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Objectives: Invasive mold infections associated with Aspergillus species are a significant

cause of mortality in immunocompromised patients. The most frequently occurring

aetiological pathogens are members of the Aspergillus section Fumigati followed by

members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic)

species in clinical specimens, as well as the percentage of azole-resistant strains remains

to be studied.

Methods: A global set (n = 498) of A. terreus and phenotypically related isolates

was molecularly identified (beta-tubulin), tested for antifungal susceptibility against

posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated

with point mutations in the cyp51A gene.

Results: The majority of isolates was identified as A. terreus (86.8%), followed by

A. citrinoterreus (8.4%), A. hortai (2.6%), A. alabamensis (1.6%), A. neoafricanus (0.2%),

and A. floccosus (0.2%). One isolate failed to match a known Aspergillus sp., but

was found most closely related to A. alabamensis. According to EUCAST clinical

breakpoints azole resistance was detected in 5.4% of all tested isolates, 6.2% of

A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance

differed geographically and ranged from 0% in the Czech Republic, Greece, and Turkey

to 13.7% in Germany. In contrast, azole resistance among cryptic species was rare 2 out

of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis

isolate. The most affected amino acid position of the Cyp51A gene correlating with the

posaconazole resistant phenotype was M217, which was found in the variation M217T

and M217V.

Conclusions: Aspergillus terreus was most prevalent, followed by A. citrinoterreus.

Posaconazole was the most potent drug against A. terreus, but 5.4% of A. terreus

sensu stricto showed resistance against this azole. In Austria, Germany, and the

United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10%,

resistance against voriconazole was rare and absent for itraconazole.

Keywords: cryptic species, Aspergillus section Terrei, susceptibility profiles, azoles, Cyp51A alterations

INTRODUCTION

In the last decade, the taxonomy and nomenclature of
the previously morphologically defined genus Aspergillus
changed, mainly due to comprehensive molecular phylogenetic
studies and the introduction of the single name nomenclature
(Samson et al., 2011, 2014; Alastruey-Izquierdo et al., 2013).
With the introduction of molecular identification methods

morphologically similar species were split into several cryptic
species (Balajee et al., 2009a,b; Samson et al., 2011; Gautier
et al., 2014). Samson et al. (2011) recognized 13 species in
section Terrei: A. terreus sensu stricto (s.s.), A. alabamensis,
A. allahabadii, A. ambiguus, A. aureoterreus, A. carneus,
A. floccosus, A. hortai, A. microcysticus, A. neoafricanus,
A. neoindicus, A. niveus, and A. pseudoterreus. In 2015,
Guinea et al. (2015) described A. citrinoterreus as a new
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FIGURE 1 | Epidemiological distribution of species (circles) and relative percentage of posaconazole resistance (according to EUCAST clinical breakpoints, see

Table 2) isolates per country (blue numbers in blue circles) in respect to all investigated isolates. In France, Portugal, Serbia, and Sweden all collected isolates were

identified as A. terreus sensu stricto (small dots in magenta). Azole-resistance percentage per countries are given in blue circled numbers. Species distribution in

non-EU countries were as follows: India 100% A. terreus s.s.; Israel 84.85% A. terreus s.s. 12.12% A. citrinoterreus 3.03% A. hortai; Texas 80% A. terreus s.s. 10%

A. alabamensis 10% A. hortai; Qatar: 83.34% A. terreus s.s. 16.66% A. citrinoterreus; Iran 63.64% A. terreus s.s. 36.36% A. citrinoterreus; and Brazil 85.71%

A. terreus s.s., 14.29% A. hortai. All isolates from Iran, Israel, India, Brazil, Texas, and Qatar were susceptible to all azoles tested. For detailed information see Table 4.

species of the section Terrei and subsequently A. bicephalus
and A. iranicus were introduced (Arzanlou et al., 2016;
Crous et al., 2016), resulting in a total of 16 accepted
species.

