuota

de mercado en Suecia. Xamarin es una tecnoloǵıa que permite desarrollar aplicaciones

móviles nativas en C# para distintas plataformas, de forma que compartan la lógica

de negocio, pero difieran en la parte de la interfaz.

La aplicación se encuentra en fase de beta testing y disponible mediante

TestFlight [4]. TestFlight es un servicio que ofrece Apple para los desarrolladores de

aplicaciones móviles para distribuirlas, de forma que se pueda invitar a otras personas

para que las prueben.

Otro de los aspectos que se decidieron para este proyecto fue el uso de una

infraestructura de integración continua que permitiera la automatización de compilado

y despliegue del proyecto.

Con este proyecto, teniendo en cuenta con que forma parte del desarrollo de la

aplicación móvil, se pretende aumentar el número de usuarios de la plataforma, y

cuando el número de usuarios sea considerable dar pasos hacia la monetización de esta.

Esto se ha planeado de distintas formas. Una opción es adoptar un modelo freemium,

donde parte del contenido y funcionalidades sean gratis para todos los usuarios y se

reserven ciertas para usuarios que paguen por la plataforma. Otra opción que se está

considerando es la búsqueda de inversión por parte de otras plataformas como Boiler

Room[5], que cuentan con un gran número de usuarios, pero con una página Web o

aplicación inferior.

1.2. Objetivos

Los objetivos de este proyecto son por tanto:

− Desarrollar un API que permita el acceso al contenido de la plataforma desde

una aplicación móvil, independientemente de su sistema operativo. Aunque el

desarrollo del API se haya realizado en concreto para ser utilizada por una

aplicación móvil, puede ser utilizada en el futuro para ofrecer los datos a terceros,

que puedan utilizar la información para sus propias aplicaciones, o para un

rediseño de la aplicación Web. Un ejemplo de rediseño seŕıa cambiar a una

aplicación front-end con alguna libreŕıa hecha en JavaScript, como React o

Angular, que consumiera los datos del API.

2La aplicación Web sigue el patrón Modelo-vista-controlador.

4

− Crear una estructura de integración continua. En la primera fase de desarrollo

de la aplicación los cambios serán frecuentes y es importante reducir el tiempo

de despliegue lo máximo posible. Dado el uso de integración continua en el

mantenimiento y desarrollo de la página Web de Pocketbeat se puede aprovechar

la tecnoloǵıa para crear una infraestructura similar para el API.

− Desplegar el API primero en un entorno de pruebas y más adelante en producción.

El entorno de pruebas deberá ser lo más parecido posible al entorno de

producción. Se utilizará la infraestructura mencionada en el objetivo anterior

para este mismo.

1.3. Estructura de la memoria

La memoria del trabajo está formada por los siguientes caṕıtulos y anexos:

− Glosario: definición de términos utilizados a lo largo de la memoria.

− Caṕıtulo 1, Introducción: se introduce el proyecto, detallando los motivos por

los que se ha llevado a cabo y su contexto, los objetivos y la estructura de la

memoria.

− Caṕıtulo 2, Estado del arte: se enumeran aplicaciones con un propósito y

contenido similar al del de Pocketbeat y se justifica qué ofrece esta frente a las

demás.

− Caṕıtulo 3, Análisis del sistema: contiene una descripción de los objetivos, de

una manera más minuciosa que en la introducción. A continuación se enumeran

los requisitos de la aplicación móvil, y a partir de estos los del API Web, tanto

funcionales como no funcionales. Tras esto se pasa a explicar la arquitectura que

compone el sistema y las tecnoloǵıas utilizadas junto a su justificación.

− Caṕıtulo 4, Desarrollo: se describe el proceso de desarrollo del API, con todas las

decisiones tomadas, además de la infraestructura para el despliegue de esta.

− Caṕıtulo 5, Validación: contiene la explicación de las pruebas para asegurar el

correcto funcionamiento del API; primero las no formales y las herramientas

utilizadas y luego las formales en forma de tests unitarios.

− Caṕıtulo 6, Conclusiones: se describe la gestión del proyecto, sus conclusiones, el

trabajo futuro a realizar y la opinión personal sobre el mismo.

− Caṕıtulo 7, Bibliograf́ıa: contiene el conjunto de referencias consultadas.

5

− Anexo A, Mapa de la aplicación móvil: conjunto de pantallas de la aplicación e

interacción entre ellas.

− Anexo B, API RESTful de Pocketbeat: se detallan las operaciones por recurso

del API.

6

2. Estado del arte

En este caṕıtulo se describen aplicaciones móviles que ofrecen un contenido similar,

se analizan sus puntos fuertes y débiles y qué ofrece Pocketbeat frente a ellas. Sólo se

incluyen aplicaciones para iOS, que es la plataforma elegida para el lanzamiento de la

aplicación de Pocketbeat por ser la más utilizada en Suecia.

2.1. Boiler Room

Boiler Room es la plataforma más parecida, tanto en propósito como en contenido.

Contiene el mayor número de v́ıdeos sobre fiestas y conciertos. Aunque originalmente

centrada en la música electrónica, se ha expandido a otros géneros como el hip hop

o el jazz. Su canal de YouTube[6] cuenta con cerca de 1,4 millones de subscriptores y

aproximadamente 5500 v́ıdeos. Su página Web ofrece el mismo contenido que el canal

de YouTube pero mejor organizado, ya que cuenta con 4 canales o channels, donde

el contenido está organizado por géneros similares (música electrónica británica como

garage y grime en el primero, house y techno en el segundo, etcétera). Además las

mismas sesiones están disponibles en formato audio a través de SoundCloud.

Cuenta además con una aplicación móvil[7]. La aplicación móvil ofrece las mismas

funcionalidades que la página Web y además permite la descarga de las sesiones al

dispositivo en formato audio. Las descargas de audio se pueden acceder después a

través de una de las pestañas inferiores, para reproducir o eliminar. En la pestaña

Explore se puede filtrar el contenido por géneros, formatos (sesiones en discotecas, en

estudio, documentales, etc.) y series. Se ha incluido una captura de pantalla en la figura

2.1 para observar su diseño.

Los puntos más fuertes de la aplicación son la cantidad de contenido (aunque no sea

una funcionalidad, un usuario se siente atráıdo por esto), la organización de la música

en canales, la reproducción tanto de v́ıdeo como audio y la posibilidad de descargar

sesiones para no tener que utilizar la tarifa de datos, además de una interfaz sencilla

y pulida. Por el contrario, flaquea en cuanto a que no se puede buscar por artista,

no se pueden realizar comentarios ni guardar sesiones, o artistas, como favoritos. En

resumen la aplicación resulta demasiado sencilla, podŕıa ofrecer más funcionalidades y

7

Figura 2.1: Captura de pantalla de la aplicación de Boiler Room, versión 3.0.9.

mantener igualmente un diseño minimalista.

2.2. WAV

WAV[8] no se parece tanto en contenido; aunque también se centra en música

electrónica, ofrece en mayor medida contenido sobre la cultura hip hop. Además, no está

tan enfocada a sesiones completas de actuaciones, sino también videoclips, entrevistas

o resúmenes de conciertos. Las funcionalidades sin embargo son similares, y en cierta

medida muy influenciadas por Boiler Room. Cuenta con una organización del contenido

en canales igual que Boiler Room, pero estos son más bien canales promocionados,

donde revistas como Fader muestran su contenido. Śı que permite la búsqueda por

artista y un perfil de usuario. El perfil de usuario ofrece la posibilidad de almacenar

artistas favoritos y subscripción a canales y series (entendidas como v́ıdeos con un

contenido y formato parecido), además de la realización de comentarios en los v́ıdeos.

En la captura de pantalla mostrada en la figura 2.2 se puede observar que el diseño es

muy similar al de la aplicación de Boiler Room, en la figura 2.1.

A pesar de contar con mayor funcionalidades que la aplicación de Boiler Room, el

contenido es mucho más limitado y no se permite su descarga ni la opción de cambiar

8

Figura 2.2: Captura de pantalla de la aplicación WAV, versión 1.3.

entre audio y v́ıdeo.

2.3. BE-AT.TV

BE-AT.TV[9] se trata probablemente de la aplicación[10] con un propósito más

parecido al de Pocketbeat, ya que está únicamente enfocada a sesiones de pinchadiscos

de música electrónica. Sin embargo, se ha valorado si incluirla o no en este caṕıtulo

debido a que la última versión (1.4) de la aplicación es de hace dos años. Esto es

palpable en el diseño, bastante anticuado. Se puede observar el aspecto de la aplicación

en las figuras 2.3 y 2.4.

Sin embargo incluye muchas funcionalidades, como explorar por artistas, cuentas

de usuario, se puede comentar en las sesiones, compartirlas. También cuenta con un

calendario que contiene información de eventos planificados. Resulta extraño que no sea

haya continuado su desarrollo porque el contenido de sesiones que muestra es actual.

El reproductor de v́ıdeo por otra parte deja mucho por desear, ya que sólo permite

el pausado de la sesión, no hay ningún tipo de control para dirigirse a un punto en el

tiempo anterior o siguiente ni una barra que indique el progreso.

9

Figura 2.3: Captura de pantalla de la aplicación BE-AT.TV, pantalla inicial. Versión
1.4.

Figura 2.4: Captura de pantalla de la aplicación BE-AT.TV, menú lateral. Versión 1.4.

