
Research Article
MQTT Security: A Novel Fuzzing Approach

Santiago Hernández Ramos ,1 M. Teresa Villalba,2 and Raquel Lacuesta 3

1Telefónica Digital, Madrid, Spain
2Universidad Europea de Madrid, Madrid, Spain
3Universidad de Zaragoza, Teruel, Spain

Correspondence should be addressed to Santiago Hernández Ramos; santiago.hernandezramos@telefonica.com

Received 30 September 2017; Accepted 10 January 2018; Published 26 February 2018

Academic Editor: Syed H. Ahmed

Copyright © 2018 Santiago Hernández Ramos et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The Internet ofThings is a concept that is increasingly present in our lives.The emergence of intelligent devices has led to a paradigm
shift in the way technology interacts with the environment, leading society to a smarter planet. Consequently, new advanced
telemetry approaches appear to connect all kinds of devices with each other, with companies, or with other networks, such as the
Internet. On the road to an increasingly interconnected world, where critical devices rely on communication networks to provide
an essential service, there arises the need to ensure the security and reliability of these protocols and applications. In this paper,
we discuss a security-based approach for MQTT (Message Queue Telemetry Transport), which stands out as a very lightweight
and widely used messaging and information exchange protocol for IoT (Internet of Things) devices throughout the world. To that
end, we propose the creation of a framework that allows for performing a novel, template-based fuzzing technique on the MQTT
protocol.The first experimental results showed that performance of the fuzzing technique presented heremakes it a good candidate
for use in network architectures with low processing power sensors, such as Smart Cities. In addition, the use of this fuzzer in widely
used applications that implementMQTThas led to the discovery of several new security flaws not hitherto reported, demonstrating
its usefulness as a tool for finding security vulnerabilities.

1. Introduction

Today, cities face complex challenges, including sustainable
urban development, reduction of pollution and energy con-
sumption, and safety [1]. IoT (Internet of Things) is consid-
ered the core technology for buildingSmartCities, as it is based
on the concept “everything can be connected to the Internet.”
Thedevelopment of cheaper sensors and other devices, aswell
as the adoption of cloud services, is providing new oppor-
tunities to develop new services for improving quality of
life in cities. As cities grow, interest in exploring new IoT tech-
nologies increases. Some examples of how IoT technologies
can support the building of Smart Cities are as follows:

(i) Smart street lights with sensors for detecting cars’
movement and sending data to controlwhen to switch
them on or off to save energy

(ii) Reducing water consumption in parks

(iii) Health personnel attending to citizens in emergency
situations with access to their medical records in real
time [2–4]

(iv) The consumption and regulation of electricity con-
trolled by smart meters and sensors that send data in
real time [3, 5, 6]

Due to IoT, technology-enabled devices located in different
places communicating with each other and generating large
volumes of data, information becomes more difficult to
protect [7]. Compromised availability, integrity, or confiden-
tiality of these data can have an adverse and direct effect on
people’s lives [8]. Consequently, there is a need to implement
mechanisms that verify the security of IoT devices, the
network protocol they use to exchange information, and the
applications developed for them.

In this paper, we propose a framework to improve the
security of applications implementing the protocol MQTT

Hindawi
Wireless Communications and Mobile Computing
Volume 2018, Article ID 8261746, 11 pages
https://doi.org/10.1155/2018/8261746

http://orcid.org/0000-0002-9198-1830
http://orcid.org/0000-0002-4773-4904
https://doi.org/10.1155/2018/8261746

2 Wireless Communications and Mobile Computing

(Message Queue Telemetry Transport), a widely used proto-
col for sharing data exchanged between IoT devices. MQTT
is an extremely simple and lightweight messaging protocol,
with a publish/subscribe architecture, designed to be straight-
forward to deploy, and capable of supporting thousands of
clients with a single server. In addition, MQTT provides reli-
ability and efficiency in adverse conditions. All these features
make this protocol one of the most used protocols for the
communication between smart devices, with a high number
of applications based on it, increasing rapidly over time [9,
10].

To test the security of the applications that implement
MQTT, we have created a framework based on a verification
technique called fuzzing. Fuzzing is a testing technique for
finding vulnerabilities in software applications [11] by sending
unexpected input data to target systems and thenmonitoring
the results. Typically, it consists of an automatic or semiau-
tomatic process, which comprises the sending and repeated
manipulation of data to the system under study. All fuzzers
can be classified into two broad categories [12]: mutation-
based and generation-based fuzzers. Mutation-based fuzzers
apply mutations on existing data samples to create the test
space, while generation-based fuzzers create test cases from
scratch by modelling the target protocol or file format. As
generation-based approaches are more complex and time-
consuming, we focus on mutation-based fuzzer approaches
along with a novel fuzzing technique based on templates.The
aim of this technique is to reduce the effort and increase the
productivity of users when performing security verification
of the applications that implement the MQTT protocol. This
new technique allows completely automated generation of
a template with the fields we want to test for each network
packet. It also enables definition of other specifications, such
as the fields for which we want to filter the traffic or the values
that we want to insert or send by default.

The rest of the paper is organized as follows. In Section 2,
we briefly explain the basic concepts needed to understand
the presented work. Section 3 discusses the related work
regarding MQTT protocol security and the modern fuzzing
approaches. Section 4 deals with the basic elements of the
framework and the implementation of the concepts and
methods discussed above. Section 5 then introduces the
architecture of the fuzzer, and Section 6 shows the results of
the experimentation phase. Finally, the conclusions are pre-
sented.

2. Background and Motivation

2.1. Message Queue Telemetry Transport. MQTT uses a pub-
lish/subscribe messaging pattern that enables a loose cou-
pling between the information provider, called the publisher,
and consumers of the information, called subscribers. This
is achieved by introducing a message broker between the
publishers and the subscribers.

Compared with the traditional point-to-point pattern,
the advantage of this model is that the publishing device or
the application does not need to know anything about the
subscribing one, and vice versa. We can distinguish three
MQTT essential concepts that will remain present through-
out the development of the paper.

Table 1: MQTT fixed header.

Bit-> 7 6 5 4 3 2 1 0
Byte 1 Msg type DUP QoS Retain
Byte 2 Remaining length

Table 2: Some solutions that use MQTT.

