W Universidad
100 Zaragoza

1542

Trabajo Fin de Grado

Desarrollo e implantacion de un API Web para
servir contenido multimedia a dispositivos moviles

Development and deployment of a Web API to deliver
multimedia content to mobile devices

Autor

Eduardo Criado Mascaray

Director

Johan Markus
SOBAKA DEVELOPMENTS AB

Ponente

Francisco Javier Fabra Caro
Departamento de Informatica e Ingenieria de Sistemas
Universidad de Zaragoza

Escuela de Ingenieria y Arquitectura
2017

M

MASTER

w
a
=
W
N
o)
<
oc
)
o
Q
=
u
W
Q
V)
)
<
<
=

"I‘ Escuela de . DECLARACION DE
Ingenieria y Arquitectura ‘
1 Universidad Zaragoza AUTORIA Y ORIGINALIDAD

(Este doct debe paflar ol Trabajo Fin de Grado (TFG)/Trabajo Fin de
Mister (TFM) cuando sea deposiado pars su evabuscion).

D./D2, Eduardo Criado Mascaray i

con n? de DNI 76971132E en aplicacién de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

Grado , (Titulo del Trabajo)
Desarrollo e implantacién de un API Web para servir contenido multimedia a

dispositivos moéviles

2

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 20 de Noviembre de 2017

Fdo: Eduardo Criado Mascaray

IT

Agradecimientos

Quisiera agradecer a Johan el haberme dado la oportunidad de llevar a cabo este
proyecto y a Javier Fabra por mostrar su interés en él y guiarme durante su realizacién.
A los profesores de la Universidad de Zaragoza y de la KTH de Estocolmo por los
conocimientos que me han transmitido durante mis anos de carrera, que me han
permitido llegar hasta esta etapa final.

A mis companeros y amigos con los que he compartido estos anos de estudio y buenos
momentos.

Por ultimo, a mi familia por hacer todo esto posible.

II1

IV

Desarrollo e implantacién de un API Web para
servir contenido multimedia a dispositivos mdviles

Resumen

La miusica electrénica se ha convertido en un género con una gran popularidad
desde que comenzé a tener una enorme influencia en la musica popular en las décadas
de 1970 y 1980, para finalmente establecerse en la de 1990. Presente en la actualidad
en las discotecas y los festivales de musica, también cuenta con una amplia audiencia
en la Web, a través de paginas como SoundCloud o servicios como Spotify y canales en
YouTube. Debido a la gran demanda de contenido relacionado con ella, los pinchadiscos
y sus actuaciones, hay plataformas como Boiler Room que ofrecen sesiones de musica
electronica que cuentan con cifras de visionado de decenas de millones.

Pocketbeat es una plataforma que ofrece contenido de video y audio de distintos
subgéneros como el techno o el house. Esta se puede acceder desde el navegador, tanto
desde ordenadores personales como dispositivos moviles, desde donde proviene la mayor
parte de sus usuarios. Tras el andlisis de plataformas y aplicaciones similares se han
detectado ciertas carencias. Para tratar de cubrirlas y dar un mejor soporte a dichos
usuarios se ha decidido invertir en el desarrollo de una aplicaciéon mévil nativa. Esta
necesita un API Web que le sirva el contenido de la plataforma, cuyo proyecto se expone
en la presente memoria. Los objetivos de este son por tanto el desarrollo e implantacién
del API y el uso de una infraestructura de integracién continua.

Para ello se ha utilizado el framework ASP.NET Web API, utilizando Microsoft
SQL Server como base de datos y ejecutdndose en un servidor Windows con IIS. La
infraestructura de integracion continua se basa en Atlassian Bitbucket para el control
de versiones y TeamCity y Octopus Deploy como servidores de gestion de compilacion,
validacion y despliegue.

Tras pasar una fase de pruebas el API se ha puesto en produccién de manera
satisfactoria, de forma que se utiliza por la aplicacion mévil en actualidad. La

infraestructura de integracion continua ha resultado de gran utilidad.

VI

Indice

Glosario

. Introduccién

1.1. Contexto y motivacién
1.2, Objetivos o

1.3. Estructura de la memoria

. Estado del arte

2.1. Boiler Room
2.2, WAV .
2.3. BE-AT. TV

2.4. Valor anadido en la aplicacién de Pocketbeat

. Analisis del sistema

3.1. Requisitos funcionales de la aplicacién movil
3.2. Analisis de requisitoso
3.2.1. Requisitos funcionales
3.2.2. Requisitos no funcionales
3.3. Arquitectura
3.4. Tecnologias utilizadas L
3.4.1. Amazon Web Services (AWS)
3.4.2. ASPNET Web API.
3.4.3. Microsoft SQL Server L.
3.4.4. Microsoft IIS
3.4.5. Wowza Streaming Engine, en servidor Ubuntu
3.4.6. Git y Atlassian Bitbucket
3.4.7. TeamCity y Octopus Deploy
3.4.8. Visual Studio 2017o

IX

Tl e

© o I

11

4. Desarrollo

4.1. Desarrollo del API RESTful
4.1.1. Conjunto de recursos
4.1.2. Modelos de datos

4.1.3. Separacion en controladores

4.1.4. Seguridad
4.1.5. Gestién de imagenes
4.2. Infraestructura de integracién continua

4.2.1. Instancias en Amazon Web Services

5. Validacion

5.1. Debug mediante Visual Studio y Postman

5.2. Conjunto de pruebas unitarias

5.3. Despliegue de aplicacion en servidor de prueba

6. Conclusiones

6.1. Gestién del proyectoo
6.2. Conclusiones
6.3. Trabajo futuro

6.4. Opinion personal L

7. Bibliografia

Anexos

A. Mapa de la aplicacion movil
B. API RESTful de Pocketbeat
Lista de Figuras

Lista de Tablas

VIII

25
25
26
26
30
32
33
33
37

39
39
40
41

43
43
44
44
45

47

50

53

71

73

75

Glosario

En este capitulo se explican términos importantes que se repiten a lo largo de toda

la memoria. Estos son:

— Application programming interface (API): conjunto de métodos, procedimientos
y herramientas que se proporcionan para construir aplicaciones o programas. En
este proyecto se habla de un API Web, es decir, del conjunto de métodos que se
han creado para construir aplicaciones (la aplicacién mévil), mediante tecnologias

propias de la Web.

— Create, read, update and delete (CRUD): en espanol, crear, leer, actualizar y
borrar. Son las cuatro operaciones basicas de un sistema de almacenamiento
persistente. En el desarrollo de un API RESTful tienen una correlacion con los
métodos HTTP utilizados.

— Framework: en el desarrollo de software, abstraccién que proporciona un conjunto
de conceptos y préacticas genéricas que se pueden adaptar para un problema en

particular.

— Integracion continua: practica de programacion que promueve el lanzamiento de
cédigo con nuevas funcionalidades con alta frecuencia, mas de una vez al dia, con
automatizacion en los procesos del lanzamiento. En este proyecto se adopta el

concepto para referirse a la arquitectura que permite el despliegue del API.

— Modelo-vista-controlador (MVC): patrén de disenio software tradicionalmente
utilizado en aplicaciones que incluyen una interfaz de usuario. Organiza la
aplicacion en tres tipos de componentes (modelos, vistas y controladores) con
funciones distintas y que se comunican entre si. Los modelos contienen la logica
de negocio y datos, las vistas presentan la informacion y los controladores reciben
la entrada del usuario que transforma en acciones para los modelos o las vistas.
El framework utilizado para este proyecto (ASP.NET Web API) cuenta con una
estructura inicial basada en este patrén pero sin contar con las vistas, que serian

propias de por ejemplo una pagina Web.

IX

— Representational State Transfer (REST): arquitectura software utilizada en
sistemas distribuidos. Define un conjunto de restricciones y practicas que generan
ventajas como escalabilidad o su consumo independiente de la plataforma del
cliente. Un API Web que sigue la arquitectura REST se conoce como RESTful.

Se explica en mayor profundidad en la seccion 4.1.

— Sistema de control de versiones: gestiona los cambios que se producen en los
ficheros que componen un programa informatico (generalmente ficheros de cédigo
fuente, pero no tunicamente). Hay de distintos tipos: locales, que siguen un
modelo cliente-servidor, distribuidos, etc. En este proyecto se utiliza un sistema

distribuido, detallado en la subseccién 3.4.6.

1. Introduccion

En este capitulo se describe el contexto en el cual el proyecto se ha desarrollado
y las razones de su existencia. Después se enumeran los objetivos que se pretenden

alcanzar con el mismo, y por ultimo la estructura de la presente memoria.

1.1. Contexto y motivacion

La empresa SOBAKA DEVELOPMENTS ABJ[1], situada en Suecia, desarrolla
proyectos tecnolégicos, como aplicaciones moviles o paginas Web, y ofrece servicios
de publicidad en Internet. Uno de estos proyectos, y el que mas importancia tiene
actualmente, es Pocketbeat[2]. Pocketbeat es una plataforma de contenido de video
y audio centrada en distintos subgéneros de la musica electrénica. Intenta ofrecer
una experiencia lo mas cercana posible a los aficionados de estos géneros de fiestas y
actuaciones de DJs. El contenido mas frecuente es de tipo video, con una duracion de
entre una hora a dos, que corresponde al tiempo medio de las sesiones de pinchadiscos.

Esta plataforma se puede acceder desde el navegador, tanto desde ordenadores
personales como dispositivos moéviles, ya que cuenta con un diseno adaptativo. En las
figuras 1.1 y 1.2 se observa el aspecto de la pagina Web desde el navegador de un
ordenador personal. En las figuras 1.3 y 1.4 el mismo pero desde un dispositivo moévil.

La plataforma cuenta con un gran porcentaje de usuarios que principalmente
acceden a ella utilizando dispositivos méviles'. A pesar de los grandes avances en
diseno de aplicaciones Web para mdviles, el desarrollo de aplicaciones nativas sigue
ofreciendo ciertas ventajas, que sin embargo conllevan un mayor coste de desarrollo.

Algunas de estas ventajas son:

— Contenido offfine disponible: aunque no se ha incluido en esta iteracién de
desarrollo, es una de las funcionalidades que se prevé que atraiga a un nimero

importante de usuarios.

— Acceso a mayores funcionalidades y sensores del dispositivo: de una forma mas

!Mediante la herramienta Google Analytics se comprobé que desde el 1 de agosto al 1 de Septiembre
de 2017, el porcentaje de acceso desde dispositivos mdviles era del 64 %.

e®e® < > | @ pocketbeat.com <

BETA -
POCKET3ZAT Videos - Artists

WATCH THE WORLD'S MUSIC

Watch exclusive music videos from festivals,
concerts, parties and clubs - only at Pocketbeat

Enjoy videos

Featured Videos

Login

Signup

Figura 1.1: Captura de pantalla de la péagina de Pocketbeat accedida desde un

ordenador de escritorio.

o0 e < i) pocketbeat.com &

BETA -
POCKET3ZAT Videos - Artists

SORTBY:

Name

Total Views

Trends Closing set at Tronic party... Techno session at Backyard...

Newest

FILTERS: clearall
Genres

Techno

Tech-house

Trance

House

Psy trance

progressive trance

Techno session from Underhof... Trance session at Monday Bar... B2b session with Ann Clue at...

Deep House
Hardstyle
progressive psytrance
Electronica

Progressive House

High-tech minimal

After movie

ul

Login

° B

Signup

Figura 1.2: Captura de pantalla de la péagina de Pocketbeat accedida desde

ordenador de escritorio. Vista de videos.

un

POCKETIEAT D POCKETIZAT O
[vibeos |
WATCH THE WORLD'S —

MUS'C Sortby v Filters v

Watch exclusive musicvideos from festivals,
concerts, parties and clubs - only at Pocketbeat

Enjoy videos

Techno set at Tronic showcase...

Featured Videos

Techno set at Tronic showcase... Closing set at Tronic party...

Figura 1.3: Vista inicial. Figura 1.4: Vista de videos.

sencilla poder acceder a la cdmara o el GPS. Las librerias nativas, como la de
reproduccién de video en iOS, ofrecen una alta libertad de configuracion y un

rendimiento superior.

