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Abstract. A methodology based on fractal interpolation functions is used in this
work to define new real maps on the circle generalizing the classical ones. The power
of fractal methodology allows us to generalize any other interpolant, both smooth
and non-smooth, but the important fact is that this technique provides one of the
few methods of non-differentiable interpolation. In this way, it constitutes a func-
tional model for chaotic processes. In this article we study a generalization of some
approximation formulae proposed by Dunham Jackson both in classical and fractal
cases.
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1 Introduction

Interpolation and approximation are mostly carried out with smooth functions,
but in many practical situations for example we come across sampled signals,
which are not smooth. Thus we cannot use classical interpolation in such cases.
Fractal interpolatio [2] helps to solve this problem to a large extent as it in-
volves both smooth and non-smooth which are created depending on the choice
of the scaling parameters, see for instance ([3], [4], [12], [5]). Barnsley [3] and
Navascués [10] observed that by a suitable choice of IFS whose elements are se-
lected in terms of a prescribed continuous function f, an entire family of fractal
functions fα, called the α-fractal functions, can be constructed to interpolate
and approximate f. We give here a global deterministic method to model pe-
riodic signals by fractal interpolation. This paper generalizes a particular type
of approximants defined by Jackson [8] and extend these approximants to its
fractals which are smooth or non-smooth in nature depending on the choice
of scaling factors. The functions proposed have the advantage of owning an
analytical explicit expression in terms of the samples (specific values) of the
original function. This fact gives them a particular importance in order to
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obtain mathematical representations of experimental signals, from which only
their values at evenly sampled nodes are known. The limits proposed prove
the convergence of approximants and intepolants with very weak conditions
as the sampling frequency is increased. The fast evolution of the programs of
advanced calculus enables the use of fractal functions more complicated that
mere polynomial and trigonometric mappings. In this way, from the theoretical
point of view, new fractal nodal elements are proposed, that provide a gener-
alization of the trigonometric functions. The density of these mappings in the
space of continuous and periodic functions is proved. In some cases, the new
fractal elements perform better than the classical Jackson’s originals.
The paper is organized as follows. In section 2, we have given some brief
description of α-fractal functions and review the required classical results on
uniform convergence of polynomial and trigonometric interpolation. A new
type of discrete version of Jackson approximants ans its convergence results
proposed in section 3. These results have been extended to the fractal version
of discrete Jackson approximants in section 4.

2 Preliminaries:

In this section we shall gather some essential materials that can be found in
details in the references ([1], [2], [7], [13], [11]).

2.1 Constructions of fractal functions:

In section 2.1, construction of continuous fractal interpolation function based on
iterated function system is reviewed. Let x1 < x2 < . . . < xN be real numbers,
and I = [x1, xN ], be a closed interval that contains them. Let a set of data
points {(xi, yi), i ∈ NN} be given, where Nk is the first k natural numbers, and
Ii = [xi, xi+1]. Let Li : I → Ii, i ∈ NN−1 be contractive homeomorphisms such
that

Li(x1) = xi, Li(xN ) = xi+1. (1)

Let K = I × R and N − 1 continuous mappings, Fi : K → R be satisfying

Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1, |Fi(x, y)− Fi(x, y′)| ≤ |αi||y − y′|, (2)

where (x, y), (x, y′) ∈ K, αi ∈ (−1, 1), i ∈ NN−1. Now define functions
wi : R2 → R2 as wi(x, y) = (Li(x), Fi(x, y)),∀i ∈ NN−1.

Theorem 1. (Barnsley[2]) The IFS I = {K;wi, i = 1, 2, . . . , N − 1} admits
a unique attractor G. G is the graph of a continuous function f : I → R which
obeys f(xi) = yi for i = 1, 2, . . . , N.
The previous function is called fractal interpolation function(FIF) correspond-
ing to the IFS I. For the implicit representation of FIF, we proceed as follows:

Let G = {g : [x0, xN ] → [c, d] | g is continuous and g(x0) = y0, g(xN ) = yN}.
Then G is a complete metric space with respect to uniform norm ‖.‖∞.
Define a mapping T : G 7→ G by (Tg)(x) = Fi(L

−1
i (x), g ◦ L−1i (x)) ∀x ∈
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[xi, xi+1], i ∈ NN−1.
Now, T is a contraction mapping on the metric space (G, ‖.‖∞), that is,

‖Tg − Th‖∞ ≤ |α|∞‖g − h‖, g, h ∈ G,
where α = (α1, . . . , αN−1) and |α|∞ = max{|αi| : i = 1, 2, . . . , N − 1} < 1.
Here T possesses a unique fixed point f ∈ G, which satisfies

f(x) = Fi(L
−1
i (x), f ◦ L−1i (x)) ∀x ∈ [xi, xi+1].