Brokers Clients Smart home
Mosquitto CocoaMQTT Homegear
ActiveMQ emqttc Domoticz
hbmqtt mqtt-client Lelylan
HiveMQ M2Mqtt cul2mqtt
Moquette mqtt cpp aqara-mqtt
Mosca mqttex Home.Pi
VerneMQ Paho Home Assistant
hrotti rumqtt pimatic
SurgeMQ hbmqtt FHEM

(i) Topics. The publishers are responsible for cataloguing the
messages they send in topics. A topic defines the content of a
message or a category in which the message can be classified.
Topics are important because while in the point-to-point
protocols messages are sent to a specific address, in a publish/
subscribe pattern, messages are distributed based on the se-
lected topics by the subscriber. By subscribing to a particular
topic, the subscriber will receive all messages sent with that
topic by any publisher.

(ii) Client. MQTT clients connect to a broker to exchange
messages. They must subscribe to topics and can publish in-
formation to other entities connected to the same broker by
providing a topic.

(iii) Broker. MQTT brokers are servers acting as intermedi-
aries for themessages.MQTTprotocolmessages’ format con-
sists of three parts: a fixed header, shown in Table 1; a variable
header; and a payload. Fuzzers consider the fields and posi-
tions of the header for inserting data to perform the fuzzing
process.

MQTT is one of the most used protocols worldwide as
shown in Table 2.

2.2. Fuzzing Processes. The phases of a fuzzing process are
highly variable and depend on many factors, such as the
application being tested or the programmer’s experience [13].
However, there is a set of basic steps that are always followed,
regardless of the approach or application being analysed. In
the development of the tool that will be presented below, the
following phases have been considered:

(i) Identifying an objective: the first step in every fuzzing
process consists of identifying the target which could
be an application, a protocol, or even the function of
a specific library. The target here is both the MQTT
protocol and the applications implementing the pro-
tocol.

Wireless Communications and Mobile Computing 3

(ii) Identifying the entry points: almost all exploitable
vulnerabilities are caused by applications that accept
user values processedwithout being properly checked
in advance. Enumerating the input vectors is one of
the crucial aspects for the fuzzing process to succeed.
In the end, anything that can be sent from the client to
the target system should be considered as an input
vector.This includes headers, filenames, environment
variables, and registry keys.

(iii) Generating the fuzzing data: once the input vector has
been identified, we must generate appropriate data to
perform the fuzzing process. A high degree of auto-
mation generating the test cases is important, as
numerous cases must be generated.

(iv) Executing the test cases: this step is closely linked to
the previous one and consists of the process of send-
ing the data packets to the target system. As in the
previous stage, process automation is essential.

(v) Exception monitoring: a vital part of the fuzzing pro-
cess is monitoring exceptions. Causing the crash of
the target system after sending numerous data packets
has no benefit if the particular packet that caused
the error cannot be determined. Monitoring can take
many forms and is closely linked to the target system
and the type of fuzzing being performed.

3. Related Work

3.1. Security inMQTTProtocol. Although research onMQTT
security is still scant, some incipient work has been presented
about its security issues. Almost all security problems that
arise are related to the state in which the protocol works by
default. Because MQTT is a simple protocol designed for
devices with low processing power, by default, the protocol
tries to minimize the processing needed to exchange mes-
sages, whichmeans that serious security problems arise.Most
of these shortcomings can be solved with an adequate
protocol configuration. The following are some of the most
common security issues that can be solved through proper
protocol configuration [14, 15]:

(i) Lack of authentication: the MQTT protocol does
not provide a secure authentication mechanism by
default, which can lead to spoofing the identity of
some of the participants in the communication or the
sending of unauthorized data. This problem can be
easily solved by configuring the protocol features ade-
quately.When it comes to authentication, the protocol
itself provides username and password fields in the
CONNECT message enabling clients to send a user-
name and password when connecting to an MQTT
broker.

(ii) Lack of authorization: MQTT clients, after connect-
ing to a broker, can publish messages or subscribe
to topics. Each authenticated client can publish and
subscribe to all kinds of topics even without proper
authorization. This may be a significant problem,
because the protocol itself does not provide any

mechanism to carry it out and therefore the respon-
sibility lies with the broker. In spite of this, it can
be easily solved through the implementation of topic
permissions on the broker side [16].

(iii) Lack of confidentiality:MQTT relies onTCP as trans-
port protocol, which means that by default the con-
nection does not use an encrypted communication.
Thismeans that packets can be spied on by an attacker
listening on the same network. To avoid this, almost
all MQTT brokers allow encryption of the whole
MQTT communication, using TLS instead of plain
TCP.

(iv) Lack of integrity: whenMQTT systems have untrust-
ed clients or unidentified MQTT clients have access
to the MQTT broker and topics, data integrity of sent
messages should be checked, especially when TLS is
not used. MQTT supports three mechanisms to pro-
vide integrity to exchangedpackets: Checksum,MAC,
and Digital Signatures.

Other approaches have been also presented by some
authors. Moreover, some research has tried to deal with the
general problems of IP-based protocols used by IoT devices,
one of which is MQTT. In these cases, the authors focus
on the security of this type of device as part of a broader
spectrum, treating the layers of protection that can wrap
around the TCP/IP protocol and the security architectures
and models that best fit IoT networks [17]. In addition to
confidentiality, other security features have been addressed;
[18] deals with the problem that smart devices havewhen they
do not have enough processing capacity to use asymmetric
encryption algorithms to perform authentication tasks, and it
proposes a new authentication approach based on operations
that consume few resources, such as hash functions or OR
operations. Some other interesting approaches focus on how
to force compliance with the optional security features that
the MQTT protocol can implement. SecKit is a model-based
security toolkit that tries to force the use of a series of security
policies, so that the protocol implements some protection
measures that are not found in its default implementation
[19]. There is also research that continues to focus on the
security limitations that this protocol poses by design and
proposes frameworks to improve their security in the trans-
porting of information between the parties involved in the
connection by adding extra layers such as SSL/TLS [20, 21].