10

2.4. Valor añadido en la aplicación de Pocketbeat

Pocketbeat trata de cubrir un número de funcionalidades que otras aplicaciones

similares del mercado carecen. La aplicación que se está desarrollando ofrece

un contenido de alta calidad, aunque pequeño si se compara a Boiler Room

(aproximadamente quinientas sesiones frente a las más de cinco mil) pero

suficientemente variado para ser atractivo a los usuarios. Ofrece funcionalidades como

el acceso mediante una cuenta de usuario, guardado de artistas y sesiones favoritas,

realizado de comentarios, cambio entre audio y v́ıdeo, y en un futuro cercano contenido

offline. Es posible explorar por artistas, filtrando por inicial, y la exploración de sesiones

permite filtrado por género y orden según contenido destacado, las sesiones más nuevas

y más antiguas, “de moda” y las más vistas. Todo esto manteniendo una interfaz actual,

minimalista y usable.

11

12

3. Análisis del sistema

Tras la introducción, en este caṕıtulo se va a dar una explicación del análisis

de requisitos del API, partiendo de los requisitos de la aplicación móvil. Además se

va a proponer la arquitectura del sistema. Por último, se justificarán las tecnoloǵıas

utilizadas para su desarrollo. Los objetivos ya se han explicado en la sección 1.2.

3.1. Requisitos funcionales de la aplicación móvil

Los requisitos funcionales de la aplicación móvil aparecen en la tabla 3.1.

Por sesión se entiende una grabación de una actuación en directo de un pinchadiscos,

ya sea en formato v́ıdeo o sólo audio. La sesión que más “de moda” está es la que

acumula más visionados durante el d́ıa de consulta. El contenido destacado se elige

desde un panel de control de administrador de la aplicación Web, no se trata de ningún

algoritmo.

En la figura 3.1 se puede observar un ejemplo de pantalla de la aplicación móvil,

simplemente, para exponer el tipo de información que los dispositivos móviles van a

tratar. En el anexo A se encuentran todas las pantallas de la aplicación.

3.2. Análisis de requisitos

Se han visto los requisitos de la aplicación móvil, y por tanto se pueden derivar de

ellos los requisitos que el API debe tener. Se presentan a continuación.

3.2.1. Requisitos funcionales

Los requisitos funcionales aparecen en la tabla 3.2.

La información de métodos y URIs espećıficas para el funcionamiento de la

aplicación están especificadas en el caṕıtulo 4.

3.2.2. Requisitos no funcionales

Los requisitos no funcionales aparecen en la tabla 3.3.

13

Código Descripción
RF1 El usuario de la aplicación tiene que ser capaz de identificarse, usando

usuario y contraseña.
RF2 El usuario debe poder registrarse, introduciendo nombre, correo

electrónico, contraseña y una imagen de perfil.
RF3 El usuario tiene que poder recuperar la contraseña, solicitando que se le

reenv́ıe un enlace para crear una nueva al correo electrónico.
RF4 El usuario podrá explorar una serie de sesiones de artistas y filtrarlas

según género musical y por más visto, “de moda”, destacado, más nuevo
y más antiguo.

RF5 El usuario podrá reproducir una sesión y cambiar entre audio y video.
RF6 El usuario podrá guardar esa sesión, que pasará a formar parte de una

lista con sesiones guardadas.
RF7 El usuario podrá compartir la sesión, en distintas redes sociales u

obteniendo un enlace.
RF8 El usuario podrá publicar un comentario en una sesión.
RF9 Al reproducir una sesión, se mostrará información sobre sesiones del

mismo artista y sesiones relacionadas con la que está reproduciendo.
RF10 El usuario podrá explorar los artistas de la plataforma y filtrar según sus

iniciales.
RF11 El usuario podrá seguir a un artista. Al seguir a un artista el artista

aparecerá en un menú que contenga los artistas seguidos.
RF12 El usuario podrá realizar búsquedas de texto cuyos resultados podrán ser

tanto de artistas como de sesiones, que aparecerán conforme escriba.
RF13 El usuario podrá acceder a un menú de ajustes en el cual podrá editar su

nombre, páıs de residencia, etc.

Tabla 3.1: Requisitos funcionales de la aplicación móvil.

14

Figura 3.1: Pantalla principal aplicación.

15

Código Descripción
RF1 El sistema debe responder a cada petición de acceso a un recurso con el

recurso especificado.
RF2 El sistema debe responder con un mensaje de error en el caso de que el

recurso especificado sea inexistente o el usuario que realiza la petición no
tenga acceso a él. Para esto el sistema hará uso de los códigos de error
establecidos en HTTP.

RF3 El sistema debe aceptar únicamente métodos HTTP estándar del
repertorio CRUD (GET, POST, PUT y DELETE).

RF4 El sistema debe validar si una petición que afecta a datos únicamente
accesibles por un usuario proviene de dicho usuario. El mecanismo elegido
para realizar la autenticación se decidirá más adelante.

RF5 El sistema debe contener un recurso que corresponda a sesiones, filtrando
según los parámetros: género, más visionados, “de moda”, destacado, más
nuevo y más antiguo. Además para obtener una sesión individual se puede
utilizar su identificador. Se podrá solicitar información sobre sesiones del
mismo artista y sesiones relacionadas.

RF6 El sistema debe contener un recurso que corresponda a artistas, con
posibilidad de filtrar por inicial. También se podrá obtener artistas
individuales con su identificador. Debe permitir añadir como seguido el
artista por parte de un usuario. Se podrá obtener sesiones del artista.

RF7 El sistema debe contener un recurso que corresponda al usuario, que
permita modificar sus campos como correo electrónico, nombre o ciudad.

RF8 El sistema debe contener un recurso que corresponda a comentarios de
una sesión. Tiene que ofrecer la funcionalidad de leerlos y crear nuevos.

RF9 El sistema debe aceptar una cadena de texto como búsqueda, que devuelva
resultados tanto de artistas como sesiones.

Tabla 3.2: Requisitos funcionales del API

16

Código Descripción
RNF1 La comunicación entre cliente y servidor debe de ser cifrada, mediante

HTTPS.
RNF2 Los modelos de sesión contendrán la siguiente información:

− Identificador.
− T́ıtulo.
− Descripción.
− Enlace de visionado.
− Imagen en miniatura.
− Identificadores de/de los artista/s.
− Nombre de/de los artista/s.

RNF3 Los modelos de artista contendrán la siguiente información:

− Identificador.
− Nombre.
− Biograf́ıa.
− Imagen.

RNF4 Los modelos de usuario contendrán la siguiente información:

− Identificador/Correo electrónico.
− Nombre.
− Contraseña.
− Páıs.
− Ciudad.
− Teléfono móvil.
− Imagen.

RNF5 Los modelos de comentario contendrán la siguiente información:

− Identificador del autor.
− Nombre del autor.
− Texto.
− Fecha.

RNF6 Las respuestas del sistema deben de estar de estar en formato JSON.

Tabla 3.3: Requisitos no funcionales del API

17

3.3. Arquitectura

En esta sección se describe la arquitectura. La arquitectura se ha dividido en

dos, dado que primero se explica la arquitectura que corresponde al funcionamiento

de la aplicación, y después la arquitectura de la infraestructura de integración

continua. El diagrama de la figura 3.2 corresponde a la arquitectura propuesta para el

funcionamiento de la aplicación.

Figura 3.2: Arquitectura del sistema.

El diagrama de la figura 3.3 corresponde a la arquitectura de integración continua.

A continuación se explica cada elemento de los diagramas anteriores:

− Base de datos: contiene los datos de la plataforma, de los cuales se extraerán los

necesarios dados los requisitos anteriores.

− Servidor con API: es el servidor que aloja la aplicación que ofrece la funcionalidad

de API.

− Servidor que almacena las sesiones: es el servidor que almacena los ficheros con

las sesiones, bien en formato v́ıdeo o audio.

− Servidor con repositorio de código remoto: permite el trabajo en equipo con otros

desarrolladores y a la vez cumple la función de ser una copia se seguridad de la

aplicación en todo momento.

18

− Servidor que compila y despliega paquetes: facilita el despliegue y ofrece ventajas

como establecer procesos rutinarios antes y después de la operación o gestión de

versiones del software.

3.4. Tecnoloǵıas utilizadas

Los diagramas de arquitectura con las distintas tecnoloǵıas son los siguientes: la

figura 3.4 corresponde al de la aplicación y la figura 3.5 al de la infraestructura de

despliegue.

En esta sección se enumera el conjunto de tecnoloǵıas utilizadas y su razón.

La tecnoloǵıa de mayor importancia para el desarrollo del proyecto es sin duda

ASP.NET[11], un framework enfocado a la Web desarrollado por Microsoft. Utiliza

el lenguaje de programación C#. En concreto se ha utilizado el framework ASP.NET

Web API, que está enfocado, como su nombre indica, a la creación de APIs Web. Dado

que se trata de un framework espećıficamente orientado a este tipo de aplicaciones

contiene muchas utilidades que hacen el desarrollo más accesible.

3.4.1. Amazon Web Services (AWS)

Se ha elegido AWS[12] como proveedor de servicios en la “nube”. Ofrece soluciones

para todos los elementos que componen la arquitectura, tanto de la aplicación como

de la infraestructura de integración continua. Para la base de datos ofrece una solución

llamada Relational Database Service (RDS)[13]. En el caso de servidores, ofrece Elastic

Compute Cloud (EC2)[14], que contiene una gran variedad de máquinas virtuales, con

hardware adaptado para distintas situaciones, como máquinas con necesidad de alta

capacidad de memoria o alta velocidad de computación. En este caso, la familia de

máquinas de propósito general será suficiente para las necesidades de la aplicación. Por

esta versatilidad de productos se ha elegido este proveedor de servicios cloud.

3.4.2. ASP.NET Web API

Como ya se ha nombrado, framework especializado en el desarrollo de APIs Web.

