ANEXO A Legislacion relativa a los contadores electronicos

12/2008 08/2007 ' 122007
RD 1634/2006 RD 1110/2007 10/2007 ITC 3860/2007
Mandato a CNE Reg. De Pios de + ITC3022/2007 Control Metrologico Hitos y Criterios
Medida » Informe CNE Mandato 1634/2006 Plan de
Sustitucion
T T
_ I|I f
2006 - 2007

Fig. A-0-1 Cronologia, Hitos y Hechos Relevantes 2006 y 2007

Fuente: Taller Contadores Inteligentes (Smart Metering) de Gas Natural Fenosa.

En el Real Decreto (RD) 809/2006, de 30 Junio (1), tenemos la primera referencia al
contador electrénico. Este RD establece que los contadores eléctricos en nuevos
suministros (potencia contratada <15 kW) deberan permitir la discriminacidon horaria
de las medidas asi como la telegestion.

Disposicion adicional segunda. Instalacidon de equipos de medida:

“A partir del 1 de julio de 2007, los equipos de medida a instalar para nuevos
suministros de energia eléctrica hasta una potencia contratada de 15 kW y los que se
sustituyan para los antiguos suministros deberan permitir la discriminacion horaria de
las medidas asi como la telegestion en los términos y condiciones técnicas que
establezca el Ministerio de Industria, Turismo y comercio”

Después, en el RD1634/2006,29 Diciembre. Mandato a la CNE: Plan de instalacion de
equipos de medida.

Disposicidon adicional vigésima segunda. Plan de instalacién de equipos de medida.

“Antes del 1 de julio de 2007, la Comisidon Nacional de Energia remitira a la Direccién
General de Politica Energética y Minas un informe donde se establezca un plan para la
sustitucion a nivel nacional de contadores que permitan la discriminacién horaria de
las medidas y la telegestion en todos los suministros de energia eléctrica hasta una
potencia contratada de 15 kW.

En el mencionado plan se recogerdn los criterios para la sustitucion de dichos equipos
de medida, asi como el nimero de equipos a instalar anualmente, entendido como un
porcentaje del total del parque nacional de contadores correspondientes a este tipo de
suministros”

Real Decreto RD 1110/2007, 24 Agosto. Reglamento unificado de puntos de medida
del sistema eléctrico espafiol:

76

Establece toda la normativa relacionada con los equipos de medida (Normas
generales, equipos de medida, verificacion e inspeccidn, sistemas y protocolos de
comunicaciones,...).

Respecto a los equipos de medida, fija unas funciones minimas que quedan resumidas
en la siguiente tabla aunque puede consultarse una descripcion detallada en los

anexos.

FUNCIONES MINIMAS |

e Lectura remota de la potencia activa, reactiva y maxima

e Control de la potencia contratada

e Programacidon remota de pardmetros del contrato, como la potencia
maxima

e Interruptor integrado para operaciones remotas de conexidon/desconexion

e Lectura remota de parametros de calidad de la red

e Sincronizacion remota del tiempo

e Capacidad de gestiéon de la carga, para reducir la demanda en momentos
criticos

e Seguridad y control de acceso a los datos

e Alarmay registro de eventos
Tabla A.0.1 Resumen funciones minimas de los contadores

ORDEN ITC/3022/2007,10 Octubre. Se regula el control metrolégico del Estado sobre
instrumentos de medida.

ORDEN 1TC/3860/2007,28 Diciembre. Publicacion de los criterios para el plan de
sustitucion de equipos de medida, donde se establece que todos los contadores
deberdn ser sustituidos antes de 31 de Diciembre de 2018 (11 afios), cada distribuidor
tiene que presentar su propio plan y presentar el disefio del sistema de telegestion,
para ser aprobado por el Ministerio.

All meters of customers <15kW must be replaced before
December 315, 2018 (11 years)

2008 2000 2010 2011 2012 2013 2014 205 16 27 018
Smart Metering System
must be operational

Fig. A-0-2 Plan de sustitucion de equipos de medida

Fuente: Endesa’s Smart Metering Roll-out Programme.

77

Principales caracteristicas de los contadores segun RD 1110/2007

Ampliacion de caracteristicas que deberan cumplir todos los equipos de medida.

Energia activa y energia reactiva
Mdxima potencia demandada (15°)
Discriminacion horaria
Capacidad para almacenar datos de 3 meses
Capacidad para gestionar 6 periodos tarifarios >> Almacenar 3 facturas.
REGISTRO
Parametros de calidad (Interrupciones de mdas de 3 minutos de duracion vy
superacion de los limites de tension)
Eventos (alarmas, cambios configuracién de facturaciéon, deteccion de fraude,...)
Mostrar informacién al usuario
Limitador de la potencia contratada
Interruptor de control de potencia
Reconexidon Manual o Automatica
TELEMEDIDA Y TELEGESTION. Requisitos obligatorios:
Medidas remotas de energia y potencia, correspondientes a los cierres de
facturacién.
Lectura remota de pardmetros de calidad.
Modificacién de la parametrizacion del equipo (tarifas, potencias contratadas, tipo
de contrato,...)
Sincronizacién remota (al menos una vez en cada ciclo de lectura).
Actualizacién del software del equipo.
Lectura remota de eventos.
Corte y reconexion del suministro (gestidon de altas/bajas y ejecucion de planes de
control de la demanda)
Capacidad de gestidon de cargas: reduccidon de la demanda en momentos criticos

Capacidad para remitir mensajes al consumidor (consulta online de informacion)
Tabla A.0.2 Caracteristicas de los contadores segtin RD

78

ANEXO B FUENTE DE ALIMENTACION CAPACITIVA

1) Principio basico de funcionamiento

i) = RL Vf
i

vi (7

Fig. B-0-1 Principio funcionamiento FA capacitiva

Cuando se conectan en serie un condensador y una resistencia, una corriente
constante puede ser mantenida a través de la resistencia mientras la capacitancia del
condensador sea mucho mayor que la resistencia. Este valor de corriente dependera
del valor de C, Ry de las tensiones de entrada y salida Vi e Vo. Asumiendo que Vi >> Vo
lo cual se cumple 230V >> 5V, el valor aproximado de la corriente vendra dado por:

[ﬂ 2301
RS Xe Xc
1 1

CcC= =
Co Cx2nf

Después para conseguir una tension continua (DC) en la carga afadiremos un par de
rectificadores y condensadores.

Componente Funcidn \
Condensador (C) Sirve para atenuar la tension de entrada

Resistencia (R) Limita la corriente inicial de entrada

Diodos (D1y D2) Conforman un rectificador de media onda
Condensador C1 Filtrado y suministro de posibles picos de corriente
Resistencia Zener (Rz) Para establecer la corriente min y max por el zener
Diodo Zener (Dz) Fija la tension de salida de la carga, Vo

Tabla B.0.1 Funcion componentes FA capacitiva

El voltaje en la carga permanecera constante mientras la corriente de salida (lout) sea
menor o igual que la de entrada (lin). La corriente de entrada lin esta limitada por R1y
la reactancia de C1 aunque principalmente por esta ultima dado su mayor valor.

Nota: R1 limita la corriente de entrada. El valor de R1 se selecciona de tal forma que no
disipe demasiada potencia pero lo suficiente grande para limitar la corriente inicial
(Inrush current) de entrada.