The considerations that appear at the beginning of this
section show that the protocol security flaws are related to its
operation and, in particular, to the way in which it exchanges
information. This paper aims to contribute to the improve-
ment of the security of the MQTT protocol regarding the
verification of the devices that implement it. When applica-
tions that implement the MQTT protocol process a package
incorrectly, serious security failures such as denial of service
or remote execution of arbitrary code can occur [22, 23],
even when the security measures mentioned above are met.
Evaluating applications that implement such a protocol in the
different parts of the connection (client and broker) to verify
their behaviour when receiving incorrect or unexpected data
can help to avoid certain serious security breaches.

4 Wireless Communications and Mobile Computing

3.2. Modern Fuzzing. As has been said in previous sections,
there are many types of fuzzing and many ways to perform
this technique, including IoT fuzzing as the one presented
for the Modbus protocol [24] by the IoT Systems book [25].
However, in general, as Aitel stated in his paper [26], modern
fuzzing tries to solve three major problems with respect to
traditional fuzzing.

(i) If the network protocol is defined by an API with
which the client and server are implemented, it is
very likely that these predefined functions will make
certain checks on the data that is sent and will con-
sequently have an indirect influence on the fuzzing
process.

(ii) Even given complete knowledge of the protocol,
creating a client for a protocol can be a considerable
undertaking, and that client is rarely portable to other
protocols, even those of a similar nature.

(iii) Often, testers have only limited knowledge of the
protocols under attack or of theways the protocolmay
break.

To solve this, modern fuzzing tools, like Boofuzz [27],
SNOOZE [28], and KiF [29] or [30], among others, propose
a block-based approach, which consists of decomposing the
protocols into length fields and data fields and providing
the user with a framework for creating such tools without
having to worry about the control fields (such as lengths or
checksums) of the lower layers.This is the approach thatmost
current frameworks use, and it has a very simple foundation.
If, when a network packet consisting of several layers is
available, with the upper layers being the application ones
and the lower layers being the physical layers, we would
like to perform fuzzing testing on one of the application
layers, it would not be enough to enter the testing value and
send the message, since the underlying layers may contain
control fields, which if not updated correctly would lead to
rejection of the packet upon reaching the server, before the
value inserted was processed. To solve this problem, some
structures called blocks were proposed. In them, a series of
variables is grouped previously defined by the framework,
which occupy a specified size. A set of these variables form
a block, and the blocks can be opened and closed as follows
[31]:

s block size binary bigendian word("somepacketdata");
s block start("somepacketdata");
s binary("01020304");
s block end("somepacketdata");

What is achieved with this is that the control fields of the
lower layers are recalculated automatically, once all the blocks
have been closed and, consequently, the user does not have to
worry about processing them.

If we focus on the particular topic of fuzzing the MQTT
protocol, very few references or tools can be found about it.
The only public tool of which the authors have evidence is
mqtt-fuzz [32], whose main utility is to verify the protocol
in a fast and traditional way, without providing too much
complexity. In addition, other methods of fuzzing or formal
testing have been presented for the MQTT protocol, albeit
with a different aim. This is the case with [33], in which the
authors discuss formal methods of network protocol verifi-
cation through finite-state machines and labelled transition
systems. The focus is on demonstrating how most of the
implementations of MQTT do not meet the standard. CG-
Fuzzing is a fuzzy algorithm for ZigBee, with a focus on
generating an efficient number of test cases.

3.3. Proxy Fuzzing. Proxy fuzzing is a widespread and a
barely studied technique, resulting from some of its current
limitations. Some work has been carried out in relation to
this technique, such as ZAP Proxy [34], Burp Proxy [35],
ProxyFuzz [36]. What all this work has in common is that
the fuzzer must be placed in the middle of the connection,
between the client and the server, to serve as a relay agent.
To effectively accomplish this task, both the client and the
servermust be configuredmanually or automatically by some
IP trickery, for example, ARP spoofing. This allows the client

and the server to look for one another at the address of the
proxy, so the client sees the proxy as the server, and vice
versa. This fuzzing method provides several improvements
over previous processes, such as simplicity of use. However,
it is a difficult technique to implement, which is why the
tools for implementing this technique are barely known and
introduce extremely basic fuzzing techniques.This technique
has led to a patent [37].

4. Methods

In this section, we will show how we have implemented the
methods mentioned in the previous sections, along with
other new approaches to creating a fuzzing tool for theMQTT
protocol.

4.1. Fuzzing MQTT Messages. The process of fuzzing a pro-
tocol or the applications that implement it entail knowing in
some way the specification of said protocol, either through its
public documentation or by reverse engineering techniques.
Once we know its specification and we can interpret the bytes
of a package, we must select the packages and fields that
are of interest for inserting information with the intention
of verifying that the application that processes them does so
correctly.

In the case of MQTT, no reverse engineering process is
required, since its specification is public [38]. Therefore, we
need only look in the specification documents for the type of

Wireless Communications and Mobile Computing 5

Table 3: Types of MQTT messages.

Packet Description
CONNECT Connect to the server
CONNACK Ack of connect msg
PUBLISH Publish a topic
PUBACK Ack of publish msg
PUBREC Publication received
PUBREL Publication sent
PUBCOMP Publication completed
SUBSCRIBE Client subscription
SUBACK Ack of subscribe msg
UNSUBSCRIBE Unsubscribe petition
UNSUBACK Ack of unsubscribe msg

Table 4: Publish packet variable header nonnormative example.

Byte position Description
Topic name
Byte 1 Length MSB (0)
Byte 2 Length LSB (3)
Byte 3 “a” (0x61)
Byte 4 “/” (0x2F)
Byte 5 “b” (0x62)
Packet identifier
Byte 6 Packet identifier MSB (0)
Byte 7 Packet identifier LSB (10)

packages which are exchanged and the fields that are in their
variable header and payload (Table 3).

If we look a little more in depth at the type of packets
exchanged by the protocol, we quickly realize that the
message PUBLISH is likely to be the one in which most
information is transmitted and therefore the one in which
the most processing is performed by the applications that
implement the protocol. Once we have identified this type
of packages (PUBLISH, CONNECT, SUBSCRIBE, etc.), we
study their variable header (Table 4) to select the type of fields
and the fields’ positions in bytes, into which the test cases will
be inserted to carry out the fuzzing process. Once the fields
where the test cases are inserted have been selected, we look
for the control fields, which will be recalculated once the test
case is inserted. Finally, we look for a field that unequivocally
identifies the package in order to be able to filter it “on the
fly.”

