

76

ANEXO A Legislación relativa a los contadores electrónicos

Fig. A-0-1 Cronología, Hitos y Hechos Relevantes 2006 y 2007

Fuente: Taller Contadores Inteligentes (Smart Metering) de Gas Natural Fenosa.

En el Real Decreto (RD) 809/2006, de 30 Junio (1), tenemos la primera referencia al
contador electrónico. Este RD establece que los contadores eléctricos en nuevos
suministros (potencia contratada <15 kW) deberán permitir la discriminación horaria
de las medidas así como la telegestión.

“A partir del 1 de julio de 2007, los equipos de medida a instalar para nuevos
suministros de energía eléctrica hasta una potencia contratada de 15 kW y los que se
sustituyan para los antiguos suministros deberán permitir la discriminación horaria de
las medidas así como la telegestión en los términos y condiciones técnicas que
establezca el Ministerio de Industria, Turismo y comercio”

Disposición adicional segunda. Instalación de equipos de medida:

Después, en el RD1634/2006,29 Diciembre. Mandato a la CNE: Plan de instalación de
equipos de medida.

“Antes del 1 de julio de 2007, la Comisión Nacional de Energía remitirá a la Dirección
General de Política Energética y Minas un informe donde se establezca un plan para la
sustitución a nivel nacional de contadores que permitan la discriminación horaria de
las medidas y la telegestión en todos los suministros de energía eléctrica hasta una
potencia contratada de 15 kW.

Disposición adicional vigésima segunda. Plan de instalación de equipos de medida.

En el mencionado plan se recogerán los criterios para la sustitución de dichos equipos
de medida, así como el número de equipos a instalar anualmente, entendido como un
porcentaje del total del parque nacional de contadores correspondientes a este tipo de
suministros”

Real Decreto RD 1110/2007, 24 Agosto. Reglamento unificado de puntos de medida
del sistema eléctrico español:

77

Establece toda la normativa relacionada con los equipos de medida (Normas
generales, equipos de medida, verificación e inspección, sistemas y protocolos de
comunicaciones,…).

Respecto a los equipos de medida, fija unas funciones mínimas que quedan resumidas
en la siguiente tabla aunque puede consultarse una descripción detallada en los
anexos.

FUNCIONES MÍNIMAS
• Lectura remota de la potencia activa, reactiva y máxima
• Control de la potencia contratada
• Programación remota de parámetros del contrato, como la potencia

máxima
• Interruptor integrado para operaciones remotas de conexión/desconexión
• Lectura remota de parámetros de calidad de la red
• Sincronización remota del tiempo
• Capacidad de gestión de la carga, para reducir la demanda en momentos

críticos
• Seguridad y control de acceso a los datos
• Alarma y registro de eventos

Tabla A.0.1 Resumen funciones mínimas de los contadores

ORDEN ITC/3022/2007,10 Octubre. Se regula el control metrológico del Estado sobre
instrumentos de medida.

ORDEN ITC/3860/2007,28 Diciembre. Publicación de los criterios para el plan de
sustitución de equipos de medida, donde se establece que todos los contadores
deberán ser sustituidos antes de 31 de Diciembre de 2018 (11 años), cada distribuidor
tiene que presentar su propio plan y presentar el diseño del sistema de telegestión,
para ser aprobado por el Ministerio.

Fig. A-0-2 Plan de sustitución de equipos de medida

Fuente: Endesa’s Smart Metering Roll-out Programme.

78

Principales características de los contadores según RD 1110/2007

Ampliación de características que deberán cumplir todos los equipos de medida.

MEDIDA:
Energía activa y energía reactiva
Máxima potencia demandada (15‘)
Discriminación horaria
Capacidad para almacenar datos de 3 meses
Capacidad para gestionar 6 periodos tarifarios >> Almacenar 3 facturas.

REGISTRO
Parámetros de calidad (Interrupciones de más de 3 minutos de duración y
superación de los límites de tensión)
Eventos (alarmas, cambios configuración de facturación, detección de fraude,…)
Mostrar información al usuario

CONTROL DE LA POTENCIA
Limitador de la potencia contratada
Interruptor de control de potencia
Reconexión Manual o Automática

TELEMEDIDA Y TELEGESTIÓN. Requisitos obligatorios:
Medidas remotas de energía y potencia, correspondientes a los cierres de
facturación.
Lectura remota de parámetros de calidad.
Modificación de la parametrización del equipo (tarifas, potencias contratadas, tipo
de contrato,…)
Sincronización remota (al menos una vez en cada ciclo de lectura).
Actualización del software del equipo.
Lectura remota de eventos.
Corte y reconexión del suministro (gestión de altas/bajas y ejecución de planes de
control de la demanda)
Capacidad de gestión de cargas: reducción de la demanda en momentos críticos
Capacidad para remitir mensajes al consumidor (consulta online de información)

Tabla A.0.2 Características de los contadores según RD

79

ANEXO B FUENTE DE ALIMENTACIÓN CAPACITIVA

1) Principio básico de funcionamiento

Fig. B-0-1 Principio funcionamiento FA capacitiva

Cuando se conectan en serie un condensador y una resistencia, una corriente
constante puede ser mantenida a través de la resistencia mientras la capacitancia del
condensador sea mucho mayor que la resistencia. Este valor de corriente dependerá
del valor de C, R y de las tensiones de entrada y salida Vi e Vo. Asumiendo que Vi >> Vo
lo cual se cumple 230V >> 5V, el valor aproximado de la corriente vendrá dado por:

1 230

1 1
2

RMS
V VI
Xc Xc

Xc
C C fω π

= =

= =
×

Después para conseguir una tensión continua (DC) en la carga añadiremos un par de
rectificadores y condensadores.

Componente Función
Condensador (C) Sirve para atenuar la tensión de entrada
Resistencia (R) Limita la corriente inicial de entrada
Diodos (D1 y D2) Conforman un rectificador de media onda
Condensador C1 Filtrado y suministro de posibles picos de corriente
Resistencia Zener (Rz) Para establecer la corriente min y max por el zener
Diodo Zener (Dz) Fija la tensión de salida de la carga, Vo

Tabla B.0.1 Función componentes FA capacitiva

El voltaje en la carga permanecerá constante mientras la corriente de salida (Iout) sea
menor o igual que la de entrada (Iin). La corriente de entrada Iin está limitada por R1 y
la reactancia de C1 aunque principalmente por esta última dado su mayor valor.

Nota:

 R1 limita la corriente de entrada. El valor de R1 se selecciona de tal forma que no
disipe demasiada potencia pero lo suficiente grande para limitar la corriente inicial
(Inrush current) de entrada.

El problema de este tipo de FA es que la selección de los componentes es muy crítica,
ya que al trabajar con tensiones de red, la potencia disipada resulta bastante elevada y

80

dado que la tensión de salida se regula con un diodo zener, la FA podrá dar corriente
en un rango limitado (habrá un máximo y un mínimo de corriente posibles).

Por ello, este tipo de FA se diseña para alimentar un circuito específico y con
variaciones de carga pequeñas ya que no permite grandes variaciones en la corriente
que puede entregar por problemas de disipación de potencia.