El problema de este tipo de FA es que la seleccién de los componentes es muy critica,
ya que al trabajar con tensiones de red, la potencia disipada resulta bastante elevada y

79

dado que la tensidn de salida se regula con un diodo zener, la FA podra dar corriente
en un rango limitado (habra un maximo y un minimo de corriente posibles).

Por ello, este tipo de FA se disefia para alimentar un circuito especifico y con
variaciones de carga pequefias ya que no permite grandes variaciones en la corriente
gue puede entregar por problemas de disipacion de potencia.

2) Caracteristicas de corriente de salida:

Primero hemos calculado el consumo estimado de todos los componentes del
sistema, para a partir de ahi, disefiar la fuente de alimentacion.

Modo ACTIVO BAJO consumo
Micro XLP 23 mA 2 mA y menor
Cirrus CS5463 2,8 mA 1,93 mA
Moddulo ZigBee 35,5 mA 1,5 uA
Relé 72 mA -
TOTAL 133,3mA 4 mA

Tabla B.0.2 Consumo del sistema

Quedando un consumo maximo aproximado de 133mA y mayorandolo un 10%,
nos quedara un consumo de 160mA.

Entonces, el voltaje en la carga permanecera constante mientras la corriente de
entrada sea mayor de 150mA.

3) Precauciones respecto a los componentes:

Como ya se ha mencionado en las especificaciones, se debe conectar el sistema a
través de un fusible para asegurar la proteccién de éste en caso de una conexién
equivocada y también se incluye, para mejorar la proteccidn global de la FA frente
a picos de tensién, un varistor.

Respecto al condensador de ACy los diodos rectificadores, estos deben ser capaces
de soportar la tension de pico del sistema (325V).

4) Precauciones de manejo:

Se debe tener especial precaucion ya que estamos trabajando con tensiones de red
sin aislamiento. Respecto a ello tendremos que tomar las siguientes precauciones:
Se tiene que asegurar que los componentes no estén accesibles (puedan ser
tocados) cuando el circuito esté en funcionamiento.

80

Diseno de la Fuente de Alimentacion

Para el disefio de la FA se ha partido de los valores datasheet del CS5463 y de la nota
de aplicacién de Microchip, sobre diferentes topologias de FA sin transformador (1).
Sin embargo, se ha teniendo en cuenta que nuestra fuente deberd proporcionar una
corriente tres veces mayor que la calculada en dichos documentos, dificultando en

gran medida el disefio de ésta.

4 D3 +5
HEUTED || B _ N e s
) 10 56
4. TuF 1H4004 _ 1+ C5
. L000F | Dz
L4 ‘_'m + 6
1H4004 I £ 11,51

FASE

BHD
Fig. B-0-2Disefio FA capacitiva
1) CélculodeC1
| Seleccionamos Vz=5V1 |
] 230+/2
V, (media _onda) = Vpico = 30v2 =160V
- 2 2
V di d : 1
e (media _onda) S1 > Xe, < V,(media _onda) R

IN
Xe, + R,

IOUT

Seleccionamos:

R1=10Q
lout=160mA
¢ < 1607 -10Q2=990Q
160mA
ORI I 5
@ ¢, X2
¢ 2 ! ! =3,22uF

" Xe,x2xf 990Qx2750Hz

Considerando la tolerancia del condensador y la resistencia, dado que el valor de

¢, =3,3uF quedaria muy justo:

Seleccionamos ¢, =4,7ul

81

2) Calculo de C2: Ahora para el célculo de C2 consideramos una descarga de C2

de 1V para que nos quede de un tamaino que no sea excesivamente grande.

[descargaMAX X tdescarga ~ 160mA X IOmsg
AVe, B W

>

~1600uF

)

Seleccionamos: ¢, =2200uF

3) Calculo de Rz: Le dejamos a Rz un par de voltios por lo que:

AV, =2V
2V
(]Rz)min > (IOUT)max + (Iz)min > E >160mA +1mA
Rz < 2 =12,4Q
161mA

| Seleccionamos: Rz =10Q |

5) Calculo de C3

El condensador C3 esta para proporcionar los posibles picos de corriente necesarios
para el circuito, por lo que lo seleccionaremos de un valor menor que C2 para que sea
rapido pero que no se descargue demasiado.

Seleccionamos ¢; =330uF

6) Disipacidn de potencia en los componentes:

La impedancia de entrada al circuito sera:

1

=—=677Q R =10Q
4, TuF x2rxf

G

Por lo que la corriente vendrd dada por:

2307 =335mA
Q

Iin<

e PotenciaenR1
P, = IIZN XR = (335mA)2 x10Q=1,12W

e PotenciaenD1lyD2

82

P, =1, xV,. . =160mAx1V =160mW

e Potencia en Diodo Zener
Py =1, %V, =160mAx5,1V = 0,816

(Potencia maxima en el Zener si la carga se queda en circuito abierto)

e Potencia en Rz
P, = IéUT XR = (160mA)2 x10Q =0,256W

Nota: Aproximadamente, se han seleccionado los componentes doblando el valor de
potencia calculado.

Disefio final, con elementos de proteccidn (fusible y varistor) incluidos:

HUSES “ R5 D S R6 3
I AAA H = AAA
lima vary 47U 10 1N4004 |+ s % I e
= 250VAC 1000uF DZ2 = 330uF
5 }EUTRO y ¥l Vi
| FASE 194004
Conectar
GND

Fig. B-3 Final FA capacitiva

Ref. Descripcion . Precio Total €
Farnell unitario

1357898 | RESISTENCIA, 3W 5% 10R 2 0,36 €
0,72 €

1781899 | CONDENSADOR, CLASE X2, 4,7 UF, 305 VCA 1 4,39 €
4,39 €

1843708 | DIODO, RECTIFICADOR,, 400V, 1A, DO-41 2 0,05 €
0,10€

1469419 | 1N4733A-TR - DIODO, ZENER, 5,1V, 1,3 W 1 0,05 €
0,05 €

1057192 | VARISTOR, 21.0J, 250VCA 1 0,30 €
0,30€

1822618 | CAPACITOR ALUM ELEC, 1000UF, 50V 1 1,00 €
1,00 €

9451102 | CONDENSADOR, 330 uF, 16V 1 0,07 €
0,07 €

9762540 | TC1185-3.3VCT713 - REG. DE TENSION LDO 1 0,47 €
+3,3V, SOT-23A-5 0,47 €

1123206 | MCF06G-500MA - FUSIBLE 500MA 1 0,11€
0,11 €

1705671 | 1N5357BRLG - ZENER DIODE, 5W, 20V 1 0,18 €
0,18 €

1737719 | RESISTOR, METAL FILM, 560HM, 3W, 5% 1 0,17 €
0,17 €
7,57 €

Tabla B.3 Componentes fuente alimentacién capacitiva

83

ANEXO C Cirrus CS5463

Métodos numéricos de calculo

Como se ha comentado al principio de éste apartado, en el datasheet del CS5463 el
esquema de cdlculo se encuentra explicado muy visualmente, por ello se mostrara
ahora, para dar una visién general muy clara de todo el proceso de calculo. Primero se
definirdn todas las magnitudes que aparecen en la figura.