4.2. Advance Proxy Fuzzing. To apply the fuzzing process,
we use the fuzzing proxy technique explained in previous
sections.

As we have already stated, this technique is not very
widespread, and the tools that perform it are outmoded and
present a great degree of deficiency compared to modern
techniques. However, if we study in depth the advantages of
applying this technique, we can verify that it allows us to
solve several of the deficiencies presented bymodern fuzzing.
These deficiencies are presented below.

4.2.1. Fuzzing Different Components of the Connection. In
general, the current fuzzing tools are only designed to verify
some points of the connection. This means that if we use a
tool to test a particular server, it cannot normally be used
to repeat the process on a client, or at least not without
investing a great deal of effort in modifying the structure of
the framework. The solution to this problem marks one of
the main characteristics of the tool that is being presented,
since the objective to be achieved is to reduce the effort on
the part of the user for verification of the security of applica-
tions that implement the MQTT protocol. With the proxy
technique, because the fuzzer is in the middle of the com-
munication, the main objective is the packages that circulate
between the different components. Thus, the fuzzing tool is
not built for a particular server or client, but for a given pack-
age set. Because the specification of the packages is standard
for all applications that implement the protocol, the fuzzing
process decouples completely from the point of the connec-
tion (client, broker, etc.) that is performing testing, focusing
solely on the packages that are being exchanged.

4.2.2. FuzzingMessages Based on Previous Responses. In some
situations, it is not possible to apply fuzzing to certain packets
in a protocol to determine whether the values are correctly
processed by the target machine. This is because some of its
fields are based on a previous message. If you want to test a
particular value of a package that has a random handle field
that has been previously sent by the server, it is not enough
to establish a connection and continuously send this type of
package, since they will be rejected for having an incorrect
handle field, and the destination application would never get
to process the value, and therefore the fuzzing process would
not be carried out in any of the cases.

This is another problem solved with the proxy approach.
Since messages that are filtered and processed by the fuzzer
come from a legitimate client and broker that establish a
legitimate connection, fields that have been previously sent
from one end to the other will remain intact and with the
proper value.

4.3. Template-Based Fuzzing. In this paper, we present a
novel, template-based fuzzing technique that aims to solve the
problems presented in Sections 2.1 and 2.2.

As explained earlier, the current fuzzing tools use an
approach that tries to simplify work for users by recalcu-
lating the control fields automatically using the block-based
technique. Even so, this method continues to prove highly
complex for users who wish to perform security checks on a
specific protocol. The code that is shown below represents all
the sentences that are required to implement a small program
that allows application of fuzzing to four messages in a very
simple protocol (FTP) through a framework called Boofuzz
[27], which is widely used nowadays, and the successor to Sul-
ley [39], which in turn is heavily influenced by SPIKE. As can
be seen, the definition of complex protocols in this type of
framework is still a tedious task, in addition to requiring a
thorough knowledge of the tool itself and the entire specifi-
cation of the protocol. It is at this point that the template-
based approach would be useful.

6 Wireless Communications and Mobile Computing

def main():

session = Session(

target=Target(
connection=SocketConnection("127.0.0.1",
8021,proto=\tcp")))

s initialize("user")

s string("USER")

s delim(" ")

s string("anonymous")

s static("\r\n")

s initialize("pass")

s string("PASS")

s delim(" ")

s string("james")

s static("\r\n")

s initialize("stor")

s string("STOR")

s delim(" ")

s string("AAAA")

s static("\r\n")

s initialize("retr")

s string("RETR")

s delim(" ")

s string("AAAA")

s static("\r\n")

session.connect(s get("user"))

session.connect(s get("user"),s get("pass"))

session.connect(s get("pass"),s get("stor"))

session.connect(s get("pass"),s get("retr"))

session.fuzz()

The template-based approach works as follows:

(i) The tool listens in the middle of the communication
as if it were a sniffer, using the proxy technique. The
user has previously had to provide a series of para-
meters whereby the packets that pass through it will
be filtered. These are the fields that were discussed in
previous sections.

(ii) The user generates traffic between the client and the
legitimate server of the protocol that he or she wants
to fuzz. When the packets that were specified in the
previous point are intercepted by the tool they are
filtered and processed.

(iii) After processing the package, a .json template is auto-
matically generated with the following format.

This portion of the template shows the MQTT Publish layer
of anMQTT package. As you can see, each of the fields in the
package appears and two extra attributes are added to each:
fuzzable and recalculate. All the user has to do to apply fuzzing

to a particular field of a package is to modify the fuzzable
attribute by assigning the value true. The user will also have
to assign the value true to the recalculate attribute of the fields
that are considered to be recalculated automatically in order
to maintain packet consistency. The tool will automatically
enter the verification values in the fields that have been
marked as fuzzables and will also recalculate all the fields in
the package that have the recalculate flag set to true.

As we can see in Figure 1, the generation time of the tem-
plates is reasonably fast, and the generation algorithm is𝑂(𝑛),
which means that the generation time remains constant,
regardless of the number of templates generated.

Thus, the third problem is solved, since the user does not
have to know any details of the structures used by the tool or
the protocol itself, besides the fields to which he or she wants
to apply fuzzing, and in any case, the fields that he or she
wants to recalculate. Note that, in order to make modifica-
tions to the template, the user does not require any special
tool; this can be edited with a common text editor, as long as
the .json structure is maintained.

Wireless Communications and Mobile Computing 7

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0.
05

8
0.

32
7

0.
55

9
0.

78
6

1.
01

3
1.

29
9

1.
51

4
1.

79
6

2.
06

2
2.

31
3

2.
54

1
2.

78
1

3.
00

8
3.

23
4

3.
47

8
3.

70
4

3.
91

6
4.

13
6

4.
36

6
4.

58
7

4.
8

5.
06

3
5.

31
6

5.
53

4
5.

75
5

5.
97

3
6.

19
1

6.
42

3
6.

64
8

6.
86

5
7.