— Visibilidad en el dispositivo del usuario: si la aplicacion se encuentra instalada y
el usuario observa el icono mientras realiza otras tareas es mds probable que la
utilice con mayor frecuencia, frente a quizas encontrarse como un marcador en el

navegador Web del teléfono.

— Aparicion en la tienda de aplicaciones de la plataforma: mayor confianza por
parte del usuario al utilizar la plataforma, al haberse aprobado segin los criterios
de la tienda. Se trata de una aplicacion nativa y no de una aplicacién hibrida

donde se ha encapsulado la pagina Web en un una vista de navegador.

— Interfaz que aproveche los principios de diseno y recursos, como transiciones o

botones, que proporciona la plataforma.

Por estas razones se decicidi6 desarrollar una aplicaciéon moévil para acceder a la
plataforma.

El API Web desarrollado pretende proporcionar la informacién necesaria a la

aplicacion movil mediante el uso de un API Web. Dado que el API con el que cuenta la
aplicacion Web estd fuertemente ligado a las vistas?, no se ha podido reutilizar para la
aplicacion movil. La aplicacién mévil se encuentra actualmente en desarrollo. Aunque
se estd desarrollando mediante Xamarin[3] para cubrir tanto iOS como Android, el
lanzamiento inicial se va a realizar centrandose en iOS, que cuenta con una mayor cuota
de mercado en Suecia. Xamarin es una tecnologia que permite desarrollar aplicaciones
moviles nativas en C# para distintas plataformas, de forma que compartan la légica
de negocio, pero difieran en la parte de la interfaz.

La aplicaciéon se encuentra en fase de beta testing y disponible mediante
TestFlight[4]. TestFlight es un servicio que ofrece Apple para los desarrolladores de
aplicaciones méviles para distribuirlas, de forma que se pueda invitar a otras personas
para que las prueben.

Otro de los aspectos que se decidieron para este proyecto fue el uso de una
infraestructura de integracion continua que permitiera la automatizacion de compilado
y despliegue del proyecto.

Con este proyecto, teniendo en cuenta con que forma parte del desarrollo de la
aplicacion movil, se pretende aumentar el nimero de usuarios de la plataforma, y
cuando el nimero de usuarios sea considerable dar pasos hacia la monetizacién de esta.
Esto se ha planeado de distintas formas. Una opcion es adoptar un modelo freemium,
donde parte del contenido y funcionalidades sean gratis para todos los usuarios y se
reserven ciertas para usuarios que paguen por la plataforma. Otra opcién que se esta
considerando es la busqueda de inversién por parte de otras plataformas como Boiler
Room[5], que cuentan con un gran nimero de usuarios, pero con una pagina Web o

aplicacion inferior.

1.2. Objetivos

Los objetivos de este proyecto son por tanto:

— Desarrollar un API que permita el acceso al contenido de la plataforma desde
una aplicaciéon mévil, independientemente de su sistema operativo. Aunque el
desarrollo del API se haya realizado en concreto para ser utilizada por una
aplicacion mévil, puede ser utilizada en el futuro para ofrecer los datos a terceros,
que puedan utilizar la informacion para sus propias aplicaciones, o para un
rediseno de la aplicaciéon Web. Un ejemplo de rediseno seria cambiar a una
aplicacion front-end con alguna libreria hecha en JavaScript, como React o

Angular, que consumiera los datos del API.

2La aplicacién Web sigue el patrén Modelo-vista-controlador.

4

— Crear una estructura de integracién continua. En la primera fase de desarrollo
de la aplicacion los cambios seran frecuentes y es importante reducir el tiempo
de despliegue lo méaximo posible. Dado el uso de integracién continua en el
mantenimiento y desarrollo de la pagina Web de Pocketbeat se puede aprovechar

la tecnologia para crear una infraestructura similar para el APL.

— Desplegar el API primero en un entorno de pruebas y mas adelante en produccién.
El entorno de pruebas debera ser lo méas parecido posible al entorno de
produccién. Se utilizara la infraestructura mencionada en el objetivo anterior

para este mismo.

1.3. Estructura de la memoria

La memoria del trabajo esta formada por los siguientes capitulos y anexos:
— Glosario: definicion de términos utilizados a lo largo de la memoria.

— Capitulo 1, Introduccion: se introduce el proyecto, detallando los motivos por
los que se ha llevado a cabo y su contexto, los objetivos y la estructura de la

memoria.

— Capitulo 2, Estado del arte: se enumeran aplicaciones con un proposito y
contenido similar al del de Pocketbeat y se justifica qué ofrece esta frente a las

demas.

— Capitulo 3, Analisis del sistema: contiene una descripcién de los objetivos, de
una manera mas minuciosa que en la introduccién. A continuacion se enumeran
los requisitos de la aplicacion mévil, y a partir de estos los del API Web, tanto
funcionales como no funcionales. Tras esto se pasa a explicar la arquitectura que

compone el sistema y las tecnologias utilizadas junto a su justificacién.

— Capitulo 4, Desarrollo: se describe el proceso de desarrollo del API, con todas las

decisiones tomadas, ademas de la infraestructura para el despliegue de esta.

— Capitulo 5, Validacién: contiene la explicacién de las pruebas para asegurar el
correcto funcionamiento del API; primero las no formales y las herramientas

utilizadas y luego las formales en forma de tests unitarios.

— Capitulo 6, Conclusiones: se describe la gestién del proyecto, sus conclusiones, el

trabajo futuro a realizar y la opinién personal sobre el mismo.

— Capitulo 7, Bibliografia: contiene el conjunto de referencias consultadas.

— Anexo A, Mapa de la aplicacién movil: conjunto de pantallas de la aplicaciéon e

interaccion entre ellas.

— Anexo B, API RESTful de Pocketbeat: se detallan las operaciones por recurso
del APL

2. FEstado del arte

En este capitulo se describen aplicaciones moviles que ofrecen un contenido similar,
se analizan sus puntos fuertes y débiles y qué ofrece Pocketbeat frente a ellas. Solo se
incluyen aplicaciones para iOS, que es la plataforma elegida para el lanzamiento de la

aplicacion de Pocketbeat por ser la mas utilizada en Suecia.

2.1. Boiler Room

Boiler Room es la plataforma mas parecida, tanto en propésito como en contenido.
Contiene el mayor nimero de videos sobre fiestas y conciertos. Aunque originalmente
centrada en la musica electrénica, se ha expandido a otros géneros como el hip hop
o el jazz. Su canal de YouTube[6] cuenta con cerca de 1,4 millones de subscriptores y
aproximadamente 5500 videos. Su pagina Web ofrece el mismo contenido que el canal
de YouTube pero mejor organizado, ya que cuenta con 4 canales o channels, donde
el contenido estd organizado por géneros similares (musica electrénica britdanica como
garage y grime en el primero, house y techno en el segundo, etcétera). Ademés las
mismas sesiones estan disponibles en formato audio a través de SoundCloud.

Cuenta ademés con una aplicaciéon maévil[7]. La aplicacién mévil ofrece las mismas
funcionalidades que la pagina Web y ademads permite la descarga de las sesiones al
dispositivo en formato audio. Las descargas de audio se pueden acceder después a
través de una de las pestanas inferiores, para reproducir o eliminar. En la pestana
FEzplore se puede filtrar el contenido por géneros, formatos (sesiones en discotecas, en
estudio, documentales, etc.) y series. Se ha incluido una captura de pantalla en la figura
2.1 para observar su diseno.

Los puntos mas fuertes de la aplicacién son la cantidad de contenido (aunque no sea
una funcionalidad, un usuario se siente atraido por esto), la organizacién de la musica
en canales, la reproduccion tanto de video como audio y la posibilidad de descargar
sesiones para no tener que utilizar la tarifa de datos, ademéds de una interfaz sencilla
y pulida. Por el contrario, flaquea en cuanto a que no se puede buscar por artista,
no se pueden realizar comentarios ni guardar sesiones, o artistas, como favoritos. En

resumen la aplicacién resulta demasiado sencilla, podria ofrecer mas funcionalidades y

7

DJ Set
- S “

HELENA HAUEF |

L

Amstérdam /| Aug, 2017 X—ho min / s

Quiité possibly the most eXcitifig DJ in‘the World
right now, Helena Haufffinally returnedito BR a...

DEKMANTEL 2017

We return to our favourite festival - maybe even
our favourite place full stop - for the fifth year
running.

*

Featured

Figura 2.1: Captura de pantalla de la aplicacion de Boiler Room, version 3.0.9.

mantener igualmente un diseno minimalista.

2.2. WAV

WAV([8] no se parece tanto en contenido; aunque también se centra en musica
electronica, ofrece en mayor medida contenido sobre la cultura hip hop. Ademas, no esta
tan enfocada a sesiones completas de actuaciones, sino también videoclips, entrevistas
o resumenes de conciertos. Las funcionalidades sin embargo son similares, y en cierta
medida muy influenciadas por Boiler Room. Cuenta con una organizacién del contenido
en canales igual que Boiler Room, pero estos son mas bien canales promocionados,
donde revistas como Fader muestran su contenido. Si que permite la busqueda por
artista y un perfil de usuario. El perfil de usuario ofrece la posibilidad de almacenar
artistas favoritos y subscripcién a canales y series (entendidas como videos con un
contenido y formato parecido), ademds de la realizacién de comentarios en los videos.
En la captura de pantalla mostrada en la figura 2.2 se puede observar que el diseno es
muy similar al de la aplicacién de Boiler Room, en la figura 2.1.

A pesar de contar con mayor funcionalidades que la aplicacién de Boiler Room, el

contenido es mucho mas limitado y no se permite su descarga ni la opcién de cambiar

®

HIGHER FREQUENCIES
W/ BIA & CJ FLY

BIA

YESTERDAY | 3:08

Figura 2.2: Captura de pantalla de la aplicacion WAV, versién 1.3.

entre audio y video.

2.3. BE-AT.TV

BE-AT.TVI[9] se trata probablemente de la aplicaciéon[10] con un propdsito més
parecido al de Pocketbeat, ya que esta inicamente enfocada a sesiones de pinchadiscos
de musica electréonica. Sin embargo, se ha valorado si incluirla o no en este capitulo
debido a que la dltima versién (1.4) de la aplicacién es de hace dos anos. Esto es
palpable en el diseno, bastante anticuado. Se puede observar el aspecto de la aplicacion

en las figuras 2.3 y 2.4.

Sin embargo incluye muchas funcionalidades, como explorar por artistas, cuentas
de usuario, se puede comentar en las sesiones, compartirlas. También cuenta con un
calendario que contiene informacién de eventos planificados. Resulta extrano que no sea

haya continuado su desarrollo porque el contenido de sesiones que muestra es actual.

El reproductor de video por otra parte deja mucho por desear, ya que solo permite
el pausado de la sesiéon, no hay ningin tipo de control para dirigirse a un punto en el

tiempo anterior o siguiente ni una barra que indique el progreso.

9

BE-AT.TV

Next LIVE Event

Issue 002: Opening

T'B(

Recently Recorded

V=
(=)

Figura 2.3: Captura de pantalla de la aplicacion BE-AT.TV, pantalla inicial. Version
1.4.

@ BE-AT.TV

Figura 2.4: Captura de pantalla de la aplicacion BE-AT. TV, menu lateral. Versién 1.4.

10

2.4. Valor anadido en la aplicacién de Pocketbeat

Pocketbeat trata de cubrir un numero de funcionalidades que otras aplicaciones
similares del mercado carecen. La aplicacién que se estd desarrollando ofrece
un contenido de alta calidad, aunque pequeno si se compara a Boiler Room
(aproximadamente quinientas sesiones frente a las mds de cinco mil) pero
suficientemente variado para ser atractivo a los usuarios. Ofrece funcionalidades como
el acceso mediante una cuenta de usuario, guardado de artistas y sesiones favoritas,
realizado de comentarios, cambio entre audio y video, y en un futuro cercano contenido
offline. Es posible explorar por artistas, filtrando por inicial, y la exploracion de sesiones
permite filtrado por género y orden segin contenido destacado, las sesiones mas nuevas
y méas antiguas, “de moda” y las mas vistas. Todo esto manteniendo una interfaz actual,

minimalista y usable.

