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Abstract. The axion is one of the more interesting candidates to make the dark matter of

the universe, and the axion potential plays a fundamental role in the determination of the

dynamics of the axion field. Moreover, the way in which the U(1)A anomaly manifests

itself in the chiral symmetry restored phase of QCD at high temperature could be tested

when probing the QCD phase transition in relativistic heavy ion collisions. With these

motivations, we investigate the physical consequences of the survival of the effects of the

U(1)A anomaly in the chiral symmetric phase of QCD, and show that the free energy

density is a singular function of the quark mass m, in the chiral limit, and that the σ and

π̄ susceptibilities diverge in this limit at any T ≥ Tc. We also show that the difference

between the π̄ and δ̄ susceptibilities diverges in the chiral limit at any T ≥ Tc, a result that

can be contrasted with the existing lattice calculations; and discuss on the generalization

of these results to the Nf ≥ 3 model.

1 Introduction

We report the results of an investigation on the physical consequences of the survival of the topo-

logical effects of the axial anomaly in the high temperature phase of QCD. This contribution to the

Lattice 2017 Symposium is based on references [1], [2] and we refer the interested reader to these

papers. To summarize the main results, our starting hypothesis in [1] was to assume that the per-

turbative expansion of the free energy density in powers of the quark mass, m, has a non-vanishing

convergence radius in the high temperature chiral symmetric phase of QCD. This is just what we

expect on physical grounds if all correlation lengths remain finite in the chiral limit, and the spectrum

of the model shows therefore a mass gap also in this limit. The main conclusion obtained from this

hypothesis was that all the topological effects of the axial anomaly should disappear in this phase,

the topological susceptibility and all θ-derivatives of the free energy density vanish, and the theory

becomes θ-independent at any T > Tc in the infinite-volume limit. Accordingly, the free energy

density should be a singular function of the quark mass, in the chiral limit, if the topological effects

of the U(1)A anomaly survive in the chiral symmetry restored phase of QCD at finite temperature,

and the main purpose of reference [2] was to investigate this issue. The starting hypothesis in [2] was

to assume that the topological effects of the anomaly survive in the high temperature phase of QCD,
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and the model shows therefore a non-trivial θ-dependence in this phase. Under this assumption we

showed that indeed the free energy density is a singular function of the quark mass, m, in the chiral

limit, at any T > Tc, and that the correlation length and the σ and π̄ susceptibilities diverge in this

limit, as well as the difference between the π̄ and δ̄ susceptibilities.

The relevance of these results is due to the fact that the topological effects of the U(1)A axial

anomaly in the high temperature phase of QCD play a fundamental role in the determination of the

dynamics of the axion field, which is one of the more interesting candidates to make the dark matter

of the universe. Moreover these results could be tested when probing the QCD phase transition in

relativistic heavy ion collisions.

The first investigations on this subject started long time ago. The idea that the chirally restored

phase of two-flavor QCD is symmetric under U(2) × U(2) rather than S U(2) × S U(2) was raised by

Shuryak in 1994 [3] based on an instanton liquid-model study. In 1996 Cohen [4] also got this re-

sult formally from the QCD functional integral under some assumptions. However immediately after

several calculations questioning this result appeared [5]-[8]. Since then much work has been done,

and references [1]-[2], [9]-[13] contain recent work concerning theoretical developments, the compu-

tation of the topological susceptibility (with discrepant results, as shown in this conference), and the

computation of correlation functions, spectral density of the Dirac operator and susceptibilities.

2 σ and η susceptibilities

Our starting point is the Euclidean continuum Lagrangian of Nf flavors QCD with a θ-term

L =
∑

f

L
f

F
+

1

4
Fa
µν (x) Fa

µν (x) + iθ
g2

64π2
ǫµνρσFa

µν (x) Fa
ρσ (x) (1)

where L
f

F
is the fermion Lagrangian for the f -flavor, and

Q =
g2

64π2

∫
d4x ǫµνρσFa

µν (x) Fa
ρσ (x) (2)

is the topological charge of the gauge configuration.

