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Prefacio

Durante los afios 50-60 se desarrollaron numerosos estudios relativos a la teorfa de
sistemas continuos y discretos. Los sistemas discretos denominados autématas fini-
tos, y por este cardcter finito descriptibles exhaustivamente, han conducido a la defi-
nicién de un cierto nimero de nociones fundamentales, como la de estado o la de
secuencia de estados.

La teoria de automatas se desarrollé motivada por una serie de necesidades indus-
triales culminando con la aparicién de los computadores numéricos programables.
En estas condiciones, y paralelamente con la teoria, surgieron diferentes métodos
de aplicacién. Del mismo modo que en otros muchos dominios cientificos, las apli-
caciones industriales de los sistemas secuenciales no aguardaron al desarrollo de una
teoria para su utilizacion practica. Revestian un cardcter puramente intuitivo. Poste-
riormente, en el marco de problemas de pequefia dimensién, las representaciones ta-
bulares de los sistemas secuenciales conocieron numerosas aplicaciones. Gracias a
su generalidad, éstas constituyen hoy en dia una excelente herramienta para la com-
prensién de las propiedades de los autématas. No obstante, los problemas secuen-
ciales industriales, al complicarse debido al crecimiento del mimero de los variables,
aparecieron como més simples al nivel de las secuencias recorridas. Después de un
cierto nimero de tanteos, se abordé hace algo més de un decenio la via de las repre-
sentaciones graficas.

Los primeros trabajos de Petri datan de hace unos 20 afios. Los informdticos los
descubrieron hace un decenio, y los autométicos les siguieron algunos afos después.
Numerosos trabajos tedricos contribuyeron a la adaptacion de las redes de Petri a
la descripcién de los autématas. En el plano industrial, el desarrollo de los micro-
procesadores y de los autématas programables suministraron inmensas perspectivas
de aplicacién. Esta gran efervescencia de ideas, a la que el Profesor Silva no es aje-
no, ha podido conducir a una metodologfa bien ordenada de aplicaci6n de las redes
de Petri a la sintesis de sistemas secuenciales y concurrentes.

En 1980, los conceptos estaban suficiente y claramente establecidos para que una
obra pedagdgica pudiera llevarse a cabo. Se debe agradecer al Profesor Silva el he-
cho de haber realizado el esfuerzo de redactar la primera obra completa acerca de

esta temadtica.
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Nosotros quisiéramos destacar, en primer lugar, el interés pedagdgico del texto,
la ordenada progresion en el estudio de los conceptos abstractos y su paso bien arti-
culado a aplicaciones concretas. Estas cualidades hardn de este libro una obra de
referencia no solo para los estudiantes, sino también para los profesionales de la in-
dustria interesados por estos temas. De forma relevante, en esta obra se abordan
todos los puntos importantes concernientes a las redes de Petri, aspectos de orden
conceptual (formalizacion, simplificacion y validacidn) y de orden practico (realiza-
cion programada y cableada). Se dedica, ademads, un amplio espacio a la realizacion,
lo que le da un gran interés al libro. De este modo, se estudia con detalle la realiza-
ciéon mediante autématas programables y microcomputadores.

Desde una perspectiva clara se analiza, clasifica y expone la mayoria de los traba-
jos efectuados hasta la fecha sobre redes de Petri. Se debe reconocer al Profesor Sil-
va el mérito de haber sabido recopilar un gran nimero de trabajos dispersos y de
haberlos ordenado en la presentacidn. Este libro, que dard lugar presumiblemente
a muchos otros, tiene el mérito no sélo de existir, sino de hacer penetrar las redes
de Petri y los métodos que de ella se desprenden, tales como el Grafcet en Francia,
en la préactica industrial.

Para terminar, solo nos resta desear la rapida traduccion a otras lenguas, en parti-
cular al inglés y al francés, de una obra tan util.

JAVIER ARACIL RENE PERRET
Catedratico. Professeur.

Director del Depto. de Ex-Directeur du Laboratoire
Automadtica de la Escuela d’Automatique de I’Institut
Técnica Superior de Nationale Polytechnique de
Ingenieros Industriales Grenoble.

de la Univ. de Sevilla.

Enero, 1982



Introduccion

Las redes de Petri constituyen la mds natural y potente extensidén de los grafos de
estado que se ha propuesto en la literatura técnica. Con relacion a los grafos de esta-
do, las redes de Petri permiten la representacién clara y condensada del paralelismo
y la sincronizacion, facilitando con ello la descripcién o modelacion de sistemas, asi
como su posterior realizacidén.

Este texto se situa en los niveles de introduccidn a las aplicaciones y teoria de las
redes de Petri, insistiendo especialmente sobre la obtencién de descripciones y técni-
cas para su realizacidon fisica. En este sentido queremos indicar que al tratarse de
un texto para la ensefianza y consulta se han primado los aspectos didacticos evitan-
do en todo momento el simple enciclopedismo.

La exposicion se desarrolla pretendiendo conjugar intuicion y rigor, evitando los
aspectos meramente recetarios y tratando de evidenciar propiedades bdsicas. En
cualquier caso, se han omitido determinadas generalizaciones que hubieran provo-
cado una pérdida de claridad en la exposicion al complicarse los enunciados, nota-
ciones, etc.

Ahondando en las consideraciones anteriores, se han introducido gran cantidad
de ejemplos de diversa complejidad, aunque de facil aprehension. De este modo, se
llega a utilizar en numerosas ocasiones diferentes tipos de evoluciones de conjuntos
de carros. Otros ejemplos tipicos presentados son los lectores y redactores, los fil6-
sofos y los «spaghetti», sistemas del tipo productor-consumidor, etc. En resumen,
los diferentes sistemas que se modelan a lo largo del texto han sido extraidos tanto
del campo de la Automatica como del de la Informatica.

La creciente complejidad de los automatismos 16gicos, asi como de la concepcion
y utilizacién de los computadores digitales, etc., hace que aparezcan, cada vez con
mayor frecuencia, subsistemas evolucionando e interaccionando simultaneamente.
En estos casos, mas que hablar de sistemas secuenciales, conviene hablar de sistemas
con evoluciones simultdneas o paralelas, o sistemas concurrentes*. La dificultad de
la mente humana para dominar la concepcion de los sistemas concurrentes hace ex-
tremadamente interesante la insercién de una etapa de analisis de los modelos obte-
nidos antes de proceder a su realizacién. Esta etapa de andlisis se aborda en este tex-
to bajo una dptica cualitativa (no cuantitativa) denominada validacién. En un anali-
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v  INTRODUCCION

sis de validez se comprobara que el modelo del sistema que se concibe estd exento
de una serie de errores estructurales y dindmicos, aunque no se pretenderd demos-
trar su correccién. Si un modelo no es vélido, se procederd a su comprobacién y
eventual modificacion antes de pasar a realizarlo.

Las redes de Petri son una herramienta matematica aplicable al modelado de siste-
mas discretos concurrentes que admite una valiosisima representacion grdfica, que
sin lugar a dudas es uno de sus mayores atractivos desde el punto de vista industrial.
Por otro lado, la realizacién de redes de Petri se puede llevar a cabo sin dificultad
con cualquier fecnologfa (electrénica, fluidica, etc.). Las dos cualidades anteriores
se completan con la potencia de la teoria de validacion sobre ellas desarrollada, prin-
cipalmente, a lo largo de la ultima década.

Las tres propiedades bdsicas anteriores permiten afirmar que las redes de Petri
constituyen una muy interesante herramienta para la concepcion de sistemas discre-
tos concurrentes. Ademds, cabe sefialar su capacidad para permitir la construccién
de descripciones validas de sistemas concurrentes mediante refinamientos sucesivos
(topdown). De todo ello trataremos de convencer al lector a lo largo de los capitulos
y anexos que siguen. No obstante, es importante considerar que, como en toda acti-
vidad de disefio, la utilidad de la herramienta depende sobremanera de la metodolo-
gia con que se emplee, asi como de la disponibilidad de sisternas automdticos de ayu-
da (CAD, Computer Aided Design). A estos aspectos hemos dedicado una especial
atencién. En particular, se presentan diversos algoritmos que permiten abordar el
andlisis, la simplificacion, la realizacion, etc. de los modelos construidos durante el
proceso de concepcion. La codificacion de los algoritmos presentados en el texto no
debe plantear mayores dificultades, cualquiera que sea el lenguaje de programa-
cién que se adopte.

Antes de entrar en consideraciones sobre prerrequisitos para la lectura del libro
o sobre su estructura, queremos sefialar que al ser éste un texto de introduccién, no
han sido abordados algunos temas. Aquéllos relativos a Complejidad y Decidabili-
dad, asi como Lenguajes y redes de Petri, se introducen en [PETE 81a]. El estudio
de la evaluacion de prestaciones (andlisis cuantitativo) con redes de Petri, puede
abordarse a partir de [FLOR 81], [RAMA 80] y [SIFA 77]. Por ultimo, es importan-
te resaltar que visando una mayor potencia de descripcion o/y la obtencién de mo-
delos mds compactos se han propuesto en la literatura numerosas extensiones se pre-
sentan rédpidamente en el capitulo 2. Entre otras extensiones, previsiblemente de
gran importancia préctica en los afios venideros, estdn las redes Predicado-Transi-
cién [GENR 79] y las redes de Petri coloreadas [JENS 81].

PRERREQUISITOS PARA LA LECTURA

En la redaccién del texto ha presidido la idea de que éste sea autocontenido (su lectu-
ra necesita unos prerrequisitos minimos).

En lo concerniente a la realizacion se ha supuesto que el lector conoce los funda-
mentos de los sistemas 16gicos combinacionales (dlgebra de BooLE, diagramas de
KARNAUGH y realizacién de funciones logicas con puertas). De este modo, en el capi-
tulo 7 se realiza la definicion de las memorias muertas (RoM) y de las matrices l6gicas
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programables (PLA), asi como se presenta su aplicacion a la realizacidn de funciones
l6gicas. También se ha supuesto al lector minimamente familiarizado con los biesta-
bles béasicos (aunque éstos se definen en el texto) y los contadores.

En las cuestiones mds abstractas se ha supuesto al lector conocedor de los aspectos
bésicos del dlgebra lineal y del ya mencionado 4lgebra de BooLE. En cualquier caso,
el anexo 3 recuerda los conceptos y resultados del 4lgebra lineal que se utilizan. El
anexo 2 presenta elementos de la teoria de grafos, convenientes para la lectura. del
capitulo 4.

Siendo casi exhaustivos, diremos que para interpretar con facilidad los algoritmos
expuestos en el texto, es interesante que el lector tenga una, aunque minima, expe-
riencia en la programacién de un computador digital. Ello se hace especialmente ne-
cesario para la lectura del capitulo 9, dedicado a la programacion de redes de Petri
en microcomputadores.

ESTRUCTURA DEL LIBRO

Los capitulos 1, 2, 3y 5y el anexo 1 abordan, bajo diversos puntos de vista, la des-
cripcién o modelacién de sistemas discretos concurrentes. Los capitulos 4 y 5 y los
anexos 2, 3, 4 y 5 profundizan sobre la validacién de los modelos. Por tltimo, los
capitulos 6, 7, 8 y 9 presentan un amplio conjunto de técnicas de realizacidn.

El primer capitulo es introductorio, esencialmente motivador. En él se presentan
de forma intuitiva y simplificada nociones generales sobre aplicaciones y propieda-
des de las redes de Petri. En particular, se ha desarrollado con especial cuidado la
evolucién desde los métodos de descripcion tabulares (tablas de estado y de fases)
a los grafos de estado reducidos y, por ultimo, a las redes de Petri. Es decir, se esta-
blecen conexiones con herramientas cldsicas de descripcién, exponiéndose algunas
de las aportaciones practicas de las redes de Petri.

El segundo capitulo presenta los principales conceptos relacionados con las redes
de Petri. En particular se insiste sobre la diferenciacion de las redes como estructu-
ras matemadticas y como herramientas de modelacidn de sistemas. Para que una red
de Petri auténoma (estructura matematica) represente un sistema dindmico hace fal-
ta dotar su evolucion de un significado. Asi, una red de Petri dotada de una inter-
pretacion adecuada puede representar funcionalmente un sistema 1dgico, un progra-
ma de computador, etc. En estos casos el modelo describird una interaccion entre
el sistema y un medio externo; la evolucién de la red de Petri serd no-auténoma (de-
pender4 del estado del medio externo). Una red auténoma solo representa restriccio-
nes funcionales sobre la evolucién (secuenciamientos, comparticién de recursos,
etc.). En §2.3 se detalla una posible interpretacién para la modelacion de automatis-
mos légicos concurrentes. El anexo 1 presenta otra interpretacion posible, destinada
a la modelacién de la estructura de control de programas concurrentes de computa-
dores digitales.

En el capitulo 3, huyendo de planteamientos rigidos que conduzcan a minimiza-
ciones materiales (hoy en dia sin gran sentido préctico), se estudia la simplificacion
de los modelos construidos con redes de Petri. La lectura del capitulo 3 es, esencial-
mente, una «gimnasia» muy recomendable para el modelado de sistemas con redes
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de Petri. Los métodos de simplificacién denominados de fusidn de lugares (§3.4) y
de eliminacién de Iugares fuente (§3.5) son especificos a la interpretacién que permi-
te describir sistemas logicos.

El capitulo 4 estudia la validacion de redes de Petri auténomas. Se trata de un capi-
tulo que resultard ser el de lectura mds onerosa, dada su longitud y tematica. No
obstante, su estudio es absolutamente fundamental para todo aquél que desee com-
prender las bases del andlisis cualitativo de modelos construidos con redes de Petri.

El capitulo 5, redactado de forma muy intuitiva, consta de dos partes claramente
diferenciadas. En la primera de ellas se advierte al lector de las diferencias que pue-
den observarse entre el andlisis de las redes auténomas y el de las redes no-auténo-
mas. En la segunda parte se sugieren metodologias para la construccién de modelos,
apoyadas en los resultados del analisis. Es decir, a diferencia de la presentacion de
modelos realizada en los capitulos 1 y 2 y el anexo 1, que es descriptiva-justificativa,
en este capitulo se presentan nociones sobre como llegar a la construccion de «bue-
nos» modelos.

Los capitulos 6 y 7 abordan la realizacidn cableada (con puertas, biestables y con-
tadores, ss1y MsI) y la realizacién con memorias muertas (RoM) y matrices logicas
programables (pLA). En este ultimo capitulo se considera a las RoM y PLA bajo dos
Opticas distintas: (1) como sustitutos directos de la 1égica aleatoria (puertas), lo que
origina las técnicas de realizacion denominadas de transicién directa y (2) como
componentes de un sistema microprogramado. En el capitulo 6 se insiste sobre la
realizacidn cableada modular, técnica que simplifica al méximo el disefio, puesta a
punto, mantenimiento, etc., a costa de conducir a realizaciones no minimas en com-
ponentes. Es decir, salvo para grandes series de productos no modificables, se trata
de optimizar el coste de los equipos con respecto a su ciclo de vida (concepcién, pro-
duccidn, utilizacién) y no con respecto al material empleado (nimero de puertas,
biestables, etc.). )

Los capitulos 8 y 9 presentan la realizacién programada de redes de Petri. En par-
ticular, el primero de ellos estudia con cierto nivel de detalle los Autématas Progra-
mables. El capitulo 9 esboza la realizacién de redes de Petri con computadores de
propésito general.

La relativa novedad de la temdtica tratada, ha hecho que nos hayamos visto obli-
gados a introducir nuevos conceptos y a adaptar términos. En este sentido, espera-
mos que el anexo 6, glosario trilingiie, sea de utilidad.

El texto ha sido concebido para su lectura en secuencia (capitulo por capitulo);
no obstante, el lector impaciente por sumergirse en las técnicas de realizacion puede
proceder sin grandes dificultades al estudio de los capitulos 6 a 9 después de haber
considerado los capitulos 1 y 2. En cualquier caso, los apartados sefialados con un
asterisco pueden ser saltados en una primera lectura.

AGRADECIMIENTOS
La génesis de este texto se encuentra en las notas redactadas con motivo de la expli-

cacién de un curso de doctorado en la E.T.S. de Ingenieros Industriales de la Uni-
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Simbolos mas utilizados

1 Generales

(a) Conjuntos

{er,e2,...,en}

(elr}

Conjunto formado por los elementos ey, ez, ...
por extensién)

Conjunto formado por los elementos e que cumplen la(s) pro-
piedad(es) r (notacién por comprension)

Pertenencia

No pertenencia

Existe (cuantificador existencial)

Para todo (cuantificador universal)

Cardinal del conjunto P (niimero de elementos que posee)

Conjunto vacio (|@| = 0).

, en (notacién

Conjunto de los nimeros naturales: {0,1,2,3,...]
Conjunto {1,2,3,...]}
Conjunto de los numeros enteros: { ..., -2, -1,0,1,2,...]

Conjunto de los nimeros racionales: {ni/nj|ni, njeZ}

Conjunto de los nimeros racionales positivos

Conjunto de los nimeros reales

Unién de los conjuntos A y B

Interseccion de los conjuntos A y B

Producto cartesiano de A4 por B [conjunto de los pares (a, b),
acAybeB]

Inclusién del conjunto 4 en el conjunto B

X1
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(b) Ldgica

=

A
\Y
1

(c) Vectores

X>Y

X2Y

XY
(d) Matrices

I,

AT

A~ 1
(e) Varias

[]
L]

2 Redes de Petri

M(pi)9 mi
Mo

Implicacién ldgica
Equivalencia
Condicién necesaria y suficiente (CNS)
Si y sélo si (sii)

Conjuncién

Disyuncion

Negacién

sii Vi X(i) > Y(i)
sii Vi X(i) = Y(i)
SiiX>2YyX#Y

Matriz identidad de rango n
Matriz traspuesta de la matriz 4
Matriz inversa de la matriz A

Redondeo por exceso
Redondeo por defecto

Conjunto de lugares de una RdP (|P|) = n)
Lugar, i-ésimo lugar

Conjunto de transiciones de una RdP (|7]) = m)
Transicidn, j-ésima transicion

Duracidn asociada al disparo de la transicion t;
Funcién de incidencia previa (a:P X T— N)
Funcién de incidencia posterior (3:7 X P— N)
Red de Petri (R=<(P, T, o, 3))

Conjunto de lugares de entrada a ¢

Conjunto de lugares de salida de ¢

Conjunto de transiciones de entrada a p
Conjunto de transiciones de salida de p
Marcado de una RdP

Marcado del i-ésimo lugar

Marcado inicial



<R’IMO>
M; > M;

o
g

a(t)

L(R, Mo)
M(R, Mp)
L(R, My)
G(R, My)

Cc-

C+
c=C*-C~
G

1;, U(pi)

ME
GE
GM
RLE
RS
RdPAI
RdAPG
RdAPC
RAPT
RdPI

SIMBOLOS MAS UTILIZADO XV

Red de Petri marcada

La transicion ¢ es sensibilizada por el marcado M

El marcado M; es alcanzado a partir del marcado M; al disparar
la transicion ¢

Secuencia de transiciones (o = tiZj. .. 1)

Vector caracteristico asociado a la secuencia ¢ [dim(¢) = m, nu-
mero de transiciones]

Numero de ocurrencias de #; en la secuencia o

Conjunto de secuencias disparables en (R, Mo X

Conjunto de marcados alcanzables en (R, Mo

Conjunto de vectores caracteristicos asociados a L(R, Mo)

Grafo de marcados generado por (R, Mo)

Matriz que representa la funcion de incidencia previa

Matriz que representa la funcién de incidencia posterior

Matriz que representa la estructura de una RdP pura

Jj-ésima columna de C
[ej= (crjez- . - en) ]

i-ésima linea o fila de C
[Z; = (circi1. . - Cim)]

Madquina de estados

Grafo de estados

Grafo marcado o de sincronizacién

Red de Petri libre eleccién

Red de Petri simple

Red de Petri con arcos inhibidores

Red de Petri generalizada. (También se representa por RdP.)

Red de Petri con capacidades

Red de Petri temporizada

Red de Petri interpretada
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Introducciéon a las Redes de Petri
como herramienta de descripcion
funcional de sistemas secuenciales
y concurrentes

1.1 INTRODUCCION

Describir un sistema es una tarea que consiste en elaborar un modelo del mismo.
Segiin sean los objetivos que se persigan, de un sistema se pueden construir modelos
de diferentes tipos. Asi, un modelo que enumera las partes del sistema (subsistemas)
y sus interconexiones se denomina estructural. Un modelo que describe cémo opera
o funciona un sistema se denomina funcional. En un modelo funcional se especifi-
can las reacciones del sistema frente a eventos o acontecimientos que provienen del
exterior.

A lo largo de todo este texto nos preocuparemos de construir modelos funciona-
les, analizarlos y realizarlos fisicamente. En este capitulo introducimos de forma
gradual algunos problemas que surgen al modelar, con diversas herramientas de des-
cripcidn, sistemas (16gicos) secuenciales. Terminamos presentando informalmente
las redes de Petri provistas de una interpretacién adaptada al modelado de sistemas
16gicos. Las redes de Petri (RdP) interpretadas permiten expresar, de forma clara
y rigurosa, objetivos de funcionamiento y seguridad funcional de los sistemas objeto
de estudio. En particular, las RdP son una herramienta de descripcién facilmente
comprensible por el futuro usuario del sistema, mediante la cual le es posible forma-
lizar su didlogo con el disefiador.

El capitulo se desarrolla a partir de la introduccion de un concepto basico en el
modelado: la separacion en parte de control y parte operativa. Posteriormente se
entra de lleno en la definicidn y utilizacion de herramientas para el modelado de la
parte de control. La figura 1.1 presenta la estructura de esta parte. La descripcion de
sistemas discretos en los que se identifica un nimero finito de situaciones o estados
se puede llevar a cabo gracias a una herramienta matematica denominada autdmata
finito (§1.3.1), AF. La descripcion tabular de un AF cuando se modelan sistemas
l16gicos asincronos se denomina fabla de fases (§1.3.2). La complejidad de la des-
cripcidén basada en la tabla de fases lleva a introducir los grafos reducidos (§1.4),
GR. Un GR puede modelar exactamente la misma clase de sistemas que una tabla
de fases, pero las descripciones son, normalmente, més féciles de establecer (dado

1
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AUTOMATA FINITO

Tabla de estados

— | Grafo reducido

y de fases

AUTOMATA NO-FINITO

Redes de Petri

Figura 1.1. Herramientas de modelado de sistemas que se consideran a lo largo del capitulo.

que no se pretende la descripcidn exhaustiva del sistema, sino sélo recoger informa-
cién necesaria y suficiente para abordar la realizacion).

Cuando un sistema se compone de varios subsistemas que evolucionan simulta-
neamente, se dice que es un sistema concurrente o con evoluciones paralelast. La
descripcion secuencial de un sistema concurrente se complica en gran medida, por
lo que los GR son de una utilidad restringida. En este punto se introducen las redes
de Petri, RdP, como una herramienta de modelado que facilita la descripcién. Ade-
mads, las RdP tienen mayor potencia descriptiva que las tablas de fases y los grafos
reducidos, pues mediante ellas se pueden describir determinados (no todos) sistemas
en los que el nimero de estados no es finito.

1.2 SEPARACION ENTRE PARTE DE CONTROL Y PARTE OPERATIVA

Todo sistema se puede representar y realizar mediante la interconexién de dos sub-
sistemas o partes que cooperan (figura 1.2):

—Ila parte operativa (PO),
—Ila parte de control o mando (PC).

E ‘ Consignas
U' Infgmes ‘ ‘ ‘

PO B PC
Ordenes

SU ; ‘Salidas externas

Figura 1.2. Descomposicion PC-PO de la descripcion de un sistema.

t Se podrian matizar diferencias entre concurrencia y paralelismo, pero en este texto utilizaremos ambos
términos como sindnimos.
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Una separaciéon PC-PO en un sistema no hace mas que establecer una distincion
entre un subsistema de ejecucidn (PO) y un subsistema de direccidn (PC). La PO
emite hacia la PC informes sobre su situacién y la PC, en funcién de esta informa-
cién, emite drdenes hacia la PO.

La separacion PC-PO es un concepto cldsico que pretende facilitar la descripcion
aplicando el aforismo «divide y vencerds». En efecto, la descripcidn por partes sim-
plifica la construccion del modelo total. Tomando como ejemplo un sistema maqui-
na herramienta con control numérico, es posible considerar como PC al equipo de
control numérico. Evidentemente, este automatismo numérico puede a su vez ser
considerado como un sistema que se puede descomponer en PC-PO (figura 1.3).

Consignas
E U, [

Infgrmes

Proceso Ordenes 1
Controlado
G——=5Ipg

Datos
s

Procesador de control

PC E Salidas externas

Figura 1.3. Descomposicién del procesador de control.

Al describir un sistema, se pueden aplicar sucesivas descomposiciones PC-PO que
permitan pasar de una cierta descripcién a otra mds detallada. La metodologia de
descripcion denominada descripcidn por refinamientos sucesivos consiste en reapli-
car el esquema siguiente tantas veces como se juzgue necesario:

1) definir una nueva separacién PC-PO sobre la PO original, descomponiendo
las acciones en otras mas elementales; y

2) llevar a la PC el secuenciamiento de las operaciones en que se descompusieron
las acciones habidas anteriormente.

En resumen, la separacién PC-PO facilita la descripcidn. Esto resulta evidente al
considerar automatismos numéricos (entre los que se encuentran los computadores
digitales programables), puesto que existen subsistemas tipicos que forman parte de
la PO (sumadores, contadores, etc.). La descripcién por refinamientos sucesivos se
basa en sucesivas separaciones PC-PO; ésta se abordara en detalle en el capitulo 5.
En lo sucesivo se considera esencialmente el modelado de la PC.

1.3 REPRESENTACION TABULAR DE UN SISTEMA SECUENCIAL DE
ESTADOS FINITOS

La representacion de sistemas secuenciales de estados finitos se basa en una herra-
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mienta matemdtica denominada autdmata finito. La introduciremos en §1.3.1,
mientras que en §1.3.2 estudiaremos su adecuacion al modelado de sistemas (secuen-
ciales de estados finitos) asincronos. La modelacién de un automatismo muy simple
permitird ilustrar las ideas bésicas, asi como realizar una primera critica de los méto-
dos tabulares de representacion.

1.3.1 Autémata finito

Segun el diccionario de la Real Academia de la Lengua (19.? edicién, 1970), un autd-
mata es.

—[un] instrumento o aparato que encierra dentro de si el mecanismo que le impri-
me determinados movimientos;

—[una] mdquina que imita la figura y los movimientos de un ser animado.

Es decir, en ambas acepciones se evoca la imagen de movimiento. En lo que sigue
nos ocuparemos del aspecto de tratamiento de informacion subyacente y no del as-
pecto de simulacién del movimiento.

Precisando el significado de «autémata» en nuestro contexto, diremos que:

a) Es un sistema discrefo tal que:

—Recibe un niimero finito de simbolos. El conjunto de los simbolos que reci-
be se denomina alfabeto de entrada, E.

—Emite un nimero finito de simbolos. El conjunto de los simbolos que emite
se denomina alfabeto de salida, S.

b) Los simbolos que recibe y emite un autémata evolucionan en el tiempo. La sa-
lida en un momento dado es funcion de los simbolos de entrada recibidos; es
decir, existe una memorizacion. El estado del autdmata, resumen de la evolu-
cién sufrida por éste a partir de un estado o situacidn inicial, permite afirmar
que la salida en un momento dado es funcién del estado y de la entrada. Si
Q representa el conjunto de estados en los que se puede encontrar el autémata,
la funcién A [\: Q X E— S] define la salida en un instante dado. Por otra par-
te, dos estados consecutivos vienen definidgs por una funcién é [6: Q X E — Q]
que permite obtener el nuevo estado en funcién del anterior y del ultimo sim-
bolo de entrada recibido.

Si el autémata es tal que el conjunto de los estados, Q, es finito, se dice que €l
aut6mata es de estados finito o, simplemente, que es un automata finito.
En resumen, un autémata finito (AF) es una quintupla (E, S, O, \, §) en la que:

1) E = (E;)} es el alfabeto de entrada (conjunto finito).

2) S = (S;} es el alfabeto de salida (conjunto finito).

3) Q = [Qk] es el conjunto finito de estados (internos) del automata.
4) 6 es la funcidn de transicion, 6:Q X E— Q.

5) \ es la funcidn de lectura o salida, \:Q X E— S§.

Se denomina estado inicial a aquel en el que se encuentra el autémata cuando ain
no ha recibido ningtin simbolo de entrada.

Las funciones 6 y \ definen el comportamiento del autémata; por lo tanto, la des-
cripcién completa de éste se obtiene al especificarlas exhaustivamente. Una primera
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E E
a b a |b Nortas:
Q = {Qa, Qab, O} .
Q Qi |Qu|Qaw |y |¥y Qub [Ov] es un estado en el que se recuerda que los dos
ultimos simbolos recibidos son la secuencia a-b [b-b].
Qb | Qa | Oww | x | ¥ Qq es un estado en el que se recuerda que el ultimo sim-
bolo recibido es a.
Ovb | Qa | Qob | ¥ | Y

e

6 N
Tabla 1.1 Tabla de estados (MEALY).

representacion es la tabular. En la tabla 1.1 se presenta la definicién de un autémata
cuyos alfabetos de entrada y salida son E = {a, b} y S = {x, y}. Su salida en un ins-
tante k es S(k) = x si y sOlo si se han recibido los simbolos de entrada E(k) = a,
Ek—-1)=byEk-2)=a.

Como se puede comprobar, una fabla de estados esta compuesta por dos subtablas;
en la primera de ellas se define 6(Q;, E;), mientras que en la segunda se define N(Q;, E)).

La definicidn de automata finito que hemos considerado hasta ahora se denomina
de MEaLy. Una definicion alternativa es la de MOORE, en la que la funcién \ se sim-
plifica al depender sélo de Q: S; = N(Q); es decir, la salida depende exclusivamente
del estado. La tabla 1.2 representa el sistema descrito por la tabla 1.1, pero utilizan-
do un autémata de Moore. Como a cada estado le corresponde una salida, la subta-
bla que define las salidas se reduce a un vector.

Un resultado cldsico establece que se puede pasar de un autdmata de MEALY a uno
de MOORE, y viceversa, con lo que se demuestra que /la potencia de descripcion de
ambos modelos es idénticat. El paso de un automata de MOORE a un autémata de

E
a b NoTas:
Q' = {Q&, O, Qava, Obb) .
Q' Qa QO Ow | ¥ Ohba [Q4] es un estado en el que se recuerda que los tres
ultimos simbolos recibidos es la secuencia a-b-a [dife-
Qav | Qava | O | ¥ rente de a-b-a, pero el ultimo simbolo es a; es decir:
a-a-a, b-a-a o b-b-al.
Qava | Oa Qip | x QOib [Obs] es un estado en el que se recuerda que los dos
tltimos simbolos recibidos es la secuencia a-b [b-b].
Oby | QOa Obv | y

Tabla 1.2 Tabla de estados (MOORE).

 Es decir, todo lo que se pueda describir con un modelo de AF se puede describir con el otro.
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MEALY es inmediato, puesto que el segundo comprende al primero. La transforma-
cion inversa (MEALY — MoORE) puede llevarse a cabo de forma sistematica asocian-
do a cada par (Q, S;) del autémata de MEALY un estado O, del autémata de MOORE:
(s, Sj) = Q.. Evidentemente, el minimo niimero de estados de un modelo de MOORE
nunca serd inferior al de un autémata de MEALY.

La transformacidon del autémata de MeALY de la tabla 1.1 conduce a un autémata

de Moore con Q = {Quy, Ouby, Qux, Oy} .

Esercicro. Compruébese que los estados Q anteriores se corresponden con los Q’ (tabla
1.2) de acuerdo con la siguiente lista: Qoy = Qu, Quty = Qib, Qax = Qiva ¥ Obby = Qb.

1.3.2 Descripcion de sistemas l6gicos secuenciales asincronos: la tabla de fases

La evolucién del estado interno de un sistema 16gico secuencial puede interpretarse
y realizarse de dos formas distintas:

1) Evolucién auténoma, en la que los cambios del estado interno se producen al
presentarse un simbolo de entrada.

2) Evolucién controlada, en la que los cambios del estado interno se producen
s6lo en determinados instantes. Estos estdn definidos por las transiciones de
subida, o de bajada, de una (o varias) sefial(es) de entrada privilegiada(s).

Un sistema sincrono es un sistema cuya evolucion estd controlada por una sefial
de entrada denominada reloj. El reloj sincroniza la evolucion del sistema. Entre dos
sefiales de sincronizacion el estado del sistema es independiente de la evolucion de
las entradas.

Un sistema asincrono (y no pulsado) es un sistema que estd sometido a entradas
de nivel y tal que su evolucion es auténoma. Dada una determinada entrada, el siste-
ma evoluciona hasta que el estado presente y el estado siguiente sean idénticos. En
esas circunstancias se dice que el sistema se encuentra en un estado estable o fase
de evolucion. Los estados que no son estables se denominan transitorios.

Por el momento nos limitaremos a la consideracién de los sistemas asincronos no
pulsados. Los sistemas sincronos se describen o modelan de forma similar. Las pe-
culiaridades de su realizacion se estudiaran en los capitulos 6 al 9.

Para describir sistemas asincronos se utiliza de forma cldsica una representacion
tabular semejante a la tabla de estados, denominada fabla de fases. En una tabla
de fases, una fase de evolucion (o estado estable) se representa dentro de una circun-
ferencia (figura 1.4a), lo que permite la eliminacidn de la primera columna. Como
se puede observar en la figura 1.4a, los diferentes simbolos de entrada son los 22
vectores de entrada que se pueden formar con las variables Idgicas de entrada
{x1, x2}. Del mismo modo, se puede observar que las salidas son un subconjunto
de los 22 vectores de salida que se pueden formar con las variables I6gicas de salida
{s1,52]). Si existiesen g [r] variables de entrada [de salida], los simbolos de entrada
[de salida] serian un subconjunto de los 27 [2"] vectores 16gicos posibles. Una casilla
(gi, E)) se rellenard con «—» cuando sea imposible que se presente E; a partir del
estado g;. Se dice que el par (gi, E;) estd no especificado.

El diagrama de fases (figura 1.4b) es un diagrama en el que cada estado estable
de la maquina estd representado por una circunferencia. Las transiciones se repre-
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®)

Figura 1.7. Ejemplo del carro que va-y-viene modelado con un grafo reducido.

concepto, denominado receptividad: un sistema es receptivo a un cierto evento o
condicidn si éste es capaz de hacer evolucionar su estado. La receptividad a un deter-
minado evento es funcidén del estado del sistema.

Insistamos en que la receptividad aparece como un concepto nuevo entre las des-
cripciones funcionales del tipo tabla de fases y grafo reducido, aunque se trate de
un concepto cldsico en la descripcion algoritmica de sistemas.

Un concepto en cierto modo «dual» de la receptividad es el concepto de sensi-
bilidad: un sistema ldgico es sensible a cierta condicion logica si ésta es capaz
de hacer que evolucionen sus variables de salida sin que evolucione su estado (in-
terno).

Para ilustrar este concepto, supongamos que en el carro que «va-y-viene» de
§1.3.3 se dispone de un conmutador H de inhibicién de movimientos. La descrip-
cién del sistema es la misma, salvo que d e i (las acciones) estardn condicionadas
por H (se representard d/H e i/H). En estas condiciones, si el automatismo se en-
cuentra en los estados D o I, éste es sensible a H.

1.4.2 Obtencién de la tabla de fases a partir del grafo reducido.
Cantidad de informaciéon contenida en la descripcién

El problema que abordamos aqui es la obtencidn de la tabla de fases definida por
(E, S, Q, 8,\) apartir del grafo reducido. La comparacion de esta tabla con la obte-
nida directamente a partir del enunciado del problema permitird extraer algunas
conclusiones de interés.

Para obtener la tabla de fases basta con observar que un estado de un GR es esta-
ble mientras su receptividad no se verifique. Dicho de otra forma, un estado es esta-
ble para el conjunto de todos los vectores de entrada que pertenecen al conjunto
complementario de su receptividad. De este modo, el estado R (figura 1.7) es estable
para todos los vectores de entrada que contengan M = (MAB, MAB, MAB, MAB].
La transicién R — D se realiza cuando M = 1. Operando de esta forma se llega sin
dificultad a la tabla 1.5.

Al comparar la tabla 1.5 con la obtenida por reduccidn de la tabla primitiva (tabla
1.4) observamos que:
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MAB
000 | 001 | 011 | 010 | 110 | 111 | 101 | 100 di

® ® ® ®
® I I | O| | 1 I | O] 1o
O | O|R|R|R|R|D|D| 01

D D D D 00

Tabla 1.5 Tabla de fases obtenida a partir del GR de la figura 1.7. (Ejemplo del carro
que va-y-viene.)

1) La tabla 1.5 estd completamente especificada, a diferencia de la tabla 1.4 (ob-
tenida a partir de la tabla primitiva). La tabla 1.4 recubre la tabla obtenida
a partir del grafo reducido (tabla 1.5), lo cual se puede comprobar al conside-
rar que R = {1}, D= (2,3,4,5} e I={6,7,8,9]}.

2) A todo estado estable de la tabla 1.4 le corresponde uno de la tabla 1.5.

3) El estado R en la descripcién con GR es estable y transitorio. En efecto, si
MA =1, R es un estado por el que pasa transitoriamente el GR. Esto se tradu-
ce en la tabla 1.5 en una transicidén de I a D que no es directa, cuando MA = 1.
Obsérvese en la tabla 1.4 que dicha transicién si es directa.

En resumen, la tabla obtenida a partir del GR contiene un minimo de informa-
cion, suficiente para realizar una sintesis del sistema secuencial. Es fécil observar
que el esfuerzo necesario para su obtencidon es mucho menor que el realizado para
construir y reducir la tabla primitiva de fases. La economia de esfuerzo que se reali-
za se manifiesta en que la tabla obtenida a partir del GR especifica pares g;-E; que
no tienen sentido fisico (realmente son inespecificados). Asi, por ejemplo, se com-
prueba que las columnas con A = B = 1 estdn innecesariamente especificadas.

Puesto que la tinica diferencia obtenida es la especificacion de pares g;-E; no espe-
cificados fisicamente, el comportamiento del modelo sera correcto para las secuen-
cias de operacion previstas. Por otra parte, en estas condiciones interesa resaltar que
las tablas obtenidas a partir del GR serdn, en general, no reducibles. Este tltimo
hecho se comprende facilmente, pues para obtener el autémata minimo (minimo na-
mero de estados) hace falta disponer de toda la informacidn posible sobre el funcio-
namiento del sistema (condicion general para efectuar una optimizacion).

Nota muy importante. La tabla de fases obtenida a partir de un GR que posea una selec-
cién (figura 1.8) puede tener casillas en las que coexistan dos o mds estados. En el caso de
la figura 1.8, los estados g; y gk coexistirdn en las casillas que pertenecen a las columnas defi-
nidas por x;xx = 1. Para que el sistema esté descrito correctamente, es necesario que
gixjxx = 0, pues de lo contrario existirfa una ambigiiedad (conflicto).

1.4.3 Ejemplos de modelacién

1.4.3.1 Conjunto de carros que van-y-vienen sincronizados (figura 1.9)
Supongamos que los carros C; y C; estdn inicialmente sobre los contactos A y C,
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Q

Xj Xk

@) (@)

Figura 1.8. Seleccién en un GR.

i R dy
G .
AL Q) A
S
——0 0
C,
A O 4
C D

Figura 1.9. Dos carros que van-y-vienen sincronizados.

«

respectivamente. Al pulsar el bot6n M, los carros C1 y C se desplazan simultdnea-
mente hacia la derecha. El inicio del regreso hacia la izquierda lo realizardn simulta-
neamente cuando ambos carros se encuentren en el extremo derecho (sobre los con-

tactos By D). Un posible GR que modela el problema propuesto es el representado
en la figura 1.10.

Figura 1.10. Modelacién con GR (dos carros).
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Si se considera ahora la existencia de tres carros, C;, Cz, Cs, tendremos el GR de
la figura 1.11. (Cs evoluciona entre los contactos E y F.)

Figura 1.11. Modelacioén con GR (tres carros). El tercer carro evoluciona entre los contactos
EyF.

Si se generaliza a N carros, el GR tendrd 2V *! — 1 estados, cantidad que, al crecer
exponencialmente, hard materialmente imposible la utilizacidn de un tinico GR. Por
ejemplo, con N = 5 se tendrdn 63 estados, mientras que con N = 10 se tendran 2047.

Otro inconveniente a sefialar, ademas del de la complejidad de la descripcion re-
sultante, es el hecho de tener que rehacer enteramente la descripcion del sistema
cuando se pasa de N a N + 1 carros. Por otra parte, si se deseara modificar ligera-
mente el enunciado, definiendo, por ejemplo, que el primer carro debiera quedar
sobre el contacto B un tiempo minimo, #min, la descripcion de la figura 1.10 nos ser-
viria de poco. Seria preciso rehacerla practicamente en su totalidad (realicese la des-
cripcidén como ejercicio).

En resumen, el GR no permite hacer facilmente modificaciones /ocales; se dice
que es un modelo poco flexible. Esto es facil de comprender, puesto que el estado
de un GR es un estado global del sistema y no un subestado parcial. Como veremos
mas adelante, con una red de Petri se puede representar el estado de un sistema co-
mo conjunto de estados parciales.
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1.4.3.2 Acciones simultdneas

Supongamos que en cierto momento se han de desarrollar en un sistema inform4-
tico dos acciones simultdneas 4 y B, seguidas de una accién C. Se desea modelar
esta situacién sabiendo que 4 y B estdn compuestas a su vez por tres subaccio-
nes {A%,Az,A3} y {Bi1, B2, B3}, respectivamente, las cuales deben realizarse en
secuencia.

Una solucidn es la representada en la figura 1.12.

(@)

Figura 1.12. Acciones simultaneas. (Debido a su complejidad, no se han indicado en b todas
las acciones ni todos los eventos.)

Se observa, pues, que el paso de la descripcion a nivel de las macroacciones 4 y
B al nivel de las acciones A;-B; se realiza destruyendo por completo la descripcion
original. Es decir, el GR no se adapta a una descripcion progresiva (por refinamien-
tos sucesivos) cuando el sistema posee evoluciones simultdneas.

1.4.4 Critica al grafo reducido (GR)

1. Introduce los conceptos de receptividad y sensibilidad, los cuales permiten sim-
plificar en gran medida la descripcién de un sistema.

2. Lainformacién que aporta la modelacién con un GR es minima, pero suficien-
te para hacer la sintesis de un sistema.

3. Cuando existen evoluciones paralelas, simultdneas, la modelacién de un GR
no es eficiente porque:

—conduce a descripciones complejas (gran nimero de estados);
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—no permite modificaciones locales del comportamiento del sistema sin poner en
tela de juicio toda la descripcion realizada; es decir, no es flexible;

—no permite una descripcion descendente del sistema (por refinamientos sucesi-
vos, top-down).

Es precisamente para evitar o disminuir los inconvenientes (punto 3) por lo que
se introducen las redes de Petri. Estas aparecen como una generalizacién natural de
los grafos reducidos que permite la consideracidn directa de las evoluciones simult4-
neas.

1.5 APLICACION DE LAS REDES DE PETRI A LA MODELACION
FUNCIONAL DE SISTEMAS CONCURRENTES

Una red de Petri es una herramienta matematica que puede servir para modelar
comportamientos de sistemas de naturaleza muy diferente. En particular, nos vamos
a cefiir a su utilizacién como modelo de descripcién del funcionamiento de un siste-
ma discreto concurrente.

1.5.1 Definicion del modelo de descripcion

Una red de Petri (RdP) es un grafo orientado en el que intervienen dos clases
de nudos, los lugares (representados por circunferencias) y las transiciones (repre-
sentadas por segmentos rectilineos), unidos alternativamente por arcos. Un arco
une un lugar con una transicién, o viceversa, pero nunca dos transiciones o dos
lugares.

Un lugar puede contener un nimero positivo o nulo de marcas. Una marca se re-
presenta por un punto en el interior del circulo correspondiente al lugar. El conjunto
de marcas asociadas en un instante dado a cada uno de los lugares constituye un
marcado de la RdP.

Para la descripcion funcional de sistemas concurrentes, a los lugares se les asocian
acciones o salidas del sistema que se desea modelar. A las transiciones se les asocian
los eventos (funciones 16gicas de las variables de entrada del sistema) y acciones o
salidas.

La figura 1.13 representa una RdP. Se sugiere al lector que dé rienda suelta a su
imaginacién para que «vea» la estructura de la RdP como un «tablero de damas es-
pecial» y las marcas como peones.

Nota. Los lugares estaran representados con la letra p, pues tanto en inglés como en francés
se les denomina place.

Evolucion del marcado (reglas del «juego de damas especial»):

—un lugar p es lugar de entrada de una transicion ¢ si existe un arco orientado
de p hacia ¢

—un lugar p es lugar de salida de una transicion ¢ si existe un arco orientado de
t hacia p;

—una transicion estd sensibilizada si todos los lugares de entrada estan marcados.
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Figura 1.13. Ejemplo de RdP con 5 lugares y 4 transiciones. El lugar p; contiene una marca,
mientras que el lugar ps contiene dos marcas. ps y ps son lugares de entrada de
14, mientras que p2 y ps son lugares de salida de .