2) Características de corriente de salida:

Primero hemos calculado el consumo estimado de todos los componentes del
sistema, para a partir de ahí, diseñar la fuente de alimentación.

CONSUMOS
 Modo ACTIVO BAJO consumo
Micro XLP 23 mA 2 mA y menor
Cirrus CS5463 2,8 mA 1,93 mA
Módulo ZigBee 35,5 mA 1,5 uA
Relé 72 mA -
TOTAL 133,3 mA 4 mA

Tabla B.0.2 Consumo del sistema

Quedando un consumo máximo aproximado de 133mA y mayorándolo un 10%,
nos quedará un consumo de 160mA.

Entonces, el voltaje en la carga permanecerá constante mientras la corriente de
entrada sea mayor de 150mA.

3) Precauciones respecto a los componentes:
Como ya se ha mencionado en las especificaciones, se debe conectar el sistema a
través de un fusible para asegurar la protección de éste en caso de una conexión
equivocada y también se incluye, para mejorar la protección global de la FA frente
a picos de tensión, un varistor.
Respecto al condensador de AC y los diodos rectificadores, estos deben ser capaces
de soportar la tensión de pico del sistema (325V).

4) Precauciones de manejo:
Se debe tener especial precaución ya que estamos trabajando con tensiones de red
sin aislamiento. Respecto a ello tendremos que tomar las siguientes precauciones:
Se tiene que asegurar que los componentes no estén accesibles (puedan ser
tocados) cuando el circuito esté en funcionamiento.

81

Diseño de la Fuente de Alimentación

Para el diseño de la FA se ha partido de los valores datasheet del CS5463 y de la nota
de aplicación de Microchip, sobre diferentes topologías de FA sin transformador (1).
Sin embargo, se ha teniendo en cuenta que nuestra fuente deberá proporcionar una
corriente tres veces mayor que la calculada en dichos documentos, dificultando en
gran medida el diseño de ésta.

Fig. B-0-2Diseño FA capacitiva

1)

Seleccionamos Vz = 5V1

Cálculo de C1

VVpicoondamediaVef 160
2

2230
2

)_(≅==

OUT
ef

IN I
RXc
ondamediaV

I ≥
+

=
11

)_(
  11

)_(
R

I
ondamediaV

Xc
OUT

ef −≤

Seleccionamos:
 R1=10Ω
Iout=160mA

1
160 10 990

160
VXc
mA

≤ − Ω = Ω

fcc
Xc

πω 2
11

11
1 ×

== 

 1
1

1 1 3,22
2 990 2 50

c F
Xc f Hz

µ
π π

≥ = ≅
× Ω×

Considerando la tolerancia del condensador y la resistencia, dado que el valor de

1 3,3c Fµ= quedaría muy justo:

Seleccionamos 1 4,7c Fµ=

82

2) Cálculo de C2:

arg arg
2

2

160 10 1600
1

desc aMAX desc aI t mA msgc F
Vc V

µ
× ×

≥ ≅ ≅
∆

Ahora para el cálculo de C2 consideramos una descarga de C2
de 1V para que nos quede de un tamaño que no sea excesivamente grande.

Seleccionamos: 2 2200c Fµ=

3) Cálculo de Rz:

Le dejamos a Rz un par de voltios por lo que:

2RzV V∆ =

minmaxmin)()()(zOUTRz III +> 
2 160 1V mA mA
Rz

> +

2 12, 4
161

VRz
mA

< ≅ Ω

Seleccionamos: 10Rz = Ω

5)

El condensador C3 está para proporcionar los posibles picos de corriente necesarios
para el circuito, por lo que lo seleccionaremos de un valor menor que C2 para que sea
rápido pero que no se descargue demasiado.

Cálculo de C3

Seleccionamos 3 330c Fµ=

6)

La impedancia de entrada al circuito será:

Disipación de potencia en los componentes:

1
1 677

4,7 2
Xc

F fµ π
= ≅ Ω

×
1 10R = Ω

Por lo que la corriente vendrá dada por:

230 335
687

VIin mA≤ ≅
Ω

•
2 2

1 1 (335) 10 1,12R INP I R mA W= × = × Ω =
Potencia en R1

• Potencia en D1 y D2

83

1 160 1 160R OUT DiodoP I V mA V mW= × = × =

•

1 160 5,1 0,816R OUT ZP I V mA V W= × = × =
Potencia en Diodo Zener

(Potencia máxima en el Zener si la carga se queda en circuito abierto)

•
2 2

1 1 (160) 10 0,256R OUTP I R mA W= × = × Ω =

Potencia en Rz

Nota:

Diseño final, con elementos de protección (fusible y varistor) incluidos:

 Aproximadamente, se han seleccionado los componentes doblando el valor de
potencia calculado.

Fig. B-3 Final FA capacitiva

Ref.
Farnell

Descripción Qty. Precio
unitario

Total €

1357898 RESISTENCIA, 3W 5% 10R 2 0,36 €
0,72 €

1781899 CONDENSADOR, CLASE X2, 4,7 UF, 305 VCA 1 4,39 €
4,39 €

1843708 DIODO, RECTIFICADOR,, 400V, 1A, DO-41 2 0,05 €
0,10 €

1469419 1N4733A-TR - DIODO, ZENER, 5,1V, 1,3 W 1 0,05 €
0,05 €

1057192 VARISTOR, 21.0J, 250VCA 1 0,30 €
0,30 €

1822618 CAPACITOR ALUM ELEC, 1000UF, 50V 1 1,00 €
1,00 €

9451102 CONDENSADOR, 330 uF, 16V 1 0,07 €
0,07 €

9762540 TC1185-3.3VCT713 - REG. DE TENSIÓN LDO
+3,3 V, SOT-23A-5

1 0,47 €
0,47 €

1123206 MCF06G-500MA - FUSIBLE 500MA 1 0,11 €
0,11 €

1705671 1N5357BRLG - ZENER DIODE, 5W, 20V 1 0,18 €
0,18 €

1737719 RESISTOR, METAL FILM, 56OHM, 3W, 5% 1 0,17 €
0,17 €

7,57 €

Tabla B.3 Componentes fuente alimentación capacitiva

84

ANEXO C Cirrus CS5463

Métodos numéricos de cálculo

Como se ha comentado al principio de éste apartado, en el datasheet del CS5463 el
esquema de cálculo se encuentra explicado muy visualmente, por ello se mostrará
ahora, para dar una visión general muy clara de todo el proceso de cálculo. Primero se
definirán todas las magnitudes que aparecen en la figura.

Magnitud Significado
V*, I* Tensión y corriente instantánea
Vacoff*,
Iacoff*

Tensión y corriente de offset de AC

Vrms*, Irms* Tensión y corriente eficaz (RMS)
S* Potencia Aparente
P* Potencia instantánea
Poff* Offset para la potencia
Pactive* Potencia Activa
PF* Factor de potencia
Qtrig* Potencia Reactiva del Triangulo de

potencias
Q* Potencia Reactiva instantánea
Qavg* Potencia Reactiva media (AVG)
PulseRate* Frecuencia de los pulsos de salida

Tabla C.1 Definición de magnitudes

Fig. C-0-1 Data Measurement Flow Diagram.