α-fractal functions: Navascués [10] observed that the theory of FIF can
be used to generate a family of continuous functions having fractal charac-
teristics from a prescribed continuous function. Consider a partition ∆ :=
{x1, x2, . . . , xN} of I satisfying x1 < x2 < · · · < xN , a base function b satisfy-
ing b ∈ C(I), b 6= f, b(x1) = f(x1), b(xN ) = f(xN ) and N − 1 real numbers αi
satisfying |αi| < 1. Define an IFS through the maps

Li(x) = aix+ di, Fi(x, y) = αiy + f ◦ Li(x)− αib(x), i ∈ NN−1, (3)

where Li and Fi satisfies (1) and (2) respectively and b is defined through the
linear map L : C(I)→ C(I) such that L is bounded with respect to sup norm
and satisfy Lf(x1) = f(x1) and Lf(xN ) = f(xN ).
The corresponding FIF denoted by fα∆,b = fα is referred as α-fractal function
for f with respect to a scale vector α base functions b and partition ∆.

From (3) the following uniform error bound can be found (see for instance
[11]),

‖fα − f‖∞ ≤
|α|∞

1− |α|∞
‖fα − b‖∞. (4)

2.2 Some classical results:

Dunham Jackson deduced several inequalities to compute the uniform distance
between a continuous (or differentiable) function and the space of trigonometric
or algebraic polynomials. For instance in the periodic case we have the following
results ([6],[7],[9]).

Theorem 2. Let f ∈ C[−π, π] and be periodic. If d∗n(f) = d(f, πn), where
d(f, πn) is the minimum distance between f and the space

πn =
{ n∑
k=0

(
ak cos(kx) + bk sin(kx)

)
; ak, bk ∈ R

}
,

then d∗n(f) ≤ ω
(

π
n+1

)
, where ω(δ) is the modulus of continuity of f .

Theorem 3. If f ∈ C2[−π, π] and is periodic, then

|ak| = O
( 1

k2

)
, |bk| = O

( 1

k2

)
and

‖f − Sn‖∞ = O(n−1),

where Sn is the n-th Fourier sum, and ak, bk are its coefficients.
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Theorem 4. If f ∈ C[−π, π], is periodic and satisfies a Dini-Lipschitz condi-
tion lim

δ→0
log(δ)ω(δ) = 0, then the Fourier series converges uniformly to f

This result is achieved by the Jackson approximants with the single hypothesis
of continuity (Section 3), and let us remember that uniform convergence implies
convergence in the mean of order p (Lp-norm) on compact intervals for 1 ≤
p ≤ ∞.
The advantage of the Jackson approximants is the fact of being explicit in
terms of the sampled values of the original function.

3 Generalization of Discrete Jackson approximants

We consider a type of Jackson approximants. They are defined in a discrete
way, using only the samples of the function to be approached. We consider
arbitrary but positive exponents γ > 0. In the Jackson case the value of the

exponent is γ = 4 ([?], p. 456). Consider Pm,i,γ(x) =
∣∣∣ sin(m(xi−x)

2

)
m sin

(
xi−x

2

) ∣∣∣γ ,
Dm,γ(f)(x) = Hm,γ

2m∑
i=1

f(xi)Pm,i,γ(x), (5)

where

H−1m,γ =

2m∑
i=1

Pm,i,γ(x) and xi+1 − xi =
π

m
, for i = 1, 2, . . . , 2m− 1. (6)

For a positive exponent γ > 0, Hm,γ = Hm,γ(x) depends on the variable x
although we will preserve the original notation omitting it. Hm,4 is a constant.

