000070042 001__ 70042
000070042 005__ 20191212100703.0
000070042 0247_ $$2doi$$a10.1038/s41467-018-03706-x
000070042 0248_ $$2sideral$$a105211
000070042 037__ $$aART-2018-105211
000070042 041__ $$aeng
000070042 100__ $$aSørensen, M.A.
000070042 245__ $$aChemical tunnel-splitting-engineering in a dysprosium-based molecular nanomagnet
000070042 260__ $$c2018
000070042 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070042 5203_ $$aTotal control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin-orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C 4) to pseudo-linear (D 4d) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.
000070042 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2017-83468-R
000070042 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000070042 590__ $$a11.878$$b2018
000070042 591__ $$aMULTIDISCIPLINARY SCIENCES$$b5 / 69 = 0.072$$c2018$$dQ1$$eT1
000070042 592__ $$a5.992$$b2018
000070042 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2018$$dQ1
000070042 593__ $$aPhysics and Astronomy (miscellaneous)$$c2018$$dQ1
000070042 593__ $$aChemistry (miscellaneous)$$c2018$$dQ1
000070042 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000070042 700__ $$aHansen, U.B.
000070042 700__ $$aPerfetti, M.
000070042 700__ $$aPedersen, K.S.
000070042 700__ $$aBartolomé, E.
000070042 700__ $$aSimeoni, G.G.
000070042 700__ $$aMutka, H.
000070042 700__ $$aRols, S.
000070042 700__ $$aJeong, M.
000070042 700__ $$aZivkovic, I.
000070042 700__ $$aRetuerto, M.
000070042 700__ $$0(orcid)0000-0002-5999-341X$$aArauzo, A.$$uUniversidad de Zaragoza
000070042 700__ $$0(orcid)0000-0002-6517-1236$$aBartolomé, J.$$uUniversidad de Zaragoza
000070042 700__ $$aPiligkos, S.
000070042 700__ $$aWeihe , Hø.
000070042 700__ $$aDoerrer, L.H.
000070042 700__ $$aVan Slageren, J.
000070042 700__ $$aRønnow, H.M.
000070042 700__ $$aLefmann, K.
000070042 700__ $$aBendix, J.
000070042 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000070042 773__ $$g9, 1 (2018), 1292[9 pp]$$pNATURE COMMUNICATIONS$$tNature Communications$$x2041-1723
000070042 8564_ $$s2079592$$uhttps://zaguan.unizar.es/record/70042/files/texto_completo.pdf$$yVersión publicada
000070042 8564_ $$s73725$$uhttps://zaguan.unizar.es/record/70042/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000070042 909CO $$ooai:zaguan.unizar.es:70042$$particulos$$pdriver
000070042 951__ $$a2019-12-12-10:05:15
000070042 980__ $$aARTICLE