Magnitud Significado

V*, |* Tensidn y corriente instantanea

Vacoff*, Tension y corriente de offset de AC

lacoff*

Vrms*, Irms* | Tension y corriente eficaz (RMS)

S* Potencia Aparente

p* Potencia instantdnea

Poff* Offset para la potencia

Pactive* Potencia Activa

PF* Factor de potencia

Qtrig* Potencia Reactiva del Triangulo de
potencias

Q* Potencia Reactiva instantanea

Qavg* Potencia Reactiva media (AVG)

PulseRate* Frecuencia de los pulsos de salida

Tabla C.1 Definicion de magnitudes

Fig. C-0-1 Data Measurement Flow Diagram.

"DENOTES REGISTER NAME.

84

Lista de registros del Cirrus

Registros implementados para utilizar con la funcién cs_readRegister (addrees,page),
donde addrees representa la direccion del registro en hexadecimal y page la pagina en
la que se encuentra.

CS_CONFIGURATION 0x00
CS_CURRENT_DC_OFFSET 0x02
CS_CURRENT_GAIN 0x04
CS_VOLTAGE_DC_OFFSET 0x06
CS_VOLTAGE_GAIN 0x08
CS_CYCLE_COUNT Ox0A
CS_PULSE_RATE_E 0x0C
CS_INSTANTANEOUS_CURRENT OxOE
CS_INSTANTANEOUS_VOLTAGE 0x10
CS_INSTANTANEOUS_POWER 0x12
CS_ACTIVE_POWER Ox14
CS_RMS_CURRENT 0x16
CS_RMS_VOLTAGE 0x18
CS_RATIO Ox1A
CS_POWER_OFFSET 0x1C
CS_STATUS Ox1E
CS_CURRENT_AC_OFFSET 0x20
CS_VOLTAGE_AC_OFFSET 0x22
CS_OPERATION_MODE 0x24
CS_TEMPERATURE 0x26
CS_AVERAGE_REACTIVE_POWER 0x28
CS_INST_REACTIVE_POWER Ox2A
CS_PEAK_CURRENT 0x2C
CS_PEAK_VOLTAGE Ox2E
CS_REACTIVE_POWER 0x30
CS_POWER_FACTOR 0x32
CS_INTERRUPT_MASK Ox34
CS_APPARENT_POWER 0x36
CS_CONTROL 0x38
CS_HARMONIC_ACTIVE_POWER Ox3A
CS_FUNDAMENTAL_ACTIVE_POWER | 0x3C
CS_FUNDAMENTAL_REACTIVE Ox3E
CS_PAGE Ox3E

Tabla C.2 Lista registros page 0

85

e cs_writeRegister: Este es el diagrama de flujo de otra de las funciones
importantes implementadas. Es similar a la cs_ReadRegister, pero para
escribir cualquier registro del Cirrus, pasandole como argumento el numero

de registro, la pagina en que se encuentra y los datos a escribir.

void ¢s_writeRegister{unsignad int8 reg,
unsigned int8 page, unsigned int32 c¢s_Data_to_write)

ESCRIBIR
REGISTRO

INPUT DATA:
REG, PAGE,
| cs_Data_to_write

Para poder mandar
los datos par SPI
data[x]=make8
(cs_Data_to_write,y);

spi_write{Ox7E);
spi_write(0x00);
spi_write(0x00);
spi_write(page);

spi_write(0b01000000| reg);
spi_write(data[0]);
spi_write(data[1]});
spi_write(data[2]);

ACTIVO

Fig. 0-2 Diagrama flujo cs_writeRegister

86

ANEXO D Libreria ZigBee

Tabla que incluye todas las funciones implementadas por HOWLab para el manejo del

ZigBee.

void

void

void

void

void

void

void

void

void

void

ZB_GeTPowerLevel (void)

Ask for the supply voltage of the device See pag 72 of the AT-Command 3.02
of Telegesis.

ZB_NETDisassociate (void)

Disassociate Local Device From PAN See pag 17 of the AT-Command 3.02 of
Telegesis.

ZB_NETJoin (void)

Join Network The local node scans all channels selected in register SO0 for the
existence of a PAN. When finding any PAN which allows joining it will
automatically join in via the remote node with the highest RSSI. See page 16 of
the AT-Command 3.02 of Telegesis.

ZB_SSink (void)

Search For A Sink Search for a sink on the network by sending a broadcast

causing all sinks to reply. See page 35 of the AT-Command 3.02 of Telegesis.

ZB_SendToSinkD (int8 nDatos, int8 *Datos)
Send data in binary to the Sink.

ZB_StartUpNet (void)

Connet the Zigbee device to the preconfigured network.

ZB_TGBootloader_DefaultConfig (void)

Function to configure the Zigbee Preferred PanID and Password

ZB_TGBootloader (void)

Function to configure the Zigbee device the first time. Today the content of
the register must be change by hand in order to fix the correct parameters

ZB_PowerMode (int8 PowerMode)

Change the power level.

ZB_PowerConf (int8 PowerMode)

Configure the Zigbee device in order to use a power level.

87

ANEXO E Comandos PC >> Nodo implementados

Ahora se va a mostrar la forma en que se ejecutan los comandos, para dar una vision
general del funcionamiento de éstos, se puede observar la siguiente imagen, la cual ya
ha sido mostrada en apartados anteriores:

COMANDO TIPO
Comando a ejecutar Respuesta
AT+UCASTB:XX,<address> <comando ejecutado>
<end_point> SEQ:XX
<cluster_id> OK
<length> o ERROR:<errorcode>
<command>

ACK:XX o NACK:XX

Respuesta del comando
<Segun el comando ejecutado>

Comando Funcién implementada \

Descripcién

Longitud

00 readRegister Lee el registro indicado 2
01 writeRegister Escribe el registro indicado 3
02 SoftwareReset Resetea el Cirrus 1
03 PowerState Modifica el estado del Cirrus 2
04 Initialization Inicializa los registros del Cirrus 1
05 WriteCalibrationData Escribe los datos de calibracién 1
06 StartConversions Empezar a tomar medidas 1
07 ReadInstantMeasures | Lee variables instantaneas 1
08 ReadPeakMeasures Lee variables de pico 1
09 ReadAverageMeasures | Lee variables medias, AVG 1
0A ReadRMSmeasures Lee variables eficaces, RMS 1
0B ReadCalibrations Lee los registros de calibracion 1
(1] SystemCalibration Inicia la calibracién indicada 2
oD OffsetCalibration Inicia la calibracidn de offset 1
OE GainCalibration Inicia la calibracién de ganacia 1
OF cs_5463Status Comprueba el estado del Cirrus 1
20 ReadPage0 Lee registros de la pagina 0 1
21 ReadPagel Lee registros de la pagina 1 1
22 ReadPage3 Lee registros de la pagina 3 1
23 SetSendTime Fija el tiempo de lectura periddica 2
30 Control_Rele Controla el estado del relé 1

Tabla 0.1 Resumen de comandos

A partir de este punto, se explicaran en detalle los comandos de la tabla anterior,
teniendo en cuenta que para simplificar la interpretacion de los mismos, se sustituira
el <end_point><cluster_id> por <10F1>, que son los nimeros que se han asignado.