07
9

Time (seconds)

N
um

be
r o

f t
em

pl
at

es

Figure 1: Time used by the application to generate templates.

4.4. Test Cases Generation. Generating the values with which
an application is going to be tested is an important part of
the fuzzing process [40, 41]. Often, the user is interested
in running the test with a custom dictionary that has been
generated with an external application; at other times, mean-
while, the user is interested in automatic generation of test
cases with a certain degree of intelligence. The proposed tool
implements both approaches and tries to maintain simplicity
of use in both cases. The details of how this is implemented
are discussed in the following section.

5. System Design

This section discusses the design considerations motivating
our design and then describes the MQTT fuzzer system
architecture.

5.1. Architecture of the Fuzzer. In this section, we will discuss
the structure of the tool from the point of view of its design
and implementation.We will take a tour of themainmodules
of which it is composed and its functionality. In addition,
some secondary actions that the tool must carry out in order
to make the fuzzing process satisfactory will be discussed.

Figure 2 shows the general architecture. The tool is com-
posed of the following modules.

Mitmfuzzer.Themitmfuzzermodule is the driver fromwhich
the rest of the application functions are called. Within it, the
arguments that the user enters are parsed; this is done using
the python module argparse [42]. In addition, it provides a
small interface that shows the state of activity of the tool in a
given situation.

Sniffer. The sniffer module is one of the main features of
the tool. It is responsible for listening in the middle of a
connection in order to filter and process the packages. It thus
filters those specified by the user to subsequently generate a
template. The core of the implementation of this module is
based on Scapy [43], a framework for low-level treatment of
network packets, which supports a large number of protocols.
Once this module has detected a package selected by the user,
it processes and serializes it in a certain format, which enables
its processing using the python programming language. This

package will be provided to the templatemodule for template
generation.

Template.This module receives a package in a certain format
from the sniffer module and is in charge of processing it in
order to generate the template in .json format. The generated
templates are stored in a templates directory and will be used
later by the fuzzer to identify the packages and fields to be
fuzzed and recalculated.

Fuzzer. The fuzzer module is the most important module
of the tool, as it performs the process of listening, packet
filtering, generation, and insertion of test cases. The input of
this module is a template file that must have been generated
previously by the template module. Through the use of
iptables and nfqueue [44, 45], the module continues listening
to the communication as if it were a sniffer, redirecting the
packages that are not identified with the template that has
been introduced, and filtering and processing the packages
that match the template. When a matching package is pro-
cessed, all of its fields are compared to those in the template,
looking to see whether one of them has been selected by the
user to be fuzzed. In the case of one ormore fields, themodule
checks whether the user has entered a custom dictionary to
perform the test process: if so, the module will retrieve one of
the test cases provided by the user and enter it in the field
that was indicated for verification. Where the user has not
provided a custom test case, the module will call Radamsa
[46], passing as a parameter the file with the valid example
case that is in validcases/fieldnamedirectory. Radamsa is a
stock generator specially designed for software verification.
It works by reading sample files that contain correct data,
and through a series of algorithms it mutates this data, thus
providing some intelligence, so that the generated results are
more likely to lead to an error. Radamsa will automatically
generate 50 different test cases and the module will take one
of them to enter it in the field to be fuzzed. It should be noted
that the generation of test cases performed by the module is
continuous and infinite; when themodule exhausts the 50 test
cases generated, it automatically calls Radamsa to generate
another 50 new cases.

Scapy. Scapy is a library for packetmanipulation that supports
a large number of network protocols. It has been considered
necessary to name it in the application architecture, because
it forms an important part of the core of the application.
The advantage of Scapy, in addition to its extensive protocol
support, is that it uses a block-based approach. This means
that if you modify one of the fields in a package, you can
recalculate the lengths and other control fields very simply
and automatically. When a package arrives at the Fuzzer
module, it sends it to Scapy for processing; Scapy then returns
a structure that represents the package and which is easy to
manipulate. After you have finishedmanipulating theMQTT
package, Scapy takes this manipulated package, which is
probably incorrect due to inconsistencies in control fields
such as length fields (if text has been inserted or deleted)
or checksum fields (if any byte of the package has been
modified), recalculates all control fields using a block-based
approach, and encapsulates the data as it was in the original

8 Wireless Communications and Mobile Computing

Mitmfuzzer

Sniffer Template Templates

Fuzz_cases

Valid_cases

RadamsaFuzzer

Figure 2: Architecture of the MQTT fuzzer.

package. It forwards this packet to the Fuzzer module, and
the Fuzzer forwards it to the legitimate application. It is worth
highlighting that Scapy did not have support for the MQTT
protocol, and since it is the protocol object of study in this
paper, we extended the library provided by adding support to
MQTT. Currently, themodule developed is part of the official
repository of Scapy [47].

5.2. Test Cases Generation Implementation. In this section, we
describe how the automatic generation of test cases has been
applied in the implementation phase of the framework.

5.2.1. Automatic Generation of Test Cases. As explained in the
description of the architecture of the tool, the automatic
generation of test cases is carried out by an external appli-
cation called Radamsa. This application is known to have
been used to discover vulnerabilities like CVE-20073641 and
CVE-2007-3644 (archive read support format tar.c library
vulnerabilities), CVE-2008-6536 (7-zip program vulnerabil-
ity), andCVE-2010-2482 (LibTIFF 3.9.4 vulnerability) among
many others. The way in which the proposed tool uses this
module is as follows: in the directory of the tool there are two
important folders: a directory called valid-cases, composed
of a set of subdirectories, one for each field of the package
to be investigated. Inside these subdirectories, there are one
or more sample files with correct data for that particular
field. These will be provided to Radamsa to mutate them and
generate the test cases. On the other hand, there is another
directory called fuzz-cases, inside which a directory has been
created for each of the fields to be fuzzed in a certain package.
Radamsa automatically generates all field-specific test cases
inside it, so that the tool subsequently retrieves them and
inserts them into the packages.

5.2.2. Using Custom Test Cases. If, instead of using the auto-
matic generation of test cases, it is desired to use a set of

cases, generated eitherwith another tool ormanually, the user
can do so in a straightforward manner by performing the
following steps on the directory structure explained above:

(i) Inside the fuzz-cases directory, create a subdirectory
with the exact name of the field you want to fuzz.