Aspergillus terreus s.s., an important cause of fungal infections
in immunocompromised patients, is reported as second or third
most common pathogen of invasive aspergillosis (Baddley et al.,
2003; Lass-Flörl et al., 2005; Blum et al., 2008). Treatment of

infections caused byA. terreus s.s. and other sectionTerrei species
(Walsh et al., 2003; Risslegger et al., 2017) may be difficult
because of intrinsic amphotericin B resistance (Sutton et al.,
1999; Escribano et al., 2012; Hachem et al., 2014; Risslegger
et al., 2017). In addition, the emergence of A. terreus sensu
lato (s.l.) isolates with reduced azole-susceptibility was reported
(Arendrup et al., 2012; Won et al., 2017). Azole resistance in
A. terreus s.s. and A. fumigatus is associated with mutations
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TABLE 1 | Clinical breakpoints according to EUCAST1.

Antifungal agent MIC (mg/L)

S R

Posaconazole ≤0.125 >0.250

Voriconazole* ≤1.000 >2.000

Itraconazole ≤1.000 >2.000

1http://www.eucast.org/clinical_breakpoints/

MIC, minimum inhibitory concentration; *CBPs are only available for Aspergillus

fumigatus.

and alterations of the lanosterol-14-α steroldemethylase gene
(Cyp51A), a key protein in the ergosterol biosynthesis pathway
(Chowdhary et al., 2015, 2017). However, aside from mutations
in the primary target gene, also other less known mechanisms
(e.g., efflux pumps, overexpression of cyp51) were found to be
involved in azole resistance (Arendrup, 2014; Rivero-Menendez
et al., 2016).

The aim of this study was to evaluate the frequency of
A. terreus s.s. and phenotypically similar (cryptic) species in a
global set of clinical isolates and to screen for the presence of azole
resistance.

MATERIALS AND METHODS

Fungal Isolates
During an international A. terreus survey (Risslegger et al.,
2017) various A. terreus sensu lato (s.l.) isolates were sent
to and collected at the Medical University of Innsbruck
by members of the ISHAM-ECMM-EFISG TerrNet Study
group (www.isham.org/working-groups/aspergillus-terreus).
Isolates were from Europe (n = 390), Middle East (n = 70),
South America (n = 10), North America (n = 7), and South
Asia (n = 19). A total of 498 strains, including isolates
collected in Innsbruck within the last years, were analyzed
(Supplementary Figure S1 and Supplementary Table S1),
495 were of clinical and 3 of environmental origin. For two
isolates, the source is unknown. Isolates were cultured on
Sabouraud’s agar (Becton Dickinson, France), incubated
at 37◦C and stored in Sabouraud’s broth with glycerin at
−20◦C.

Antifungal Susceptibility Testing
Susceptibility to itraconazole, posaconazole, and voriconazole
was determined by using reference broth microdilution
according to EUCAST (www.EUCAST.org) and ETest R©

(bioMérieux, France). ETest R© MICs were rounded to the next
higher EUCAST concentrations and isolates displaying high
MICs (≥0.25 mg/L for posaconazole, ≥2.0 mg/L for each,
voriconazole and itraconazole) with ETest R© were evaluated
according to EUCAST. MIC50 and MIC90 were calculated
for all studied section Terrei strains and each individual
species. EUCAST clinical breakpoints (CBP) for Aspergillus
fumigatus (see Table 3) were applied for wild typ and non-
wildtyp categorization, as CBP for Aspergillus terreus are not
available.

Molecular Identification
Genomic DNA was extracted by a method using CTAB (Lackner
et al., 2012), and partial β-tubulin gene was amplified using
bt2a/bt2b as previously described (Balajee et al., 2009a; Kathuria
et al., 2015). KAPA2G Robust HotStart ReadyMix PCR Kit
(Kapa Biosystems, USA) was used as master mix and PCR
products were cleaned with ExoSAP-IT. For sequencing the
BigDye XTerminator purification kit (Applied Biosystems, USA)
was used. Sequencing was performed with the 3500 Genetic
Analyzer (Applied Biosystems, USA) and data were analyzed
with Bionumerics 6.6. Software (Applied Maths, Belgium).
Generated sequences were compared with an in-house database
of the Westerdijk Institute containing all available Aspergillus
reference sequences.