88

ReadRegister — Leemos el registro indicado en la variable DATA

Comando a ejecutar

AT+UCASTB:05,<address>
<10F1>
<02>
<00>
<data>

<data> registro[1byte] del 0x00-0x30
Numero asignado al registro, ver

primera tabla del anexo E.

Ejemplo de comando: 10F102000A

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando

<datos del registro leido> [HEX]

Ejemplo de respuesta: 000FAQ

WriteRegister — Escribimos el registro indicado en la variable DATA

Comando a ejecutar

AT+UCASTB:08,<address>
<10F1>
<04>
<01>
<data>

<data> = registro[1] + datos[3]
Numero del registro (Tabla anexo E)
y datos que se quieran escribir en él.

Ejemplo de comando:
10F1040104400000

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Ejemplo de respuesta:
<EVENT ACK> [ASCII]

SoftwareReset — Resetea el Cirrus

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<02>

<02> = Comando asignado a
SoftwareReset

Ejemplo de comando: 10F10102

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<EVENT_ACK> [ASCII]

89

PowerState — Modifica el estado del Cirrus

Comando a ejecutar

AT+UCASTB:05,<address>
<10F1>
<01>
<03>
<data>

<data> Selecciona el modo de energia
01=Standby
10=Sleep
11=Power up

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Stanby/Sleep/PowerUP> [ASCII]

Initialization — Inicializa los registros del Cirrus

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<04>

<04> = Comando asignado a
Initialization

Ejemplo de comando: 10F10104

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Cirrus OK> [ASCII]

WriteCalibrationData — Escribe los datos de calibracion

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<05>

<05> = Comando asignado a
WriteCalibrationData

Ejemplo de comando: 10F10105

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Writing calibration data> [ASCII]

90

StartConversions — Comando para empezar a tomar medidas

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<06>

<06> = Comando asignado a
StartConversions

Ejemplo de comando: 10F10106

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Ninguna>

ReadInstantaneousmeasures — Lee valores instantaneos

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<07>

Ejemplo comando: 10F10107

Ejemplo de respuesta:
Instantaneous Current
1235

Instantaneous Voltage
327.1

Instantaneous Power
56.2

Inst Reactive Power
23.8

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando

< Instantaneous Current > [ASCII]
<datos leidos I> [mA]

< Instantaneous Voltage> [ASCII]
< datos leidos V> [V]

< Instantaneous Power> [ASCII]
< datos leidos P> [W]

< Inst Reactive Power > [ASCII]
< datos leidos P> [VAr]

ReadPeakMeasures — Lee los valores de pico de tension y corriente

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<08>

Ejemplo comando: 10F10108

Ejemplo de respuesta: PEAK Current
983.7
PEAK Voltage
325.3

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando

<Peak Current> [ASCII]

<datos leidos del registro Ipeak> [mA]
<Peak Voltage> [ASCII]

< datos leidos del registro Vpeak > [V]

91

ReadAVGmeasures — Lee los valores medios de tension y corriente

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<09>

Ejemplo comando: 10F10109

Ejemplo de respuesta: AVG Current
583.1
AVG Voltage
207.07

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando

<AVG Current> [ASCII]
<datos leidos del registro lavg>
[mA]

<AVG Voltage> [ASCII]
< datos leidos del registro Vavg >
(V]

ReadRMSmeasures — Lee los valores eficaces de tension y corriente

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<0A>

Ejemplo comando: 10F1010A

Ejemplo de respuesta: RMS Current
783.1
RMS Voltage
229.6

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<RMS Current> [ASCII]

<datos leidos del registro Irms>
<RMS Voltage> [ASCII]

< datos leidos del registro Vrms >

cs_5463Status — Comprueba el estado del Cirrus

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<0F>

<0F> = Comando asignado a
ReadPage0

Ejemplo de comando: 10F1010F

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX
Respuesta del comando

Manda el valor del registro de estado
[ASCII]

92

ReadPage0 — Lee registros de la pagina 0

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<20>

<20> = Comando asignado a
ReadPage0

Ejemplo de comando: 10F10120

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX
Respuesta del comando

Manda los datos leidos de todos los
registros de la pagina 0 [HEX]

ReadPagel — Lee registros de la pagina 1

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<21>

<21> = Comando asignado a
ReadPagel

Ejemplo de comando: 10F10121

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando

Manda los datos leidos de los registros:

"Energy Pulse Output Width" [HEX]
"No Load Threshold" [HEX]
"Temperature Sensor Gain" [HEX]
"Temperature Sensor Offset" [HEX]

ReadPage3 — Lee registros de la pagina 3

Comando a ejecutar

AT+UCASTB:04,<address>
<10F1>
<01>
<22>

<22> = Comando asignado a
ReadPage3

Ejemplo de comando: 10F10122

Respuesta

<comando ejecutado>
SEQ:XX

OK

or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando

Manda los datos leidos de los registros:

"Voltage sample interval" [HEX]

"Voltage sag level" [HEX]
"I fault sample interval" [HEX]
"Current fault level" [HEX]

93

SetSendTime — Fija el tiempo de lectura periddica

Comando a ejecutar Respuesta
AT+UCASTB:04,<address> <comando ejecutado>
<10F1> SEQ:XX

<01> OK
<23> or ERROR:<errorcode>
<data>

ACK:XX o NACK:XX
<data> Selecciona tiempo

00=15 segundos Respuesta del comando
01=30 segundos <Tiempo establecido> [ASCII]
10=1 minuto

11=desactivado

Control_Rele — Controla el estado del relé

Comando a ejecutar Respuesta
AT+UCASTB:04,<address> <comando ejecutado>
<10F1> SEQ:XX
<01> OK
<30> or ERROR:<errorcode>
<30> = Comando asignado a ACK:XX o NACK:XX
Control_Rele
Respuesta del comando
Ejemplo de commando: 10F10130 <CARGA conectada> o [ASCII]
<CARGA desconectada> [ASCII]

END_POINT [CLUSTER_ID | LENGTH | COMMAND | DATA |RESULT

0x10 OxF1 0x02 0x00 Ox16 |[0x10F1020016

0x10 OxF1 0x01 0x02 XX 0x10F10102

Ejemplo comandos PC>>Nodo

1) Comando 0x00 por lo que utiliza la funcién cs_readRegister (Viendo la tabla de
abajo), con el argumento 0x16, que hace referencia a un registro, en concreto
el CS_RMS_CURRENT (segun la tabla que se puede consultar en los anexos). En
resumen, al enviar por ZigBee el comando 0x10F1020016, leeriamos el registro
gue guarda el valor medido de Irms.

2) Comando 0x02, que como observamos en la tabla de abajo implementa el
comando cs_SoftwareReset, que resetea el CS5463.

94

ANEXOF CODIGO FIRMWARE

Este anexo recoge todo el cddigo del proyecto desarrollado por el autor, es decir, las
librerias del Cirrus CS5463, las funciones inteligentes y el protocolo de comunicaciones.
También puede consultarse el codigo y la documentacién creada por Doxygen, en el
CD anexo.

Caodigo libreria Cirrus CS5463

//**
*hkkhkkhkkhkhkkhkhhkkkkk k%K

/*! \file CS 5463.c

* \brief The next file provides the functions needed in order to
handle Cirrus CS5463.