(ii) Inside the created subdirectory, enter all the test cases,
one per file.The order or the name that is given to the
file is not relevant.

6. Experimentation and Results

In this section, we present the results of applying the tool to
a series of applications that are widely used today. All the test
scenarios that are presented have been carried out in a con-
trolled environment.The tools that are tested are open source
and their use is free.

6.1. Performance Considerations. In this section, we have
taken into account the performance implications of the tool.
The section is divided into several subsections that evaluate
the different functionalities of the presented tool and the
impact of each of them on its performance.

6.1.1. Packet Processing. As has been presented in previous
sections, the tool is located in the middle of the communi-
cation between a client and a broker, and from there it begins
to modify all the network packets that flow between both,
applying the proxy fuzzing technique. Because of this, much
of the processing load of the tool corresponds to themodifica-
tion and processing of packets on the fly, understanding
processing such as insertion of test cases in the packets data
fields and the recalculation of all the control fields of the
previous layers.

Bearing this inmind, one of the aspects we havemeasured
is the processing time per package. As can be seen in Figure 3,

Wireless Communications and Mobile Computing 9

0
0.005

0.01
0.015

0.02
1 39 78 11
6

15
5

19
3

23
2

27
0

30
8

34
6

38
4

42
3

46
1

49
9

53
7

57
5

61
4

65
2

69
0

72
8

76
6

80
5

84
3

88
1

91
9

95
7

99
6

10
34

10
72

11
10

11
48

11
86

(s
ec

on
ds

)
Pr

oc
es

sin
g

tim
e

Packet number

Figure 3: Processing time per package.

0.001095389

0.014180579

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016

Legitimate packet Fuzzed packet

Ti
m

e (
se

co
nd

s)

Figure 4: Difference between the transit time of a legitimate and a
fuzzed package.

the processing time of each of the packages to which a test
case is inserted remains relatively constant, with some vari-
ations due to the test case being inserted. If the test case has
a longer length, the processing time will be longer because it
will require recalculation of more fields. For the construction
of the graph, a subset of 1300 network packets has been
considered, which have reported an average processing time
of 0.003699 seconds. This can be considered an acceptable
time to keep the connection stable.

Once the processing time has been calculated for each
packet, the arrival delay of a set of 100 packets after being
processed has been calculated. This has been done because
not only the overall processing time of a packet consists of
inserting a test case and recalculating all the control fields of
the lower layers, but also it is necessary to consider the delays
caused by sending the packet from kernel space to user space
so that it can be modified, sending of the package from user
space to kernel space so that it can be sent, the additional time
that it takes to be transported through the network, and so on.

As can be seen in Figure 4, the transit time of a fuzzed
packet increases by approximately 90% with respect to the
time of a legitimate packet, a total of 0.013085 seconds, which
remains an acceptable time tomaintain the connection stable
without excessive delays.

6.1.2. Fuzzer Load and CPU Consumption. In previous sec-
tions, we have shown the number of templates that the tool is
capable of generating and the time it takes to generate them.
Another important performance measure is the number of
test cases that the fuzzer is able to insert per time unit and the
CPU consumption of the host machine.

The fuzzer has several customization features that allow
you to select the time between test cases inserted, so that

0
5

10
15
20
25
30
35

0 0.5 1 1.5 2

%
 C

PU
 co

ns
um

pt
io

n

Time between test cases (seconds)

Figure 5: CPU consumption in relation to delay time between test
cases.

you can insert everything as fast as possible or from time to
time. In order to evaluate the CPU consumption of the host
machine, different periods of time between inserted test cases
have been taken into account.

As we can see in Figure 5, the CPU consumption of the
machine that houses the fuzzer varies considerably depend-
ing on the delay time that is left between each inserted test
case. This allows customizing the tool to be used in environ-
ments with fewer resources.

6.2. Application Scenarios. The term “application scenarios”
refers to the possibilities offered by the tool within a con-
nection to apply fuzzing to its elements. As explained in the
previous sections, with the adopted approach it is possible
to fuzz the different points of the connection of a protocol.
The following are a series of use cases based on the MQTT
protocol:

(i) Pub-fuzzer-broker-Sub: in this case, the tool would be
placed between the client that is posting a message
and the broker, in such a way that the tool could fuzz
the messages that flow from the client to the server
and the messages sent from the server to the client
that is publishing.

(ii) Pub-broker-fuzzer-Sub: in this case, the scenario
would change a little: the fuzzer would be between
the broker and the client that is subscribed, waiting
for the reception of messages. The tool could fuzz the
messages from the broker to the client that is listening
and the messages from the client to the broker, which
will normally be acknowledgments.

6.3. Results. After applying the tool to some of the current
brokers and clients, the fuzzer has been able to detect several
failures that have led to denial of service and that may
be potentially exploitable to perform other types of attack
techniques. Some of these failures are as follows:

(i) Denial of service to the MOQUETTE broker v0.10
after the incorrect processing of a fuzzing package and
throwing a Java exception that breaks the application

10 Wireless Communications and Mobile Computing

(ii) Error in handling the incoming connections by the
broker MOQUETTE v0.10 after parsing a fuzzing
package, which originates a connection reset

(iii) Denial of service of aMOSQUITTO client v1.4.11 that
is subscribed to a certain topic when it receives a
fuzzing message from the broker

This demonstrates that the fuzzing approach used pro-
vides real results in applications widely used by IoT devices
around the world, and it can therefore be used as a security
measure to ensure that devices in a given networkmeet mini-
mum security standards.

7. Conclusion

The aim of this work was to contribute to improving the
security of IoT devices and more specifically of the applica-
tions that implement a protocol widely used by Internet of
Things (MQTT) as communication protocol for exchanging
information. For this purpose, we developed a framework to
perform security tests onMQTT.The tool implements a novel
fuzzing technique based on templates, which according to our
knowledge has not been used previously. The fuzzing tech-
nique presented here contributes to the field by improving
some of the deficiencies of current fuzzers. The significant
contribution of this framework is that it provides flexibility to
fuzz the different points of a connection without making any
adaptation effort. Among the other contributions explained
during this paper, it is worth highlighting that it allows
fuzzing packages that are based on a previously provided
packet, and it facilitates portability and error reporting by
exchanging templates. Finally, this technique simplifies the
security analysis of the MQTT protocol to both users and
applications by using the template-based approach, providing
a way to fuzz the protocol without knowing or defining its
specification.