Debido a que la mayor parte del código del proyecto Pocketbeat se encuentra en el

ecosistema de Microsoft (servidor IIS[15], ASP.NET MVC[16] para la página Web,

Microsoft SQL Server[17] para la base de datos) tiene sentido mantener la misma

tecnoloǵıa para la página web.

Este framework cuenta además con un gran número de paquetes de libre uso,

accesibles mediante NuGet[18]. NuGet es un gestor de paquetes para la plataforma

19

Figura 3.3: Arquitectura del sistema de integración continua.

Figura 3.4: Arquitectura del sistema con iconos de las tecnoloǵıas utilizadas.

20

.NET, cuenta con más de 90.000 paquetes distintos. Algunos de los que se van a utilizar

en concreto para este proyecto son:

− Entity Framework[19]: provee un mapeo objeto-relacional. De esta manera no

hay necesidad de preocuparse de la creación de tablas en SQL y las migraciones

cuando se cambian los distintos modelos son sencillas gracias a los distintos

comandos que ofrece.

− Newtonsoft.Json[20]: permite la serialización y deserialización entre objetos de

ASP.NET y objetos JSON, que es la notación que nuestra API Web utiliza.

− AutoMapper[21]: ofrece un mapeo objeto a objeto. La tarea de mapeo entre

objetos resulta monótona, y si aparece en distintas localizaciones del código,

repetitiva. AutoMapper ofrece mapeo automático de campos de objetos con

mismos nombres, y una sintaxis muy sencilla para los campos que no tienen

el mismo nombre en distintos objetos o cuando es necesario algún tipo de

transformación.

− log4net[22]: permite escribir la salida del registro a ficheros o una base de datos

entre otros y soporta distintos niveles de registro (Debug, Info, Warn, etc.).

3.4.3. Microsoft SQL Server

Para la base de datos se ha seleccionado Microsoft SQL Server. Se trata de una

estancia de la base de datos desplegada utilizando el producto RDS[13], que ya se ha

nombrado. Este mismo sistema se encuentra en uso en la aplicación Web de Pocketbeat,

con un funcionamiento satisfactorio. En ningún momento es necesario el uso de SQL

para la creación de tablas o consultas. La creación de tablas se realiza con el Entity

Framework y la consulta con el componente LINQ de ASP.NET.

3.4.4. Microsoft IIS

Microsoft IIS[15] es un servidor Web para la familia de sistemas operativos

Windows. Mediante el software IIS Manager se puede gestionar el servidor Web con

una interfaz sencilla y manejable. De la misma forma que con la base de datos, este

software está en uso para la aplicación Web, y se mantiene para la API.

3.4.5. Wowza Streaming Engine, en servidor Ubuntu

Wowza Streaming Engine[23] software se encarga de proveer transmisión de

contenido multimedia, tanto bajo demanda como en directo. Este servidor almacena

21

por tanto los ficheros que contienen las sesiones y genera URLs para poder acceder

a ellos. Abstrae la comunicación entre este servidor y el reproductor de v́ıdeos de la

página Web o el de la aplicación móvil.

3.4.6. Git y Atlassian Bitbucket

Para el control de versiones del código se utiliza Git[24], de forma local, y de forma

remota utilizando Atlassian Bitbucket[25]. Mediante el sistema de ramas se mantienen

distintas versiones del código para una aplicación en pruebas y para la aplicación en

producción. La estructura de pruebas se explica en el caṕıtulo 5.

3.4.7. TeamCity y Octopus Deploy

TeamCity[26] es un servidor de gestión de compilación e integración continua

desarrollado por la compañ́ıa JetBrains. Da soporte a aplicaciones basadas en Java,

ASP.NET y Ruby. Se puede configurar para detectar cambios en un repositorio remoto,

de forma que cuando el código sea diferente se compile automáticamente. Octopus

Deploy es un servidor para el despliegue y gestión de versiones. Soporta, entre otros,

el sistema de paquetes NuGet.

Por tanto, el proceso total será: TeamCity se encarga de controlar cambios en

el repositorio con el código, compilar las distintas aplicaciones, realizar las pruebas

unitarias y enviar los paquetes al servidor Octopus. Desde el servidor Octopus se

puede crear un nuevo lanzamiento, asignando un número de versión y descripción para

destacar las novedades que incluye, por ejemplo. En la figura 3.6 se puede observar un

diagrama con las partes que corresponden a cada uno.

3.4.8. Visual Studio 2017

Por último, aunque no se haya nombrado en el diagrama de tecnoloǵıas en la figura

3.5, el desarrollo de la aplicación se ha realizado en su integridad utilizando el entorno

de trabajo de Microsoft Visual Studio[28], que incluye un gran número de herramientas.

A continuación se nombran las más útiles:

− Gestión de paquetes NuGet: permite instalar, actualizar, eliminar paquetes.

− Explorar la base de datos mediante el Server explorer : permite no sólo explorar

bases de datos, tanto locales como remotas, sino servidores y máquinas en Azure

(aunque esto no se haya utilizado, dado que las máquinas virtuales se encuentran

alojadas utilizando Amazon Web Services).

22

Figura 3.5: Arquitectura de la infraestructura de integración continua del sistema con
iconos de las tecnoloǵıas utilizadas.

Figura 3.6: Diagrama del proceso, con los diferentes procesos que realiza TeamCity y
Octopus. Obtenido de un art́ıculo[27] oficial de JetBrains.

23

− Debug mode: el modo de depuración tiene lo que se espera; gestión de breakpoints,

análisis de las variables, pila de llamadas, gestión de memoria RAM, excepciones,

eventos, etc. Es muy completo.

− Integración con Git: gestión de ramas, commits, sincronización con el servidor

remoto, merges y más operaciones, sin necesidad de utilizar la ĺınea de comandos.

24

4. Desarrollo

En este caṕıtulo se describe el proceso de desarrollo del API, con todas las decisiones

tomadas. A continuación se describe en más detalle la infraestructura desarrollada para

el despliegue en producción de la aplicación.

4.1. Desarrollo del API RESTful

En esta primera sección se explica el conjunto de decisiones tomadas a partir del

análisis de requisitos del API Web. Aunque ya se haya definido REST previamente, es

importante explicar algunos conceptos.

La información está representada por recursos (resources), que tienen una

identificador asociado; utilizando REST sobre HTTP el identificador es de tipo

URI. El estado, tanto actual como el deseado al realizar una actualización, de un

recurso se documenta a través del concepto de representaciones (representations).

Las representaciones se codifican en nuestro caso utilizando el formato JSON. Como

ya se ha nombrado en el glosario, REST es un modelo cliente-servidor, por lo que

cuenta con peticiones (requests, por parte del cliente, y respuestas (responses), por

parte del servidor. Para que un API se considere RESTful, es decir, que sigue los

principios definidos en REST, tiene asegurar unas restricciones. Estas son: interfaz

uniforme (uniform interface), cliente-servidor (client-server), sin estado (stateless),

cacheado (cacheability) y sistema en capas (layered system). Las dos primeras ya se

han explicado al hablar de recursos y el modelo cliente-servidor. La tercera implica que

la interacción entre cliente y servidor se produce petición a petición, no se almacena

ninguna información de sesión (al menos por parte del servidor). Cada petición tiene

la información suficiente para realizar la operación pertinente, y el servidor no conoce

las anteriores. Por último, cacheability y layered system hacen referencia a cacheo de

respuestas y a la distribución transparente para el cliente de los distintos componentes

del API en distintos servidores, respectivamente. Ambas no son pertinentes en este

proyecto.

Otro concepto importante es la manera de interactuar entre cliente y servidor.

REST sigue las cuatro operaciones básicas de almacenamiento conocidas por sus siglas

25

en inglés como CRUD (create, read, update y delete). En HTTP se implementan con los

métodos POST para create, GET para read, PUT o PATCH para update y DELETE

para delete.

En este proyecto, dados los requisitos, los usos de las operaciones son los siguientes:

− GET: se obtiene información del recurso especificado. Mediante parámetros se

puede refinar la información que se obtiene. Por ejemplo, en el caso de la lista de

artistas, como se quiere obtener artistas por initial, en el parámetro initial se

especifica la letra.

− POST: creación de contenido. En el caso del proyecto, el usuario puede crear

comentarios, añadir v́ıdeos como favoritos, añadir artistas como favoritos y

registrarse. Los parámetros van en el cuerpo de la petición, a diferencia del método

GET, donde van en la misma URL. Además se utiliza para el login, para obtener

un token.

− PUT: se utiliza para actualizar información, en este caso la única información

que se actualiza es la del perfil del usuario.

− DELETE: como el nombre indica, para borrar contenido. En los requisitos

funcionales no se ha contemplado el borrado de contenido, por lo que no se

utiliza. En versiones futuras de la aplicación es posible que se incluya el borrado

de comentarios. En ese caso se utilizaŕıa este método.

4.1.1. Conjunto de recursos

Como se ha visto, es esencial identificar los recursos necesarios. En este caso, a

partir de los requisitos se han obtenido los siguientes, mostrado en la tabla 4.1. Están

definidos con su URI asociada.

El conjunto de operaciones asociado a cada recurso se encuentra en el Anexo B.

4.1.2. Modelos de datos

Una vez se han identificado los recursos del API, se pueden diseñar los modelos que

maneja el servidor. Se ha decidido utilizar 2 conjuntos de modelos de datos, el primero

corresponde a los modelos que a través de Entity Framework se utilizan para interactuar

con la base de datos, y el segundo, que está formado por objetos de transferencia de

datos (DTO, en inglés), que se utilizan en las peticiones y respuestas al API.