85

Lista de registros del Cirrus

Registros implementados para utilizar con la función cs_readRegister (addrees,page),
donde addrees representa la dirección del registro en hexadecimal y page la página en
la que se encuentra.

REGISTER ADDRESS
 CS_CONFIGURATION 0x00
 CS_CURRENT_DC_OFFSET 0x02
 CS_CURRENT_GAIN 0x04
 CS_VOLTAGE_DC_OFFSET 0x06
 CS_VOLTAGE_GAIN 0x08
 CS_CYCLE_COUNT 0x0A
CS_PULSE_RATE_E 0x0C
CS_INSTANTANEOUS_CURRENT 0x0E
CS_INSTANTANEOUS_VOLTAGE 0x10
CS_INSTANTANEOUS_POWER 0x12
 CS_ACTIVE_POWER 0x14
 CS_RMS_CURRENT 0x16
 CS_RMS_VOLTAGE 0x18
 CS_RATIO 0x1A
 CS_POWER_OFFSET 0x1C
 CS_STATUS 0x1E
 CS_CURRENT_AC_OFFSET 0x20
 CS_VOLTAGE_AC_OFFSET 0x22
 CS_OPERATION_MODE 0x24
 CS_TEMPERATURE 0x26
 CS_AVERAGE_REACTIVE_POWER 0x28
 CS_INST_REACTIVE_POWER 0x2A
 CS_PEAK_CURRENT 0x2C
 CS_PEAK_VOLTAGE 0x2E
 CS_REACTIVE_POWER 0x30
 CS_POWER_FACTOR 0x32
 CS_INTERRUPT_MASK 0x34
 CS_APPARENT_POWER 0x36
 CS_CONTROL 0x38
 CS_HARMONIC_ACTIVE_POWER 0x3A
 CS_FUNDAMENTAL_ACTIVE_POWER 0x3C
 CS_FUNDAMENTAL_REACTIVE 0x3E
 CS_PAGE 0x3E

Tabla C.2 Lista registros page 0

86

• cs_writeRegister: Este es el diagrama de flujo de otra de las funciones
importantes implementadas. Es similar a la cs_ReadRegister, pero para
escribir cualquier registro del Cirrus, pasándole como argumento el número
de registro, la página en que se encuentra y los datos a escribir.

Fig. 0-2 Diagrama flujo cs_writeRegister

87

ANEXO D Librería ZigBee

Tabla que incluye todas las funciones implementadas por HOWLab para el manejo del
ZigBee.

void ZB_GeTPowerLevel (void)

Ask for the supply voltage of the device See pag 72 of the AT-Command 3.02
of Telegesis.

void ZB_NETDisassociate (void)

Disassociate Local Device From PAN See pag 17 of the AT-Command 3.02 of
Telegesis.

void ZB_NETJoin (void)

Join Network The local node scans all channels selected in register S00 for the
existence of a PAN. When finding any PAN which allows joining it will
automatically join in via the remote node with the highest RSSI. See page 16 of
the AT-Command 3.02 of Telegesis.

void ZB_SSink (void)

Search For A Sink Search for a sink on the network by sending a broadcast
causing all sinks to reply. See page 35 of the AT-Command 3.02 of Telegesis.

void ZB_SendToSinkD (int8 nDatos, int8 *Datos)

Send data in binary to the Sink.

void ZB_StartUpNet (void)

Connet the Zigbee device to the preconfigured network.

void ZB_TGBootloader_DefaultConfig (void)

Function to configure the Zigbee Preferred PanID and Password

void ZB_TGBootloader (void)

Function to configure the Zigbee device the first time. Today the content of
the register must be change by hand in order to fix the correct parameters

void ZB_PowerMode (int8 PowerMode)

Change the power level.

void ZB_PowerConf (int8 PowerMode)

Configure the Zigbee device in order to use a power level.

88

ANEXO E Comandos PC >> Nodo implementados

Ahora se va a mostrar la forma en que se ejecutan los comandos, para dar una visión
general del funcionamiento de éstos, se puede observar la siguiente imagen, la cual ya
ha sido mostrada en apartados anteriores:

COMANDO TIPO
Comando a ejecutar
AT+UCASTB:XX,<address>

 <end_point>
 <cluster_id>
 <length>
 <command>

Respuesta
<comando ejecutado>
SEQ:XX
OK
o ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Según el comando ejecutado>

Comando Función implementada Descripción Longitud
00 readRegister Lee el registro indicado 2
01 writeRegister Escribe el registro indicado 3
02 SoftwareReset Resetea el Cirrus 1
03 PowerState Modifica el estado del Cirrus 2
04 Initialization Inicializa los registros del Cirrus 1
05 WriteCalibrationData Escribe los datos de calibración 1
06 StartConversions Empezar a tomar medidas 1
07 ReadInstantMeasures Lee variables instantáneas 1
08 ReadPeakMeasures Lee variables de pico 1
09 ReadAverageMeasures Lee variables medias, AVG 1
0A ReadRMSmeasures Lee variables eficaces, RMS 1
0B ReadCalibrations Lee los registros de calibración 1
0C SystemCalibration Inicia la calibración indicada 2
0D OffsetCalibration Inicia la calibración de offset 1
0E GainCalibration Inicia la calibración de ganacia 1
0F cs_5463Status Comprueba el estado del Cirrus 1
20 ReadPage0 Lee registros de la página 0 1
21 ReadPage1 Lee registros de la página 1 1
22 ReadPage3 Lee registros de la página 3 1
23 SetSendTime Fija el tiempo de lectura periódica 2
30 Control_Rele Controla el estado del relé 1

Tabla 0.1 Resumen de comandos

A partir de este punto, se explicarán en detalle los comandos de la tabla anterior,
teniendo en cuenta que para simplificar la interpretación de los mismos, se sustituirá
el <end_point><cluster_id> por <10F1>, que son los números que se han asignado.

89

ReadRegister – Leemos el registro indicado en la variable DATA
Comando a ejecutar
AT+UCASTB:05,<address>

 <10F1>
 <02>
 <00>
 <data>

<data> registro[1byte] del 0x00-0x30
Número asignado al registro, ver
primera tabla del anexo E.

Ejemplo de comando: 10F102000A

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<datos del registro leído> [HEX]

Ejemplo de respuesta: 000FA0

WriteRegister – Escribimos el registro indicado en la variable DATA
Comando a ejecutar
AT+UCASTB:08,<address>

 <10F1>
 <04>
 <01>
 <data>

<data> = registro[1] + datos[3]
Número del registro (Tabla anexo E)
 y datos que se quieran escribir en él.