To avoid ultra-violet divergences we will assume Ginsparg-Wilson fermions, which show an U(1)A

anomalous symmetry, good chiral properties, a quantized topological charge and an exact index the-

orem on the lattice, so they share all essential ingredients with the continuum formulation. We will

also assume in what follows that the topological effects of the U(1)A axial anomaly survive in the

high temperature chiral symmetric phase of QCD, and that the partition function and the free energy

density

Z (θ) = e−VxLt E(β,m,θ) (3)

show a non-trivial dependence on the θ parameter. E (β,m, θ) in (3) is the free energy density, β

the inverse gauge coupling, m the quark mass, and Lt the lattice temporal extent or inverse physical

temperature T . Moreover the mean value of any intensive operator O, as for instance the scalar

and pseudoscalar condensates, or any correlation function, in the Q = 0 topological sector, can be

computed as

�O�Q=0 =

∫
dθ �O�θ Z(θ,m)∫

dθZ(θ,m)
(4)

2

EPJ Web of Conferences 175, 04007 (2018)	 https://doi.org/10.1051/epjconf/201817504007
Lattice 2017



and the model shows therefore a non-trivial θ-dependence in this phase. Under this assumption we

showed that indeed the free energy density is a singular function of the quark mass, m, in the chiral

limit, at any T > Tc, and that the correlation length and the σ and π̄ susceptibilities diverge in this

limit, as well as the difference between the π̄ and δ̄ susceptibilities.

The relevance of these results is due to the fact that the topological effects of the U(1)A axial

anomaly in the high temperature phase of QCD play a fundamental role in the determination of the

dynamics of the axion field, which is one of the more interesting candidates to make the dark matter

of the universe. Moreover these results could be tested when probing the QCD phase transition in

relativistic heavy ion collisions.

The first investigations on this subject started long time ago. The idea that the chirally restored

phase of two-flavor QCD is symmetric under U(2) × U(2) rather than S U(2) × S U(2) was raised by

Shuryak in 1994 [3] based on an instanton liquid-model study. In 1996 Cohen [4] also got this re-

sult formally from the QCD functional integral under some assumptions. However immediately after

several calculations questioning this result appeared [5]-[8]. Since then much work has been done,

and references [1]-[2], [9]-[13] contain recent work concerning theoretical developments, the compu-

tation of the topological susceptibility (with discrepant results, as shown in this conference), and the

computation of correlation functions, spectral density of the Dirac operator and susceptibilities.

2 σ and η susceptibilities

Our starting point is the Euclidean continuum Lagrangian of Nf flavors QCD with a θ-term

L =
∑

f

L
f

F
+

1

4
Fa
µν (x) Fa

µν (x) + iθ
g2

64π2
ǫµνρσFa

µν (x) Fa
ρσ (x) (1)

where L
f

F
is the fermion Lagrangian for the f -flavor, and

Q =
g2

64π2

∫
d4x ǫµνρσFa

µν (x) Fa
ρσ (x) (2)

is the topological charge of the gauge configuration.

To avoid ultra-violet divergences we will assume Ginsparg-Wilson fermions, which show an U(1)A

anomalous symmetry, good chiral properties, a quantized topological charge and an exact index the-

orem on the lattice, so they share all essential ingredients with the continuum formulation. We will

also assume in what follows that the topological effects of the U(1)A axial anomaly survive in the

high temperature chiral symmetric phase of QCD, and that the partition function and the free energy

density

Z (θ) = e−VxLt E(β,m,θ) (3)

show a non-trivial dependence on the θ parameter. E (β,m, θ) in (3) is the free energy density, β

the inverse gauge coupling, m the quark mass, and Lt the lattice temporal extent or inverse physical

temperature T . Moreover the mean value of any intensive operator O, as for instance the scalar

and pseudoscalar condensates, or any correlation function, in the Q = 0 topological sector, can be

computed as

�O�Q=0 =

∫
dθ �O�θ Z(θ,m)∫

dθZ(θ,m)
(4)

with �O�θ the mean value of O computed with the integration measure (1). Because the free energy

density, as a function of θ, has its absolute minimum at θ = 0 for non-vanishing quark masses, the

following relation holds in the infinite lattice volume limit

�O�Q=0 = �O�θ=0 (5)

and we want to remark that, as discussed in [1], in spite of the fact that the Q = 0 topological sector is

free from the global U(1)A anomaly, and spontaneously breaks the U(Nf )A axial symmetry at T = 0,

equation (5) is compatible with a massive flavor-singlet pseudoscalar meson in the chiral limit.