Los siguientes corresponden a los objetos de Entity Framework. Artista: Almacena

la información de los artistas de la plataforma. Los campos que contiene son:

26

URI Descripción del recurso
/api/sessions Sesiones. Se trata de los v́ıdeos o audios que se reproducen en la

aplicación.
/api/artists Artistas/pinchadiscos. Los autores de las sesiones, que contienen

información sobre su trayectoria o imágenes.
/api/users Usuarios de la plataforma Pocketbeat.
/api/search Recurso utilizado para representar la búsqueda de tanto sesiones

como v́ıdeos. Aunque no es recomendado utilizar acciones como
nombres de recursos, en este caso es necesario, puesto que no
se puede asociar la acción de búsqueda a sólo las sesiones o los
artistas, ya que se requieren ambos en los resultados.

/api/auth Se utiliza para la gestión de la autenticación de los usuarios.

Tabla 4.1: URIs y recursos

− Identificador: entero.

− Usuario: los artistas también son usuarios de la plataforma y este campo establece

la relación.

− Descripción: cadena de texto.

− Destacado: entero.

− Sesiones: lista de sesiones de las que es autor.

− Géneros: lista de los géneros con los que se asocia su música.

− Redes sociales: apunta a otra tabla con enlaces a las distintas redes sociales que

tiene el artista.

− Seguidores: lista de usuarios seguidores de este artista.

Usuario: Almacena la información de los usuarios de la plataforma. Los campos que

contiene son:

− Identificador: entero.

− Nombre: cadena de texto.

− Apellidos: cadena de texto.

− Nombre de usuario: cadena de texto.

− Correo electrónico: cadena de texto.

− Género: masculino, femenino u otro. Entero.

− Páıs: cadena de texto.

− Imagen: referencia a la imagen de avatar del usuario.

− Estatus: indica si el usuario está activo, sin activar, suspendido. Enumeración.

− Hash contraseña: hash de la contraseña del usuario, utilizando SHA-512.

− Artista: Si se trata de un usuario que también es artista, tiene una referencia.

− Artistas favoritos: lista de artistas seguidos.

27

Imagen: Almacena la información de imagen de un usuario o un artista. Los campos

son:

− Identificador: entero.

− Nombre fichero: nombre del fichero almacenado en el servidor. A diferencia de

las sesiones, las imágenes se almacenan en el servidor Windows.

Sesión: Almacena la información que corresponde a una sesión de un artista. La

información que almacena es:

− Identificador: entero.

− Artista: referencia al autor de la sesión.

− Nombre: cadena de texto.

− Nombre URL: URL que identifica la sesión desde el navegador. Cadena de texto.

− Estado: las sesiones se pueden subir y estar sin aprobar, y por tanto no accesibles

por los usuarios. Enumeración.

− Fecha de creación: fecha.

− Imagen portada: referencia a la imagen que se muestra de forma estática antes

de reproducir la sesión.

− Duración: segundos. Entero.

− Descripción: cadena de texto.

− Destacado: entero.

− Nombre fichero: cadena de texto.

− Extensión: cadena de texto.

− Altura fichero: número de ṕıxeles de altura del v́ıdeo. Entero.

− Anchura fichero: entero.

− Tamaño fichero: bytes, número de coma flotante.

− Géneros: lista de referencias a géneros musicales.

− Escuchas: lista de referencias a Escucha, explicado más adelante.

Comentario: Almacena la información de un comentario realizado por un usuario

en una sesión. Contiene:

− Identificador: entero.

− Sesión: referencia a Sesión en la que aparece el comentario.

− Usuario: referencia al autor.

− Estado: enumeración, activo o borrado.

− Texto: cadena de texto.

− Fecha creación: fecha.

− Fecha última modificación: fecha.

28

Género: Géneros musicales. Campos:

− Identificador: entero.

− Nombre: cadena de texto.

− Sesiones: lista de referencias a Sesión, sesiones del género musical.

Escucha: Información sobre escuchas de una sesión. Los campos que contiene son:

− Identificador: entero.

− Sesión: referencia a la Sesión.

− Dirección usuario: objeto con información sobre una dirección IP e información

del usuario en caso de que esté registrado.

− Tiempo escucha: segundos, entero.

− Fecha escucha: fecha.

En la figura 4.1 se observa un diagrama UML con las relaciones y campos de las

distintas clases.

Figura 4.1: Diagrama UML de las clases que forman los modelos necesarios en la base
de datos.

Tras detallar el conjunto de modelos que se han utilizado para la base de datos,

se pasa a especificar algunos de los objetos de transferencia de datos que se han

utilizado para las respuestas del API. Contienen únicamente la información necesaria

para mostrar en la pantalla correspondiente de la aplicación móvil.

29

En concreto se van a especificar las respuestas de Artista y Sesión, en la tabla 4.2.

Nombre del DTO Campos
Artista Contiene un número bastante inferior de campos al del

modelo que se encuentra en la base de datos. Estos son:

− Identificador: entero que identifica al artista.
Corresponde al mismo identificador que en la base de
datos.

− Nombre: cadena de texto.
− Biograf́ıa: cadena de texto.
− Imagen: cadena de texto con una URL que corresponde

al recurso de la imagen del artista.
− Sesiones: lista de DTOs de tipo Sesión que se especifica

a continuación.

Sesión De la misma forma que con Artista, es reducido en
comparación a la información almacenada en la base de datos.
Los campos son:

− Identificador: entero.
− T́ıtulo: cadena de texto.
− Descripción: cadena de texto.
− URL visionado: cadena de texto.
− Id Artista: entero.
− Nombre Artista: cadena de texto.

Tabla 4.2: Modelos de objetos de transferencia de datos.

De la misma forma, en las peticiones al API se env́ıan parámetros que se

pueden encapsular en objetos. Estos objetos contienen campos que son asignados

automáticamente, bien desde el cuerpo de la petición o la misma URI (dependiendo

del método HTTP utilizado), cuando un controlador4.1.3 recibe una petición, a través

del deserializador JSON que se ha nombrado anteriormente.

4.1.3. Separación en controladores

A partir del diseño de los recursos en URIs se procede a explicar cómo

se traslada esto al tipo de clase que se utiliza en ASP.NET Web API para

gestionar las peticiones y enviar respuestas. Este tipo de clase se conoce como

controlador, controller en inglés. Se han creado 4 controladores: SessionsController,

ArtistsController, UsersController, AuthController. Estas clases extienden la

clase abstracta ApiController, que contiene un conjunto de métodos que son muy

útiles, especialmente para las respuestas. Un ejemplo es el método Ok(), que env́ıa una

30

respuesta con código HTTP 200, y se puede parametrizar para incluir en el cuerpo la

información que se desee. Otro ejemplo es el método Created(), con el código 201, que

se puede adaptar de la misma manera.

Otra de las funcionalidades del framework que resulta útil es la posibilidad de

utilizar atributos (en la documentación en inglés se conocen como attributes) para

declarar las clases y métodos HTTP que acepta cada método y la ruta o URI. Se puede

declarar un prefijo para todos los métodos dentro de una clase, y en cada método un

sufijo. En este ejemplo se muestra para el controlador de los artistas.

[RoutePrefix("api/artists")]

public class RestArtistController : ApiController

{

private readonly IPocketBeatContext context;

public RestArtistController(IPocketBeatContext context)

{

this.context = context;

}

[HttpGet]

[Route("")]

public GetArtistsResponse GetList(String ?initial)

{

// devuelve lista de artistas segun inicial, si se proporciona

}

[HttpGet]

[Route("{id}")]

public GetArtistResponse GetById(int id)

{

// devuelve artista que tiene dicho id

}

}

Como se puede observar, para el método GetList() la URI es /api/artists/ y

para el método GetById(), si se consultara con el identificador 100, por ejemplo, es

/api/artists/100. También se pueden utilizar atributos para forzar el uso de HTTPS

y para autenticar a usuarios.

31

4.1.4. Seguridad

Uno de los requisitos no funcionales de la aplicación es el cifrado de la comunicación

entre el cliente y el API Web. Para ello se ha configurado la aplicación para utilizar SSL

y únicamente aceptar peticiones realizadas mediante HTTPS. La autenticación con el

cliente se realiza mediante el uso de tokens. Mediante la solicitud a /api/auth/login se

genera un token que el cliente recibe como respuesta y deberá incluir en las peticiones

que requieren autenticación, como crear un comentario. Este token se incluye en la

cabecera de la solicitud al API, en concreto en la cabecera Authorization, con el

valor Bearer <Token>.

Autenticación mediante Tokens

Se ha seleccionado el estándar JSON Web Token[29] (JWT a partir de aqúı) para

la creación de tokens de acceso de los usuarios. Se ha utilizado porque se adecúa a

las restricciones del estándar REST, ya que no se mantiene ningún tipo de estado, se

env́ıa con la petición y contiene la información necesaria en śı mismo. No es necesario

almacenarlo de forma persistente en el servidor, lo que conlleva no tener que consultar

la base de datos con cada petición, como se haŕıa si se utilizara Autenticación Básica

(Basic Authentication1, en inglés). Esto reduce el tiempo de respuesta y la carga de la

base de datos.

Los JWT tienen una estructura dividida en 3 partes: cabecera, carga (o payload) y

firma. En la cabecera se indica el algoritmo de firma utilizado, como HMAC-SHA256.

En el payload se incluye la información que se quiere comunicar con el token, como el

nombre de usuario, su rol o la fecha de expiración. Mediante el uso de una clave secreta

que el servidor almacena, se cifra la parte del token correspondiente a la cabecera

y payload, que van codificados en Base64 y concatenados por un punto. El token

resultante es la cabecera, el payload y la firma, todos codificados mediante Base64

y separados por puntos.