Sequencing of Lanosterol 14-α Sterol
Demethylase Gene (cyp51A)
Azole-resistant isolates (Table 3) and a control set of susceptible
isolates (Supplementary Table S2) underwent Cyp51A
sequencing. Cyp51A genes were amplified by PCR, using
KAPA2G Robust HotStart ReadyMix PCR Kit (Kapa Biosystems,
USA) and in-house designed primers described by Arendrup
et al. (2012). In short, PCR conditions were as follows: initial
denaturation at 95◦C for 5min, followed by 35 cycles of 95◦C for
1min, 58◦C for 1min, 72◦C for 2min 30 s, and a final elongation
step of 72◦C for 10min. Primers used for Cyp51A sequencing are
provided in Supplementary Table S3. PCR products were cleaned
with ExoSAP-IT and for sequencing the BigDye XTerminator
purification kit was used. Sequencing was performed with the
3500 Genetic Analyzer and data were analyzed with Bionumerics
6.6. Software and Geneious 8 (Biomatters Limited).

RESULTS AND DISCUSSION

Epidemiology of Cryptic Species
Reports on cryptic species within the genus Aspergillus are on
the rise (Balajee et al., 2009b; Alastruey-Izquierdo et al., 2013;
Negri et al., 2014; Masih et al., 2016) and display variabilities
in antifungal susceptibility (Risslegger et al., 2017). Negri et al.
(2014) observed an increase of cryptic Aspergillus species causing
fungal infections, and others calculated a prevalence of 10–15%
of cryptic Aspergillus species in clinical samples (Balajee et al.,
2009b; Alastruey-Izquierdo et al., 2013).

The present study analyzed a large number of isolates
(n = 498) collected from Europe, Middle East, South America,
North America, and South Asia (Supplementary Table S1 and
Supplementary Figure S2) and identified A. terreus (n = 432),
A. citrinoterreus (n = 42), A. alabamensis (n = 8), A. hortai
(n = 13), A. floccosus (n = 1), and A. neoafricanus (n = 1). As
previously reported (Risslegger et al., 2017) one isolate failed to
be associated with any existing species, but clustered most closely
to A. alabamensis (Supplementary Figure S1).

Our study showed limitations due to the unknown source and
date of some clinical isolates. A differentiation between isolates
from superficial and deep seeded infections was not made,
therefore, source-variable resistance rates cannot be excluded.
Number of studied isolates varied per country and might also
introduce a bias to resistance rates.

Frontiers in Microbiology | www.frontiersin.org 4 March 2018 | Volume 9 | Article 516

http://www.eucast.org/clinical_breakpoints/
www.isham.org/working-groups/aspergillus-terreus
www.EUCAST.org
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zoran et al. Azole-Resistance in A. terreus

FIGURE 2 | MIC distribution of posaconazole, itraconazole, voriconazole, and posaconazoleintraconazole against Aspergillus section Terrei, obtained by ETest®

(A-C) and EUCAST method (D-F). MIC, minimum inhibitory concentration; MIC50 and MIC90, MIC for 50 and 90% of tested population; CBP EUCAST clinical

breakpoint (see Table 2).

Frontiers in Microbiology | www.frontiersin.org 5 March 2018 | Volume 9 | Article 516

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Zoran et al. Azole-Resistance in A. terreus

TABLE 2 | Antifungal susceptibility of A. terreus s.s. and related (cryptic) species (Balajee et al., 2009a,b; Samson et al., 2011; Gautier et al., 2014).