RecLa. Una transicidn sensibilizada es disparada o franqueada si el evento que
le esta asociado se verifica. El disparo de una transicion consiste en quitar
una marca a cada uno de los lugares de entrada y en afiadir una marca
a cada uno de los lugares de salida. [J

La figura 1.14 ilustra los conceptos de sensibilizacién y disparo de una transicién.

ONNONNCH
(a) t 12 f
o O
(%) >< : [t@ }{
Figura 1.14. (@) Ejemplo de transiciones sensibilizadas.

(b) Marcados obtenidos después de sus disparos.
En un grafo reducido un sistema se representa mediante el conjunto de estados tota-
les en los que éste se puede encontrar. En una RdP el estado estd representado por

1.5.2 Ejemplos de modelacién de sistemas concurrentes
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el marcado. Como el marcado puede contener varios lugares marcados simultdnea-
mente, el estado estard definido por un conjunto de subestados (estados locales o
parciales) del sistema. A partir de esta consideracidn, es evidente que una RdP esta
mejor adaptada que los GR para la descripcion de evoluciones simultdneas. Para
ilustrar esta afirmacidn recurriremos al ejemplo de §1.4.3.1, conjunto de carros que
van-y-vienen sincronizados. Las descripciones para los casos de dos y tres carros es-
tan representadas en la figura 1.15. En ambos casos el marcado representado, mar-
cado inicial, corresponde a la situacién de partida: todc@ los carros estdn sobre los
contactos izquierdos de fin de carrera.

d, d> d;
B D F
iy iz i3
A C E
L ° )
y
|
(@) )

Figura 1.15. Ejemplos de carros que van-y-vienen sincronizados (véanse las figuras 1.10y 1.11).

Los estados en la evolucidn de cada carro se encuentran representados por cuatro
lugares. El lugar marcado inicialmente se corresponde con el estado R (figura 1.7).
Los lugares etiquetados con i; y d; se corresponden con los estados Iy D, respectiva-
mente. Por ultimo, el cuarto lugar representa el estado del carro en espera de que
el (los) otro(s) carro(s) haya(n) alcanzado el extremo derecho de su recorrido.

El estado total del sistema viene definido por los subestados correspondientes a
cada uno de los carros.

Se deja a la consideracion del lector su comparacién con las modelaciones con
grafos reducidos y, si se encuentra de buen humor, se le invita a establecer una tabla
de fases primitiva.
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Nota. «*in(tmin) €s una accién
de tipo impulsional que se eje-
cuta al dispararse la transicion
etiquetada con el evento B.
Significa iniciar la cuenta de
tmin Unidades de tiempo.»

Figura 1.16. El primer carro debe permanecer al menos #min unidades de tiempo sobre B.

La figura 1.16 ilustra una modificacién del enunciado del ejemplo de los dos ca-
rros que van-y-vienen. Esta consiste en que el primer carro debe permanecer sobre
el contacto B durante un tiempo minimo #min.

De los ejemplos ilustrados en la figuras 1.15 y 1.16 se pueden deducir interesantes
conclusiones. Podemos afirmar que la representacion de evoluciones simultdneas se
facilita enormemente con las RdP. En particular, esta facilidad permite:

1) Tener descripciones menos complejas. En el caso de los carros que van-y-
vienen sincronizados se necesitan 4N lugares en vez de los 2¥*! — 1 estados,
lo cual, para N = 10, nos da 40 lugares frente a 2047 estados.

2) La consideracidn de modificaciones locales, como la introducida en el caso de
la figura 1.16, se facilita enormemente (comparese con el modelo que utiliza
un grafo reducido). Por todo ello diremos que la RdP es una herramienta de
modelacion flexible.

Para tratar de encontrar otra cualidad interesante en la modelacién con RdP,
reconsideremos el ejemplo de §1.4.3.2, acciones simultdneas. Su representacion con
RdP se ilustra en la figura 1.17. A partir de este caso se puede observar que las RdP -
permiten una descripcidn progresiva (por refinamientos sucesivos) de los sistemas
con evoluciones simultdneas.

Observacién. Comparando las figuras 1.12a y 1.17a se puede comprobar que, cuando el
paralelismo es muy pequefio, la descripcién con grafo reducido puede ser menos compleja
que con RdP exhibiendo directamente el paralelismo.
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A B,
fin(Ay) fin(By)

A B A B,
Sin(A) Jfin(B) Jin(Az) Jin(By)

As By
fin(Aj3) fin(Bs)

c
@
(6 ©(b)

Figura 1.17. Acciones simultdneas.

Antes de abordar una critica global sobre las aportaciones de las RdP a la modela-
cién, insistiremos en algunas cuestiones de interés.

1.5.3 Configuraciones y propiedades bdsicas

1.5.3.1 Configuraciones en una RdP

Hemos incluido este apartado para presentar cierto vocabulario, que se encuentra
con frecuencia en la literatura técnica y que concierne a las estructuras elementales
de las RdP (figura 1.18).

1) Un lugar que tiene varios arcos de entrada y/o de salida se denomina nudo O.
Un grafo reducido estd formado a base de nudos O.
Dos casos particulares de nudos O son:

e la seleccion (un arco de entrada y varios de salida),
® la atribucidn (varios arcos de entrada y uno de salida).

2) Una transicion que tiene varios arcos de entrada y/o salida se denomina nudo
Y. Se observard que estos nudos no existen en los grafos reducidos. Son los
que permiten la creacioén y extincion de las evoluciones simulténeas.

Dos casos particulares de nudos Y son:
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Nudo O (general) Seleccion Atribucidn

Nudo Y (general) Distribucion Conjuncion

Figura 1.18. Nudos O y nudos Y.

e la distribucidn (un arco de entrada y varios de salida).
® la conjuncion (varios arcos de entrada y uno de salida).

Una RdP que no contiene nudos Y se denomina mdquina o grafo de estados. Ob-
sérvese que esta definicion no coincide (segun la interpretacién dada) con la de grafo
reducido, puesto que en un grafo de estados podemos tener simultdneamente varias
marcas. Para que un grafo de estados coincida con un grafo reducido hace falta que
su marcado se limite a una sola marca.

1.5.3.2 Propiedades bdsicas

Una transicion es viva, para un marcado My, si para todo marcado M que se pueda
alcanzar a partir del marcado inicial M) existe un marcado M’ sucesor de M a partir
del cual se puede disparar esa transicion. Una RdP es viva, para un marcado dado,
si todas sus transiciones son vivas para ese marcado.

La RdP de la figura 1.19 no es viva. En efecto, el lector puede comprobar que

Figura 1.19. RdP no viva y no binaria.
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si se aplica la secuencia de disparos £»-#4-f1-3, €l marcado evoluciona normalmente,
pero si se aplica ¢; a partir del marcado inicial, el marcado de la RdP no permite
el disparo de ninguna transicién mds (estd bloqueada). Puesto que una transicidn
no viva no puede ser disparada a partir de una cierta evolucion en la RdP, se puede
«sospechar» que el modelo del sistema objeto de estudio es incorrecto.

Para un marcado inicial dado, una RdP es binaria si cualquier marcado alcanza-
ble es tal que ningin lugar posee mds de una marca. En una RdP binaria todo lugar
estard marcado con una marca o no estara marcado.

La RdP de la figura 1.19 es no binaria, puesto que si se repite la secuencia de dis-
paros f;-14, el niimero de marcas de ps3 crece continuamente. En este caso se dice que
la RdP marcada es no limitada, puesto que el marcado de p; no tiene limite finito.
Si la RdP que modela un sistema es no limitada, cabe igualmente «sospechar» que
el modelo no es correcto. La limitacion caracteriza la finitud del nimero de estados
internos del sistema que se modela. Las redes de Petri pueden modelar autdmatas
no finitos.

Para un marcado inicial dado, se dice que una RdP es conforme si es binaria y
viva. La RdP de la figura 1.20a es conforme. Debido a su marcado inicial, una mis-
ma RdP puede ser conforme, no binaria o no viva (figuras 1.20b y c).

Sl¢)

@ ®) ©

Figura 1.20. Debido a su marcado inicial, una misma RdP puede ser conforme, no binaria
0 no viva.

Dos o mds transiciones simultdneamente sensibilizadas estdn en conflicto (figura
1.21) si descienden de un mismo lugar y éste no dispone de un nimero de marcas
suficientes para dispararlas simultdneamente. Un conflicto se hace efectivo si los
eventos asociados a las transiciones en conflicto se verifican simultdneamente.

Un conflicto efectivo corresponde a una ambigiiedad en la descripcién. Ninguna
descripcidn correcta puede poseer conflictos efectivos.

En la modelacion de sistemas 16gicos concurrentes nos limitaremos fundamental-
mente a la utilizacidn de RAP que sean conformes (vivas y binarias) y sin conflicto.
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D1 P2 14 P3

h 7] h t

Figura 1.21. En ambos casos #; y #, estan en conflicto.

La condicion de que sean binarias no impone una restriccion importante a la des-
cripcion de sistemas 1dgicos y, sin embargo, simplifica las realizaciones.

1.5.4 Obtencién de un grafo reducido a partir de una RdP

La idea béasica para transformar una RdP en un GR consiste en obtener fodos los
marcados posibles y las transiciones entre éstos.

Hemos visto que los marcados de una RdP representan los estados. Para obtener
los diferentes estados se parte del marcado inicial de acuerdo con el siguiente proce-
dimiento: A partir de este marcado (estado), se dispara cada transicion sensibilizada
y se calcula un nuevo marcado (nuevo estado). A partir de cada uno de estos nuevos
marcados, se recomienza el proceso hasta que no se cree ningin nuevo marcado.

En otras palabras, el procedimiento se limita a obtener fodos los marcados posi-
bles y las transiciones entre éstos.

Se encomienda al lector como ejercicio la obtencion de los GR de las figuras 1.10
y 1.11 a partir de las RdP de la figura 1.15 (sup6ngase que nunca se disparan simul-
tdneamente dos transiciones).

1.6 COMENTARIOS EN TORNO A LA UTILIZACION DE LAS RdP EN
LA MODELACION DE SISTEMAS CONCURRENTES

1. Se trata de una herramienta de modelacion clara, fécil de utilizar y no ambi-
gua. En particular, comprende los conceptos de receptividad y sensibilidad, lo cual
permite obtener las descripciones con un minimo de informacidn suficiente para sin-
tetizar los sistemas.

2. Facilita la representacién de evoluciones simultdneas. Esto conduce a descrip-
ciones mas simples que las obtenidas con grafos reducidos. Otras propiedades (con-
secuencia de su adaptacién a la representacién de evoluciones simultdneas) son su
flexibilidad (facilidad de modificaciones locales) y su capacidad para permitir des-
cripciones de forma descendente, es decir, por refinamientos sucesivos.

3. Permite una «primera aproximacion» al problema de la validacidn del correcto
funcionamiento de un sistema. Para ilustrar esta idea podemos reconsiderar el ejem-
plo (§1.4.3.1) del conjunto de carros que van-y-vienen. Este ejemplo ha sido descrito
con un GR y con una RdP. Su descripcién con un conjunto de N grafos reducidos
(uno por carro) mutuamente dependientes en su evolucién es también bastante sen-
cilla y, por lo tanto, cabe pensar que se trate de una alternativa a la modelacion con
RdP. En el modelo construido con los N grafos reducidos, la sincronizacién entre
los diferentes carros se llevard a cabo mediante la interpretacion (semdntica) asocia-
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da a los grafos. Sin embargo, esta informacion sobre la sincronizacion se encuentra
explicitamente en la estructura y marcado del modelo realizado con RdP. Por consi-
guiente, la estructura y el marcado de la RdP contienen cierta informacion sobre
el funcionamiento del sistema, la cual es muy superior a la que contiene la estructura
y el estado inicial del conjunto de grafos.

El valor de esta informacidn es el aumentar la legibilidad de las descripciones, asi
como el posibilitar «cierto nivel» de verificacidon formal de las mismas (estudio de
su buen comportamiento). Permite también abordar una mayor proteccion del equi-
po realizado frente a algunos problemas de la explotacion (deteccién de averias,
etc.). Es decir, las RdP pueden aportar una notable ayuda a la concepcién y
utilizacién.

Desde un punto de vista préctico, la estrategia que se utiliza con las RdP con-
siste en comprobar si la descripcion verifica una serie de propiedades de buen
Jfuncionamiento (por ejemplo, ausencia de bloqueos y conflictos, exclusion mu-
tua, etc.). Estas propiedades son, en gran parte, independientes de las funciones es-
pecificas que realiza el sistema, asi como del modelo utilizado para describirlo. Un
andlisis de validez de una descripcion consiste en la comprobacién de un conjunto
de estas propiedades sobre el modelo del sistema que se estudia (véanse los capitulos
4 y 5). Este andlisis se puede realizar gracias a la informacién que, independiente-
mente de la interpretacion asociada a la RdP, contiene su estructura y su marcado
inicial.

Asi, por ejemplo, parece poco probable que la RdP de la figura 1.19 corresponda
a una descripcion correcta de un sistema, puesto que no es viva y, ademds, el nime-
ro de marcas que puede contener ps es potencialmente ilimitado (basta con iterar
la secuencia de disparos £,-%4).

Para concluir lo relativo a la validacidén de una descripcién, resaltaremos que otra
de las ventajas de las RdP consiste en que hacen posible una fécil traduccion de las
propiedades de buen funcionamiento del sistema en propiedades especificas de las
RdP. De este modo, las propiedades de vivacidad (especificas de las RdP) caracteri-
zan, de forma extremadamente simple, la presencia o ausencia de bloqueos totales
(deadlock) o parciales del sistema.

4. La simplificacion que se puede realizar de una descripcién es muy limitada. Se
reduce a la eliminacién de redundancias estructurales en la RdP. Se han desarrolla-
do otros métodos de simplificacién basados en un aporte suplementario de informa-
cién. El capitulo 3 lo dedicaremos a este interesante problema. En cualquier caso,
conviene dejar bien sentado que, mdas que buscar descripciones minimizadas, lo que
se persigue es simplificar un poco la descripcion original, de forma que su compren-
sidn no se dificulte extraordinariamente.

5. Otra propiedad interesante radica en que la RdP, interpretada de acuerdo con
los convenios expuestos, constituye una herramienta de modelacion independiente
de cualquier tecnologia (electronica, fluidica, etc.)

A modo de informacion final, remitimos al lector impaciente por conocer algunas
de las posibilidades de modelado inherentes a las RdP a los apartados 2.3.2 y 2.4,
donde encontrard diversos ejemplos cldsicos. La primera parte del capitulo 2 se de-
dica a la presentacion formalizada de conceptos basicos utilizados en las redes de
Petri.
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EJERCICIOS

1.1 Determinese si las RdP de la figura E.1.1 son vivas y/o binarias.

Figura E.1.1. Diversas redes de Petri.
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Q)

Figura E.1.1. (cont.) Diversas redes de Petri.

1.2

1.3

Sean dos carros C; y C; (véase figura 1.9): C; se desplaza entre A y B,y C; entre C y
D; d; controla el movimiento del carro C; hacia la derecha, i; controla el movimiento ha-
cia la izquierda.

Los dos carros inician la marcha cuando se pulsa M, partiendo hacia la derecha si estan
sobre A y C. C; vuelve hacia la izquierda en cuanto llega a B, mientras que el regreso
de C; no debe comenzar hasta que C llegue a D y C; haya vuelto a A.

a) Obténgase una descripcion funcional con RdP que muestre la evolucidon simultdnea

de los dos carros.

b) Obténgase una descripcion secuencial del sistema (GR).

¢) Comparense ambas descripciones. Obténgase el GR equivalente a la descripcion

realizada en (a). ;Se atreve el lector a escribir una tabla de fases del sistema?

Se desea realizar el ciclo X, Y, Z, X indicado en la figura E.1.2. El sistema consta de cinco
entradas, que son la puesta en marcha del ciclo (pulsador P) y los cuatro contactos fin
de carrera: arriba (contacto A), derecha (contacto D), abajo (contacto B) e izquierda
(contacto I). Se controlan cuatro variables de salida, {a, d, b, i}, que corresponden a los
movimientos hacia arriba, derecha, abajo e izquierda, respectivamente.

Resuélvanse las mismas cuestiones del ejercicio 1.2.

Figura E.1.2. Ciclo que se desea realizar.
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Figura E.1.3. Sistema que se desea automatizar.

1.4 a) ;Se puede obtener un grafo reducido a partir de la RdP de la figura E.1.1(a)? {Por
qué?
b) Obténgase los grafos reducidos que se puedan determinar a partir de las diferentes
RdP de la figura E.1.1.

1.5 Modélese con una RdP el funcionamiento del sistema de la figura E.1.3, que consta de
dos plataformas, 1 y m2, y un botén pulsador, A. La posicién de m es detectada por
medio de dos fines de carrera By C. La rotacion de las plataformas esta asegurada por
dos motores: M; para m; y M, para m. El funcionamiento deseado es el siguiente:

El sistema parte del reposo (plataforma m en posicién B; motores parados).
—De la accién de A resulta que:

e 7, se desplaza de B a C, donde se detiene;

e 7, queda en rotaciéon mientras se mantiene pulsado A.
Al soltar A, m; se detiene y cualquier nueva accion sobre 4 no tiene influencia so-
bre 1.

—Después de estar 2 en la posicion C y 71 en reposo:

e 7, se desplaza desde C hasta B;

e simultaneamente, la plataforma 7 se pone en rotacion cada vez que se pulsa A
y se detiene cuando éste se suelta;

e ¢l sistema vuelve al estado inicial (motores parados) cuando la plataforma =, pasa
por la posicién B, estando 4 en reposo.

La plataforma m puede, por consiguiente, dar tantos giros como se desee, manipulan-
do el pulsador 4.
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Redes de Petri: formalizacion y aplicacion
a la modelacion funcional de sistemas
concurrentes

2.1 INTRODUCCION

La creciente utilizacion de las redes de Petri se justifica dado que permiten modelar
y analizar el subsistema de control de sistemas discretos que exhiben evoluciones
concurrentes. Dada la adecuacion de las redes de Petri a la clase de sistemas defini-
dos, éstas se utilizan en diversos campos.

Para emplear una red de Petri en la modelacién de una clase de aplicaciones, se
ha de proceder a dotarla de una interpretacion. Es decir, asociarle una significacion
«fisica» a las condiciones de evolucion de la red, asi como definir las acciones gene-
radas por dicha evolucién. De forma esquematica, se puede decir que la red define
la estructura de la descripcion del sistema, y que su interpretacidn le asocia una se-
mantica.

Los principales campos de aplicacién en los que se han utilizado las redes de Petri,
provistas de diversas interpretaciones, son:

1) los sistemas legales [MELD 71];

2) los sistemas operativos y descripcidn de software en geacral [BAER 73]
[DENN 73] [AGER 79] (véase el anexo 1);

3) la descripcion de hardware de computadores y sistemas discretos de control
con evoluciones concurrentes (con tratamientos numéricos, considerando una
parte operativa) [PATI 73] [VALE 76] [MOAL 76];

4) los automatismos logicos [DACL 76] [SILV 82a];

5) los lenguajes formales [HACK 75] [CRES 77] [PETE 814];

6) la evaluacion de prestaciones (performances) [SIFA 771 [RAMC 73] [RAMA 80]
[FLOR 81].

Las redes de Petri no constituyen el tinico modelo de descripcién de sistemas dis-
cretos capaz de modelar las evoluciones paralelas. Al lector interesado se le remite
a las referencias [BAER 73] [PETE 81a] [VALE 76], donde podra encontrar infor-
macién complementaria al respecto.

El funcionamiento de una red sin interpretacidén alguna se define como autdno-
mo. Una red temporizada (red cuya evolucién es funcién del tiempo) y/o interpreta-

29
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da es una red no autdnoma. En efecto, en este ultimo caso la evolucién de la red
depende también del tiempo y/o de la interpretacidén asociada.

En este capitulo procederemos, en primer lugar, a presentar las redes de Petri co-
mo herramienta matemadtica. Después introduciremos una interpretacion que, aso-
ciada a la herramienta matematica, permitird construir modelos de sistemas 16gicos
concurrentes. En el anexo 1 dotaremos a las redes de Petri de otra interpretacién,
adecuada a la modelacion de la estructura de control de programas concurrentes.
El apartado 2.4 ilustra la utilizacion de redes de Petri interpretadas para la descrip-
cion de una serie de sistemas de gran importancia en la automadtica y la informatica.
Por ultimo, en §2.5 definiremos una serie de subclases y extensiones de las redes de
Petri. Las extensiones pretenden facilitar la modelacién de los sistemas o ampliar
la capacidad descriptiva, mientras que las subclases permitirdn, posteriormente, es-
tudios mas simples sobre el comportamiento de los modelos que se construyan.

2.2 REDES DE PETRI AUTONOMAS

En este apartado, ademas de presentar la terminologia basica, introducimos la ecua-
cion de estado de una red.

Para simplificar la presentacidn de la terminologia basica partiremos del concepto
de red de Petri generalizada. Las redes de Petri, tal y como fueron definidas en el
capitulo 1, son redes de Petri ordinarias e interpretadas.

2.2.1 Terminologia basica

2.2.1.1 Conceptos estructurales

Definiciéon 2.1. Una red de Petri generalizada es una cuadrupla R = (P, T, o, 8)
tal que

P es un conjunto finito y no vacio de lugares

T es un conjunto finito y no vacio de fransiciones

PNT = @; es decir, lugares y transiciones son conjuntos disjuntos
a:P x T— N es la funcion de incidencia previa

B:T x P— N es la funcidn de incidencia posterior. O]

Representacion grafica. Una RdP se representa graficamente por un grafo bipar-
tido orientado. Los lugares se representan por circunferencias y las transiciones por
barras. Existe un arco que va del lugar p; a la transicion ¢; sii a(p;, ¢;) # 0. Andloga-
mente, existe un arco que va de la transicion ¢ al lugar p; sii 8(¢, pi;) # 0. Cada arco
se etiqueta con un entero natural, a(p, £) o (¢, p), que se denomina peso del arco.
Por convenio, un arco no etiquetado posee un peso unitario. Para facilitar la legibi-
lidad, todo arco cuyo peso sea superior a la unidad se dibuja normalmente con un
trazo grueso, o con dos o0 mds trazos paralelos.

Representacion matricial. Una red se representa matricialmente por medio de dos
matrices. Sea |P| = n (nimero de lugares dela red) y sea | 7| = m (nimero de transi-
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ciones de la red). Se denomina matriz de incidencia previa la matriz
Cc™ = [ci—}]nxm:

en la que cij = a(pi, t;). Se denomina matriz de incidencia posterior 1a matriz
Cc" = [017 ]nxm,

en la que ¢ = (¢, pi).

Es decir, en las matrices de incidencia los lugares numeran las filas (i) y las transi-
ciones las columnas (j), y cada elemento (i,j) expresa la incidencia que el lugar i
tiene sobre la transicidn j.

Definicién 2.2. Una red es ordinaria si sus funciones de incidencia sélo pueden
tomar los valores 0 y 1:

{a(p, ne{0,1}
B,pef(o,1}. O

Definicion 2.3. Una red es pura si ninguna transicion contiene un lugar que sea
simultaneamente de entrada y de salida:

vi;eT VpieP o(pi t)B(, pi) =0. a

La representacidén matricial de una red pura se simplifica definiendo una tinica
matriz, C, denominada matriz de incidencia:

B(t;, p:) si es no nula
C=C"-C =cj=1 —a(pit) si es no nula
0 en cualquier otro caso

de esta forma, en la matriz C un elemento positivo indica incidencia posterior y uno
negativo sefiala incidencia previa. Un elemento nulo en C indica cue la transicién
y lugar correspondientes no estdn conectados directamente a través de un arco.

En la figura 2.1 se muestra una RdP ordinaria y pura.

Definiciéon 2.4. Sea una red R = (P, T,a,B3), te Ty pe P. Se definen los si-
guientes conjuntos:

a) Conjunto de /ugares de entrada de t:
‘t={peP|a(p,t)>0)
b) Conjunto de lugares de salida de t:
= {peP|B(p)>0]
¢) Conjunto de transiciones de entrada de p:

‘p={teT|B(t,p)>0)
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4] t3 14 ts te ] I
0 0 0 +1 0 0 0)p.
0 0 0 0 +1 0 0| p»
-1 0 0 0 0 0 O0lp
0 -1 0 0 0 0 O0l|pa
+1 0 -1 0 0 0 0| pe
0 41 -1 0 0 0 O0fps
0 0 +1 -1 0 0 O0l|p
0 0 +1 0 -1 —1 +1|ps
0 0 0 0 0 +1 -1)p
Figura 2.1. Ejemplo de red de Petri ordinaria y pura. Matriz de incidencia.
d) Conjunto de fransiciones de salida de p:
p =(teT|a(p,t)>0)}. O
Si se considera la red de la figura 2.1, se puede escribir, por ejemplo,
‘tv={Paspp}  Pn= {la, 13}
ti= {Pc,Pd] p}'|= {t51t7}'
De acuerdo con esta notacion, una red es pura sii Ve T tNt' = .
Definicién 2.5. Una subred de R = (P, T, «,3) es una red R = (P, T, &, 3) tal
que PSPy T<T. ayf son restricciones de a y 3 sobre P x T. [

2.2.1.2 Conceptos dindmico-estructurales

Definicién 2.6. El marcado M de una red R es una aplicacidén de P en N, o sea,
la asignacién de un niimero entero no negativo (numero de marcas) a cada lugar. [J

En el grafo asociado a R, el marcado M se representa por una distribucidn, en
los lugares, de objetos denominados marcas. Una marca se representa graficamente
por un punto en el interior de la circunferencia que define el lugar que la contiene.

Si |P| = n, entonces un marcado se representa, en forma matricial, por un vector

de n elementos: M(p;). (Vector de marcado.)
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Definicién 2.7. Una red de Petri marcada es el par (R, Mpy), en el que R es una
red de Petri y My es un marcado inicial. [

La evolucion del marcado le confiere a la RAP marcada un comportamiento dina-
mico que permite modelar evoluciones simultdneas de sistemas discretos.

Definicién 2.8. Una transicion ¢ € T estd sensibilizada por el marcado M sii cada
uno de sus lugares de entrada posee al menos a(p, f) marcas. Es decir, se exige que
vpe't M(p)=a(p,t). O

Regla de evolucién del marcado (definicién 2.9). Disparar una transicién sensibi-
lizada t es la operacion que consiste en ehmmar o(p,?) marcas a cada lugar pe 't
y afiadir 8(¢, p) marcas a cada lugar pet'. M; 5 M significa que ¢ est4 sensibiliza-
da por M; y que al disparar ¢ a partir de M; se alcanza M,.

Es decir, al disparar ¢ se obtiene:

M;(p) = Mi(p) + B(t,p) — a(p,t) VpeP. |

La figura 2.2 representa el disparo de la transicion .

Figura 2.2. Disparo de la transicién ¢: evolucion del marcado.

Definicién 2.10. Una secuencia de disparos aplicable a partir del marcado My se
representa por una secuencia de transiciones tal que el disparo de cada transicidén
conduce a un marcado que sensibiliza la transicion siguiente de la secuencia.

t: 19 t
Si Mo = My~ M, = * -+ -5 M,, se dird que la secuencia o = #;1;. . . I, es aplicable
a partlr de My. La anterior evolucidn del marcado se puede condensar escribiendo
Mo 5 Mq

El conjunto de secuencias disparables a partir de M, es un lenguaje:
LR, Mo) = (0| Moy>M). O

En la RdP que se observa en la figura 2.1 es aplicable, por ejemplo, la secuencia
01 = tglet1 t3t2 ta te. El marcado que se obtiene al disparar la anterior secuencia de
7 disparos es M7:
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MI=(100000001)
abcde fghi

MI=(010000100).

Definicion 2.11. Se llama vector caracteristico asociado a una secuencia de dispa-
ros o al vector € N™(|T| = m), cuya i-ésima componente es el nimero de ocurren-
cias del disparo de ¢ en la secuencia o.

El conjunto de vectores caracteristicos de las secuencias disparables a partir de Mo es

LR,My) = (G| Mo>M). O
El vector caracteristico asociado a la secuencia o7 es 6, = (11110201).

Definicion 2.12. Un marcado M es alcanzable a partir de un marcado inicial Mo
sii existe una secuencia de disparos aplicable a partir de M, que transforma M, en
M: Mo — M. El conjunto de los marcados alcanzables a partir de M es:

M(R, Mo) = (M| (30 e LR, M)A (Mo > M)}. O

De acuerdo con lo establecido, por ejemplo, en la RAP de la figura 2.1 el marcado
M es alcanzable a partir de Mp.

2.2.2 Ecuacion de estado de una red de Petri

Sea C la matriz de incidencia de una red pura y marcada. A partir de la definicion
de Cy de la regla de evolucion del marcado se puede escribir My = Mg -1 + C - U,
donde:

—M;y es el marcado obtenido al realizar el k-ésimo disparo;
— Uy es un vector cuyas componentes son nulas salvo la i-ésima si #; es la transi-
cién disparada en k-ésimo lugar: Ux(i) = 1, Ux(j) = 0, Vj # i.

Razonando por recurrencia se tiene:

My=My_1+C- U=
=Mi-2+ C-(Ux-1+ Up) =
=Mr_3+C-(Uk-2+ U1+ Up)= ... =

k
=My+ C- Z(]j=Mo+C'(_f
ji=1

donde My > M.

En este punto es importante observar que  no puede ser cualquier vector no ne-
gativo, pues podria no existir una ¢ aplicable a partir de Mo. Asi, por ejemplo,
& =(11111110)7 no tiene sentido en la RAP de la figura 2.1, pues no existe o apli-
cable a partir de My tal que su vector caracteristico sea el presentado anteriormente.

Esercicio. Calctlese el marcado que se obtendria si existiese una secuencia disparable o
cuyo vector caracteristico fuese el anterior.
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La justificacién de la anterior restriccion es inmediata dado que un marcado no
puede contener componentes negativas ¥, por lo tanto, los sucesivos vectores Uy de-
ben verificar la relacién My _, + C- Uk = 0; es decir, VM € M(R, M) debe verifi-
carse que sus componentes sean enteros no negativos.

En conclusidn:

(1) Mk=Mk—1+C'Uk
2 (MO_U’Mk)=’Mk=Mo+C'6.

La primera ecuacion tiene la forma de la ecuacién de estado de un sistema dindmi-
co lineal e invariante discretizado en el tiempo, por lo que a veces se le denomina
ecuacion de estado asociada a la red de Petri. La segunda ecuacién integra la evolu-
cion desde My hasta My.

La importancia de estas ecuaciones es muy grande, pues permiten plantear diver-
sos andlisis sobre el comportamiento de la RdP utilizando técnicas derivadas del 4l-
gebra lineal. Ahora bien, estos andlisis poseen intrinsecamente dos limitaciones:

1) no todo 6 e N" es admisible (como se ha dicho);
2) el vector ¢ no define univocamente la secuencia o, por lo que se ha perdido
una informacién fundamental para estudiar la actividad de la red.

La teoria de lenguajes formales permite abordar an4lisis mds potentes sobre la evo-
lucién de las redes de Petri, pero su utilizacién préctica es bastante mds complicada.

2.3 LAS REDES DE PETRI COMO MODELO DE DESCRIPCION DE
SISTEMAS LOGICOS CONCURRENTES

En el apartado anterior hemos venido considerando a las RAP como una estructura
matematica dotada de una propiedad dindmica (el marcado). Para que una RdP
pueda representar un sistema, hace falta asociarle una interpretacion. Interpretar
una RdP es establecer un convenio por el cual se define:

—Un significado fisico a las condiciones necesarias para el disparo de una transi-
cion. Las reglas de evolucién son modificadas ligeramente por la interpreta-
cion, la cual pasa a ser también funcidn de la evolucién del proceso que se desea
controlar.

—Las acciones generadas por la evolucién del marcado.

El estado interno del sistema se representa siempre por el marcado de la RdP.

En lo que concierne a la interpretacion de una RdP, se debe sefialar que no existe
una unica interpretacion posible para describir una clase de aplicaciones. De este
modo, para la descripcion de sistemas 16gicos se encuentran dos grandes grupos, se-
gun que las acciones generadas se asocien a los lugares o a las transiciones.

La interpretacién que presentamos aqui comprende ambos tipos.

Sea un sistema con:

—entradas X = {x1,..., X}
—salidas a nivel Y = {yy,..., s}
—salidas impulsionales Z = {zy,...,z,}.
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Definicion 2.13. Una condicidn externa, Ci, es un subcdhjunto de estados de las
variables de entrada. Esta podra ser representada siempre por una funcién combina-
toria de las variables de entrada. [J

Por ejemplo, sea X = {a, b, ¢} el conjunto de variables de entrada. Una condi-
cién externa serd {abc, abc, abc, ab¢, abc, abc} y se podra representar mediante la
funcién logica:

a + b = abc + ab¢ + abc + ab¢ + abc + abe.

Definicion 2.14. Un evento o acontecimiento, E;, se define como:

—el cambio de estado légico de una condicion externa,
—Ila unién de un conjunto de eventos. [J

El conjunto de eventos se designa por E = {E;}.

2.3.1 Interpretacion asociada a las RdP

Por convenio asociaremos:

—eventos, condiciones externas y salidas impulsionales a las transiciones,
—salidas a nivel a los lugares.

La activacion de una salida puede estar ligada a condiciones externas. En tal caso
hablaremos de salidas condicionales.

Definicién 2.15. Una RdP interpretada (RdPI) se define por:

—una RdP marcada (R, Mo);

—una aplicacion de T en E que asocia a cada transicion un evento, Ej;

—una aplicacion de T en C que asocia a cada transicién una condicién ex-
terna, C;;

—una aplicacion de T en Z que a las transiciones les asocia salidas impul-
sionales;

—una aplicacion de P X Cen Y que a los lugares les asocia salidas a nivel, even-
tualmente condicionadas. [J

Reglas de evolucidn del marcado de una RdAP1

RecLa 1: El disparo de una transicion #; sensibilizada sélo se realiza si se verifica
C;E;. En estas condiciones se dice que #; es receptiva a la condicién y al
evento (G E;).

REGLA 2: Cuando una transicidn es disparada, todas las salidas impusionales aso-
ciadas a t; son generadas.

REGLA 3: Para un marcado dado, las salidas a nivel asociadas a los lugares marca-
dos son generadas si se verifican las condiciones externas que eventual-
mente les pueden estar asociadas. Si Y; es una salida asociada a un lugar
pi condicionada por Cy;, se dird que la salida es sensible a Cjy;, cuando p;
esta marcado.



LAs REDES DE PETRI COMO MODELO DE DESCRIPCION DE SISTEMAS LOGICOS CONCURRENTES 37

Observacion muy importante. La representacién de sistemas sincronos puede realizarse de
acuerdo con la definicién 2.15. En efecto, basta considerar que todos los pares evento-
condicién se reducen a la interseccién entre: (1) los niveles o flancos activos de la variable
de entrada privilegiada que es el reloj y (2) la condicién externa que se le asocie al disparo
de la transicién.

2.3.2 Ejemplo de modelacion (recurso compartido por dos usuarios)

Dos carros A y B transportan cierto material desde los puntos de carga C4 y Cs,
respectivamente, hasta el punto de descarga D (figura 2.34q).

Los diferentes movimientos, hacia la izquierda o hacia la derecha, son controla-
dos mediante las acciones ig4, i, da, ds.

Si A estd en C4 y el pulsador My estd oprimido, comienza un ciclo C4-D-Cy4 con
las siguientes caracteristicas:

—espera eventual en E4 hasta que la zona comun a los dos carros esté libre, con
el fin de evitar colisiones;
—espera obligatoria en D de T4 = 100 s de duracidn.

El carro B tiene un funcionamiento similar (pulsador Mp, ciclo Cp-D-Cpy espera
en D de T = 50 s) pero, en caso de demanda simultdnea de la via comin (recurso
compartido), el carro B es prioritario (prioridad fija).

El recorrido E4-D (respec. Eg-D) se establece gracias al posicionamiento de un
cambio de agujas controlado por la accién G (respec. G). En lo sucesivo admitire-
mos que Ey4 (respec. Ep) proporciona un «1» 16gico si el eje delantero de A (respec.
B) esta en la zona E4-D (respec. Ep-D).

COMENTARIOS

1) La figura 2.3b presenta una posible modelacion.

2) Es importante considerar la construcciéon que modela el acceso al recurso. El
lugar ps representa el recurso en «estado de reposo» (no utilizado). Los lugares
De a p11 representan la ocupacion de recurso comin ({ ps, ps, P10} ocupacion
por el carro A y {p7, pe, p11} ocupacion por el carro B).

3) Los lugares {3, 4, 5} plantean un conflicto (el acceso al recurso cuando la de-
manda es simultdnea). La realizacion debe evitar la ambigiiedad que se presen-
taria si tecnoldgicamente se pudiera tener M(p3)M(ps)M(ps)EgE4sEp-= 1.

4) La transicion ps — ps es receptiva a D. A ella se le ha asociado la accién impul-
sional «preseleccionar un temporizador con 100 unidades de tiempo», temp(100).

5) La accién dy4 asociada al lugar p; est4 condicionada por E4. Es decir, si ps estéd
marcado, el automatismo serd sensible a Ej4.

6) Si se desea que el ciclo de movimientos que corresponde al carro A comience
cuando se «pulsa Ms» (y no si My estd pulsado), la RdAP es entonces la misma;
bastard con que la transicidn etiquetada M4C4 sea etiquetada Myt Cy (flanco
de subida de M4 y condicién externa Cj).

2.3.3 Transformaciones sobre condiciones externas y eventos que no alteran una
descripcién

La idea que vamos a exponer es muy sencilla: para la descripcion de un sistema da-
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D/*temp(50)

Jin(temp)

ip

Ep

Figura 2.3. Esquema de la instalacion y descripcion (recurso compartido por dos usuarios).
(a) Esquema de la instalacion.
(b) Descripcidn funcional con red de Petri.

do, las condiciones externas y los eventos pueden ser modificados en ciertos casos
sin que el comportamiento de la descripcion se altere. Esta propiedad elemental se
puede utilizar, pongamos por caso, para simplificar los eventos o para transformar-
los en condiciones externas, lo que eventualmente facilitara la realizacion fisica.
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Vi, = Q@bed
i k k1 abdc
1 d R, ’ abd R,
& i
ks k2 &
@ vk, = ab@ @
ath
@_.}_..@ %[porque (ab)(a) =0]
vk = ab vj=bc
ab
N S
(ab)t &J [porque (@b)(ab) = 0]
v = ab v; = be
(®)

Figura 2.4. Ilustracion de las reglas 1, 2 y 3.
(a) Transformaciones de condiciones externas.
(b) Transformacién de un evento en condiciones externas.

Definicién 2.16. Se llama condicidn envolvente de un lugar p;, representada por
vi, a la interseccion ldgica de las variables de entrada que tienen un valor definido
cuando el lugar p; estd marcado. El estado (complementado o no) de las variables
de entrada serd tal que, si p; estd marcado, v; = 1. [J

Si en p;, por ejemplo, las entradas de un sistema toman los valores x; = 1,
X2 = 1 y x3 = 0, entonces v; = x1X3.

Sea C;Ej el par condicion externa-evento asociado a una de las transiciones de en-
trada a p;, que supondremos escrito como una unién: C;E; = >, CJE$. Ejemplo:
CjEj = x1Xx2 + x1x3T.

En estas condiciones es facil observar que Cf Ef puede ser transformado sin modi-
ficar funcionalmente el comportamiento que corresponda a la descripcion. Para ello
se pueden tener en cuenta las siguientes reglas:

ReaGra 1. Una variable que pertenezca al menos a una de las condiciones envol-
ventes de los lugares de entrada de la j-ésima transicidn, px € ‘¢;, puede
ser eliminada de C7 si se encuentra definida en el mismo estado, com-
plementada o no, en C{ (figura 2.4a).

REeGLA 2. Una variable que pertenezca al menos a una de las condiciones envol-

ventes de los lugares px € 't; puede ser afiadida a C¥ si no estd definida
en CY (figura 2.4a).

t @ en dlgebra de BooLe es 0 o 1.
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Rs A

a <> G
E

E? @
£

Figura 2.5. Transformacién de E7 en E cuando no sea aplicable la regla 3.

RecGLA 3. El evento asociado a #; (Ef) puede ser transformado en una condicién
externa si ésta posee una interseccién nula con la condicién envolvente
de alguno de los lugares de entrada a ¢, px € 't; (figura 2.4b).

REGLA 4. Sino se puede aplicar la regla 3, siempre se puede transformar el evento
E? en E realizando una transformacion del tipo de la expuesta en la fi-
gura 2.5.

Supongamos que inicialmente los carros estdn sobre C4 y Cp. A modo de ejemplo,
se puede destacar que la condicién externa M4Cy se puede transformar en My C4E,
(regla 2) puesto que, cuando p; estd marcado, el carro no puede estar en la zona Ey4-
D. De la misma forma, puesto que cuando p; estd marcado se tiene Cg, la condicion
M, C4 se puede transformar en My (regla 1).

2.4 EJEMPLOS TIPICOS DE MODELACION CON REDES DE PETRI

Como ya anticipdbamos en la introduccion del capitulo, incluimos este apartado pa-
ra ilustrar algunas construcciones clasicas de la modelaciént. Pretendemos con ello
que el lector se habitiie a «ver» las evoluciones simultédneas en los sistemas. Obsérve-
se que en modo alguno perseguimos la presentacién de descripciones «minimiza-
das». En el capitulo 3 se estudian técnicas que, eventualmente, permitirdn simplifi-
car las descripciones.

2.4.1 Relacion productor-consumidor con exclusion mutua

Enunciado. Una unidad de produccién (UP) produce cierta clase de objetos que
deposita en un almacén. El almacén tiene una capacidad maxima de N = 4 objetos.

1 En el apartado 2.5.2 presentaremos ejemplos complementarios en los que se utilizan diversas generali-
zaciones de las redes de Petri.
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ALMACEN

up ——>| UucC

AUTOMATISMO

(@)

Figura 2.6. Esquema de la instalacién y descripcion del sistema productor-consumidor cuando
se accede al almacén en exclusién mutua.
(@) Esquema de la instalacién (almacén de capacidad 4).
(b) Descripcién (el acceso al almacén se efectua en exclusién mutua entre el
productor y el consumidor).

Una unidad de consumo (UC) retira objetos del almacén para su posterior consumo.
Pretendemos describir un sistema que coordine la produccién y el consumo, es de-
cir, ordene al productor (consumidor) cuindo debe producir (consumir) y cuando
debe depositar (extraer) un objeto.

Las sefiales intercambiadas entre el sistema de control y el proceso son las siguien-
tes (figura 2.6a):
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p = orden de producir un objeto

d = orden de depositar un objeto en el almacén

¢ = orden de consumir un objeto

e = orden de extraer un objeto del almacén

F,, F4, F. y Fe representan el fin de produccion, depdsito, consumo y extraccion
de un objeto.

Se supone que al almacén no se puede acceder simultdneamente en deposito y ex-
traccion (imaginese una memoria tampén: depdsitos = escritura, extraccién =
= lectura). Es decir, las operaciones de depdsito y extraccién deben estar en exclu-
sién mutua.

CoMEeNTARIOS. En la descripcion de la figura 2.6b, los lugares que se relacionan
a continuacidn tienen las siguientes funciones:

1) Ag representa al almacén en reposo (no se desarrolla operacién de depdsito ni
de extraccion).

2) Oy H representa el nimero de objetos depositados y de huecos libres en el al-
macén, respectivamente.

3) E,representa las esperas del productor hasta que en el almacén exista un hueco
donde depositar la unidad producida y no esté accediendo al almacén el consu-
midor (esté en reposo). El papel de E. es similar (esperas del consumidor para
que haya objetos en el almacén y no esté accediendo a éste el productor).

A partir de esta informacidn se puede observar que para cualquier marcado alcan-

zable se tendrd:

a) M(ARr) + M(D) + M(E) = 1, lo que significa que el almacén, o estd en reposo,
o estd accediendo a él el productor o el consumidor, pero no ambos a la vez.

b) M(O) + M(E) + M(H) + M(D) = 4, lo que significa que el mimero de obje-
tos depositados, mds los que se estdn retirando, mds los huecos libres y mas
los objetos que se estdn depositando suman 4, la capacidad del almacén.

EJERCICIOS

1) Determinese el significado del marcado inicial que se ha asignado a la red de la figura
2.6b.

2) Determinese el significado de las relaciones siguientes:
a) M(Ep) + M(D) + M(P) = 1.
b) M(E;) + M(E) + M(C) = 1.

3) Simplifiquese la descripcién de la figura 2.6b, suponiendo que no existe la restriccién
sobre exclusién mutua entre las operaciones de depésito y extraccidén de objetos.