Para el uso de este proyecto, se ha incluido la información (en la terminoloǵıa

de JWT a cada campo en el payload se le conoce como claim) de identificador de

usuario y fecha de expiración. En la implementación se ha utilizado el paquete NuGet

System.IdentityModel.Tokens.Jwt[30] para la creación, serialización y validación de los

tokens.

En el diagrama de la figura aparece la interacción entre cliente y servidor respecto

a los JWTs. En el caso de este API la URI es /api/auth/login.

1Método de autenticación donde se env́ıan los credenciales (por ejemplo usuario y contraseña) en
una petición HTTP, mediante el uso de la cabecera Authorization, seguido de Basic y a continuación
el nombre de usuario y contraseña concatenados separados por 2 puntos y codificados en Base64.

32

4.1.5. Gestión de imágenes

Como se ha explicado anteriormente, las imágenes de las sesiones, usuarios y artistas

se comparten con la aplicación móvil asignándoles una URL. El almacenamiento de

estas se encuentra en el servidor Windows que corre la aplicación Web y el API. La

aplicación Web cuenta con un Web Handler que procesa las peticiones referentes a

imágenes. En la petición se puede especificar las dimensiones de la imagen final. Esto

permite cortar las imágenes o cambiar sus dimensiones al tamaño deseado, usando la

libreŕıa ImageResizer. Por tanto el API env́ıa en una cadena de caracteres la URL

asociada a la imagen, consultada en la base de datos, y el Web Handler provee este

recurso cuando se realiza una petición desde la aplicación móvil.

Por otra parte, las imágenes de avatar que utilizan los usuarios se env́ıan al servidor

codificadas en Base64, por su sencillez. Esta codificación tiene el inconveniente de que

incrementa el tamaño de la imagen. El tamaño final se puede aproximar a 4/3 del

tamaño original. En este caso se trata de imágenes de avatar con unas dimensiones

reducidas, por lo que no supone un problema de rendimiento.

4.2. Infraestructura de integración continua

La configuración de la infraestructura de integración continua es también una parte

importante del desarrollo. Es una inversión de tiempo que por otra parte es esencial

para la puesta en marcha del API, y que permite crear un entorno de trabajo en el que

los cambios en el código sean desplegados con una gran frecuencia y rapidez. Como ya

se ha comentado en la sección 3.4, las tecnoloǵıas utilizadas para la permitir integración

continua son el repositorio de código remoto, utilizando Bitbucket, el servidor de

compilación automática TeamCity y el gestor de despliegues Octopus.

Es importante señalar que en el repositorio remoto se utilizan 2 ramas para el

código que ha de ser compilado automáticamente. La rama master se utiliza para la

compilación de paquetes que van destinados a la aplicación remota de pruebas, y la

rama rtm2 que se utiliza para la producción. Más adelante, en el caṕıtulo 5 se explica en

el entorno de pruebas la existencia de la aplicación remota de pruebas, no únicamente

en local.

Desde el repositorio Bitbucket se ha creado una llave SSH que utiliza el servidor

TeamCity para autenticación. Se han configurado 2 proyectos en TeamCity, uno para

pre producción y el de producción. Desde los ajustes del proyecto de pre producción se

2Release to manufacturer, versión final de un software que se entrega a un fabricante, para
distribuirlo. En el caso de software que no es distribuido f́ısicamente, simplemente representa la versión
final.

33

selecciona el origen desde el cual se obtiene el código, es decir, la URL del repositorio

remoto en Bitbucket, con la rama master. Se realiza lo mismo para el proyecto de

producción, pero con la rama rtm. El servidor TeamCity comprueba si hay cambios

nuevos cada 60 segundos. A continuación, se ha configurado el conjunto de pasos que

se realiza junto a la compilación. El primer paso es la descarga de los paquetes NuGet

que necesita la solución. El segundo es la construcción de paquetes NuGet del propio

proyecto, que se utilizan para enviar al servidor Octopus.

Para publicar los paquetes NuGet al servidor Octopus basta especificar la URL para

el feed de este servidor y una llave que se puede crear desde este servidor también. El

método que se utiliza para la publicación se conoce como NuGet Push, está explicado

aqúı[32].

Gracias a las configuraciones de ASP.NET, se puede transformar la configuración del

API mediante el uso de ficheros Web.config. Estas transformaciones de la configuración

permiten, entre otras, cambiar la base de datos que utiliza la aplicación. Desde

TeamCity se puede qué configuración debe de usar NuGet para construir los paquetes.

En el caso de pre producción se utiliza la configuración Release.Test, que se conecta

a una base de datos remota de pruebas, y en el de producción la configuración

Release.Live.

En el servidor Octopus se cuenta por tanto también con dos proyectos, que

corresponden a los proyectos de TeamCity. Octopus obtiene los paquetes de su propio

repositorio, ya que se han publicado alĺı desde TeamCity. Desde de la configuración

de cada proyecto se han añadido los pasos necesarios para desplegar las aplicaciones.

El primer paso es inicializar una variable con el valor de la fecha y hora actual, para

crear una carpeta con ese nombre que contendrá la aplicación desplegada. El segundo

paso es el despliegue, que consiste en un script utilizando PowerShell, que provoca que

desde IIS la aplicación apunte al directorio virtual que se ha creado, con la fecha y hora

anteriores como nombre. La máquina que ejecuta el servidor IIS que corre el API está

configurado como un tentáculo (tentacle, en terminoloǵıa de Octopus) que escucha en

un puerto a peticiones del servidor Octopus, para recibir paquetes a desplegar.

Finalmente, para enseñar lo sencillo que es realizar un despliegue desde Octopus,

se muestra en la siguiente figura 4.3. Después de pulsar el botón, queda incluir un

número de versión, la posibilidad de incluir una reseña, como se ve en la imagen 4.4.

A continuación se puede elegir un despliegue instantáneo o planificado, como muestra

la imagen 4.5.

34

Figura 4.2: Interacción entre cliente y servidor utilizando tokens. Imagen obtenida de
la página de JWT[31].

Figura 4.3: Creación de un despliegue desde Octopus Deploy.

35

Figura 4.4: Creación de un despliegue desde Octopus Deploy.

Figura 4.5: Creación de un despliegue desde Octopus Deploy.

36

4.2.1. Instancias en Amazon Web Services

El servidor de integración continua, que ejecuta tanto TeamCity como Octopus

Deploy, es una máquina virtual Windows tipo t2.medium[33], tiene 2 procesadores

virtuales y 4 GiB de memoria RAM. Cuenta con un disco duro SSD de 80 GB. El

máquina del servidor IIS es del mismo tipo, con un disco duro de 60 GB.

37

38

5. Validación

En este caṕıtulo se describe la fase de pruebas para comprobar que el funcionamiento

del API desarrollado es el propuesto en los requisitos. Primero pruebas no formales

realizadas mediante la herramienta Postman, que permite realizar llamadas a APIs

(especificando la URI, el método HTTP, el conjunto de parámetros, el cuerpo, etc.)

mientras se ejecuta el API en Visual Studio, y luego ya formalizadas, utilizando pruebas

unitarias para cada método de los controladores. Las pruebas unitarias forman parte

del framework .NET, no se trata de ningún paquete de terceros. Por último, también

se explica el despliegue del API en el servidor, para probarla en un entorno idéntico al

de producción.

5.1. Debug mediante Visual Studio y Postman

Mientras se ha realizado el desarrollo del API, se ha ido comprobando con cada

controlador que los métodos realizaban lo que deb́ıan. Para esto es importante

mencionar 2 herramientas que han resultado de gran utilidad.

La primera es el modo de depuración de Visual Studio. Mediante este entorno

de programación se puede trazar las excepciones a su origen en el código, consultar

el valor de las variables en cualquier momento, utilización de breakpoints, etc. Otra

funcionalidad que ha resultado útil es la definición de distintos ficheros de configuración

para la aplicación, que se han utilizado para diferenciar entre 3 situaciones. La primera

es la versión local de la aplicación. Para esta se establece una conexión a una base de

datos local utilizando Microsoft SQL Server Express. Además se cuenta con otros dos

ficheros de configuración, uno para el servidor de pruebas, cuya conexión es a una base

de datos remota, con un catálogo1 de prueba, y por último, la versión de producción,

con la conexión al catálogo de producción.

La herramienta Postman se ha utilizado para realizar solicitudes mientras la

ejecución del API de forma local. Se trata de una herramienta espećıfica para esto,

1La base de datos está dividida en catálogos. Cada catálogo tiene las mismas tablas creadas para
el proyecto pero distinta información. La base de datos es la misma, alojada en AWS como se ha
mencionado previamente.

39

mucho más cómoda que realizar peticiones utilizando un navegador Web o la ĺınea

de comandos con herramientas como curl. En este caso se ha utilizado para editar la

cabecera de cada petición, los parámetros y el cuerpo, y leer las respuestas de una forma

clara. Además cuenta con un historial de peticiones, para poder realizar peticiones en

pruebas anteriores sin la necesidad de introducir la información de nuevo.

5.2. Conjunto de pruebas unitarias

Las pruebas se han formalizado creando un proyecto de pruebas unitarias en

Visual Studio. Se han creado métodos de prueba para cada controlador. Mediante

el uso de la clase Assert de la libreŕıa de pruebas se utilizan los métodos IsNotNull,

IsInstanceOfType y AreEqual para comprobar que el resultado de cada método de

los controladores no es nulo o indefinido, es del tipo y contiene la información esperada.