Species PSC (mg/L) VRC (mg/L) ITC (mg/L)

Range MIC50 MIC90 Range MIC50 MIC90 Range MIC50 MIC90

A. terreus sensu stricto (n = 432)

Etest® (n = 315) <0.002–0.500 0.032 0.125 0.008–4.000 0.064 0.250 0.016–2.000 0.125 0.250

EUCAST (n = 117) 0.125–0.500 0.250 0.500 0.125–1.000 0.500 0.500 0.250–1.000 0.500 0.500

Cryptic species (n = 66)

Etest® (n = 55) <0.002–0.190 0.032 0.064 0.012–4.000 0.064 0.500 0.003–0.380 0.064 0.250

EUCAST (n = 11) 0.125–0.250 NA NA 0.125–2.000 NA NA 0.125–0.250 NA NA

Minimum inhibitory concentrations (MICs) of posaconazole, voriconazole, and itraconazole were obtained by ETest® and EUCAST method.

MIC, minimum inhibitory concentration; MIC50 and MIC90, MIC for 50 and 90% of tested population; ITC, itraconazole; VRC, voriconazole; POS, posaconazole; EUCAST, European

Committee for Antimicrobial Susceptibility Testing; NA, not applicable; N, number of tested isolates.

Aspergillus terreus s.s. was the most prevalent species (86.8%),
followed by A. citrinoterreus (8.4%), A. hortai (2.6%), and
A. alabamensis (1.6%). This is in agreement with other authors
(Balajee et al., 2009a; Neal et al., 2011; Escribano et al.,
2012; Kathuria et al., 2015) showing that A. terreus s.s. is
the most common species of section Terrei in clinical and
environmental samples. In addition, we detected A. floccosus
and A. neoafricanus. We did not identify A. allahabadii,
A. ambiguus, A. aureoterreus, A. bicephalus, A. carneus,
A. iranicus, A. microcysticus, A. neoindicus, A. niveus, and
A. pseudoterreus. The reason for this might be that these species
are less common in clinical samples and the environment. Our
species distribution is in line with Kathuria et al. (2015), who
reported for the first time a probable invasive aspergillosis and
aspergilloma case due to A. hortai, which was found to occur in
a prevalance of 1.4% of all section Terrei isolates. A multicenter
study by Balajee et al. (2009a) observed a high frequency (33%
of all clinical A. terreus s.l. isolates were A. alabamensis) of
A. alabamensis. Other studies (Neal et al., 2011; Gautier et al.,
2014; Risslegger et al., 2017) reported a lower prevalence of
A. alabamensis isolates (up to 4.3%).

Little is known about the geographical distribution of cryptic
species of section Terrei in clinical specimens. A. terreus
s.s. was exclusively found in France, Portugal, Serbia, India,
and Sweden (Supplementary Table S1). Spain, Italy, Texas
and Germany showed highest species diversity (Figure 1 and
Supplementary Table S1). In Spain, the prevalent cryptic species
were A. citrinoterreus (18.2%), A. alabamensis (2.3%), A. hortai
(2.3%), and A. neoafricanus (1.1%), in Italy A. citrinoterreus and
A. hortai (4.9%), together with one A. alabamensis (2.4%) and
one unknown Terrei species (2.4%). In Germany A. citrinoterreus
(7.8%) was followed by A. hortai (3.9%), and A. alabamensis
(2.0%). In Texas 80.0% were A. terreus s.s. followed by
10% A. alabamensis and 10.0% A. hortai. Percentage of A.
citrinoterreuswas highest in Iran accounting 36.36% of all isolates
(Figure 1).

Azole Resistance Among Studied Section
Terrei Isolates
Proposed epidemiological cut off values (ECOFF) values by
EUCAST for A. terreus s.s. were 0.25µg/mL for posaconazole,

2µg/mL each for voriconazole and itraconazole. Antifungal
susceptibility results (MICs) for A. terreus s.s. and cryptic species
of the section Terrei are reported in Table 1 and Figure 2.
Posaconazole had the lowest MICs for section Terrei isolates
(MIC50, 0.032µg/mL Etest R© and 0.250µg/mL EUCAST),
followed by itraconazole (MIC50, 0.125µg/mL Etest R© and