2.4.2 Secuencias alternadas

Enunciado. Se desea realizar el dispositivo de control de una cadena de tratamien-
to de superficies por inmersion. Las piezas son cogidas por unas pinzas. Para no
complicar initilmente la descripcién, no vamos a considerar el sistema de control
de las pinzas (cogida de piezas).
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El proceso consta de cinco zonas de trabajo (figura 2.7q):
—carga
—desengrasado (1 cuba)
—tratamiento (2 cubas)
—Ilavado (1 cuba)
—descarga

Puesto que el tiempo de tratamiento es superior al tiempo de inmersién en las
otras cubas, se han destinado dos cubas idénticas al tratamiento, en lugar de una.
Las pinzas son desplazadas por un carro. El dispositivo de control debe ser tal
que cuando el carro va cargado, ordene su desplazamiento horizontalmente sélo en
la posicion alta (sensor P4), y cuando va descargado lo haga tnicamente en la posi-
cion baja (Pp). Se definen los contactos C, Dg, Ti, T2, L'y Dc (figura 2.7a) de forma
que estardn activados cuando se encuentren entre las ruedas del carro transportador.
Suponiendo que se parte inicialmente de:

(1) todas las cubas llenas, menos la de desengrasado,
(2) el carro sobre el puesto de carga y la pinza abajo (con carga),

un ciclo completo de tratamiento consta de dos subciclos con los siguientes movi-
mientos con transporte de piezas:

(1.1) Carga — desengrasado (2.1) Carga — desengrasado
(1.2) Lavado — descarga (2.2) Lavado — descarga
(1.3) Tratamiento 1— lavado (2.3) Tratamiento 2 — lavado

(1.4) Desengrasado — tratamiento 1 (2.4) Desengrasado — tratamiento 2

El inicio de cada subciclo requiere la autorizacién del operador, el cual la otorga
mediante un pulsador M.

COMENTARIOS

1) Los dos subciclos son idénticos: en el primero se trabaja con la cuba de trata-
miento nimero 1, mientras que en el segundo se trabaja con la ntimero 2.

2) La descripcién mds inmediata consiste en repetir dos veces un subciclo: una
vez operando con el contacto 7; y la otra operando con el contacto 7.

Aunque una descripcién como ésta pueda ser correcta, serd poco interesante, pues
parte de la doble representacién de los movimientos de transporte de piezas.

3) La figura 2.7b presenta una descripcion basada en la definicidon de un vinico
subciclo. En éste las construcciones realizadas con los lugares 91-92 y 161-162 permi-
ten.recordar la cuba objetivo de un desplazamiento (paridad del subciclo).

El marcado de po indica el estado de espera inicial (éste se caracteriza por estar
el carro sobre C'y la pinza en posicién baja, Pg). El marcado de po1 (ps2) v de pie:
(p162) indica que se espera alcanzar el contacto T (T3).

Como es facil comprobar, este ejemplo muestra que la descripcidn «paralelay de
una evolucién secuencial puede conducir a modelos reducidos.

4) A partir de lo expresado anteriormente, se puede constatar que:

® {p1,p2, p3) representa el movimiento con carga: carga — desengrasado.
® { ps} representa el movimiento sin carga: desengrasado — lavado.
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o

Carga“ Desengrasado Tratamiento Lavado Descarga

(@)

Figura 2.7. Sistema de tratamiento de superficies.
(a) BEsquema de la instalacién.
(b) Modelo construido.
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® { s, Ps, P71} representa el movimiento con carga: lavado — descarga.
° {ps, po1, Pe2} representa el movimiento sin carga:

tratamiento 1
descarga — 0 (seguin la paridad del subciclo)
tratamiento 2
® { p10, p11, P12} representa el movimiento con carga:
tratamiento 1
o — lavado
tratamiento 2

® {p13} representa el movimiento sin carga: lavado — desengrasado
{ P14, D15, D161, D162, P17} representa el movimiento con carga:

tratamiento 1
desengrasado — o
tratamiento 2

{ P13} representa el movimiento sin carga:
tratamiento 1
0 — carga
tratamiento 2

2.4.3 Reutilizacién de secuencias de funcionamiento (subprogramas)

Todo conjunto de secuencias representado por una subRdP puede ser utilizado a

partir de diversas situaciones. La figura 2.8 propone un esquema bdsico para su mo-

delacion. Los lugares p; y p; recuerdan el punto de regreso de la secuencia. Si, como

es de esperar, no se ordena la ejecucion de una subsecuencia desde dos puntos a la

vez, M(p:)M(p;) = 0, el regreso a la secuencia de llamada no serd nunca ambiguo.
Dos implicaciones basicas de esta posibilidad de modelacion son:

1) Modularidad en la descripcidn.

2) Descripciones de tamafio méds reducido y realizaciones mas econémicas. (En
este punto se debe sefialar que se pueden realizar directamente incluso con
técnicas cableadas, capitulo 6.)

La generalizacidn de esta simple idea de reutilizacién de subsecuencias predefini-
das conduce al concepto clasico de subprograma. En un subprograma habria que
definir la transferencia de argumentos.

Esercicio. Describase de nuevo el ejemplo de §2.4.2 reutilizando las subsecuencias de fun-
cionamiento que se pueda. Compruébese que se llega a obtener una red de Petri distinta pero
de la misma complejidad.

2.4.4 Lectores y redactores

Enunciado. Vamos a considerar un ejemplo de sincronizacion cldsico en la litera-
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Figura 2.8. Esquema de utilizacion de subprogramas.

tura informdtica. Pertenece a la clase de problemas en los que dos conjuntos de
usuarios (lectores y redactores) tienen que coordinarse para acceder a unos datos co-
munes (recurso que comparten). Ignoramos la estructura de los datos compartidos;
nos basta con saber que:

—1los lectores sOlo inspeccionan, y por tanto pueden acceder simultdneamente
(concurrencia) a los datos;

—Ilos redactores modifican los datos, y por ello todo redactor debe trabajar en
exclusién mutua con el resto de los usuarios (lectores y redactores).

Cada usuario puede encontrarse en uno de los tres estados siguientes: activo (tra-
baja con el recurso), espera (pendiente de acceder al recurso) y reposo (no necesita
el recurso).

CoMENTARIO. La figura 2.9 representa una descripcidn posible para el caso de dos
lectores y dos redactores. Desde el punto de vista de la modelacidn, interesa resaltar
el significado de los lugares X7 y X>. El lugar X; implica la exclusion mutua entre
los redactores y el i-ésimo lector. Si se tienen en cuenta simultdneamente X; y Xz,
se llega a la conclusion de que los redactores estdn en exclusién mutua entre si y en
exclusion mutua con los lectores.

Esercicio. Describase un sistema similar al anterior pero en el que dos usuarios o procesos
sean ambos capaces de leer y escribir.
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Leyenda:

* 1.2 letra:
R = reposo; D = demanda de
acceso al recurso; E = espera;
C = comienzo de operacidn;
A = activo; F = fin de opera-
cién,

* 2.8 Jetra:

L; = i-ésimo lector;

R; = j-ésimo redactor.

X

RL, (o) RL(e) (o) RR;
DL DL, DR,
EL,() EL,( ) () Er,
CL, CL, CR:
AL() AL() O ar,
FL, FL, FR,

Figura 2.9. Descripcidn del sistema de dos lectores y dos redactores.

2.5 REDES DE PETRI ORDINARIAS: PRINCIPALES SUBCLASES Y
EXTENSIONES

En este apartado, tomando como referencia las redes de Petri ordinarias, presenta-
mos algunas de las principales subclases y extensiones.

La definicidn de subclases se realizard exclusivamente introduciendo restricciones
en la estructura de las RdP. Al restringir la generalidad del modelo, cabe pensar que
serd mas fécil el estudio de su comportamiento dindmico. Como se verd, entre las
subclases aparecerd el conocido grafo de estados, subclase a partir de la que se intro-
dujeron de forma intuitiva las RdP en el capitulo 1.

Por otra parte, el deseo de obtener descripciones mds condensadas y féciles de uti-
lizar, o la obtencién de una mayor potencia descriptiva, han sido las dos principales
razones por las que se han definido diversas generalizaciones de las RdP.
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2.5.1 Subclases de redes de Petri ordinarias

Vamos a definir cuatro subclases de redes y a establecer las relaciones entre ellas.
Al definir las diferentes subclases mediante restricciones en la estructura de las RdP
ordinarias, la determinacion de aquélla a la que pertenece una red dada es muy sen-
cilla.

Desde un punto de vista practico, la utilizacidn de estas subclases es bastante im-
portante, como lo demuestra el hecho de que la mayor parte de las redes presentadas
hasta ahora (capitulos 1 y 2 hasta §2.4) pertenezcan a alguna de éstas.

Definicion 2.17. Un grafo de estados (GE) o mdquina de estados (ME) es una RdP
tal que:

vteT |t=1y]|r|=1,

es decir, tal que en ella toda transicion tiene un lugar de entrada y uno de salida. (]
Un grafo de estados no posee nudos Y.

Es importante observar que el concepto de grafo de estados, considerado como
subclase de RdP, es mas general que el utilizado de forma clésica, puesto que puede
tener mds de una marca. No obstante, si se trabaja con RdP binarias, entonces ha-
bré coincidencia entre los dos conceptos: GE en el sentido habitual y GE como sub-
clase de RdP.

Observacion. Con el présito de evitar ambigiiedades en el texto, esta desafortunada coinci-
dencia en la nomenclatura es la que nos impuls6 a denominar grafo reducido (GR) al grafo
de estados binario provisto de la interpretacién presentada en §1.4.

Un grafo de estados monomarcado (binario) modela los sistemas como si fuesen
secuenciales; es decir, no puede modelar directamente los sistemas concurrentes.
Puesto que en general un grafo de estados puede contener varias marcas, es posible
modelar la reapelabilidadt. En cualquier caso, es evidente que un grafo de estados
sélo modela sistemas de estados finitos.

Definicién 2.18. Un grafo marcado (GM) o grafo de sincronizacion es una RdP
tal que:
vpeP |pl=1y|p|=1,
es decir, tal que en ella todo lugar tiene como mdximo una transicion de entrada
y una transicion de salida. [J

Un grafo marcado no posee nudos O.

t Un programa es reapelable (en inglés, reenterable) si puede ser compartido por varios usuarios en un
sistema de multiprogramacion (véase [MEIN 72]).
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LICITO PROHIBIDO
i :Cé‘;l::
. /@
1
RS

Figura 2.10 Ilustracién de las definicio}\le§ de subclases de redes de Petri ordinarias.

Las RdP de la figura 1.15 son GM. Los GM pueden modelar sistemas de ordena-
cién de actividades como permiten los grafos PERT (Program Evaluation and Re-
view Technique).

En este punto conviene destacar que las capacidades de modelado de los GE y los
GM son duales. En efecto, un GE puede modelar alternativas, pero no el paralelis-
mo. Por otra parte, un GM puede modelar la creacion o destruccion de marcas o
determinadas sincronizaciones entre actividades (figura 1.15), pero no puede expre-
sar alternativas en la evolucion. De lo anterior se desprende que un GM puede mo-
delar sistemas en los que el numero de estados (marcados) no es finito.
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Las subclases que introducimos a continuacién contienen a los GE y GM; por lo
tanto, pueden modelar las alternativas y la concurrencia, aunque no en todos los
casos que permiten las redes de Petri ordinarias.

Definicion 2.19. Una RdP libre eleccion (RLE) es una red tal que:
VpeP, si |p'| > 1, entonces Vigep', |tk = 1.

Es decir, si dos transiciones #; y #; tienen un lugar de entrada p en comin, se deduce
que p es el unico lugar de entrada de #; y de ¢. [J

Desde un punto de vista funcional, las RLE permiten la construccion de modelos
en los que o todas o ninguna de las transiciones de salida de cada lugar estdn sensibi-
lizadas. En una RLE, siempre que un lugar esté marcado y posea mas de una transi-
cién de salida, es posible elegir libremente (independientemente del resto del marca-
do) la transicion que se disparard. De ahi su denominacion.

Definiciéon 2.20. Una red de Petri simple (RS) es una RdP en la que toda transi-
cién tiene como maximo un lugar de entrada compartido con otras transiciones. [

Como veremos mas adelante (capitulo 5), a pesar de su relativa generalidad, esta
subclase de RdP tiene importantes propiedades. Muchos sistemas se modelan con
RS. Por citar algun ejemplo, un recurso compartido por dos o mds usuarios.

La figura 2.11 ilustra las relaciones de inclusion entre las subclases definidas.

Eserciclo. Determinense las subclases a las que pertenecen las redes presentadas hasta
ahora.
2.5.2 Extensiones de las redes de Petri ordinarias

El objetivo de este subapartado es presentar varias extensiones de las redes de Petri
ordinarias y su aplicaciéon al modelado de sistemas discretos concurrentes. Del con-

(=0

RdP cualquiera

Figura 2.11. Relaciones de inclusion entre las diferentes subclases de redes de Petri ordi-
narias.
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junto de extensiones que consideraremos, la mayor parte sirve para la construccién
de modelos funcionales (descripcién de gué se hace) y otra (§2.5.2.6) sirve para la
construccion de modelos comportamentales, de interés para el analisis cuantitativo
de prestaciones. La extension que es utilizable en esta segunda categoria de aplica-
ciones se denomina redes de Petri temporizadas.

2.5.2.1 Redes de Petri generalizadas

La primera extension de las redes de Petri ordinarias (RdP) son las redes de Petri
generalizadas (RAPG). Las RdAPG se utilizan fundamentalmente en la modelacién
de sistemas a un nivel bastante elevado (grandes bloques y sus principales
relaciones).

La definicién 2.1 (§2.2.1) present6 el concepto de red de Petri generalizada. Con
respecto a las redes ordinarias, las RAPG introducen el concepto de peso de un arco.
La RAPG de la figura 2.12a es tal que el peso de los arcos que van de la transicién
aap,ydepsaaesk: (a,p2) = a(ps,a) = k.

Erempro. Se desea modelar la sincronizacién entre un productor y un consumidor. El pro-
ductor es un disco de un sistema informético que produce bloques de k lineas. El consumidor
€s una impresora que consume linea por linea. La interconexién productor-consumidor se es-
tablece gracias a una memoria tampdn FIFO de capacidad k lineas, a la que se puede acceder
simultdneamente en lectura y escritura.

En la figura 2.12 se encuentran dos modelos, ambos construidos con RdPG, que difieren
en la interpretacién asociada a las redes. En el primero de ellos (figura 2.124) las acciones
se asocian al disparo de las transiciones. De este modo, el disparo de la transicién a representa
el depdsito en memoria de un bloque (k lineas), mientras que el disparo de b representa la
produccion de un bloque. De forma simétrica, los disparos de ¢ y d representan la extraccién
de la memoria de una linea y su (posterior) consumo. Segtin lo establecido, resulta evidente
que p; y ps representan los estados de espera para acceder a la memoria por parte del produc-
tor y el consumidor, respectivamente. El marcado de p, representa el niimero de lineas de
la memoria que se encuentran vacias. El marcado de p, representa el nimero de lineas prepa-
radas para ser escritas por la impresora.

Mo(H) = \k

Figura 2.12. Modelacién de un sistema productor (por paquetes)-consumidor utilizando re-
des de Petri generalizadas.
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k-lugares 2(k' — 1) lugares

Figura 2.13. Simulacion con una red de Petri ordinaria de una descripcidn realizada con red
" de Petri generalizada (k = 5, k’ = 3).

La RdPG de la figura 2.12b representa el sistema considerado, pero los eventos se asocian
a las transiciones, y las acciones sOlo a los lugares. Se trata del tipo de interpretacion definido
en §2.3 y utilizado, por ejemplo, en el sistema productor-consumidor de la figura 2.6. La no-
tacion empleada es la misma que se utilizd en aquel caso.

Las RdPG, como extensiéon de las RdP, aportan una indiscutible facilidad a la
modelacion, pero toda descripcion realizable con RAPG puede transformarse en una
basada en RdP. Es decir, la potencia de descripcion de las RAP y de las RAPG es idén-
tica. En efecto, toda RAPG puede ser simulada mediante una RdP si se respetan las
transiciones de la primera y se reemplaza cada lugar p por: (1) una fila de k lugares,
donde k es el peso maximo de sus arcos de entrada, y (2) dos filas de k¥’ — 1 lugares,
donde k’ es el peso maximo de sus arcos de salida. Una transformacion bésica me-
diante la que una subRdP simula una subRdPG es la ilustrada por la figura 2.13.
Como se puede comprobar, si se consideran las transiciones etiquetadas, {a, b, ¢, d},
la mencionada transformacién permite definir las mismas secuencias de disparo.

Esercicio. Obténgase una RdP que simule la RAPG de la figura 2.12b. ;Es la tinica RdP
posible?

2.5.2.2 Redes de Petri con capacidad limitada

En este apartado introduciremos una extension de las RAPG, y por lo tanto de las
RdP, con la que pretendemos facilitar la tarea de modelacidn de sistemas complejos,
especialmente si existen numerosos almacenes, memorias, etc. (su capacidad siem-
pre estard limitada fisicamente).

Definicion 2.21. Una red de Petri con capacidad limitada (RAPC) es una quintu-
pla (P, T,a,(3,v), donde R = (P, T, o, 3) es una RdPG y v es una funcién que
asocia a cada lugar su capacidad; es decir, el méximo nimero de marcas que puede
contener (y:P—>NU[e}).

v(p) es la capacidad del lugar p. []
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Teniendo en cuenta que el disparo de una transicién ¢ conduce del marcado M;
al marcado M; definido por (definicién 2.9):

Mj(p) = Mi(p) + B(t,p) — a(p,t) VYpeP,

resulta que el marcado de una RAPC evoluciona de acuerdo con la regla de sensibili-
zacion de transiciones siguiente: una transicion ¢ estd sensibilizada sii:

(11 vpe't M(p) > ap,1)
[21 vp'er M(p')+B(tp") - a(p’, 1) < v(p).

La primera condicién es la considerada en la definicién 2.8. La segunda condicion
indica que, para que ¢ esté sensibilizada, es necesario que el marcado que se obtenga
después de su disparo no viole las restricciones de capacidad de sus lugares de salida.

A partir de las dos condiciones anteriores, se deduce inmediatamente que para

que toda transicién pueda estar sensibilizada (sea disparable, pues de lo contrario
la transicién serd superflua) es necesario que:

(11 v(p) = a(p, 1)
[2] v(p) = B(¢, p).
En efecto, la condicién 1 se deduce inmediatamente:
y(p) = M(p) [por definicion]
M(p) 2 a(p, 1) [1]
La condicién 2 se deduce al considerar:
(11 Mi(p) > a(p, ) = Mi(p) — a(p, ) =0
21 M;i(p) = Mi(p) — o(p, 1) + B(t, p)

Pero, dado que es necesario que y(p) > M;(p), se concluye que v(p) = B(¢, p).
Por ultimo, para respetar la restriccién sobre la capacidad de un lugar, hemos de
tener, para el marcado inicial, Mo(p) < y(p).

} = v(p) 2 a(p, 1.

} = M;(p) = B(¢, p).

Esempro. La figura 2.14 modela el caso considerado en la figura 2.12. La capacidad de p,4
es la de la memoria tampon, y(ps) = \k.

Aligual que ocurrid al definir las RAPG, la extensidn de éstas a RAPC sélo facilita
la modelacién en ciertos casos. En efecto, es obvio que toda RAPG es una RAPC
en la que la capacidad de cada uno de sus lugares es infinita. Por otra parte, a toda
RdPC se le puede asociar una RdPG y, por consiguiente, una RdP que la simula.
Para justificar esta ultima afirmacion vamos a introducir un nuevo concepto.

Definicion 2.22. Un lugar p es complementario del lugar p si vt e T o(p, f) = B(t, P)
y B(t, p) = (P, ?). Es decir, el disparo de cualquier transicién de la red quita o afiade
tantas marcas de p como afiade o quita de p. [J

Una propiedad interesante que se deduce inmediatamente de lo establecido es que
el numero total de marcas que poseen p y p no varia: M(p) + M(p) = k (figura
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Figura 2.14. Modelacién mediante una red de Petri con capacidad del sistema produc-
tor-consumidor de la figura 2.12.

2.15). (De acuerdo con las definiciones que se presentardn en §4.7.2.2, p y p deter-
minan una componente conservativa.) De este modo, los lugares p> y ps (figura
2.12) son complementarios: M(p2) + M(pas) = \k.

A partir de la definicion de lugar complementario se puede concebir la regla que
permite simular una RdPC con una RdPG.

REeGLA. A cada lugar p que posea una capacidad finita, se le asocia su lugar com-
plementario p marcado inicialmente de acuerdo con la siguiente expre-

sién: Mo(P) = v(p) — Mo(p).

M(p) + M(p) =k
(constante).

p & Q

b1l

Figura 2.15. Los lugares p y p son complementarios (k = 7).
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2.5.2.3 Redes de Petri con arcos inhibidores

Como hemos visto anteriormente, las RAPG (§2.5.2.1) y las RAPC (§2.5.2.2) facili-
tan el modelado de sistemas discretos concurrentes, pero su potencia descriptiva es
idéntica a la de las RdP. En este apartado introducimos una extensién que no sélo
facilita la descripcion de determinados sistemas, sino que hace posible la descripcion
de aquellos que no pueden ser modelados con RdP. Partamos de uno de estos casos,
en el que consideramos un recurso (un tinel) compartido por dos filas, tedricamente
con un numero ilimitado de usuarios (trenes).

|

(4] 5
— — —-TUNEL — ——
S2

Figura 2.16. Esquema del tiinel con sus accesos.

EsempLo. Supongamos un tiinel con una sola via férrea que puede ser utilizado por trenes
que lleguen en los dos sentidos (figura 2.16), procedentes de dos vias férreas distintas.

Las sefiales a;, e; y s; indican la aproximacion, la entrada y la salida del tiinel, respectiva-
mente, de un tren en el sentido «i».

El sistema debe controlar el trafico de acceso al tinel. Para ello elabora las acciones v; (ver-
de) y r; (rojo), que autorizan y prohiben, respectivamente, la entrada al tinel en el sentido
«in.

Se desea que las salidas del sistema de control sean tales que r; = r, = 1 en los dos casos
siguientes:

@) sino hay tren en espera ni recorriéndolo (el automatismo no sirve mas que para auto-
rizar una via de paso: seguridad intrinseca);
b) si hay un tren que recorre el tinel.

Un tren que espera en el sentido 1 tiene preferencia sobre un tren que espera en el senti-
do 2. Supéngase que puede haber un niimero ilimitado de trenes que esperan en cada sentido.

La descripcion directa del sistema propuesto con una RdP (o RAPG, o RAPC) es imposible.
En efecto, supongamos que E; es un lugar cuyo marcado representa el nimero de trenes que
circulan en el sentido 1 y que esperan para entrar en el tinel. La asignacion del tinel (recurso)
a un tren que circula en el sentido 2 tiene que hacerse cuando E; estd desmarcado. Ahora
bien, las RdP no permiten la comprobacidn directa de la ausencia de marcas en un lugar,
puesto que el disparo de una transicién 8 condicionada por un lugar de entrada E; [E; € 0]
exige que el arco (Ey, 6) sea de peso no nulo, a(Ej,6) > 0.

Reformulando la conclusién sobre el modelado del ejemplo anterior, podemos
afirmar que la limitacion de las RdP reside en que las condiciones que permiten dis-
parar una transicion (provocar el cambio de estado o marcado) exigen que el nime-
ro de marcas de cada lugar de entrada sea estrictamente mayor que cero. Es decir,
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no se puede comprobar directamente el que un lugar no disponga de marcas, fest
de cero. A continuacion presentamos una extension de las RdP que, mediante unos
arcos especiales denominados «inhibidores», afiade la capacidad de comprobar di-
rectamente la ausencia de marcas en un lugar. Posteriormente veremos como se pue-
de simular el arco inhibidor con una RdP cuando el lugar puede contener como mé-
ximo k (acotado) marcas.

Definicion 2.23. Una red de Petri con arcos inhibidores (RAPAI) es una red a la
que se afiaden unos arcos que sélo parten de lugares y van a transiciones, denomina-
dos arcos inhibidores, I(p, ?).

La regla de disparo de una transicién en una RAPAI exige que estén desmarcados
todos los lugares que se encuentren unidos a la transicién mediante un arco in-
hibidor. O

Desde un punto de vista grafico, un arco inhibidor se distingue de un arco normal
merced a una pequefia circunferencia situada en el extremo que incide sobre la tran-
sicién. La figura 2.17 ilustra la sensibilizacion y el disparo de una transicién a la
que llega un arco inhibidor. Como se puede observar, la notacion gréfica del arco
inhibidor deriva de las convenciones de representacién de los circuitos ldgicos, en
los que toda circunferencia pequefia significa negacion (inhibicién).

@ )

Figura 2.17. RdPAI: (@) #; no estd sensibilizada;
(b) disparo de la transicién sensibilizada 7.

COMENTARIOS SOBRE EL EJEMPLO DEL TUNEL

1) La figura 2.18 modela el caso con una RAPAI interpretada. Cada vez que se
produce a;1, el lugar E; aumenta su nimero de marcas en una unidad. Se puede com-
probar facilmente que el marcado de E; representa el numero de trenes que esperan
para entrar en el tinel en el sentido «i».

2) Los lugares m; (figura 2.18) se pueden suprimir (lugares identidad, §3). En esas
condiciones, las transiciones etiquetadas a; se denominan transiciones fuente (véase
§3.5.1). La regla de evolucién del marcado es tal que, si se produce a;t, se dispara
la transicion.

3) Al ser (tedricamente) ilimitado el nimero de trenes que esperan en cada senti-
do, el sistema no se puede modelar con un autémata de estados finitos. La figu-
ra 2.19 propone una modelacidn alternativa basada en una descomposicion PC-PO,
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Figura 2.18. Modelacién del control del tinel (figura 2.16) con una RAPAI (RdP con arcos
inhibidores).

en la que la PC es un GE binario. Evidentemente, se supone que los contadores son
de capacidad ilimitada. Obsérvese c6mo se realiza el test de cero, mediante la inter-
pretacién asociada al GE y no mediante su estructura. En la descripcion de la fi-
gura 2.19 se han «ocultado» las evoluciones simulténeas del sistema al separar los
contadores de la PC.

Desde un punto de vista tedrico, se puede enunciar que las RAPALI tienen la poten-
cia descriptiva de las maquinas de TURING [PETE 81a]. Desde un punto de vista
préctico, se puede afirmar que si el nimero de marcas de los lugares de una RAPAI
que son origen de arcos inhibidores est4 acotado (limitado), existe una RdP que si-
mula la primera. Es decir, en este caso particular las RAPAI no aportardn mds que
una facilidad para la modelacion. Las reglas que siguen permiten simular, en el caso
ultimamente mencionado, una RAPAI con una RdAPG:

RecLA 1. A cada lugar p que posea un arco inhibidor se le asocia un lugar comple-
mentario p marcado inicialmente de acuerdo con la siguiente expresion;
"Mo(P) = k(p) — Mo(p).

Como p y p son complementarios, para cualquier marcado alcanzable,

M, se tendrd: M(p) = k(p) — M(p). El entero k(p) representa el maximo
numero de marcas que puede llegar a contener p al evolucionar el marca-
do en la RAPAI

REGLA 2. Sino es transicion de entrada de p (figura 2.20), el arco inhibidor /(p, 1)
se sustituye por dos arcos normales (no inhibidores) tales que a(p, f) =
= (¢, P) = k(p). En efecto, leer k(p) marcas de D es lo mismo que leer
0 marcas de p, habida cuenta que M( P) = k(p) — M(p).
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[(E) > 1]
Vi, d]
E,
at di?
— Contador 1 ==

r, 2

[(Ev) = 01A[(E2) 2 1]

v2, d2
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e

r,nrn

52
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> PC
E>
d>1
Contador 2 l—— | PO

Figura 2.19. Modelacién del control del tunel (figura 2.16) mediante descomposicion

(separacién PC-PO). (Nota: d; es una sefial de salida de la PC que provoca la
decrementacion del contador i de la PO.)

Figura 2.20. Transformacién de una RdPAI limitada en una RdP que la simula (que posee
idénticas secuencias de disparo).
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En caso contrario, si 7 (73 en la figura 2.21a) es transicién de entrada
de p, el arco inhibidor se sustituye tomando «(j,?) = k(p) vy
B(t, P) = k(p) — B(¢, p). (Compruébelo el lector.) Es decir, se modifica
el peso del arco (¢, p). Eventualmente, si k(p) = g(t, D), el arco (¢, p) des-
aparece [véase la figura 2.21, tomando k(p) = Bz, p) = 1].

La transformacion ilustrada por la figura 2.21 permite comprobar cémo al utili-
zar las RAPALI se puede simplificar la descripcion de la figura 2.7, realizada sin arcos
inhibidores.

A modo de observacién final, es importante sefialar que las reglas de simulacién
de una RAPAI con una RdPG enunciadas anteriormente no son vdlidas si k(p) no
es finito. En este caso, las RAPAI no pueden ser simuladas por RAPG (0 RdP, o
RdPC); las RAPAI son més potentes.

(@) (9]

Figura 2.21. Transformacién de subred con arco inhibidor cuando T, es transicion de
entrada de p y, simultdneamente, de salida de un arco inhibidor que proviene
de p. (Nota. La subred b aparece dos veces en la red de la figura 2.7.)

2.5.2.4 Redes de Petri y transiciones no estdndar

En toda red de Petri la funcion légica que expresa la condicién para que una transi-
cién esté sensibilizada (precondicion) es una interseccidn. Asi, si {p1,2,p3) es el
conjunto de lugares de entrada de ¢, la sensibilizacién de 7 se expresa como sigue:

[M(p1) 2 a(p1, )] AND [M(p2) > a(p2, 1)] AND [M(p3) > a(ps, nl.

Del mismo modo, el disparo de una transicién provoca la modificacién del marca-
do de fodos los lugares de salida. Asi, si { D4, s} es el conjunto de lugares de salida
de ¢, tendremos:

[M(pa): =M(pa) + B(2, ps)] AND [M(ps): = M(ps) + B(t, ps)].

Segun lo anterior, diremos que la l6gica del disparo de transiciones en una RdP
es del tipo INTERSECCION de entrada y de salida (AND—input/output).
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Con el objeto de facilitar el modelado de sistemas, se han propuesto diversas al-
ternativas a la l6gica del disparo de una transicion en las redes de Petri, resultando
otras tantas extensiones. Por ejemplo, la figura 2.22a representa una transicion ¢
con légica O-ExcrLusivo de entrada/INTERSECCION de salida. Su simulacidn directa
con RdP no es posible. La figura 2.22b presenta la simulacion con RAPAI. Eviden-
temente, si los lugares de entrada de ¢ son limitados, la RAPAI de la figura 2.22b
puede ser simulada con una RdPG (§2.5.2.3).

Esercicio. Similese con una RAPAI una transicién-conmutador ¢ (switch [BAER 73]) tal
que t= {p,s} yt = {po,p1]. tse sensibiliza s6lo si M(p) > 0. El disparo de ¢ coloca una
marca en po si M(s) =0, o en p; si M(s) > 0; ademas, si s estaba marcado, se desmarca.

n

5]
(a) (b)

Figura 2.22. Transformacion de las transiciones O-excrLusivo en RdPAI.

2.5.2.5 Redes de Petri coloreadas 1

Las redes de Petri coloreadas han sido introducidas para condensar la descripcion
(v el andlisis) de sistemas en los que se identifican diversos subsistemas con estructu-
ra y comportamiento similares, pero que trabajan en paralelo. A modo de ejemplo,
podemos considerar el caso de los lectores y redactores de §2.4.4.

En una red de Petri coloreada, cada marca puede portar un color que la identifique.
A cada lugar y a cada transicion se le asigna un conjunto de colores. Una transicion
puede dispararse respecto a cada uno de sus colores. El disparo de una transicion
elimina y afiade marcas como en las RdP, pero respetando la dependencia funcional
especificada entre el color del disparo de la transicién y los colores de las marcas.
El color de cada marca puede ser cambiado por el disparo de una transicion.

Como aplicacién elemental, la red de la figura 2.23 representa el sistema de dos
lectores, {a, b}, y dos redactores, {c, d}. Comparando este modelo con ¢l de la figu-
ra 2.9, se comprende inmediatamente que lo que se ha conseguido es una superposi-

1 La presentacién que realizamos es meramente intuitiva y simplista. La definicion formalizada se en-
cuentra en [JENS 81].
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Leyenda. Mo(py) = (a, b}

—D = demanda Mo(ps) = (c,d)

—C = comienzo Mo(p7) = 2x

—F = fin Mo(p2) = M(p3) = M(ps) =
—L -= lectores = M(ps) = 0.

—R = redactores

Figura 2.23. Representacion parcial del sistema de dos lectores (L = {a, b}) y dos redactores
R = {c,d)}).

cién de subredes (folding) gracias a la diferenciacién de las marcas mediante colores.
En la red coloreada de la figura 2.23 se definen los colores siguientes:
—Ilector, L = {a, b};
—redactor, R = {c,d};
—accesibilidad de la memoria, X = {x].

A los lugares {p1, p2, p3) se les asocia los colores L, a los lugares { D4, D5, D6} se
les asocia los colores R y al lugar p; se le asocia el color X.

El disparo de la transicion Dy, si es debido a / = a, provoca el paso de la marca
a al lugar p,. El disparo de Cj, si es debido a / = a, provoca el paso de la marca a
al lugar p3, mientras que p; pierde una marca. La presencia de la marca @ en p; re-
presenta la lectura por parte del lector a.

A modo de comentario final, hemos de sefialar que las RdP coloreadas no incre-
mentan la potencia descriptiva de las RdP ordinarias [PETE 8151, lo cual se com-
prende de forma intuitiva, puesto que no se puede ejecutar el tesi de cero.

2.5.2.6 Redes de Petri temporizadas (RAPT)

El tiempo ha sido introducido de diversas formas en las RdP. Vamos a dar dos defi-
niciones de RdP temporizadas. Se deja a la consideracidn del lector la reflexién so-
bre la relacién entre ambas.

Definiciéon 2.24. Una RdP femporizada (RAPT) es un par (R, Z) tal que
R=(P,T,a,B) y Z es una funcién que asigna un mimero real no negativo, z;, a
cada transicion de lared: Z: T—> R*.

zi = Z(t;) se denomina tiempo de disparo de la transicién #. O

La regla de evolucién del marcado es idéntica a la de una RAPG. La tinica cues-
tién a tener en cuenta es que el disparo de # dura z; unidades de tiempo.
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Definicion 2.24 bis. Una RdPT es un par (R, Z) tal que R=(P, T,o,B) y Z

es una funcién que asigna un numero real no negativo, z;, a cada lugar de la red:
Z:P-R*. O

Una marca en una RAPT puede encontrarse en dos estados: dispuesta o indispues-
ta. Las reglas de evolucién del marcado son idénticas a las de las RdP si las marcas
estan dispuestas. Si las marcas no estdn dispuestas, es como si no existieran en lo
que se refiere a la evolucion en la red. Al pasar a un lugar una marca, entra en estado
indispuesto y pasa a estado dispuesto después de z; = Z(p;) unidades de tiempo.

Esta clase de modelos se utiliza normalmente para la evaluacion de prestaciones
(perfomances).

Las RAPT serdn consideradas en el capitulo 5.

En la literatura técnica se describen otras extensiones de las RdP. En general, co-
rresponden a tipos especificos de aplicaciones.

EJERCICIOS

2.1 Estudiese la RdP de la figura E.2.1. ;Cudl es el papel funcional de ps, ps, pe y p12? Eva-
liese el nimero de estados de un GR equivalente.

2.2 Obténgase una RAPAI equivalente a la RdP de la figura E.2.1. ;Qué tipo de sistema
describe?

Figura E.2.1
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Simplificacién de una descripcién

3.1 INTRODUCCION

La forma en que el disefiador describe un sistema condiciona en parte la compleji-
dad del correspondiente modelo. Esta consideracién ha generado siempre un enor-
me interés por los métodos formales de minimizacién de las descripciones.

Los métodos cldsicos de sintesis de sistemas secuenciales (cuyo nacimiento y ma-
duracion podemos situar entre las décadas de los 50 y los 60) tienden hacia la obten-
cién de una realizacién que tenga el minimo niimero de componentes (puertas, bies-
tables). Este objetivo fue motivado por la fuerte incidencia del coste de los compo-
nentes en el coste total del equipo.

El proceso de sintesis cldsico busca la minimizacién del modelo del sistema; es de-
cir, trata de obtener, en una primera fase, un (el) autémata que modele el sistema
y tenga la menor cantidad posible de estados. No obstante, cabe resaltar que esta
aproximacioén no permite garantizar la consecucién del objetivo enurciado. Dicho
de otro modo, la minimizacién de la descripcién impide @ veces mini-sizar la realiza-
cién posterior.

La distribucién de los costes de estudio, fabricacién y utilizacién de los sistemas
de control es tan diferente en la actualidad que ya no es cuestién de perseguir la rea-
lizacién minima (o cuasi-minima). Los criterios de maximizacién de la modificabili-
dad, de la reparabilidad, etc., desempefian un papel absolutamente preponderante.
No obstante, la cuantificacién de estos objetivos se hace tan compleja, que sélo po-
drdn definirse las lineas fundamentales en las que se basa la busqueda de «las buenas
realizaciones».

Los métodos de simplificacion de una descripcidn propuestos en este capitulo se
centran en dos ideas fundamentales:

1) reducir, jno minimizar!, el nimero de lugares y/o transiciones de la descrip-
cién inicial;

2) conservar «el sentido fisico» de la descripcién inicial, lo que conduce a que se
realicen sélo simplificaciones locales.

63
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Al carecer de una definicion formal de los criterios para la reduccién de la com-
plejidad, la simplificacion se deberd realizar en pasos sucesivos, dejando las de-
cisiones al disefiador. Ndtese en este punto que se establece de nuevo una dife-
rencia fundamental con los métodos cldsicos de sintesis, en los que la minimizacién
se realiza de forma totalmente automadtica. Esta diferencia de objetivos y técni-
cas utilizadas justifica el cambio de denominacion: simplificacidn en lugar de mini-
mizacion.

A pesar de que la simplificacidn constituye una etapa optativa dentro del proceso
de concepcién, pensamos que el conocimiento de las técnicas de simplificacion que
se presentan le resultard interesante al disefiador, puesto que le permitird profundi-
zar sobre la modelacion con RdP. De esta forma se hace posible el establecimiento
directo de descripciones «simples».

A partir de una clasificacion de los diferentes tipos de simplificacion de RdP, se
abordari un estudio detallado de algunas técnicas de simplificacién. El capitulo ter-
minard con un ejemplo de descripcién al que se aplicardn las diferentes técnicas
presentadas.

3.2 CLASIFICACION DE LOS TIPOS DE SIMPLIFICACION

Los diversos tipos de simplificacién que vamos a describir tienen por objeto la ob-
tencién de una RdP que «equivalga» funcionalmente a la RdP inicial, pero de una
complejidad menor. Se clasifican en dos grupos bien diferenciados.

3.2.1 Simplificaciones estructurales

Se trata de simplificaciones independientes de la interpretacién que se le asocie a la
RdP. En ellas sélo se consideran en principio la estructura y el marcado inicial de
la RdP.

El objetivo que se persigue es la eliminacién de redundancias de tipo estructural,
consistentes en la definicién de falsas evoluciones paralelas. Los lugares que definen
las falsas evoluciones se encuentran implicitos. En §3.3 presentaremos técnicas efi-
caces para su deteccién y eliminacion. Estas técnicas de simplificacién son especifi-
cas de las RdP.

3.2.2 Simplificaciones que tienen en cuenta la interpretacion asociada a la RdP

Estas simplificaciones se realizan sobre RdP binarias e interpretadas, a las que se
afiade como informacion suplementaria las condiciones envolventes de sus lugares
(§2.3.3, definicién 2.16).

En este grupo de simplificaciones se pueden incluir diferentes técnicas desarrolla-
das para los grafos de estado, pero que no expondremos en este texto (diagramas
de Girard, [GIRA 73], grafos de proceso [DACL 76], etc.).

Mediante el aporte de informacién, se pretende extraer funcionamientos no se-
cuenciales en la descripcion del sistema. Las dos técnicas de simplificacién presenta-
das son las siguientes:
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1) Fusidn de lugares, que permite simplificar la parte secuencial, pero que, en
contrapartida, suele incrementar la complejidad de la parte combinatoria.

2) Supresion de conexiones entre lugares, que hace posible la eliminacién de
los lugares que: (1) debido a la supresiéon de las mencionadas conexiones,
no desempefien ningin papel secuencial, y (2) no tengan asociada ninguna
salida.

La técnica que permite estudiar la supresién de conexiones se denomina método
de los lugares fuente.

3.3 METODO DE LOS LUGARES IMPLICITOS

3.3.1 Concepto de lugar implicito y simplificacién de la RdP

De forma intuitiva podemos decir que, en una RdP marcada, un lugar implicito es
aquél que cumple las condiciones siguientes:

1) su marcado se puede evaluar en funcién del marcado de otros lugares;
2) jamads es el unico lugar que impide la sensibilizacién de sus transiciones de
salida.

Puesto que la evolucién del marcado puede expresarse linealmente (§2.2.2), elegi-
remos una funcion lineal para calcular el marcado de un lugar implicito.

Antes de abordar una definicion formal consideraremos un ejemplo introducto-
rio. Observando la figura 3.1, se puede deducir que p, es un lugar implicito. En efec-
to, es facil comprobar que:

1) el marcado de p», M(p-), se puede calcular en funcién del marcado de ps y de ps:
M(p>) = M(ps) + M(pa);

2) p» posee una tinica transicion de salida, que es #3. Ahora bien, M(p2) = M(ps) +
+ M(pa) = M(p2) = M(pas) y, por consiguiente, no se puede obtener el marca-

(19 (19
h 151

(3) & (3) 51,85
2) H f

o Sz 0 82, 53

1] 5]

Figura 3.1. Eliminacién de p, (lugar implicito que estd «en paralelo» con ps-ps).
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do M(p2) = 0y M(ps) = 1. Este ultimo marcado seria el inico en el que p, fue-
se el unico lugar que impide la sensibilizacién de 3.

En conclusidn, la eliminacién de p, no altera la relacion evento-accidén definida
si asociamos la salida S; a los lugares ps y ps.

Podemos afirmar que si un lugar se encuentra en paralelo con una rama de la
RdP, éste es implicito siempre que los lugares de la rama no contengan un nimero
de marcas superior al que posee el lugar. Un lugar implicito define una falsa
evolucion paralela.

Formalicemos ahora el concepto de lugar implicito. Es interesante destacar que
la definicidn y todos los tratamientos posteriores son también validos para simplifi-

car las RdPG.
"~ Sea |P| =n.

Definicion 3.1. Un Jugar p; esta implicito en la red marcada (R, My) si para todo
marcado alcanzable se verifica que:

D Mp)= 2 NM(p) +r NEQT,ueQ
J=
i
2) Ypje P — {pi} M(p)) = apjs tk) = M(pi) 2 a(pi, tk).

Todo conjunto de lugares IT; = { p;| \; > 0} se denomina conjunto de lugares impli-
cantes de p;. [

El conjunto de lugares implicantes de p, (figura 3.1) es { p3, pa}.
La simplificacién de las RAP por eliminacion de los lugares implicitos se desarro-
llara en dos etapas:

1) la bisqueda de los lugares implicitos;
2) su eliminacién, y asignacién de sus salidas a los lugares implicantes (véase la
figura 3.1).

En los apartados que siguen estudiaremos en detalle ambas etapas.

3.3.2 Bisqueda de los lugares implicitos

En este apartado presentaremos tres proposiciones. La primera establece una condi-
cién necesaria para que un lugar pueda estar implicito. Su interés radica en que la
seleccion de lugares potencialmente implicitos se realiza con un algoritmo de com-
plejidad lineal en funcién del nimero de lugares de la RdP. La segunda proposicion
permite determinar, en condiciones generales, si un lugar estd implicito. La tercera
proposicién facilita la determinacion de los lugares implicitos en un caso particular
de gran interés practico.

Condiciones necesarias para que un lugar pueda estar implicito (proposicion 3.1).
Para que p; esté implicito es necesario que sus transiciones de entrada tengan mas
de un lugar de salida y sus transiciones de salida tengan mds de un lugar de entrada.
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Es decir, si p; estd implicito se cumplird que:

1) vtiepi Itjl > 1.
2) viwepi ||l >1. O

DEMOSTRACION. Si Zjep; y |tj] = 1, su disparo aumenta el marcado de p; en
B(t;, pi) unidades sin que por ello se aumente el resto del marcado. Por lo tanto, no
se puede evaluar el marcado de p; en funcidn del resto del marcado.

Andélogamente, si tx €p;' y |'#k| = 1, el disparo de #x disminuye el marcado de p;
en a(pi, tx) unidades sin disminuir el resto del marcado. (J

Esta proposicion permite seleccionar un subconjunto de lugares de la RdP entre
los que se encontrardn los lugares implicitos, si los hubiere. De esta manera se evita
la aplicacidn indiscriminada a todos los lugares de la red del andlisis que sigue.

EremMpLo. La aplicacion de la proposicion 3.1 a la RdP de la figura 3.2 indica que los lu-
gares { ps, pe, P71, ps} no pueden estar implicitos. Los lugares potencialmente implicitos son
{1, D2, D3, D4}

t t2 t3 4 ts te
(-1 0 0 0 +1 0) p
-1 0 0 0 0 +1 D2
0 -1 0 0 +1 0] ps
e | 0 -1 0 0 0 +1| p
+1 0 -1 0 0 0 Ds
0 +1 -1 0 0 Dé
0 0 +1 0 -1 0| p;
L0 0 +1 0 —-1J pg

Figura 3.2 p; y ps4 son implicitos (p; estd «en paralelo» con { ps, ps, ps, p2}).