Se utiliza información de prueba, no afecta a la base de datos en producción.

Para ilustrar un método de prueba se puede observar en este ejemplo, donde se

comprueba que obtener una sesión por identificador produce como resultado esa sesión.

[TestMethod]

public void GetSession_ShouldReturnCorrectSession()

{

var testSessions = GetTestSessions();

var controller = new SessionsController(testSessions)

var result = controller.GetById(10) as

OkNegotiatedContentResult<Session>;

Assert.IsNotNull(result);

Assert.AreEqual(testSessions[10].Id, result.Content.Id);

}

El conjunto de pruebas que se ha construido es:

− SessionsController: el listado de las sesiones contiene todos los resultados, en

el orden especificado. La sesión identificada por id contiene la información que

debe. Obteniendo todos los comentarios de prueba de una sesión se obtienen

estos, la creación de un comentario es correcta y se devuelve un código HTTP

201. No se puede crear un comentario con texto vaćıo o de un usuario no existente

o no autentificado.

− ArtistsController: tanto la colección de artistas recuperada como artistas

individuales y sus sesiones corresponden a las de prueba.

40

− UsersController: se obtiene la información de un usuario de prueba y el registro

es correcto y se devuelve el código HTTP 201. No se puede registrar un usuario

con un correo existente en el sistema o con información no válida en los campos

de registro (correo no válido, nombre vaćıo, etcétera). La modificación de la

información utilizando PUT devuelve el código 200 (Ok). En caso de que el

usuario no sea correcto o no esté autentificado el código es de error.

− SearchController: la búsqueda de sesiones y/o artistas produce el resultado

esperado con los datos de pruebas.

− AuthController: la creación de un token para un usuario con una cuenta válida

(correo existente y contraseña correcta) es satisfactoria, y se comprueba que

el token se puede utilizar para realizar una petición para la que se necesita

autenticación, como la creación de un comentario.

En total se han programado 15 pruebas, que comprueban que el API funciona

correctamente.

5.3. Despliegue de aplicación en servidor de prueba

La aplicación se ha desplegado primero de prueba, utilizando la infraestructura

de despliegue de integración continua ya comentada. Se ha registrado un subdominio

DNS para acceder a ella utilizando el servicio Route 53 de AWS. Desde el servidor IIS

está configurada como una aplicación más, no se trata de un servidor distinto al de

producción, pero hay una separación entre las distintas aplicaciones. Se han realizado

solicitudes utilizando la herramienta Postman, que se hab́ıa utilizado de forma local, y

los resultados son los mismos. Se puede observar un sencillo esquema sobre esto en la

figura 5.1.

41

Figura 5.1: Diagrama del despliegue en el servidor de prueba.

42

6. Conclusiones

El objetivo de este caṕıtulo es la explicación de la gestión del proyecto, las

conclusiones del mismo, el trabajo futuro que podŕıa realizarse y finalmente, la opinión

personal por parte del estudiante que lo ha realizado.

6.1. Gestión del proyecto

El proyecto está dividido en las fases: familiarización con la arquitectura de la

plataforma de Pocketbeat y sus tecnoloǵıas, análisis y diseño, implementación y

pruebas, creación y uso de la infraestructura de despliegue y escritura de la memoria.

En la primera fase, se tuvo que realizar un estudio profundo de la arquitectura de

la plataforma en uso, puesto que tiene una complejidad a la que el autor del proyecto

no estaba acostumbrado previamente. Esto incluye conocimiento sobre el proveedor de

servicios en la nube, Amazon Web Services. A su vez, la tecnoloǵıa era nueva, no tanto

por la sintáxis de C#, que guarda muchas similitudes con otros lenguajes orientados

a objetos como puede ser Java, sino por tratarse de un framework Web del que no se

teńıan conocimientos previamente.

En la segunda fase, se realizó el análisis de requisitos, partiendo de los requisitos de

la aplicación móvil para la cual el API está enfocada. También se decidió la arquitectura

y tecnoloǵıas utilizadas de manera que la integración con las aplicaciones existentes

fuera lo más sencilla posible. Se estudió las restricciones que se han de llevar a cabo si

se quiere adoptar la arquitectura REST para un API Web y conforme a ellas se diseñó

el conjunto de recursos y sus correspondientes URIs. Además se llevó a cabo un estudio

de las distintas opciones de autenticación.

La tercera fase consistió en la implementación del diseño propuesto en la fase

anterior, y el diseño y creación de pruebas formales para la validación de la aplicación.

Para la creación de pruebas fue necesaria la consulta de documentación.

En la cuarta fase se llevó a cabo la creación de la infraestructura de integración

continua o de despliegue. Se desplegó la versión más avanzada hasta la fecha del API,

que inclúıa todos los requisitos iniciales. Primero se realizó en una aplicación remota

de pruebas y más tarde en producción.

43

Por último, se terminó la redacción de la memoria

En la tabla 6.1 se puede observar el reparto de horas que corresponde a cada fase

del proyecto.

Fase Horas Porcentaje
Familiarización plataforma y tecnoloǵıa 25 7.25 %
Análisis y diseño 53 15.36 %
Implementación y pruebas 175 50.72 %
Creación infraestructura integración continua 34 9.86 %
Redacción de memoria 58 16.81 %
Horas totales 345 100 %

Tabla 6.1: Esfuerzos

6.2. Conclusiones

El objetivo de desarrollo del API con los requisitos especificados por la aplicación

móvil se ha conseguido con éxito, aśı como la infraestructura para el despliegue de

futuras versiones. El despliegue tanto en entornos de pruebas como de producción se ha

realizado con éxito, sin embargo la aplicación móvil se encuentra en fase de validación

con usuarios probadores beta, no accesible a todo el público.

Una vez la aplicación sea lanzada al mercado podrá dar un mejor soporte a los

usuarios móviles de la plataforma y cubrirá las carencias que otras soluciones tienen.

El uso de una tecnoloǵıa como ASP.NET, una de las más usadas para desarrollo

backend, conlleva que el proyecto pueda ser continuado por otros desarrolladores. Con

el lanzamiento de .NET Core por parte de Microsoft, un proyecto de código libre y

multi plataforma, la tecnoloǵıa está atrayendo una gran cantidad de desarrolladores.

Según la encuesta anual del servicio Stack Overflow[34], .NET Core es el framework

que ocupa el tercer lugar en satisfacción por sus desarrolladores, por detrás de React

y Node.js (ambos de JavaScript) y también el tercer puesto en popularidad detrás de

Node.js y AngularJS.

El resultado del proyecto es por tanto un API completo y funcional que cumple las

caracteŕısticas deseadas.

6.3. Trabajo futuro

El trabajo futuro se podŕıa centrar principalmente en temas de seguridad. Una

mejora sustancial seŕıa la utilización del framework para .NET llamado Identity Server.

44

De esta forma se centralizaŕıa la autenticación de los usuarios entre la aplicación Web

y el API.

Otro de los aspectos que podŕıa considerarse es el cacheo de las respuestas del

API, mediante el uso de ETags. Los ETags son números que se comparten utilizando

cabeceras de HTTP. Este número representa el estado de la información del recurso

solicitado. Desde el servidor se comprueba el valor del ETag de la petición y si se trata

de un valor distinto al actual, se informa de ello en la respuesta. Si se trata del mismo

valor, se informa igualmente y el cliente puede utilizar la información que ya hab́ıa

solicitado. De esta forma las peticiones se reducen de tamaño. Una vez implementado

el cacheo, resultaŕıa interesante la distribución del API en servidores en distintas áreas

del mundo para garantizar un buen servicio en cualquier parte, no únicamente en

Europa central donde se encuentran las máquinas virtuales actualmente. El contenido

multimedia sin embargo está configurado a través de la red de entrega de contenidos

de Amazon, Cloudfront, para estar cacheado en distintos centros de datos del globo,

por lo que los datos que más tamaño tienen en la comunicación con la aplicación móvil

están cubiertos.

En la validación del API no se ha incluido ninguna prueba de carga o rendimiento,

con muchas peticiones simultáneas por ejemplo. Esto seŕıa interesante para detectar

cuellos de botella y diseñar mejoras en la arquitectura.

Por último, según la aplicación móvil incluya nuevas funcionalidades, el API tendrá

que soportarlas. Para ello seŕıa interesante utilizar un versionado del API, de forma

que se pudiera distinguir entre las distintas versiones de la aplicación para procesar las

peticiones acordemente.

6.4. Opinión personal

La realización de este proyecto ha sido un desaf́ıo en distintos aspectos, desde el uso

de nuevas tecnoloǵıas hasta la gestión del proyecto, pasando por aspectos de seguridad

que son especialmente delicados al tratarse de información de usuarios reales la que

está en juego. Se ha constatado la utilidad de los conocimientos adquiridos en una

gran variedad de asignaturas vistas en la carrera, la aplicación de una mezcla de

ellos para lograr un objetivo. Por otra parte se ha utilizado una gran cantidad de

tecnoloǵıas de terceros, como distintos paquetes y libreŕıas, adaptadas a la solución

que interesaba, algo que quizá no se hab́ıa visto tanto en la carrera y que ha resultado

tremendamente enriquecedor. El aprendizaje de todas estas nuevas tecnoloǵıas resulta

muy útil y probablemente será una gran ayuda para poder progresar laboralmente.

En definitiva la finalización del proyecto supone una gran satisfacción para el autor

45

por lo positivos que son todos los resultados.

46

7. Bibliograf́ıa

[1] Página Web de Sobaka Developments. http://sobakadevs.com/. Consultado:

10 de Noviembre de 2017.

