Página principal > Artículos > Systematic study of Oxygen vacancy tunable transport properties of few-layer MoO3- x enabled by vapor-based synthesis > MARC |
000070171 001__ 70171 000070171 005__ 20190709135427.0 000070171 0247_ $$2doi$$a10.1002/adfm.201605380 000070171 0248_ $$2sideral$$a99015 000070171 037__ $$aART-2017-99015 000070171 041__ $$aeng 000070171 100__ $$aHanson, E.D. 000070171 245__ $$aSystematic study of Oxygen vacancy tunable transport properties of few-layer MoO3- x enabled by vapor-based synthesis 000070171 260__ $$c2017 000070171 5060_ $$aAccess copy available to the general public$$fUnrestricted 000070171 5203_ $$aBulk and nanoscale molybdenum trioxide (MoO3) has shown impressive technologically relevant properties, but deeper investigation into 2D MoO3 has been prevented by the lack of reliable vapor-based synthesis and doping techniques. Herein, the successful synthesis of high-quality, few-layer MoO3 down to bilayer thickness via physical vapor deposition is reported. The electronic structure of MoO3 can be strongly modified by introducing oxygen substoichiometry (MoO3- x), which introduces gap states and increases conductivity. A dose-controlled electron irradiation technique to introduce oxygen vacancies into the few-layer MoO3 structure is presented, thereby adding n-type doping. By combining in situ transport with core-loss and monochromated low-loss scanning transmission electron microscopy–electron energy-loss spectroscopy studies, a detailed structure–property relationship is developed between Mo-oxidation state and resistance. Transport properties are reported for MoO3- x down to three layers thick, the most 2D-like MoO3- x transport hitherto reported. Combining these results with density functional theory calculations, a radiolysis-based mechanism for the irradiation-induced oxygen vacancy introduction is developed, including insights into favorable configurations of oxygen defects. These systematic studies represent an important step forward in bringing few-layer MoO3 and MoO3- x into the 2D family, as well as highlight the promise of MoO3- x as a functional, tunable electronic material. 000070171 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2016-79776-P$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C3-3-P$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 696656-GrapheneCore1$$9info:eu-repo/grantAgreement/EC/H2020/696656/EU/Graphene-based disruptive technologies/GrapheneCore1$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 642742-Enabling Excellence$$9info:eu-repo/grantAgreement/EC/H2020/642742/EU/Graphene-based nanomaterials for touchscreen technologies: Comprehension, Commerce and Communication/Enabling Excellence$$9info:eu-repo/grantAgreement/EC/FP7/312483/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM 2 000070171 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/ 000070171 590__ $$a13.325$$b2017 000070171 591__ $$aCHEMISTRY, PHYSICAL$$b8 / 146 = 0.055$$c2017$$dQ1$$eT1 000070171 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b13 / 285 = 0.046$$c2017$$dQ1$$eT1 000070171 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b6 / 92 = 0.065$$c2017$$dQ1$$eT1 000070171 591__ $$aPHYSICS, CONDENSED MATTER$$b7 / 67 = 0.104$$c2017$$dQ1$$eT1 000070171 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b11 / 171 = 0.064$$c2017$$dQ1$$eT1 000070171 591__ $$aPHYSICS, APPLIED$$b6 / 146 = 0.041$$c2017$$dQ1$$eT1 000070171 592__ $$a5.617$$b2017 000070171 593__ $$aBiomaterials$$c2017$$dQ1 000070171 593__ $$aCondensed Matter Physics$$c2017$$dQ1 000070171 593__ $$aNanoscience and Nanotechnology$$c2017$$dQ1 000070171 593__ $$aElectronic, Optical and Magnetic Materials$$c2017$$dQ1 000070171 593__ $$aElectrochemistry$$c2017$$dQ1 000070171 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion 000070171 700__ $$0(orcid)0000-0001-6152-6784$$aLajaunie, L. 000070171 700__ $$aHao, S. 000070171 700__ $$aMyers, B.D. 000070171 700__ $$aShi, F. 000070171 700__ $$aMurthy, A.A. 000070171 700__ $$aWolverton, C. 000070171 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, R.$$uUniversidad de Zaragoza 000070171 700__ $$aDravid, V.P. 000070171 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000070171 773__ $$g27, 17 (2017), 1605380 [10 pp]$$pAdv. funct. mater.$$tAdvanced Functional Materials$$x1616-301X 000070171 8564_ $$s457759$$uhttps://zaguan.unizar.es/record/70171/files/texto_completo.pdf$$yPostprint 000070171 8564_ $$s14875$$uhttps://zaguan.unizar.es/record/70171/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint 000070171 909CO $$ooai:zaguan.unizar.es:70171$$particulos$$pdriver 000070171 951__ $$a2019-07-09-11:30:20 000070171 980__ $$aARTICLE
El sistema ha encontrado un error mientras gestionaba su petición.
Los administradores del sistema han sido avisados.
En caso de duda, póngase en contacto con deposita@unizar.es