Para abordar la determinacién de lugares implicitos conviene introducir las si-
guientes notaciones. Sea &; = B(4, pi) — a(pi, t)). La matriz C =[] x m se deno-
minaré matriz de flujo de marcas. I(p;) es la i-ésima fila de C» x m. Si o es aplicable
a partir de Mo, My = My + C - 5 (incluso si la red no es pura). Evidentemente, si la
RdP es pura, € = Cyl(pi) = I(p); es decir, las matrices de flujo de marcas y de inci-
dencia coinciden.

Determinacién de lugares implicitos (proposicién 3.2). Un conjunto de lugares IT;
implica al lugar p; si se verifican las condiciones siguientes:
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C1) Mo(p) = 2 NMo(p) +

pieTl;
C) Ip) = Zn Nl(p)) NeQt, peq.
pjelli
Ci) Viepi alpint) < 2 Nl t) + p u

pjell;

DEMOSTRACION. Las primera y segunda condiciones son necesarias y suficientes
para que se cumpla la primera parte de la definicion de lugar implicito. En efecto,
la primera condicién resulta de la particularizacion de la primera parte de la defini-
cion de lugar implicito para el marcado inicial. La segunda condicion se deduce al
escribir la ecuacion que establece la evolucidn del marcado del lugar p; (particulari-
zacion para p; de la ecuacion M = M, + C. 0):

M(p) = Mo(p) + l(p) - 6 = 2INMo(p) + p + I(p) - 6.
J

Ahora bien, si p; es implicito se podra escribir:
M(p) = ;NM(PJ) +p= ;Xj[Mo(pj) +1(p) - 3 + p.
Igualando las dos expresiones que definen M(p;) se obtiene:
ip)-5= ;Mf(pj) - 0.
Por 1ltimo, como la identidad anterior es cierta para cualquier o, se concluye que
itp) = ; NI(p)-

A la vista del proceso de demostracion, se puede observar que la condicion 1 de
la definicidn de lugar implicito se descompone directamente en una condicion inicial
C, y otra condicidn estructural C,. Razonando en sentido inverso, estas condiciones
se componen para dar la condiciéon 1 de la definicion 3.1.

La tercera condicidn de la proposicion garantiza que p; no sea nunca el unico lu-
gar que impida la sensibilizacién de una transicion (segunda parte de la definicién
de lugar implicito). En efecto, si se cumple:

a(pi, te) € ) Na(pj, te) +p Vik€pi
pjell; !

M(pj) = a(pj, tk) (es decir, los p; sensibilizan #),
entonces se verifica la expresion:
a(pi 1) < 2 NM(p) + k= M(p)

pjell;
En conclusion, si M(p)) = a(pj, tk), pi sensibiliza . [
La proposicién 3.2 comprende tres condiciones que permiten garantizar el que un

lugar sea implicito. De su observacién se deduce que todo proceso de determinacion
de lugares implicitos debe comenzar por el célculo de un conjunto de lugares y de
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\j que verifique la-condicién Cs. Acto seguido, utilizando la condicién C;, se deter-
mina el valor de p y, por ltimo, se comprueba si se cumple la condicién Cs. -

Erempro. Para la RdP de la figura 3.2 tenemos:

C2) U(p1) = Up3) + Upe) + Ups) +.1(p2)
Ci1) . Mo(p1) = Mo(p3) + Mo(ps) + Mo(ps) + Mo(p2) =1=p=0
C3) a(pr, ) = alpartD) + alPertt) + alPertn) + alp2, 1) = 1,

luego p; es un lugar 1mplicxto yILi = { D3, D6: P8, P2 } es un conjunto de lugares implicantes.

A continuacién demostraremos que las tres condiciones que permiten determinar
lugares implicitos (proposmn’m 3.2) se pueden reducir a las dos primeras si el lugar
pi no.es simultdneamente lugar de entrada y de salida de una misma transicion

(piNpi=)ypn=0.

Método simplificado para la determinacién de lugares implicitos (proposicién
3.3). Si 'piNpi = @ y = 0, entonces la tercera condicién de la proposicién 3.2 es
redundante con la segunda condicién de la misma proposicion, y bastard con verifi-
car las dos primeras. (J

DEMOSTRACION. Si 'p:Npi = (J, entonces Vix € pi se tendré B(fx, pi) = 0. Esto im-

plica que c,k —a(pi, t), y por la segunda condicion de la proposicién 3.2 se podra
escribir: '
- Ol(pn tk) = Z )‘J[B(tky pj) a(pj’ tk)] =
pjell; .
=apit) = 33 Mlepj, 1) = Bltie P < 23 Nepi 1)
pjelli : pjelli

Por consiguiente, si u > 0 se cumplird que (condicién 3 de la proposicion 3.2):

a(pi, tk) € Z )\JOI(PJ, tx) + p. U

pjelli

‘El resultado de la proposicion 3.3 permite garantizar que p; (figura 3.2) es un lu-
gar implicito, sin necesidad de comprobar la verificacion de la tercera condicién de
la proposicién 3.2.-

~ Elproblema fundamental que queda por resolver es la determinacion del conjunto
de lugares implicantes y de los \; correspondientes. Para ello vamos a considerar el /u-
gar complementario p;. Siguiendo la definicion 2.22 se tendra i(p) = —1(p)), de donde:

l(p,) = Zx,l(pj) = i(p) + Zx,l(p,)

Es decir, si consideramos p; en vez de Di, hemos de encontrar un conJunto de luga-
res, { pj}, y de coeficientes no negativos, {\;}, que cumplan la ecuacién anteriorf.

t Volveremos a este problema en el capitulo 4 -(§4.7.1) al estudiar las componentes conservativas de
una RdP. :
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La matriz en la que sustituiremos {(p;) por {(p:) serd representada por Cpi.

Para determinar si existe una o varias sumas ponderadas con coeficientes positi-
vos de las filas asociadas a p; y { pj} que sean nulas, aplicaremos el algoritmo que
presentaremos a continuaciont. Si no existiera ninguna solucién, de acuerdo con la
proposicién 3.2, el lugar p; no podria estar implicito.

El algoritmo que se considera calcula todas las soluciones no negativas elementa-
les del sistema de ecuaciones D, - Cp, = 0 en que aparece {(py); es decir, todas las
soluciones de la forma D,, - I(5;) + ;Dy;+ i(pj) =0, donde Vj#i D, >0y
D,, > 0. A partir de las soluciones elementales se puede obtener cualquiera otra no
negativa mediante sumas, exclusivamente. Desde un punto de vista operativo se pro-
cede de forma iterativa anulando columnas de una cierta matriz. La anulacion de
una columna se realiza sumando pares de filas y eliminando otras filas. La ejecucion
de la iteracion termina cuando se han anulado todas las columnas de las combina-
ciones en que aparece como sumando la fila asociada a p;.

Sean [D’ i A7] e [I,] 1a matriz obtenida a partir de [D°  A°] después de j iteracio-
nes y la matriz unitaria de dimensién », respectivamente.

ALGORITMO PARA DETERMINAR LOS CONJUNTOS DE LUGARES POTENCIALMENTE IMPLI-
CANTES DE pi

(1) j:=0;[D’ i A): = I § Cpls
(2) Mientras que exista D%, # 0y A%, #0
hacer 2.1 Afiadir a la matriz [D’ i A’] todas las filas que resulten como
combinacion lineal positiva de pares de filas de [D’iAly que
anulen la k-ésima columna de A’. '
2.2 Eliminar las filas en las que la k-ésima columna de A’ sea no
nula.
2.3 ji=j+1;
(3) Las filas ¢ de la matriz D firlal en las que D, # 0, representan soluciones
de la forma buscada (Dy; - (i) + 2ijDy; - I(pj) = 0).

Nota. El papel que desempeiia la fila ¢ de la matriz DY es el de recordar la combi-
nacién de filas de Cp, que representa la ¢-ésima fila de A’. Por consiguiente, en
una aplicacién manual se puede sustituir. la matriz D’ por la expresién directa de
la suma de las filas originales de A% = C,,. De esta forma se procede en el ejemplo
siguiente.

EseMpro. Para ilustrar el algoritmo anterior, vamos a determinar si el lugar potencialmente
implicito p; (figura 3.2) puede ser implicito. En caso afirmativo determinaremos los conjun-
tos de lugares implicantes.

+ Una justificacién formal del algoritmo se deduce directamente de lo expuesto en §4.7.2.2a.



METODO DE LOS LUGARES IMPLICITOS 71

Paso 1. La matriz [D°}A°) es [f3iCp,):

) k =1 2 3 4 5 6 n°defila
+1 0 0 0 0 0 0 0 i+41 0 0 0—-1 0 W
041 0 0 0 0 0 0 i—-1 0 0 0 0+1 V)
0 0+1 0 0 0 0 0 i 0-1 0 0+1 0 3)
0 0 041 0 0 0 0 { 0-1 0 0 O+l @
0 00 041 0 0 0 {41 0-1 0 0 0 5)
0 000 0+1 0 0 i 0+1 0-1 0 O ©)
0 0 0 0 0 0+1 0 0 0+1 0-1 0 0)
| 0.0 0 0 0 0 0+1 0 0 0+1 0-1 ®)
Paso 2.

e Jteracion n.° 1: ¢ (Ginico) = 1. k=1 0 k= 5. Sea, por ejemplo, k = 1.
(2.1) Las filas que se deben afiadir son:
+1+1 0 0 0 0 0 O 0 0 0 0-1+1 ®=01)+@2)
0+41 0 041 0 0 0 i 0 0-1 0 0+1|] (AO=Q)+(©)
(2.2) Las filas que han de eliminarse son la (1), la (2) y la (5) (puesto que AN =0,
A% #0y A% #0).
e Jteracidn n.° 2: ¢ (tinico) = 9. k =5 o k = 6. Sea, por ejemplo, k = 5.
(2.1) Las filas que se deben afiadir son:
0 041 0 0 0+1 0 { 0-141 0 0 O] (AN=E)+(?
+1+1+4+1 0 0 0 0 O 0-1 0 0 0+1 12)=@3)+ 9 =
=@3)+ M+ Q).
(2.2) Las filas que se deben eliminar son la (3), la (7) y la (9) (puesto que A3s #0,
Als %0y Abs # 0). La matriz que se tiene en estos momentos es: [D*iA4%):

0 0 041 0 0 0 0 { 0-1 0 0 O0+1 @

000 0 O0+41 0 0 i 0+1 0-1 0 0| (6

00 0 0 0 0 0+41 i 0 0 0+1 0-1| (8

0+1 0 0+1 0 0 0 i 0 0-1 0 O0+1| (1O=@)+(©)

0 0+1 0 0 O0+1 0 i 0-1+1 0 0 O AN=E)+(
#14141 0 0 0 0 0 i 0-1 0 0 0+1] (AY=M+@+O)

e Iteracidn n.° 3: ¢ (Ginico) = 12. k =2 o k = 6. Sea, por ejemplo, k = 2.
(2.1) Las filas que se deben afiadir son:

0 0 041 041 0 0 i 0 0 0-1 0+1| (I3)=@+(©)
0 041 0 0+1+41 0 i 0 O0+1—-1 0 0| (MH=@+UN=E+)+ ()
414141 0 041 0 0 ¢+ 0 0 0-1 0+1]| (1H=EO+1AY=E+()+0O)

=6)+M+@+0)
(2.2) Las filas que se deben eliminar son la (4), 1a (6), la (11) y la (12).
o Jteracion n.° 4: ¢ (4nico) = 15. k =4 o k = 6. Sea, por ejemplo, k = 4.
(2.1) Las filas que se deben afiadir son:

0 0 0+41 0+1 0+41 { 0 0 0 0 0 O 16)=@®)+13) =@ + 4 + (6)
0 041 0 O+1+1+41 §{ 0 0+1 0 0-1 AN=@)+1)=@)+B@)+©®) + ()
+1 4141 0 0+1 041 { 0 0 0 0 0 O a8) =@ +U5=®+®) +3)+0©)

@+@®+M+2)+0)
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2. 2) Las filas que se deben ehmmar son la (8), la (13) la (14) yla (15) La matriz que
se tiene es [D4 A“]

0.41 0 041 0 0 0 0.0+1 0 0=1| (10=@+(

0 0 041 0+1 .0+1 0 00 0 0 0 (1=@+®)+®) -

0 0+1 0 O +1 +1 +1 0 0+1 0 0-1 AN =@)+©)+ () + (8
+1 +1 +1 0. 0+1 0 +1 i 00 0 0.0 O (18)£(l)+(2)+(3)+(6)+(8)

e Iteracion n ° 50 (umco) 18. Como no existe k tal que A18k #0, la 1terac16n ha ter-
minado (no se reejecuta).
Paso3. La fila etiquetada 18 en D* (4 2 en la wltima matriz, [D4 A ]), indica que I'(pl) + I(pz) 48
+ Kp3) + Rpe) + lps) =

Segiin la proposicién 3.1, inicialmente sdlo { p1, p2, p3, p4) (figura 3.2) pueden es-
tar implicitos. Si por estar implicito se elimina p;, al reaplicar la proposicion 3.1 sélo
aparece ps como potencialmente implicito. Un estudio detallado (ejercicio que se
propone al lector) indica que p4 también estd implicito.

Esercicio. Demuéstrese la plioposicién 3.1 a partir de la proposiciéh 3.2. (Sugerencia: apli-
quese el algoritmo anterior y compruébese si se verifica la condicién estructural.)

Erercicio. Compruébense los resultados anuhciados en la figura 3.3. ;Se puede simplificar
alin mads alguna de las RAP marcadas? (Sugerencia: determfnense de antemano los lugares
potenmalmente implicitos.)

Eercicio. Determinense los lugares implicitos (figura 3.3) si se realizan los camblos si-
guientes en los marcados iniciales:

a) aiiadir una marca a cada lugar p»,
b) afiadir una marca a cada lugar Py pa.

Antes de abordar el estudio de la asignacion de las salidas asociadas a los lugares,
implicitos, consideremos un caso particular de especial interés. Se trata del estudio
de un lugar cuya fila i( p;) sea inicialmente nula. En ese caso p; no tlene ninglin lugar
implicante, |IT;| = 0. Diremos que p; es un lugar identidad. ‘

Las condiciones 1 y 3 de la proposicion 3.2 pueden escribirse del signiente modo:

C1) Mo(pi) =n
( M i) 2 iy \ 4 e
Cy) a(pi?) < I‘«} = Mo(p) = a(pi, ) Ytep

De aqui se deduce que la eliminacién de p; sélo es posible si inicialmente contiene
suficientes marcas para disparar cualquiera de sus transiciones de salida. El lugar
p (figura 3.4) sélo puede ser eliminado si inicialmente contiene un nimero de marcas -
superior o igual a max(o, az). ‘

3.3.3 Asighacién de las acciones asociadas a un lugar implicito

En el apartado anterior hemos estudiado la bisqueda de los lugares implicitos. Si
éstos no poseen ninguna accion (salida) asociada, se pueden eliminar sin mayor re-
paro. Ahora bien, si un lugar implicito tiene asociadas acciones, hemos de asignarlas
a otros lugares de forma tal que la coordinacién evento-accién se mantenga.
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Figura 3.3. Ejemplos en los que p; estd siempre implicito.
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Figura 3.4. Si Mo(p) > max(ay, az), p es un lugar identidad en la subRdPG.

Si un lugar p; estd implicito, sabemos que:
M(pi) = 2NM(p)) + 1,
J

es decir, se puede calcular el marcado de p; como suma de una serie de términos.
En estas condiciones generales, resulta evidente que se ha avanzado poco al eli-
minar un lugar implicito, puesto que para la realizacién de la red habra que intro-
ducir la capacidad de sumar y restar. Si considerdsemos una realizacion cableadat
se eliminaria un dispositivo 16gico (memoria) a cambio de un dispositivo de calculo
aritmético.

Supongamos que p; solo puede estar o marcado o no marcado (p; es binario) y
» = 0. En este caso, siempre que algtn lugar implicante esté marcado, también lo
estard p; y, por consiguiente, serd posible sustituir la suma aritmética por la unidn
ldgica. En conclusidn, si p; es binario y p = 0, asignaremos el conjunto de acciones
asociadas al lugar implicito a cada uno de los lugares implicantes.

El caso anterior es el de tratamiento mds sencillo y, afortunadamente, el que se
presenta con mayor frecuencia. Cuando p; es binarioy u < 0 o pu > 1, es posible, en
cada caso particular, expresar el marcado de p; como funcion ldgica del marcado
de sus lugares implicantes.

En todos los ejemplos tratados hasta ahora (figuras 3.1, 3.2 y 3.3) hemos encon-
trado RdP binarias, y p = 0. En estos modelos ¢l problema de la asignacién de ac-
ciones (salidas) no plantea dificultad alguna. En la RdP de la figura 3.5, el lugar
Do estd implicito, pero u = —1. De este modo, s9 no se puede calcular como unidn
de un conjunto de marcados, pese a que ps es binario. No obstante, podemos trans-
formar la expresion aritmética (suma) en una expresion légica. En efecto, es facil
comprobari que, por ejemplo, la siguiente expresion /dgica define el marcado de py:

M(po) = M(p7)[M(ps) + M(p5)].

Esercicio. Compruébese que en la RdP de la figura 3.5:

1) después de eliminar py, es posible eliminar p;;
2) en vez de eliminar { p2, ps) se puede eliminar { p;, p7}, obteniéndose siempre p = 0.

t Véase el capitulo 6.
1 Para ello se puede obtener, por ejemplo, el grafo reducido (GR) equivalente (§1.5.4) y analizar los mar-
cados alcanzables.
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1) {ps) = {(p3) + Kps) + l(ps) + i(pr)
2) My(ps) = Mo(p3) + Mo(ps) + Mo(ps) + Mo(p7) + p= 0
N~ “ _J

~
1 0

luego p = —1
3) a(ps,e) = a(ps, €) + a(pas, €) + a(ps,e) + a(pr,e) —1=1

N N—/ N~ N/ N~/
1 0 0 1 1

Figura 3.5. RdP marcada y conforme (binaria y viva). El lugar py estd implicito, pero pu # 0

&= -1.

3.4 METODO DE FUSION DE LUGARES

En este método de simplificacion aprovecharemos la interpretacién asociada a la
RdP para detectar lugares equivalentes y lugares compatibles; posteriormente proce-
deremos a fusionar dichos lugares. Hemos de resaltar que este método de fusion no
s6lo se basa en propiedades estructurales de la red, sino que se encuentra estrecha-
mente ligado a la interpretacién a ella asociada.

Para evitar cambios importantes en la estructura de la red que traigan como con-
secuencia una pérdida ostensible de la significacion del modelo, vamos a limitar
voluntariamente las posibles fusiones entre lugares. Dada una red, restringiremos
las fusiones entre lugares a aquéllas que sean posibles dentro de cada subRdP obte-
nida al eliminar los nudos Y (transiciones con mds de un lugar de entrada o/y de
salida) en la red original. Ello implica en todas las subRdP que cada lugar sera el
unico lugar de entrada [salida] de sus transiciones de salida [entrada] que no hayan
sido eliminadas.

3.4.1 Lugares equivalentes o directamente fusionables

Definicién 3.2. Dos lugares p; y p; son directamente fusionables o equivalentes, si:

1) Coinciden los conjuntos de acciones a ellos asociados.
2) Para cada transicion de salida de p; existe otra de p; que tiene el mismo lugar de
salida y a ambas se les ha asociado idéntico par evento-condicién externa. [
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@ .
__/o S §=Q Ciclo a
®

_D.. 5=1 ® = Ciclo b

®

Figura 3.6. Diagrama de evoluciones previstas para el sistema descrito en el ejemplo.

En efecto, en tal caso no es necesario distinguir cuando una marca corresponde
a p; y cuando a p;. Por desgracia, este tipo de fusién suele ser poco frecuente.

Introduzcamos ahora un ejemplo que nos servird para ilustrar este tipo de fusion,
as{ como para ilustrar el que presentaremos en el apartado siguiente.

EseMpLo. Sea un 6rgano movil, con un movimiento lineal, que puede accionar cuatro con-
tactos, A, B, C'y D, como se muestra en el esquema de la figura 3.6.

El contacto A se cierra (A « 1) cuando el érgano mdvil lo sobrepasa hacia la izquierda.
El mismo contacto se abre (4 < 0) cuando el 6rgano moévil lo sobrepasa hacia la derecha. La
definicion del comportamiento de los contactos B, C'y D es la inversa. Sus aperturas y cierres
se llevan a cabo cuando el 6rgano mévil los sobrepasa hacia la izquierda y la derecha,
respectivamente.

Si el 6rgano mévil se encuentra sobre A estando M pulsado, comienza un ciclo @ o un ciclo
b, segiin que el selector S esté abierto o cerrado. Supongamos que S toma su valor antes de
iniciarse un ciclo y lo conserva hasta que el ciclo termina.

La figura 3.7 presenta una posible descripcién del automatismo.

Sobre la descripcion del automatismo (figura 3.74) podemos realizar una primera fusion

entre ps y pe. En efecto, ambos lugares cumplen las condiciones de la definicién 3.2
1) la accién asociada a ellos es la misma: i;
2) la etiqueta asociada a las transiciones p3 = p1 ¥ Ps = p1 €s la misma: A.

En conclusién, podemos fusionar ps y ps aunque no seamos capaces de determinar si es
uno u otro el lugar que estd marcado en la descripcion inicial cuando el lugar de fusion pse
esté marcado.

Por razones didécticas no realizaremos esta fusién inmediata. En el préximo apartado pre-
sentaremos otra condicién suficiente para que dos lugares cualesquiera puedan ser fusiona-
dos.

3.4.2 Lugares compatibles

3.4.2.1 Introduccion

Para que sea posible la fusién de dos o mas lugares en una red binaria es suficiente
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variables de entrada

A|B|C|D|M|S

lugares p | A | B|C|D|—|—
p|—|—|—=|D|—|-

pp|lA|—|—|—=|—1|3S§

ps|A|B| —-|D|—| S8

ps|lA|l—|—|D|—|S

ps | A|—|—|—|—1| S8

(a) Grafo reducido (b) Estado de las variables de entrada

Figura 3.7 Descripcién del automatismo que posee los dos ciclos de trabajo (figura 3.6).

con que seamos capaces de determinar, cuando el lugar de fusién est4 marcado, cual
de los lugares fusionados es el marcado en la descripcion inicial. Para ello se requie-
re afiadir una informacién complementaria a la que posee la RdP inicial interpreta-
da. Recuérdese (§1.4.2) que un modelo construido con una RdP interpretada contie-
ne una informacién minima.

El aporte complementario de informacién lo realizaremos especificando, para ca-
da lugar, el estado de las variables de entrada cuando éste se encuentre marcado.
Dicho de otra forma, determinaremos las condiciones envolventes (§2.3.3) de los
distintos lugares de la RdP.

Volviendo al sistema de la figura 3.6, detallemos cémo se aporta la informacion
complementaria para simplificar la descripcion de la figura 3.7a.

En la tabla de estado de las variables de entrada (figura 3.7b) asociamos una fila
a cada lugar y una columna a cada variable de entrada. En la casilla definida por
el lugar p; y la variable de entrada e; colocamos e; 0 &; dependiendo de si, cuando
pi estd marcado, la variable e; solo toma el valor «1» o el «0», respectivamente. Si
e; puede tomar los dos valores cuando p; estd marcado, en la casilla correspondiente
colocamos «—». Asi es facil observar que, cuando ps esté marcado, los contactos
A y D estaran abiertos y el selector S estard cerrado.

Para rellenar la tabla de estado de las variables de entrada se puede razonar tam-
bién a partir de las columnas. Por ejemplo, el pulsador M puede ser accionado in-
tempestivamente en cualquier momento y, por lo tanto, se colocard «—» en toda
la columna.

Partiendo de la tabla de estado de las variables de entrada, se pueden escribir in-
mediatamente las condiciones envolventes asociadas a los lugares, »;i (§2.3.3).
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Este método de simplificacion por fusidén de lugares implica una disminucién de
la parte secuencial de la descripcion (puesto que al realizar las fusiones existirdn me-
nos lugares), pero incrementa la complejidad de la parte combinatoria (puesto que
se complicarédn las funciones que definen los eventos, las condiciones externas y las
salidas).

" Desde un punto de vista operativo, se pueden distinguir dos fases en la aplicacion
de este método de simplificacidn:

1) estudio de condiciones suficientes para efectuar la fusion propiamente dicha;
2) célculo de los eventos T y de las condiciones que permitan asegurar la coordi-
nacién evento-accion de la descripcidn inicial.

3.4.2.2 Compatibilidad y conjuntos de lugares fusionables

Definicién 3.3. Se dice que dos lugares distintos son compatibles si la interseccién
de sus condiciones envolventes es nula. Es decir, p;, pj son compatibles si »;»; = 0.
Por otra parte, todo lugar es compatible consigo mismo. [J

Esto significa que, si el lugar obtenido tras la fusidon de dos lugares compatibles
se encuentra marcado, a partir del conocimiento del estado de las variables de entra-
da se puede discernir, sobre la descripcion simplificada, cudl de los lugares de la des-
cripcion primitiva estard marcado.

Es fécil verificar que la «fusionabilidad no inmediata» es una relacién de compa-
tibilidad, puesto que la transitividad no se asegura. En efecto, en el caso considera-
do (figura 3.7b) se puede observar que »1vs = 0y vivs = 0, pero vavs # 0.

En conclusién, nos encontramos frente a un estudio de compatibilidad, el cual no
depende de las acciones asociadas a los lugares ni de las transiciones de salida de éstos.

El problema de maxima simplificacion se reduce a obtener la (una) descripcion
que posea el minimo mimero de lugares. Su tratamiento se puede realizar a partir
de la determinacion de los conjuntos médximos fusionables, o sea, de los compatibles
mdximos. §

Para facilitar la determinacion de los compatibles mdximos vamos a introducir
una representacién tabular de la relacién de compatibilidad. Esta se denomina tabla
de pares compatibles.

Una tabla de pares compatibles especifica, para cada par de elementos (lugares),
si son o0 no compatibles. Si la relacion estd definida sobre un conjunto de » elemen-
tos, y dado que la compatibilidad es una relacion reflexiva y simétrica, la tabla po-
seerd sélo n(n — 1)/2 casillas (tabla 3.1). La casilla ij contiene la interseccidn de las
condiciones envolventes de los lugares correspondientes, »;v;.

t Las definiciones 2.13 y 2.14 precisan los conceptos de condicién externa y de evento. Para simplificar
la terminologia, en lo sucesivo hablaremos de «evento» en un sentido amplio de la palabra, refiriéndo-
nos al par (o pares) evento-condicién asociado a una transicion.

1 Sea P un conjunto (de lugares) sobre el que se define una relacidn de compatibilidad. Una clase de com-
patibilidad es un subconjunto de P tal que todos sus elementos son compatibles dos a dos. Se llama
compatible mdximo a una clase de compatibilidad que no est4 contenida en ninguna otra. En [DACL
76] o [TORN 72] se encontrard un método para la obtencién de los compatibles maximos basado en
la construccién de los incompatibles maximos.
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D+cCS

(a) Fusién de {1, 3, 4) (b) Fusion de {1,3,6)

Figura 3.8 Grafos reducidos simplificados.

v1 = ABCD
vo=D 2 | ABCH
o ' Nota.
vs = AS 3 0 ADS Sivivi=0
o _ L bi 'y pjson
vs = ABDS 4 0 ABDS- 0 - incompatibles
vs = ADS 5 0 ADS§ 0 ABDS-
ve = AS 6 0 ADS 0 ABDS- | ADS
1 2 3 4 5

Tabla 3.1 Condiciones envolventes y tabla de pares compatibles (fusionables).

Sea C; el subconjunto de elementos j (lugares p;) definido por las casillas nulas
de la columna i (subconjunto de lugares compatibles con p;). En la tabla 3.1 se tiene
C;=1(3,4,5,6}, C3={4,5,6}) y C, = C4 = Cs = . Por otro lado, sea k el ma-
yor indice de elemento (lugar) cuya columna en la tabla contenga al menos un par
compatible (k = 3 en la tabla 3.1 puesto que Cs=C4s = y C3 # ).

ALGORITMO PARA LA OBTENCION DE LOS COMPATIBLES MAXIMOS

(1) Crear una lista de compatibles (£) con los pares de elementos compatibles
definidos por la columna k (la que estd mds a la derecha con al menos un
par compatible).
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(2) Para i:=k — 1 hasta i = 1
Si C; # (J entonces

2.1 Realizar la interseccion entre C; y los elementos de £.

2.2 Afadir a £ los compatibles formados por el resultado de las in-
tersecciones no nulas mds el elemento #, asi como los pares de
compatibles definidos por la columna i-ésima.

2.3 Suprimir de £ los conjuntos contenidos en otros.

(3) Ariadir a £ todos los elementos del conjunto de partida que no estdn con-
tenidos en ningin elemento de L£. 5

~.

Al aplicar el algoritmo anterior, cuya justificacion dejamos al lector como ejerci-
cio, la lista £ final contiene todos los compatibles maximos.

Erempro. Aplicando el algoritmo a la tabla 3.1, se tienen los pasos siguientes:

Paso 1: k=3, de donde £ i= { (3,4}, {3,5}, {3,6}}

Paso 2 (1.2 aplicacién): C, = (J, luego no se hace nada.

Paso 2 (2.% aplicacién): C; = (3,4,5,6]}.
2.1 £NECy:= (3,4}, (3,5}, (3,6} ).
22 £:=L£U({(1,3),...,(1,6), {1,3,4},), {1,3,5}, {1,3,6}}.
23 £:=({1,3,4}, {1,3,5}, {1,3,6}}. '

Paso 3: £:=({1,3,4}, (1,3,5}, {1,3,6}, (2} ].

Luego los compatibles maximos son {1, 3,4}, {1,3,5}, {1,3,6) y {2}. Vemos, por tanto,
que no es posible fusionar p; con ningtin otro lugar.

De acuerdo con lo anterior, por ejemplo, el subconjunto de lugares { p1, p3, ps}
es fusionable en uno solo, puesto que los marcados de:

— D1y p3 se pueden distinguir gracias a la variable de entrada A,
— p1y ps se pueden distinguir gracias a la variable de entrada A4,
— p3 y ps se pueden distinguir gracias a la variable de entrada S.

A la vista de los conjuntos compatibles, el disefiador podra elegir las fusiones que
mas le interesen en funcidn de los criterios por €l seleccionados (sentido fisico de
la descripcion simplificada, seguridad, etc.). '

Para concluir el estudio de los conjuntos de lugares fusionables, consideremos el
caso en el que solo se deseen fusionar los lugares cuyas acciones sean idénticas. De
esta forma, el disefio conduce a una maquina de MooRe. De acuerdo con la figura
3.7a tenemos s, = S5 # §3 = S4 = S¢ # 51y §1 # 82, ¥, por lo tanto, los conjuntos ma-
ximos fusionables compatibles con las salidas son {3,4} y {3, 6} (véase tabla 3.2).

3.4.2.3 Determinacion de los eventos y las condiciones sobre las salidas
asociadas al lugar de fusion

Una vez fusionados varios lugares compatibles en uno solo, se plantea el problema
de determinar los eventos y las condiciones de las salidas que permiten mantener la
descripcién funcional de partida. Volviendo al ejemplo que estamos tratando, he-
mos obtenido los siguientes conjuntos fusionables:

{1,3,4}) con 2 salidas que distinguir (s3 = s4 = i, 51 = (J).
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™ = no fusionable
[A = incompatibilidad 4 _ 0
de las salidas.

6 0
1 2 3 4 5.

Tabla 3.2 Supérposicién de la compatibilidad de las salidas y de la fusién para obtener
los conjuntos maximos fusionables que proporcionen una maquina cuyas accio-
nes sean incondicionales (mdquina de' MOORE).

{1,3,5} con 3 salidas que distinguif 51=O,83=1,5 =d).

{1,3,6)} con 2 salidas que distinguir (s3 = $6 = i,51 = ).

La figura 3.8 muestra los GR que obtenemos al realizar las fusiones {1,3,4)} y
{1,3,6}. Estas fusiones son las que proporcionan un menor nimero. de salidas a
distinguir. En ellas hemos marcado con «?» los eventos y/o condiciones sobre las
salidas en los que hay que introducir modificdciones.

Si tuviésemos que realizar una sintesis, es posible que la solucién (b) fuera la me-
jor, puesto que es la mdas préxima a la descripcion inicial (tiene un mayor sentido
fisico). Por razones didacticas vamos a desarrollar la solucién (a).

a) Cdlculo de los nuevos eventos
La transicion 134 — 2 se deberfa realizar s6lo si el sistema se encontrara en el estado
inicial 1. Por consiguiente, estudiaremos cémo diferenciar {1} de {3,4]); es decir,
cOomo realizar esa particion del lugar fusién {1, 3,4].

Puesto que {1} y (3,4} son fusionables, tendremos:

vi(va + v4) =0
Ahora bien, :

- v1vs = 0 se debe a la variable A4,
viv4 = 0 se debe indistintamente a la variable A o a la B.

La condicién suplementaria que habremos de asociar al evento destinado a etique-
tar la transicion 134 — 2. vendra dada por una funcidn /dgica en la que se considere
el estado de las variables de entrada en el lugar 1 (puesto que en la red original sélo
existe la transiciéon 1 — 2):

flia-2 = A(A + B) = A permite distinguir (1} y {3,4)
———

)
permite distinguir {1} y {4}

permite distinguir {1} y {3}



82 SIMPLIFICACION DE UNA DESCRIPCION
El evento completo serd M? = Mflis- 2 = MA.

Nota. En general, la funcién 1égica f7_, ; podra ser desarrollada en suma de productos,
j‘,{ﬁ ;= 2 ITk. Es obvio que cada uno de los productos [Tx puede ser utilizado indepen-
dientemente para definir el nuevo evento: enuevok = €antiguok I1x-

La transicién 134 — 5 se debe realizar sélo si el sistema se encuentra en el estado
4. Procediendo de la misma forma que antes, obtenemos que para el lugar 4 y la
mencionada transicion:

fla~s=(4 + B)S = AS + BS
————

permite distinguir 4 y 3
permite distinguir 4 y 1

El evento completo podré ser:
1) B? = BAS
2) B? = BBS = 0 (jla transicién no se disparard nunca!).
Como la segunda opcién ha conducido a una incongruencia, se eligird la primera;
es decir, el evento asociado a la transicién 134 — 5 serd ABS. ‘
La incongruencia a la que llegamos anteriormente tiene una fécil explicacion, que
permite presentar una limitacion de este método de fusién de lugares. En efecto, la
mencionada limitacion se presenta cuando, dado un lugar p;, la interseccién de su

condicién envolvente »; con alglin evento asociado a sus transiciones de salida puede
ser nula. Asi, es posible encontrar:

Vi = V,*V eixk = e}V,
donde V es una variable de entrada. Esta situacion corresponde, por ejemplo, al ca-
S0 en que p; represente un estado de espera de V (e = 1). En estas circunstancias,
si la variable V es la que diferencia el lugar p; de los otros con los que se pretende
fusionarlo, la fusidn es imposible.

b) Cdlculo de las condiciones suplementarias que es preciso asociar a las acciones

El problema que abordamos es andlogo al que hemos tratado anteriormente. En el
ejemplo desarrollado tenemos s3 = s4 =iy 51 = ¢, luego hemos de particionar el
lugar de fusion {1,3,4} en {1} y {3,4]). Este caso ya ha sido estudiado; como vi-
mos, la variable A basta para asegurar la particion. En {3, 4} la variable 4 estd en
su estado complementario, luego la accion i, asociada a {1, 3,4}, deberd estar con-
dicionada por A:i |A.

En resumen, el problema tratado en este apartado (§3.4.2.3) no es mds que la bus-
queda de condiciones suplementarias que permitan la particién del lugar de fusién.
Esta particidn se elige de forma que se respete la coordinacién evento-accién conte-
nida en la descripcidn inicial.

Es muy importante observar que la fusion de lugares permite obtener un GR
simplificado cuyo comportamiento (relacién evento-accién que representa) no es
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idéntico al que exhibe el GR original. Asi pues, la secuencia de eventos M1 D?
TAL AT Al At genera en los GR inicial y simplificado (figuras 3.7a y 3.84) diferen-
tes secuencias de acciones. Por ello se advierte al disefiador para que prevea los posi-
bles efectos secundarios de sus simplificaciones.

EIERCICIO

a) Complétese el GR simplificado de la figura 3.8b.
b) Obténgase el GR simplificado que corresponda a la fusién {1, 3,5].

Antes de estudiar la simplificacién de las RdP por el método de los lugares fuente,
recordemos que, para mantener el sentido fisico del modelo, la simplificaciéon por
fusién de lugares se debe realizar siempre en subRdP que no posean nudos Y (distri-
bucién y conjuncién).

3.5 METODO DE LOS LUGARES FUENTE

3.5.1 Generalidades y terminologia

Como ya hemos visto anteriormente, el método de fusion de lugares compatibles no
hace mds que simplificar una RAP mediante la extraccién de funcionamientos com-
binatorios locales (que conciernen a un subconjunto de lugares). En cambio, el mé-
todo de los lugares fuente trata de simplificar la RdP extrayendo funcionamientos
combinatorios globales es decir, que conciernen a todo el sistemaf.

La caracteristica principal de este método es que la simplificacién de la parte se-
cuencial de una RdP no conlleva, a diferencia del método de fusion de lugares, una
complicacién de la parte combinatoria.

Antes de llevar a cabo la presentacion del método, introduciremos algunos con-
ceptos. '

Definicion 3.4. Se llama condicion envolvente de un marcado M, representado
por uar, a la interseccion 1égica de las condiciones envolventes de los lugares marca-
dos por M: pam =11 mpp=1vi. U

Definicion 3.5. Desde un punto de vista estructural, una transicion ¢ es fuente [su-
midero] si no posee lugares de entrada, 't = ¢J [de salida, ¢ = @]. O

Definicion 3.6. Un lugar p; es fuente con respecto a un evento ex si la ocurrencia
de ex implica el marcado de p;. (]

Definicion 3.7. Un lugar es fuente [sumidero] si todas sus transiciones de entrada
[de salida] son4ransiciones fuente [sumidero]. [J

T En una tabla de fases, un funcionamiento combinatorio global estd caracterizado por un subconjunto
de columnas en las que existe un tnico estado estable por columna.
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A partir de estas definiciones, presentaremos (§3.5.2) una condicién suficiente pa-
ra que un lugar sea fuente con respecto a un evento. Posteriormente enunciaremos
dos reglas de simplificacién de un modelo. Por tltimo (§3.5.3), apllcaremos el méto-
do de simplificacién a un ejemplo.

Wf V"h gAFAth
=

(a) pi es fuente con respecto a A4; (b) pi es fuente

Figura 3.9.. Lugar fuente con respecto a un .evénto y lugar fuente.

3.5.2 Presentaciéon del método de los lugares fuente

Sean: [M Jiel conJunto de marcados de la red (R, Mp) para el cual el lugar p; estd ’
marcado, My un marcado alcanzable a partir de Myy Ajun evento que ethueta una
transicion de entrada de pi.

Condicién suficiente para que un lugar sea fuente con respecto a un evenfo (pro-
posiciéon 3.4). Si VM e M(R, My) — (M }, se tiene ' Ajun, = 0, entonces p;es fuente
con respecto a 4;. [

Dicho de otra forma, p; es fuente con respecto a A; si la interseccion de 4, con
las condiciones envolventes de los marcados es nula cuando se consideran aquéllos
para los cuales p; no estd marcado; sdlo en caso contrario puede no ser nula.

DEMOSTRACION. Por construccion de {M }i, s1 VMg € M(R, M) — { M }; se tiene
Ajum, = 0 cuando A; = 1, el marcado no puede pertenecer a M(R, Mo) — {M };,
luego tiene que pertenecer a {M};y, por lo tanto, p; estard marcado. [

Caso particular. Si el modelo de un sistema es un grafo de estados binario e inter-
pretado (GR) y si Vk # i se tiene que 4;vx = 0, entonces p; es fuente con respecto
a Aj. .

REGLAS DE SIMPLIFICACION

REGLA 1: Siun conjunto de lugares es fuente con respecto a un evento que etiqueta
una transicién de entrada comun, los lugares de entrada y de salida de la
transicion pueden ser desconectados (figura 3.10b): la transicién se desdo-
bla en dos, una fuente y otra sumidero, independientes.

REGLA 2: Si un lugar sumidero no tiene asociada ninguna accién y sus transiciones
de salida no poseen ningun otro lugar de entrada, aquél puede ser supri-
mido (figura 3.10c).
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O (&) ()
‘ A, | A, ' . A,
| ‘- R, . ‘
(1) (D
Ri b Az . :
A — ‘ — A1
A, A ,
& B
(@ (®) ' ©

Figura 3.10. Simplificacion si { pi,, pi,] son fuentes con respecto a Az (k4 es eliminado).

3.5.3 Aplicacion

Consideremos el ejercicio 1.2. En la figura 3.11a se presenta una posible descripcion
del sistema. Un analisis detallado del problema da como resultado el estado de las
variables de entrada asociadas a los lugares (figura 3.115).

A partir de la figura 3.11 obtenemos sin dificultad lo siguiente:

p1 = v1 = MABCD

g2 = vav3 = BD

K3 = V25 = /—IBCD

pa = v3va = ACD

us = v3ve = ABCD

us = vavs = ACD

w1 = vsve = 0 (M7 = M(ps) + M(ps) es un marcado transitoriot)
ps = v7 = ABC ;

Evaluados los p;, es facil comprobar que Vi # 2 u;MAC = 0, luego la transicién
etiquetada MAC podra ser desdoblada (regla 1). Puesto que p, y p3 son fuentes con
respecto al evento MAC y como, ademds, p; no tiene asociada ninguna accidn, es
posible eliminarlo (regla 2).

La figura 3.12 presenta la RdP simplificada. Puesto que la regla 3 sobre transfor-
macién de condiciones externas y eventos (§2.3.3) es aplicable, aunque fisicamente
se haya eliminado p;, (MAC)? se puede transformar en MAC.

Erercicio. Aplicando la regla 1 de transformacion (§2.3.3), podemos reducir MAC a MC

o incluso a M en lared original. Compruébese que MC permite aun la eliminacién de p1, pero
ésta no es posible si la transicion 1 — 23 se etiqueta sélo con M.

1 Esto se puede comprender facilmente porque la transicién de salida de ps y ps no esté etiquetada.
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pi| M| A | B|C
1| M|A|B|C
2 | —|—| B | —|—
3 |—|—|—|—|D
4 |—|A|—|C|—
5|—|A4A|—|C|D
6 |—|A4|B|C|—
701—|A4A|B|C|—
(@ (b
Figura 3.11. Aplicacién al ejercicio 1.2 (figura 1.9).
(MAC)t

Figura 3.12. Primera simplificacion de la red de la figura 3.11.
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3.6 EJEMPLO Y CONCLUSION

Para ilustrar la potencia de los métodos de simplificaciéon que hemos presentado
continuaremos con el ejercicio 1.2. En el estado de simplificacién en que se encuen-
tra la RdP de la figura 3.12 no existen ni lugares implicitos ni lugares fuente. (Verifi-
quelo el lector.)

Aplicando el método de fusién de lugares, al eliminar los nudos Y aparecen los
subconjuntos de lugares conexos {2,4,6}, {3,5} vy {7].

Es fdcil comprobar que v4vs =0 y v3vs = 0, luego son fusionables. La figura
3.13a presenta el resultado de estas fusiones. (Compruébelo el lector.)

(MAO)! (MAC)t

d;
dy/D

3-5 () do/D : B

i/A
a6 () 46() 4,/b

AD
17)
(@) c (V] C

Figura 3.13. Segunda y tercera simplificaciones de la red de la figura 3.11.

El lugar {3-5} (figura 3.13a) es implicito (estd implicado por {2} y {4-6)). La fi-
gura 3.13H muestra el resultado de la simplificacion.

Como conclusién de lo tratado en este capitulo podemos decir que: '

1) La simplificacion se realiza de forma iferativa e interactiva. El disefiador es
quien debe tomar las decisiones con respecto a las simplificaciones que se
realicen.

2) El método estructural de simplificacién denominado «de los lugares implici-
tos» (§3.3) no necesita informacion «extra» para ser aplicado. Tampoco intro-
duce secuencias no previstas. Elimina s6lo redundancias estructurales. Este
método es directamente aplicable a las RAPG.

3) Los métodos de simplificacion denominados fusion de lugares (§3.4) y lugares
fuente (§3.5) son aplicables a las RdP binarias e interpretadas de acuerdo con
el convenio adoptado en §2.4. Asi pues, estos métodos no tienen sentido si se
consideran RdP interpretadas de acuerdo con el convenio establecido para re-

presentar el flujo del control de los programas de un computador digital (Ane-
x0 1).
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Los métodos de simplificacién considerados introducen en la descripcién se-
cuencias de acciones que, -en caso de funcxonamxentos no prevxstos (averias, -
etc.), pueden acarrear. problemas.