Description:

Author: Nestor Carruesco (ncarruesco@gmail.com)\n
Copyright: HowLab UNIVERSITY OF ZARAGOZA (Spain)\n
Date: 19/07/2011\n
Update record:\n
\n

Author: Nestor Carruesco (ncarruesco@gmail.com)\n
Update: Afiadidas varias funciones:
- Calibraciones
- cs_b5463Status
\n

P S T S S N

~

#include "CS 5463.h"

e Funciones Capa 0

/*! \fn void cs readRegister (unsigned int8 reg, unsigned int8 page)

* \brief Reads the register indicated in reg. See pag 24 of CS5463
datasheet

* \param reg Indicates register to read from

* \param page Indicates page to read from

* \return Data read from register */

void cs_readRegister (unsigned int8 reg,unsigned int8 page)

{

if (page == 0)
//Comprobamos la page (0,1, 3)
{
spi _write(reqg); //
solicita el valor del registro
cs AppDbatal[0] = spi read(0xFF); //MSB
cs_AppDbatal[l] = spi read(0xIT); //Escribir OxFF para que
el micro genere la sefial SCLK
cs_AppDbatal[2?] = spi read(0xEF); //write OxFF to SPI the

same time you are reading a value.

Ccs numByteAppData = 3;

95

//Mandamos por ZigBee los datos del reg leido
ZB SendToSinkD(cs_ numByteAppData,cs AppData);
//cs_AppData=puntero a la variable

//Guardamos el nombre del registro a leer, en el array
nombre registro

unsigned int8 numero registro;

numero registro=reg;

numero_ registro=(numero registro>>1); //Desplazamos los bits
a la derecha para quitar el 0

char nombre registro[30];
unsigned int8 j=0;
for (3j=0;3<30;3++)

{

nombre registro[j]=matriz registros[numero registro][j]:
}
ZB_SendToSinkD (STRLEN (nombre registro) ,nombre registro);
}
else
{
// (0x7E) Lee de PAGE, la pagina en la que queremos leer (por
defecto 0)
spi write(0x7E); //spi write (0b01000000||CS PAGE) ;
spi write (0x00);
spi write (0x00);
spi_write(page);

spi write(req); // solicita el valor del
registro

cs AppDbatal[0] = spi read(0xFF);

cs AppDatal[l] = spi_read(0xFF);

cs AppDatal[?] = spi_read(0xFF);

cs_numByteAppData = 3;

ZB_SendToSinkD(cs_ numByteAppData,cs AppData); //Mandar datos
reqg leido por ZigBee

spi write(0x7/E); //Escribimos page=0 (Configuracion
por defecto)

spi write (0x00);

spi_write (0x00);

spi write(0); //page

/*! \fn void cs writeRegister (unsigned int8 reg,unsigned 1int8 page,
unsigned int32 cs Data to write)

* \brief Writes the register indicated in address. See pag 24 of
CS5463 datasheet

* \param reg Indicates register to write

* \param page Indicates register to write

* \param cs Data to write Pointer to a byte array with the data to
write in the register */

void cs_writeRegister(unsigned int8 reg,unsigned int8 page, unsigned
int32 cs Data to write)

{

96

//Dividimos 1int32 cs Data to write en 3 int8 para poder mandarlas
por SPI

unsigned int8 datal[3];

data[0O]=make8(cs_Data to write,?);

data[l]l=make8(cs_Data to write,l);

data[Z]=make8 (cs_Data to write,0);

if (page == 0)
{
spi write(0b01000000]|req); //Solicita el wvalor del
registro
spi write(datal0]); //parédmetros

spi write(datal[l]):;
spi_write(datal[2]);
}
else
{
spi write(0b01000000|CS_PAGE) ; //Pégina en la que queremos
escribir (por defecto 0)
spi_write (0x00);
spi write (0x00);
spi write(page);

spi_write(0b01000000|reqg) ; // solicita el wvalor del
registro

spi write(datal[0]); // parametros

spi write(datal[l]):;

spi write(datal[Z2]):;

/*! \fn cs SoftwareReset (void)

\brief After a Software Reset, the internal registers will be
reset to their default values.

It is a command. See pag 20 of CS5463 datasheet */

void cs SoftwareReset (void)

{
spl _write(0b10000000); //0x80
delay ms (200);

/*! \fn cs StartConversions (void)

\brief Initiates CS5463 continuous computation cycles

It is a command. See pag 23 of CS5463 datasheet
*/
void cs_StartConversions(void)
{

spil write (0xES8) ; //0b11101000 Perform continuous

computation cycles

}

/*! \fn cs PowerState (unsigned int8 cs PowerMode)
\brief Initiates CS5463 continuous computation cycles

01 = Halt and enter stand-by power saving state. This state allows
quick power-on
10 = Halt and enter sleep power saving state.

It is a command. See pag 23 of CS5463 datasheet

97

*/

void cs PowerState(unsigned int8 cs_ PowerMode)

{
switch (cs_PowerMode)
{
case 1: spi write(0b10001000); //01 = Halt and enter stand-by
break;
case 2: spi write(0bl0010000); //10 = Halt and enter sleep.
break;

case 3: spi write(0b10100000); //11 = PowerUP --> Will initiate
a power on reset.
break; //If the
part is already powered-on, all computations will be halted.
}
}

e Capa 1: Funciones de inicializacion y configuracién

/*! \fn void cs_ Initialization (void)
\brief Configurates Cirrus CS5463 registers
See pages 23-36 of CS5463 datasheet
*/
void cs_Initialization(void)
{
//Software reset (Pag23)
cs_SoftwareReset() ;

//Configuration Register
cs_writeRegister (CS_CONFIGURATION,O,0x000001) ;

//Cycle Count Register
cs_writeRegister(CS CYCLE COUNT,0,0x000000);

//Operational Model Register
cs_writeRegister(CS OPERATION MODE,0,0x000FCO) ;

//Control Register
cs_writeRegister (CS_CONTROL,0,0x000000) ;

/*! \fn void cs WriteCalibrationData (void)
\brief Calibrates the cirrus CS5463
See pag 25 of CS5463 datasheet */

void cs WriteCalibrationData (void)
{
//Current DC Offset Register
//cs_writeRegister (CS_CURRENT DC_OFFSET,0,0x800001) ; // NO
utilizar si IHPF

//Voltage DC Offset Register
//cs_writeRegister (CS VOLTAGE DC OFFSET,0,0x9F2EFA) ; // NO
utilizar si VHPF

//Current Gain Register
//cs _writeRegister (CS CURRENT GAIN,0,0x410000);

//Voltage Gain Register
cs writeRegister (CS VOLTAGE GAIN,0,0x500000) ;

98

//Power Offset Register
//cs_writeRegister (CS_POWER _OFFSET, 0, 0x000000) ;

//Current AC Offset Register
//cs_writeRegister (CS _CURRENT AC OFFSET, 0, OXFFEO00O0) ;
//GAIN=0x ff e0 00

//Voltage AC Offset Register
//cs_writeRegister (CS _VOLTAGE AC OFFSET, 0, 0xFFC76F) ; //GAIN=
ff c7 6f

strcopy (DataOut,"Writing Calibration Data");
ZzB_SendToSinkD (STRLEN (DataOut) ,Datalut) ;
}

e Capa 1: Funciones de lectura de variables

/*! \fn void cs_ReadInstantaneousMeasures (void)
\brief Reads instantaneous measures registers (I,V,P,Q)
See pag 28 of CS5463 datasheet
*/
void cs ReadInstantaneousMeasures(void)
{
//Instantaneous Current Register
cs_readRegister (CS_INSTANTANEOUS CURRENT ,0);
SignedDataConversion(cs_ AppData,(); //0=Current 1=Signed Measure