11

12

3. Analisis del sistema

Tras la introduccién, en este capitulo se va a dar una explicacién del analisis
de requisitos del API, partiendo de los requisitos de la aplicacién movil. Ademas se
va a proponer la arquitectura del sistema. Por 1ltimo, se justificaran las tecnologias

utilizadas para su desarrollo. Los objetivos ya se han explicado en la seccion 1.2.

3.1. Requisitos funcionales de la aplicaciéon movil

Los requisitos funcionales de la aplicacion mévil aparecen en la tabla 3.1.

Por sesion se entiende una grabacion de una actuaciéon en directo de un pinchadiscos,
ya sea en formato video o sélo audio. La sesion que mas “de moda” estd es la que
acumula mas visionados durante el dia de consulta. El contenido destacado se elige
desde un panel de control de administrador de la aplicacién Web, no se trata de ningin
algoritmo.

En la figura 3.1 se puede observar un ejemplo de pantalla de la aplicacion movil,
simplemente, para exponer el tipo de informacion que los dispositivos médviles van a

tratar. En el anexo A se encuentran todas las pantallas de la aplicacién.

3.2. Analisis de requisitos

Se han visto los requisitos de la aplicacién movil, y por tanto se pueden derivar de
ellos los requisitos que el API debe tener. Se presentan a continuacién.
3.2.1. Requisitos funcionales

Los requisitos funcionales aparecen en la tabla 3.2.
La informacion de métodos y URIs especificas para el funcionamiento de la
aplicacion estan especificadas en el capitulo 4.

3.2.2. Requisitos no funcionales

Los requisitos no funcionales aparecen en la tabla 3.3.

13

Cdédigo Descripcion

RF1 El usuario de la aplicacion tiene que ser capaz de identificarse, usando
usuario y contrasena.

RF2 El usuario debe poder registrarse, introduciendo nombre, correo
electrénico, contrasena y una imagen de perfil.

RF3 El usuario tiene que poder recuperar la contrasena, solicitando que se le
reenvie un enlace para crear una nueva al correo electrénico.

RF4 El usuario podra explorar una serie de sesiones de artistas y filtrarlas
segun género musical y por mas visto, “de moda”, destacado, més nuevo
y mas antiguo.

RF5 El usuario podra reproducir una sesién y cambiar entre audio y video.

RF6 El usuario podra guardar esa sesién, que pasard a formar parte de una
lista con sesiones guardadas.

RF7 El usuario podra compartir la sesion, en distintas redes sociales u
obteniendo un enlace.

RF8 El usuario podra publicar un comentario en una sesion.

RF9 Al reproducir una sesién, se mostrarda informacion sobre sesiones del
mismo artista y sesiones relacionadas con la que esté reproduciendo.

RF10 El usuario podra explorar los artistas de la plataforma y filtrar segiin sus
iniciales.

RF11 El usuario podréd seguir a un artista. Al seguir a un artista el artista
aparecera en un menu que contenga los artistas seguidos.

RF12 El usuario podra realizar busquedas de texto cuyos resultados podran ser
tanto de artistas como de sesiones, que apareceran conforme escriba.

RF13 El usuario podra acceder a un ment de ajustes en el cual podra editar su

nombre, pais de residencia, etc.

Tabla 3.1: Requisitos funcionales de la aplicaciéon movil.

14

eeeco |nVision T 8:00 PM

POCKET3EIAT

JEFF MILLS

Home coming techno King in Detroit

MONIKA KRUSE™

Awesome techno set by the queen of electron...

Figura 3.1: Pantalla principal aplicacién.

15

Codigo

Descripcion

RF1

El sistema debe responder a cada peticion de acceso a un recurso con el
recurso especificado.

RF2

El sistema debe responder con un mensaje de error en el caso de que el
recurso especificado sea inexistente o el usuario que realiza la peticiéon no
tenga acceso a él. Para esto el sistema hara uso de los cédigos de error
establecidos en HTTP.

RF3

El sistema debe aceptar unicamente métodos HTTP estandar del

repertorio CRUD (GET, POST, PUT y DELETE).

RF4

El sistema debe validar si una peticién que afecta a datos unicamente
accesibles por un usuario proviene de dicho usuario. El mecanismo elegido
para realizar la autenticacién se decidird mas adelante.

RF5

El sistema debe contener un recurso que corresponda a sesiones, filtrando
segun los parametros: género, més visionados, “de moda”, destacado, mas
nuevo y mas antiguo. Ademas para obtener una sesién individual se puede
utilizar su identificador. Se podra solicitar informacion sobre sesiones del
mismo artista y sesiones relacionadas.

RF6

El sistema debe contener un recurso que corresponda a artistas, con
posibilidad de filtrar por inicial. También se podra obtener artistas
individuales con su identificador. Debe permitir anadir como seguido el
artista por parte de un usuario. Se podra obtener sesiones del artista.

RE7

El sistema debe contener un recurso que corresponda al usuario, que
permita modificar sus campos como correo electrénico, nombre o ciudad.

RE8

El sistema debe contener un recurso que corresponda a comentarios de
una sesion. Tiene que ofrecer la funcionalidad de leerlos y crear nuevos.

RF9

El sistema debe aceptar una cadena de texto como busqueda, que devuelva
resultados tanto de artistas como sesiones.

Tabla 3.2: Requisitos funcionales del API

16

Cdédigo Descripcion

RNF1 La comunicacion entre cliente y servidor debe de ser cifrada, mediante
HTTPS.

RNF2 Los modelos de sesién contendran la siguiente informacion:

— Identificador.

— Titulo.

— Descripcion.

— Enlace de visionado.

— Imagen en miniatura.

— Identificadores de/de los artista/s.
— Nombre de/de los artista/s.

RNF3 Los modelos de artista contendran la siguiente informacion:

— Identificador.
— Nombre.

— Biografia.

— Imagen.

RNF4 Los modelos de usuario contendran la siguiente informacién:

— Identificador/Correo electrénico.
— Nombre.

— Contrasena.

— Pais.

— Ciudad.

— Teléfono mévil.

— Imagen.

RNF5 Los modelos de comentario contendran la siguiente informacion:

— Identificador del autor.
Nombre del autor.

— Texto.

— Fecha.

RNF6 Las respuestas del sistema deben de estar de estar en formato JSON.

Tabla 3.3: Requisitos no funcionales del API

17

3.3. Arquitectura

En esta secciéon se describe la arquitectura. La arquitectura se ha dividido en
dos, dado que primero se explica la arquitectura que corresponde al funcionamiento
de la aplicacién, y después la arquitectura de la infraestructura de integracion
continua. El diagrama de la figura 3.2 corresponde a la arquitectura propuesta para el

funcionamiento de la aplicacion.

:Q' :Q'
) !) 111111 o}
|[]I I[]|
I[]I |;]|
 ELLETE] Q711101 o
d 771101 oL d 711711 of

Base de datos Servidor gue ejecuta Servidor due almacena
sesiones

Dispositivo mvil con
aplicacion Pocketbeat

Figura 3.2: Arquitectura del sistema.

El diagrama de la figura 3.3 corresponde a la arquitectura de integracion continua.

A continuacién se explica cada elemento de los diagramas anteriores:

— Base de datos: contiene los datos de la plataforma, de los cuales se extraeran los

necesarios dados los requisitos anteriores.

— Servidor con API: es el servidor que aloja la aplicacién que ofrece la funcionalidad
de API.

— Servidor que almacena las sesiones: es el servidor que almacena los ficheros con

las sesiones, bien en formato video o audio.

— Servidor con repositorio de codigo remoto: permite el trabajo en equipo con otros
desarrolladores y a la vez cumple la funciéon de ser una copia se seguridad de la

aplicacion en todo momento.

18

— Servidor que compila y despliega paquetes: facilita el despliegue y ofrece ventajas
como establecer procesos rutinarios antes y después de la operacién o gestién de

versiones del software.

3.4. Tecnologias utilizadas

Los diagramas de arquitectura con las distintas tecnologias son los siguientes: la
figura 3.4 corresponde al de la aplicacién y la figura 3.5 al de la infraestructura de
despliegue.

En esta seccién se enumera el conjunto de tecnologias utilizadas y su razom.
La tecnologia de mayor importancia para el desarrollo del proyecto es sin duda
ASP.NETI[11], un framework enfocado a la Web desarrollado por Microsoft. Utiliza
el lenguaje de programacién C+#. En concreto se ha utilizado el framework ASP.NET
Web API, que esta enfocado, como su nombre indica, a la creacién de APIs Web. Dado
que se trata de un framework especificamente orientado a este tipo de aplicaciones

contiene muchas utilidades que hacen el desarrollo mas accesible.

3.4.1. Amazon Web Services (AWS)

Se ha elegido AWS[12] como proveedor de servicios en la “nube”. Ofrece soluciones
para todos los elementos que componen la arquitectura, tanto de la aplicacion como
de la infraestructura de integracién continua. Para la base de datos ofrece una solucion
llamada Relational Database Service (RDS)[13]. En el caso de servidores, ofrece Elastic
Compute Cloud (EC2)[14], que contiene una gran variedad de maquinas virtuales, con
hardware adaptado para distintas situaciones, como maquinas con necesidad de alta
capacidad de memoria o alta velocidad de computacién. En este caso, la familia de
maquinas de propédsito general sera suficiente para las necesidades de la aplicacién. Por

esta versatilidad de productos se ha elegido este proveedor de servicios cloud.

3.4.2. ASP.NET Web API

Como ya se ha nombrado, framework especializado en el desarrollo de APIs Web.
Debido a que la mayor parte del cédigo del proyecto Pocketbeat se encuentra en el
ecosistema de Microsoft (servidor IIS[15], ASP.NET MVC[16] para la pagina Web,
Microsoft SQL Server[17] para la base de datos) tiene sentido mantener la misma
tecnologia para la pagina web.

Este framework cuenta ademéas con un gran nimero de paquetes de libre uso,

accesibles mediante NuGet[18]. NuGet es un gestor de paquetes para la plataforma

19

-

Servidor con repbgitori Servidor que compila y
codigo remo despliegg paquetes

lor que ejecuta
APl Web

AR

Repositorio local con el
codiao del API

Figura 3.3: Arquitectura del sistema de integracién continua.

;ﬁ =. ﬁ;glcrosoft N |ASP_NET a gg;zn:mta

& ENGINE"
Microsoft
SQL Server c ; e
I | I | .‘
| |
. ! . Ve
I |
: : : :
I i | I
[| b e e = =]
Base de datos Servidor gue ejecuta T que almacena
. AP| Web las sesiones
NINg
iiEramazon

Dispositivo mévil con
aplicacion Pocketbeat

Figura 3.4: Arquitectura del sistema con iconos de las tecnologias utilizadas.

20

NET, cuenta con mas de 90.000 paquetes distintos. Algunos de los que se van a utilizar

en concreto para este proyecto son:

— Entity Framework[19]: provee un mapeo objeto-relacional. De esta manera no
hay necesidad de preocuparse de la creacién de tablas en SQL y las migraciones
cuando se cambian los distintos modelos son sencillas gracias a los distintos

comandos que ofrece.

— Newtonsoft.Json[20]: permite la serializacién y deserializacién entre objetos de
ASP.NET y objetos JSON, que es la notacion que nuestra API Web utiliza.

— AutoMapper[21]: ofrece un mapeo objeto a objeto. La tarea de mapeo entre
objetos resulta monoétona, y si aparece en distintas localizaciones del cddigo,
repetitiva. AutoMapper ofrece mapeo automatico de campos de objetos con
mismos nombres, y una sintaxis muy sencilla para los campos que no tienen
el mismo nombre en distintos objetos o cuando es necesario algun tipo de

transformacion.

— log4net[22]: permite escribir la salida del registro a ficheros o una base de datos

entre otros y soporta distintos niveles de registro (Debug, Info, Warn, etc.).

3.4.3. Microsoft SQL Server

Para la base de datos se ha seleccionado Microsoft SQL Server. Se trata de una
estancia de la base de datos desplegada utilizando el producto RDS[13], que ya se ha
nombrado. Este mismo sistema se encuentra en uso en la aplicaciéon Web de Pocketbeat,
con un funcionamiento satisfactorio. En ningiin momento es necesario el uso de SQL
para la creaciéon de tablas o consultas. La creacion de tablas se realiza con el Entity

Framework y la consulta con el componente LINQ de ASP.NET.