4) Por razones de modificabilidad, reparabilidad, etc ., €S convemente que las
descripciones simplificadas tengan un sentido [isico, lo cual impone restr1cc10-
nes a las simplificaciones, aun cuando éstas sean posibles.

5) El método de simplificacién por fusidn de lugares disminuye la parte secuen-
cial de la descripcién (numero de lugares), normalmente a costa de complicar
los eventos y las condiciones asociadas a las acciones. Es decir, este método
complica la parte combinatoria. Se basa en la extraccuSn de funcionamientos
combinatorios locales. :

6) El método de smphfxcacu’)n de los lugares fuente disminuye la parte secuencial
de la descripcion, sin complicar los eventos 'y las condiciones asociadas a las
acciones. Habida cuenta de que este dltimo utiliza funcionamientos combina-
torios globales, su aplicacién no serd rentable més que para automatismos de
dimensién relativamente pequefia.

Por iltimo, cabe sefialar que el haber profundizado sobre Ia modelacién de siste-
mas con RdP interpretadas es seguramente una de las mayores aportaciones de este
capitulo.

EJERCICIOS

3.1 Para las RdP de la figura E.3.1, determinese si existen lugares implicitos y obténganse
conjuntos de lugares implicantes. :

3.2 Simplifiquense los modelos obtenidos en los capitulos 1 y 2.

Figura E.3.1 Redes a simplificar ®
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© )

Figura E.3.1 (cont.). Redes a simplificar






4

Validacion funcional de una descripcion (I):
(@): redes de Petri autonomas

4.1 INTRODUCCION

En los capitulos anteriores hemos abordado la modelacion de sistemas discretos con
actividades simultédneas. En este capitulo y en el siguiente estudiaremos la validacion
funcional del modelo obtenido.

En la introduccién general a esta obra hicimos referencia al hecho de que la cre-
ciente complejidad de los sistemas hace que éstos resulten dificilmente comprensi-
bles para el disefiador (0 equipo de disefio). Con el fin de evitar que en el proceso
de concepci6n de un sistema se pase a la fase de realizacién con un modelo erréneo,
se introducird una fase en la que se realice un estudio cualitativo del modelo funcio-
nal que se ha disefiado.

La validacién funcional y a verificacidn funcional son dos tipos de estudios cuali-
tativos que pueden ser objeto de nuestro interés.

En un analisis de validez, o validacion, se determina si el modelo del sistema que
ha sido disefiado, es decir, su descripcién, cumple una serie de propiedades que ca-
racterizardn su buen funcionamiento. Estas propiedades son, en gran parte, inde-
pendientes de las funciones especificas que realiza el sistema, asi como de la herra-
mienta de modelacidn (en este caso, redes de Petri). Entre ellas cabe citar la ausencia
de bloqueos, la finitud del conjunto de estados, la ausencia de conflictos, etc.

En un estudio de verificacidn se examina la descripcion del sistema a fin de com-
probar si ésta cumple las especificaciones del sistema. El estudio de verificacion tie-
ne que considerar la semdntica, la significaccién, de cada una de las operaciones 0
acciones elementales. Ello es necesario para que se pueda llegar a la conclusién de
que la descripcion del sistema que se ha concebido es capaz de cumplir todos los re-
quisitos previstos. El estudio de verificacion exige una definicion formalizada de los
objetivos, cosa que, desafortunadamente, no es facil de conseguir.

La gran cantidad de informacioén que sobre el comportamientd del sistema mode-
lado posee la estructura de la RdP y su marcado inicial, permite abordar un primer
analisis de la validez del modelo concebido. Se trata de una validacion funcional de
la RAP autdnoma; ésta es la temdtica sobre la que versard este extenso capitulo. Re-
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saltemos que, salvo el material presentado en §4.8, toda la teoria que vamos a
desarrollar serd directamente aplicable a las RdP generalizadas.

En el préximo capitulo abordaremos el estudio de las consecuencias que sobre la
validacion de un modelo tiene la incorporacién del tiempo y/o la interpretacién. Por
ultimo, propondremos dos métodos de modelacion. El método descendente preten-
de que por construccion el modelo sea valido. El método que denominamos modu-
lar parte de la descripcion aislada de subsistemas, para establecer a continuacién sus
interconexiones. Ambos se pueden combinar en la descripcién de un sistema.

La estructura de este importante capitulo es la siguiente: comienza por la enume-
racion de las «propiedades de buen funcionamiento» més importantes; a continua-
cién se clasifican los métodos disponibles para analizar la validez de un modelo rea-
lizado con RdP y, por iltimo, se presentan los métodos bdsicos de andlisis.

4.2 PROPIEDADES BASICAS QUE CARACTERIZAN EL
. FUNCIONAMIENTO DE LOS SISTEMAS CON EVOLUCIONES
SIMULTANEAS

En este apartado definiremos una serie de propiedades bdsicas y comunes a todos
los sistemas con evoluciones simultdneas. La traduccidn de estas propiedades gene-
rales a otras especificas de las RAP nos permitird abordar el andlisis de validez de
los modelos construidos con RdP.

La serie de propiedades que vamos a definir no es exhaustiva, pues s6lo compren-
de las que han sido consideradas mas importantes en una introduccion a estos
temas. .

Entre las propiedades caracteristicas que todo sistema debe poseer estdn, por una
parte, la ausencia de bloqueos —totales o parciales— y, por otra, la finitud del con-
Jjunto de estados en los que se puede encontrar el sistema. En la terminologia especi-
fica de las RdP, la ausencia de bloqueos se traduce en propiedades de vivacidad.
La finitud del conjunto de estados se traduce en propiedades de limitacion. Ambas
clases de propiedades fueron introducidas de forma intuitiva y muy simplificada en
el capitulo 1 (§1.5.3.2). -

Para estudiar las situaciones de ambigiiedad ante una decisidn entre diversas alter-
nativas en la evolucion del sistema (indeterminacion), se definen las propiedades de
conflictividad.

Otra propiedad interesante es, por ejemplo, la exclusién mutua entre estados par-
ciales. En la terminologia propia de las RdP, la exclusion mutua se traduce en res-
tricciones sobre los marcados alcanzables a partir del marcado inicial. Dos lugares .
estan en exclusién mutua si, a partir del marcado inicial, nunca pueden estar marca-
dos simultdneamente. ’

4.2.1 Vivacidad

Definiciéon 4.1. Una transicion ¢ es viva para un marcado inicial dado M, sii existe
una secuencia de disparos a partir de cualquier marcado M, sucesor de Mo, que com-
prenda a f:



PROPIEDADES BASICAS QUE CARACTERIZAN LOS SISTEMAS‘CON EVOLUCIONES SIMULTANEAS A93
VM e MR, My) 30:M-> M’ tal que ¢ C o. O

Definicién 4.2. Una RdP marcada es viva para M, sii todas sus transiciones son
vivas para My. [

La importancia de la propiedad de vivacidad estriba en su capacidad para caracte-
rizar el bloqueo de un sistema. En efecto, si una RdP es viva, el sistema no puede
bloquearse, puesto que todas las transiciones pueden llegar a dispararse. Evidente-
mente, la proposicién contraria no es cierta. Puede suceder que una RdP marcada
no viva no se bloquee. Para caracterizar esta tltima situacién se define la nocién
de RAP marcada parcialmente viva. '

Definicién 4.3. Se dice que una RdP marcada es parcialmente viva para M si,
tomando como punto de partida cualquier marcado alcanzable a partir de Mo, existe
al menos una transicién disparable y otra transicién no viva. (J

Toda RdP marcada parcialmente viva tiene la posibilidad de evolucion global, in-
dependienteménte de que existan transiciones que no puedan ser disparadas.

La figura 4.1 ilustra estas nociones. La RdP de la figura 4.15 puede evolucionar
indefinidamente, aunque la transicién 6 sélo pueda ser disparada una vez (a partir
de Mp). La RdP de la figura 4.1c se bloquea globalmente al no poderse disparar por
segunda vez la transicién 6.. Si se analiza detenidamente esta iltima RdP, se obser-
vara que para cualquier marcado inicial finito se obtiene una RdP marcada no viva.
La caracterizacion de esta propiedad se hace a través del concepto de vivacidad
estructural.

(a) RdP viva para M) (b) RdP parcialmente-viva (¢) RdP no-viva (se bloquea
para M, totalmente)

Figura 4.1 Vivacidad en las RdP.

Definiciéon 4.4. Una RdP R es estructuralmente viva si existe un M, finito para
el cual la RdP marcada es viva. (J
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Evidentemente, la vivacidad estructural es una condicidn necesaria pero no sufi-
ciente para la vivacidad.

4.2.2 Ciclicidad

Definicion 4.5. Se dice que una RdP posee un comportamiento globalmente cicli-
co para M, si existe una secuencia de disparos que permite alcanzar el marcado ini-
cial My a partir de cualquier marcado M alcanzable a partir de Mp:

VMeM(R,M,), 3o tal que M > Mo. O

Para abreviar las referencias, hablaremos de RdP ciclica para M,. La ciclicidad
de una RdP marcada garantiza que no existen subconjuntos finales de estados (mar-
cados). Un subconjunto final de estados (marcados) contiene estados (marcados)
mutuamente alcanzables entre si y tales que el estado inicial (marcado inicial) no es
alcanzable a partir de ninguno de ellos. La justificacidn del calificativo final es aho-
ra evidente: si el sistema evoluciona hacia un estado perteneciente a un subconjunto
final, entonces su estado pertenecerd «in aeternum» al mencionado subconjunto, lo
cual es, normalmente, inadmisible desde un punto de vista practico. La RdP marca-
da de la figura 4.1a es ciclica.

La ciclicidad, asi como la vivacidad parcial, caracterizan la existencia de evolucio-
nes globales, independientemente de las transiciones disparables. Obviamente la ci-
clicidad implica la vivacidad parcial si existe al menos un marcado sucesor de Mp.

4.2.3 Limitacion

Definicion 4.6. Un lugar p es k-limitado para M, sii existe un numero entero k
tal que M(p) < k para cualquier marcado M € M(R, My). Se denomina /imite del lu-
gar p al menor entero k que verifica la desigualdad anterior. [

Definicién 4.7. Una RdP marcada es k-limitada para M, sii todos sus lugares son
k-limitados para My: Vvpe Py YM € M(R, M), M(p) < k. O

La propiedad de limitacién determina la finitud del niimero de estados del sistema
representado por una RdP. Desde un punto de vista practico, esta propiedad debe
verificarse, puesto que los lugares se realizardn con memorias de capacidad finita.

Para la representacion de multitud de sistemas, merece una consideracién especial
la 1-limitacién. Si una RdP es 1-limitada para My, su marcado es binario (un lugar
est4 o no estd marcado) y se dird que la RdP es binaria para Mp. El interés de la
RdP marcadas binarias —en lo sucesivo RdP binarias— reside en la simplicidad de
su realizacién. Por otra parte, es importante observar que una RdP binaria est4 per-
fectamente adaptada a un gran nimero de problemas en los que hay que distinguir
s6lo dos estados para un elemento o subsistema (ocupado/no ocupado, activado/no
activado, etc.). La figura 4.2 ilustra la nocién de limitacién.

Un estudio detallado de las RdP de las figuras 4.2a y b permite deducir que ambas
RdP son limitadas para cualquier marcado inicial finito. La caracterizacion de esta
propiedad se hace a través del concepto de limitacion estructural.
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e e1te;

(@) RAP 3-limitada para M, (b) RdP binaria para My  (¢) RdP no limitada para M
Figura 4.2. Limitacién en las RdP.

Definicién 4.8. Una RdP es estructuralmente limitada si es limitada para cual-
quier marcado inicial y finito. [J

La limitacién estructural es una condicién suficiente para la limitacién. La RdP

de la figura 4.2¢ no es estructuralmente limitada. La RdP de la figura 4.3 demuestra
que la limitacién estructural no es una condicién necesaria para la limitacién.

ts

Figura 4.3. RdP marcada limitada y viva pero no estructuralmente limitada (para
Mg = (040)7 es no-limitada).

La figura 4.4 permite concluir sobre la independencia de los conceptos de vivaci-
dad, ciclicidad y limitacién.
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0. LVC; } El. Lve
LVC: ?

=R

4. LVG; 5. LVC;
6. LVC] i 7. LVC;

Figura 4.4. Independencia entre limitacién, vivacidad y ciclicidad.
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4 2 4 Confhctmdad

Definicién’ 4 9. Se dice que en una RdP existe conflicto estructural cuando un lu-
gar posee mds de una transxcxén de salxda O

La ﬁgura 4. 5 exhxbe un confhcto estructural puesto que /1y £ son transmones
de salida de un mismo lugar, p.

Figura 4.5. Conflicto estructural pero no efectivo.

Definicién 4.10. Se dice que dos transmlones tiyt, estan en conflicto efectivo
para M sii:

—existe M e M(R, Mo) que sensibiliza a ; y ¢;; v
—al disparar f; (#;) el marcado obtenido no sensibiliza la transicién @), O

Dicho de otro modo, existe conflicto efectivo entre #; y ¢; cuando las dos transicio-
nes tienen al menos un lugar de entrada comiin y éste no posee suficientes marcas
para permitir el disparo simultdneo de ambas transiciones. Por ejemplo, la RdP de
la figura 2.1 presenta un conflicto efectivo pues, para el marcado inicial que exhibe,
el lugar 4 no puede contener mds de una marca. La RdP de la figura 4.5 no presenta
" conflicto efectivo para el marcado inicial 1ndlcad0 puesto que pry pz no llegan a -
estar marcados simultdneamente.

La situacién de conflicto efectivo es inaceptable para cualquier descr1pc16n de un
sistema, dado que serd ambigiia. El conflicto efectivo se résuelve, normalmente, me- -
diante la interpretacién asociada a la red: estableciendo una exclusién mutua entre
los eventos: asociados a las transiciones. Si, pese a la interpretacién asociada a la
RdP, persiste la situacién de conflicto efectivo, entonces es obvio que la descripcién
del sistema que se pretende modelar es deficiente: no se define con claridad una deci-
sién (ambigiiedad).

Un caso tipico de descripcion deficiente que genera conflicto efectivo se presenta
cuando un recurso (R) debe ser compartido por dos usuarios (U; y Uz) y no se ha
definido con claridad una regla de prioridad para el acceso a él (figura 4.6).
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Llegados a este punto, conviene destacar que, independientemente de la interpre-
tacién asociada a una RdP marcada, la existencia de un conflicto estructural no es
condicidn suficiente para que haya conflicto efectivo (figura 4.5). Ahora bien, para
que exista conflicto efectivo es necesario que haya conflicto estructural.

En una red interpretada, insistimos, los conflictos efectivos deben ser resueltos
mediante los eventos asociados a las transiciones.

4.2.5 Exclusion mutua

Definicion 4.11. Se dice que dos lugares de una RdP estdn en exclusion mutua
para M si no pueden estar marcados simultdneamente en los marcados alcanzables
a partir de Myp. O

De acuerdo con esta definicion, se dird que los lugares 4 y 5 de la figura 4.6 estdn
en exclusién mutua. Esto se puede verificar facilmente considerando los marcados
alcanzables a partir de Mp.

Un ejemplo tipico de utilizacidn del concepto de exclusién mutua se encuentra en
el andlisis de sistemas con recursos compartidos por dos o mds usuarios (véanse
ejemplos en el capitulo 2): si la utilizacidon de un recurso por el i-ésimo usuario se
representa por M(p;) = 1, entonces como maximo un Unico p; estard marcado,
>iM(p;) < 1. En caso contrario, dos o mds usuarios utilizaran el recurso simulté-
neamente. Esto es 1o que ocurriria si los dos vagones se encontraran en el tramo de
via comun de la figura 2.11.

IT; = peticion del recurso por Ui.
R; = recurso asignado a 6;
FU; = fin de utilizacion del recurso por U;.

Figura 4.6. Si II;NII; # O existe conflicto efectivo.

4.2.6 Relaciones sincronicas

En este apartado presentaremos algunos conceptos que nos permitirdn abordar un
primer anélisis de la interdependencia entre los disparos de las transiciones de una
RdP marcada. Sélo introduciremos los conceptos basicos de avance sincrénico y
avance sincronico ponderado.

Sea la red marcada (R, My) y sea L(R, Mo) el conjunto de todas las secuencias
de disparo de transiciones aplicables. El nimero de disparos de la transicién # en
la secuencia o € L(R, My) se representara por o(;).
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Definicién 4.12. El avance sincrdnico de la transicion # con respecto a la transi-
cién ¢ en la red (R, Mo) es el valor maximo que, considerando todas las secuencias
de disparo posibles, puede tomar la diferencia entre el nimero de disparos de ¢ y
el de ;. Simbdlicamente escribiremos:

AV(R, Mo; ti, ) = méx {a(t;) — o(t)]. O
oeL(R, Mop)

El avance sincrénico es una cantidad no negativa, puesto que siempre existird una
secuencia, eventualmente vacia, que no dispare la transicion ;. Por consiguiente, el
avance sincronico sera nulo, como minimo.

La definicién de avance sincrénico se puede generalizar a subconjuntos disjuntos
de transiciones, TiN7T; = @. Si T; representa el vector caracteristico del subconjun-
to de transiciones T}, Ti(k) = 1siy solo si tx € T:. Si T1 y T, representan los vectores
caracteristicos de los subconjuntos disjuntos 77y T2, y o representa el vector carac-
teristico asociado a la secuencia de disparos o, entonces el avance sincrénico del con-
junto de transiciones T con respecto al conjunto de transiciones 7> en la red
(R, Mp) viene dado por:

AV(R, My; Ty, T2) = max (T — T2)7 - 5.
o€l

Si el avance de la transicién # con respecto a ; es nulo, entonces #; no se puede dis-
parar antes que #; para el marcado inicial dado. Si, por el contrario, el avance es
infinito, entonces existe una (o varias) secuencia disparable, o, en la que el nimero
de disparos de # es superior al de #; en una cantidad no acotable. De este modo, si
consideramos la RdP de la figura 4.6, podemos escribir AV(R, Mo; I1:,I2) = <.
De la misma forma, si consideramos la RdP de la figura 4.7, podremos escribir
AV(Rs MO; t, t2) = 0.

' L)

Figura 4.7. El avance de #; con respecto a f2 no es limitado.
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Un analisis mas detallado de estos ejemplos demuestra que entre ambos existe una
diferencia radical. En el primer caso (figura 4.6), podemos disparar una infinidad
de veces consecutivas la transicion etiquetada I] ; antes de disparar la transicién eti-
quetada JI 2. En el segundo caso (figura 4.7), podemos observar que existe en reali-
dad una unica secuencia de disparos de longitud infinita. En ésta se repite periédica-
mente la subsecuencia #; %, # t3, y, por lo tanto, se puede afirmar que para poder
disparar #, una vez hacen falta dos disparos de #;. A partir de ahi,.se deduce sin difi-
cultad que, al repetirse indefinidamente la mencionada subsecuencia, se obtiene un
avance sincrénico ilimitado.

" Para distinguir ambos casos, tan diferentes desde el punto de vista de la interde-
pendencia entre los disparos de las transiciones, generalizaremos el concepto de
avance sincrénico. La generalizacién se obtiene al ponderar los disparos de las tran-.
siciones. De esta forma resulta obvio que, para la RdP de la figura 4.7, si T1 = (£}
y T> = [t} entonces max,er {(T17 — 27>7) - ) = 1; su interpretacién es inmedia-
ta: el numero de disparos de #; menos el doble del nimero de disparos de #; es infe-
rior o igual a la unidad.

Definicion 4.13. Sean 6; y 6, € N™ dos vectores que expresan las ponderaciones
que se asocian a las transiciones de los subconjuntos disjuntos 71 y T2 [T1NT2 =
= @ = 01({) 62(¢) = 0]. Se define el avance sincrénico ponderado de 0; con respecto
a 6> en una RdP marcada (R, Mo) por la expresion:

AV(R, My; 01,02) = max{(6: — 02)"-5}. O

oel

De acuerdo con la definicién 4.13, no existen ; y 6, finitos tales que hagan que
el avance ponderado entre #; y %, (figura 4.6) sea acotado.

Mas adelante (§4.7.2) veremos cémo se puede aplicar esta nocién al andlisis de
RdP; también estableceremos su relacién con el concepto ‘de lugar implicito, cuya
presentacién hicimos en §3.2 y 3.3.

En el préximo apartado clasificamos los métodos que permiten analizar la validez -
de una RdP, para luego estudiarlos en los apartados subsiguientes.

4.3 CLASIFICACION DE LOS METODOS DE ANALISIS

En general, los métodos de andlisis de la validez de la RdP se pueden clasificar en
los siguientes grupos:

1) andlisis por enumeracién,

2) andlisis por.transformacion,

3) andlisis estructural,

4) andlisis por simulacion.

Los métodos correspondientes a los tres primeros grupos se denominan métodos
estdticos. Su aplicacién a las RdP consideradas como grafos conduce a resultados
exactos. Los métodos de simulacién se denominan métodos dindmicos y permiten
una «cierta confianza» en la descripcion, pero no demuestran: propiedades.
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Estos tltimos métodos tienen gran utilidad cuando a la evolucién de la RdP se
le asocian duraciones (RdP temporizadas), o bien cuando se pretende conocer la res-
puesta de un sistema descrito con RdP en un cierto ambito definido también por
simulacion.

En este capitulo estudiaremos sélo métodos estaticos aplicados a redes auténo-
mas. En el capitulo 5 haremos una breve alusién a los métodos dindmicos.

Los métodos de enumeracion (§4.4) se basan en la construccién de un grafo que
represente individualizadamente 10s marcados de la RdP y el disparo de sus transi-
ciones. Si la RdP es limitada, el grafo es finito y se pueden verificar facilmente las
diferentes propiedades definidas en §4.2. Sila RdP no es limitada, sucede que el gra-
fo no es finito y, por consiguiente, es imposible construirlo. En este caso, se pueden
construir grafos finjtos denominados de alcanzabilidad o de cobertura ([KARP 69],
[BERT 78]).

A pesar de su potencia, este método es a veces dificilmente aplicable, incluso a
RdP con pocos lugares, a causa de su fuerte naturaleza combinatoria.

El andlisis por transformacion se basa en la idea siguiente: dada una RdP marca-
da (R, M,) sobre la que se desea verificar el conjunto de propiedades IT , se procede
transformdndola en la red (R', M§) de forma que:

1) (R’, M§) satisfaga las propiedades [T sii (R, Mo) las satisface.
2) Sea mas facil verificar las propiedades I] sobre (R', M) que sobre (R, Mp).

Los métodos de reduccion (§4.5) aparecen como caso particular de los métodos
por transformacion. En los métodos de reduccion se va construyendo una secuencia
de RAP marcadas que preservan las propiedades a estudiar. Esto se realiza de forma
que lared (R'* ! M}* 1) sea mds facil de analizar que la red anterior en la secuencia,
(R, Mby, y tenga menos lugares o/y transiciones.

La existencia de redes irreducibles limita la aplicabilidad de estos tltimos meto-
dos. Desde un punto de vista préctico, las reducciones que normalmente se obtienen
son sustanciales, permitiendo verificaciones directas de las propiedades de interés.
No obstante, la existencia de RdP irreducibles hace necesaria su complementacion
con otros métodos de andlisis.

Por tltimo, los métodos de andlisis estructural permitiran demostrar una serie de
propiedades de la RdP, casi independientemente del marcado inicial de ésta. Es
decir, lo que consideran fundamentalmente es la estructura de la RdP; de ahi su
nombre.

La importancia de este tercer grupo de técnicas de andlisis es muy grande puesto
que, con frecuencia, en la prictica interesa que la red satisfaga determinadas propie-
dades estructurales, y no sélo las ligadas a un marcado inicial particular. Dicho de
otro modo, estas técnicas permiten de forma eficiente el andlisis de una RdP para
diferentes marcados iniciales.

En este ultimo tipo de andlisis podemos distinguir dos subgrupos:

1) Métodos basados en el digebra lineal (§4.6 y 4.7), en los que se parte de la ecua-
cion de estado de la RAP. Son métodos que, en ciertos analisis, hacen posible un
diagnéstico sin recurrir a la enumeracion. Son aplicables directamente a las RdP
generalizadas.
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El material presentado en §4.7.2 también tiene gran importancia para el estudio
de los métodos de realizacién cableada (capitulo 6) y microprogramada (capitulo 7
de las RdP.

2) Métodos de cerrojos y trampas (§4.8), en los que se determina una serie de
subRdP de la RdP que se estd analizando, de forma que se puede estudiar un con-
junto de propiedades sin tener que recurrir a la enumeracion de los marcados. Estos
métodos son especialmente eficaces en el andlisis de la vivacidad y de la limitacién
de subclases de RdP ordinarias.

Los tres grupos de métodos de andlisis que hemos esbozado no son excluyentes,
sino complementarios. Normalmente el disefiador los utilizar4 segin las necesidades
del proceso de concepcidn.

4.4 ANALISIS POR ENUMERACION: GRAFO DE MARCADOS

Los métodos de esta clase se basan en la simulacidn exhaustiva de las evoluciones
posibles del marcado de la RdP. La exposicion que sigue se cefiird fundamentalmen-
te al caso en que la RdP sea limitada, con lo que €l conjunto de los marcados alcan-
zables a partir de M) serd finito.

4.4.1 Grafo de marcados: construccion

Definicion 4.14. El grafo de marcados asociados a la RAP marcada (R, My) es
un grafo G(R, My) en el que cada nudo representa un marcado alcanzable a partir
de Mo y cada arco el disparo de una transicion. Existe un arco, etiquetado #, que
va desde el nudo que representa M; al que representa M; sii al disparar # a partir de

M; se alcanza M;: M; % M;. O

Sila RdP marcada es limitada y viva, el proceso de construccion del grafo de mar-
cados es elemental. Culmina cuando se han considerado todas las evoluciones posi-
bles a partir de los marcados alcanzables. Si consideramos la RdP de la figura 4.3,
a partir de Mp = (03 0)7 podremos disparar 3 0 #. Si disparamos 73, obtendremos
M; = (300)”. Si en vez de #; disparamos f4, obtendremos M> = (1 1 1)7. El proceso
contintia de forma evidente. En la figura 4.8 se ha representado el grafo de marca-
dos. (Nota: hemos representado los marcados en forma de productos; el exponente
de un factor indica el nimero de marcas que posee el lugar representado por ese
factor.)

En general, una RdP marcada puede ser no limitada, por lo que el proceso de
construccion del grafo no acabaria nunca. Para evitar esta situacion, durante el pro-
ceso de obtencion del grafo se deberd tener en cuenta una condicién de abandono.
La generalizacion de esta idea nos ahorrard la molestia de completar la construccidn
del grafo correspondiente a ciertas redes andmalas (entre las que se encuentran las
redes no limitadas). Sea M € M(R, M).
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Figura 4.8. Grafo de marcados asociado a la (R, Mo) de la figura 4.3

Condicién de abandono en la construccion de un grafo de marcados (proposi-
cién 4.1). Se puede abandonar la construccion del grafo de marcados de una RdP
en los dos casos siguientes:

1) Si M no sensibiliza ninguna transicion, porque la RdP no es viva (en este caso
se bloquea totalmente).

2) Si existen marcados M, M1 € M(R, My) tales que M 2 M (M superior a M),
porque la RdP serd no limitada estructuralmente o no viva. Ademas se puede
afirmar que si existe una secuencia de disparos o, tal que M % My, 1a RdP es no
limitada para el marcado considerado. [

DEMOSTRACION. La demostracion de la primera afirmacion es inmediata. La figu-
ra 4.9 presenta un ejemplo en el que, a partir del marcado M = (01 0)7, 1a RdP se
bloquea. Es decir, a partir de M no se puede disparar ninguna transicion.

La demostracion de la segunda afirmacién es algo mds complicada. Abordémosla
primero para el caso particular (aunque frecuente) en el que se tiene M1 2 My

M3 M.

a.
a) Caso particular. Existe o, tal que M - M.
Al repetir la secuencia o; se evidencia que:

(71 Ul Ul Ul
M->M{ > M, Ms;— ..., con Mi+1 2 M,

de donde al tener una serie de marcados estrictamente creciente, se deduce que la
RdP no es limitada. (Si consideramos la RAP marcada de la figura 4.10, por ejem-
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M,

(a) RdP M, (b) Grafo de marcados

Figura 4.9. Red de Petri no-viva.

C oto1 ) ( o110 )

Figura 4.10 RdP marcada no-limitada. El grafo de marcados no es finito My > M).

plo, las secuencias o1 = 4 #1 13 0 of = #3 t5¢; permiten afirmar que la mencionada red
no es limitada, puesto que se alcanzan marcados estrictamente superiores a My Mo,
respectivamente.)

3" . 71 o
b) Caso general. No se sabe si existe un o; 0 un o3 tales que M — M, o M; 3 M.

En este caso, de acuerdo con el enunciado, se puede afirmar que la RdP es no
limitada estructuralmente o no viva. La demostracion de esta afirmacion necesita
del conocimiento de un concepto que introduciremos en §4.6 (la conservatividad),
y su lectura puede omitirse sin que por ello se dificulte la comprensién de los concep-
tos y resultados que se presentan posteriormente. No obstante, a modo de ilustra-
cién, podemos sefialar que en las RdP de las figuras 4.10 y 4.11 se tiene M; » M.
La primera de ellas es claramente no limitada (existe o = f4 t1¢3 tal que M > M),

mientras que la segunda es claramente no viva (no existe evolucion posible a partir
de M’).
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Figura 4.11. RdP marcada no viva y grafo de marcados (completo), (M; > M).

La proposicién 4.9 (véase la tabla 4.2) establece lo siguiente:
[limitacion estructural] A [vivacidad estructural] = [conservatividad].

Ahora bien, M; » M implica que la RdP no es conservativa, pues, si Ye(N*)",
YT.M; # YT. M. Invirtiendo la anterior implicacién, la RdP ser4 no limitada es-
tructuralmente o/y no viva estructuralmente. Como [vivacidad] = [vivacidad es-
tructural], la RdP serd o no limitada estructuralmente o no viva, o ambas cosas a
la vez. (1

Si durante la construccién del grafo de marcados, G(R, Mp), no aparece nunca
M, 2 M, se puede afirmar que el nimero de marcados alcanzables, y por lo tanto
el nimero de nudos de G(R, M), es finito. En efecto, ello se puede inferir dado que
el nimero de vectores no negativos (marcados) no superiores a los de un conjunto
dado es finito. :

Eserciclo. Demuéstrese que una red (R, My) no puede ser simultdneamente limitada y ci-
clica si existen marcados M y M alcanzables a partir de Mo y tales que M; 2 M. (Sugeren-
cia: hagase la hipotesis de que la red es ciclica, de donde existird ¢ = 010, tal que M 3 My 3AM 1y
y concliyase por contradiccion.)

Esercicio. Compruébese que la RdP de la figura 4.3 no es limitada para M§ = (04 0)7.
A partir del grafo de marcados G(R, M) es conceptualmente muy facil determi-

nar las propiedades de la red marcada (R, Mp). En el préximo apartado abordamos
el andlisis de las propiedades mds importantes.
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4.4.2 Andlisis a partir del grafo de marcados

En el apartado anterior hemos visto que el propio proceso de construccién del grafo
de marcados suministra informacién sobre algunas propiedades de la RdP (en parti-
cular sobre la limitacién).

En este apartado presentamos algunos resultados aplicables al andlisis de la vali-
dez, cuya interpretacion es inmediata. La sencillez de los andlisis se debe a que el
grafo de marcados contiene foda la informacién acerca de las posibles evoluciones
de una RdP limitada.

4.4.2.1 Andlisis de la vivacidad

Proposicién 4.2. Una RdP limitada para My es viva sii se cumple que en su grafo
de marcados¥:

1) no existe nudo terminal; es decir, no existe ningliin marcado que no sensibilice
ninguna transicion;

2) toda componente fuertemente conexa final (es decir, tal que el conjunto de sus
nudos sucesores esté incluido en la propia componente) tiene etiquetado el con-
junto de sus arcos con todas las transiciones de la RdP. []

Antes de justificar la proposicion 4.2 veamos en un ejemplo el significado de la
segunda condicion. Sea el grafo de marcados de la figura 4.12. Aplicando el algorit-
mo de obtencién de componentes fuertemente conexas de un grafo (véase el Anexo
2, §A.2.3), se obtienen las componentes siguientes (ejercicio):

C;=1{10103,01102,01013,10012}
C;=(10101,01100,01011,10010}.

Si sustituimos cada componente por un unico nudo, se obtiene un grafo con dos
nudos y un arco que une C; a C,. Dado que C; no posee otros nudos sucesores, si
la evolucién de la RdP es tal que se alcanza uno de los marcados que pertenecen
a (,, las secuencias de evolucidn posibles haran que el marcado de la red pertenezca
indefectiblemente a C». En estas condiciones, para que la RdP sea viva es necesario
y suficiente que C, comprenda todas las transiciones, puesto que si faltase alguna,
ésta no seria disparable y, por lo tanto, no viva. Dicho de otro modo, habida cuenta
que los nudos sucesores de los que pertenecen a C, estdn contenidos en C;, esta com-
ponente fuertemente conexa del grafo de marcados representa un subconjunto final
de marcados, y la vivacidad de la red se garantiza al poderse disparar todas las
transiciones.

Se debe observar que el razonamiento anterior es independiente de las transicio-
nes que se disparan dentro de la componente fuertemente conexa C;. En efecto,
esto es posible porque para cualquier marcado perteneciente;a C; existe una se-
cuencia de disparo de transiciones que hace que el marcado alcanzado pertenez-
caa GC,.

t La terminologia bdsica sobre grafos utilizada en este capitulo se presenta en el anexo 2.
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e e e e o —— — —— —— — — —— —

(a) RAP marcada:
(R, Mo)

(b) Grafo de marcados:
G(R, M)

_——— = - —

Figura 4.12. RdP marcada (viva y no ciclica) y grafo de marcados.

DEMOSTRACION (proposicion 4.2). La justificacion del primer enunciado ya la he-
mos visto antes (proposicién 4.1.1): corresponde al caso en que la red presenta un
bloqueo total (figuras 4.9 y 4.11). La justificacidn del segundo enunciado es también
inmediata. Si existiera una componente fuertemente conexa de G(R, Mp) que no es-
tuviese etiquetada con , y si la evolucidn en el grafo no permitiera abandonar dicha
componente, #x no podria ser disparada; entonces #; seria no viva. El razonamiento
inverso es evidente. []

La RdP de la figura 4.13 no es viva ya que G(R, Mp), que es una componente fuer-
temente conexa, no contiene la transicion ¢. Ademas, como no existe nudo terminal,
(R, My) es parcialmente viva (no se bloquea).

Para proponer un algoritmo eficiente que determine la vivacidad de una red se
deben considerar las dos observaciones siguientes:

1) El célculo de la componente fuertemente conexa (crc) con el nudo inicial, eti-
quetado con My, se puede realizar sin mds que propagar, a partir del mencionado
nudo, las marcas « — » del algoritmo enunciado en §A.2.3. La crc con el nudo eti-
quetado Mj es el conjunto de nudos marcados « — ».
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(1)

(a) (R, Mo) () G(R, M)

Figura 4.13. RdP parcialmente viva y ciclica.

La anterior afirmacidn se justifica dado que al construirse G(R, My) a partir de
Mo, todos los nudos del grafo son alcanzables a partir de My. Dicho de otro modo,
de acuerdo con la notacion del §A.2.3, las marcas « + » alcanzardn a todos los nudos
de G(R, My).

2) Si G(R, M) posee més de una crc, entonces la crc con el nudo inicial, etique-
tado Mo, no puede representar un conjunto final de marcados y, por lo tanto, no
es necesario considerarla para estudiar la vivacidad (R, M).

La utilizacién de estas dos observaciones nos permite enunciar el siguiente al-
goritmo.

ALGORITMO: ANALISIS DE LA VIVACIDAD A PARTIR DEL GRAFO DE MARCADOS

a) Marcar « —» el nudo inicial (el etiquetado con My).
b) Marcar « —» todo nudo predecesor atin no marcado con « —» de un nudo
previamente marcado « —».
¢) si todos los nudos del grafo estdn marcados « —»
entonces © el grafo de marcados es una unica crc y, por consiguien-
te, la RdP sera viva sii se han disparado todas las transi-
ciones;
si no ® eliminar los nudos del grafo marcados con « —» (cFc con el
nudo inicial):
° mientras que exista algin nudo en el grafo hacer
e calcular la crc con un nudo (véase el algoritmo de
§A.3.3);
® si la crc calculada, C;, contiene todos sus nudos su-
cesores (su espectro a cierre) y existe al menos una
transicion no disparada dentro de la crc,
entonces la RAP no es viva debido a G;
e eliminar del grafo la crc calculada.
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Esercicio. Deduizcase la vivacidad de la red de Petri de la figura 4.12a aplicando el algorit-
mo anterior a su grafo de marcados (figura 4.12b).

Esercicio. Esttdiese la vivacidad de las RdP que modelan los ejemplos del capitulo 2, §2.5 .

4.4.2.2 Andlisis de la ciclicidad

Proposicién 4.3. Una RdP limitada para M, es ciclica para ese marcado inicial
sii el grafo de marcados es fuertemente conexo. O

La justificacién de este enunciado es evidente puesto que, por definicion, en todo
grafo fuertemente conexo se puede alcanzar cualquier nudo (en particular, el etique-
tado por Mp) a partir de cualquier otro nudo (cualquier marcado alcanzable a partir
de Mo). )

La RdP de la figura 4.13 es ciclica porque su grafo de marcados es fuertemente
conexo. La RdAP de la figura 4.12 no es ciclica porque el grafo de marcados no es
fuertemente conexo.

4.4.2.3 Andlisis de la conflictividad

El estudio de la aparicion de conflictos efectivos es inmediato. En el ejemplo de la
figura 4.12 observaremos dos conflictos efectivos. Estos corresponden a las decisio-
nes de disparo entre:

1) b o c, estando p2 marcada con una unica marca
[marcado M; = (01102)"].

2) a o d, estando p: marcada con una unica marca
[marcado M, = (10012)7].

En este punto es importante resaltar que la presencia de una decision en G(R, M)
no implica la existencia de un conflicto efectivo. Asi, se puede observar que incluso
el grafo de marcados de un grafo de sincronizacion puede contener selecciones.

Ejercicio. ;Qué significa entonces una seleccion en G(R, Mo)? (Sugerencia: ténganse en
cuenta las RdP de la figura 1.15 y sus grafos de marcados, figuras 1.10y 1.11.)

4.4.2.4 Otros andlisis

El analisis de la k-limitacién de un lugar o de la exclusion mutua entre lugares se
realiza sin mds que considerar el conjunto de marcados alcanzables a partir de Mo
(etiquetas asociadas a los nudos del grafo de marcados).

En el ejemplo de la figura 4.12 se ve que

Mp) <1, Mp)<1, Mp)<1l, Mp)<l, Mps)<3,

luego la red marcada es 3-limitada.
Considerando el mismo ejemplo, podemos representar tabularmente las exclusio-

nes mutuas (tabla 4.1). La exclusién mutua entre el marcado de dos lugares es una
relacion de incompatibilidad.



110 VALIDACION FUNCIONAL DE UNA DESCRIPCION (I): REDES DE PETRI AUTONOMAS

2 —_—
Exclusiones mutuas {pl yp

3 D3y Da

4 e

5

1 2 3 4
Tabla 4.1 Exclusiones mutuas entre los marcados de la RdP de la figura 4.12.

Tambjién se puede realizar el estudio de los avances sincrénicos, aunque su presen-
tacién es mds compleja. Este serd abordado por métodos més adecuados en §4.7 No
obstante, podemos extraer algunas conclusiones inmediatamente; por ejemplo, en
el G(R, My) (figura 4.13) existen dos circuitos que permiten afirmar que [siendo
AV(R, Mo; x,y) = AV(x, p)]:

a) AV(a,b) = AV(a,d) = AV(b,a) = AV(b, &) = AV(d, d) =
= AV(d, e) = AV(e,b) = AV(e,d) =

b) AV(a,e) = AV(b,d) = 1

¢) AV(e,a) = AV(d, b) = 0.

4.4.3 Critica de los métodos de andlisis por enumeracién

La naturaleza fuertemente combinatoria de estos métodos de analisis puede restrin-
gir su utilizacién practica, incluso si las redes poseen pocos lugares y/o transiciones.

En resumen, los métodos por enumeracién son potentes porque permiten anali-
zar, mas o menos directamente, todas las propiedades caracteristicas del buen fun-
cionamiento de una RdP. El problema fundamental que plantean reside en su com-
plejidad operativa, lo que los hace a veces dificilmente utilizables. Para atenuar este
inconveniente se han desarrollado las técnicas de reduccién.

4.5 ANALISIS POR REDUCCION

Los métodos de andlisis que consideramos a continuacion se basan en la idea de re-
ducir la complejidad de la red inicial, pero de forma tal que, al llevar a cabo la re-
duccién, se preserven las propiedades que se desea analizar.

Las técnicas de reduccién permiten eliminar o sustituir transiciones o/y lugares
de manera que no resulten afectadas las propiedades objeto del andlisis del compor-
tamiento dindmico. Evidentemente, las reducciones que vamos a estudiar no preser-
van la relacién funcional evento-accién que describe la red interpretada inicial. El
estudio de reducciones que preservan la relacién evento-accién fue abordado en el
capitulo 3, dedicado a la simplificacion de una descripcién.

Desde un punto de vista conceptual, el proceso de reduccién de una RdP marcada
permite agrupar secuencias de operaciones en el modelo del sistema concebido y sus-
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tituirlas por una tinica «macroaccion» en el modelo reducido. Est4 claro, pues, que el
proceso de reduccién de un modelo es inverso del proceso de descripcion descendente
(mediante refinamientos sucesivos). En efecto, en un proceso de descripcién descen-
dente (fop-down) se parte de una descripcién general (a nivel de macroacciones) que se
va refinando mediante la descomposicién de macroacciones en acciones més simples.

La intima relacién entre reduccién y refinamiento hace que los resultados de am-
bos métodos sean practicamente «trasvasables» de uno a otro.

En este apartado consideramos tres reglas de reduccién. Una de ellas tiene cardc-
ter no estrictamente local, puesto que permite reducir a un lugar ciertas subRdP.
Las otras dos son reglas de aplicacién local (sustitucién de un lugar y eliminacién
de una transicion). Estas tres reglas de reduccidn se complementan con la regla sobre
eliminacidn de un lugar implicito (§3.3). En cualquier caso, siempre es posible defi-
nir nuevas reglas de reduccién. El conjunto de reglas que presentaremos pretende
establecer un compromiso entre completitud y utilidad.

El lector que en una primera lectura desee considerar directamente los casos mas
sencillos de las reglas de reduccién de redes ordinarias puede pasar al §4.5.4.2b. En
este y en la figura 4.26 se presentan casos particulares de las reglas que se estudian
a continuacion. Como es f4cil intuir sobre estos casos particulares, tanto la vivaci-
dad como la limitacién se preservan al aplicar las reglas de reduccion.

4.5.1 Reduccién de una subRdP a un lugar (®R,)

La regla de reduccién que estudiamos en este apartado contiene ciertas condiciones su-
ficientes que, si son satisfechas por la estructura de una subRdP, garantizan que ésta es
reducible a un lugar preservando las propiedades de vivacidad y limitacién. La aplica-
cién de esta regla es especialmente eficaz en el caso de que las evoluciones secuenciales,
incluso con alternativas, sean numerosas dentro de la evolucién total de la RdP.

4.5.1.1 Regla de reduccién

La reduccién de una subRdP a un lugar es posible si la subRdP presenta un compor-
tamiento global «idéntico» al del lugar. Asi, de forma intuitiva podremos enunciar
que una subRdP podr4 ser reducida a un lugar si:

1) no crea ni destruye marcas;

2) la vivacidad de las transiciones de la subRdP esta implicada por la vivacidad
de otras transiciones externas a la subRdP;

3) todas las marcas existentes en la subRdP se pueden utilizar en el disparo de
cualquiera de las transiciones que definen la frontera con el resto de la RdP.

Para formalizar estas condiciones vamos a introducir una serie de conceptos.

Sea la RAP R = (P, T, @, 8 una subRdP de R = (P, T,a,B). En la definicién
que sigue se expresa una condicién suficiente para que una subRdP no cree ni des-
truya marcas.

Definicién 4.15. La subRdP R es potencialmente reducible a un lugar si el peso
de sus arcos es la unidad y sus transiciones poseen, un tunico lugar de entrada y vinico
lugar de salida. (J
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Una subRdP potencialmente reducible a un lugar es una maquina o grafo de
estados en la que ciertos lugares pueden no tener transiciones de entrada o de sa-
lida.

Definicién 4.16. Los lugares p e P que en R poseen transiciones de entrada [de
salida] que no pertenecen a la subRdP, # ¢ 7, seran denominados /ugares ascendien-
tes [descendientes] de la subRdP R. [

En la figura 4.14 se presenta un ejemplo tipico de subRdP potencialmente reduci-
ble a un lugar. Se puede observar que la interseccién de los conjuntos de lugares as-
cendientes, { p1, p2},y descendientes, { p2, ps, Ps}, no tiene por qué ser nula (p, en
la figura 4.14).