[2] Página Web de Pocketbeat. https://www.pocketbeat.com/. Consultado: 10 de

Noviembre de 2017.

[3] Página Web de Xamarin. https://www.xamarin.com/. Consultado: 12 de

Noviembre de 2017.

[4] Página Web de TestFlight. https://developer.apple.com/testflight/.

Consultado: 12 de Septiembre de 2017.

[5] Página Web de Boiler Room. https://boilerroom.tv. Consultado: 25 de

Septiembre de 2017.

[6] Canal de YouTube de Boiler Room. https://www.youtube.com/user/

brtvofficial. Consultado: 25 de Septiembre de 2017.

[7] Aplicación para iOS de Boiler Room. https://itunes.apple.com/us/

app/boiler-room-broadcasting-the-underground/id769578063?mt=8.

Consultado: 25 de Septiembre de 2017. Publicada la versión 3.0.9 el 25 de

Septiembre de 2017.

[8] Aplicación para iOS de WAV. https://itunes.apple.com/us/app/

wav-watch-the-music/id1133388943?mt=8. Consultado: 25 de Septiembre

de 2017. Publicada la versión 1.3 el 8 de Septiembre de 2017.

[9] Página Web de BE-AT.TV. https://be-at.tv/. Consultado: 10 de Noviembre

de 2017.

[10] Aplicación para iOS de BE-AT.TV. https://itunes.apple.com/us/app/

be-at-tv/id820786942?mt=8. Consultado: 25 de Septiembre de 2017. Publicada

la versión 1.4 el 20 de Julio de 2015.

[11] ASP.NET. https://www.asp.net/. Consultado: 11 de Septiembre de 2017.

47

http://sobakadevs.com/
https://www.pocketbeat.com/
https://www.xamarin.com/
https://developer.apple.com/testflight/
https://boilerroom.tv
https://www.youtube.com/user/brtvofficial
https://www.youtube.com/user/brtvofficial
https://itunes.apple.com/us/app/boiler-room-broadcasting-the-underground/id769578063?mt=8
https://itunes.apple.com/us/app/boiler-room-broadcasting-the-underground/id769578063?mt=8
https://itunes.apple.com/us/app/wav-watch-the-music/id1133388943?mt=8
https://itunes.apple.com/us/app/wav-watch-the-music/id1133388943?mt=8
https://be-at.tv/
https://itunes.apple.com/us/app/be-at-tv/id820786942?mt=8
https://itunes.apple.com/us/app/be-at-tv/id820786942?mt=8
https://www.asp.net/

[12] Amazon Web Services. https://aws.amazon.com/. Consultado: 12 de Septiembre

de 2017.

[13] AWS RDS. https://aws.amazon.com/rds/. Consultado: 11 de Septiembre de

2017.

[14] AWS EC2. https://aws.amazon.com/ec2/?nc2=h_m1. Consultado: 12 de

Noviembre de 2017.

[15] Microsoft IIS. https://www.iis.net/. Consultado: 15 de Septiembre de 2017.

[16] ASP.NET MVC. https://www.asp.net/mvc. Consultado: 13 de Noviembre de

2017.

[17] Microsoft SQL Server. https://www.microsoft.com/en-us/sql-server/

sql-server-2016. Consultado: 12 de Noviembre de 2017.

[18] Galeŕıa del gestor de paquetes NuGet. https://www.nuget.org/. Consultado:

12 de Septiembre de 2017. Publicado: 12 de Septiembre de 2017.

[19] Entity Framework. https://docs.microsoft.com/en-us/ef/. Consultado: 13

de Noviembre de 2017.

[20] Newtonsoft JSON.NET. https://www.newtonsoft.com/json. Consultado: 13

de Noviembre de 2017.

[21] AutoMapper. http://automapper.org/. Consultado: 13 de Noviembre de 2017.

[22] Apache log4net. https://logging.apache.org/log4net/. Consultado: 13 de

Noviembre de 2017.

[23] Wowza Streaming Engine. https://www.wowza.com/products/

streaming-engine. Consultado: 13 de Noviembre de 2017.

[24] Git. https://git-scm.com/. Consultado: 13 de Noviembre de 2017.

[25] Atlassian Bitbucket. https://www.atlassian.com/software/bitbucket.

Consultado: 13 de Noviembre de 2017.

[26] TeamCity. https://www.jetbrains.com/teamcity/. Consultado: 13 de

Noviembre de 2017.

48

https://aws.amazon.com/
https://aws.amazon.com/rds/
https://aws.amazon.com/ec2/?nc2=h_m1
https://www.iis.net/
https://www.asp.net/mvc
https://www.microsoft.com/en-us/sql-server/sql-server-2016
https://www.microsoft.com/en-us/sql-server/sql-server-2016
https://www.nuget.org/
https://docs.microsoft.com/en-us/ef/
https://www.newtonsoft.com/json
http://automapper.org/
https://logging.apache.org/log4net/
https://www.wowza.com/products/streaming-engine
https://www.wowza.com/products/streaming-engine
https://git-scm.com/
https://www.atlassian.com/software/bitbucket
https://www.jetbrains.com/teamcity/

[27] Automating Deployments with TeamCity and Octopus

Deploy. https://blog.jetbrains.com/teamcity/2015/11/

automating-deployments-with-teamcity-and-octopus-deploy/. Consultado:

14 de Noviembre de 2017. Publicado: 18 de Noviembre de 2017.

[28] Visual Studio. https://www.visualstudio.com/. Consultado: 13 de Noviembre

de 2017.

[29] JSON Web Token. https://tools.ietf.org/html/rfc7519. Consultado: 20 de

Septiembre de 2017. Publicado: Junio de 2017.

[30] System.IdentityModel.Tokens.Jwt. https://www.nuget.org/packages/System.

IdentityModel.Tokens.Jwt/. Consultado: 20 de Noviembre de 2017.

[31] Diagrama JWT. https://cdn.auth0.com/content/jwt/jwt-diagram.png.

Consultado: 14 de Noviembre de 2017.

[32] NuGet Push. https://octopus.com/docs/packaging-applications/

package-repositories/pushing-packages-to-the-built-in-repository#

PushingpackagestotheBuilt-Inrepository-UsingNuGet.exepush.

Consultado: 20 de Septiembre de 2017.

[33] Instancias T2 de Amazon Web Services. https://aws.amazon.com/ec2/

instance-types/t2/. Consultado: 20 de Septiembre de 2017.

[34] Stack Overflow Developer Survey 2017. https://insights.stackoverflow.com/

survey/2017#technology. Consultado: 10 de Octubre de 2017.

[35] Octopus Deploy. https://octopus.com/. Consultado: 13 de Noviembre de 2017.

[36] ETag - HTTP. https://developer.mozilla.org/en-US/docs/Web/HTTP/

Headers/ETag. Consultado: 10 de Noviembre de 2017.

49

https://blog.jetbrains.com/teamcity/2015/11/automating-deployments-with-teamcity-and-octopus-deploy/
https://blog.jetbrains.com/teamcity/2015/11/automating-deployments-with-teamcity-and-octopus-deploy/
https://www.visualstudio.com/
https://tools.ietf.org/html/rfc7519
https://www.nuget.org/packages/System.IdentityModel.Tokens.Jwt/
https://www.nuget.org/packages/System.IdentityModel.Tokens.Jwt/
https://cdn.auth0.com/content/jwt/jwt-diagram.png
https://octopus.com/docs/packaging-applications/package-repositories/pushing-packages-to-the-built-in-repository#PushingpackagestotheBuilt-Inrepository-UsingNuGet.exepush
https://octopus.com/docs/packaging-applications/package-repositories/pushing-packages-to-the-built-in-repository#PushingpackagestotheBuilt-Inrepository-UsingNuGet.exepush
https://octopus.com/docs/packaging-applications/package-repositories/pushing-packages-to-the-built-in-repository#PushingpackagestotheBuilt-Inrepository-UsingNuGet.exepush
https://aws.amazon.com/ec2/instance-types/t2/
https://aws.amazon.com/ec2/instance-types/t2/
https://insights.stackoverflow.com/survey/2017#technology
https://insights.stackoverflow.com/survey/2017#technology
https://octopus.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag

50

Anexos

51

A. Mapa de la aplicación móvil

En este anexo se incluyen todas las pantallas de la aplicación móvil de Pocketbeat,

incluyendo anotaciones sobre la interacción con el usuario. La barra superior en color

negro que contiene el logo de Pocketbeat cumple una función de botón universal para

tener accesos directos en cualquier pantalla. Al pulsar una única vez la aplicación

cambia a la pantalla anterior a la actual. Al pulsar dos veces la aplicación cambia a

la pantalla inicial (tras registro o inicio de sesión). Al mantener pulsado se despliega

el menú. Tras explicar esta interacción no se va a incluir en todas las pantallas para

evitar la repetición.

Además, durante la reproducción de una sesión, se puede cambiar de modo v́ıdeo

a modo audio haciendo el movimiento con un dedo de desplazar hacia la izquierda o

derecha sobre la zona del reproductor.

Las interacciones están explicadas con flechas rojas y el nombre e identificador de

la figura que corresponde a la pantalla.

53

Figura A.1: Pantalla con el menú desplegable.

54

Figura A.2: Pantalla inicial tras abrir por primera vez la aplicación.

55

Figura A.3: Pantalla de inicio de sesión.

56

Figura A.4: Pantalla de registro.

57

Figura A.5: Pantalla de búsqueda de artistas y sesiones.

58

Figura A.6: Pantalla de los v́ıdeos de la aplicación, una vez el usuario se ha identificado
o registrado.