3.4.4. Microsoft IIS

Microsoft IIS[15] es un servidor Web para la familia de sistemas operativos
Windows. Mediante el software IIS Manager se puede gestionar el servidor Web con
una interfaz sencilla y manejable. De la misma forma que con la base de datos, este

software estd en uso para la aplicacién Web, y se mantiene para la API.

3.4.5. Wowza Streaming Engine, en servidor Ubuntu

Wowza Streaming Engine[23] software se encarga de proveer transmision de

contenido multimedia, tanto bajo demanda como en directo. Este servidor almacena

21

por tanto los ficheros que contienen las sesiones y genera URLs para poder acceder
a ellos. Abstrae la comunicacién entre este servidor y el reproductor de videos de la

pagina Web o el de la aplicacién movil.

3.4.6. Git y Atlassian Bitbucket

Para el control de versiones del cédigo se utiliza Git[24], de forma local, y de forma
remota utilizando Atlassian Bitbucket[25]. Mediante el sistema de ramas se mantienen
distintas versiones del cédigo para una aplicacién en pruebas y para la aplicacién en

produccion. La estructura de pruebas se explica en el capitulo 5.

3.4.7. TeamCity y Octopus Deploy

TeamCity[26] es un servidor de gestiéon de compilacién e integracién continua
desarrollado por la compania JetBrains. Da soporte a aplicaciones basadas en Java,
ASP.NET y Ruby. Se puede configurar para detectar cambios en un repositorio remoto,
de forma que cuando el cédigo sea diferente se compile automaticamente. Octopus
Deploy es un servidor para el despliegue y gestién de versiones. Soporta, entre otros,
el sistema de paquetes NuGet.

Por tanto, el proceso total sera: TeamCity se encarga de controlar cambios en
el repositorio con el cédigo, compilar las distintas aplicaciones, realizar las pruebas
unitarias y enviar los paquetes al servidor Octopus. Desde el servidor Octopus se
puede crear un nuevo lanzamiento, asignando un ntmero de version y descripcion para
destacar las novedades que incluye, por ejemplo. En la figura 3.6 se puede observar un

diagrama con las partes que corresponden a cada uno.

3.4.8. Visual Studio 2017

Por 1ltimo, aunque no se haya nombrado en el diagrama de tecnologias en la figura
3.5, el desarrollo de la aplicacion se ha realizado en su integridad utilizando el entorno
de trabajo de Microsoft Visual Studio[28], que incluye un gran nimero de herramientas.

A continuacién se nombran las mas utiles:
— Gestion de paquetes NuGet: permite instalar, actualizar, eliminar paquetes.

— Explorar la base de datos mediante el Server explorer: permite no solo explorar
bases de datos, tanto locales como remotas, sino servidores y maquinas en Azure
(aunque esto no se haya utilizado, dado que las maquinas virtuales se encuentran

alojadas utilizando Amazon Web Services).

22

o) Eﬁ%ucket a R Octopus Deploy B Microsoft

[—

L Il R

lor que ejecuta
APl Web

N |ASP_N ET

cadigo remal despliegq paquetes

- © git

Repositorio local con el
cadigo del API

Figura 3.5: Arquitectura de la infraestructura de integracion continua del sistema con
iconos de las tecnologias utilizadas.

Version [NuGet

\ ; Stagin,
Control {) @ | Repository eing

Production

Figura 3.6: Diagrama del proceso, con los diferentes procesos que realiza TeamCity y
Octopus. Obtenido de un articulo[27] oficial de JetBrains.

23

— Debug mode: el modo de depuracién tiene lo que se espera; gestion de breakpoints,
analisis de las variables, pila de llamadas, gestién de memoria RAM, excepciones,

eventos, etc. Es muy completo.

— Integracion con Git: gestion de ramas, commits, sincronizaciéon con el servidor

remoto, merges y mas operaciones, sin necesidad de utilizar la linea de comandos.

24

4. Desarrollo

En este capitulo se describe el proceso de desarrollo del API, con todas las decisiones
tomadas. A continuacién se describe en mas detalle la infraestructura desarrollada para

el despliegue en produccién de la aplicacion.

4.1. Desarrollo del API RESTful

En esta primera seccion se explica el conjunto de decisiones tomadas a partir del
analisis de requisitos del API Web. Aunque ya se haya definido REST previamente, es
importante explicar algunos conceptos.

La informacién estd representada por recursos (resources), que tienen una
identificador asociado; utilizando REST sobre HTTP el identificador es de tipo
URI. El estado, tanto actual como el deseado al realizar una actualizacién, de un
recurso se documenta a través del concepto de representaciones (representations).
Las representaciones se codifican en nuestro caso utilizando el formato JSON. Como
ya se ha nombrado en el glosario, REST es un modelo cliente-servidor, por lo que
cuenta con peticiones (requests, por parte del cliente, y respuestas (responses), por
parte del servidor. Para que un API se considere RESTful, es decir, que sigue los
principios definidos en REST, tiene asegurar unas restricciones. Estas son: interfaz
uniforme (uniform interface), cliente-servidor (client-server), sin estado (stateless),
cacheado (cacheability) y sistema en capas (layered system). Las dos primeras ya se
han explicado al hablar de recursos y el modelo cliente-servidor. La tercera implica que
la interaccién entre cliente y servidor se produce peticiéon a peticion, no se almacena
ninguna informacién de sesién (al menos por parte del servidor). Cada peticién tiene
la informacion suficiente para realizar la operacion pertinente, y el servidor no conoce
las anteriores. Por ultimo, cacheability y layered system hacen referencia a cacheo de
respuestas y a la distribucion transparente para el cliente de los distintos componentes
del API en distintos servidores, respectivamente. Ambas no son pertinentes en este
proyecto.

Otro concepto importante es la manera de interactuar entre cliente y servidor.

REST sigue las cuatro operaciones bésicas de almacenamiento conocidas por sus siglas

25

en inglés como CRUD (create, read, update y delete). En HT'TP se implementan con los
métodos POST para create, GET para read, PUT o PATCH para update y DELETE
para delete.

En este proyecto, dados los requisitos, los usos de las operaciones son los siguientes:

— GET: se obtiene informaciéon del recurso especificado. Mediante parametros se
puede refinar la informacion que se obtiene. Por ejemplo, en el caso de la lista de
artistas, como se quiere obtener artistas por initial, en el parametro initial se

especifica la letra.

— POST: creacién de contenido. En el caso del proyecto, el usuario puede crear
comentarios, anadir videos como favoritos, anadir artistas como favoritos y
registrarse. Los parametros van en el cuerpo de la peticion, a diferencia del método
GET, donde van en la misma URL. Ademas se utiliza para el login, para obtener

un token.

— PUT: se utiliza para actualizar informacion, en este caso la unica informacion

que se actualiza es la del perfil del usuario.

— DELETE: como el nombre indica, para borrar contenido. En los requisitos
funcionales no se ha contemplado el borrado de contenido, por lo que no se
utiliza. En versiones futuras de la aplicacién es posible que se incluya el borrado

de comentarios. En ese caso se utilizaria este método.

4.1.1. Conjunto de recursos

Como se ha visto, es esencial identificar los recursos necesarios. En este caso, a
partir de los requisitos se han obtenido los siguientes, mostrado en la tabla 4.1. Estan
definidos con su URI asociada.

El conjunto de operaciones asociado a cada recurso se encuentra en el Anexo B.

4.1.2. Modelos de datos

Una vez se han identificado los recursos del API, se pueden disenar los modelos que
maneja el servidor. Se ha decidido utilizar 2 conjuntos de modelos de datos, el primero
corresponde a los modelos que a través de Entity Framework se utilizan para interactuar
con la base de datos, y el segundo, que esta formado por objetos de transferencia de
datos (DTO, en inglés), que se utilizan en las peticiones y respuestas al API.

Los siguientes corresponden a los objetos de Entity Framework. Artista: Almacena

la informacion de los artistas de la plataforma. Los campos que contiene son:

26

URI Descripcion del recurso

/api/sessions | Sesiones. Se trata de los videos o audios que se reproducen en la
aplicacién.

/api/artists | Artistas/pinchadiscos. Los autores de las sesiones, que contienen
informacion sobre su trayectoria o imégenes.

/api/users Usuarios de la plataforma Pocketbeat.

/api/search Recurso utilizado para representar la busqueda de tanto sesiones
como videos. Aunque no es recomendado utilizar acciones como
nombres de recursos, en este caso es necesario, puesto que no
se puede asociar la accion de busqueda a sélo las sesiones o los
artistas, ya que se requieren ambos en los resultados.

/api/auth Se utiliza para la gestién de la autenticacion de los usuarios.

Tabla 4.1: URIs y recursos

— Identificador: entero.

— Usuario: los artistas también son usuarios de la plataforma y este campo establece

la relacion.

— Descripcion: cadena de texto.

— Destacado: entero.

— Sesiones: lista de sesiones de las que es autor.

— Géneros: lista de los géneros con los que se asocia su musica.

— Redes sociales: apunta a otra tabla con enlaces a las distintas redes sociales que

tiene el artista.

— Seguidores: lista de usuarios seguidores de este artista.

Usuario: Almacena la informacién de los usuarios de la plataforma. Los campos que

contiene son:

— Identificador: entero.

— Nombre: cadena de texto.

— Apellidos: cadena de texto.

— Nombre de usuario: cadena de texto.

— Correo electronico: cadena de texto.

— Género: masculino, femenino u otro. Entero.

— Pais: cadena de texto.

— Imagen: referencia a la imagen de avatar del usuario.

— Estatus: indica si el usuario esta activo, sin activar, suspendido. Enumeracién.

— Hash contrasena: hash de la contrasena del usuario, utilizando SHA-512.

— Artista: Si se trata de un usuario que también es artista, tiene una referencia.

— Artistas favoritos: lista de artistas seguidos.

27

Imagen: Almacena la informacién de imagen de un usuario o un artista. Los campos

SOon:

— Identificador: entero.
— Nombre fichero: nombre del fichero almacenado en el servidor. A diferencia de

las sesiones, las imégenes se almacenan en el servidor Windows.

Sesion: Almacena la informacion que corresponde a una sesién de un artista. La

informacion que almacena es:

en

— Identificador: entero.

— Artista: referencia al autor de la sesion.

— Nombre: cadena de texto.

— Nombre URL: URL que identifica la sesién desde el navegador. Cadena de texto.

— Estado: las sesiones se pueden subir y estar sin aprobar, y por tanto no accesibles
por los usuarios. Enumeracion.

— Fecha de creacién: fecha.

— Imagen portada: referencia a la imagen que se muestra de forma estatica antes
de reproducir la sesion.

— Duracion: segundos. Entero.

— Descripcion: cadena de texto.

— Destacado: entero.

— Nombre fichero: cadena de texto.

— Extensiéon: cadena de texto.

— Altura fichero: numero de pixeles de altura del video. Entero.

— Anchura fichero: entero.

— Tamano fichero: bytes, nimero de coma flotante.

— Géneros: lista de referencias a géneros musicales.

— Escuchas: lista de referencias a Escucha, explicado més adelante.

Comentario: Almacena la informacion de un comentario realizado por un usuario

una sesién. Contiene:

— Identificador: entero.

— Sesion: referencia a Sesion en la que aparece el comentario.
— Usuario: referencia al autor.

— Estado: enumeracién, activo o borrado.

— Texto: cadena de texto.

— Fecha creacién: fecha.

— Fecha ultima modificacién: fecha.

28

Género: Géneros musicales. Campos:

— Identificador: entero.
— Nombre: cadena de texto.

— Sesiones: lista de referencias a Sesion, sesiones del género musical.
Escucha: Informacion sobre escuchas de una sesion. Los campos que contiene son:

— Identificador: entero.
— Sesion: referencia a la Sesion.

Direccién usuario: objeto con informacion sobre una direccién IP e informacion

del usuario en caso de que esté registrado.

— Tiempo escucha: segundos, entero.

— Fecha escucha: fecha.

En la figura 4.1 se observa un diagrama UML con las relaciones y campos de las

distintas clases.