//Instantaneous Voltage Register
cs_readRegister (CS_INSTANTANEOUS VOLTAGE,O0) ;
SignedDataConversion(cs_AppData,l);

//Instantaneous Power Register
cs_readRegister (CS_INSTANTANEOUS POWER,O0) ;
SignedDataConversion(cs_AppData, 3) ;

//Instantaneous Reactive Power Register
cs_readRegister (CS_INST REACTIVE POWER,0);
SignedDataConversion(cs_AppData, 3) ;

/*! \fn void cs ReadRMSmeasures (void)

\brief Reads RMS measures register (Irms,Vrms)

See pag 28 of CS5463 datasheet
*/
void cs ReadRMSmeasures (void)
{

//RMS Current Register

cs_readRegister (CS_RMS CURRENT,0); //0=Page
DataConversion(cs AppData,() ; //0=Current

//RMS Voltage Register
cs_readRegister (CS_RMS VOLTAGE,0); //0=Page
DataConversion(cs AppData,l); //1=Voltage

99

/*! \fn void cs ReadPeakMeasures (void)
\brief Reads PEAK measures registers (I peak,V peak)
See pag 31 of CS5463 datasheet

*/
void cs ReadPeakMeasures (void)
{
//Peak Current Register
cs_readRegister (CS_PEAK CURRENT,O0) ;
SignedDataConversion(cs_AppData,() ; //0=Current
//Peak Voltage Register
cs_readRegister (CS PEAK VOLTAGE,O0);
SignedDataConversion(cs_AppData,l);
}

/*! \fn void cs ReadAverageMeasures (void)
\brief Reads average (AVG) measures registers (P avg,Q avg,s)
See CS5463 datasheet
*/
void cs ReadAverageMeasures (void)
{
//Active Power Register
cs_readRegister (CS_ACTIVE POWER,O0) ;
SignedDataConversion(cs_AppData,?4);

//BAVG Reactive Power Register
cs_readRegister (CS AVERAGE REACTIVE POWER,0);
SignedDataConversion(cs_AppData, 3) ;

//RApparent Power Register
cs_readRegister (CS_APPARENT POWER,0);
DataConversion(cs AppData,4);

//Power Factor Register
cs_readRegister (CS_POWER FACTOR,O0) ;
SignedDataConversion(cs AppData, 3);

e Capa 1: Funciones de calibracion

/*! \fn void cs ReadCalibrations (void)
\brief Reads calibration registers
See pag 25 of CS5463 datasheet
*/
void cs ReadCalibrations(void)
{
cs_readRegister (CS_CURRENT DC OFFSET,0) ;
cs_readRegister (CS_VOLTAGE DC OFFSET,0) ;
cs_readRegister (CS_CURRENT AC OFFSET,0);
cs_readRegister (CS _VOLTAGE AC OFFSET,0);
cs_readRegister (CS_CURRENT GAIN,O0);
delay ms(50);
cs_readRegister (CS_VOLTAGE GAIN,O0);
cs_readRegister (CS_STATUS,0) ;
cs_readRegister (CS_CONFIGURATION,O) ;
cs_readRegister (CS_OPERATION MODE,0) ;

100

/*! \fn void cs SystemCalibration (unsigned int8 cs channel)
\brief Performs the designated calibration
See pag 25 of CS5463 datasheet
*/
void cs SystemCalibration(unsigned int8 cs_ channel)
{
switch (cs channel){
case 0x00:spi write(0b11001001); //01001 Current channel DC
offset
break;
case 0x0l:spi write(0Ob11001010); //01010 Current channel DC gain
break;
case 0x02:spi write(0b11001101); //01101 Current channel AC
offset
break;
case 0x03:spi write(0Ob11001110); //01110 Current channel AC gain
break;
case 0x04:spi write(0b11010001); //10001 Voltage channel DC
offset
break;
case 0x05:spi write(0Ob1110010); //10010 Voltage channel DC gain
break;
case 0x06:spi write(0b11010101); //10101 Voltage channel AC
offset
break;
case 0x07:spi write(0Ob11010110); //10110 Voltage channel AC gain
break;
case 0x08:spi write(Ob11011001); //11001 Current and Voltage
channel DC offset
break;
case 0x09:spi write(Ob11011010); //11010 Current and Voltage
channel DC gain
break;
case Ox0OA:spi write(Ob11011101); //11101 Current and Voltage
channel AC offset
break;
case 0x0B:spi write(Obl1011110); //11110 Current and Voltage
channel AC gain
break;

}

/*! \fn void cs OffsetCalibration (void)
\brief Performs the necessary actions for an offset calibration
See pag 37 of CS5463 datasheet
*/
void cs_ OffsetCalibration(void)
{
//Desactivar IHPF y VHPF
//cs SystemCalibration (8);
//cs_writeRegister (CS CURRENT DC OFFSET, 0, (Ox7FFFFF)) ;
//cs_writeRegister (CS_VOLTAGE DC OFFSET, 0, (0x7FFFFF)) ;
//delay ms (70);
cs_writeRegister (CS CURRENT AC OFFSET,0, (0x000000));
cs_writeRegister(CS VOLTAGE AC OFFSET,0, (0x000000));
cs_SystemCalibration(10);
delay ms (70);

101

/*! \fn void cs GainCalibration (void)
\brief performs the necessary actions for a gain calibration
See pag 38 of CS5463 datasheet
*/
void cs GainCalibration(void)
{
//Desactivar Igain x50 / IHPF y VHPF
//cs_writeRegister (CS_CONFIGURATION, O, (0x000001)) ;
//cs_writeRegister (CS_OPERATION MODE, 0, (0x000000));

cs _writeRegister (CS_ CURRENT GAIN,O,
cs _writeRegister(CS VOLTAGE GAIN,O,
cs_SystemCalibration(l1);

delay ms (70);
cs_SystemCalibration(9);

delay ms (70);

e Capa 1: Estado CS5463

/*! \fn void cs 5463Status (void)

\brief Checks STATUS BITS, DRDY,CRDY,IOR,VOR

See pag 29 of CS5463 datasheet
*/
void cs 5463Status(void)
{

if ((flag EXT==0)&&(flag TIMER==1))
{

spi write(CS_ STATUS) ;
//Solicita el valor del registro CS_STATUS

cs_AppDbatal[0] = spi read(0xIF); //Asi para que
mande el valor por ZigBee

cs AppDatal[l] = spi read(0xFF);

cs AppDatal[?] = spi read(0xFF);

intl DRDY,IOR,VOR;

DRDY=bit test(cs AppDatal0],7); //MSB (0x90)
CRDY=bit test(cs AppDatal[0],4);
IOR=bit test(cs AppDbatal0],1);
VOR=bit test(cs AppDatal[0],0);

if (CRDY==0)

{
strcopy (DataOut,"CRDY Error");
ZB_SendToSinkD(STRLEN (DataOut) ,DataOut) ;
cs_writeRegister (CS_STATUS, 0, (OxFFEFEE)) ;
flag EXT=1;