Observacion. Si se consideran RdP ordinarias, todo componente conexo que no posea
transiciones con més de un lugar de entrada y/o de salida es potencialmente reducible a un
lugar. :

iSi fuese
reducible!

=

Figura 4.14. La subRdP R = ({p1,...,Ds}, (#7,...,t14}) €s potencialmente reducible a un
lugar. Si R fuese reducible a un lugar, se obtendria la red de la derecha. -

Para que una subRdP sea reducible a un lugar, debe cumplir las condiciones que
permiten preservar la vivacidad mediante la operacién de reduccién (condiciones 2
y 3 enunciadas al comienzo de §4.5.1.1). A continuacién caracterizaremos una clase
de subRdP reducibles a un lugar. El lugar resultante de la reduccién se define como
macrolugar.

Definicién 4.17. Se llama macrolugar, Pg, al lugar que se obtiene al reducir una
subRdP, R, que verifique las condiciones siguientes:
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c1) R es potencialmente reducible a un lugar; _

c2) Vp € P existe al menos un camino que parte de un lugar ascendiente de R y
llega a p;

c3) Vb € Pexisten caminos en R que lo unen a los diferentes lugares descendientes
de R. O

Las tres condiciones enunciadas en la definicién 4.17 permiten verificar las condi-
ciones intuitivas presentadas en el primer péarrafo de §4.5.1.1. Segin esta definicidon,
la subRdP potencialmente reducible a un lugar de la figura 4.14 no es reducible por-
que no existe un camino que vaya desde ps hasta { p2, pe}. Las subRdP de la figura
4.15a y b tampoco son reducibles a un lugar. (Estudiese la causa.)

1

@ (c1,c2) (®) {c1,c3) (©) (c1,¢2,c3)

Figura 4.15. Conjunto de subRdP que facilita la comprension del significado de las tres con-
diciones de la definicion 4.17. (Nota: se indican las condiciones que verifica ca-
da subRdP.)

El macrolugar Pg que representa la reduccién de R, subRdP reducible a un lu-
gar, se determina de acuerdo con las reglas que siguen:
o(Pr, 1)) = _ZP o(pi, 1))
1) vtjeT e _
T B, PR = Y B, B,

pieP
es decir, las transiciones de entrada y de salida de Pz son aquellas que no perte-
necen a R, pero que, sin embargo, son transiciones de entrada y de salida de R.
2) Mo(PR) = 2 Mo(p)).

pieP
es decir, Pz posee como marcado inicial la suma de las marcas que poseen los
lugares de R, p; e P.
En estas condiciones es fécil verificar que, si a la red original (R, Mp) se le afiade

el lugar Pg,ésta se transforma en la red (R*, Mo*) equivalente a la anterior, pues-
to que Pg serd un lugar implicito (§3.3).
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La subRdP de la figura 4.15c¢ es reducible a un lugar, el cual tendra sélo una tran-
sicién de entrada, #,*, y una transicion de salida, ¢;*. Las transiciones 71, &, fs y
f¢ no figurardn en la red reducida puesto que pertenecen a R.

A continuacién presentaremos las propiedades que preserva la regla de reduccién
considerada y expondremos algoritmos que permiten determinar si, de acuerdo con
las condiciones dadas, una subRdP es reducible a un lugar o no lo es.

4.5.1.2 Propiedades que preserva la regla de reduccion

Sea la red marcada original (R, M) y sea {R;, Mo,) la red marcada obtenida me-
diante la reduccién a un lugar de una subRdP reducible.

Propiedad fundamental de la reduccién de una subRdP a un lugar (proposi-
cion 4.4). (R, My) es viva y limitada sii (R, My, es viva y limitada. [J

Una justificacion de este resultado estd implicita en el razonamiento realizado al
comienzo de §4.5.1.1, por lo que se puede omitir la lectura de la demostracion.

DEMOSTRACION. Para demostrar la proposicion 4.4 basta comprobar que la red
reducida (R;, My,) es viva y limitada sii la red (R*, My*), obtenida al afiadir a
(R, My) el macrolugar (que serd un lugar implicito), es viva y limitada.

1) (R*, My*) viva & (R,, My;) viva.
(1.1) {R*, My*) viva = (R;, Mp;) viva.

La transformacién de (R*, Mo*) en (R, My, se realiza eliminando R en (R*,
Mo*). Hay que demostrar que la eliminacion de R, prescindiendo de las transicio-
nes 7€ T, no crea nuevas secuencias de disparos. Esto se puede garantizar gracias
a las condiciones 1 y 3 de la definicion de macrolugar. En efecto, éstas permiten
que en R todas las marcas alojadas, y sélo éstas, puedan ser encaminadas hacia cual-
quiéra de sus transiciones de salida, comportamiento que es idéntico al del macro-
lugar Pz. Por consiguiente, la eliminacién de R no crea nuevas secuencias de dis-
paros.

1.2) (R, Mo,y viva = (R*, My*) viva.

La transformacién de (R, Mo,y en {(R*, My*) se realiza insertando R en la prime-
ra. Para que la implicacion anterior se verifique basta con que:

a) La vivacidad de las transiciones 7€ T sea implicada por la vivacidad de las
transiciones externas a R, f.€ T. = T — T. Esta condicién se cumple gracias a las
condiciones 1 y 2 de la definicién de macrolugar. En efecto, de acuerdo con dichas
condiciones, si las transiciones de entrada de los lugares ascendientes de R son vivas,
todas las transiciones de R son vivas.

b) La insercién de R no introduzca restricciones sobre el disparo de las transicio-
nes de salida de sus lugares descendientes. El razonamiento es similar al realizado
en el punto 1.1.

En resumen, (R, My) viva & (R*, Mo*) viva & (R, Mo;) viva.
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(2) (R*, Mo*) limitada ¢ (R, My,) limitada.

Puesto que los macrolugares, son lugares implicitos en (R*, Mo*), se puede
establecer: :

(R*, My*) k-limitada = (R,, Mo, k-limitada.

Ahora bien, dada la condicion cs (def. 4.17), el limite del marcado de Pz y de
cualquier p; descendiente de R coinciden. Es decir, el limite de (R, Mo ) serd idéntico
al de la red (R*, Mo*). En conclusidon, podemos afirmar:

(R, My) k-limitada ¢ (R, Mo,) k-limitada. O

Corolario 4.1. Si R es una RdP ordinaria, (R, Mp) es viva y binaria sii (R, Mo,)
es viva y binaria. [J

Si se desea estudiar el limite de un lugar, las exclusiones mutuas entre lugares y la ci-
clicidad de una RdP marcada, basta con reducir la red original sin eliminar los lugares
cuya consideracién interese (en el caso de la ciclicidad, los lugares marcados para Mp).

4.5.1.3 Obtencion de los macrolugares
Para obtener los macrolugares se puede proceder siguiendo tres etapas:

1) Eliminacion de las transiciones Y de la red:

Esta operacion consiste en la supresion en (R, M) de todas las transiciones de
tipo Y con todos sus arcos de entrada y de salida (figura 4.16). Tras esta operacion,

se obtienen varias componentes conexas, segin la terminologia especifica de los gra-
fos (Anexo 2).

Figura 4.16. Supresion de los nudos Y.
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2) Particidn de cada componente conexo en maquinas de estado:

Esta operacién s6lo es necesaria si R es una RdP generalizada. Si R es una RAP
ordinaria, todos los componentes conexos son maquinas de estado ¥, por consi-
guiente, subRdP potencialmente reducibles a un lugar. (Nota: recuérdese que las
ME no tienen por qué estar monomarcadas.)

3) Particidn de cada méaquina de estados en subRdP reducibles a un macrolugar.

Desde un punto de vista algoritmico, ésta es quizds la etapa mds interesante.
Puesto que toda particion de una méquina de estados permite obtener un conjun-

to de mdquinas de estados, se puede proceder a la particidn segin las condiciones
2 y 3 de la definicion 4.17.

ALGORITMO PARA LA VERIFICACION DE LA CONDICION 2 DE LA DEFINICION 4.17

a) Marcar «+» los lugares ascendientes de un componente conexo R.
b) Mientras que exista un lugar que pueda ser marcado «+ »
hacer marcar « +» todo lugar atin no marcado « + » que sea lugar
de salida de una transicion de salida de un lugar previamente
marcado «+ ».
¢) Si existe al menos un lugar p € P no marcado «+ »
entonces R no es estructuralmente viva
si no se verifica la condiciéon 2 de la definicién 4.17.

Como fécilmente se comprueba, este algoritmo sélo sigue directamente la condi-

cién que pretende determinar, empleando una técnica cldsica en grafos (véase el ane-
x0 2, §A.2.3).

ALGORITMO PARA LA VERIFICACION DE LA CONDICION 3 DE LA DEFINICION 4.17

a) Para todo lugar p; que sea descendiente de R
hacer marcar el lugar con « —i» (es decir, con « —» su indicativo o
subindice)
b) mientras que algun lugar pueda ser marcado negativamente
hacer marcar « —j» todo lugar ain no marcado « —j» que sea lu-
gar de entrada de una transicién de entrada de un lugar pre-
viamente marcado « —j».
¢) Cada una de las subRdP cuyos lugares han sido etiquetados por un mismo
conjunto de marcas negativas verifica la condicion 3 de la definicidn 4.17.

Como se puede comprobar, este segundo algoritmo no hace mas que determinar
los conjuntos de lugares que pueden enviar marcas a un mismo subconjunto de luga-
res descendientes de R, { p;}. A modo de observacidn, es interesante sefialar que la
condicién 3 permite establecer una relacion de equivalencia entre los lugares de R:
dos lugares son equivalentes sii a partir de ellos se puede alcanzar el mismo subcon-
junto de lugares descendientes de R.
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Esempro. Sea la subRdP potencialmente reducible de la figura 4.14:
e la aplicacion del primer algoritmo permite marcar « + » todos los lugares, y, por consi-
guiente, se verifica la condicién 2;
e la aplicacién del segundo algoritmo permite:
—Paso a: marcar p, con «—2», ps con « —5» y ps con « —6».
—Paso b: marcar { p1, p2, ps, Pe) con [« —2», « —=5», « —6»]) y [p3,ps} con {«—5»}.
En la figura 4.17 se representa la reduccién posible.

h - M2 --‘ &

|
|
|
i

e e e o e e e e ——

f4_. Is -

(b) Reducciones posteriores, in-
cluyendo sustituciones de lu-
gares y eliminacion de un lugar
implicito.

(a) Reduccién de las subRdP a
Macrolugares.

Figura 4.18. Reducciones de la figura 4.16.
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Esercicio. Compruébese que al reducir la red de la figura 4.16 se obtiene la de la fi-
gura 4.18a.

Esercicio. Compriebese que la red de la figura 1.15 es viva y binaria. (Nota: independien-
temente de N, numero de carros, se obtiene un grafo de marcados con dos nudos al aplicar
la regla de reduccién de subRdP a lugares y la de eliminacién de lugares implicitos.)

4.5.2 Sustitucién de un lugar (®,)

La aplicacién de esta nueva regla de reduccién nos conducira a la eliminacion de
lugares que no estdn implicitos. En cualquier caso, esta regla preserva las propieda-
des de vivacidad y de limitacién. Como veremos, es una regla de aplicacion local.

A partir de la definicién de lo que denominaremos lugar sustituible, presentare-
mos la operacién de sustitucién. Por tltimo, enunciaremos las propiedades que se
mantienen.

4.5.2.1 Lugar sustituible y operacidn de sustitucion

El objetivo de la sustitucion de un lugar es eliminarlo de la RdP, aunque mantenien-
do de forma condensada todas las secuencias de disparo de la RdP original. Un lu-
gar, p, mas el conjunto de sus transiciones de entrada y de salida, serd sustituido
por un conjunto de transiciones. Para que se mantengan todas las secuencias de
disparo de la red original, cada una de las transiciones que se introduzca deber4 re-
presentar una secuencia (o un conjunto de secuencias) de disparo de la red original.
Estas secuencias estardn formadas exclusivamente por transiciones de entrada y de
salida del lugar que se sustituye. Por otro lado, las secuencias serdn tales que cualquier
marcado en el que p contenga marcas deberd ser un marcado intermedio entre dos
en los que p estard desmarcado. Si consideramos la figura 4.19, observaremos que
p puede ser marcado al disparar #; o #2 y, ademads, puede ser desmarcado al disparar
t3 0 t4. La eliminacion de p y de {11, f2, t3, 4} exige la introduccion de transiciones
que representen las secuencias de marcado-desmarcado de p: {#113, t11s, 1213, 214 ).

Figura 4.19. Sustitucion del lugar p.
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El razonamiento anterior es valido s6lo si se pueden determinar las secuencias de
marcado-desmarcado de p, independientemente de la.evolucién del marcado en el
resto de la RdP (localidad de la transformacién). Para garantizar esta propiedad,
se introducen las condiciones 1 y 2 de la definicién de lugar sustituible (defini-

cion 4.18). La condicion 3 se introduce para preservar la limitacidn.

Definicién 4.18. El lugar p es sustituible en la red marcada (R, Mo) si:

1) p es el tinico lugar de entrada de sus transiciones de salida y, ademads, el peso
del arco correspondiente es la unidad; es decir, Vitx € p* se verifica:

1.1) te=p
(1.2) a(p, ) = 15

2) no existe transicion que sea simult4neamente transicion de entrada y de sali-
da de p: pNp' = .

3) al menos una transicion de salida de p, tx € p, posee uno o mas lugares de
salida: atx e p- tal que i # . O

De acuerdo con esta definicién, la figura 4.20 presenta el esquema general de un
lugar sustituible. En la RdP de la figura 4.18a sélo se pueden sustituir los lugares
Doy Ps. Los restantes no cumplen la condicién 1; ademds, el lugar p;3 tampoco cum-
ple la condicién 2.

Figura 4.20. Esquema general de un lugar sustituible.

Antes de continuar con la operacion de sustitucién comentaremos las condiciones
de la definicién 4.18. La condicién 1.1 es necesaria porque, de lo contrario, seria
vélida la eliminacién de p; en la red de la figura 4.18. La mencionada red marcada
es no viva pero, si por error se sustituye pa, se convierte en una red viva; es decir,
no se preservaria la vivacidad.

Veamos intuitivamente el interés de la condicion 1.2. Consideremos la subRdP
de la figura 4.21a. Si A1 no es miltiplo de h» (Fa € N tal que hy = ahy) resulta imposi-
ble encontrar un nimero de disparos de #, que desmarque p después de un disparo
de 11, y, por lo tanto, el lugar p no podra ser sustituido localmente. Evidentemente
la condicién 1.2 (suficiente) resuelve el problema al tomar hy = 1.
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Figura 4.21. Estudio de las condiciones de la definicién de lugar sustituible.

La condici6n 2 de la definicién 4.18 impide la sustitucién de lugares como el de
la figura 4.21b. En efecto, si #; es disparada, existird un nimero infinito de secuen-
cias de disparo posibles que corresponderén a otros tantos disparos de #;. Por tilti-
mo, la condicién 3 de la definicién 4.18 impide la sustitucién de lugares como el de
la figura 4.21c. En efecto, p es el unico lugar no limitado (la RdP es no limitada)
¥y, por consiguiente, su eliminacién hace que la RdP reducida sea limitada (binaria).

Como anuncidbamos anteriormente, la operacion de sustitucién del lugar p per-
mite su eliminaci6n y, ademds, reemplaza las transiciones p y p* por un conjunto
de transiciones, S. Cada transicion sj € S representard una secuencia elemental de -
marcado-desmarcado del lugar p. Es facil comprobar que al proceder de esta mane-
ra conservamos en el grafo de marcados de la red reducida, G(R,, My,), «los cami-
nos» del grafo de marcados de la red original, G(R, M,). Evidentemente, en
G(R;, Mor) no apareceran los marcados en los que p contenia, al menos, una marca.

La figura 4.22 presenta la aplicacion de la operacion de sustitucién al lugar p. La
sustitucién de po y ps (figura 4.18a) conduce a una RdP en la que se confunden
las transiciones e, f'y m (figura 4.18b).

Figura 4.22. Sustitucién del lugar p.

El nimero de transiciones que hemos de crear después de una operacion de susti-
tucidn, |S|, se calcula facilmente. Supongamos que existe una tinica transicién de
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entrada al lugar p que le introduce # marcas. Supongamos también que p tiene r
transiciones de salida, = | p-|. El mimero de transiciones que tenemos que crear co-
rresponde al nimero de formas en que se pueden distribuir 4 bolas en r casillas
(combinaciones con repeticidn), es decir,

_on (A+r=1)! {heN*
18] = e = hi(r — 1)! reN+
Observacion.
Wi=r, Wiz=1ly Wi=h+1. O

Por iltimo, si existen g transiciones de entrada a p, se han de crear

q
|S| = >} W* transiciones.
i=1

En el proceso de sustitucidn del lugar p éste queda eliminado, asi como las g + r
transiciones originales, -pUp'-. De este modo, si los A; son unitarios, #; = 1 (en toda
RdP ordinaria ocurre esto), se introducen gr transiciones. Puesto que se eliminan
q + r, globalmente se afiaden gr — (g + r) = q(r — 1) — r = (g — 1)r — g, cantidad
que para ¢ = 1 o/y r = 1 es, evidentemente, negativa. Es decir, en estos casos (los
mas frecuentes en la practica), al eliminar un lugar también se reduce el mimero de
transiciones de la red. .

En conclusion, la aplicacidn de esta regla de reduccién disminuye el nimero de
lugares, aunque puede aumentar el mimero de transiciones de la red. No obstante,
esto no resulta ser un inconveniente si se consideran las distintas secuencias de dispa-
ro posibles (caminos del grafo de marcados). Asi pues, si en el ejemplo de la figura
4.22 el lugar «a» contiene una unica marca, existen ocho secuencias de disparo posi-
bles en la RAP original, y s6lo cuatro en la RdP reducida. En el cuadro siguiente
establecemos su correspondencia:

{gj) = secuencias en (R, My) {Sj} = representacion de las {g;} en (R,, Mo,)

a1 = hilhlals —_— Si
02 = lilhlal3
03 = Lkl —_— S2
04 = L1132
a5 = tihilals
06 = hilalty p —————=— S3
o7 = Lilstsly

gg = lil3l3l3 —_— Sa

4.5.2.2 Consecuencias de la regla de reduccion

Sea (R, My) la red obtenida al sustituir p en (R, Mp).
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La definicién de un lugar sustituible conduce, naturalmente, a enunciar que:

(R, My) k-limitada = (R,, My,) k-limitada
(R, My;) k-limitada = (R, My) k-limitada.

La primera implicacion es evidente. La segunda se puede demostrar, puesto que
el lugar que se sustituye, p, tiene un limite inferior o igual al de todos los luga-
res de salida de sus transiciones de salida (de acuerdo con la condicién 3 de la defini-
cién 4.18, existe al menos uno). i

Por otro lado, de acuerdo con la definicién de la operacion de sustitucidn, toda
transicion de R, representa:

—Ila misma transicion de la red original R, o bien
—una secuencia de disparos de transiciones de R que marca y desmarca al lugar
sustituido,

de donde (R, M) viva & (R,, Mo, viva.
En resumen (proposicion 4.5), (R, My) es k-limitada y viva sii (R;, Mo,y es k-li-
mitada y viva. [J
1
Corolario 4.2. (R, M) es conforme sii (R,, Mo,) es conforme. []

Antes de ofrecer un ejemplo de reduccién de una red debemos sefialar que hasta
ahora hemos supuesto que los lugares que se trataba de sustituir no estaban marca-
dos. Si p estuviera marcado, M(p) = u, y se fuera a sustituir, en lo sucesivo habria
que considerar los W7} marcados iniciales, resultantes del disparo de las diferentes
secuencias que desensibilizan las  transiciones de salida de p. Desde un punto de
vista practico, interesa resaltar que si p posee una tnica transicion de salida, r =1,
entonces W1 = 1y s6lo habremos de considerar un marcado inicial tinico: el obteni-
do al disparar u veces consecutivas la transicion de! salida de D.

EreMPLO. Sea de nuevo la RAP de la figura 4.184. La sustitucién de Ds 1O plantea proble-
mas; se obtiene la transicion fm. La sustitucién de po exige que se dispare la transicién fm,
con lo que Mo, = { ps, p7, p13}; se obtiene la transicién efm (figura 4. 18b). En esta situacidn,
p7 es un lugar implicito (estd implicado por ps y ps) y, por consiguiente, podemos proceder
a su eliminacién. Esta nos permite sustituir Ps, con lo que se obtiene la transicién jn. En la
RdP obtenida (figura 4.18b) basta con disparar la transicién @ para comprobar que es no vi-
va. En conclusidn, la RdP de la figura 4.16 es no viva. :

Esercicio. Considérese la RdP de la figura 4.23. ;Qué reglas de reduccién se pueden apli-
car? ;La red final es ordinaria o generalizada? ;Se puede afirmar que, en determinados ca-
sos, las reglas ®; (reduccién de una subRdP a un lugar) y ®, (sustitucién de un lugar) no
son aplicables indistintamente?

4.5.3 Eliminacién de una transicion (®R3)

Con las reglas de eliminacién que estudiamos en este apartado, se preservan también
la vivacidad y la k-limitacién. Son reglas cuyo enunciado basta para comprender la
afirmacién anterior.
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Figura 4.23. ;Es reducible esta RdP?

Definicién 4.19. Las transiciones t y t’ son idénticas sii sus funciones de incidencia
previa y posterior coinciden:
a(p, 1) = a(p,t')
B(t, p) = B(t', p). O

La eliminacién de una cualquiera de las dos transiciones, ¢ o ¢, no alterard ni la
vivacidad ni la limitacién de la RdP.

vpeP {

Definicién 4.20. La transicion ¢ es una transicion identidad sii Vp € P se verifica
a(p, 1) =B, p). U

El disparo de una transicion identidad no modifica el marcado de la RdP. La eli-
minacién de una transicién identidad, exige que se verifique que ésta no sea la unica
transicién no viva. Para ello basta con encontrar una t' €T, t' #{, tal que
vpeP op,t’) = a(p,t)o/yB(t',p) = B(t, p). En efecto, de acuerdo con la condi-
cién anterior si ¢’ es viva, entonces también ¢ serd viva. En efecto, el disparo de t’
requerird mds marcas que el de ¢ [a(p, ') = a(p, )] o/y producird un nimero de
marcas suficiente para disparar ¢ [3(¢', p) = B(¢, p) = a(p, D].

La figura 4.24c presenta un caso en el que, si se desea preservar la vivacidad, no
se puede eliminar la transicion identidad, ?.

4.5.4 Cuestiones adicionales sobre reduccién y limitaciéon de RdP

4.5.4.1 Eliminacion de lugares implicitos y limitacion

La eliminacién de un lugar implicito no afecta la vivacidad de una RdP, pero puede
ocurrir que el lugar implicito que eliminemos sea el lugar de mayor limite en la red
y, por consiguiente, defina su k-limitacién (véase la figura 4.25).

Sea ko el limite de (R,, Mo,) y ki(i # 0) el limite de i-ésimo lugar implicito elimina-
do en todo el proceso de reduccién. El limite de (R, Mo) es k = max {ko, kiy... kq}.
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a(p’ t’) 2 a(p’ t)
=
t v

(a)

B(t',p) = B(t,p) = a(p, 1) v

(9]

t no puede ser eliminada -

©
Figura 4.24. La transicidn identidad ¢ sdlo puede ser eliminada en los casos a y b
2 3
liminacién
de p;
4
=> 6
5
(@) RdP no-binaria (2-limitada) (b) RdP binaria

Figura 4.25. La eliminacion de un lugar implicito no preserva la k-limitacién de la red mar-
cada.

4.5.4.2 Estrategia' para la utilizacion de las reglas de reduccion

A lo largo del apartado 4.5 hemos estudiado tres reglas de reduccion (R, Rz y ®R3).
En el capitulo 3 (§3.3) estudiamos la eliminacion de un lugar implicito (Ro). Estas
cuatro reglas de reduccion permiten conservar la vivacidad y la limitacion. También
hemos anunciado que si se desea estudiar el limite de un lugar, las exclusiones mu-
tuas o la ciclicidad, conviene no hacer desaparecer los lugares considerados. A conti-
nuacion presentamos dos tipos de estrategias de utilizacidén de las cuatro reglas de
reduccion, asi como casos particulares de las reglas citadas.
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a) Estrategias bdsicas para la reduccion: predefinidas o especificas

La primera de ellas, predefinida, consiste en definir «a priori» secuencias de aplica-
cién de las reglas para reducir cualquier RdP. Desde un punto de vista practico, he-
mos comprobado que normalmente conviene aplicar primero la regla ®: (la cual,
al ser una regla no estrictamente local, suele producir fuertes reducciones en una so-
la aplicacién) e iterar posteriormente con las otras reglas.

Si representamos mediante ®¥ la aplicacion reiterada de la regla ®; hasta que no
se pueda conseguir una nueva reduccion, el siguiente esquema propone una estrate-
gia (predefinida):

Ri;
repetir
®R¥; RE; RS
hasta que en una iteracién no haya reduccién alguna.

Como alternativa a las estrategias de reduccion predefinidas, hay que sefialar el
interés de las estrategias especificas, generadas por el disefiador durante el proceso
de reduccién de la red analizada. Si el conjunto de reglas de reduccion esta imple-
mentado en un paquete de programas, el didlogo disefiador-computador serd infe-
ractivo.

b) Casos particulares de las reglas de reduccion

En este punto cabe sefialar que a veces solo se utiliza un conjunto de casos particula-

res de las reglas antes presentadas, ®Ro a ®3. Este conjunto puede ser elegido en fun-
cion de criterios tales como:

1) utilidad de cara a reducciones eficaces.
2) facil implementacién en computador.

En la figura 4.26 se presenta el conjunto de reglas elegido en el sistema de ayuda
a la concepcidn con computador (cAD) denominado CAVIAR (realizado por Electrici-
té de France) [BOUS 78]. (Nota. Obsérvese la analogia entre las reglas que se en-
cuentran al mismo nivel; posteriormente introduciremos el concepto de dualidad en
redes.) Este sistema fue disefiado para la concepcion de automatisiios logicos desti-
nados a las estaciones de distribucién de energia eléctrica de alta tension, etc.

EsEmpLo. Sea la RAP de la figura 4.27. Una aplicacion de las reglas basicas de reduccion
conduce a la figura 4.28a. Los pasos seguidos son:

Paso 1. Aplicacion de RA1 a f3-t5 y ta-le.
Paso 2. Aplicacién de RC1 a Ar con I35 Y 6.
Paso 3. Aplicacion de RA1 a t1-f35 ¥ f2-la6.

Aplicando de nuevo las reglas de reduccién se llega a la figura 4.29. Los pasos seguidos
son:
Paso 4. Aplicacion de RA1 a f6-13 ¥ t135-17.
Paso 5. Aplicacion de RC1 a p1 y pa.

Esercicio. Determinese, aplicando los métodos de reduccion, cuales de las RdP del §2.4
son totalmente reducibles (es decir, tales que no hace falta aplicar posteriormente la enumera-
cién). ¢Son vivas?, ison limitadas?
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Lugar
sustituible
(RA 1)

3

RA: Reduccién por elimi

SubRdP
reducible
a un lugar
(RA 2)

2k

RB1: Reduccién por eliminacion
de evoluciones paralelas
(lugar implicito en paralelo).

RB2: Reduccién por eliminacién
de alternativas (transiciones
idénticas).

~H

RC1: Reduccién por eliminacién
de lugar implicito
(lugar identidad).

H -}

RC2: Reduccién por eliminacién
de iteracién
(transicién identidad)

Figura 4.26. Reglas simples para la reduccién de RdP ordinarias.

157)

Figura 4.26 bis. Regla simple de reduccion complementaria.

Erercicro. (1) Demuéstrese que la regla de reduccion ilustrada por la figura 4.26bis permi-
te preservar la k-limitacion y la vivacidad. (Sugerencia: tengése en cuenta que el lugar p posee
sé6lo una transicion de salida; ademads, p es el unico lugar de salida de su transicién de entra-
da.) (2) ;Se puede generalizar esta regla de reduccién?
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Figura 4.27. RdP a reducir (relacién productor-consumidor). (Nota: los lugares {p1,ps}) ¥
{ p4, D¢ ) representan esperas del productor y del consumidor, respectivamente).

Figura 4.28. RdP que se obtiene después de los tres primeros pasos de reduccion (dibujada
en dos posiciones).

12468
has? l____> 112345678
3

Figura 4.29. La RdP es viva y 4-limitada.

En los apartados que siguen abordaremos el estudio de los métodos que se cono-
cen en la literatura como «estructurales». Antes resaltaremos que, en un sentido am-



128 VALIDACION FUNCIONAL DE UNA DESCRIPCION (I): REDES DE PETRI AUTONOMAS

plio, los métodos de reduccién que hemos presentado son también estructurales, ya
que proceden transformando la estructura de la RdP original.

4.6 CONSERVATIVIDAD Y REPETITIVIDAD: APLICACION AL
ANALISIS GLOBAL DE REDES DE PETRI

La conservatividad y la repetitividad son dos propiedades estructurales faciles de es-
tudiar, que estdn relacionadas con ciertas propiedades dindmico-estructurales como
son la vivacidad estructural y la limitacidn estructural.

Los resultados que exponemos en este apartado, asi como en el siguiente (§4.7),
se obtienen al aplicar técnicas derivadas del dlgebra lineal a la ecuacidn de estado
de una RdP (§2.2.2):

My=Mx_1+C-Ux = My=My+ C-oa,

donde C representa la matriz de incidencia de una RdP pura. Si la RdP no es pura,
es decir, no posee transiciones para las que ‘tN¢" # (J, entonces no se puede repre-
sentar su estructura con una matriz. No obstante, la ecuacion de estado es correcta
si se sustituye la matriz de incidencia, C, por la matriz de flujos de marcas, Ct.
Siempre que exista una secuencia ¢ aplicable a partir de Mo: My = Mo + C.G.
Antes de comenzar el estudio de definiciones y propiedades, conviene resaltar que
las conclusiones a las que podamos llegar tienen «a priori» una serie de limitaciones:

1) La matriz C no representa la estructura de la RAP mds que para las redes pu-
ras. De este modo, a toda red pura a la que se afiadan lecturas de lugares le corres-
ponde la misma ecuacion de estado. Evidentemente, esto lleva consigo el que el estu-
dio de la actividad (vivacidad, ciclicidad, . . .) de las redes no puras esté limitado de
partida.

2) El vector caracteristico o condensa parte de la informacién sobre la secuencia
de disparos o, pero no la representa univocamente, puesto que no informa sobre el
orden en que se realizan los disparos de las transiciones. Esto también limita el estu-
dio de la actividad para toda red de Petri.

3) El que ¢ y M sean vectores no negativos no permite garantizar la existencia de una
secuencia o aplicable a partir de M. Asi, por ejemplo, a la RdP pura de la figura 4.30
no se le puede aplicar ninguna secuencia de disparos si inicialmente est4 marcado s6lo
ps; sin embargo, existen soluciones de la ecuacion de estado con ¢ 20y M 20:

(1) (0] 0
0 0 0
0 1 1

=i + C- = -0
5 o o| M=Mo+C-3l
0 0 1
LOJ LOJ LIJ

1 Esta se introdujo en §3.3.2: C = [€laxm ¥ &j = Bt pi) — apis 1))
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A pesar de estas tres restricciones, el interés del estudio de las RAP mediante la
ecuacién de estado es enorme, puesto que permite:

1) Extraer importantes conclusiones sobre el comportamiento de la red mediante
la aplicacién de algoritmos de ejecucion muy rapida.

2) Analizar ficilmente el comportamiento de la red para diversos marcados
iniciales. ‘

En este apartado presentamos definiciones bésicas y resultados globales sobre el
analisis estructural de una RdP. En el siguiente abordaremos fundamentalmente el
estudio de propiedades locales del comportamiento (exclusiones mutuas entre mar-
cados, limite de un lugar, avances sincrénicos, etc.).

4.6.1 Definiciones y propiedades basicas

SealaRdPR = (P, T,a, B) y su matriz de incidencia C. (Nota: si la red no es pura
se utilizara C.)

Definicion 4.21. R es repetitiva sii existe un vector X € (N *Y*talque C- X =0.0

Es decir, una RdP es repetitiva sii su matriz de incidencia admite un vector anula-
dor derecho tal que todos sus elementos sean positivos. Como C - X = 0 es un siste-
ma de ecuaciones lineales con coeficientes enteros, éste admite soluciones raciona-
les. Si una solucién Xo, Xo(i) = n(i)/d(i), se multiplica por el minimo comun multi-
plo (mcm) de los denominadores, d = mem(d(i)), se obtiene una solucion entera,
Xo: Xo(i) = Xo(i)d. Si todas las componentes son positivas, la RdP es repetitiva.

Para escribir directamente las n ecuaciones C - X = 0, basta con establecer el ba-
lance de marcas en cada lugar. En efecto, el disparo de una transicién, ¢, implica
la eliminacién de «(p, f)—peso del arco que une p a t— marcas de p y la adicién
de (¢, p’) —peso del arco que une ¢ a p'— marcas a p’. La figura 4.30 muestra un
ejemplo para el que X7 = g N p A+p N+ p) es solucién. Tomando A = p =1,
XT = (111122)ylaRdP es, por tanto, repetitiva. La independencia entre A y p se
puede explicar facilmente, dado que a partir de p; es posible elegir libremente entre
disparar #; o t,. Mas adelante abordaremos el célculo sistematico de una solucién
positiva de la ecuacién C- X = 0. ”

Observacion. Establecer el balance de marcas en cada lugar de una RdP ordinaria es seme-
jante a aplicar la primera ley de KiRcHOFF (la suma de intensidades en un nudo es nula) a
un circuito eléctrico en el que:

e Jos nudos son los lugares,
e las ramas son las transiciones.

Si se trata de una RdP generalizada, se deberia realizar la aplicacién de la primera ley de
KircHOFF, considerando que a cada nudo (lugar) llega (o sale) una intensidad, la asociada
a la rama (transicién), multiplicada por el peso del arco correspondiente (el arco que une la
transicion al lugar o el lugar a la transicién).

Una RdP es repetitiva si admite una «asignacion de intensidades orientada de acuerdo con
sus arcos» en la que todas las intensidades son positivas.
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DiiXs—Xx1—Xx2=0 Tomando:
D2 X6 — X3 — X4 =0 X1 =Xx3=X\
pPiix1—x3=0 X2=X4=p
Da: X2 —x4=0 se obtiene

DPsi X3+ X4 —x5=0
De: X3+ x4 —X6=0

Xs=X¢e =N+ p

Figura 4.30. RdP repetitiva (y conservativa).

Significacién de la repetitividad de una RdP (proposicién 4.6). La RdP R es repe-
titiva sii existe una secuencia de disparos, o, que contiene todas las transiciones de
la RdAP y un marcado M, suficientemente grande, tal que M > M. [

DEMOSTRACION

1) 30 y 3IM = R repetitiva.
Si o contiene todas las transiciones de R, entonces X = &> /™. Como
M=My+ C-Gy Mo= M, tendremos C-a =0, de donde C- X =0y, por
tanto, R es repetitiva.

2) R repetitiva = 30 > ' [™ y 3M tal que M > M.
R repetitiva = 3X € (N *)" tal que C - X = 0. Construyamos un marcado M tal
que Vp € P, M(p) 2 2ner X(t)a(p, t)). A partir de M puede aplicarse tantas
veces como se desee la secuencia siguiente para la que ¢ = X:

o= 4H...LW L...t2 ... tm...ln

e N

X(r1) veces X(12) veces « « » X(I,n) veces

por consiguiente, existe > /" y M > M. ]

Definicién 4.22. Una RdP es conservativa sii existe un vector Y e (N *)" tal que
YT.c=0.0

Es decir, una RdP es conservativa sii su matriz de incidencia admite un vector
anulador izquierdo tal que todos sus elementos sean positivos. Razonando de forma
similar a como hicimos anteriormente, llegamos a la conclusién de que a partir de
cualquier solucién, Yo, de la ecuacién Y7- C = 0 se puede obtener una solucidn ca-
nonica en la que todos sus componentes sean enteros positivos.
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El cédlculo de un vector Y, solucién de la ecuacion YT. C = 0, puede realizarse
sin tener que escribir la matriz C. En efecto, basta recordar las reglas de evolucién
del marcado. Para escribir directamente las m ecuaciones YT. C = 0, establecere-
mos el balance de marcas en cada transiciéon. Reconsiderando la RdP de la figura
4.30 se puede escribir lo siguiente:

ti:—-Y1+Y;=0 W
th:=Y1+ Ys=0

Yi=Ys=Ys=Ys=r~ (relaciones 1, 2y 5
13:=Y,—Y3+ Ys+ Y6=0 4 . 4 ’ ’Y( y 3)

> = Y, = Ye =6 (relacion 6). (Nota. las relacio-

ta:—=Y2—Ys+ Ys+ Y6=0 nes 3 y 4 son combinacién lineal de las
ts:—Ys+ Y1 =0 anteriores.)
te:—Ye+ Y2=0 J

En resumen, Y7 = (y8yyv9d). Siy=6=1, entonces Y'=(111111) yla RdP es
conservativa.

Observacidn. La determinacién de un vector Y solucién de la ecuacién Y7 - C = 0 puede
interpretarse también en términos electrotécnicos: el balance de marcas en cada transicion
equivale a la aplicacién de la primera ley de KIRCHOFF a un circuito eléctrico en el que:

e Jos nudos son las transiciones,
e ]as ramas son los lugares.

Una RdP es conservativa si admite una «asignacioén de intensidades orientada de acuerdo
con sus arcos» en la que todas las intensidades sean positivas.

Volviendo al ejemplo anterior, figura 4.30, podemos explicar ficilmente la inde-
pendencia entre v y & puesto que el disparo de #; o el de 7 (linicas transiciones com-
partidas por los dos subconjuntos de lugares) elimina de { p1, ps, ps4, ps } un nimero
de marcas igual al que le afiade. Del mismo modo se puede razonar para el subcon-
junto de lugares { p2, ps}. Dicho de otra forma, el nimero de marcas en cada uno
de los subconjuntos de lugares es invariante. Este razonamiento serd formalizado
y generalizado posteriormente (§4.7). En la proposicion 4.7 se demostrard que, si
la RdP es conservativa, el marcado se conservara acotado (de ahi que se llame con-
servatividad a la propiedad estructural).

Como se puede observar, existe gran similitud entre las definiciones de RdP repe-
titiva y RdP conservativa. Esta similitud puede ser formalizada introduciendo el
concepto de RdP dual. Sea R =<(P, T, a,(3).

Definicién 4.23. Se dice que Ry es la RdP dual de Rsi Ry = (T, P, 3, o). Es decir,
R, es la dual de R si, preservando su estructura, se cambian los lugares por transi-
ciones y viceversa (figuras 4.31 y 4.32). O

La matriz de incidencia de R4, Ca, se calcula facilmente a partir de C: Cqg = — eal
(jatencidn al signo!). La inversion de signo es necesaria para preservar la orientacion
de los arcos, porque:

cij = (—a(pi, t)) + B, p)) ¥y (ca)ji = (—B(pj, ti) + olti, pj))-
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(a) Estructuralmente limitada. (b) Estructuralmente limitada.
Estructuralmente no-viva. Estructuralmente viva.

Figura 4.31. Ejemplo de redes de Petri duales (ambas son repetitivas y conservativas).

La consideracidn de la dualidad en RdP nos permitird comprender mejor algunas
propiedades estructurales y razonar de forma mds econdémica. Por ejemplo, resulta
evidente que toda mdquina de estados (ME) es una RdP dual de un grafo marcado
(GM), y viceversa. Es facil demostrar, por otra parte, que toda ME es conservativa
y, si es fuertemente conexa, también es repetitiva. Por consiguiente, se puede afir-
mar por dualidad que todo GM es repetitivo y, si es fuertemente conexo, también
serd conservativo.

b

ta

(a)

Figura 4.32. R, es (R,C,L,V) y Ry = (RJaes (R,C, L, V).
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4.6.2 Relacion entre propiedades estructurales y propiedades
dindmico-estructurales

En este apartado vamos a presentar los resultados basicos que permiten estable-
cer un diagndstico sobre la limitacién, la vivacidad y la ciclicidad de una RdP.
Veremos que la caracterizacion de la limitacion es muy satisfactoria. Sin embargo,
no ocurre lo mismo con la actividad de la RdP. En particular, no existe propiedad
general que proporcione una condicidn suficiente para la vivacidad. Esta «laguna»
puede comprenderse facilmente, puesto que, como se ha anunciado, el vector ca-
racteristico de la secuencia de disparos, @, no dispone de una informacién que es
esencial para caracterizar la vivacidad: el orden en que se disparan las transiciones
en o.

Los resultados bdsicos que exponemos se estructuran en cuatro proposiciones y
un conjunto de corolarios de interés practico. Todos los corolarios se deducen direc-
tamente de las proposiciones principales mediante simples transformaciones ldgicas.
En la tabla 4.2 se resume el conjunto de resultados. A ella remitimos al lector no
interesado en los detalles de su demostracion.

Conservatividad y limitacién (proposicion 4.7). Sea R una red, C su matriz de in-
cidencia e Ye (N*)". Si Y7. C = 0 (RdP conservativa), R es estructuralmente limi-
tada (el marcado se conserva acotado). []

DEMOSTRACION. Y7.C=0= Y7 -M=YT. M,. Ahora bien, como Y>0 y
M(p) = 0, se puede escribir
T T YT . Mo
Y' - My=Y -M= 3 Y(p)M(p) > Y(p)M(p) = M(p)< | ——|-
seb Y(p)
Por consiguiente, si My es finito, el marcado de cualquier lugar estd limitado por
un valor finito, de donde se deduce que la red es estructuralmente limitada. [J

La inversion de la proposicién 4.7 no es posible, porque una RdP puede ser es-
tructuralmente limitada y no ser conservativa (figura 4.32b).

Erercicio. Compruébese que las RdP de la figura 1.15 son estructuralmente limitadas. (Su-
gerencia: demuéstrese que son conservativas.)

Condicion suficiente para que una RdP sea conservativa (proposiciéon 4.8). Toda
RdP estructuralmente limitada y repetitiva es conservativa. [J

DEeMOSTRACION. Descompondremos ésta en las dos fases siguientes:
a) Si R es estructuralmente limitada y repetitiva, no existe X e€Z™ tal que
C-Xx0.
b) Si no existe X € Z™ tal que C- X 20, existe Ye (N*)" tal que Y7- C =0y,
por consiguiente, R es conservativa.
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Fase a. Supbngase que existe X € Z™ tal que C- X 2 0. Si R es repetitiva, existe
Xoe(N*)"tal que C- Xo = 0. En estas condiciones podemos construir una infini-
dad de vectores X1 = X + AXo (A > 0) tales que X; > 0. Considerando una secuen-
cia o tal que ¢ = Xi, podremos construir un marcado inicial M, suficientemente
grande como para que o sea aplicable. Por ejemplo: My(p) > Ziner X1(t) a(p, t:).
Por lo tanto, Mo = M, y My =M, + C- g, luego, si repetimos la secuencia o,
tendremos M; > M, > Mz ... con M;.1 2 M; de donde (R, My) no serd li-
mitada. Si{R, Mo) es no limitada, R no serd estructuralmente limitada y, por lo
tanto, incurriremos en contradicciéon. En conclusidén, no existe X eZ™ tal que
C-Xx0.

Fase b. Esta fase resulta directamente de la aplicacién del teorema de STIEMKE
(véase, por ejemplo, [DANT 68]). En efecto, este teorema establece que el sistema
de inecuaciones Y7 C =0 e Y > 0 tiene solucidn sii el sistema C - X 20 no tiene.
Por consiguiente, existe Y > 0 tal que Y- C = 0, de donde se deduce que la RdP
es conservativa. []

El interés de la deteccidn de los lugares (respec. transiciones) que hacen que una
RdP no sea conservativa (respec. no repetitiva) se considerara en este mismo aparta-
do, cuando se establezcan los diferentes resultados basicos. Ahora presentaremos
un resultado fundamental.

Condiciéon necesaria para la vivacidad y la limitacién estructural (proposicion
4.9). Toda RdP estructuralmente limitada y viva es repetitiva y conservativa. [

Esta proposicion es de capital importancia. Desafortunadamente, la proposicion
inversa no es cierta. Asi, la RdP de la figura 4.31a es repetitiva, conservativa y limi-
tada, pero no es estructuralmente viva. Por el contrario la red dual, figura 4.31b,
si es estructuralmente viva.

Por otro lado, tampoco se puede afirmar que una RdP no repetitiva y no conser-
vativa sea estructuralmente no limitada y no viva (figura 4.32).

DEMOSTRACION (de la proposicién 4.9):

a) Si R es estructuralmente limitada y viva, es también repetitiva. Su justificacién
es evidente, incluso si se procede a un enunciado mas restrictivo: toda RdP limitada
y viva es repetitiva.