Experimentation results gave acceptable processing time
per fuzzed package. Moreover, it was observed that the
tool behaves differently depending on the time that passes
between each test case inserted. We were able to reduce the
CPU consumption in the host machine to a minimum value
of 2%.This flexibility to control the CPU consumption allows
the use of this tool in environments with low processing
power devices, such as Smart Cities. The tool was used to test
vulnerabilities in widely used clients such asMOQUETTE or
MOSQUITTO, with problems reported such as denial of ser-
vice and communication resets of brokers. These discovered
vulnerabilities probe the effectiveness of the tool.

The framework also has some limitations. The most
significant one is related to the reporting and detection of
errors. Error detection is carried out through the execution
of the application to be tested under a debugger. Obviously,
this needs to be automated to improve efficiency and usability.
Another significant limitation is that the framework is cur-
rently only available for verifying MQTT protocol security;
therefore the tool is not efficient for IoT architectures imple-
menting several different protocols.

To improve the aforementioned limitations, as part of a
future project, we will extend the framework to allow the

verification of a wider range of network protocols used by
IoT devices. Additionally, we are analysing the possibility of
using the tool as a service that performs a security analysis of
all the elements that are incorporated into a network for the
first time. This would make it possible to ensure a minimum
level of security and reliability for all the components of the
infrastructure.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] I. Lee and K. Lee, “The Internet of Things (IoT): Applications,
investments, and challenges for enterprises,” Business Horizons,
vol. 58, no. 4, pp. 431–440, 2015.

[2] B. Chowdhury and M. U. Chowdhury, “RFID-based real-time
smart waste management system,” in Proceedings of the In 2007
Australasian Telecommunication Networks and Applications
Conference, pp. 175–180, 2007, https://doi.org/10.1109/ATNAC
.2007.IEEE.

[3] B. Padmavathi, “Implementation of IOT Based Health Care
Solution Based on Cloud Computing,” International Journal of
Engineering and Computer Science, 2016.

[4] D. Gachet Páez, M. de Buenaga Rodŕıguez, E. Puertas Sánz, M.
T. Villalba, and R.Muñoz Gil, “Healthy and wellbeing activities’
promotion using a Big Data approach,” Health Informatics
Journal, p. 146045821666075, 2017.

[5] D. G. Páez, M. de Buenaga Rodŕıguez, E. P. Sánz, M. T. Villalba,
and R. M. Gil, “Big Data Processing Using Wearable Devices
for Wellbeing and Healthy Activities Promotion,” in Ambient
Assisted Living. ICT-based Solutions in Real Life Situations, vol.
9455 ofLectureNotes inComputer Science, pp. 196–205, Springer
International Publishing, Cham, 2015.

[6] S. S. S. R. Depuru, L. Wang, V. Devabhaktuni, and N. Gudi,
“Smart meters for power grid - Challenges, issues, advantages
and status,” in Proceedings of the 2011 IEEE/PES Power Systems
Conference and Exposition, PSCE 2011, USA, March 2011.

[7] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges
of security and privacy in distributed internet of things,” Com-
puter Networks, vol. 57, no. 10, pp. 2266–2279, 2013.

[8] M.T.Villalba,M. deBuenaga,D.Gachet, and F.Aparicio, “Secu-
rity analysis of an IoT architecture for healthcare,” Lecture Notes
of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST, vol. 169, pp. 454–
460, 2016.

[9] J. Lin,W. Yu, N. Zhang, X. Yang, H. Zhang, andW. Zhao, “A Sur-
vey on Internet ofThings: Architecture, Enabling Technologies,
Security and Privacy, and Applications,” IEEE Internet of Things
Journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[10] M. B. Yassein, M. Q. Shatnawi, and D. Al-Zoubi, “Application
layer protocols for the Internet of Things: A survey,” in Pro-
ceedings of the 2016 International Conference on Engineering and
MIS, ICEMIS 2016, mar, September 2016.

[11] H. Yang, Y. Zhang, Y.-P. Hu, and Q.-X. Liu, “IKE vulnerability
discovery based on fuzzing,” Security and Communication
Networks, vol. 6, no. 7, pp. 889–901, 2013.

[12] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vul-
nerabilty discovery, Addison-Wesley, Boston, Mass, USA, 2007.

https://doi.org/10.1109/ATNAC.2007.IEEE
https://doi.org/10.1109/ATNAC.2007.IEEE

Wireless Communications and Mobile Computing 11

[13] H. Yang, Y. Zhang, Y. Hu, and Q. Liu, “IKE vulnerability dis-
covery based on fuzzing,” Security and Communication Net-
works, vol. 6, no. 7, pp. 889–901, 2013.

[14] HiveMQ, “EnterpriseMQTTBroker 2016,” https://www.hivemq
.com/wp-content/uploads/hivemq-product-sheet-v2-1.pdf.

[15] HiveMQ, https://www.hivemq.com/blog/mqtt-security-funda-
mentals-authenticationusername-password.

[16] I. Hedi, I. Špeh, and A. Šarabok, “IoT network protocols compa
rison for the purpose of IoT constrained networks,” in Proceed-
ings of the 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics,
MIPRO 2017, pp. 501–505, Croatia, May 2017.

[17] T. Heer, O. Garcia-Morchon, R. Hummen, S. L. Keoh, S. S.
Kumar, and K. Wehrle, “Security challenges in the IP-based
Internet of Things,” Wireless Personal Communications, vol. 61,
no. 3, pp. 527–542, 2011.

[18] A. Esfahani, G. Mantas, R. Matischek et al., “A Lightweight Au-
thentication Mechanism for M2M Communications in Indus-
trial IoT Environment,” IEEE Internet of Things Journal, pp. 1-1.

[19] R. Neisse, G. Steri, and G. Baldini, “Enforcement of security
policy rules for the internet of things,” in Proceedings of the
2014 10th IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications, WiMob 2014, pp.
165–172, Cyprus, October 2014.