}

if (IOR==1)

{
strcopy (DataOut,"Current Out of Range");
ZB_SendToSinkD(STRLEN (DataOut) ,DataOut) ;
flag EXT=1;

}

b}

no

102

Codigo Funciones Inteligentes

//*************k**k****k*k*k*k~k***

*hkkhkkhkkkkkkkkkx

/*! \file Intelligent functions.c

E o D S S S . S S

\brief The next file provides the functions needed in order to read
all registers and for convert values
Description:

Author: Nestor Carruesco (ncarruesco@gmail.com)\n
Copyright: Tecnodiscap UNIVERSITY OF ZARAGOZA (Spain)\n
Date: 19/01/2012\n
Update record:\n
\n

Author: Nestor Carruesco (ncarruesco@gmail.com)\n
Update: For explaining a change in firmware\n

\n

#include "Intelligent functions.h"

e Lectura REGISTROS en hexadecimal

/*! \fn void cs_ReadPage0 (void)

\brief Reads all Page 0 registers
See pag 24 of CS5463 datasheet */

void cs ReadPageO (void)

{

}

unsigned int8 k=0;

unsigned int8 k rotate left=0;

for (k=0;k<=31;++k)

{
k rotate left=k;
k rotate left=(k rotate left<<l);
cs_readRegister(k rotate left,0);
delay ms(15);

/*! \fn void cs ReadPagel (void)

\brief Reads all Page 1 registers
See pag 25 of CS5463 datasheet */

void cs_ReadPagel (void)

{

cs_readRegister (CS PULSE WIDTH,1);
cs_readRegister (CS_LOAD MIN,1);

cs_readRegister (CS_TEMPERATURE SENSOR GAIN,1);
cs_readRegister (CS_TEMPERATURE SENSOR OFFSET,1);

103

/*! \fn void cs ReadPage3 (void)
\brief Reads Page 3 registers
It is a register. See pag 25 of CS5463 datasheet */

void cs_ReadPage3(void)

{
cs_readRegister (CS_VSAG DURATION, 3) ;
cs_readRegister(CS_VSAG LEVEL, 3);
cs_readRegister (CS_ISAG DURATION, 3) ;
cs_readRegister (CS_ISAG LEVEL, 3);

}

e Comando para fijar el tiempo para el envio automatico de DATOS

/*! \fn void cs_SetSendTime (unsigned int8 Set time)
* \brief Set the time for automatic send of data */

void cs SetSendTime (unsigned int8 Set time)

{
switch(Set time)
{
case (U:Set counter=Z;
break;
case |:Set counter=4;
break;
case 3:Set counter=6;
break;
case 4:Set counter=Set time;
break;
default:Set counter=3;
break;
}
}

e Cddigo de conversion de datos de hexadecimal a decimal

/*! \fn void DataConversion (unsigned int8 DatosVAR[3],unsigned int8
Gain)
\brief Converts the UNSIGNED registers value in a decimal number*/

void DataConversion(unsigned int8 DatosVAR[3],unsigned int8 Gain)

{

//Inicializa el valor de las variables

unsigned int8 DatosMedidal[3]={ , , };

intl RealMeasure[]={ A A A A A A A A A A A A A A AN A N AN AN AN N };
unsigned int8 k=0;

float32 PesoBit=l;

float32 Resultado=0;

char Resultado_string[7];

DatosMedida[?]=DatosVAR[0]; //LSB
DatosMedida[l]=DatosVAR[1];
DatosMedida[0O]=DatosVAR[2]; / /MSB

104

//Multiplicacién de cada bit por su peso relativo
for (k=0;k<=24;++k) {
RealMeasure[k]=shift left(DatosMedida,3,0);
PesoBit=PesoBit/”;
Resultado=Resultado+ (RealMeasure[k] *PesoBit) ;
}

//Conversion de float a string, para el envio de datos por ZigBee
Resultado=(Resultado*250) ;
sprintf (Resultado string,"%6.2f",Resultado);
ZB_SendToSinkD (STRLEN (Resultado string) ,Resultado string);

switch (Gain)
{
case 0: //Configuracidén ganancia en corriente
{
if (Resultado<100)
Resultado=40*Resultado-45;
else if (Resultado>=150)
Resultado=b7*Resultado;
else Resultado=82*Resultado-6647;
}
break;
//Configuracidén ganancia en tensién
case 1:Resultado=Resultado*2.15;
break;
//Configuracién magnitudes SIN ganancia
case 3:Resultado=Resultado/250;
break;
//Configuracidén ganancia potencias
case Z:Resultado=Resultado*28;
break;
}
//Conversion de float a string, para el envio de datos por ZigBee
sprintf (Resultado string,"%6.2g",Resultado) ;
strcpy (DataOut,Resultado string);
ZB SendToSinkD (STRLEN (DataOut) ,DataOut) ;

/*! \fn void SignedDataConversion (int8 DatosVAR[3],unsigned int8 Gain)
\brief Converts the SIGNED register’s value in a decimal number

*/

Esta function es igual que el anterior, pero cambiando el peso del

primer BIT

for (k=0;k<=24;++k)

{
RealMeasure[k]=shift left(DatosMedida,3,0);
PesoBit=PesoBit/”;
if (k==0)
Resultado=Resultado- (RealMeasure[0]*1);
else
Resultado=Resultado+ (RealMeasure[k] *PesoBit) ;
}

105

Codigo protocolo de comunicaciones (CCP)

//**

* ok ok kk ok ok kkkkkokkk

/*! \file CCP.c

* \brief The next file provides the functions needed in order to
handle ZigBee commands

*

* Description:

*

*

* Author: Nestor Carruesco (ncarruesco@gmail.com)\n

* Copyright: Tecnodiscap UNIVERSITY OF ZARAGOZA (Spain)\n

* Date: 12/02/2012\n

* Update record:\n

* \n
* Author: Nestor Carruesco (ncarruesco@gmail.com)\n

* Update: For explaining a change in firmware\n

* \n
*/

#include "CCP.h"

e Funcion para la decodificacion del mensaje recibido

/*! \fn void SelectFunction (void)

* \brief This function checks the incoming message and selects the
function

*

* at+ucastb:04,000D6F0000354A07 10F1000B

*/
void SelectFunction(void)
{
cmd_error++; //1
if (End Point==0x10)
{
cmd_error++; //2
if (Cluster ID==0xF1)
{
cmd_error++; //3

unsigned int8 ByteData=0;
ByteData=Data CCP[0];

switch (Command)
{
//Funtions related wich Cirrus CS5463
case (:cs readRegister(ByteData,0);
break;
case 1:
{
unsigned int32 WriteData;
WriteData=make32(0,Data CCP[1],Data CCP[2],Data CCP[3]);
cs_writeRegister(ByteData,0,WriteData);
}

break;

106

case Z:cs_SoftwareReset();

break;

case J:cs PowerState(ByteData);

break;

case 4:Initiate CS5463();

break;

case H:cs WriteCalibrationData();

break;

case 6:cs_StartConversions();

break;

case /:cs ReadInstantaneousMeasures() ;

break;

case S:cs ReadPeakMeasures() ;

break;

case Y9:cs_ ReadAverageMeasures() ;

break;
case
break;
case
break;
case
break;
case
break;
case
break;
case
break;