Sesién
Artista
Identificador
Identificador Artista
Usuario ‘xﬂ Nombre
Descripcion Mombre URL
Destacado Comentario Estado
Sesiones - Fecha creacion
Génaros Ider_mﬁcador Imagen portada
Redes sociales Sesion Duracién
Seguidores Usuario le——"| Descripcién
Estado Destacado
F Texto) Mombre fichero
Fecha creacion Extension
Fecha dltima modificacion Altura fichera
Anchura fichero
Tamafio
Géneros
v Escucha Escuchas
Usuario Identificador 7 3
— Sesion
Identificador Direccidn usuario
Nomt_)re Tiempo escucha
Apellidos Fecha escucha
Mombre de usuario
Correo electronico Y
Género Género
Pais
Imagen Imagen ldentificador
Hash contrasefia Mombre
Estado .| identificador e
Artista Mombre fichero
Artistas favoritos

Figura 4.1: Diagrama UML de las clases que forman los modelos necesarios en la base
de datos.

Tras detallar el conjunto de modelos que se han utilizado para la base de datos,
se pasa a especificar algunos de los objetos de transferencia de datos que se han
utilizado para las respuestas del API. Contienen tinicamente la informacion necesaria

para mostrar en la pantalla correspondiente de la aplicacion mévil.

29

En concreto se van a especificar las respuestas de Artista y Sesién, en la tabla 4.2.

Nombre del DTO Campos
Artista Contiene un numero bastante inferior de campos al del
modelo que se encuentra en la base de datos. Estos son:

— Identificador: entero que identifica al artista.
Corresponde al mismo identificador que en la base de
datos.

— Nombre: cadena de texto.

— Biografia: cadena de texto.

— Imagen: cadena de texto con una URL que corresponde
al recurso de la imagen del artista.

— Sesiones: lista de DTOs de tipo Sesion que se especifica
a continuacion.

Sesion De la misma forma que con Artista, es reducido en
comparacion a la informacién almacenada en la base de datos.
Los campos son:

— Identificador: entero.

— Titulo: cadena de texto.

— Descripcion: cadena de texto.

— URL visionado: cadena de texto.
Id Artista: entero.

— Nombre Artista: cadena de texto.

Tabla 4.2: Modelos de objetos de transferencia de datos.

De la misma forma, en las peticiones al API se envian pardametros que se
pueden encapsular en objetos. Estos objetos contienen campos que son asignados
automaticamente, bien desde el cuerpo de la peticién o la misma URI (dependiendo
del método HTTP utilizado), cuando un controlador4.1.3 recibe una peticion, a través

del deserializador JSON que se ha nombrado anteriormente.

4.1.3. Separaciéon en controladores

A partir del diseno de los recursos en URIs se procede a explicar cémo
se traslada esto al tipo de clase que se utiliza en ASP.NET Web API para
gestionar las peticiones y enviar respuestas. Este tipo de clase se conoce como
controlador, controller en inglés. Se han creado 4 controladores: SessionsController,
ArtistsController, UsersController, AuthController. Estas clases extienden la
clase abstracta ApiController, que contiene un conjunto de métodos que son muy

utiles, especialmente para las respuestas. Un ejemplo es el método 0k (), que envia una

30

respuesta con codigo HTTP 200, y se puede parametrizar para incluir en el cuerpo la
informacion que se desee. Otro ejemplo es el método Created(), con el codigo 201, que

se puede adaptar de la misma manera.

Otra de las funcionalidades del framework que resulta 1til es la posibilidad de
utilizar atributos (en la documentacién en inglés se conocen como attributes) para
declarar las clases y métodos HI'TP que acepta cada método y la ruta o URI. Se puede
declarar un prefijo para todos los métodos dentro de una clase, y en cada método un

sufijo. En este ejemplo se muestra para el controlador de los artistas.

[RoutePrefix("api/artists")]
public class RestArtistController : ApiController

{
private readonly IPocketBeatContext context;
public RestArtistController (IPocketBeatContext context)
{
this.context = context;
+
[HttpGet]
[Route("")]
public GetArtistsResponse GetList(String 7initial)
{
// devuelve lista de artistas segun inicial, si se proporciona
+
[HttpGet]
[Route ("{id}")]
public GetArtistResponse GetById(int id)
{
// devuelve artista que tiene dicho id
+
b

Como se puede observar, para el método GetList() la URI es /api/artists/ y
para el método GetById(), si se consultara con el identificador 100, por ejemplo, es
/api/artists/100. También se pueden utilizar atributos para forzar el uso de HT'TPS

y para autenticar a usuarios.

31

4.1.4. Seguridad

Uno de los requisitos no funcionales de la aplicacion es el cifrado de la comunicaciéon
entre el cliente y el API Web. Para ello se ha configurado la aplicacion para utilizar SSL
y Unicamente aceptar peticiones realizadas mediante HT'TPS. La autenticacion con el
cliente se realiza mediante el uso de tokens. Mediante la solicitud a /api/auth/login se
genera un token que el cliente recibe como respuesta y deberd incluir en las peticiones
que requieren autenticacion, como crear un comentario. Este token se incluye en la
cabecera de la solicitud al API, en concreto en la cabecera Authorization, con el

valor Bearer <Token>.

Autenticaciéon mediante Tokens

Se ha seleccionado el estdndar JSON Web Token[29] (JWT a partir de aqui) para
la creacion de tokens de acceso de los usuarios. Se ha utilizado porque se adectia a
las restricciones del estandar REST, ya que no se mantiene ningin tipo de estado, se
envia con la peticiéon y contiene la informacién necesaria en si mismo. No es necesario
almacenarlo de forma persistente en el servidor, lo que conlleva no tener que consultar
la base de datos con cada peticion, como se haria si se utilizara Autenticacién Bésica
(Basic Authentication', en inglés). Esto reduce el tiempo de respuesta y la carga de la
base de datos.

Los JWT tienen una estructura dividida en 3 partes: cabecera, carga (o payload) y
firma. En la cabecera se indica el algoritmo de firma utilizado, como HMAC-SHA256.
En el payload se incluye la informacion que se quiere comunicar con el token, como el
nombre de usuario, su rol o la fecha de expiracion. Mediante el uso de una clave secreta
que el servidor almacena, se cifra la parte del token correspondiente a la cabecera
y payload, que van codificados en Base64 y concatenados por un punto. El token
resultante es la cabecera, el payload y la firma, todos codificados mediante Base64
y separados por puntos.

Para el uso de este proyecto, se ha incluido la informacién (en la terminologia
de JWT a cada campo en el payload se le conoce como claim) de identificador de
usuario y fecha de expiracién. En la implementacién se ha utilizado el paquete NuGet
System.IdentityModel. Tokens.Jwt[30] para la creacién, serializacién y validacién de los
tokens.

En el diagrama de la figura aparece la interaccion entre cliente y servidor respecto
a los JWTs. En el caso de este API la URI es /api/auth/login.

'Método de autenticaciéon donde se envian los credenciales (por ejemplo usuario y contrasefia) en
una peticiéon HTTP, mediante el uso de la cabecera Authorization, seguido de Basic y a continuacion
el nombre de usuario y contrasena concatenados separados por 2 puntos y codificados en Base64.

32

4.1.5. Gestion de imagenes

Como se ha explicado anteriormente, las imagenes de las sesiones, usuarios y artistas
se comparten con la aplicacion mévil asignandoles una URL. El almacenamiento de
estas se encuentra en el servidor Windows que corre la aplicacién Web y el API. La
aplicacion Web cuenta con un Web Handler que procesa las peticiones referentes a
imagenes. En la peticion se puede especificar las dimensiones de la imagen final. Esto
permite cortar las imégenes o cambiar sus dimensiones al tamano deseado, usando la
libreria ImageResizer. Por tanto el API envia en una cadena de caracteres la URL
asociada a la imagen, consultada en la base de datos, y el Web Handler provee este
recurso cuando se realiza una peticién desde la aplicacion movil.

Por otra parte, las imagenes de avatar que utilizan los usuarios se envian al servidor
codificadas en Base64, por su sencillez. Esta codificacién tiene el inconveniente de que
incrementa el tamano de la imagen. El tamano final se puede aproximar a 4/3 del
tamano original. En este caso se trata de iméagenes de avatar con unas dimensiones

reducidas, por lo que no supone un problema de rendimiento.

4.2. Infraestructura de integracion continua

La configuracion de la infraestructura de integracién continua es también una parte
importante del desarrollo. Es una inversién de tiempo que por otra parte es esencial
para la puesta en marcha del API, y que permite crear un entorno de trabajo en el que
los cambios en el codigo sean desplegados con una gran frecuencia y rapidez. Como ya
se ha comentado en la seccion 3.4, las tecnologias utilizadas para la permitir integracion
continua son el repositorio de cédigo remoto, utilizando Bitbucket, el servidor de
compilacién automatica TeamCity y el gestor de despliegues Octopus.

Es importante senalar que en el repositorio remoto se utilizan 2 ramas para el
codigo que ha de ser compilado automaticamente. La rama master se utiliza para la
compilacion de paquetes que van destinados a la aplicacién remota de pruebas, y la
rama rtm? que se utiliza para la produccién. Més adelante, en el capitulo 5 se explica en
el entorno de pruebas la existencia de la aplicacion remota de pruebas, no tinicamente
en local.

Desde el repositorio Bitbucket se ha creado una llave SSH que utiliza el servidor
TeamCity para autenticacién. Se han configurado 2 proyectos en TeamCity, uno para

pre produccion y el de produccion. Desde los ajustes del proyecto de pre produccion se

2Release to manufacturer, versién final de un software que se entrega a un fabricante, para
distribuirlo. En el caso de software que no es distribuido fisicamente, simplemente representa la versién
final.

33

selecciona el origen desde el cual se obtiene el codigo, es decir, la URL del repositorio
remoto en Bitbucket, con la rama master. Se realiza lo mismo para el proyecto de
produccion, pero con la rama rtm. El servidor TeamCity comprueba si hay cambios
nuevos cada 60 segundos. A continuacién, se ha configurado el conjunto de pasos que
se realiza junto a la compilacion. El primer paso es la descarga de los paquetes NuGet
que necesita la solucién. El segundo es la construccién de paquetes NuGet del propio

proyecto, que se utilizan para enviar al servidor Octopus.

Para publicar los paquetes NuGet al servidor Octopus basta especificar la URL para
el feed de este servidor y una llave que se puede crear desde este servidor también. El
método que se utiliza para la publicacion se conoce como NuGet Push, estd explicado

aqui[32].

Gracias a las configuraciones de ASP.NET, se puede transformar la configuracién del
API mediante el uso de ficheros Web. config. Estas transformaciones de la configuracion
permiten, entre otras, cambiar la base de datos que utiliza la aplicacién. Desde
TeamCity se puede qué configuracion debe de usar NuGet para construir los paquetes.
En el caso de pre producciéon se utiliza la configuracién Release.Test, que se conecta
a una base de datos remota de pruebas, y en el de produccién la configuracion

Release.Live.

En el servidor Octopus se cuenta por tanto también con dos proyectos, que
corresponden a los proyectos de TeamCity. Octopus obtiene los paquetes de su propio
repositorio, ya que se han publicado alli desde TeamCity. Desde de la configuracion
de cada proyecto se han anadido los pasos necesarios para desplegar las aplicaciones.
El primer paso es inicializar una variable con el valor de la fecha y hora actual, para
crear una carpeta con ese nombre que contendra la aplicacion desplegada. El segundo
paso es el despliegue, que consiste en un script utilizando PowerShell, que provoca que
desde IIS la aplicacién apunte al directorio virtual que se ha creado, con la fecha y hora
anteriores como nombre. La maquina que ejecuta el servidor IIS que corre el API estd
configurado como un tentéaculo (tentacle, en terminologia de Octopus) que escucha en

un puerto a peticiones del servidor Octopus, para recibir paquetes a desplegar.

Finalmente, para ensenar lo sencillo que es realizar un despliegue desde Octopus,
se muestra en la siguiente figura 4.3. Después de pulsar el botén, queda incluir un
numero de version, la posibilidad de incluir una resena, como se ve en la imagen 4.4.
A continuacion se puede elegir un despliegue instantaneo o planificado, como muestra

la imagen 4.5.

34

Browser Server

1. POST /users/login with username and password

2. Creates a JWT

3. Returns the JWT to the Browser with a secret

4. Sends the JWT on the Authorization Header

5. Check JWT signature.
Get user information
6. Sends response to the client from the JWT

Figura 4.2: Interaccién entre cliente y servidor utilizando tokens. Imagen obtenida de
la pagina de JWT[31].