Let us consider, for simplicity, the two-flavor model with degenerate up and down quark masses.

In the high temperature phase the S U(2)A symmetry is fulfilled in the ground state for massless quarks,

and therefore the mean value of the flavor singlet scalar condensate �S �, as well as of any order

parameter for this symmetry, vanishes in the chiral limit. Moreover the infinite lattice volume limit

and the chiral limit should commute, provided the order parameter remains bounded. In addition

equation (5) implies that the S U(2)A symmetry is also fulfilled in the the Q = 0 topological sector.

However, the U(1)A symmetry should be spontaneously broken in this sector, giving account in this

way for the U(1)A anomaly1.

Let us assume that the flavor singlet scalar susceptibility, the σ-susceptibility, remains finite when

we approach the chiral limit. Then the flavor singlet scalar condensate at θ = 0, which is equal to the

mean value of the same operator in the Q = 0 sector, shows this linear behavior

�S �θ=0 = �S �Q=0 m→0
≈ χσ (0) m (6)

with the quark mass for small quark masses. Because the Q = 0 sector is free from the global U(1)A

anomaly, we can write the following Ward identities

χπ̄ (m)Q=0 = χη (m)Q=0 =
�S �Q=0

m
→ χσ (0) (7)

which tell us that the pion, eta and sigma susceptibilities in the chiral limit in this sector are equal

to the sigma susceptibility in full QCD at θ = 0. Moreover we can demonstrate, with the help of an

anomalous U(1)A transformation, the following equation

�S (x) S (0)�m=0
Q=0 =

1

2
�S (x) S (0)�m=0

θ=0 +
1

2
�P (x) P (0)�m=0

θ=0 (8)

which relates the flavor singlet scalar correlation function in the Q = 0 sector in the chiral limit, with

the same quantity, and the eta-correlation function in full QCD.

Equation (8) implies the following relation

χσ (0) = χσ (0)Q=0 =
χσ (0) + χη (0)

2
(9)

between the σ and η susceptibilities in full QCD. The fulfillment of this equation requires the equality

of the sigma and eta susceptibilities in the chiral limit, in contradiction with the assumption that the

topological effects of the U(1)A axial anomaly survive in the high temperature phase of QCD. We

conclude therefore that the assumption on the finitude of the correlation length and σ-susceptibility

in the chiral limit is not compatible with the survival of the topological effects of the U(1)A anomaly

in the high temperature phase of QCD. Hence the σ-susceptibility should diverge in the chiral limit,

and the free energy density should be singular at vanishing quark masses.

1The Goldstone theorem however can be fulfilled without a Nambu-Goldstone boson [1].
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Following the standard wisdom, the critical behavior of the model should be well described by a

power law behavior for the flavor singlet scalar condensate

�S �θ=0 m→0
≈ C (T ) m

1
δ (10)

with δ > 1. But equation (10) implies that the flavor singlet scalar susceptibility diverges at any

T ≥ Tc in the chiral limit

χσ (m) ≈ C (T )
1

δ
m

1−δ
δ (11)

and because the S U(2)A symmetry is not anomalous, the pion susceptibility verifies this Ward identity

χπ̄ (m) =
�S �

m
(12)

and also diverges in the chiral limit this way

χπ̄ (m) ≈ C (T ) m
1−δ
δ . (13)

Moreover the vector meson δ̄ susceptibility, χδ̄, which is bounded by the scalar susceptibility, χσ ,

verifies the following inequality

χπ̄ (m) − χδ̄ (m) ≥ χπ̄ (m) − χσ (m) ≈ C (T )
δ − 1

δ
m

1−δ
δ (14)

which shows that this quantity, which is an order parameter for the U(1)A axial symmetry, also di-

verges in the chiral limit.

The zero-temperature two-flavor Schwinger model is a good toy model for testing these results.