:cs_ReadRMSmeasures() ;
:cs_ReadCalibrations() ;
:cs_SystemCalibration(ByteData) ;
:cs _OffsetCalibration();
:cs_GainCalibration();

:cs_5463Status() ;

// Intelligent Funtions

case :cs_ReadPage0() ;
break;
case :cs_ReadPagel() ;
break;
case :cs_ReadPage3 () ;
break;
case :cs_SetSendTime (ByteData) ;
break;
case :output toggle (CONTROL RELE) ;
break;
case
{
Initiate uC();
Initiate Interrupts();
Welcome () ;
Initiate Zigbee();
Initiate CS5463();
}
break;
default:cmd error++; //4
break;

107

e EVENTO: Respuesta al mensaje enviado

/*! \fn void Event (void)
\brief This function indicates an error/ACK in the message */

void Event (void)

{
switch (cmd error)
{
case l:strcpy (CodeCCP,"End Point ERROR");
break;
case ’:strcpy (CodeCCP,"Cluster ID ERROR");
break;
case 3:strcpy (CodeCCP,"*** EVENT ACK ***");
break;
case 4:strcpy (CodeCCP,'"Command ERROR™) ;
break;
}
ZB SendToSinkD (STRLEN (CodeCCP) ,CodeCCP) ;
}

Funcion principal

e Inclusion del resto de ficheros

#include "C:\PFC\pickit\main.h"

#include "C:\PFC\pickit\ZB ATLibrary30X.c"
#include "C:\PFC\pickit\CS 5463.c"

#include "C:\PFC\pickit\Intelligent functions.c"
#include "C:\PFC\pickit\CCP.c"

e Configuracion de interrupciones

#build (stack=256)
#priority RDA,EXT, TIMERO

#int TIMERO

void TIMERO isr(void)

{

//Overflow 4,3 sg (14 veces=1min)
contador timer+=l;

}

#int EXT

void EXT isr(void)
{

flag EXT=0;

output toggle(LED7) ;
}

#int RDA
void RDA isr(void)
{

intl6 time over = 0;

108

datos HARD = 0;

while (kbhit (UART_ZB) ||
time over++;
if (Kbhit (UART ZB)) {
time over = 0;
Buffer Hard[datos HARD++]
}
//restart wdt ();
}
flag HW=1;
}

(time over < TIMEOUT UART HARD)) {

= fgetc (UART_ZB);

¢ Inicializaciones

void Initiate uC(void) {

setup_adc_ports(NO ANALOGS|VSS VDD); //Sets up the ADC pins

setup_adc (ADC_CLOCK DIV_2|ADC_TAD MUL 0);

setup psp (PSP _DISABLED) ;

setup spi(SPI_MASTER|SPI_MODE 0|SPI_CLK DIV 64);

setup wdt (WDT_ON) ;

setup timer O (RTCC_INTERNAL|RTCC DIV 256);

setup timer 1(T1 DISABLED) ;

setup timer 2(T2 DISABLED,O0,1);
setup timer 3 (T3 _DISABLED|T3 DIV BY 1);

setup comparator (NC _NC NC NC) ;

void Initiate Interrupts()

{
clear interrupt (INT_RDA) ;

clear interrupt (INT_ EXT);
clear interrupt (INT TIMERO) ;

ext int edge(0,H TO L);
enable interrupts (INT_TIMERO) ;
enable interrupts (INT EXT) ;

enable interrupts (INT RDA) ;
enable interrupts (GLOBAL) ;

void Initiate Zigbee() {
ZzB_PowerConf (AWAKE) ;

ZB TGBootloader() ;
delay ms (200);

ZB_StartUpNet() ;

#ifdef ZB DEBUG

/Disable A/D converter
//Disable Parallel Slave Port
//Initiates (SPI)

//Sets up the watchdog timer.
//Sets up the timer 0
//Disable timer 1
//Disable timer 2
//Disable timer 3
//Disable the analog comparator

//Clears the RDA interrupt flag

//Set up PIC EXTO
//Timer 0 (RTCC) overflow

//External interrupt

//RS232 receive data

//7ZB modo de energia >> AWAKE

// (ver librerias)

//Comprueba que reconoce el ID(ZB DEBUG

109

delay ms(20);
strcopy (ZB DebugStr," **** SmartMeter connected ****");
ZB_SendToSinkD (STRLEN (ZB DebugStr) ,ZB DebugStr) ;
//STRLEN=obtiene la longitud de la cadena sl
restart wdt();
delay ms(20);
#endif

flag HW = 0; // Desatendemos cualquier mensaje anterior

}

//Inicializacién del CS5463 ————————————————————— =

void Initiate CS5463(void)

{

//Sincronizacion de la comunicacion SPI
spi write(0xFF) ;spi write(OxEF);
spi write (OxFF) ;spi write(OxEF);
spi write(0OxFE);

//Software reset
spi write(Ob10000000) ; //COMANDO 0x80
delay ms(200);
restart wdt();

//Inicializa registros de configuracidn
cs_writeRegister(CS CONFIGURATION,O, (0x000001));//Igain=0(250x)
cs_writeRegister (CS_OPERATION MODE, 0, (0x000060)); //HPEF ON
cs WriteCalibrationData();//Writes Gain and AC Offset Registers
cs_writeRegister (CS STATUS,0, (0x800001)) ;
cs_writeRegister (CS_INTERRUPT MASK, 0, (0x000000)) ;
cs_StartConversions(); //Initiates continuous computation cycles

}

void Welcome (void) {
unsigned int8 1i;
unsigned int8 RotatelLED=0x01;

for (i=0;i<32;i++){
output d(RotateLED) ;
delay ms (100);
rotate left (&RotatelED, 1) ;

}
}
e Main y bucle de programa
void main () { //Inicializamos el sistema

Initiate uC();

110

Initiate Interrupts();

Welcome () ;

Initiate Zigbee();

Initiate CS5463();
while (true) {

// comprobamos error de buffer hard
if (OERR) {
clear interrupt (INT RDA);
CREN=0;
CREN=1;
}

//Comprobamos contador timer >> Overflow 4,3 sg
if (contador timer>=Set counter)
{
contador timer=0;
output toggle(LEDG6) ;
flag TIMER=1;
}

//Comprobamos Error CS5463 >> CRDY, IOR,VOR
cs_5463Status();

//Estado ACTIVO >> Mandamos periodicamente datos por ZigBee
if ((flag TIMER)&&(flag HW==0))
{
cs_readRegister(CS STATUS,0);
cs_ReadRMSmeasures () ;
flag TIMER=0;
}

//Comprobamos mensaje uart hard (ZigBee)
if (flag HW)
{

//Guardamos datos del protocolo de comunicaciones CCP
End Point=Buffer Hard[0O];

Cluster ID=Buffer Hard[l];

Length=Buffer Hard[?];

Command=Buffer Hard[3];

Data CCP[O]=Buffer Hard[4];

Data CCP[1]=Buffer Hard[5];

Data CCP[Z]=Buffer Hard[6];

Data CCP[3]=Buffer Hard[7];

cmd error=0;//Variable control error mensaje

//Comprobamos mensaje respecto al CCP y mandamos respuesta
SelectFunction () ;
Event () ;

//Borramos la flag del ZigBee
flag HW = 0;
}

111