PocketBeat Preprod

Release Preproduction
* 1.2.1.8
1.2.1.8 September 19th 2017
PocketBeat Preprod
1.21.7
1.21.7 September 13th 2017
Process
Variables
Channels
Releases
Settings

Figura 4.3: Creacion de un despliegue desde Octopus Deploy.

35

{ |

PocketBeat Preprod

Overview
Process

Variables
Channels

Releases

Settings

Create release

Version ’ 1.2.1.9|

Most recent release: 1.2.1.8

Enter a unique version number for this release with at least two parts. See examples.

Packages
Step Package Latest Last Specific
Deploy Web App 01.041 1.0.41
Deploy Web API PocketBeat.Web.Api.Release External ©1.0.41 1041

Release notes
BI | =iz | E¢ | EIE

Enter a summary of what has changed in this release, such as which features were added and which bugs were fixed. These notes will be shown on the release

Figura 4.4: Creacién de un despliegue desde Octopus Deploy.

Deploy release

Deploy Preproduction (currently 1.2.1.8)
‘ 1219 9 Change

PocketBeat Preprod

Overview

Process

Variables

Channels

DIV Advanced »

Releases

Settings

Figura 4.5: Creacién de un despliegue desde Octopus Deploy.

36

4.2.1. Instancias en Amazon Web Services

El servidor de integracién continua, que ejecuta tanto TeamCity como Octopus
Deploy, es una maquina virtual Windows tipo t2.medium[33], tiene 2 procesadores
virtuales y 4 GiB de memoria RAM. Cuenta con un disco duro SSD de 80 GB. El

maquina del servidor IIS es del mismo tipo, con un disco duro de 60 GB.

37

38

5. Validacion

En este capitulo se describe la fase de pruebas para comprobar que el funcionamiento
del API desarrollado es el propuesto en los requisitos. Primero pruebas no formales
realizadas mediante la herramienta Postman, que permite realizar llamadas a APIs
(especificando la URI, el método HTTP, el conjunto de parametros, el cuerpo, etc.)
mientras se ejecuta el API en Visual Studio, y luego ya formalizadas, utilizando pruebas
unitarias para cada método de los controladores. Las pruebas unitarias forman parte
del framework .NET, no se trata de ningin paquete de terceros. Por tltimo, también
se explica el despliegue del API en el servidor, para probarla en un entorno idéntico al

de produccion.

5.1. Debug mediante Visual Studio y Postman

Mientras se ha realizado el desarrollo del API, se ha ido comprobando con cada
controlador que los métodos realizaban lo que debian. Para esto es importante
mencionar 2 herramientas que han resultado de gran utilidad.

La primera es el modo de depuraciéon de Visual Studio. Mediante este entorno
de programacién se puede trazar las excepciones a su origen en el cédigo, consultar
el valor de las variables en cualquier momento, utilizacién de breakpoints, etc. Otra
funcionalidad que ha resultado til es la definicién de distintos ficheros de configuracion
para la aplicacién, que se han utilizado para diferenciar entre 3 situaciones. La primera
es la versién local de la aplicacién. Para esta se establece una conexién a una base de
datos local utilizando Microsoft SQL Server Express. Ademas se cuenta con otros dos
ficheros de configuracién, uno para el servidor de pruebas, cuya conexion es a una base
de datos remota, con un catdlogo! de prueba, y por tltimo, la versién de produccion,
con la conexion al catdlogo de produccion.

La herramienta Postman se ha utilizado para realizar solicitudes mientras la

ejecucion del API de forma local. Se trata de una herramienta especifica para esto,

1La base de datos estd dividida en catdlogos. Cada catalogo tiene las mismas tablas creadas para
el proyecto pero distinta informacién. La base de datos es la misma, alojada en AWS como se ha
mencionado previamente.

39

mucho mas comoda que realizar peticiones utilizando un navegador Web o la linea
de comandos con herramientas como curl. En este caso se ha utilizado para editar la
cabecera de cada peticion, los parametros y el cuerpo, y leer las respuestas de una forma
clara. Ademas cuenta con un historial de peticiones, para poder realizar peticiones en

pruebas anteriores sin la necesidad de introducir la informacién de nuevo.

5.2. Conjunto de pruebas unitarias

Las pruebas se han formalizado creando un proyecto de pruebas unitarias en
Visual Studio. Se han creado métodos de prueba para cada controlador. Mediante
el uso de la clase Assert de la libreria de pruebas se utilizan los métodos IsNotNull,
IsInstanceOfType y AreEqual para comprobar que el resultado de cada método de
los controladores no es nulo o indefinido, es del tipo y contiene la informacién esperada.
Se utiliza informacién de prueba, no afecta a la base de datos en produccién.

Para ilustrar un método de prueba se puede observar en este ejemplo, donde se

comprueba que obtener una sesion por identificador produce como resultado esa sesién.

[TestMethod]

public void GetSession_ShouldReturnCorrectSession()

{
var testSessions = GetTestSessions();
var controller = new SessionsController(testSessions)
var result = controller.GetById(10) as

OkNegotiatedContentResult<Session>;

Assert.IsNotNull(result);
Assert.AreEqual (testSessions[10] .Id, result.Content.Id);

El conjunto de pruebas que se ha construido es:

— SessionsController: el listado de las sesiones contiene todos los resultados, en
el orden especificado. La sesién identificada por id contiene la informacién que
debe. Obteniendo todos los comentarios de prueba de una sesiéon se obtienen
estos, la creacién de un comentario es correcta y se devuelve un cédigo HTTP
201. No se puede crear un comentario con texto vacio o de un usuario no existente

0 no autentificado.

— ArtistsController: tanto la coleccién de artistas recuperada como artistas

individuales y sus sesiones corresponden a las de prueba.

40

— UsersController: se obtiene la informacion de un usuario de prueba y el registro
es correcto y se devuelve el cédigo HT'TP 201. No se puede registrar un usuario
con un correo existente en el sistema o con informacién no valida en los campos
de registro (correo no valido, nombre vacio, etcétera). La modificacién de la
informacién utilizando PUT devuelve el cédigo 200 (Ok). En caso de que el

usuario no sea correcto o no esté autentificado el cédigo es de error.

— SearchController: la busqueda de sesiones y/o artistas produce el resultado

esperado con los datos de pruebas.

— AuthController: la creacion de un token para un usuario con una cuenta valida
(correo existente y contrasena correcta) es satisfactoria, y se comprueba que
el token se puede utilizar para realizar una peticién para la que se necesita

autenticacion, como la creacion de un comentario.

En total se han programado 15 pruebas, que comprueban que el API funciona

correctamente.

5.3. Despliegue de aplicacién en servidor de prueba

La aplicacién se ha desplegado primero de prueba, utilizando la infraestructura
de despliegue de integracién continua ya comentada. Se ha registrado un subdominio
DNS para acceder a ella utilizando el servicio Route 53 de AWS. Desde el servidor IIS
estd configurada como una aplicaciéon mas, no se trata de un servidor distinto al de
produccién, pero hay una separacion entre las distintas aplicaciones. Se han realizado
solicitudes utilizando la herramienta Postman, que se habia utilizado de forma local, y
los resultados son los mismos. Se puede observar un sencillo esquema sobre esto en la

figura 5.1.

41

test.pocketbeat.com

Figura 5.1: Diagrama del despliegue en el servidor de prueba.

42

6. Conclusiones

El objetivo de este capitulo es la explicacién de la gestiéon del proyecto, las
conclusiones del mismo, el trabajo futuro que podria realizarse y finalmente, la opinién

personal por parte del estudiante que lo ha realizado.

6.1. Gestién del proyecto

El proyecto estd dividido en las fases: familiarizacién con la arquitectura de la
plataforma de Pocketbeat y sus tecnologias, andlisis y disefio, implementacion y
pruebas, creacién y uso de la infraestructura de despliegue y escritura de la memoria.

En la primera fase, se tuvo que realizar un estudio profundo de la arquitectura de
la plataforma en uso, puesto que tiene una complejidad a la que el autor del proyecto
no estaba acostumbrado previamente. Esto incluye conocimiento sobre el proveedor de
servicios en la nube, Amazon Web Services. A su vez, la tecnologia era nueva, no tanto
por la sintaxis de C#, que guarda muchas similitudes con otros lenguajes orientados
a objetos como puede ser Java, sino por tratarse de un framework Web del que no se
tenian conocimientos previamente.

En la segunda fase, se realizé el andlisis de requisitos, partiendo de los requisitos de
la aplicacién mévil para la cual el API esta enfocada. También se decidié la arquitectura
y tecnologias utilizadas de manera que la integraciéon con las aplicaciones existentes
fuera lo més sencilla posible. Se estudio las restricciones que se han de llevar a cabo si
se quiere adoptar la arquitectura REST para un API Web y conforme a ellas se disend
el conjunto de recursos y sus correspondientes URIs. Ademas se llevé a cabo un estudio
de las distintas opciones de autenticacién.

La tercera fase consistié en la implementacion del diseno propuesto en la fase
anterior, y el diseno y creacién de pruebas formales para la validacion de la aplicacion.
Para la creacion de pruebas fue necesaria la consulta de documentacion.

En la cuarta fase se llevd a cabo la creacion de la infraestructura de integracion
continua o de despliegue. Se desplegé la versién mas avanzada hasta la fecha del API,
que incluia todos los requisitos iniciales. Primero se realizé en una aplicaciéon remota

de pruebas y mas tarde en produccion.

43

Por 1ltimo, se terminé la redaccién de la memoria
En la tabla 6.1 se puede observar el reparto de horas que corresponde a cada fase

del proyecto.

Fase Horas | Porcentaje
Familiarizacion plataforma y tecnologia 25 7.25%
Anélisis y diseno 53 15.36 %
Implementacién y pruebas 175 50.72 %
Creacién infraestructura integracion continua 34 9.86 %
Redaccién de memoria 58 16.81 %
Horas totales 345 100 %

Tabla 6.1: Esfuerzos

6.2. Conclusiones

El objetivo de desarrollo del API con los requisitos especificados por la aplicacion
movil se ha conseguido con éxito, asi como la infraestructura para el despliegue de
futuras versiones. El despliegue tanto en entornos de pruebas como de produccion se ha
realizado con éxito, sin embargo la aplicacién movil se encuentra en fase de validacién
con usuarios probadores beta, no accesible a todo el publico.

Una vez la aplicacion sea lanzada al mercado podra dar un mejor soporte a los
usuarios moviles de la plataforma y cubrird las carencias que otras soluciones tienen.

El uso de una tecnologia como ASP.NET, una de las mas usadas para desarrollo
backend, conlleva que el proyecto pueda ser continuado por otros desarrolladores. Con
el lanzamiento de .NET Core por parte de Microsoft, un proyecto de codigo libre y
multi plataforma, la tecnologia esta atrayendo una gran cantidad de desarrolladores.
Segin la encuesta anual del servicio Stack Overflow[34], .NET Core es el framework
que ocupa el tercer lugar en satisfaccion por sus desarrolladores, por detras de React
y Node.js (ambos de JavaScript) y también el tercer puesto en popularidad detras de
Node.js y AngularJS.

El resultado del proyecto es por tanto un API completo y funcional que cumple las

caracteristicas deseadas.

6.3. Trabajo futuro

El trabajo futuro se podria centrar principalmente en temas de seguridad. Una

mejora sustancial serfa la utilizacion del framework para NET llamado Identity Server.

44

De esta forma se centralizaria la autenticacién de los usuarios entre la aplicacién Web
y el APL.

Otro de los aspectos que podria considerarse es el cacheo de las respuestas del
API, mediante el uso de ETags. Los ETags son niimeros que se comparten utilizando
cabeceras de HTTP. Este niimero representa el estado de la informacion del recurso
solicitado. Desde el servidor se comprueba el valor del ETag de la peticion y si se trata
de un valor distinto al actual, se informa de ello en la respuesta. Si se trata del mismo
valor, se informa igualmente y el cliente puede utilizar la informaciéon que ya habia
solicitado. De esta forma las peticiones se reducen de tamano. Una vez implementado
el cacheo, resultaria interesante la distribucién del API en servidores en distintas areas
del mundo para garantizar un buen servicio en cualquier parte, no unicamente en
Europa central donde se encuentran las maquinas virtuales actualmente. El contenido
multimedia sin embargo esta configurado a través de la red de entrega de contenidos
de Amazon, Cloudfront, para estar cacheado en distintos centros de datos del globo,
por lo que los datos que mas tamano tienen en la comunicacién con la aplicacion mévil
estan cubiertos.