En efecto, para que R sea repetitiva, basta con demostrar la existencia de una se-
cuencia de disparos, g, tal que M SM y que contenga todas las transiciones. Si
(R, M) es limitada y viva, el grafo de marcados es finito y toda componente fuerte-
mente conexa, contiene todas las transiciones. Sea M’ un marcado de una de esas
componentes fuertemente conexas de G(R, Mp); puesto que M’ pertenece a una
componente fuertemente conexa que contiene todas las transiciones de la red, se
puede disparar una secuencia que contenga todas las transiciones y tal que su aplica-
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“ci6én conduzca de nuevo a M’. ¢ es una secuencia repetitiva y, por lo tanto, R serd
también repetitiva.

b) Si R es estructuralmente limitada y viva, también es conservativa. Esto se de-

muestra combinando la proposicién 4.8 y la propia proposicién 4.9a:

4.8: [Estructuralmente limitada] A [Repetitiva] = [Conservativa]
[Estructuralmente limitada] A [Viva] = [Conservativa]. O

4.9a: [Estructuralmente limitada] A [Viva] = [Repetitiva] }

Observacién muy importante. Para la verificacién de las propiedades dindmico-estructu-
rales de vivacidad y de limitacién, la proposicién 4.9a presenta dos condiciones necesarias:
la repetitividad y la conservatividad. Ahora bien, es importante recordar que existen RdP
marcadas limitadas y vivas, pero no estructuralmente limitadas (recuérdese que la vivacidad
implica la vivacidad estructural y que la limitacién estructural implica la limitacién; las impli-
caciones inversas no son ciertas) (véase la figura 4.3). :

El dltimo de los resultados bésicos de este apartado establece una relacién entre
la vivacidad, la ciclicidad y la repetitividad.

Condicién suficiente para la repetitividad (proposicién 4.10). Toda RdP viva y
ciclica es repetitiva. [

Como se puede observar, en esta tltima proposicién se infiere una propiedad es-
tructural (la repetitividad) a partir de dos propiedades puramente dindmicas.

DEMOSTRACION (de la proposicién 4.10). Es trivial, puesto que en cualquier RdP
viva y ciclica se puede considerar una secuencia que dispare todas las transiciones
volviendo al marcado inicial. Es decir, existe al menos una secuencia o tal quea>0
y C- & = 0; por lo tanto, la RdP ser4 repetitiva. [

La inversi6n de la proposicién 4.10 no es posible. En efecto, ni siquiera se puede
garantizar que una RdP repetitiva y viva sea ciclica (véase en la figura 4.4. la red
numero 6) ya que el marcado inicial para el que se define la secuencia repetitiva no
tiene por qué ser un marcado determinado.

En la tabla 4.2 resumimos, por un lado, las diferentes proposiciones y, por otro,
presentamos sus corolarios, que son simples reformulaciones l6gicas del resultado
basico del que se deducen. Obsérvese que todos los resultados presentados en la ta-

bla 4.2 son independientes del marcado inicial de la red y s6lo dependen de su estruc-
tura.

Observacion. Ninguno de los resultados del andlisis estructural global (tabla 4.2) permite
demostrar que una red es viva o ciclica. Ello se debe a la falta de informacién existente en
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Fuente para
Denominacién Enunciado su deduccion
(*) Proposicién 47 C=Le oo Leyenda
Proposicién 4.8 L.AR=C = ------ C = Conservativa
(*) Corolario 4.3 RAC=1L. Proposicién 4.8 R = Repetitiva
Proposiciéon 4.9 L. AVe=CAR = ------ Ve = Estructuralmen-
(*) Corolario 4.4 CVR=L.VV, Proposicién 4.9 te viva
Corolario 4.5 RALe= V. Corolario 4.4 L. = Estructuralmen-
Corolario 4.6 CAL.= V. ” te limitada
Ci = Ciclica

Corolario 4.7 RAV.= L, ”

Corolario 4.8 CAVe= L. ”
Proposicién 4.7 y

{Corolario 4.5

Proposicién 4.10 V.ACi=R = -=----

Corolario 4.10 RAV.= C; Proposicién 4.10

Corolario 4.11  RACi= V. K

Nota: Se han marca-
do con (*) aquellas
implicaciones cuyo
primer miembro con-
tiene sélo propieda-
des estructurales.

(*) Corolario 4.9 RAC= V.AL.

Tabla 4.2. Resumen de la relacion entre propiedades estructurales y propiedades dindmico-
estructurales.

la ecuacion del marcado (ya comentado) y a que los resultados anteriores son independientes
del marcado inicial.

Observacidn. Los corolarios 4.3 y 4.9 exhiben cierta asimetria. En efecto, el corolario 4.3
no puede afirmar la vivacidad o no vivacidad de una RdP (figura 4.33). Sin embargo, se pue-
de comprobar facilmente que las RAP duales de las redes de la figura 4.33 son estructuralmen-
te no vivas y limitadas.

Antes de concluir este apartado, interesa considerar la existencia de los lugares
(respec. transiciones) que hacen que una RdP no sea conservativa (respec. repetiti-
va). Estos lugares (respec. transiciones) estdn representados por variables Y(i) (res-
pec. X(j)) de valor nulo para cualquiera de las soluciones de YT.C=0e Y20
(respec. C- X =0, X 20).

Si la red es viva, el que Y(i) sea una variable nula significa que existird al menos
un marcado M, para el que p; es no limitado. Asi pues, la RdP de la figura 4.33b
no es conservativa porque Y(3) = 0 para cualquier solucién del problema YT.Cc=0
e Y 0. La red es viva y ps es un lugar no limitado. Por dualidad, podemos argu-
mentar que, si ¢; hace que una RdP no sea repetitiva y la RdP es limitada, ¢#; serd
una transicién no viva.

Esercicio. Compruébese que ps y ps (figura 4.32a) hacen que la RdP sea no conservativa
(su supresién permite obtener una red conservativa y, por lo tanto, limitada). Compruébese
que 3 ¥ t4 (figura 4.32b) hacen que la RdP sea no repetitiva (su supresion permite obtener
una red repetitiva y, en este caso, viva).
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En conclusidn, la verificacién de propiedades estructurales, como son la repe-
titividad y la conservatividad, permite establecer un diagndstico previo sobre las
propiedades dindmicas (dindmico-estructurales) de una RdP. El interés de estos re-
sultados reside fundamentalmente en que la determinacién de la repetitividad y de
la conservatividad no exige la tnumeracioén de los marcados de la RdP. En §4.7.2
se presenta un algoritmo que permite calcular unos objetos (las componentes conser-
vativas elementales) a partir de los cuales se puede determinar, mediante sumas, si
la RdP es conservativa. La determinacién de la repetitividad es similar.

Esercicio. Determinese si las RdP de la figura 4.4 son conservativas o/y repetitivas. ;Qué
propiedades dindmicas se pueden deducir sin enumerar los marcados alcanzables?

23

171

(a) [Ra y Loy V] (b) (R) ét Z" Vl Ds

Figura 4.33. El corolario 4.3 no permite afirmar nada sobre la vivacidad de una RdP (propo-
sicién «simétrica» a la del corolario 4.9).

4.7 INVARIANTES DE MARCADO Y DE DISPARO: APLICACION AL
ANALISIS LOCAL DE REDES DE PETRI

En el apartado anterior hemos estudiado la conservatividad y la repetitividad, asi
como su aplicacién al andlisis global de redes; es decir, a un tipo de anélisis que con-
sidera la red como un todo y permite estudiar propiedades generales de la misma,
tales como la limitaci6n, la vivacidad y la ciclicidad. En este apartado preséntaremos
dos grupos de técnicas de andlisis estructural basadas en la determinacién de relacio-
nes validas independientemente de la evolucién de la RdP; es decir, de relaciones
invariantes. Estas tltimas permitirdn un andlisis detallado de algunas propiedades
locales o/y especificas (exclusiones mutuas, limite de un lugar, etc.)

Un invariante de marcado es cualquier relacién satisfecha por todos los marcados
alcanzables a partir del marcado inicial. Andlogamente, un invariante de disparo es
cualquier relacion satisfecha por todas las secuencias de disparos aplicables a partir
del marcado inicial, o bien por sus vectores caracteristicos asociados.

Los vectores anuladores izquierdos de la matriz de incidencia (o de flujo de mar-
cas) permiten obtener invariantes de marcado. El apartado 4.7.1 se dedica a estable-
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cer y aplicar una relacidn lineal bésica que determina una condicién necesaria para que
un marcado M sea alcanzable a partir de un marcado inicial Mp. Los vectores no nega-
tivos anuladores izquierdos de la matriz de incidencia son especialmente interesantes
desde un punto de vista practico. A la definicién, obtencién y utilizacién de estos anu-
ladores particulares se dedicara el apartado 4.7.2. Por tltimo, el §4.7.3 se dedica al es-
tudio de invariantes de disparo deducibles directamente de la estructura de la red, me-
diante una simple aplicacion de la regla de evolucidn de una RdP a lugares de la misma.

4.7.1 Alcanzabilidad y base de invariantes lineales de marcado

4.7.1.1 Fundamentos y aplicaciones

La ecuacién de estado de una RdP establece que, si M es alcanzable a partir de Mo
mediante la aplicacion de la secuencia de disparos g, entonces M = Mo + C- g. El
problema fundamental que se plantea a continuacioén, problema de alcanzabilidad,
consiste en determinar si un marcado, M, o conjunto de marcados, { M;}, es alcan-
zable en la RdP definida mediante C y M,.

Si la RdP posee n lugares y m transiciones, C serd de dimensién n X m. Sea
rango(C) = r y sea By una base de anuladores izquierdos de C: la matriz B; seré de
dimensién n X (n — r)f. Dado que By es una base, cualquier vector J anulador iz-
quierdo de C [JT- C =0y JeZ" serd combinacion lineal de sus » — r columnas.
Por dltimo, sea B} - My = b.

Condicién necesaria para la alcanzabilidad (proposicién 4.11). Para que M sea
alcanzable a partir de Mo es necesario que Bf -M = Bf -My=by MeN". O

DEMOSTRACION. Es trivial. Premultiplicando la ecuacién de estado por BJ:
BY .M =BfF My + BY-C-5=B}- My =b. Luego, para que sea alcanzable M, es
necesario que Bf - M = b. Por definicién: Me N". O

Lamentablemente no se puede afirmar que todo vector M que cumpla B - M = bse-
r4 un marcado alcanzable a partir de Mo. La figura 4.34 muestra la relacién de inclu-
sién existente entre los vectores M solucién del sistema de ecuaciones B - M = b, los
vectores solucién del anterior sistema y de las restricciones M € N”, y los vectores solu-
cién del problema de alcanzabilidad (existencia de una secuencia de disparos o apli-
cable a partir de M, que lleve a M). El siguiente ejercicio es suficientemente ilustrativo.

Esercicio. Calcilese una base de anuladores izquierdos, By, para la matriz C de la RdP
de la figura 4.30 (Sugerencia: utilicese, por ejemplo, el algoritmo del Anexo 3.) Compruébese
que para M{ = (010000) se tiene:

1) MT=(00-1011) como solucién de Bf M =Bf -Mo=by MeZ"

2) MT=(000001) como solucién de Bf - M =by MeN";

3) M(R, My) = My; es decir, no existe ningiin otro marcado alcanzable a partir de M.

+ Los razonamientos que siguen utilizan el dlgebra lineal, por lo que, si fuese necesario, aconsejamos la
lectura del anexo 3.
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Como hemos visto, no se puede afirmar que todo vector no negativo M que cum-
ple Bf - M = b ser4 alcanzable a partir de Mo. No obstante, es evidente que todo
marcado alcanzable es un vector no negativo que cumple el sistema de ecuaciones
(restricciones) BY . M = b. Cada una de las n — r ecuaciones del sistema anterior ex-
presa un invariante de marcado. Cualquier combinacion lineal de los n — rinvarian-
tes es a su vez un nuevo invariante.

Desde un punto de vista practico, mas que determinar si un determinado marcado
es alcanzable, interesa saber si el conjunto de marcados alcanzables verifica una de-
terminada propiedad. Asi, por ejemplo, si se desea demostrar la exclusion mutua
entre los marcados de dos lugares ps y ps, lo que interesa demostrar es que, para
el conjunto de marcados alcanzables, se tiene M(ps)M(ps) = 0.

De acuerdo con lo anterior, el planteamiento basico del problema de la alcanzabi-
lidad se generalizar4 hasta la formulacién de aserciones invariantes sobre los marca-
dos alcanzables. Sea A(M) el conjunto de aserciones invariantes sobre los marcados
alcanzables que se desea comprobar para la red (R, Mo).

Condicién suficiente para la verificacién de aserciones (proposicién 4.12). Si no
existe M € IN" que satisfaga el sistema de ecuaciones B - M = BJ - Mo = by la nega-
cién de las aserciones A(M), 1A(M), entonces todos los marcados alcanzables en
(R, My) verifican las aserciones A(M). [

DEMOSTRACION. Como se ha dicho anteriormente (figura 4.34), el conjunto de so-
luciones del sistema de ecuaciones Bf - M = b y M e N" contiene al conjunto de
marcados alcanzables. Por lo tanto no existird marcado alcanzable que verifique

1A(M), luego todo marcado alcanzable verificara A(M). O

MeZ"y Bf-M=B}- Mo

MeN"y BY-M=BJ- Mo

(marcados potencialmente alcanzables)
Me MR, My) '
(marcados alcanzables)

Figura 4.34. Los marcados M solucién de BY- M = BY- Myy M € N" se denominaran marca-
dos potencialmente alcanzables.

Si la violacién de aserciones se expresa linealmente, el estudio de una condicién
suficiente para la validacién se reduce a demostrar que el siguiente sisterna lineal no
posee solucion:



140 VALIDACION FUNCIONAL DE UNA DESCRIPCION (I): REDES DE PETRI AUTONOMAS

Bf-M=b (n—recuaciones: sistema generador de invariantes de marcado)
TAM) {g inecuaciones}
MeN" {n restricciones )

Erempro. Compruébese si el marcado de los lugares ps y ps estd en exclusién mutua en la
red de la figura 4.35.

Figura 4.35. Salvo ps todos los lugares estdn 1-limitados. Ademas ps y ps estdn en exclu-
sién mutua.

La asercién invariante que se desea comprobar es
AM) = [M(ps) = 0]V [M(ps) = 0] = 1AM) = [M(ps) = 11 A [M(ps) > 1].

Escribiendo la matriz de incidencia de la RdP y aplicando las directrices del anexo 3, se
puede calcular una base de anuladores izquierdos de aquélla. Por ejemplo:

-1 1 0 o0 1
Bf={ o 1 1 1 2
0 1 -1 1 o

Por consiguiente, el sistema que se ha de considerar es (sea M(p;) = m,):

-
—-mi+m+ms=0 1)
B;'M=B}-'Mo=b= my+m3+ms+2ms=4 (2)
m;— ms+my= -2 A3)
< 1 4
ms 2
1AM
( )={m5>1 )
kMEN"=#[mi>0 vie{l,2,3,4,5) (6-10)

Este sistema no tiene solucién puesto que sumando (2) y (3) se obtiene: 2m; + 2my4 +
+ 2ms = 2, ecuacién que no se puede verificar si m2 >0 (7), ms 2 1 (4) y ms > 1 (5). Luego
los marcados de ps y de ps estan en exclusiébn mutua.

Esempro. Comprobemos si ps es 1-limitado en la red de la figura 4.35.

La asercion invariante que se desea comprobar es:

AM) = [M(ps) <1] = 1TAM) = [M(ps) 2 2].
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Utilizando los célculos del ejemplo anterior podemos reescribir 2mj + 2mq4 + 2ms = 2. Si
se hace my4 > 2, se tendrd que m, + ms < —1, lo que es imposible puesto que el marcado de
todo lugar tiene que ser positivo, m; > 0. En conclusion, ps es 1-limitado (binario).

Los ejemplos anteriores muestran el interés de disponer de algiin método sistema-
tico para la obtencion de las soluciones (o subconjunto de éstas que permita generar
todas las demds) no negativas de un sistema de ecuaciones e inecuaciones lineales.
En el anexo 5 se presenta un método basado en la transformacién en un sistema de
ecuaciones mediante la introduccidn de variables de holgura. La resolucidn del siste-
ma de ecuaciones se basa en resultados que presentaremos en §4.7.2.

4.7.1.2 Limitacion del método de andlisis e interés de los invariantes no
negativos

A lo largo del apartado 4.7.1.1, hemos introducido los fundamentos de un método
de andlisis basado en una condicién necesaria para la alcanzabilidad de un marcado
(proposicion 4.11). En éste presentaremos, en primer lugar, un ejemplo que muestra
la limitacion del método de anilisis considerado. Posteriormente, centraremos la
atencion en un subconjunto de invariantes de marcado que tienen un interés espe-
cial.

a) Limitacion del método de andlisis

Al construir el grafo de marcados asociado a la red de la figura 4.36, se puede con-
cluir inmediatamente acerca de la exclusidn mutua entre los marcados de p4 y de ps.
Sin embargo, la aplicacidon del método de anadlisis esbozado por la proposicion 4.12
conduce a la escritura de sistemas (equivalentes) de ecuaciones e inecuaciones linea-
les que admiten como solucidn:

{m4=1=>m1=m24=0
m5=1=>m25=0ym3=2.

De lo anterior se desprende que el analisis de alcanzabilidad derivado de la ecua-
cién de estado de una RdP no permite obtener conclusiones en determinados casos
para los que efectivamente se verifica la propiedad buscada.

ta. W I U
D1 -1 0 +1 0
pu | —1 0 +1 0
D2s 0 -1 0 +1
D3 0 -1 0 +1
Da +1 0 -1 0

Figura 4.36. ps y ps estdn en exclusién mutua.
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Esercicio. Compruébense las afirmaciones anteriores sobre la RAP de la figura 4.36. Estu-
diese, apoydndose en la red considerada, el origen de la limitacién encontrada en el método
de andlisis basado en la ecuacion de estado.

b) Interés de los anuladores no negativos

Cuando la propiedad que se desea verificar es del tipo limite de un lugar o limite
simultdneo de un subconjunto de lugares, se puede simplificar el tratamiento presen-
tado en §4.7.1.1 y 2, reduciendo la atencion a los anuladores izquierdos de C (o €)
no negativos. En efecto, si reconsideramos la RdP de la figura 4.35, se puede obser-
var que el anulador izquierdo no negativo de C, JI = (0101 1), conduce al invarian-
te de marcado my + ms + ms = 1.

Ahora bien, dado que todo m; es no negativo, m; > 0, el anterior invariante per-
mite concluir directamente que:

1) ma <1, my <1yms < 1; es decir, el limite del marcado de p,, ps y ps es 1 (son
binarios)

2) mams = 0, el marcado de p, y ps esta en exclusién mutua
mams = 0, el marcado de p, y ps estd en exclusién mutua
mams = 0, el marcado de ps y ps estd en exclusiéon mutua

Los anuladores J7 = (10010) y J¥ = (0010 1) de la misma red permiten deducir
lo siguiente:

m1<1,m4sl

m+m=1=
m1m4=0

ms+ms=3=>m3<3,ms<3.

Considerando simultdneamente todas las relaciones obtenidas se tiene:

e m<l,m<1,2<m<3, m<<lyms<l

e exclusion mutua entre los marcados de los pares de lugares {p»,ps},
{p2, D5}, (pPa,Ds}, {P1,pa}. Como se puede comprobar, el andlisis de una
RdP basado en sus invariantes no negativos es bastante directo para determi-
nadas propiedades. Dado su interés, el proximo apartado se dedica al estudio
y obtencion de los mencionados invariantes asi como a la presentacion de sus
aplicaciones bdsicas en el andlisis.

4.7.2 Invariantes no negativos: componentes conservativas

Los conceptos y técnicas relacionados con los invariantes de marcado no negativos
los estructuraremos en tres puntos:

1) definiciones y propiedades basicas,

2) obtencion del conjunto generador de todos ellos,

3) propiedades utiles para el andlisis del comportamiento de sistemas descritos
con RdP.
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4.7.2.1 Definiciones y propiedades bdsicas

Definicién 4.24. El vector Y € N" es una componente conservativa de una RdP
cuya matriz de incidencia (o flujo) es C sii yT.c=0.0

Es decir, una componente conservativa es un vector no negativo anulador izquier-
do de la matriz C.

Observacién muy importante. Podemos definir de forma dual el concepto de componente
repetitiva: vector X e N™ tal que C- X = 0.

Definicién 4.25. Se denomina soporte de una componente Y al conjunto de luga-
res asociados a los elementos no nulos de Y. || Y|| representard el soporte de la com-
ponente Y. [

Los vectores YT = (101110) e ¥J = (01000 1) son componentes conservativas
de la RdP de la figura 4.30. Sus soportes respectivos son: || Y1|| = {p1,p3, P4, Ps)
e ||Y2|| = (P2, pe)

Resulta evidente que si Y es una componente conservativa de una RdP, existe una
infinidad de escalares ke N* tales que kY es también una componente de la RdP.
De ahi la necesidad de su normalizacion.

Definicién 4.26. Y es una componente candnica si el maximo comun divisor
(m.c.d.) de sus elementos no nulos es la unidad. O

De acuerdo con la definicién anterior:

e YT=(15 25 0 0 5) no es una componente candnica puesto que mcd(Y(1),
Y(2), Y(5) =5#1,

e YT=(3 500 1) es una componente candnica puesto que mcd(Y(1), Y(2),
Y(5) =1.

El conjunto de componentes conservativas candnicas de una RdP puede ser infi-
nito, puesto que la suma ponderada con coeficientes no negativos de dos compo-
nentes es también una componente. A continuacion vamos a definir un subconjunto

(se demostrard que es finito) de componentes que tiene dos propiedades fundamen-
tales: :

1) permite generar todas las componentes (por definicién);
2) su consideracion es suficiente para extraer el mdximo de informacion que se
puede obtener a partir de todas las componentes (cf. §4.7.2.3).

Definicién 4.27. Se llama conjunto fundamental de componentes conservativas de
una RdP, Y = (Y1, Y2, ...,Yq]}, al conjunto formado por el menor nimero posible
de éllas que permita, mediante sumas, generar cualquier componente conservativa
de la red: Y = Yy,eyk;Y;, donde kje N e Y;e Y.

Las componentes Y;e Y se denominan elementales. [
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Segun esta definicién, toda componente elemental debe ser candnica, puesto que,
de lo contrario, el cardinal del conjunto fundamental no seria minimo. Antes de
continuar vamos a demostrar que el conjunto fundamental de las componentes con-
servativas de una RdP es efectivamente tinico y de cardinal finito.

Componentes elementales e inclusién de soportes (proposicién 4.13). Una compo-
nente es elemental si y s6lo si es candnica y su soporte no contiene al soporte de nin-
guna otra componente candnica. [J

DEMOSTRACION.

(1) Para que una componente sea elemental es necesario que su soporte no con-

tenga ningln otro soporte de componente. Razonemos por reduccién al absurdo:
~sean Y; e Y; dos componentes elementales e || Y| D ||Y}||. A partir de Y; e Y se
puede obtener al menos una relacién kY, = k;Y; — k;Y, siendo ki >0, k; > 0,
kg 20, e Y, una componente. Por consiguiente, k;Y; = k;Y; + k,Y,, de donde, si
kq no es nulo (k; > 0), Y; no es elemental (contradiccién). Ahora bien, si k4 = 0,
ello implica k;Y; = k;Y}, lo cual significa que al menos una de las dos componentes
Yi o Yj no es candnica y, por lo tanto, elemental (nueva contradiccion).

(2) Para que una componente candnica Y; sea elemental, es suficiente que su so-
porte no contenga ningun otro soporte de componente. En efecto, el soporte de la
suma de componentes siempre contiene los soportes de las componentes que se su-
man, por lo que la Uinica forma de representar la componente candnica ¥; (cuyo so-
porte no contiene ningilin otro soporte de componente) es afiadiéndola al conjunto
generador. [

La unicidad del conjunto fundamental se puede inferir directamente de la propo-
sicion anterior, puesto que una componente elemental no se puede obtener sumando
otras componentes elementales (su soporte incluird los de las componentes que lo
generan). Por otro lado, la proposicién se puede reformular vectorialmente enun-
ciando que los soportes de las componentes elementales de una RdP son vectores
(booleanos) no comparables. Por consiguiente, el conjunto fundamental de las com-
ponentes conservativas de toda red posee menos de 2" — 1 componentes (7 es el ni-
mero de lugares y 2" — 1 es el niimero de vectores booleanos no nulos de # elemen-
tos); es decir, es finito.

Observacion importante. El que los soportes de las componentes elementales de una RdP
sean vectores (booleanos) incomparables, permite afirmar que el niimero de componentes ele-

n n n .
mentales es no superior a C§ = < > donde x = EJ ox= {5] . En efecto, consideremos,
b

para simplificar, n = 4. La tabla 4.3 recoge los 2* — 1 vectores booleanos no nulos. Los sub-
conjuntos ¢; (i «<unos» entre los 4 elementos) estdn formados por C?vectores incomparables.
Asi, p» = C3=6.

Veamos que no se puede aumentar el nimero de vectores incomparables de ¢;. En efecto,

1) si se aflade un elemento de ¢1, por ejemplo b, se han de eliminar tres elementos de ¢,
(f, g, i) para que todos los vectores sigan siendo incomparables;
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Tabla 4.3 Los ¢; son subconjuntos de vectores incomparables.

a| ——— | i |1001

b|0001| ,j|1010 e1={b,c,d,e]}

c|0010| k|1100 e2={f,8h,i,j, k)

d{o1o00o| 7 |0111 3= {l,m,n,0}

e|1000|m|1011 04 = (D)

f10011 | n|1101

g|0101|0|1110

h|0110|p|1111

2) si se afiade un elemento de ¢3, por ejemplo /, se han de eliminar tres elementos de o2
(f, g, h) para que todos los vectores sigan siendo incomparables;

3) si se afiade un elemento (el tinico) de ¢4, se han de eliminar todos los elementos de ¢2

puesto que p los contiene todos.

De lo anterior se deduce que el cardinal del subconjunto de vectores booleanos incompa-
rables ¢, no puede ser incrementado. Para concluir que el mdximo nimero de vectores in-
comparables posibles es el de ¢, basta con considerar un subconjunto cualquiera de vectores
incomparables, 6. Los elementos de 6 que no pertenecen a ¢, pueden ser sustituidos por al
menos tantos elementos de ¢,, de forma que el conjunto resultante esté compuesto por vecto-
res incomparables. De este modo, si § = {b, 0}, b puede ser sustituido por {f, g, i}, mientras
que o puede ser sustituido por {4, j, k}. Es decir, se llega a 6’ = (A, g,h, i, J,k} = ¢2,0en
general a un 6’ C ¢;,. El cardinal de ¢; es méaximo.

En general, si existen n elementos, los subconjuntos ¢; poseen C? componentes incom-

-y : n 5 n
parables, valor que se maximiza para i = {EJ oi= {E] .

En resumen, la importancia del conjunto fundamental de componentes reside
en que, mediante sumas, permite generar todas las componentes y solo éstas. Por
otro lado, en §4.7.2.3 se comprobard como todo andlisis basado en componentes
puede realizarse de forma éptima considerando sélo las elementales (subconjunto
finito).

4.7.2.2 Obtencion de todas las componentes elementales de una RdP

En el parrafo anterior, §4.7.2.1, se introdujeron los conceptos de componente con-
servativa, soporte de una componente conservativa y conjunto fundamental de las
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componentes conservativas. De forma dual se pueden definir las componentes repe-
titivas, sus soportes y conjunto fundamental.

Como resultado bdsico se dedujo que una componente candnica es elemental sii
su soporte no contiene ningtn otro soporte de componente (proposicién 4.13). Este
resultado permitid establecer que a toda RdP va asociado un dnico conjunto finito
de componentes elementales a partir de las que, mediante sumas, se puede obtener
cualquier otra componente. A continuacidn presentamos un algoritmo que calcula
todas las componentes conservativas elementales de una RdP (su conjunto funda-
mental de componentes conservativas). Posteriormente se verd que el nimero de
componentes elementales de una RdP puede ser inferior, igual o superior a la dimen-
sion de cualquiera de las infinitas bases que permiten generar todos los anuladores
(incluidos los no negativos o componentes) izquierdos de la matriz C. Si se opera
con C7, la aplicacién del algoritmo que sigue generar4 todas las componentes repe-
titivas elementales.

a) Algoritmo

La estructura del algoritmo que se presenta a continuacion es similar a la del que
se presentd en §3.3.2. En aquel caso se pretendia determinar si un lugar cumplia la
condici6n estructural para ser implicito: l(px) = >iNl(p) y N = 0. El célculo de los
N\ que autorizan la escritura de i(5) + 2iN\l(p)) = 0, es el mismo que permite obte-
ner las componentes conservativas cuyo soporte contiene al lugar p; [recuérdese que
I(py) = —-l(p)].

Antes de abordar la presentacion y justificacion del algoritmo es importante su-
brayar que no es 6ptimo, puesto que, ademds de las componentes conservativas ele-
mentales, se pueden generar otras componentes conservativas no elementales. En el
anexo 4 se presentan las bases tedricas para mejorarlo y se incluye el listado de una
codificacion en pascaL del algoritmo modificado.

ALGORITMO PARA LA OBTENCION DE TODAS LAS COMPONENTES CONSERVATIVAS
ELEMENTALES

(1) A: = C, D: = I,{matriz unitaria de dimensién »}
(2) Para i: = 1 hasta i = m {numero de transiciones} hacer
2.1 Afiadir a la matriz [D  A] todas las filas que resulten como combina-
cion lineal positiva de pares de filas de [D i A] y que anulen la i-ésima
columna de A.
2.2 Eliminar de [D i A] las filas en las que la i-ésima columna de A4 sea
no nula.
(3) Las filas de la matriz D final representan componentes conservativas de
la RAP. Entre éstas se encontrardn, tras una eventual normalizacién, to-
das las componentes elementales.

Antes de demostrar que este algoritmo genera todas las componentes conservati-
vas elementales de una RdP, vamos a aplicarlo a una red.

Eempro. Sea la RAP de la figura 4.37.
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ta 173 e

n (-1 +1 0

p2 | +1 -1 0

C=p3 [+1 -1 +1

ps | +1 -1 +1

Ds 0 +1 -1
r=rango(C)=3=rangoB)=n—-r=5-3=2

Figura 4.37. El nimero de componentes conservativas elementales (1) es inferior a la dimen-
sién de la base de anuladores izquierdos de C, By.

Paso 1: n.° de fila
+1 0 0 0 0 i-1+1 0 (1
0+1 0 0 0 {+1-1 0 @
[D°%A4°%=| 0 041 0 0 i +1-1+1 3)
0 0 0+1 0 i +4+1-1+1 )
0 00 0+1 | 0+1—1 )
Paso 2:

e Jteracion n.° 1:
(2.1) Las filas que se deben aifiadir son:

+141 0 0 0 i 0 0 O M+Q
41 0+1 0 0 i 0 0+1 @+ @)
+1 0 0+1 0 { 0 0+1 M+ @

(2.2) Las filas que han de eliminarse son las cuatro primeras de [D°;A°; es decir (1),
2, 3), @.

En resumen, la matriz que resulta es:

0 0 0 0+1 i 0+1-1 )
+1+1 0 { 0 1)+ (2
(DiA] = + 0 0 00 m+©
+1 0+1 0 0 i 0 0+1 m+@3
+1 0 0+1 0 i 0 0+ m+@

e Jteracion n.° 2:
(2.1) No se puede anular la 2? columna de A; sumando filas, por lo cual no se afiade
ninguna fila nueva.
(2.2) Se ha de eliminar la primera fila de [D'i4': (5).
e Jteracion n.° 3:

(2.1) No se puede afiadir ninguna fila nueva.
(2.2) Han de eliminarse las filas 2 y 3 de la matriz que quedaba, es decir,

M+ @), M+ @.



148 VALIDACION FUNCIONAL DE UNA DESCRIPCION (I): REDES DE PETRI AUTONOMAS

Paso 3 (fin del algoritmo): Queda la fila (1 1 0 0 0 0 0 0), luego se deduce que
(1 1 00 0) es la inica componente conservativa elemental de la RdP.

Erercicio. Obténganse las componentes conservativas elementales de las RdP de las figu-
ras 4.35, 4.38 y 3.5 (obsérvese como en el ultimo caso se genera, ademas de las componentes
elementales, alguna no elemental).

l 2
ta 1y
p1 (-1 +1
P2 | -1 +1
C=
Dy | +1 -1
e 0 ps | +1 -1

r=rango(C) = 1 = rango(B,)=n—-r=4-1=3

Figura 4.38. El nimero de componentes conservativas elementales (4) es superior a la dimen-
sién de la base By (3).

Sea R’ la RdP resultante de eliminar en R las transiciones i + 1,7 + 2, . .., m. Pa-
ra demostrar que el algoritmo anterior genera todas las componentes conservativas
elementales, se razonard por induccidn:

1) Inicialmente las filas de la matriz D (D° = I,,) contienen las componentes ele-
mentales de R°, red sin transicién alguna. En efecto, en R® cada lugar define
una componente elemental.

2) Partiendo de las componentes elementales de R, el algoritmo genera al menos
todas las componentes elementales de R' . Esta afirmacion se establece dado
que:

a) Toda componente de R**!, Y}*1, serd también componente de R’ y las
filas de D’ (por hipdtesis en la induccién) contienen al conjunto funda-
mental de R’.

b) Cualquier componente Y} *! generada como combinacién lineal positiva
de més de dos componentes elementales de R’ no serd elemental. En efec-
to, esto se cumplird ya que su soporte serd superior o igual a alguno de
los obtenidos al combinar los pares de componentes de R’ que anulan la
(i + 1)-ésima columna de A y se incurre en contradiccidn con el resultado
anunciado por la proposicién 4.13. [

b) Conjunto fundamental y bases de anuladores

La aplicacion del algoritmo anterior a la RdP de la figura 4.37 demostr6 que la men-
cionada red posee una tinica componente conservativa elemental: YT=(11000).
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Por otro lado, procediendo segun el algoritmo presentado en el anexo 3, se obtiene
una (entre las infinitas) base de anuladores izquierdos de la matriz C (de dimension

dos):
BT 0 0+1—-1 0
Y“\+141 0 0 0/

Este ejemplo pone de relieve que el cardinal del conjunto de componentes conser-
vativas elementales puede ser inferior a la dimension del espacio de vectores anula-
dores izquierdos de la matriz C. Dicho de otra forma, a veces, a partir del conjunto
fundamental no se puede generar todo el espacio de las soluciones del sistema
YT.C =0, o lo que es lo mismo todo el conjunto de invariantes de marcado de la
forma: YT - M= YT My =b.

El aspecto negativo que, de cara al andlisis utilizando exclusivamente componen-
tes conservativas, establece la observacion anterior es la insuficiencia del método
para afirmar o negar ciertas aserciones, sobre las cuales si se puede concluir utili-
zando todo tipo de invariantes lineales de marcado (§4.7.1). A modo de ejemplo
basta con considerar A(M) = M(ps) — M(ps) = 0 y la RdP de la figura 4.37 con
MY = (10000). El invariante no negativo, M(p1) + M(p2) = 1, no permite afirmar
o negar A(M). Si se considera el primer vector de BY, Y7 =001 —10), se deduce
inmediatamente que A(M) se verifica: YT .M = M(ps) — M(ps) = YT -My=0.

Si estudiamos ahora la RdP de la figura 4.38, se obtienen cuatro componentes
conservativas elementales: Y = (1001)7, (1010)7,(0101)%,(0110)". Por otro la-
do, toda base de anuladores izquierdos de C (figura 4.38) es de dimensidn tres. Este
nuevo ejemplo, permite constatar que el nimero de componentes conservativas
elementales puede ser superior a la dimensién de la base del espacio de anuladores
izquierdos de C. De donde se deduce, naturalmente, que existen componentes con-
servativas elementales que son linealmente dependientes. Dicho de otro modo, la
representaciéon de una componente como suma de componentes elementales no
tiene que ser unica. Asi, la componente (111 1)T admite dos representaciones dis-
tintas:

aoonT+ 1107
10107+ (@101~

Después de lo anterior cabe preguntarse ¢en qué casos el conjunto fundamental
de componentes conservativas puede, mediante sumas y restas, generar todos los
anuladores izquierdos de C?

Bases de anuladores y componentes (proposicién 4.14). Si y s6lo si una RdP es
conservativa, se puede obtener una base de anuladores formada exclusivamente por
componentes conservativas elementales. O

El interés del resultado anterior reside en que enuncia una condicién necesaria y
suficiente para que todo analisis que utilice una base de invariantes (§4.7.1.1) pueda
ser realizado (de forma «mds agradable» como se verd a continuacién en §4.7.2.3)
utilizando solo invariantes de marcado derivados de las componentes conservativas
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(posteriormente se verd como solo es necesario considerar los invariantes derivados
de las componentes conservativas elementales, del conjunto fundamental de compo-
nentes conservativas).

Esercicio. Demuéstrese la proposicion 4.14. (Sugerencia: constriiyase en primer lugar una
base con vectores no negativos, componentes. Posteriormente redizcanse las componentes
de la base a otras elementales.)

4.7.2.3 Aplicaciones de las componentes conservativas al andlisis de RdP

Sea Y = (Y1, Ya,..., Yy} el conjunto fundamental de componentes conservativas
de una RdP. Cada una de las componentes conservativas elementales, Y;, define un
invariante elemental de marcado (se obtiene premultiplicando la ecuacién de esta-
do): Y7 - M = YT - Mo = b. Un invariante elemental de marcado expresa una ley de
conservacion de marcas que no es deducible mediante sumas a partir de otros inva-
riantes elementales. .

En este apartado se presenta una serie de resultados que a partir de las componen-
tes conservativas permiten analizar las RdP. En especial se insistird sobre la idea de
que todo andlisis realizado utilizando componentes conservativas (su nimero es infi-
nito) puede llevarse a cabo de forma dptima considerando s6lo las componentes
conservativas elementales (subconjunto finito). Dicho de otro modo, toda propie-
dad sobre el comportamiento de una RdP deducible a partir de un invariante no ele-
mental puede deducirse, e incluso estudiarse mejor, a partir de los invariantes ele-
mentales que lo generan. Este importante resultado tiene lugar habida cuenta que,
como se ha repetido varias veces, toda componente (o el invariante que representa)
se obtiene mediante sumas de componentes elementales.

A continuacidn se analizan la limitacidn, la exclusion mutua y la vivacidad. Tam-
bién se considera la deteccion de lugares implicitos.

A partir de las componentes conservativas elementales cuyos soportes contienen
al lugar p, puede determinarse un limite superior del marcado del mismo.

Componentes conservativas y limite de un lugar (proposicién 4.15). La mejor aco-
tacién superior del marcado de un lugar p que puede obtenerse a partir de todas las
componentes conservativas, es calculable a partir del conjunto de componentes con-

servativas elementales:
T,
M(p) < min {MJ

Yiey Yi(p)

DeMOSTRACION. Una justificacion de que el valor de la expresion anterior es un
limite superior del marcado del lugar p, se puede obtener razonando de la misma
forma que en la demostracion de la proposicién 4.7.

Para demostrar que el limite obtenido es el mejor que se puede determinar a partir
de las componentes conservativas, considérese la componente conservativa no ele-
mental: Y = Y f;Y;, fie N. Por otro lado, sea

YF Moy a . [Y,T 'Mo}
B min =
Yiey

Yip) b

a
Yi(p) S b

Sl K
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De la anterior desigualdad se desprende que @b; < ba;; multiplicando por f; y su-
mando, dado que todo f; > 0, se puede escribir:

@ Tifa a [Eiﬁai J
ay fibi<b), fiai = B<Zifibi = \_EJ < | 2ifibi

luego el limite obtenido por |@/b| es minimo; la acotacién del marcado de p no
se puede mejorar considerando componentes no elementales. [J

Teniendo en cuenta la RdP de la figura 4.35 obtendremos (todos los limites se al-
canzan en este caso):

(10010)Mo

M(py) < ] 1

Moy <12 -

Mipy <S5

M(pe) Smini(lOOiO)MO, (01011 I)M} - min(1,1) =1
M(ps) Smin{(OOI(l)l)Mo, (01011 I)M} —min (3,1) = 1.

El establecimiento de una condicién suficiente, con el fin de garantizar la exclu-
sién mutua entre los marcados de dos lugares pertenecientes a una (varias) compo-
nente conservativa elemental es inmediato.

Exclusién mutua entre dos lugares (proposicién 4.16).

1) Sean los lugares pie || Y|| y pje || Y]|. Si Y(i) + Y(j) > Y7 My, entonces los
marcados de p; y p; estardn en exclusién mutua.

2) Toda exclusién mutua deducible a partir de un invariante Y puede obtenerse
a partir de los invariantes elementales que lo generan. [J

DEMOSTRACION

D) YT Mo =2} Y()Mo(pr) > Y()M(p) + Y()M(p)).
Ahora bien, si Y(i) + Y(j) > YT My, de acuerdo con la expresion anterior,
tendremos necesariamente M(p;)M(p;) = 0. Es decir, p; y p; no pueden estar
simultdneamente marcados.

2) Una demostracion similar a la considerada en la proposicién 4.15 permite con-
cluir que los resultados del andlisis realizado con los invariantes elementales
no pueden mejorarse al considerar otros invariantes no elementales [J.

Volviendo sobre la RdP de la figura 4.35 y considerando Y7 = (0101 1), se de-
muestra que pa2, ps y ps estdn en exclusion mutua.

Desafortunadamente, la proposicién 4.16 no permite determinar todas las exclu-
siones mutuas posibles entre los marcados de los lugares de una red. Asi, las compo-
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rifica la segunda condicidn de la proposicién 3.2 y, por consiguiente, p; es un lugar
potencialmente implicito (véase el primer ejercicio después del algoritmo, §3.3.2). O

Si estudiamos detenidamente el anterior razonamiento, se observard que el sopor-
te de la componente conservativa definida por el vector k ¥ — Y, es un conjunto de
lugares que podrian ser implicantes de p;:Q = ||k Y — Y]|.

Esta tltima es una informacién fundamental, puesto que si R es pura, de acuer-
do con la proposicién 3.3, para determinar si p; es un lugar implicito sélo se tiene
que comprobar la primera condicién de la proposicion 3.2 con p > 0. En el ejem-
plo que sigue se presenta una de las posibles formas de utilizacidn del resultado ante-
rior.

Eiempro. La red de Petri de la figura 3.3d es conservativa, y se puede escribir
Y3 =(11111112). Sisuprimimos p;, lugar potencialmente implicito, tendremos que R; es
también conservativa. Por ejemplo: Y; =(01112222). A partir de esto se tendrd:

Yo(j)
Yi(j)
es decir, I(p1) = I(ps) + l(pe) + 1(p7).

Dado que My(p1) = Mo(ps) + Mo(ps) + Mo(p7) y que la red es pura, se puede concluir que
p1 es implicito (lo implica Q = {ps, ps, P7}).

La subRdP que se obtiene al eliminar p; (lugar implicito) y p» (potencialmente implicito),
es también conservativa. Por ejemplo, Y> =(00111121), de donde:

k1=mé.x[

Jj>1

] =1, luego YT - Y§=(-10001110),

Y1(j)
Y2(j)

k2=mé.x[

] =2, luego 2, - Y1 =(0-1110020),
Jji>2
es decir, I(p2) = I(p3) + I(pa) + 21(p7). Puesto que se verifica la condicion sobre €l marcado
inicial y la red es pura, p; es implicito. (Nota. También I(p2) = I(ps3) + I(p7).)

La subRdP que se obtiene al eliminar p; y p2 (lugares implicitos) y ps (potencialmente im-
plicito) es también conservativa. Por ejemplo:

Y;=(00101111)=j€(3,5,6,7,8)

Y2(j)
k3 = max .
= [Ys(.l)

es decir, [(P4) = I(p3) + I(ps) + I(pe) + 1(ps). Dado que se verifica la condicién sobre el marca-
do inicial y la red es pura, p4 es implicito. En conclusion, en la RdP de la figura 3.3d se pue-
den eliminar {pi, p2, ps}.

}:2, luego 2Y3 — Y2 = (001 —11101),

Observacidn. Procediendo de esta forma, no se pueden eliminar los lugares implicitos que
no pertencen a ninguna componente conservativa. Por ejemplo, porque sean lugares no limi-
tados. Tal es el caso de p; 0 ps en la RdP de la figura 4.37.

A modo de conclusidn, la estrategia de validacién de una descripcién basada en
la utilizacién de invariantes de marcado se puede llevar a cabo en tres fases:

1) Formulacién de las propiedades que se desean validar.
2) Extraccién de los invariantes elementales de marcado de la RdP.
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3) Utilizacién de aquellos invariantes que permitan demostrar las propiedades
formuladas en la primera fase.

Desde un punto de vista practico, estos métodos suelen ser bastante eficientes, es-
pecialmente si se combinan con métodos de reduccién de redes (§4.5). Ahora bien,
la reduccién que se realice en la RdP no puede ser total puesto que la red debers
dejarse como irreducible cuando la aplicacién de alguna regla de reduccién obligue
a eliminar algin lugar o transicién que aparezca en las propiedades que se deseen
verificar. Esta forma de proceder es la adoptada en el ejemplo de lectores y redacto-
res que consideramos a continuacién.