Ejemplo de comando:
10F1040104400000

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Ejemplo de respuesta:
<EVENT ACK> [ASCII]

SoftwareReset – Resetea el Cirrus
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <02>

<02> = Comando asignado a
 SoftwareReset

Ejemplo de comando: 10F10102

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<EVENT_ACK> [ASCII]

90

PowerState – Modifica el estado del Cirrus
Comando a ejecutar
AT+UCASTB:05,<address>

 <10F1>
 <01>
 <03>
 <data>

<data> Selecciona el modo de energía

01=Standby
10=Sleep
11=Power up

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Stanby/Sleep/PowerUP> [ASCII]

Initialization – Inicializa los registros del Cirrus
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <04>

<04> = Comando asignado a
 Initialization

Ejemplo de comando: 10F10104

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Cirrus OK> [ASCII]

WriteCalibrationData – Escribe los datos de calibración
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <05>

<05> = Comando asignado a
 WriteCalibrationData

Ejemplo de comando: 10F10105

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Writing calibration data> [ASCII]

91

StartConversions – Comando para empezar a tomar medidas
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <06>

<06> = Comando asignado a
 StartConversions

Ejemplo de comando: 10F10106

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Ninguna>

ReadInstantaneousmeasures – Lee valores instantáneos
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <07>

Ejemplo comando: 10F10107

Ejemplo de respuesta:
Instantaneous Current
123.5
Instantaneous Voltage
327.1
Instantaneous Power
56.2
Inst Reactive Power
23.8

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
< Instantaneous Current > [ASCII]

<datos leídos I> [mA]
< Instantaneous Voltage> [ASCII]

< datos leídos V> [V]
< Instantaneous Power> [ASCII]

< datos leídos P> [W]
< Inst Reactive Power > [ASCII]

< datos leídos P> [VAr]

ReadPeakMeasures – Lee los valores de pico de tensión y corriente
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <08>

Ejemplo comando: 10F10108

Ejemplo de respuesta: PEAK Current

 983.7
 PEAK Voltage

 325.3

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Peak Current> [ASCII]
<datos leídos del registro Ipeak> [mA]
<Peak Voltage> [ASCII]
< datos leídos del registro Vpeak > [V]

92

ReadAVGmeasures – Lee los valores medios de tensión y corriente
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <09>

Ejemplo comando: 10F10109

Ejemplo de respuesta: AVG Current

 583.1
 AVG Voltage

 207.07

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<AVG Current> [ASCII]

<datos leídos del registro Iavg>
[mA]

<AVG Voltage> [ASCII]
< datos leídos del registro Vavg >
[V]

ReadRMSmeasures – Lee los valores eficaces de tensión y corriente
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <0A>

Ejemplo comando: 10F1010A

Ejemplo de respuesta: RMS Current

 783.1
 RMS Voltage
 229.6

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<RMS Current> [ASCII]

<datos leídos del registro Irms>
<RMS Voltage> [ASCII]

< datos leídos del registro Vrms >

cs_5463Status – Comprueba el estado del Cirrus
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <0F>

<0F> = Comando asignado a
 ReadPage0

Ejemplo de comando: 10F1010F

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
Manda el valor del registro de estado
[ASCII]

93

ReadPage0 – Lee registros de la página 0
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <20>

<20> = Comando asignado a
 ReadPage0

Ejemplo de comando: 10F10120

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
Manda los datos leídos de todos los
registros de la página 0 [HEX]

ReadPage1 – Lee registros de la página 1
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <21>

<21> = Comando asignado a
 ReadPage1

Ejemplo de comando: 10F10121

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
Manda los datos leídos de los registros:
 "Energy Pulse Output Width" [HEX]
 "No Load Threshold" [HEX]
 "Temperature Sensor Gain" [HEX]
 "Temperature Sensor Offset" [HEX]

ReadPage3 – Lee registros de la página 3
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <22>

<22> = Comando asignado a
 ReadPage3

Ejemplo de comando: 10F10122

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
Manda los datos leídos de los registros:
 "Voltage sample interval" [HEX]
 "Voltage sag level" [HEX]
 "I fault sample interval" [HEX]
 "Current fault level" [HEX]

94

SetSendTime – Fija el tiempo de lectura periódica
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <23>
 <data>

<data> Selecciona tiempo

00=15 segundos
01=30 segundos
10=1 minuto
11=desactivado

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<Tiempo establecido> [ASCII]

Control_Rele – Controla el estado del relé
Comando a ejecutar
AT+UCASTB:04,<address>

 <10F1>
 <01>
 <30>

<30> = Comando asignado a
 Control_Rele

Ejemplo de commando: 10F10130

Respuesta
<comando ejecutado>
SEQ:XX
OK
or ERROR:<errorcode>

ACK:XX o NACK:XX

Respuesta del comando
<CARGA conectada> o [ASCII]
<CARGA desconectada> [ASCII]

END_POINT CLUSTER_ID LENGTH COMMAND DATA RESULT

0x10 0xF1 0x02 0x00 0x16 0x10F1020016

0x10 0xF1 0x01 0x02 XX 0x10F10102

Ejemplo comandos PC>>Nodo

1) Comando 0x00 por lo que utiliza la función cs_readRegister (Viendo la tabla de
abajo), con el argumento 0x16, que hace referencia a un registro, en concreto
el CS_RMS_CURRENT (según la tabla que se puede consultar en los anexos). En
resumen, al enviar por ZigBee el comando 0x10F1020016, leeríamos el registro
que guarda el valor medido de Irms.

2) Comando 0x02, que como observamos en la tabla de abajo implementa el
comando cs_SoftwareReset, que resetea el CS5463.

95

ANEXO F CÓDIGO FIRMWARE
Este anexo recoge todo el código del proyecto desarrollado por el autor, es decir, las
librerías del Cirrus CS5463, las funciones inteligentes y el protocolo de comunicaciones.
También puede consultarse el código y la documentación creada por Doxygen, en el
CD anexo.

Código librería Cirrus CS5463

//**

/*! \file CS_5463.c
* \brief The next file provides the functions needed in order to
handle Cirrus CS5463.
*
* Description:
*
* Author: Nestor Carruesco (ncarruesco@gmail.com)\n
* Copyright: HowLab UNIVERSITY OF ZARAGOZA (Spain)\n
* Date: 19/07/2011\n
* Update record:\n
* __\n
* Author: Nestor Carruesco (ncarruesco@gmail.com)\n
* Update: Añadidas varias funciones:
* - Calibraciones
* - cs_5463Status
* __\n
*/

#include "CS_5463.h"

• Funciones Capa 0

/*! \fn void cs_readRegister(unsigned int8 reg, unsigned int8 page)
 * \brief Reads the register indicated in reg. See pag 24 of CS5463
datasheet
 * \param reg Indicates register to read from
 * \param page Indicates page to read from
 * \return Data read from register */

void cs_readRegister(unsigned int8 reg,unsigned int8 page)
{
 if (page == 0)
//Comprobamos la page (0,1,3)
 {
 spi_write(reg); //
solicita el valor del registro
 cs_AppData[0] = spi_read(0xFF); //MSB
 cs_AppData[1] = spi_read(0xFF); //Escribir 0xFF para que
el micro genere la señal SCLK
 cs_AppData[2] = spi_read(0xFF); //write 0xFF to SPI the
same time you are reading a value.

 cs_numByteAppData = 3;

96

 //Mandamos por ZigBee los datos del reg leido
 ZB_SendToSinkD(cs_numByteAppData,cs_AppData);
//cs_AppData=puntero a la variable