The S U(2)A chiral symmetry is fulfilled in the vacuum in this model because of the Coleman-Mermin-

Wagner theorem. Moreover it is well known that the topological effects of the U(1)A anomaly are

relevant in this model since it shows a non-trivial dependence on the θ-parameter [14]. It has been

shown that the free energy density is singular in the chiral limit [15] in this model, and that the pions

are massless in this limit [16]; in agreement with the discussion developed in this section.

3 Phase diagram of QCD in the Q=0 topological sector

These results can also be shown by performing a qualitative analysis of the phase diagram of QCD

in the Q = 0 sector. The S U(2)A symmetry is fulfilled in QCD at any T > Tc, and therefore the

up and down scalar condensates �S u�, �S d� vanish in the chiral limit mu = md = 0. However if we

consider QCD with two non degenerate quark flavors, and take the limit mu → 0 keeping md fixed,

or vice versa, the condensate �S u�, or �S d�, takes a non-vanishing mean value due to the fact that the

U(1)u symmetry at mu = 0, or the U(1)d symmetry at md = 0, which would enforce the condensate to

be zero, is anomalous. But since equation (5) can be applied to these condensates, this result tell us

that the Q = 0 topological sector, which is free from the global axial anomaly, spontaneously breaks

the U(1)u axial symmetry at mu = 0,md � 0, and the U(1)d symmetry at md = 0,mu � 0. The

phase diagram of QCD in the Q = 0 topological sector, in the (mu,md) plane, shows therefore two

first order phase transition lines, which coincide with the coordinate axes, finishing at the end point

mu = md = 0, which is a critical point for any T > Tc.

Equation (5) tell us that the critical chiral equation of state of QCD at θ = 0 should be the same

as the one of the Q = 0 topological sector, and should show therefore a divergent correlation length at

any T > Tc in the chiral limit. We expect therefore a continuous finite temperature chiral transition,

4

EPJ Web of Conferences 175, 04007 (2018)	 https://doi.org/10.1051/epjconf/201817504007
Lattice 2017



Following the standard wisdom, the critical behavior of the model should be well described by a

power law behavior for the flavor singlet scalar condensate

�S �θ=0 m→0
≈ C (T ) m

1
δ (10)

with δ > 1. But equation (10) implies that the flavor singlet scalar susceptibility diverges at any

T ≥ Tc in the chiral limit

χσ (m) ≈ C (T )
1

δ
m

1−δ
δ (11)

and because the S U(2)A symmetry is not anomalous, the pion susceptibility verifies this Ward identity

χπ̄ (m) =
�S �

m
(12)

and also diverges in the chiral limit this way

χπ̄ (m) ≈ C (T ) m
1−δ
δ . (13)

Moreover the vector meson δ̄ susceptibility, χδ̄, which is bounded by the scalar susceptibility, χσ ,

verifies the following inequality

χπ̄ (m) − χδ̄ (m) ≥ χπ̄ (m) − χσ (m) ≈ C (T )
δ − 1

δ
m

1−δ
δ (14)

which shows that this quantity, which is an order parameter for the U(1)A axial symmetry, also di-

verges in the chiral limit.

The zero-temperature two-flavor Schwinger model is a good toy model for testing these results.

The S U(2)A chiral symmetry is fulfilled in the vacuum in this model because of the Coleman-Mermin-

Wagner theorem. Moreover it is well known that the topological effects of the U(1)A anomaly are

relevant in this model since it shows a non-trivial dependence on the θ-parameter [14]. It has been

shown that the free energy density is singular in the chiral limit [15] in this model, and that the pions

are massless in this limit [16]; in agreement with the discussion developed in this section.