En la validaciéon del API no se ha incluido ninguna prueba de carga o rendimiento,
con muchas peticiones simultdneas por ejemplo. Esto seria interesante para detectar
cuellos de botella y disenar mejoras en la arquitectura.

Por tultimo, segun la aplicacién movil incluya nuevas funcionalidades, el API tendra
que soportarlas. Para ello seria interesante utilizar un versionado del API, de forma
que se pudiera distinguir entre las distintas versiones de la aplicaciéon para procesar las

peticiones acordemente.

6.4. Opinion personal

La realizacién de este proyecto ha sido un desafio en distintos aspectos, desde el uso
de nuevas tecnologias hasta la gestién del proyecto, pasando por aspectos de seguridad
que son especialmente delicados al tratarse de informaciéon de usuarios reales la que
estd en juego. Se ha constatado la utilidad de los conocimientos adquiridos en una
gran variedad de asignaturas vistas en la carrera, la aplicacién de una mezcla de
ellos para lograr un objetivo. Por otra parte se ha utilizado una gran cantidad de
tecnologias de terceros, como distintos paquetes y librerias, adaptadas a la solucion
que interesaba, algo que quizd no se habia visto tanto en la carrera y que ha resultado
tremendamente enriquecedor. El aprendizaje de todas estas nuevas tecnologias resulta
muy util y probablemente serd una gran ayuda para poder progresar laboralmente.

En definitiva la finalizacién del proyecto supone una gran satisfaccion para el autor

45

por lo positivos que son todos los resultados.

46

7.

[11]

Bibliografia

Pagina Web de Sobaka Developments. http://sobakadevs.com/. Consultado:
10 de Noviembre de 2017.

Pagina Web de Pocketbeat. https://www.pocketbeat.com/. Consultado: 10 de
Noviembre de 2017.

Pagina Web de Xamarin. https://www.xamarin.com/. Consultado: 12 de

Noviembre de 2017.

Péagina Web de TestFlight. https://developer.apple.com/testflight/.
Consultado: 12 de Septiembre de 2017.

Pagina Web de Boiler Room. https://boilerroom.tv. Consultado: 25 de
Septiembre de 2017.

Canal de YouTube de Boiler Room. https://www.youtube.com/user/
brtvofficial. Consultado: 25 de Septiembre de 2017.

Aplicacion para iOS de Boiler Room. https://itunes.apple.com/us/
app/boiler-room-broadcasting-the-underground/id7695780637mt=8.
Consultado: 25 de Septiembre de 2017. Publicada la version 3.0.9 el 25 de
Septiembre de 2017.

Aplicacion para i0OS de WAV. https://itunes.apple.com/us/app/
wav-watch-the-music/i1d11333889437mt=8. Consultado: 25 de Septiembre
de 2017. Publicada la versién 1.3 el 8 de Septiembre de 2017.

Pagina Web de BE-AT.TV. https://be-at.tv/. Consultado: 10 de Noviembre
de 2017.

Aplicacién para iOS de BE-AT.TV. https://itunes.apple.com/us/app/
be-at-tv/id8207869427mt=8. Consultado: 25 de Septiembre de 2017. Publicada
la version 1.4 el 20 de Julio de 2015.

ASP.NET. https://www.asp.net/. Consultado: 11 de Septiembre de 2017.

47

http://sobakadevs.com/
https://www.pocketbeat.com/
https://www.xamarin.com/
https://developer.apple.com/testflight/
https://boilerroom.tv
https://www.youtube.com/user/brtvofficial
https://www.youtube.com/user/brtvofficial
https://itunes.apple.com/us/app/boiler-room-broadcasting-the-underground/id769578063?mt=8
https://itunes.apple.com/us/app/boiler-room-broadcasting-the-underground/id769578063?mt=8
https://itunes.apple.com/us/app/wav-watch-the-music/id1133388943?mt=8
https://itunes.apple.com/us/app/wav-watch-the-music/id1133388943?mt=8
https://be-at.tv/
https://itunes.apple.com/us/app/be-at-tv/id820786942?mt=8
https://itunes.apple.com/us/app/be-at-tv/id820786942?mt=8
https://www.asp.net/

[12]

[13]

[15]

[16]

[19]

[20]

[23]

[24]

[25]

2]

Amazon Web Services. https://aws.amazon.com/. Consultado: 12 de Septiembre
de 2017.

AWS RDS. https://aws.amazon.com/rds/. Consultado: 11 de Septiembre de
2017.

AWS EC2. https://aws.amazon.com/ec2/7nc2=h_ml. Consultado: 12 de
Noviembre de 2017.

Microsoft IIS. https://www.iis.net/. Consultado: 15 de Septiembre de 2017.

ASP.NET MVC. https://www.asp.net/mvc. Consultado: 13 de Noviembre de
2017.

Microsoft SQL Server. https://www.microsoft.com/en-us/sql-server/
sql-server-2016. Consultado: 12 de Noviembre de 2017.

Galerfa del gestor de paquetes NuGet. https://www.nuget.org/. Consultado:
12 de Septiembre de 2017. Publicado: 12 de Septiembre de 2017.

Entity Framework. https://docs.microsoft.com/en-us/ef/. Consultado: 13
de Noviembre de 2017.

Newtonsoft JSON.NET. https://www.newtonsoft.com/json. Consultado: 13
de Noviembre de 2017.

AutoMapper. http://automapper.org/. Consultado: 13 de Noviembre de 2017.

Apache logdnet. https://logging.apache.org/logdnet/. Consultado: 13 de
Noviembre de 2017.

Wowza Streaming Engine. https://www.wowza.com/products/

streaming-engine. Consultado: 13 de Noviembre de 2017.
Git. https://git-scm.com/. Consultado: 13 de Noviembre de 2017.

Atlassian Bitbucket. https://www.atlassian.com/software/bitbucket.
Consultado: 13 de Noviembre de 2017.

TeamCity. https://www.jetbrains.com/teamcity/. Consultado: 13 de
Noviembre de 2017.

48

https://aws.amazon.com/
https://aws.amazon.com/rds/
https://aws.amazon.com/ec2/?nc2=h_m1
https://www.iis.net/
https://www.asp.net/mvc
https://www.microsoft.com/en-us/sql-server/sql-server-2016
https://www.microsoft.com/en-us/sql-server/sql-server-2016
https://www.nuget.org/
https://docs.microsoft.com/en-us/ef/
https://www.newtonsoft.com/json
http://automapper.org/
https://logging.apache.org/log4net/
https://www.wowza.com/products/streaming-engine
https://www.wowza.com/products/streaming-engine
https://git-scm.com/
https://www.atlassian.com/software/bitbucket
https://www.jetbrains.com/teamcity/

[27]

[28]

[29]

[30]

[31]

[32]

[35]

[36]

Automating Deployments with TeamCity and Octopus
Deploy. https://blog. jetbrains.com/teamcity/2015/11/
automating-deployments-with-teamcity-and-octopus-deploy/. Consultado:
14 de Noviembre de 2017. Publicado: 18 de Noviembre de 2017.

Visual Studio. https://www.visualstudio.com/. Consultado: 13 de Noviembre
de 2017.

JSON Web Token. https://tools.ietf.org/html/rfc7519. Consultado: 20 de
Septiembre de 2017. Publicado: Junio de 2017.

System.IdentityModel. Tokens.Jwt. https://www.nuget.org/packages/System.
IdentityModel.Tokens.Jwt/. Consultado: 20 de Noviembre de 2017.

Diagrama JWT. https://cdn.auth0.com/content/jwt/jwt-diagram.png.
Consultado: 14 de Noviembre de 2017.

NuGet Push. https://octopus.com/docs/packaging-applications/
package-repositories/pushing-packages-to-the-built-in-repository#
PushingpackagestotheBuilt-Inrepository-UsingNuGet.exepush.
Consultado: 20 de Septiembre de 2017.

Instancias T2 de Amazon Web Services. https://aws.amazon.com/ec2/

instance-types/t2/. Consultado: 20 de Septiembre de 2017.

Stack Overflow Developer Survey 2017. https://insights.stackoverflow.com/
survey/2017#technology. Consultado: 10 de Octubre de 2017.

Octopus Deploy. https://octopus.com/. Consultado: 13 de Noviembre de 2017.

ETag - HTTP. https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/ETag. Consultado: 10 de Noviembre de 2017.

49

https://blog.jetbrains.com/teamcity/2015/11/automating-deployments-with-teamcity-and-octopus-deploy/
https://blog.jetbrains.com/teamcity/2015/11/automating-deployments-with-teamcity-and-octopus-deploy/
https://www.visualstudio.com/
https://tools.ietf.org/html/rfc7519
https://www.nuget.org/packages/System.IdentityModel.Tokens.Jwt/
https://www.nuget.org/packages/System.IdentityModel.Tokens.Jwt/
https://cdn.auth0.com/content/jwt/jwt-diagram.png
https://octopus.com/docs/packaging-applications/package-repositories/pushing-packages-to-the-built-in-repository#PushingpackagestotheBuilt-Inrepository-UsingNuGet.exepush
https://octopus.com/docs/packaging-applications/package-repositories/pushing-packages-to-the-built-in-repository#PushingpackagestotheBuilt-Inrepository-UsingNuGet.exepush
https://octopus.com/docs/packaging-applications/package-repositories/pushing-packages-to-the-built-in-repository#PushingpackagestotheBuilt-Inrepository-UsingNuGet.exepush
https://aws.amazon.com/ec2/instance-types/t2/
https://aws.amazon.com/ec2/instance-types/t2/
https://insights.stackoverflow.com/survey/2017#technology
https://insights.stackoverflow.com/survey/2017#technology
https://octopus.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag

50

Anexos

51

A. Mapa de la aplicacion mouvil

En este anexo se incluyen todas las pantallas de la aplicacion mévil de Pocketbeat,
incluyendo anotaciones sobre la interaccién con el usuario. La barra superior en color
negro que contiene el logo de Pocketbeat cumple una funcién de botén universal para
tener accesos directos en cualquier pantalla. Al pulsar una tunica vez la aplicacién
cambia a la pantalla anterior a la actual. Al pulsar dos veces la aplicacién cambia a
la pantalla inicial (tras registro o inicio de sesién). Al mantener pulsado se despliega
el menu. Tras explicar esta interaccion no se va a incluir en todas las pantallas para
evitar la repeticion.

Ademas, durante la reproduccion de una sesién, se puede cambiar de modo video
a modo audio haciendo el movimiento con un dedo de desplazar hacia la izquierda o
derecha sobre la zona del reproductor.

Las interacciones estan explicadas con flechas rojas y el nombre e identificador de

la figura que corresponde a la pantalla.

53

POCKET3ZIAT

SEARCH

VIDEQS

ARTISTS

CONNECTIONS

MY STREAM

SAVED VIDEOS

FOLLOWED ARTISTS

MY PROFILE

SUPPORT

LOGOUT JOHAN

Figura A.1: Pantalla con el menu desplegable.

54

POCKET3ZAT

‘ JOIN US I

LOGIN

I i Login with Facebook !

Figura A.2: Pantalla inicial tras abrir por primera vez la aplicacion.

55

POCKET3ZAT

EMAIL

PASSWORD

Forgot password?

Figura A.3: Pantalla de inicio de sesién.

56

POCKET3IAT

TAPTO TAKE
PICTURE

NAME
EMAIL
PASSWORD

REPEAT PASSWORD

Figura A.4: Pantalla de registro.

57

POCKET3ZIAT

Axe|
‘ ‘2 ' Axel Boman Artist

qgwer r t yui op
a s d f gh j k |

& z X c Vb nm &

123 & O space return

Figura A.5: Pantalla de busqueda de artistas y sesiones.

58

POCKET3IAT

Johnny Dark

A Dark session

-
£ il
Axel Boman
Live at Tillsammans Slakthuset

Figura A.6: Pantalla de los videos de la aplicacién, una vez el usuario se ha identificado
o registrado.