 //Guardamos el nombre del registro a leer, en el array
nombre_registro
 unsigned int8 numero_registro;
 numero_registro=reg;
 numero_registro=(numero_registro>>1); //Desplazamos los bits
a la derecha para quitar el 0

 char nombre_registro[30];
 unsigned int8 j=0;
 for(j=0;j<30;j++)
 {

nombre_registro[j]=matriz_registros[numero_registro][j];
 }
 ZB_SendToSinkD(STRLEN(nombre_registro),nombre_registro);
 }
 else
 {
 //(0x7E) Lee de PAGE, la pagina en la que queremos leer (por
defecto 0)
 spi_write(0x7E); //spi_write(0b01000000||CS_PAGE);
 spi_write(0x00);
 spi_write(0x00);
 spi_write(page);

 spi_write(reg); // solicita el valor del
registro
 cs_AppData[0] = spi_read(0xFF);
 cs_AppData[1] = spi_read(0xFF);
 cs_AppData[2] = spi_read(0xFF);
 cs_numByteAppData = 3;

 ZB_SendToSinkD(cs_numByteAppData,cs_AppData); //Mandar datos
reg leido por ZigBee

 spi_write(0x7E); //Escribimos page=0 (Configuracion
por defecto)
 spi_write(0x00);
 spi_write(0x00);
 spi_write(0); //page
 }
}

/*! \fn void cs_writeRegister(unsigned int8 reg,unsigned int8 page,
unsigned int32 cs_Data_to_write)
* \brief Writes the register indicated in address. See pag 24 of
CS5463 datasheet
* \param reg Indicates register to write
* \param page Indicates register to write
* \param cs_Data_to_write Pointer to a byte array with the data to
write in the register */

void cs_writeRegister(unsigned int8 reg,unsigned int8 page, unsigned
int32 cs_Data_to_write)
{

97

 //Dividimos int32 cs_Data_to_write en 3 int8 para poder mandarlas
por SPI
 unsigned int8 data[3];
 data[0]=make8(cs_Data_to_write,2);
 data[1]=make8(cs_Data_to_write,1);
 data[2]=make8(cs_Data_to_write,0);

 if (page == 0)
 {
 spi_write(0b01000000|reg); //Solicita el valor del
registro
 spi_write(data[0]); //parámetros
 spi_write(data[1]);
 spi_write(data[2]);
 }
 else
 {
 spi_write(0b01000000|CS_PAGE); //Página en la que queremos
escribir (por defecto 0)
 spi_write(0x00);
 spi_write(0x00);
 spi_write(page);

 spi_write(0b01000000|reg); // solicita el valor del
registro
 spi_write(data[0]); // parametros
 spi_write(data[1]);
 spi_write(data[2]);
 }
}

/*! \fn cs_SoftwareReset (void)
 \brief After a Software Reset, the internal registers will be
reset to their default values.
 It is a command. See pag 20 of CS5463 datasheet */

void cs_SoftwareReset(void)
{
 spi_write(0b10000000); //0x80
 delay_ms(200);
}

/*! \fn cs_StartConversions (void)
 \brief Initiates CS5463 continuous computation cycles
 It is a command. See pag 23 of CS5463 datasheet
*/
void cs_StartConversions(void)
{
 spi_write(0xE8); //0b11101000 Perform continuous
computation cycles
}

/*! \fn cs_PowerState (unsigned int8 cs_PowerMode)
 \brief Initiates CS5463 continuous computation cycles
 01 = Halt and enter stand-by power saving state. This state allows
quick power-on
 10 = Halt and enter sleep power saving state.
 It is a command. See pag 23 of CS5463 datasheet

98

*/

void cs_PowerState(unsigned int8 cs_PowerMode)
{
 switch (cs_PowerMode)
 {
 case 1: spi_write(0b10001000); //01 = Halt and enter stand-by
 break;
 case 2: spi_write(0b10010000); //10 = Halt and enter sleep.
 break;
 case 3: spi_write(0b10100000); //11 = PowerUP --> Will initiate
a power on reset.
 break; //If the
part is already powered-on, all computations will be halted.
 }
}

• Capa 1: Funciones de inicialización y configuración

/*! \fn void cs_Initialization (void)
 \brief Configurates Cirrus CS5463 registers
 See pages 23-36 of CS5463 datasheet
*/
void cs_Initialization(void)
{
 //Software reset (Pag23)
 cs_SoftwareReset();

 //Configuration Register
 cs_writeRegister(CS_CONFIGURATION,0,0x000001);

 //Cycle Count Register
 cs_writeRegister(CS_CYCLE_COUNT,0,0x000000);

 //Operational Model Register
 cs_writeRegister(CS_OPERATION_MODE,0,0x000FC0);

 //Control Register
 cs_writeRegister(CS_CONTROL,0,0x000000);
}

/*! \fn void cs_WriteCalibrationData (void)
 \brief Calibrates the cirrus CS5463
 See pag 25 of CS5463 datasheet */

void cs_WriteCalibrationData(void)
{
 //Current DC Offset Register
 //cs_writeRegister(CS_CURRENT_DC_OFFSET,0,0x800001); // NO
utilizar si IHPF

 //Voltage DC Offset Register
 //cs_writeRegister(CS_VOLTAGE_DC_OFFSET,0,0x9F2EFA); // NO
utilizar si VHPF

 //Current Gain Register
 //cs_writeRegister(CS_CURRENT_GAIN,0,0x410000);

 //Voltage Gain Register
 cs_writeRegister(CS_VOLTAGE_GAIN,0,0x500000);

99

 //Power Offset Register
 //cs_writeRegister(CS_POWER_OFFSET,0,0x000000);

 //Current AC Offset Register
 //cs_writeRegister(CS_CURRENT_AC_OFFSET,0,0xFFE000);
//GAIN=0x ff e0 00

 //Voltage AC Offset Register
 //cs_writeRegister(CS_VOLTAGE_AC_OFFSET,0,0xFFC76F); //GAIN=
ff c7 6f

strcopy (DataOut,"Writing Calibration Data");
 ZB_SendToSinkD(STRLEN(DataOut),DataOut);
}

• Capa 1: Funciones de lectura de variables

/*! \fn void cs_ReadInstantaneousMeasures (void)
 \brief Reads instantaneous measures registers (I,V,P,Q)
 See pag 28 of CS5463 datasheet
*/
void cs_ReadInstantaneousMeasures(void)
{
 //Instantaneous Current Register
 cs_readRegister(CS_INSTANTANEOUS_CURRENT ,0);
 SignedDataConversion(cs_AppData,0); //0=Current 1=Signed Measure

 //Instantaneous Voltage Register
 cs_readRegister(CS_INSTANTANEOUS_VOLTAGE,0);
 SignedDataConversion(cs_AppData,1);

 //Instantaneous Power Register
 cs_readRegister(CS_INSTANTANEOUS_POWER,0);
 SignedDataConversion(cs_AppData,3);

 //Instantaneous Reactive Power Register
 cs_readRegister(CS_INST_REACTIVE_POWER,0);
 SignedDataConversion(cs_AppData,3);
}

/*! \fn void cs_ReadRMSmeasures (void)
 \brief Reads RMS measures register (Irms,Vrms)
 See pag 28 of CS5463 datasheet
*/
void cs_ReadRMSmeasures(void)
{
 //RMS Current Register
 cs_readRegister(CS_RMS_CURRENT,0); //0=Page
 DataConversion(cs_AppData,0); //0=Current