0.500µg/mL EUCAST), and voriconazole (MIC50, 0.064µg/mL
Etest R© and 0.500µg/mL EUCAST) (Figure 2). Lass-Flörl et al.
(2009) observed similar MIC values for posaconazole among

clinical isolates of A. terreus s.l. Astvad et al. (2017) tested

A. terreus species complex isolates against voriconazole and
observed slightly higher MIC ranges of 0.250–8.000µg/mL.

No major differences in azole susceptibility profiles for

A. terreus s.s. and cryptic species were observed (Table 2).

Posaconazole and itraconazole MIC ranges for A. terreus were
only slightly higher when compared to cryptic species. As shown

in Table 2, MICs50 obtained with Etest R© are equal among

A. terreus s.s. isolates and cryptic species for posaconazole
(0.032µg/mL) and voriconazole (0.064µg/mL). No significant
differences in MIC90 values were observed among A. terreus s.s.
isolates and cryptic species for itraconazole and posaconazole.
Voriconazole MICs90 were somewhat higher among cryptic
species (0.500µg/mL) when compared to A. terreus s.s.
(0.250µg/mL). In general, all cryptic A. terreus species were
per trend more susceptible to posaconazole and itraconazole
than A. terreus s.s. The two most common cryptic species
in our study, A. citrinoterreus, and A. alabamensis, showed
highest MICs for voriconazole (range: 0.016–2.000 and 0.023–
2.000µg/mL).

According to EUCAST breakpoints 5.4% of all section
Terrei isolates are posaconazole resistant. This is a relatively
high frequency in comparison to A. fumigatus. A prospective
multicenter international surveillance study (van der Linden
et al., 2015) showed a prevalence of azole-resistance of 3.2%
in A. fumigatus. As shown in Table 3, only mono-azole
resistance was observed (posaconazole, MICs ranged from 0.500
to 1.000µg/mL). Azole resistance was more frequently observed
among A. terreus s.s. isolates and was rare among cryptic species.
One A. citrinoterreus isolate was resistant against posaconazole
(0.500µg/mL). Posaconazole resistant strains were detected
from Germany (13.7%) followed by the United Kingdom
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TABLE 3 | Summary of mutations detected in azole-resistant A. terreus and

A. citrinoterreus.

Species Isolate EUCAST

MIC(mg/L)

Mutation

(NA)

Substitution

(AA)

VRC ITC POS

A. terreus sensu stricto

(n = 26) 51 0.500 2.000 0.500 M217T T650C

10 0.500 0.250 0.500 No mutation

138 1.000 0.500 1.000 M217V,

D344N

A649G,

G1030A

368 1.000 0.500 1.000 No mutation

T104 0.500 1.000 0.500 No mutation

T112 0.500 0.500 0.500 E319G A956G

T13 0.500 0.500 0.500 No mutation

T136 0.500 0.500 0.500 No mutation

T15 0.500 1.000 0.250 No mutation

T152 0.500 0.500 0.500 No mutation

T153 0.500 0.500 0.500 A221V C662T

T156 0.500 0.500 0.500 No mutation

T157 0.500 0.500 0.500 No mutation

T159 0.500 0.500 0.500 No mutation

T160 0.500 0.500 0.500 No mutation

T55 0.500 0.500 0.500 No mutation

T59 0.500 0.250 0.500 No mutation

T61 0.500 0.500 0.500 No mutation

T65 0.500 0.500 0.500 No mutation

T67 0.500 0.500 0.500 No mutation

T68 0.500 0.500 0.500 No mutation

T80 0.500 0.500 0.500 No mutation

T9 0.500 0.500 0.250 No mutation

T91 0.500 0.500 0.500 No mutation

T98 0.500 0.500 0.500 No mutation

16 0.500 1.000 1.000 No mutation

A. citrinoterreus

(n = 1) 150 0.500 0.500 1.000 I23T, R163H,

E202D,

Q270R

T69C,

G489A,

G607C,

A810G

Susceptibily was determined by EUCAST and resistance categorization was based on

EUCAST clinical breakpoints (see Table 1).