An important identity involving the basic functions in (5) is ([7], p. 340):
For n ∈ N and t ∈ R,

( sin(nt2 )

sin( t2 )

)2
= n+ 2

(
(n− 1) cos(t) + (n− 2) cos(2t) + . . .+ cos((n− 1)t)

)
. (7)

Lemma 1. For all m = 1, 2, . . .; γ > 0, and v ∈ R :∣∣∣ sin (mv)

m sin(v)

∣∣∣γ ≤ 1.

Proof. Using the identity (7) for n = m and t = 2v:( sin(mv)

sin(v)

)2
= m+ 2

(
(m− 1) cos(2v) + (m− 2) cos(4v) + . . .+ cos(2(m− 1)v)

)
.



Chaotic Modeling and Simulation (CMSIM) 3: 343–353, 2018 347

Then∣∣∣ sin (mv)

m sin(v)

∣∣∣γ =
1

mγ
|m+ 2

(
(m− 1) cos(2v) + (m− 2) cos(4v) + . . .+ cos(2(m− 1)v)

)
|γ/2

≤ 1

mγ
(m+ 2(

1 + (m− 1)

2
)(m− 1))γ/2

≤ 1

mγ
(m2)γ/2.

�
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Fig. 1. Graph of the function f(x) = (sinx cosx)3 in the interval [0, 2π].

Theorem 5. Let f ∈ C[−π, π] be Hölder continuous such that for
x, x′ ∈ [−π, π]

|f(x)− f(x′)| ≤ K|x− x′|q, 0 < q ≤ 1. (8)

Then for γ > q + 1,

‖Dm,γ(f)− f‖∞ ≤ K
2 (π2 )γ( π

2m )q
(

1 + 2γ
(
ζ(γ − q) + ζ(γ)

))
,

where ζ(s) is the Riemann zeta function:

ζ(s) =

+∞∑
i=1

1

is
. (9)

Proof. According to the definitions of Hm,γ and Dm,γ , and the change

xi = x+ 2ui,

we have:

|Em,γ(f)(x)| = |Dm,γ(f)(x)− f(x)| ≤ Hm,γ

2m∑
i=1

|f(x+ 2ui)− f(x)|Pm,i,γ(u).

(10)
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Using the Lipschitz constant and exponent (5)

|Em,γ(f)(x)| ≤ Hm,γK2q
2m∑
i=1

|ui|q|Pm,i,γ(xi − 2ui),

where due to periodicity, we can assume ui ∈ [−π/2, π/2]. Considering increas-
ing order in |ui| and denoting them by v0, v1, . . . , v2m−1 :

|Em,γ(f)(x)| ≤ Hm,γK2q
2m−1∑
i=0

vqi Pm,i,γ(xi − 2vi), (11)

where,
πi

4m
≤ vi ≤

π(i+ 1)

4m
≤ π

2
, (12)

for i = 0, 1, . . . , 2m− 1 ([?], p. 458). Here Pm,i,γ(xi − 2vi) = | sin(mvi)m sin(vi)
|γ . Now

from Lemma 1 ∣∣∣ sin(mv0)

m sin(v0)

∣∣∣γ ≤ 1. (13)

For i ≥ 1, using the inequality

sin(v) ≥ 2v

π
, (14)

for v ∈ [0, π/2],

m sin(vi) ≥ m sin
( πi

4m

)
≥ m2

i

4m
≥ i

2
.

As a consequence, for i ≥ 1, ∣∣∣ sin(mvi)

m sin(vi)

∣∣∣γ ≤ (2

i

)γ
. (15)

Using (11) we obtain

|Em,γ(f)(x)| ≤ Hm,γK2q
2m−1∑
i=0

vqi

∣∣∣ sin(mvi)

m sin(vi)

∣∣∣γ ≤ Hm,γK2q
[
vq0 +

2m−1∑
i=1

vqi

(2

i

)γ]
.

(16)
By definition of vi (7):

vq0 ≤
( π

4m

)q
, (17)

2m−1∑
i=1

vqi

(2

i

)γ
≤ 2γ

( π

4m

)q 2m−1∑
i=1

(i+ 1)q
1

iγ
.