 //RMS Voltage Register
 cs_readRegister(CS_RMS_VOLTAGE,0); //0=Page
 DataConversion(cs_AppData,1); //1=Voltage
}

100

/*! \fn void cs_ReadPeakMeasures (void)
 \brief Reads PEAK measures registers (I_peak,V_peak)
 See pag 31 of CS5463 datasheet
*/
void cs_ReadPeakMeasures(void)
{
 //Peak Current Register
 cs_readRegister(CS_PEAK_CURRENT,0);
 SignedDataConversion(cs_AppData,0); //0=Current

 //Peak Voltage Register
 cs_readRegister(CS_PEAK_VOLTAGE,0);
 SignedDataConversion(cs_AppData,1);
}

/*! \fn void cs_ReadAverageMeasures (void)
 \brief Reads average(AVG) measures registers (P_avg,Q_avg,s)
 See CS5463 datasheet
*/
void cs_ReadAverageMeasures(void)
{
 //Active Power Register
 cs_readRegister(CS_ACTIVE_POWER,0);
 SignedDataConversion(cs_AppData,4);

 //AVG Reactive Power Register
 cs_readRegister(CS_AVERAGE_REACTIVE_POWER,0);
 SignedDataConversion(cs_AppData,3);

 //Apparent Power Register
 cs_readRegister(CS_APPARENT_POWER,0);
 DataConversion(cs_AppData,4);

 //Power Factor Register
 cs_readRegister(CS_POWER_FACTOR,0);
 SignedDataConversion(cs_AppData,3);
}

• Capa 1: Funciones de calibración

/*! \fn void cs_ReadCalibrations (void)
 \brief Reads calibration registers
 See pag 25 of CS5463 datasheet
*/
void cs_ReadCalibrations(void)
{
 cs_readRegister(CS_CURRENT_DC_OFFSET,0);
 cs_readRegister(CS_VOLTAGE_DC_OFFSET,0);
 cs_readRegister(CS_CURRENT_AC_OFFSET,0);
 cs_readRegister(CS_VOLTAGE_AC_OFFSET,0);
 cs_readRegister(CS_CURRENT_GAIN,0);
 delay_ms(50);
 cs_readRegister(CS_VOLTAGE_GAIN,0);
 cs_readRegister(CS_STATUS,0);
 cs_readRegister(CS_CONFIGURATION,0);
 cs_readRegister(CS_OPERATION_MODE,0);
}

101

/*! \fn void cs_SystemCalibration(unsigned int8 cs_channel)
 \brief Performs the designated calibration
 See pag 25 of CS5463 datasheet
*/
void cs_SystemCalibration(unsigned int8 cs_channel)
{
switch (cs_channel){
 case 0x00:spi_write(0b11001001); //01001 Current channel DC
offset
 break;
 case 0x01:spi_write(0b11001010); //01010 Current channel DC gain
 break;
 case 0x02:spi_write(0b11001101); //01101 Current channel AC
offset
 break;
 case 0x03:spi_write(0b11001110); //01110 Current channel AC gain
 break;
 case 0x04:spi_write(0b11010001); //10001 Voltage channel DC
offset
 break;
 case 0x05:spi_write(0b1110010); //10010 Voltage channel DC gain
 break;
 case 0x06:spi_write(0b11010101); //10101 Voltage channel AC
offset
 break;
 case 0x07:spi_write(0b11010110); //10110 Voltage channel AC gain
 break;
 case 0x08:spi_write(0b11011001); //11001 Current and Voltage
channel DC offset
 break;
 case 0x09:spi_write(0b11011010); //11010 Current and Voltage
channel DC gain
 break;
 case 0x0A:spi_write(0b11011101); //11101 Current and Voltage
channel AC offset
 break;
 case 0x0B:spi_write(0b11011110); //11110 Current and Voltage
channel AC gain
 break;
 }
}

/*! \fn void cs_OffsetCalibration (void)
 \brief Performs the necessary actions for an offset calibration
 See pag 37 of CS5463 datasheet
*/
void cs_OffsetCalibration(void)
{
 //Desactivar IHPF y VHPF
 //cs_SystemCalibration(8);
 //cs_writeRegister(CS_CURRENT_DC_OFFSET,0,(0x7FFFFF));
 //cs_writeRegister(CS_VOLTAGE_DC_OFFSET,0,(0x7FFFFF));
 //delay_ms (70);
 cs_writeRegister(CS_CURRENT_AC_OFFSET,0,(0x000000));
 cs_writeRegister(CS_VOLTAGE_AC_OFFSET,0,(0x000000));
 cs_SystemCalibration(10);
 delay_ms (70);
}

102

/*! \fn void cs_GainCalibration (void)
 \brief performs the necessary actions for a gain calibration
 See pag 38 of CS5463 datasheet
*/
void cs_GainCalibration(void)
{
 //Desactivar Igain x50 / IHPF y VHPF
 //cs_writeRegister(CS_CONFIGURATION,0,(0x000001));
 //cs_writeRegister(CS_OPERATION_MODE,0,(0x000000));

 cs_writeRegister(CS_CURRENT_GAIN,0,(0x400000));
 cs_writeRegister(CS_VOLTAGE_GAIN,0,(0x400000));
 cs_SystemCalibration(11);
 delay_ms (70);
 cs_SystemCalibration(9);
 delay_ms (70);
}

• Capa 1: Estado CS5463

/*! \fn void cs_5463Status (void)
 \brief Checks STATUS BITS, DRDY,CRDY,IOR,VOR
 See pag 29 of CS5463 datasheet
*/
void cs_5463Status(void)
{
 if ((flag_EXT==0)&&(flag_TIMER==1))
 {

 spi_write(CS_STATUS);
//Solicita el valor del registro CS_STATUS
 cs_AppData[0] = spi_read(0xFF); //Así para que no
mande el valor por ZigBee
 cs_AppData[1] = spi_read(0xFF);
 cs_AppData[2] = spi_read(0xFF);
 int1 DRDY,IOR,VOR;

 DRDY=bit_test(cs_AppData[0],7); //MSB (0x90)
 CRDY=bit_test(cs_AppData[0],4);
 IOR=bit_test(cs_AppData[0],1);
 VOR=bit_test(cs_AppData[0],0);

 if (CRDY==0)
 {
 strcopy (DataOut,"CRDY Error");
 ZB_SendToSinkD(STRLEN (DataOut),DataOut);
 cs_writeRegister(CS_STATUS,0,(0xFFFFFF));
 flag_EXT=1;
 }

 if (IOR==1)
 {
 strcopy (DataOut,"Current Out of Range");
 ZB_SendToSinkD(STRLEN (DataOut),DataOut);
 flag_EXT=1;
 }
 }}

103

Código Funciones Inteligentes

//**

/*! \file Intelligent_functions.c
* \brief The next file provides the functions needed in order to read
* all registers and for convert values
* Description:
*
*
* Author: Nestor Carruesco (ncarruesco@gmail.com)\n
* Copyright: Tecnodiscap UNIVERSITY OF ZARAGOZA (Spain)\n
* Date: 19/01/2012\n
* Update record:\n
* __\n
* Author: Nestor Carruesco (ncarruesco@gmail.com)\n
* Update: For explaining a change in firmware\n
* __\n
*/

#include "Intelligent_functions.h"