59

POCKET3ZAT

{

LR
» \

Jeremy Olander Presents Lo-Fi
JEREMY OLANDER

Like | Share | Followed | Saved

MORE JEREMY OLANDER VIDEOS

& Jeremy Olander Presents Lo-Fi

Figura A.7: Pantalla con el reproductor, en modo video. Arrastrando el video hacia
abajo se minimiza en un reproductor pequeno, el de la figura A.9. De esta forma se
puede seguir escuchando la sesiéon mientras se explora el contenido.

60

POCKET3EIAT

Jeremy Olander Presents Lo-Fi
JEREMY OLANDER

Like | Share | Followed | Saved

MORE JEREMY OLANDER VIDEOS

8 Jeremy Olander Presents Lo-Fi

Figura A.8: Pantalla con el reproductor, en modo audio, donde se muestra una imagen
estatica. De la misma forma que en modo video, se puede minimizar.

61

POCKET3ZAT

eremy Olander
Jeremy Olander Presents Lo-Fi

fMisma interaccion que A.6, ¢

para volver a reproductor
(A.7 o0 A.8) deslizar arriba

Johnny Dark

A Dark session

i

1
‘\
g ™

Jeremy Olander Presents Lo-Fi
JEREMY OLANDER

Figura A.9: Pantalla con el reproductor minimizado.

62

POCKET3ZIAT

*11121]1 3] 4156
71819101@18B]C
DIEIFIGIHIIT]J
KILIMINJO]PI]Q
R|IS|TJU]V]|W]|X
Y | Z

Artista (A.11)

Figura A.10: Pantalla de la lista de artistas, se pueden filtrar por inicial seleccionando
la letra en la zona superior con fondo blanco.

63

POCKET3IAT

JEREMY OLANDER unfollow

Marcus Almén (MAAL) grew up in a house full of
music and showed his creative talents at an early
age playing piano.

Both of his older brothers where part of electronic
bands during the synth era, which and helped to
colour and inspire his taste.

During the 90's MAAL crated a lot of music: From
jungle to psy-trance to big beat and acid techno
and also venturing into metal, rap and soul.

Living in the UK & US has heavily influenced the
style. Now his bass heavy, deep and soulful sound
is influenced by modern artists but also senses a
blend from the old school producers 90's.

Read more

Figura A.11: Pantalla con la informacion de un artista.

64

POCKET3IAT

Av?r‘e}ome‘techno
ENRICO SANGIULIANO

e e .
set by the queen of electron...

e e Y
Awesome techno set by the queen of electron...

ADAM BEYER

Figura A.12: Pantalla con los videos guardados por el usuario.

65

POCKET3IAT

Figura A.13: Pantalla con los artistas seguidos.

66

POCKET3ZIAT

~~——

NAME
EMAIL
CITY
COUNTRY
999-9999

NOTIFICATION FREQUENCY

Never Once/ Once/ Always
Month Week

Email .—
Notifications .—

Figura A.14: Pantalla del perfil del usuario, donde se puede editar la informacion. No
hay transiciones a otras pantallas; el guardado es automatico.

67

POCKET3IAT

If you don’t find answer to your
question below you are welcome to
contact us at hello@pocketbeat.com or
through any of our social media
channels.

WHERE TO FIND THE MAIN MENU

The Pocketbeat logo in the top part of your
mobile screen works as the main button. If
you hold it for 2 seconds the main menu will
appear. To close the main menu simply tap on
the logo once.

GO BACK TO PREVIOUS PAGE

Tap the Pocketbeat logo once to go one step
back.

GO TO HOME PAGE

If vni1 at anv hnint in the ann wich tn on haclke

Figura A.15: Pantalla con informacién de soporte. Hay enlaces al correo electrénico y
redes sociales de la plataforma.

68

POCKET3IAT

Coming Soonl

Figura A.16: Pantalla para funcionalidades sin implementar, como My Stream y
Connections.

69

70

B. API RESTful de Pocketbeat

En este anexo se especifican las operaciones admitidas por cada recurso, como se

observa en la tabla B.1.

URI GET | POST | PUT | DELETE

/api/sessions
/api/sessions/{id}
/api/sessions/{id}/comments
/api/artists
/api/artists/{id}
/api/artists/{id}/sessions
/api/users/{id}

/api/users/ v
/api/search
/api/auth/login v

SSNENENENENENEN

Q\

Tabla B.1: Operaciones de REST admitidas por cada punto de acceso del API.

El primer punto de acceso, /api/sessions, mediante el método GET proporciona
una coleccion de sesiones. Admite los parametros order, genre, count y from. Los dos
primeros se utilizan para ordenar las sesiones por los distintos métodos explicados en
el andlisis y filtrar por géneros musicales. Los dos ultimos se utilizan para paginacién.

El segundo, /api/sessions/{id}, responde con una sesi6n, cuyo identificador
corresponde a id. Las URIs que corresponden a los artistas (/api/artists y
/api/artists/{id}) responden de la misma manera, aunque la primera admite el
parametro nitial, para el filtrado de artistas por su letra inicial. No admiten las
operaciones POST o PUT porque la subida de sesiones y creacién de artistas se realiza
desde la aplicacion Web.

Mediante /api/sessions/{id}/comments se accede a los comentarios de la sesién
cuyo identificador corresponde a id. Usando GET se obtiene el conjunto de comentarios,
usando POST se crea uno nuevo. Los parametros para crear un nuevo comentario son
userld y text (identificador de usuario y texto).

/api/artists/{id}/sessions se utiliza para obtener sesiones del mismo artista

en la reproduccion de una sesiéon, mediante el método GET.

71

Utilizando el punto de acceso /api/users/{id} se accede a la informacién de un
usuario, identificado por id. Por el momento se utiliza para mostrar el propio perfil, por
lo que la solicitud debe ir acompanada de un token que asegure proviene del usuario
sobre el que se ha hecho la peticion. Usando GET se obtiene la informacion, y utilizando
PUT se modifica.

Con el método POST y la URI /api/users/ se registran usuarios nuevos. En el
cuerpo de la peticién aparecen los campos que se utilizan en el modelo de usuario, que
se han descrito previamente. Para subir la imagen se ha elegido codificarla en Base64
y mandar como parametro, por su sencillez. Este método tiene el inconveniente de que
incrementa el tamano de la imagen. El tamano final se puede aproximar a cuatro tercios
del tamano original. En este caso se trata de imagenes de avatar con unas dimensiones
reducidas, por lo que no se trata de ficheros grandes que creen peticiones muy lentas
por la red.

/api/search admite unicamente el método GET y un pardmetro de texto como
entrada para la bisqueda.

Por ultimo, mediante el método POST sobre /api/auth/login proporcionando
informacion sobre el identificador de usuario y la contrasena, se devuelve un JWT para
autenticacion en peticiones futuras.

Asi mismo, se han utilizado los cédigos de respuesta de HT'TP para indicar el
resultado de las operaciones. El cédigo 200 indica que la peticién es correcta y se envia
la respuesta, y el codigo 201 que se ha creado un recurso correctamente. Los cédigos
de error que se utilizan son: 400 para una peticién mal formada, 401 para indicar que
la operacion requiere autenticacion que no se ha proporcionado y 404 para peticiones

de recursos no encontrados.

72

Lista de Figuras

1.1.

1.2.

1.3.
1.4.

2.1.
2.2.
2.3.

2.4.

3.1.
3.2.
3.3.
3.4.
3.5.

3.6.

4.1.

4.2.

4.3.

4.4.
4.5.

Captura de pantalla de la pagina de Pocketbeat accedida desde un
ordenador de escritorio.
Captura de pantalla de la pagina de Pocketbeat accedida desde un
ordenador de escritorio. Vista de videos.
Vista inicial.

Vista de videos.

Captura de pantalla de la aplicaciéon de Boiler Room, version 3.0.9.

Captura de pantalla de la aplicacion WAV, versiéon 1.3.
Captura de pantalla de la aplicacién BE-AT.TV, pantalla inicial. Version
O

Captura de pantalla de la aplicacién BE-AT. TV, menu lateral. Version
O

Pantalla principal aplicaciéon.
Arquitectura del sistema.o
Arquitectura del sistema de integracién continua.
Arquitectura del sistema con iconos de las tecnologias utilizadas.
Arquitectura de la infraestructura de integracion continua del sistema
con iconos de las tecnologias utilizadas.
Diagrama del proceso, con los diferentes procesos que realiza TeamCity

y Octopus. Obtenido de un articulo[27] oficial de JetBrains..

Diagrama UML de las clases que forman los modelos necesarios en la
base de datos. Lo
Interaccion entre cliente y servidor utilizando tokens. Imagen obtenida
de la paginade JWT[31]. Lo
Creacién de un despliegue desde Octopus Deploy.
Creacién de un despliegue desde Octopus Deploy.
Creacién de un despliegue desde Octopus Deploy.

73

10

10

15
18
20
20

5.1. Diagrama del despliegue en el servidor de prueba.

A.1. Pantalla con el menu desplegable.
A.2. Pantalla inicial tras abrir por primera vez la aplicacién.
A.3. Pantalla de inicio de sesién.
A.4. Pantalla de registro. L
A.5. Pantalla de busqueda de artistas y sesiones.
A.6. Pantalla de los videos de la aplicacién, una vez el usuario se ha
identificado o registrado.o
A.7. Pantalla con el reproductor, en modo video. Arrastrando el video hacia
abajo se minimiza en un reproductor pequeno, el de la figura A.9. De
esta forma se puede seguir escuchando la sesién mientras se explora el
contenido.
A.8. Pantalla con el reproductor, en modo audio, donde se muestra una
imagen estatica. De la misma forma que en modo video, se puede
MINIMIZar. oo e
A.9. Pantalla con el reproductor minimizado.
A.10.Pantalla de la lista de artistas, se pueden filtrar por inicial seleccionando
la letra en la zona superior con fondo blanco.
A.11.Pantalla con la informacién de un artista.
A.12.Pantalla con los videos guardados por el usuario..
A.13.Pantalla con los artistas seguidos.
A.14.Pantalla del perfil del usuario, donde se puede editar la informacion. No
hay transiciones a otras pantallas; el guardado es automatico.
A.15.Pantalla con informacién de soporte. Hay enlaces al correo electronico y
redes sociales de la plataforma.
A.16.Pantalla para funcionalidades sin implementar, como My Stream y

Connections. v v

74

29

Lista de Tablas

3.1.
3.2.
3.3.

4.1.
4.2.

6.1.

B.1.

Requisitos funcionales de la aplicacion moévil. 14
Requisitos funcionales del APT 16
Requisitos no funcionales del API 17
URIs yrecursos 27
Modelos de objetos de transferencia de datos. 30
Esfuerzos 44
Operaciones de REST admitidas por cada punto de acceso del API. . . 71

75

	Glosario
	Introducción
	Contexto y motivación
	Objetivos
	Estructura de la memoria

	Estado del arte
	Boiler Room
	WAV
	BE-AT.TV
	Valor añadido en la aplicación de Pocketbeat

	Análisis del sistema
	Requisitos funcionales de la aplicación móvil
	Análisis de requisitos
	Requisitos funcionales
	Requisitos no funcionales

	Arquitectura
	Tecnologías utilizadas
	Amazon Web Services (AWS)
	ASP.NET Web API
	Microsoft SQL Server
	Microsoft IIS
	Wowza Streaming Engine, en servidor Ubuntu
	Git y Atlassian Bitbucket
	TeamCity y Octopus Deploy
	Visual Studio 2017

	Desarrollo
	Desarrollo del API RESTful
	Conjunto de recursos
	Modelos de datos
	Separación en controladores
	Seguridad
	Gestión de imágenes

	Infraestructura de integración continua
	Instancias en Amazon Web Services

	Validación
	Debug mediante Visual Studio y Postman
	Conjunto de pruebas unitarias
	Despliegue de aplicación en servidor de prueba

	Conclusiones
	Gestión del proyecto
	Conclusiones
	Trabajo futuro
	Opinión personal

	Bibliografía
	Anexos
	Mapa de la aplicación móvil
	API RESTful de Pocketbeat
	Lista de Figuras
	Lista de Tablas