For 0 ≤ q ≤ 1, (i+ 1)q ≤ (iq + 1),

2m−1∑
i=1

vqi

(2

i

)γ
≤ 2γ

( π

4m

)q 2m−1∑
i=1

(iq + 1)
1

iγ
= 2γ

( π

4m

)q 2m−1∑
i=1

( 1

iγ−q
+

1

iγ

)
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and thus
2m−1∑
i=1

vqi

(2

i

)γ
≤ 2γ

( π

4m

)q(
ζ(γ − q) + ζ(γ)

)
, (18)

where ζ(s) is the Riemann zeta function (9), convergent for s > 1.
If γ > q + 1, collecting all the inequalities ((16), (17), (18)):

|Em,γ(f)(x)| ≤ Hm,γK2q
[( π

4m

)q
+ 2γ

( π

4m

)q(
ζ(γ − q) + ζ(γ)

)]
. (19)

Let us bound now Hm,γ (6).

H−1m,γ =

2m−1∑
i=0

∣∣∣ sin(mvi)

m sin(vi)

∣∣∣γ > ∣∣∣ sin(mv0)

m sin(v0)

∣∣∣γ +
∣∣∣ sin(mv1)

m sin(v1)

∣∣∣γ . (20)

Since mvi ≤ π
2 for i = 0, 1, from (7) and (14),

sin(mvi)

m sin(vi)
≥ 2mvi
mπ sin(vi)

≥ 2

π
,

and thus (20),

H−1m,γ > 2
( 2

π

)γ
. (21)

Finally (19),

|Em,γ(f)(x)| ≤ K

2
(
π

2
)γ(

π

2m
)q
(
1 + 2γ(ζ(γ − q) + ζ(γ)),

if γ > q + 1. �

The former result is refined in the next Theorem.

Theorem 6. Let f ∈ C[−π, π] be Hölder continuous such that for
x, x′ ∈ [−π, π],

|f(x)− f(x′)| ≤ K|x− x′|q, 0 < q ≤ 1.

Then for γ > q + 1,

‖Dm,γ(f)− f‖∞ ≤ K
2 (π2 )γ( π

2m )q
(

1 + 2q + 2γ
(

1
γ−(q+1) + 1

γ−1
))
.

Proof. We proceed as in the previous Theorem until (11),

|Em,γ(f)(x)| ≤ Hm,γK2q
2m−1∑
i=0

vqi

∣∣∣ sin(mvi)

m sin(vi)

∣∣∣γ . (22)

Bearing in mind the inequality (15) for i ≥ 2, one obtains

|Em,γ(f)(x)| ≤ Hm,γK2q
2m−1∑
i=0

vqi

∣∣∣ sin(mvi)

m sin(vi)

∣∣∣γ ≤ Hm,γK2q
(
vq0+vq1+

2m−1∑
i=2

vqi

(2

i

)γ)
.
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Fig. 2. Approximant Dm,γ(f) of a sampled signal for m = 5, γ = 4(Jackson case)
and γ = 5 in the interval [−π, π].

By definition of vi (7),

vq0 ≤
( π

4m

)q
, (23)

vq1 ≤
( π

2m

)q
, (24)

and
2m−1∑
i=2

vqi

(2

i

)γ
≤ 2γ

( π

4m

)q 2m−1∑
i=2

(i+ 1)q
1

iγ
.

As before

2m−1∑
i=2

vqi

(2

i

)γ
≤ 2γ

( π

4m

)q 2m−1∑
i=2

(iq+1)
1

iγ
= 2γ

( π

4m

)q 2m−1∑
i=2

( 1

iγ−q
+

1

iγ

)
. (25)

The last sum is part of lower Riemann sums of the functions 1/xγ−q and 1/xγ ,
in the inteval [1,+∞) with unit step, respectively:

2m−1∑
i=2

1

iγ−q
≤
∫ ∞
1

dx

xγ−q
=

1

γ − (q + 1)
,

if γ > q + 1. Likewise

2m−1∑
i=2

1

iγ
≤
∫ ∞
1

dx

xγ
=

1

γ − 1
,
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if γ > 1. Collecting all the inequalities ((23), (24), (25)):

|Em,γ(f)(x)| ≤ Hm,γK2q
[( π

4m

)q
+
( π

2m

)q
+2γ

( π

4m

)q( 1

γ − (q + 1)
+

1

γ − 1

)]
.