• Lectura REGISTROS en hexadecimal

/*! \fn void cs_ReadPage0(void)
 \brief Reads all Page 0 registers
 See pag 24 of CS5463 datasheet */

void cs_ReadPage0(void)
{
 unsigned int8 k=0;
 unsigned int8 k_rotate_left=0;
 for(k=0;k<=31;++k)
 {
 k_rotate_left=k;
 k_rotate_left=(k_rotate_left<<1);
 cs_readRegister(k_rotate_left,0);
 delay_ms(15);
 }
}

/*! \fn void cs_ReadPage1(void)
 \brief Reads all Page 1 registers
 See pag 25 of CS5463 datasheet */

void cs_ReadPage1(void)
{
 cs_readRegister(CS_PULSE_WIDTH,1);
 cs_readRegister(CS_LOAD_MIN,1);
 cs_readRegister(CS_TEMPERATURE_SENSOR_GAIN,1);
 cs_readRegister(CS_TEMPERATURE_SENSOR_OFFSET,1);
}

104

/*! \fn void cs_ReadPage3(void)
 \brief Reads Page 3 registers
 It is a register. See pag 25 of CS5463 datasheet */

void cs_ReadPage3(void)
{
 cs_readRegister(CS_VSAG_DURATION,3);
 cs_readRegister(CS_VSAG_LEVEL,3);
 cs_readRegister(CS_ISAG_DURATION,3);
 cs_readRegister(CS_ISAG_LEVEL,3);
}

• Comando para fijar el tiempo para el envío automático de DATOS

/*! \fn void cs_SetSendTime(unsigned int8 Set_time)
 * \brief Set the time for automatic send of data */

void cs_SetSendTime(unsigned int8 Set_time)
{
 switch(Set_time)
 {
 case 0:Set_counter=2;
 break;
 case 1:Set_counter=4;
 break;
 case 3:Set_counter=6;
 break;
 case 4:Set_counter=Set_time;
 break;
 default:Set_counter=3;
 break;
 }
}

• Código de conversión de datos de hexadecimal a decimal

/*! \fn void DataConversion(unsigned int8 DatosVAR[3],unsigned int8
Gain)
 \brief Converts the UNSIGNED registers value in a decimal number*/

void DataConversion(unsigned int8 DatosVAR[3],unsigned int8 Gain)
{
//Inicializa el valor de las variables
unsigned int8 DatosMedida[3]={0x00,0x00,0x00};
int1 RealMeasure[24]={0,0};
unsigned int8 k=0;
float32 PesoBit=1;
float32 Resultado=0;
char Resultado_string[7];

 DatosMedida[2]=DatosVAR[0]; //LSB
 DatosMedida[1]=DatosVAR[1];
 DatosMedida[0]=DatosVAR[2]; //MSB

105

//Multiplicación de cada bit por su peso relativo
 for(k=0;k<=24;++k){
 RealMeasure[k]=shift_left(DatosMedida,3,0);
 PesoBit=PesoBit/2;
 Resultado=Resultado+(RealMeasure[k]*PesoBit);
 }

 //Conversión de float a string, para el envío de datos por ZigBee
 Resultado=(Resultado*250);
 sprintf(Resultado_string,"%6.2f",Resultado);
 ZB_SendToSinkD(STRLEN(Resultado_string),Resultado_string);

 switch (Gain)
 {
 case 0: //Configuración ganancia en corriente
 {
 if (Resultado<100)
 Resultado=40*Resultado-45;
 else if (Resultado>=150)
 Resultado=57*Resultado;
 else Resultado=82*Resultado-6647;
 }
 break;
 //Configuración ganancia en tensión
 case 1:Resultado=Resultado*2.15;
 break;
 //Configuración magnitudes SIN ganancia
 case 3:Resultado=Resultado/250;
 break;
 //Configuración ganancia potencias
 case 4:Resultado=Resultado*28;
 break;
 }
 //Conversión de float a string, para el envío de datos por ZigBee
 sprintf(Resultado_string,"%6.2g",Resultado);
 strcpy (DataOut,Resultado_string);
 ZB_SendToSinkD(STRLEN(DataOut),DataOut);
}

/*! \fn void SignedDataConversion(int8 DatosVAR[3],unsigned int8 Gain)
 \brief Converts the SIGNED register´s value in a decimal number
*/
Esta function es igual que el anterior, pero cambiando el peso del
primer BIT

 for(k=0;k<=24;++k)
 {
 RealMeasure[k]=shift_left(DatosMedida,3,0);
 PesoBit=PesoBit/2;
 if (k==0)
 Resultado=Resultado-(RealMeasure[0]*1);
 else
 Resultado=Resultado+(RealMeasure[k]*PesoBit);
 }

106

Código protocolo de comunicaciones (CCP)

//**

/*! \file CCP.c
* \brief The next file provides the functions needed in order to
handle ZigBee commands
*
* Description:
*
*
* Author: Nestor Carruesco (ncarruesco@gmail.com)\n
* Copyright: Tecnodiscap UNIVERSITY OF ZARAGOZA (Spain)\n
* Date: 12/02/2012\n
* Update record:\n
* __\n
* Author: Nestor Carruesco (ncarruesco@gmail.com)\n
* Update: For explaining a change in firmware\n
* __\n
*/

#include "CCP.h"

• Función para la decodificación del mensaje recibido

/*! \fn void SelectFunction(void)
 * \brief This function checks the incoming message and selects the
function
 *
 * at+ucastb:04,000D6F0000354A07 10F1000B
*/

void SelectFunction(void)
{
 cmd_error++; //1
 if (End_Point==0x10)
 {
 cmd_error++; //2
 if (Cluster_ID==0xF1)
 {
 cmd_error++; //3
 unsigned int8 ByteData=0;
 ByteData=Data_CCP[0];

 switch (Command)
 {
 //Funtions related wich Cirrus CS5463
 case 0:cs_readRegister(ByteData,0);
 break;
 case 1:
 {
 unsigned int32 WriteData;
 WriteData=make32(0,Data_CCP[1],Data_CCP[2],Data_CCP[3]);
 cs_writeRegister(ByteData,0,WriteData);
 }
 break;

107

 case 2:cs_SoftwareReset();
 break;
 case 3:cs_PowerState(ByteData);
 break;
 case 4:Initiate_CS5463();
 break;
 case 5:cs_WriteCalibrationData();
 break;
 case 6:cs_StartConversions();
 break;
 case 7:cs_ReadInstantaneousMeasures();
 break;
 case 8:cs_ReadPeakMeasures();
 break;
 case 9:cs_ReadAverageMeasures();
 break;
 case 0x0A:cs_ReadRMSmeasures();
 break;
 case 0x0B:cs_ReadCalibrations();
 break;
 case 0x0C:cs_SystemCalibration(ByteData);
 break;
 case 0x0D:cs_OffsetCalibration();
 break;
 case 0x0E:cs_GainCalibration();
 break;
 case 0x0F:cs_5463Status();
 break;
 // Intelligent Funtions
 case 0x20:cs_ReadPage0();
 break;
 case 0x21:cs_ReadPage1();
 break;
 case 0x22:cs_ReadPage3();
 break;
 case 0x23:cs_SetSendTime(ByteData);
 break;
 case 0x30:output_toggle(CONTROL_RELE);
 break;
 case 0x40:
 {
 Initiate_uC();
 Initiate_Interrupts();
 Welcome();
 Initiate_Zigbee();
 Initiate_CS5463();
 }
 break;
 default:cmd_error++; //4
 break;
 }
 }
 }
}