59

Figura A.7: Pantalla con el reproductor, en modo v́ıdeo. Arrastrando el v́ıdeo hacia
abajo se minimiza en un reproductor pequeño, el de la figura A.9. De esta forma se
puede seguir escuchando la sesión mientras se explora el contenido.

60

Figura A.8: Pantalla con el reproductor, en modo audio, donde se muestra una imagen
estática. De la misma forma que en modo v́ıdeo, se puede minimizar.

61

Figura A.9: Pantalla con el reproductor minimizado.

62

Figura A.10: Pantalla de la lista de artistas, se pueden filtrar por inicial seleccionando
la letra en la zona superior con fondo blanco.

63

Figura A.11: Pantalla con la información de un artista.

64

Figura A.12: Pantalla con los v́ıdeos guardados por el usuario.

65

Figura A.13: Pantalla con los artistas seguidos.

66

Figura A.14: Pantalla del perfil del usuario, donde se puede editar la información. No
hay transiciones a otras pantallas; el guardado es automático.

67

Figura A.15: Pantalla con información de soporte. Hay enlaces al correo electrónico y
redes sociales de la plataforma.

68

Figura A.16: Pantalla para funcionalidades sin implementar, como My Stream y
Connections.

69

70

B. API RESTful de Pocketbeat

En este anexo se especifican las operaciones admitidas por cada recurso, como se

observa en la tabla B.1.

URI GET POST PUT DELETE

/api/sessions X
/api/sessions/{id} X
/api/sessions/{id}/comments X X
/api/artists X
/api/artists/{id} X
/api/artists/{id}/sessions X
/api/users/{id} X X
/api/users/ X
/api/search X
/api/auth/login X

Tabla B.1: Operaciones de REST admitidas por cada punto de acceso del API.

El primer punto de acceso, /api/sessions, mediante el método GET proporciona

una colección de sesiones. Admite los parámetros order, genre, count y from. Los dos

primeros se utilizan para ordenar las sesiones por los distintos métodos explicados en

el análisis y filtrar por géneros musicales. Los dos últimos se utilizan para paginación.

El segundo, /api/sessions/{id}, responde con una sesión, cuyo identificador

corresponde a id. Las URIs que corresponden a los artistas (/api/artists y

/api/artists/{id}) responden de la misma manera, aunque la primera admite el

parámetro initial, para el filtrado de artistas por su letra inicial. No admiten las

operaciones POST o PUT porque la subida de sesiones y creación de artistas se realiza

desde la aplicación Web.

Mediante /api/sessions/{id}/comments se accede a los comentarios de la sesión

cuyo identificador corresponde a id. Usando GET se obtiene el conjunto de comentarios,

usando POST se crea uno nuevo. Los parámetros para crear un nuevo comentario son

userId y text (identificador de usuario y texto).

/api/artists/{id}/sessions se utiliza para obtener sesiones del mismo artista

en la reproducción de una sesión, mediante el método GET.

71

Utilizando el punto de acceso /api/users/{id} se accede a la información de un

usuario, identificado por id. Por el momento se utiliza para mostrar el propio perfil, por

lo que la solicitud debe ir acompañada de un token que asegure proviene del usuario

sobre el que se ha hecho la petición. Usando GET se obtiene la información, y utilizando

PUT se modifica.

Con el método POST y la URI /api/users/ se registran usuarios nuevos. En el

cuerpo de la petición aparecen los campos que se utilizan en el modelo de usuario, que

se han descrito previamente. Para subir la imagen se ha elegido codificarla en Base64

y mandar como parámetro, por su sencillez. Este método tiene el inconveniente de que

incrementa el tamaño de la imagen. El tamaño final se puede aproximar a cuatro tercios

del tamaño original. En este caso se trata de imágenes de avatar con unas dimensiones

reducidas, por lo que no se trata de ficheros grandes que creen peticiones muy lentas

por la red.

/api/search admite únicamente el método GET y un parámetro de texto como

entrada para la búsqueda.

Por último, mediante el método POST sobre /api/auth/login proporcionando

información sobre el identificador de usuario y la contraseña, se devuelve un JWT para

autenticación en peticiones futuras.

Aśı mismo, se han utilizado los códigos de respuesta de HTTP para indicar el

resultado de las operaciones. El código 200 indica que la petición es correcta y se env́ıa

la respuesta, y el código 201 que se ha creado un recurso correctamente. Los códigos

de error que se utilizan son: 400 para una petición mal formada, 401 para indicar que

la operación requiere autenticación que no se ha proporcionado y 404 para peticiones

de recursos no encontrados.

72

Lista de Figuras

1.1. Captura de pantalla de la página de Pocketbeat accedida desde un

ordenador de escritorio. 2

1.2. Captura de pantalla de la página de Pocketbeat accedida desde un

ordenador de escritorio. Vista de v́ıdeos. 2

1.3. Vista inicial. 3

1.4. Vista de v́ıdeos. 3

2.1. Captura de pantalla de la aplicación de Boiler Room, versión 3.0.9. . . 8

2.2. Captura de pantalla de la aplicación WAV, versión 1.3. 9

2.3. Captura de pantalla de la aplicación BE-AT.TV, pantalla inicial. Versión

1.4. 10

2.4. Captura de pantalla de la aplicación BE-AT.TV, menú lateral. Versión

1.4. 10

3.1. Pantalla principal aplicación. 15

3.2. Arquitectura del sistema. 18

3.3. Arquitectura del sistema de integración continua. 20

3.4. Arquitectura del sistema con iconos de las tecnoloǵıas utilizadas. 20

3.5. Arquitectura de la infraestructura de integración continua del sistema

con iconos de las tecnoloǵıas utilizadas. 23

3.6. Diagrama del proceso, con los diferentes procesos que realiza TeamCity

y Octopus. Obtenido de un art́ıculo[27] oficial de JetBrains. 23

4.1. Diagrama UML de las clases que forman los modelos necesarios en la

base de datos. 29

4.2. Interacción entre cliente y servidor utilizando tokens. Imagen obtenida

de la página de JWT[31]. 35

4.3. Creación de un despliegue desde Octopus Deploy. 35

4.4. Creación de un despliegue desde Octopus Deploy. 36

4.5. Creación de un despliegue desde Octopus Deploy. 36

73

5.1. Diagrama del despliegue en el servidor de prueba. 42

A.1. Pantalla con el menú desplegable. 54

A.2. Pantalla inicial tras abrir por primera vez la aplicación. 55

A.3. Pantalla de inicio de sesión. 56

A.4. Pantalla de registro. 57

A.5. Pantalla de búsqueda de artistas y sesiones. 58

A.6. Pantalla de los v́ıdeos de la aplicación, una vez el usuario se ha

identificado o registrado. 59

A.7. Pantalla con el reproductor, en modo v́ıdeo. Arrastrando el v́ıdeo hacia

abajo se minimiza en un reproductor pequeño, el de la figura A.9. De

esta forma se puede seguir escuchando la sesión mientras se explora el

contenido. 60

A.8. Pantalla con el reproductor, en modo audio, donde se muestra una

imagen estática. De la misma forma que en modo v́ıdeo, se puede

minimizar. 61

A.9. Pantalla con el reproductor minimizado. 62

A.10.Pantalla de la lista de artistas, se pueden filtrar por inicial seleccionando

la letra en la zona superior con fondo blanco. 63

A.11.Pantalla con la información de un artista. 64

A.12.Pantalla con los v́ıdeos guardados por el usuario. 65

A.13.Pantalla con los artistas seguidos. 66

A.14.Pantalla del perfil del usuario, donde se puede editar la información. No

hay transiciones a otras pantallas; el guardado es automático. 67

A.15.Pantalla con información de soporte. Hay enlaces al correo electrónico y

redes sociales de la plataforma. 68

A.16.Pantalla para funcionalidades sin implementar, como My Stream y

Connections. 69

74

Lista de Tablas

3.1. Requisitos funcionales de la aplicación móvil. 14

3.2. Requisitos funcionales del API . 16

3.3. Requisitos no funcionales del API . 17

4.1. URIs y recursos . 27

4.2. Modelos de objetos de transferencia de datos. 30

6.1. Esfuerzos . 44

B.1. Operaciones de REST admitidas por cada punto de acceso del API. . . 71

75

	Glosario
	Introducción
	Contexto y motivación
	Objetivos
	Estructura de la memoria

	Estado del arte
	Boiler Room
	WAV
	BE-AT.TV
	Valor añadido en la aplicación de Pocketbeat

	Análisis del sistema
	Requisitos funcionales de la aplicación móvil
	Análisis de requisitos
	Requisitos funcionales
	Requisitos no funcionales

	Arquitectura
	Tecnologías utilizadas
	Amazon Web Services (AWS)
	ASP.NET Web API
	Microsoft SQL Server
	Microsoft IIS
	Wowza Streaming Engine, en servidor Ubuntu
	Git y Atlassian Bitbucket
	TeamCity y Octopus Deploy
	Visual Studio 2017

	Desarrollo
	Desarrollo del API RESTful
	Conjunto de recursos
	Modelos de datos
	Separación en controladores
	Seguridad
	Gestión de imágenes

	Infraestructura de integración continua
	Instancias en Amazon Web Services

	Validación
	Debug mediante Visual Studio y Postman
	Conjunto de pruebas unitarias
	Despliegue de aplicación en servidor de prueba

	Conclusiones
	Gestión del proyecto
	Conclusiones
	Trabajo futuro
	Opinión personal

	Bibliografía
	Anexos
	Mapa de la aplicación móvil
	API RESTful de Pocketbeat
	Lista de Figuras
	Lista de Tablas