[20] S. Shin, K. Kobara, C.-C. Chuang, and W. Huang, “A security
framework for MQTT,” in Proceedings of the 2016 IEEE Confer-
ence on Communications and Network Security, CNS 2016, pp.
432–436, USA, October 2016.

[21] A. Manzoor, “Securing Device Connectivity in the Industrial
Internet ofThings (IoT),” in Connectivity Frameworks for Smart
Devices, Computer Communications and Networks, pp. 3–22,
Springer International Publishing, Cham, 2016.

[22] J. Foster, V. Osipov, N. Bhalla, N. Heinen, and D. Aitel, “Buffer
Overflow Attacks,” Buffer Overflow Attacks, 2005.

[23] K. Kaspersky and A. Chang, “Remote code execution through
Intel CPU bugs,” in Proceedings of the In Hack In The Box
(HITB), Malaysia, 2008.

[24] D. Reynders, S. Mackay, and E. Wright,Modbus overview. Prac-
tical Industrial Data Communications, 10.1016/b978–3/50012-7,
2004.

[25] D. Serpanos and M. Wolf, “Security Testing IoT Systems,” in
In Internet-of-Things (IoT) Systems, pp. 77–89, Springer, Cham,
Switzerland, 2017.

[26] D. Aitel, The advantages of block-based protocol analysis for
security testing, Immunity Inc, February 2002.

[27] J.Pereyda,boofuzz:NetworkProtocol Fuzzing forHumans, http://
boofuzz.readthedocs.io/en/latest/.

[28] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer,
and G. Vigna, “SNOOZE: Toward a Stateful NetwOrk prOtocol
fuzZEr,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics): Preface, vol. 4176, pp. 343–358, 2006.

[29] H. J. Abdelnur, R. State, and O. Festor, “KiF: A stateful SIP
fuzzer,” in Proceedings of the 1st International Conference on
Principles, Systems and Applications of IP Telecommunications,
IPTComm ’07, pp. 47–56, USA, July 2007.

[30] S. Gorbunov and R. Rosenbloom, AutoFuzz, Automated net-
work protocol fuzzing framework, Department of Mathematical
and Computation Sciences, University of Toronto, Mississauga,
Canada, 2010.

[31] D. Aitel, An Introduction to SPIKE, the Fuzzer Creation Kit,
https://www.blackhat.com/presentations/bh-usa-02/bh-us-02-
aitel-spike.ppt.

[32] “Github.orgmqtt fuzz,” https://github.com/F-Secure/mqtt fuzz.
[33] K.Mladenov, S. vanWinsen, C.Mavrakis, andK. P.M.G.Cyber,

Formal verification of the implementation of the MQTT proto-
col in IoT devices,.

[34] “OWASP.org, ZAP Proxy,” http://www.zaproxy.org/.
[35] “PortsWigger.net, BurpSuite,” https://portswigger.net/bur.
[36] “Github.com, ProxyFuzz,”https://github.com/SECFORCE/prox-

yfuz.
[37] L. Landauer, “Fuzzing Requests And Responses Using A Proxy,”

U.S. Patent Application No. 11/276,454.
[38] OASIS.org, “MQTTVersion3.1.1:OASISStandard,” http://docs

.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html.
[39] A. Takanen, J. Demott, and M. Charles, “Fuzzing for Software

Security Testing and Quality Assurance , Artech House Infor-
mation Security and Privacy,” Fuzzing for Software Security Test-
ing and Quality Assurance , Artech House Information Security
and Privacy, 2008.

[40] A.A.Sofokleous andA. S.Andreou, “Batch-optimistic test-cases
generation using genetic algorithms,” in Proceedings of the
19th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2007, pp. 157–164, Greece, October 2007.

[41] R. Abbassi, S. Guemara, and F. El, “Towards a test cases gene-
ration method for security policies,” in Proceedings of the 16th
International Conference on Telecommunications, ICT 2009, pp.
41–46, Morocco, May 2009.

[42] “Python.org,Argparse,” https://docs.python.org/3.4/library/arg-
parse.html.

[43] “Scapy A Python Tool For Security Testing,” Journal of Com-
puter Science & Systems Biology, vol. 8, no. 3, 2015.

[44] J. Alan, “Netfilter and IPTables - A Structural Examination,”
SANS Institute, 2004.

[45] “Netfilter.org, Netfilter,” https://www.netfilter.org/.
[46] “University of Oulu, Radamsa,” https://www.ee.oulu.fi/roles/

ouspg/Radams.
[47] “Scapy.org, MQTT layer for Scapy,” https://goo.gl/oo45XC.

https://www.hivemq.com/wp-content/uploads/hivemq-product-sheet-v2-1.pdf
https://www.hivemq.com/wp-content/uploads/hivemq-product-sheet-v2-1.pdf
https://www.hivemq.com/blog/mqtt-security-fundamentals-authenticationusername-password
https://www.hivemq.com/blog/mqtt-security-fundamentals-authenticationusername-password
http://boofuzz.readthedocs.io/en/latest/
http://boofuzz.readthedocs.io/en/latest/
https://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt
https://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt
https://github.com/F-Secure/mqtt_fuzz
http://www.zaproxy.org/
https://portswigger.net/bur
https://github.com/SECFORCE/proxyfuz
https://github.com/SECFORCE/proxyfuz
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://docs.python.org/3.4/library/argparse.html
https://docs.python.org/3.4/library/argparse.html
https://www.netfilter.org/
https://www.ee.oulu.fi/roles/ouspg/Radams
https://www.ee.oulu.fi/roles/ouspg/Radams
https://goo.gl/oo45XC

International Journal of

Aerospace
Engineering
Hindawi
www.hindawi.com Volume 2018

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 Active and Passive
Electronic Components

VLSI Design

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Shock and Vibration

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi
www.hindawi.com

Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Control Science
and Engineering

Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

 Journal ofEngineering
Volume 2018

Sensors
Journal of

Hindawi
www.hindawi.com Volume 2018

International Journal of

Rotating
Machinery

Hindawi
www.hindawi.com Volume 2018

Modelling &
Simulation
in Engineering
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Navigation and
 Observation

International Journal of

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