MIC, minimum inhibitory concentration; NA, nucleic acid; AA, Amino acid; ITC,

itraconazole; VRC, voriconazole; POS, posaconazole: resistant strains based on the

EUCAST Antifungal Clinical Breakpoints. EUCAST. European Committee for Antimicrobial

Susceptibility Testing.

(12.5%), Austria (10.5%), France (9.1%), Italy (4.9%), and Spain
(2.3%) (Tables 3, 4 and Figure 1). In Turkey, Greece, Serbia,
Iran, Israel, India, Brazil, Texas, and Qatar all isolates were
susceptible against all azoles tested. However, resistance rates
per countries might be influenced by multiple factors such
as specimen handling and sampling, and investigated patient
cohorts.

Posaconazole showed to be the most effective azole against
A. terreus s.s. and related (cryptic) species. However, a high
frequency of posaconazole resistant isolates was detected and
it was shown that the occurrence of azole resistance differed

TABLE 4 | Posaconazole resistance per country relative to (1) all studied isolates

and (2) A. terreus s.s. only (also see Figure 1).

Country All isolates studied A. terreus sensu stricto

(%) (%)

Austria 10.5 10.9

France 9.1 9.1

Germany 13.7 15.9

Italy 4.9 5.7

Spain 2.3 1.5

UK 12.5 12.5

Iran 0.0 0.0

Israel 0.0 0.0

India 0.0 0.0

Brazil 0.0 0.0

Texas 0.0 0.0

Qatar 0.0 0.0

geographically. Posaconazole resistance among cryptic species
was rare when compared to A. terreus s.s..

SNPs in the Cyp51A Gene
Mutations at the position M217 were reported to be associated
with reduced susceptibility against itraconazole (MICs of
1.0–2.0µg/mL), voriconazole (MICs of 1.0–4.0µg/mL), and
posaconazole (MICs of 0.25–0.5µg/mL) (Arendrup et al.,
2012), however the substituting amino acids varied from the
one found in our study. Our isolates carried the mutations
M217T (nucleic acid change T650C) or M217V (nucleic
acid change A649G) (Table 3) and were exclusively resistant
against posaconazole, when applying the EUCAST clinical
breakpoints. Strains carrying the point mutation M217I in
the study from Arendrup et al. (2012) were isolated from
cystic fibrosis patients receiving long-term azole therapy and
showed a pan-azole resistant phenotype. Another posaconazole
resistant isolate (T153) carried an amino acid substitution
at position A221V, a mutation, which was also previously
reported by Arendrup et al. (2010), but was not associated with
posaconazole resistance. Hence, functional studies in mutant
strains are needed to evaluate the role of the mutations M217V,
M217I, M217T, and A221V, which are all located in close
proximity to the hot spot mutation M220I of A. fumigatus.
Understanding the impact of mutations at the position M217
on the protein folding pattern and subsequently on binding
capacities of azoles is the key to evaluate its role as azole-
resistance markers. Other hotspot mutations, which were linked
to acquired azole-resistance in A. fumigatus, are G54, L98,
and M220 (Arendrup et al., 2010). None of them were found
in our resistant isolates, suggesting different mechanisms of
acquired azole-resistance than in A. fumigatus. The role of
the other coding mutations within A. terreus s.s. isolates
E19G (nucleic acid substitution A956G) and D344N (nucleic
acid substitution C662T) remains to be studied. Voriconazole
resistant A. citrinoterreus carried the amino acid changes I23T,
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R163H, E202D, Q270R (Table 3), which need to be analyzed in
detail.

CONCLUSIONS

Aspergillus terreus s.s. was most prevalent, followed by
A. citrinoterreus. Posaconazole was the most potent azole
against the investigated isolates and species. Approximately
5% of all tested A. terreus s.s. isolates were resistant against
posaconazole in vitro. In Austria, Germany and the UK
posaconazole resistance was higher than 10% in all A. terreus s.s.
isolates. Resistance against itraconazole and voriconazole was
rare.
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