3 Phase diagram of QCD in the Q=0 topological sector

These results can also be shown by performing a qualitative analysis of the phase diagram of QCD

in the Q = 0 sector. The S U(2)A symmetry is fulfilled in QCD at any T > Tc, and therefore the

up and down scalar condensates �S u�, �S d� vanish in the chiral limit mu = md = 0. However if we
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or vice versa, the condensate �S u�, or �S d�, takes a non-vanishing mean value due to the fact that the

U(1)u symmetry at mu = 0, or the U(1)d symmetry at md = 0, which would enforce the condensate to

be zero, is anomalous. But since equation (5) can be applied to these condensates, this result tell us

that the Q = 0 topological sector, which is free from the global axial anomaly, spontaneously breaks

the U(1)u axial symmetry at mu = 0,md � 0, and the U(1)d symmetry at md = 0,mu � 0. The

phase diagram of QCD in the Q = 0 topological sector, in the (mu,md) plane, shows therefore two

first order phase transition lines, which coincide with the coordinate axes, finishing at the end point

mu = md = 0, which is a critical point for any T > Tc.

Equation (5) tell us that the critical chiral equation of state of QCD at θ = 0 should be the same

as the one of the Q = 0 topological sector, and should show therefore a divergent correlation length at

any T > Tc in the chiral limit. We expect therefore a continuous finite temperature chiral transition,

and a divergent correlation length for any T ≥ Tc, and because the symmetry breaking pattern is, in

the two flavor model, S U(2)L × S U(2)R → S U(2)V , the critical equation of state should be that of the

three-dimensional O(4) vector universality class [17], which shows a critical exponent δ = 4.789(6)

[18] (δ = 3 in the mean field or Landau approach).

For Nf ≥ 3 a similar argument on the phase diagram of the Q = 0 sector applies, but the scenario

that emerges in this case is not plausible because no stable fixed points are expected in the corre-

sponding Landau-Ginzburg-Wilson Φ4 theory compatible with the given symmetry-breaking pattern

[19].

4 Conclusions and comments

We started recently an investigation of the topological properties of QCD in the high temperature chi-

ral symmetric phase in reference [1]. The starting hypothesis in [1] was to assume that the perturbative

expansion of the free energy density in powers of the quark mass, m, has a non-vanishing convergence

radius in the high temperature chiral symmetric phase of QCD, which is just what we expect if all

correlation lengths remain finite in the chiral limit, and the spectrum of the model shows therefore a

mass gap also in this limit. The main conclusion in [1] was that all the topological effects of the axial

anomaly should disappear in this phase, the topological susceptibility and all θ-derivatives of the free

energy density vanish, and the theory becomes θ independent at any T > Tc in the infinite-volume

limit. Accordingly, the free energy density should be a singular function of the quark mass, in the

chiral limit, if the topological effects of the U(1)A anomaly survive in the chiral symmetry restored

phase of QCD at finite temperature.

Ongoing with this research line, the main purpose in reference [2] was to further investigate this

issue. To this end our starting hypothesis was to assume that the topological effects of the anomaly sur-

vive in the high temperature phase of QCD, and the model shows therefore a non-trivial θ-dependence

in this phase. Under this assumption we have shown that indeed, the free energy density is a singular

function of the quark mass, m, in the chiral limit at any T > Tc, and that the correlation length and the

σ and π̄ susceptibilities diverge in this limit. Under the same assumption we have also shown that the

difference between the π̄ and δ̄ susceptibilities diverges in the chiral limit at any T ≥ Tc.

This result seems to be excluded by recent results of Tomiya et al. [20] from numerical simula-

tions of two-flavor QCD, thus suggesting the effects of the U(1)A anomaly are absent in the chiral

symmetric phase of two-flavor QCD. However, previous results by Dick et al. [21] on larger lattices,

but using overlap fermions only in the valence sector, seem to predict a divergent χπ̄ (m) − χδ̄ (m) in

the chiral limit, in agreement with equation (14). Hence the numerical results of [20] and [21] are

in disagreement and do not allow to get a definite answer. Any further clarification of the numerical

results for χπ̄ (m) − χδ̄ (m) would be therefore very welcome.

We have also discussed that the previous results for the two-flavor model apply also to Nf ≥

3. However, universality and renormalization-group arguments, based on the most general Landau-

Ginzburg-WilsonΦ4 theory compatible with the given symmetry-breaking pattern, make this scenario

not plausible because no stable fixed points are expected in the corresponding Landau-Ginzburg-

Wilson Φ4 theory for Nf ≥ 3 [19].
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