Finally,

|Em,γ(f)(x)| ≤ K

2
(
π

2
)γ(

π

2m
)q
(

1 + 2q + 2γ
( 1

γ − (q + 1)
+

1

γ − 1

))
,

if γ > q + 1. �

4 Fractal version of discrete Jackson approximants

Some easy and elegant observations on fractal functions in conjunction with
the theorems from section 3, provide their corresponding fractal versions. Such
kind of fractal approximants possess many desirable properties as their tradi-
tional counterparts and also reassures the ubiquity of fractal functions.
As described in section 2, to get the fractal version we have to perturb the
basis function Pm,i,γ(x) using suitable base functions bi,m,γ , suitable scaling
vector αm and partition of [−π, π] and define the fractal discrete Jackson ap-
proximants as

Dα
m,γ(f)(x) = Hm,γ

2m∑
i=1

f(xi)P
α
m,i,γ(x).

The following generalizes the Theorem 6.

Theorem 7. Let f ∈ C[−π, π] be Hölder continuous such that for
x, x′ ∈ [−π, π],

|f(x)− f(x′)| ≤ K|x− x′|q, 0 < q ≤ 1.

Then for γ > q + 1,

‖Dα
m,i,γ(f)− f‖∞ ≤ K

2 (π2 )γ( π
2m )q

(
1 + 2γ

(
ζ(γ − q) + ζ(γ)

))
+m(π2 )γ‖f‖∞ |α|∞

1−|α|∞ max
1≤i≤2m

‖Pαm,i,γ − bm,i,γ‖∞,
where α, bm,i,γ are the suitable scaling vector and basis function used to con-
struct the fractal perturbation of Pm,i,γ .

Proof. From the triangle inequality we have:

‖Dα
m,γ(f)− f‖∞ ≤ ‖Dα

m,γ(f)−Dm,γ(f)‖∞ + ‖Dm,γ(f)− f‖∞.

Under the stated hypothesis from Theorem 5 we have:

‖Dm,γ(f)− f‖∞ ≤
K

2
(
π

2
)γ(

π

2m
)q
(

1 + 2γ
(
ζ(γ − q) + ζ(γ)

))
. (26)
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Fig. 3. Approximant Dα
m,γ(f) of a sampled signal for m = 12, γ = 5 and in the

interval [−π, π] for different values of α.

Now

|Dα
m,γ(f)(x)−Dm,γ(f)(x)| = |Hm,γ

2m∑
i=1

f(xi)(P
α
m,i,γ)(x)− Pm,i,γ(x)|

≤ Hm,γ

2m∑
i=1

|f(xi)||(Pαm,i,γ)(x)− Pm,i,γ(x)|

≤ Hm,γ2m‖f‖∞
2m∑
i=1

|(Pαm,i,γ)(x)− Pm,i,γ(x)|

≤ (
π

2
)γm‖f‖∞ max

1≤i≤2m
‖Pαm,i,γ − Pm,i,γ‖∞.

(27)

Finally, using (4), (26) and (27)the proof follows. �

The next result is the refined version of the above theorem.

Theorem 8. Let f ∈ C[−π, π] be Hölder continuous such that for
x, x′ ∈ [−π, π],

|f(x)− f(x′)| ≤ K|x− x′|q, 0 < q ≤ 1.

Then for γ > q + 1,

‖Dm,γ(f)− f‖∞ ≤ K
2 (π2 )γ( π

2m )q
(

1 + 2q + 2γ
(

1
γ−(q+1) + 1

γ−1
))

+m(π2 )γ‖f‖∞ |α|∞
1−|α|∞ max

1≤i≤2m
‖Pαm,i,γ − bm,i,γ‖∞,



Chaotic Modeling and Simulation (CMSIM) 3: 343–353, 2018 353

where α, bm,i,γ are the suitable scaling vector and basis function used to con-
struct the fractal perturbation of Pm,i,γ .

Proof. The result follows from Theorem 6 and the triangle inequality

‖Dα
m,γ(f)− f‖∞ ≤ ‖Dα

m,γ(f)−Dm,γ(f)‖∞ + ‖Dm,γ(f)− f‖∞.

Corollary 1. If f ∈ C[−π, π] is Hölder continuous with exponent q (0 < q ≤ 1)
and γ > q + 1 and if we select scaling factors α as |αi| ≤ 1

mq+1 , for i =
1, 2, . . . N − 1 where N is the number of partition of [−π, π], then Dα

m,γ(f)
converges uniformly to f as m tends to infinity. The order of convergence
O(m−q) does not depend on γ.
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