108

• EVENTO: Respuesta al mensaje enviado

/*! \fn void Event(void)
 \brief This function indicates an error/ACK in the message */

void Event(void)
{
 switch (cmd_error)
 {
 case 1:strcpy (CodeCCP,"End_Point ERROR");
 break;
 case 2:strcpy (CodeCCP,"Cluster_ID ERROR");
 break;
 case 3:strcpy (CodeCCP,"*** EVENT ACK ***");
 break;
 case 4:strcpy (CodeCCP,"Command ERROR");
 break;
 }
 ZB_SendToSinkD(STRLEN(CodeCCP),CodeCCP);
}

Función principal

• Inclusión del resto de ficheros

#include "C:\PFC\pickit\main.h"
#include "C:\PFC\pickit\ZB_ATLibrary30X.c"
#include "C:\PFC\pickit\CS_5463.c"
#include "C:\PFC\pickit\Intelligent_functions.c"
#include "C:\PFC\pickit\CCP.c"

• Configuración de interrupciones

#build (stack=256)
#priority RDA,EXT,TIMER0

#int_TIMER0
void TIMER0_isr(void)
{
//Overflow 4,3 sg (14 veces=1min)
contador_timer+=1;
}

#int_EXT
void EXT_isr(void)
{
flag_EXT=0;
output_toggle(LED7);
}

#int_RDA
void RDA_isr(void)
{
 int16 time_over = 0;

109

 datos_HARD = 0;

 while (kbhit (UART_ZB) || (time_over < TIMEOUT_UART_HARD)) {
 time_over++;
 if (Kbhit (UART_ZB)) {
 time_over = 0;
 Buffer_Hard[datos_HARD++] = fgetc(UART_ZB);
 }
 //restart_wdt ();
 }
 flag_HW=1;
}

• Inicializaciones

void Initiate_uC(void){

 setup_adc_ports(NO_ANALOGS|VSS_VDD); //Sets up the ADC pins
 setup_adc(ADC_CLOCK_DIV_2|ADC_TAD_MUL_0); /Disable A/D converter
 setup_psp(PSP_DISABLED); //Disable Parallel Slave Port
 setup_spi(SPI_MASTER|SPI_MODE_0|SPI_CLK_DIV_64); //Initiates(SPI)

 setup_wdt(WDT_ON); //Sets up the watchdog timer.
 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_256); //Sets up the timer 0
 setup_timer_1(T1_DISABLED); //Disable timer 1
 setup_timer_2(T2_DISABLED,0,1); //Disable timer 2
 setup_timer_3(T3_DISABLED|T3_DIV_BY_1); //Disable timer 3
 setup_comparator(NC_NC_NC_NC); //Disable the analog comparator
}

void Initiate_Interrupts()
{
 clear_interrupt(INT_RDA); //Clears the RDA interrupt flag
clear_interrupt(INT_EXT);
 clear_interrupt(INT_TIMER0);

 ext_int_edge(0,H_TO_L); //Set up PIC EXT0
 enable_interrupts(INT_TIMER0); //Timer 0 (RTCC) overflow
 enable_interrupts(INT_EXT); //External interrupt
 enable_interrupts(INT_RDA); //RS232 receive data
 enable_interrupts(GLOBAL);
}

void Initiate_Zigbee(){

 ZB_PowerConf(AWAKE); //ZB modo de energía >> AWAKE

 ZB_TGBootloader(); //(ver librerias)
 delay_ms(200);

 ZB_StartUpNet();

 #ifdef ZB_DEBUG //Comprueba que reconoce el ID(ZB_DEBUG

110

delay_ms(20);
 strcopy (ZB_DebugStr," **** SmartMeter connected ****");
 ZB_SendToSinkD(STRLEN(ZB_DebugStr),ZB_DebugStr);
//STRLEN=obtiene la longitud de la cadena s1
 restart_wdt();
 delay_ms(20);
 #endif

 flag_HW = 0; // Desatendemos cualquier mensaje anterior
}

//Inicialización del CS5463 --

 void Initiate_CS5463(void)
{
 //Sincronizacion de la comunicacion SPI
 spi_write(0xFF);spi_write(0xFF);
 spi_write(0xFF);spi_write(0xFF);
 spi_write(0xFE);

 //Software reset
 spi_write(0b10000000); //COMANDO 0x80
 delay_ms(200);
 restart_wdt();

 //Inicializa registros de configuración
 cs_writeRegister(CS_CONFIGURATION,0,(0x000001));//Igain=0(250x)
 cs_writeRegister(CS_OPERATION_MODE,0,(0x000060)); //HPF ON

 cs_WriteCalibrationData();//Writes Gain and AC Offset Registers

 cs_writeRegister(CS_STATUS,0,(0x800001));
 cs_writeRegister(CS_INTERRUPT_MASK,0,(0x000000));

 cs_StartConversions(); //Initiates continuous computation cycles
 }

void Welcome(void){
 unsigned int8 i;
 unsigned int8 RotateLED=0x01;

 for (i=0;i<32;i++){
 output_d(RotateLED);
 delay_ms (100);
 rotate_left(&RotateLED,1);
 }
}

• Main y bucle de programa

void main(){ //Inicializamos el sistema
 Initiate_uC();

111

 Initiate_Interrupts();

 Welcome();

 Initiate_Zigbee();

 Initiate_CS5463();

while(true){

 // comprobamos error de buffer hard
 if (OERR) {
 clear_interrupt(INT_RDA);
 CREN=0;
 CREN=1;
 }

 //Comprobamos contador_timer >> Overflow 4,3 sg
 if (contador_timer>=Set_counter)
 {
 contador_timer=0;
 output_toggle(LED6);
 flag_TIMER=1;
 }

 //Comprobamos Error CS5463 >> CRDY,IOR,VOR
 cs_5463Status();

 //Estado ACTIVO >> Mandamos periodicamente datos por ZigBee
 if ((flag_TIMER)&&(flag_HW==0))
 {
 cs_readRegister(CS_STATUS,0);
 cs_ReadRMSmeasures();
 flag_TIMER=0;
 }

 //Comprobamos mensaje uart hard (ZigBee)
 if (flag_HW)
 {

 //Guardamos datos del protocolo de comunicaciones CCP
 End_Point=Buffer_Hard[0];
 Cluster_ID=Buffer_Hard[1];
 Length=Buffer_Hard[2];
 Command=Buffer_Hard[3];
 Data_CCP[0]=Buffer_Hard[4];
 Data_CCP[1]=Buffer_Hard[5];
 Data_CCP[2]=Buffer_Hard[6];
 Data_CCP[3]=Buffer_Hard[7];
 cmd_error=0;//Variable control error mensaje

 //Comprobamos mensaje respecto al CCP y mandamos respuesta
 SelectFunction();
 Event();

 //Borramos la flag del ZigBee
 flag_HW = 0;
 }
 }
}