EjEMPLO. LECTORES Y REDACTORES. Sea el caso presentado en §2.4.4. Pretendemos
verificar que el modelo construido (figura 2.9) cumple las propiedades siguientes:
a) es vivo y binario,
b) existe exclusién mutua entre redactores,
€) existe exclusién mutua entre cada redactor y el conjunto de lectores (no se puede leer
y escribir al mismo tiempo).

Para abordar la validacién, vamos a utilizar técnicas de reduccién de redes, asi como técni-
cas derivadas de la conservatividad. En primer lugar, reduciremos la RdP de la figura 2.9 has-
ta que sin sustituir o eliminar los lugares AL; y AL;, la red sea irreducible. Sobre la RdP redu-
cida (figura 4.39), estudiaremos las exclusiones mutuas. Por tiltimo, reduciremos completa-
mente la RdP de la figura 4.39 y concluiremos sobre la vivacidad y la k-limitacién de la RAP
original.

Figura 4.39. Una primera reduccién de la RdP de la figura 2.29.
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1) Reduccion previa de la RdP de la figura 2.9:

a) Se eliminan (regla ®;) los lugares EL;, EL;, ER, y ER,.
b) Se eliminan (regla ®3) los lugares implicitos RLy, RLz, RR1 y RR>.

Si para verificar las propiedades de exclusién mutua enunciadas no se pueden eliminar los
lugares ALy, AL;, AR, y AR>, la RdP obtenida (figura 4.39) es irreducible.

2) Estudio de las exclusiones mutuas:
A partir de la RdP de la figura 4.39 obtendremos los invariantes elementales de marcado
siguientes:
M(AL)) + M(AR;) + M(AR;) + M(X,)) =1
M(ALy) + M(AR1) + M(AR>) + M(X3) = 1.
Aplicando la proposicién 4.16 podemos concluir que:
—M(AR)M(AR) =0
—MAL)MAR) =0 (i=1,2; j=1,2}.
La primera de ambas expresiones indica que los redactores estdn en exclusién mutua. La se-
gunda de las expresiones nos permite escribir (M(AL:) + M(AL>)) - (M(AR:) + M(AR?)) = 0;

es decir, lectores y redactores estdn en exclusion mutua.
En resumen, se verifican las propiedades b y c.

3) Reduccién final. Estudio de la vivacidad y de la limitacién:

a) Se sustituyen (eliminan) los lugares AL; y AR; (i=1,2).
b) Se eliminan las transiciones CL;-FL;. La RdP que se obtiene es la de la figura 4.40.
¢) X1 (o Xz) es implicito, por lo que la RdP original es viva y l-limitada (binaria).

Figura 4]40. Reduccién de la RdP de la figura 4.39.

EseMPLO. DOS CARROS QUE VAN Y VIENEN. Se desea comprobar que la descripcion del siste-
ma de dos carros que van y vienen (figura 1.154) posee las propiedades siguientes:

a) es viva y binaria;
b) nunca se pueden encontrar dos carros circulando en sentidos opuestos.

Al igual que en el ejemplo anterior se combinan técnicas de reduccién y las basadas en la
conservatividad.

1) Reduccién previa de la RdP de la figura 1.15a:
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Aplicando la regla de reducciéon ®; se obtiene la RdP de la figura 4.38. Para comprobar
que dos carros nunca pueden circular en sentidos opuestos, basta con demostrar que, en la
RdP de la figura 4.38, los lugares p; y p2 se encuentran en exclusién mutua con los lugares
P3 Y pa. Por esta razon, no se puede continuar aplicando reglas de reduccién.

2) Estudio de las exclusiones mutuas (figura 4.38):
Sus componentes conservativas elementales fueron obtenidas con anterioridad. Los inva-
riantes de marcado correspondiente son:
M(p1) + M(p3) =1
M(py) + M(ps) = 1

M(p2) + M(ps) = 1
M(p2) + M(ps) = 1

en resumen, se podrd escribir (M(p1) + M(p2)) - (M(p3) + M(ps)) = 0, ecuaciéon que demues-
tra la propiedad buscada.

} = M(p1)(M(p3) + M(ps)) = 0

} = M(p2)(M(p3) + M(pa)) =0

3) Reduccién final. Estudio de la vivacidad y de la limitacién: En la RdP de la figura 4.38,
P10 P2y p3 0 ps son implicitos: Eliminando, pongamos por caso, p; y ps, se obtiene una RAP
en la que ps es sustituible. La sustitucién de ps permite obtener una RAP con un tnico lugar,
pi1, marcado con una marca y una transiciéon. La RdP es viva y 1-limitada (binaria).

Esercicio. Demostrar que las reglas de reduccién presentadas en §4.5 son tales que la red
reducida es conservativa sii lo es la red original.

4.7.3 Invariantes de disparo

Hemos visto que en el marco de la teoria de RdP, los lugares y las transiciones repre-
sentan papeles duales. En este apartado, se introducen los invariantes de disparo
(asociados al disparo de las transiciones), los cuales vienen a afiadirse los ya conside-
rados invariantes de marcado (asociados al marcado de los I zares).

El material que presentamos no constituye mas que una somera introduccién. En
¢sta, estableceremos algunas relaciones entre conceptos aparentemente tan dispares
como los de avance sincrénico, lugar implicito, componentes conservativas y com-
ponentes repetitivas de una RdP.

El invariante de disparo bésico es el lugar. En efecto, si para simplificar los razo-
namientos considerdsemos RdP puras, de acuerdo con la ecuacién de estado, es po-
sible escribir:

M=Mo+C5>0= vseL(R,M) Mo(p) +1(p)- 5>0 |.

Ahora bien, si R es una RdP ordinaria y si se definen los subconjuntos de transi-
ciones T; = p y T, = 'p, se puede establecer:
VoeLR,My) Mo(p)> —-Up)-G=(Ti-T) 5=
Mo(p) > max [(T1 - T»)"- 5] = AV(R, Mo; T1, T2) =
| Mo(p) > AV(R, Mo; p, D) |
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De esta forma, cualquier RdP ordinaria y pura puede ser descrita por un conjunto
de n invariantes del tipo AV(R, Mo;p*, p) <z, donde cada lugar define un
invariante de disparo.

EsempLo. La RdP de la figura 4.35 puede ser descrita por los invariantes que siguen (sea
AV (R, My; T, T>) = AV(Th, T?)):

P1:AV(Hh, ) < 1
P2 AV({t, 13}, (£, 1)) <1
D3:AV(t3, 1) <3
DPa:AV(t2, 1)) =0
Ds:AV(ts, t3) = 0.

La potencia de estos sencillos razonamientos se puede constatar con el siguiente
ejemplo, en el que se demuestra el «Teorema del seméforo». (Véase, por ejemplo,
[CROC 75].)

EjeMPLO. SEMAFORO. Por similitud con el seméforo de trafico (urbano, ferroviario, etc.),
un seméforo (informdtico) es un mecanismo de sincronizacidn entre procesos (programas de
ejecucion).

El lugar s de la figura 4.41 representa un semdforo. El disparo de la transicion #, correspon-
de a la ejecucién de una primitiva sefialar (primitiva V5). El disparo de la transicién #, corres-
ponde a la ejecucion de una primitiva esperar (primitiva Ps). La transicion ¢ se dispara al
sensibilizarse. El lugar es representa la cola de espera asociada al seméaforo.

SENALAR tp P, ESPERAR

L _I Lo ]

Figura 4.41. SubRdP que representa el semaforo S.
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El funcionamiento del seméforo esta definido por la subRdP de la figura 4.41, no obstante,
puede definirse informalmente, y en pocas palabras, diciendo que el proceso PR; es bloquea-
do en su evolucidn si el proceso PR; no ha ejecutado un niimero suficiente de primitivas sefia-
lar (primitiva V5). El seméforo est4 inicializado con Mo(s) marcas. Cada una de esas marcas
representa una autorizacion de evolucidn que se le otorga al proceso PR;, sin que necesite
la previa ejecucion de ninguna primitiva sefialar.

Una vez presentado el mecanismo de sincronizacién denominado seméforo, escribimos los
invariantes de disparo asociados a los dos lugares, el semaforo y su cola de espera:

Ps: AV(R, Mo; tr, ty) < Mo(s) = a(t) < a(t,) + Mo(s)
Pe:A V(R, MO; tf, tp) =0= a(tf) S a(tp).

A partir de las dos inecuaciones anteriores, y teniendo en cuenta que la transicién tr se dis-
para al sensibilizarse, se obtiene:

0(tp) = min {a(t), Mo(s) + 6(t) ),

expresién que se conoce como feorema del semdforo.

A continuacién, introducimos un resultado que permite calcular el avance sincré-
nico. Como corolario se establece una relacién entre avances sincrénicos y lugares
implicitos.

Sea (R, Mo) una RdP ordinaria marcada y T; y T dos subconjuntos disjuntos
de transiciones de R [T1 C T,T> C T, T1NTz = J]. Se define el lugar P, de
acuerdo con las expresiones: pr,1, = T Y Py, = Th; es decir, pr;r, (figura 4.42) es
un lugar cuyo conjunto de transiciones de entrada (respec. de salida) coincide con
T (respec. T1). Por otro lado, sea (R*, M) la red marcada obtenida al afiadir el
lugar pry1, a (R, My).

7—9 T2 = {ty)

nNT; =@

-
\..

Figura 4.42. Representacion gréfica del lugar pr,z,.

Avance sincrénico y secuencias de disparos (proposicién 4.19). El avance sincré-
nico entre 71y Tz, AV(R, Mo; T1, T>), es igual al minimo niimero de marcas que ini-
cialmente debe poseer el lugar pr,1, para que (R, M,y y (R*, M) admitan el mis-
mo conjunto de secuencias de disparos, L(R, M,) = L(R*, M}¥). O
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DEMOSTRACION. Sea 7 el avance de 75 con respecto a 7>. Segun la definicién 4.12:

7= max ((Th1—-T)"-6)>((Ti-T)"5)
voeL(R, My)
De la anterior expresidn se deduce que 7 es el menor entero tal que Vo € L(R, M)
se puede escribir: 7+ (T2 — T))T- 5> 0 .
Si Th y T» son disjuntos, T1NT> = @, entonces, Vi =1,...,m, Ti(i) - To(i) = 0
y, por consiguiente:

veeLR,My) 1+ (L-T) -62067-T7.5>0

Dado que R es una RdP ordinaria, la ultima inecuacion significa que, para cual-
quier secuencia perteneciente a (R, M), si M¢(pr,1») = 7, €l lugar pr,1, no es nun-
ca la unica restriccion para el disparo de sus transiciones de salida. En conclusidn,
la introduccién de pr,, con Mo(pr1;) = 7 no restringe el conjunto de secuencias
disparables. Puesto que la introduccién de un nuevo lugar sélo puede reducir el con-
junto de secuencias disparables, se infiere que L(R, M) = L(R*, M¥). [

Avance sincrénico y lugares implicitos (corolario 4.12). Sea el lugar pryr,. Si
M3¥(pri1,) = 7 es el menor entero que le hace ser implicito en (R*, M§), entonces
AV(R, Mo; T1, Tz) =7 0O

La justificacién de este corolario es inmediata, habida cuenta que, para que un
lugar sea implicito, es necesario que no introduzca restricciones sobre las secuencias
de disparos.

Antes de presentar un ejemplo en el que apliquemos estos resultados, es importan-
te mencionar que, tanto la proposicién 4.19 como el corolario 4.12 mantienen su
vigencia si se habla de RdP Generalizadas y de avances ponderados.

Cuando se pretende determinar si existe un avance (ponderado) entre dos conjun-
tos disjuntos de transiciones, T1 y T>, puede utilizarse el corolario anterior. Un pro-
cedimiento de trabajo consiste en:

1) Definir un lugar pry» (pryry = T2 Y P, = T1) tal que:
a(prim, i) = ai 'y Btaj, P1is) = Bi

2) El avance sincrdnico ponderado viene dado por el minimo valor Mo(pr,1,)
que hace implicito a pr,1, (corolario 4.12).

Como es sabido, para que pr,1, sea implicito, es condicidon necesaria que I/(pry1,)
sea combinacién lineal (con coeficientes positivos) de las demds filas de la matriz
de incidencia de la RdP, C. Esto implica que si C* es la matriz de incidencia de la
RdP obtenida al afiadirle pr,1, a la red original, entonces rango(C) = rango(C*).
Esta ecuacién impone condiciones sobre los o; y 8;.

Esempro. Se pretende determinar si existe un avance ponderado finito entre las transiciones
t1 y t» de la RdP de la figura 4.7.
Aplicando el método anteriormente esbozado:
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h L B rango(C) = 2
-1 +1 +1 D1 rango(C*) = 2}
+1 -1 -1 D2 -a +1 +1
c*= 0 -1 +1 D3 = 0 -1 +1l|=-a—-a+B=0=
K | —« B 0
- f 0 D12 =0 =2x

Para simplificar los vectores de ponderacion, a y 3 serdn enteros naturales y primos entre
si: o =1, B = 2. Es decir, a(p12, 1) = 1 y B(t2, p12) = 2.
" A continuacién, se estudian condiciones suficientes para que p; sea un lugar implicito. Pro-
cediendo de acuerdo con los métodos explicados (§3.3. o proposicién 4.18), se obtiene:

I(p12) = l(p1) + I(pa).

En conclusi6n, puesto que la RdP es pura y Mo(p1) + Mo(ps) = 1, el avance ponderado que
se ha calculado (6, 62) es la unidad:

AV(R, Mo; (200)7,(010)7) = 1.

' 67

EsempLo. Determinese el avance ponderado entre las transiciones #; y ¢, de la RdP de la
figura 4.43.

[£) 14

P1

p2 p3

151 . 173

Figura 4.43. AV(R,Mo; t1,t2) = © y AV(R, Mo; t2, 11) = .

Procediendo de acuerdo con el método propuesto se tiene:

hh L B U

-1 -1 +1 +1] pm [rango(C) = 2
C* = +1 0 -1 0| p2 rango(C*) = 2
B T S S R U TR R RS '
- B 0 0) pu2 +1 0 —-1] =]+1 0 0f=0=
- B 0 - B 0

—a+B-B=B=020a=8=0
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Es decir, p12 no puede ser un lugar implicito a no ser que esté desconectado del resto de
la RdP. Si se hace 8 # 0, para que pi2 no restrinja las secuencias de disparo, éste debe poseer
inicialmente una infinidad de marcas, de donde A V(R, My; t1,12) = ©

Si se calcula 4 V(R*, Mo; 1, t1) se obtiene idéntico resultado. Habida cuenta que la red es
viva y estructuralmente limitada, existirdn dos o mas secuencias repetitivas, de las cuales, al
menos una contendr4 #; y otra contendrd 7. En este caso, 01 = tit3 y 02 = t214. Estas se ejecu-
tan debido a la presencia de las componentes repetitivas elementales (1010)T y (0101).

ErEMPLO. LECTORES Y REDACTORES. Se trata de comprobar que la descripcién de la figu-
ra 4.39 y, por tanto, la de la figura 2.9 cumplen las restricciones ya expuestas con anterio-
ridad:

a) existe exclusion mutua entre redactores,

b) no se puede leer y escribir al mismo tiempo.

Por razones de tipo did4ctico, procederemos a verficar independientemente cada una de las
restricciones. La exclusién mutua entre redactores se expresa en términos de disparos de tran-
siciones, diciendo que el nimero de «comienzo de redaccién» ejecutados, 6(CR;) + (CR>),
menos el nimero de «fin de redaccién» ejecutados, 6(FR1) + 6(FR-), es menor o igual a la
unidad:

d(CR)) + 6(CR2) — 6(FRy) - 6(FR2)) < 1=
= AV(R*,Mo; (CR:,CR:}, {FR:,FR2})< 1.

Definiendo pi,r, = (CR1, CR2} Y ‘P11, = {FR1, FR2) obtendremos que pr,z, es un lugar
implicito si Mo(p7y13) = 1 ¥, por consiguiente, segiin el corolario 4.12 se verifica la restric-
cion sobre el avance: los redactores estdn en exclusién mutua.

La restriccion sobre la lectura y escritura simultdnea la podemos estudiar facilmente, al
considerar cada lectura con todas las escrituras. Procediendo de esta forma, garantizamos la
restriccion «b» si tenemos:

i=1,2 o(CL:) + a(CR1) + 6(CR2) — a(FLi) — 6(FR1) — 6(FR2) < 1

(Nota. Puesto que el invariante de disparo asociado al lugar AL; exige que a(CL;) — o(FL:)) < 1,
la inecuacién anterior comprende a la que se considerd para demostrar la exclusién mutua
entre redactores).

Procediendo como hicimos anteriormente para demostrar que los redactores estaban en ex-
clusién mutua, se llega a la conclusién de que Vi = 1, 2 el lugar (pr,1;); es idéntico al existen-
te X;, de donde se puede afirmar que lectores y redactores estdn en exclusién mutua.

4.8 CERROJOS Y TRAMPAS

Introducimos en este apartado otro grupo de técnicas de andlisis estructural. Las
técnicas que agrupamos bajo este epigrafe se basan en la deteccién de ciertos sub-
conjuntos de nudos de la RdP original. La ventaja de esta aproximacion es la de
permitir el estudio de la vivacidad de una red sin tener que recurrir a la enumeracién
de los marcados (§4.4). Antes de continuar con la presentacién de los métodos basa-
dos en cerrojos y trampas, conviene recordar que el problema del estudio de la viva-
cidad no ha sido completamente resuelto ni por los métodos de reduccién ni por los
métodos de andlisis estructural basado en los conceptos de conservatividad y repeti-
tividad. En efecto, los primeros estdn limitados por la existencia de redes irreduci-



CERROJOS Y TRAMPAS 163

bles para el conjunto de reglas de reduccién presentadas; los segundos permiten el
establecimiento de condiciones necesarias, pero no suficientes.

Para poder garantizar la vivacidad de una red sin recurrir a la enumeracién, he-
mos de proceder a restringir las clases de redes que consideramos. De este modo,
en lo que concierne a este apartado, nos cefiiremos a las RdP ordinarias. Posterior-
mente, iremos restringiendo nuestra atencién a subclases de RdP ordinarias
(§2.3.1). Evidentemente, cuanto mds particular sea una subclase, més potentes serdn
los resultados para su anélisist.

En §4.8.1 presentamos las definiciones y propiedades bdsicas relacionadas con los
conceptos de cerrojo y de trampa. En el apartado 4.8.2 exponemos métodos que
permiten determinar sistemdticamente los cerrojos y/o trampas de una red. Su for-
mulacién se basa en el dlgebra de BooLE y el 4lgebra lineal.

4.8.1 Definiciones y propiedades bdsicas

Sea una RAP R = (P, T, o, B).

Definicién 4.28. Un cerrojo es un subconjunto de lugares de una RdP tal que el
conjunto de sus transiciones de entrada est4 contenido en el conjunto de sus transi-
ciones de salida. [J

Es decir, todo cerrojo I' = {p;} € P verifica {pi} € {p*i}, lo cual lo expresare-
mos como T I,

Definicién 4.29. Una frampa es un subconjunto de lugares de una RdP tal que
el conjunto de sus transiciones de salida est4 contenido en el conjunto de sus transi-
-ciones de entrada. [

Considerando R, 6 S P es una trampa sii §° < °6.

Como podrd deducirse facilmente, en las definiciones de cerrojos y trampas, se
considera s6lo la estructura de la RdP, haciéndose abstraccién del marcado inicial.
La figura 4.44 presenta sendos ejemplos de cerrojo y de trampa.

Partiendo de estas definiciones se pueden establecer inmediatamente las propieda-
des siguientes (justifiquelas el lector).

Propiedades bdsicas de los cerrojos y de las trampas (proposicién 4.20).

a) Un cerrojo inicialmente desmarcado o que se desmarca debido a una cierta se-
cuencia de disparos, permanecerd desmarcado para cualquier evolucién posible de
la red. Es decir, al menos todas sus transiciones de salida y, por lo tanto, las de en-
trada no son vivas, y, por consiguiente, la RdP no es viva.

b) Una trampa, marcada para Mo, permanecer4 siempre marcada; es decir, inde-
pendientemente de la evolucién de la RdP. [J

1 Esta afirmacién viene a decir algo que es bien conocido en todas las ramas del saber: cuanto més simple
es un problema mds facilmente se puede estudiar.
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T' = { p1, D3, D6, D7} 0 = { p1, p3, D6, D8}
T = (6,1,3,4) ‘0=(6,1,3,7,5)

@ | = (1,3,4.5,6) ® 1 g —(1.3.5,6)
=TCI" =26 C’f

Figura 4.44. Ejemplos de cerrojo y de trampa.

Si consideramos la RdP de la figura 4.44a, se observard que I' = { p1, p3, pe, P71}
es un cerrojo que se vacia debido a la secuencia de disparos o = #; £, #3 ¢5. Por consi-
guiente, la RdP es no viva. Por otro lado, si consideramos la RdP de la figura 4.44b,
se observard que 0 = { p1, ps, Ps, Ps }n0 puede perder todas sus marcas, independien-
temente de la evolucién del marcado.

Para que una RdP sea viva es necesario que los cerrojos no se desmarquen. Esto
se puede garantizar, gracias a la estructura de la RdP, si todo cerrojo contienen
trampas marcadas. Para formalizar esta idea definiremos una nueva propiedad es-
tructural de las RdP.

Definicién 4.30. La red marcada (R, M,) posee la propiedad cerrojo-trampa,
propiedad CT, si cada cerrojo contiene una trampa marcada para M. [

Caracterizacion de la vivacidad-parcial (proposiciéon 4.21). Si (R, M) posee la
propiedad CT, es parcialmente viva (no se bloquea). [

DEMOSTRACION. La propiedad CT garantiza que cada cerrojo de R esté marcado
VM e M(R,My). Supéngase que R se bloquea con el marcado M’. El subconjunto de
lugares desmarcados en M’ es un cerrojo, puesto que se trata de un subconjunto de lu-
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gares que no puede ser marcado después de estar desmarcado. Al existir un cerrojo
desmarcado, no se cumple la propiedad CT (contradiccién). [

La RdP de la figura 4.45 pone de manifiesto que no se puede asegurar la vivacidad
total, pese a que se verifique la propiedad CT. Para obtener resultados mds po-
tentes, es necesario restringir la clase de RdP ordinarias que se considera. De este
modo se pueden establecer muchos resultados de interés practico. En este texto nos
limitaremos a presentar uno de los mds cldsicos, conocido como teorema de Com-
MONER.

D

Ps

Figura 4.45. RdP marcada parcialmente-viva.

RLE y vivacidad (proposicion 4.22). Una RdP libre eleccion (R, Mp) es viva sii
posee la propiedad CT. O

La demostracion de este resultado escapa a los objetivos de este texto. Puede en-
contrarse, por ejemplo, en [HACK 72] o en [JANT 79].

Grafos marcados y vivacidad (corolario 4.13). Un grafo marcado fuertemente
conexo es vivo sii cada circuito contiene, al menos, una marca en el marcado ini-
cial. O

En efecto, cualquier circuito de un GM fuertemente conexo es simultineamente
un cerrojo y una trampa. De lo anterior, también se puede concluir que el nimero
de marcas que contiene un circuito es invariante. Por consiguiente, si un GM fuerte-
mente conexo es binario para M), sera también binario para cualquier marcado al-
canzable a partir de M,.

El razonamiento anterior permite anunciar que un grafo marcado fuertemente co-
nexo es conforme sii cada circuito contiene inicialmente una marca.

EseMpLo. Sea la RdP de la figura 4.46. Los circuitos elementales son:
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- Figura 4.46. Grafo Marcado fuertemente conexo.

{p2,p1,ps) = 1 marca en Mo:ps
{ p3,p1,p4) = 1 marca en Mo:ps
{P3, 1, Ps,D6) = 1 marca en Mo:ps

Luego la RdP de la figura 4.46 es viva y binaria.

4.8.2 Obtencién de los cerrojos y de las trampas de una RdP

4.8.2.1 Obtencion de los cerrojos

Asociemos a cada lugar p; de la RdAP una variable v; que represente «la pertenencia
de p;i a un cerrojo I'»:

vi=1 sii piel.

De acuerdo con la definicidon 4.28, el lugar p; pertenece a un cerrojo I' si se cumple
que para cada una de sus transiciones de entrada, V#x € ‘p;, al menos un lugar de
entrada a cada una de ellas pertenece también al cerrojo, 3p; € ‘#x. La condicién an-
terior se puede expresar logicamente mediante la implicacion ; = u; (es decir, y; = 1
es condicién suficiente para u; = 1), donde:

ui= A [ V w].
tke'pi Lpjetk

Si la condicion anterior se cumple simultdneamente para un conjunto de lugares,
éstos definen un cerrojo. Por consiguiente, todo cerrojo se obtiene como solucion
del conjunto de las n implicaciones siguientes (una por lugar de la red):

i=1

vi=1l,...,n  [yi=ul= A (uVu)=1
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EsemMpLO. Sea la RdP de la figura 4.44a.

A (v:Vux) = (vxVvavs)/\(sz'yx)/\(vst)/\(74V72)/\(75V72)/\(vevva)/\
= (¥1VvaVye) NFsV ysVye) =

Desarrollando en unién de intersecciones se obtiene (se omite la «A»):

\ Y

a b 4
V o yiv2ysy1¥6 Y8 VY Y1¥2Y¥4Y5Y1¥6 V. Y1Y2Y3vaYIYR  V
. J ) U J

Y ) Y~
d e f
Vo oviy2ysvaysyr Vo viv2ysveyr Vo y17v2vsysveyr V
\ ) & U J
g h i
V oyiy2vaysysy¥e Vo viv2ysysys Vo w2 v3vavysys .V
N — L g . C i
j k !

Vo yi1y2vsveys = 1.
. —
m

Considerando el término «a» (por ejemplo), todos los conjuntos de lugares comprendidos
entre { p1,ps3, Ps, P71} ¥ { D1, D2, D3, Dé, D7, D3} son cerrojos. Es decir, segin el término «a»,
son cerrojos los conjuntos de lugares siguientes:

{ p1, D3, D6, P7) { p1, D2, P3, D6, D7)
{p1,p3, 6,07, 08}  {D1,D2, D3, D6, D1, P8}

Procediendo de la forma indicada, tras la eliminacidn de repeticiones, se obtienen todos
los cerrojos de la RdAP. Los cerrojos no incluidos en otros se denominan cerrojos minimos.
Estos se obtienen directamente como un subconjunto de los cerrojos menores definidos por
cada uno de los términos del desarrollo en unién de intersecciones. Reconsiderando el ejem-
plo anterior se tiene:

a= (p1,p3,p6,p7] b= {plip3’p6!p3] c={

d = {p1, D2, ps, D7) e = {p1, D2, P4, D5, D1} f= {p1, D2, D3, P, P7)

& = {p1, P2, D3, P4, Ps, P71} h = { p1, p2, P3, Pé, D7} i = {p1, P2, D5, Ps)

J = (p1, D2, D4, Ps, Ps} k = { p1, P2, p3, Ps, Ds) 1= {p1, P2, P3, P4, Ps Ps}

m = { p1, D2, D3, D6, D8} .

Ahora bien, a C h (el conjunto a estd incluidoen h), bCm,dCe,dC f,dCg,iCj,iCk
e i C 1, luego los cerrojos minimos del ejemplo son {a, b, d,i}.

Observacion. Como se puede comprobar, a veces un cerrojo no minimo no puede expresar-
se como la unién de cerrojos minimos. Ejemplos: e = dUps, f= dUps, etc.

El método de busqueda de cerrojos basado en el algebra de BooLE tiene la ventaja
de su facil comprension pero computacionalmente no suele ser muy eficiente. A con-
tinuacion lo traducimos en un problema algebraico-lineal. Sustituyendo las opera-
ciones de interseccion y de unidn por las de multiplicar y sumar, respectivamente,
la implicacién bésica v; = u; se puede reescribir como sigue:
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ri=11= |11 (Zw)>1],

k€ pi \DjE tk

0, lo que es lo mismo,
Vig € pitlyi=1]= [ 2 S 1]-
Dj€ tk
Por tltimo, puesto que ; € {0, 1}, la condicidn de pertenencia de p; a un cerrojo

se puede expresar de la siguiente forma:

Vicepit 2, vi—vi=0.

Dj€-tk

Es decir, asociado a cada lugar se obtiene un sistema de inecuaciones lineales que
debe ser satisfecho.

EseMpro. Inecuaciones asociadas a pe en la RdP de la figura:

(1) 4.44a: 'ps = (t3}. El lugar ps con respecto a #3 genera la inecuacion: v3 — ys > 0.
(2) 4.44b: ps = (13, 7). El lugar ps con respecto a f3 genera la inecuacidn: y3 — v = 0.
El lugar pe con respecto a #; genera la inecuacion: ys — v¢ = 0.

Para calcular los cerrojos de una red de Petri basta con resolver el sistema de

inecuaciones que se obtiene al escribir todas las correspondientes a cada lugar d
la red. .

EsemMpLo. Sea la RdP de la figura 4.44a. El sistema global de inecuaciones es:

(1) p1: Pr=1(t] = vi+vs—7v120)

@2) p2: p2=1{t1} = y1—7220

3) p3: p3=(t1} = v1—v3=20

@) pi: Pa={(h) = y2—7v420 L 1T e >0
®) ps: ps={r2) = v2—7520

(6) ps: ps= (13} = v3—v620

M p1: pr=1{ta) = vat+tve—v120

8 ps: ps={ts}] = ys+ys—v8=0)

Cualquier solucion binaria (vyi € {0, 1}) del anterior sistema es un cerrojo. Ahora
bien, dada la peculiar forma de las inecuaciones, resulta inmediato comprobar
que cualquier solucién no negativa (yj’." € IN) describe una solucion binaria que con-
siste en tomar v; = 1 si y s6lo si v} > 0. De acuerdo con esta observacion, la reso-
lucidn de los sistemas de inecuaciones se puede llevar a cabo utilizando un método
como el sugerido en el anexo 5. La obtencién de los cerrojos minimos se realizard
buscando directamente entre todos los cerrojos aquellos que no estdn incluidos
en otros.

Esercicio. Compruébese que si un lugar p es simultdneamente lugar de entrada y de salida
de una transicién ¢, es inntil la escritura del término booleano (o inecuacidn lineal) asociado
a t con respecto a p.
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4.8.2.2 Obtencion de las trampas

Una trampa es, por definicidn, toda solucion del conjunto de las n implicaciones
siguientes (compruébese):

vi=1,...,n [yi=v],dondevi= A (V —YJ-).
tkEpi jetk
El tratamiento para la obtencion de las trampas minimas (no incluidas en otras)
es similar al de la obtencidn de los cerrojos, por lo que no se presenta.

Esercicio. Obténganse las trampas minimas (que no contienen a otras) de la RdP de la fi-
gura 4.44b.

Esercicio. Desarrdllese un método algebraico-lineal para obtener las trampas de una RdP.

4.8.2.3 Obtencion de los conjuntos de lugares que son simultdneamente, cerrojo
y trampa

Admitiendo los resultados §4.8.2.1 y §4.8.2.2, todo conjunto de lugares es cerrojo
y trampa simultidneamente si satisface las n implicaciones siguientes:

vi=1,...,n [yi= WiAv)].

Esercicio. Demuéstrese que los conjuntos de lugares de la red de la figura 4.44a:

{Pl,pz,P4,p7], [PI,PZ;PS,PB] Y [plyp3sp6yp7’p8)

son cerrojos y trampas simultdneamente y no contienen a ningin otro.

4.9 CONCLUSION

Se ha realizado una aproximacion a las técnicas de andlisis de RAP marcadas y auté-
nomas; es decir, desprovistas de interpretacion.

Desde un punto de vista metodoldgico, es importante tener en cuenta la aplicacion
de las técnicas de reduccion, antes de proceder a un anélisis por enumeracién o es-
tructural. Con ello, se suele disminuir sustancialmente la complejidad de la ejecu-
cién de los algoritmos de anélisis.

El caracter auténomo de las RdP analizadas, restringe la utilidad de algunos de
los resultados presentados, dado que «las RdP, que describen sistemas, son eviden-
temente no-auténomas». A pesar de ello, el andlisis de las RdP auténomas es muy
importante puesto que:

1) Existen subclases de RdP provistas de interpretacion, para las que los resulta-
dos del anélisis de la RdP auténoma mantienen su vigencia al asociarsele una
interpretacion (se considerard en el préximo capitulo).

2) Permite evidenciar estructuras de RdP «susceptibles de introducir errores» vy,
ademas, simplificar la verificacion semantica de la descripciéon (no abordada
en este texto).
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3) Aunque el comportamiento de la RdP interpretada sea correcto, es convenien-
te eliminar las incoherencias estructurales de la red, con el objeto de facilitar
la legibilidad y la modificabilidad de la descripcion.

Como puede constatarse, esta tltima reflexion estd en relacion con el tipo de argu-
mentos esgrimidos en favor de la «programacion estructurada» (véase por ejemplo
[DIKJ 76], [TABO 75], [LING 79] [WIRT 76]).

En resumen, se ha estudiado un conjunto de técnicas que permiten alcanzar un
cierto grado de confianza en el modelo.

En el préoximo capitulo se analizara el impacto, que sobre el analisis de las RdP,
tiene la introduccién del tiempo o/y de la interpretacidén de las mismas. Posterior-
mente, se sugeriran metodologias de modelacién.

EJERCICIOS

4.1 ;Puede determinarse un marcado inicial que haga que la RdP de la figura 4.31a sea viva?
(Por qué?
Repitase el mismo estudio con la RdP de la figura 4.31b.

4.2 Aplicando el método de enumeracién de los marcados, estidiese la vivacidad, la ciclici-
dad y la limitacion de las RdP ilustradas por la figura 4.44.

4.3 Demuéstrese a partir del concepto de conservatividad que la red de la figura 4.3 es estruc-
turalmente no limitada.

4.4 ;Es completamente reducible la red de la figura 4.5? ;Es viva y binaria? ;Cudles son sus
componentes conservativas elementales?

4.5 Supdngase que la red de la figura 4.2a es una red con capacidad (definicién 2.17) unifor-
me en todos sus lugares e igual a 3. Transférmese en una red ordinaria y simplificada.
¢Seria 16gico que se obtuviese como resultado final la misma red pero considerada como
ordinaria? ;Por qué?

4.6 Determinense los cerrojos y las trampas minimos de las redes ilustradas por las figuras
4.10 y 4.11. ;Se puede deducir directamente la vivacidad?

4.7 Reduzcase al maximo posible, de acuerdo con las reglas presentadas en §4.5, la RdP de
la figura E.2.1.

h - ' t H 1)
®
=

[£) ts 34

Figura E.4.1 Doble semaforo que genera una espera mutua.
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4.8 Considérese la regla de reduccidn ilustrada en la figura E.4.1. ;Preserva la vivacidad, la
limitacién y la ciclicidad?

4.9 Transférmese la negacién de la asercién sobre el marcado 1TAM)=A-M>2BAyB
son matrices) en una asercion sobre las secuencias disparables, &. (Es posible establecer
siempre la transformacién inversa: asercién sobre & en asercién sobre M?
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Validacion funcional de una descripcion (II):
redes de Petri no autonomas.
Impacto sobre la descripcion

5.1 INTRODUCCION

- Los resultados que se refieren al andlisis de RdAP auténomas no se pueden utilizar
directamente cuando a la evolucion de la RdP se asocia un tiempo, u otra interpreta-
cién que permita modelar un sistema. En este capitulo se estudiardn, en un tono de-
liberadamente informal, algunas de estas cuestiones y se presentard su impacto so-
bre la descripcion de sistemas. Esto nos conducir a ideas conocidas en el marco de
la programacién de computadores, como son, por ejemplo, la estructuracién y la
descripcidn por refinamientos sucesivos.

5.2 ANALISIS DE LAS RdP TEMPORIZADAS

Una RdP temporizada (RdPT, §2.5.2.6) es un par (R, Z) tal que R es una RdP y
Z es una funcién que asigna un nimero real no negativo, z;, a cada transicién de
la RdP. z; = Z(t;) recibe el nombre de tiempo de disparo de la transicién ¢;.

Una vez recordada una de las definiciones de RAPT, vamos a estudiar las implica-
ciones que sobre el andlisis tiene la temporizacién de una RdP.

5.2.1 Estudio de la limitacién

Una RdPT es limitada si la RdP correspondiente también lo es. Sin embargo, ocurre
a veces que determinadas sincronizaciones no son necesarias si se conocen los tiem-
pos de disparo. Considérese, por ejemplo, la conocida relacion productor-consu-
midor, segun la figura 5.1.

La RdP de la figura 5.1 no es limitada. Ahora bien, si el ciclo de produccién dura
mads que el de consumo, la RdPT si es limitada; es decir:
siz1+ 22+ 23 224 + 25 + 26, entonces la RAPT es limitada.

En conclusién:

RdAPT y limitacién (proposicién 5.1). Para que una RAPT sea limitada (o binaria),

no es necesario que la RdP lo sea. Si una RdP es limitada (o binaria), cualquier
RdPT construida sobre ella serd limitada (o binaria). [

173
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PRODUCTOR CONSUMIDOR

Figura 5.1 Relacion productor-consumidor (la RAP auténoma no es limitada).

5.2.2 Estudio de la vivacidad

El estudio de la vivacidad conduce a problemas delicados, puesto que la vivacidad
de una RdAPT no podra ser inferida, en modo alguno, partiendo de la vivacidad o
no-vivacidad de la RdP autéonoma.

Proposicion 5.2. Una RAPT marcada puede ser viva aunque la RdP no lo sea. [J

Su justificacion es inmediata al comprobar la evolucion de la RAPT de la figura
5.2a. Obsérvese que, debido a las restricciones temporales, el grafo de marcados de
la RAPT es un subgrafo del grafo de marcados de la RdP. En este caso, las mencio-
nadas restricciones impiden el disparo de las secuencias oi = #3t4f3t4 y 03 = Lt1t2t1,
entre otras. A partir de o1 0 g5 es imposible disparar otra transicion puesto que los
marcados alcanzables serian C*FH y B*FH, respectivamente.

Proposiciéon 5.3. Una RAPT marcada puede ser no viva a pesar de que la RdP
sea viva. [

Una justificacion de esta ultima proposicion la presentamos al estudiar un ejem-
plo cldsico de sincronizacion: el problema de /os fildsofos y los «spaghetti» [DIJK
71]. Lo particularizaremos para cuatro filésofos.

Enunciado. Cuatro filésofos se reunen para elucubrar y cenar. La cena se compone de un
plato Vinico a base de «spaghetti». Segiin un protocolo establecido (lejos de lo habitualmente
considerado como norma de urbanidad), los «spaghetti» deben comerse con dos tenedores.
Como quiera que la mesa ha sido puesta tinicamente con un tenedor por cubierto, al iniciar
la comida se les plantea un problema practico. Después de reflexionar, los filésofos adoptan
el siguiente ritual: :

1) Cada filésofo se sentard delante de un cubierto.

2) Para comer, un filésofo podrd utilizar su tenedor y el del comensal que se encuentre

a su derecha. Por consiguiente, nunca podran comer simultdneamente dos filésofos que
utilicen cubiertos contiguos.
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(b) Grafo de ma-rcados_de la RdPT.

Figura 5.2. RdPT viva (la RdP auténoma no lo es) y su grafo de marcados (subgrafo del gra-
fo de marcados de la RdP).

3) Cada uno de los cuatro fildsofos se puede encontrar en una de las tres situaciones (esta-
dos) siguientes:
e comiendo.
® esperando para comer, por no disponer de los dos tenedores que necesita;
® pensando y, por cortesia, no utiliza mientras tanto ningtn tenedor.
4) Inicialmente todos los filésofos estan pensando.

De acuerdo con lo enunciado, el comportamiento de cada uno de los comensales se reduce
a una sucesion de intervalos de reflexién y de ingestion.

Al margen del problema que plantee el hecho de que dos fildsofos intenten coger un mismo
tenedor (conflicto), la RdP de la figura 5.3b es viva y binaria. (Compruébese aplicando las
reglas de reduccién, §4.5.4.2, figura 4.26.) La mencionada RdP representa una conducta de
los fildsofos (usuarios) que se basa en la adquisicién simultdnea de ambos tenedores (recur-
$0S).

Supdngase, ahora, que la transicién etiquetada Fp, es disparada en el instante inicial, y que
la transicién Fp, es disparada una unidad y media de tiempo mas tarde. Si la duracién de cada
intervalo de comida es fija (2 unidades) y la duracién de reflexién también es fija (1 unidad)
los filésofos 1y 3 pueden monopolizar los tenedores y, por consiguiente, los filosofos 2 y
4 «no prueban bocado». En estas condiciones, la RAPT de la figura 5.3 es no viva porque
existe un bloqueo parcial.

El anterior ejemplo justifica el enunciado de la proposicién 5.3.
Resumiendo los enunciados de las proposiciones 5.2 y 5.3 en uno sélo, se puede

afirmar que para que una RAdPT sea viva no es ni necesario ni suficiente que la RdP
marcada lo sea.
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(a) Disposiciones de los comensales.

Ei ¥ /?)Ea Y3
Qo
Fcl j_ Fe,
Pl @ P3
Fp, Fp,

(b) Una descripciéon con RdP.

Figura 5.3. Problema de los fil6sofos y los spaghetti. RdP viva y binaria. (Nofa: E = espera;
C = come; P = piensa; F = fin de actividad; y = tenedor.)

5.2.3 Cuestiones adicionales sobre la vivacidad

Segtin lo considerado anteriormente, conviene definir una nueva propiedad que ca-
racterice la situacion de presencia o ausencia de posibles monopolios en una RdPT.
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Definicién 5.1. Una RdP marcada y viva es libre de monopolio cuando, indepen-
dientemente de las duraciones de disparo que se asocien a las transiciones, ésta es
viva. O

Como se ha visto en el parrafo anterior (§5.2.2), la propiedad de vivacidad y de
ausencia de monopolio no coinciden para las RdP en general. A continuacion se con-
siderard una subclase de RdP para la cual la vivacidad implica la ausencia de
monopolios.

Monopolios y Subclases de RdP (proposicion 5.4). Toda RdP simple y viva para
M, es libre de monopolio. [J

DEMOSTRACION. Para justificarla, se observara cudl es el origen del monopolio.
El monopolio aparece en RdP vivas cuando se cumplen las condiciones siguientes:
1) existe una configuracion como la ilustrada en la figura 5.4.
2) la temporizacién de la RAP hace que una marca llegada a p; (respec. p;) des-
aparezca antes de que p, (respec. p;) sea marcado.

Esto supone que p; y p, sean selecciones, de donde se concluye que la RdP no
puede ser simple, puesto que # es un nudo Y ('t = { p1,p2}). O

ti

Figura 5.4. #; puede ser viva en la RdP auténoma pero no en la RdPT.

La RdP de la figura 5.5 representa una conducta diferente de nuestros cuatro fil4-
sofos. Habida cuenta de que la RdP es viva y simple, con esta nueva conducta nin-
guno de ellos puede llegar a un estado de inanicién.

EJERCICIO.

a) Determinese la conducta descrita por la RdP de la figura 5.5.
b) Compruébese que la RdP de la figura 5.5 es conforme.

En conclusién, para asegurar la ausencia de bloqueos (parciales o totales) en una
RdPT hay que verificar la vivacidad y la ausencia de monopolio. Si la RAPT estuvie-
se definida a partir de una RdP simple, bastaria con verificar la vivacidad para ga-
rantizar la ausencia de monopolios.

5.3 ANALISIS DE LAS RdP INTERPRETADAS

Los resultados que se presentan son esencialmente andlogos a los presentados ante-
riormente para las RdPT.
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Figura 5.5. RdP marcada conforme y simple implica RdPT libre de monopolio.

5.3.1 Estudio de la limitacion

Proposicion 5.5. Si una RdP marcada es limitada, cualquier RdP interpretada
construida sobre ella lo es. Una RdP no limitada puede ser limitada al asocidrsele
una interpretacion (Figura 5.6). UJ

Figura 5.6. La RdP auténoma es no-limitada mientras que la RdP interpretada si es limitada.

Observando detenidamente la RdP interpretada de la figura 5.6, se deduce que
en la construccién del grafo de marcados (§4.4) no es aplicable el criterio de parada
(proposicién 4.1). En efecto, se recordard que cuando existe una secuencia de dispa-
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ros o que lleva desde M; a M, M; 5 M;, si M; € Mj, se puede concluir para una red
auténoma diciendo que es no limitada. Este criterio no es aplicable a las RdP inter-
pretadas, puesto que en la figura 5.6 se puede alcanzar el marcado M3 = (11 100)
a partir de M3 = (10100), siendo la red limitada.

Esta ultima observacién es véalida también para las RdPT.

5.3.2 Estudio de la vivacidad

Vivacidad y RdP interpretadas (proposicién 5.6). La vivacidad de una RdP mar-
cada no es necesaria ni suficiente para que la RdP interpretada construida sobre la
anterior sea viva. [

Su justificacion puede establecerse a partir de las redes ilustradas en la figura 5.7.

(a) RdP interpretada viva (b) RdP interpretada no viva
(la red auténoma no lo es) (la red auténoma si lo es)

Figura 5.7. Vivacidad y redes interpretadas.

Como resultado andlogo a la proposicién 5.4 se puede enunciar lo siguiente:

Proposicién 5.7. Si una RdP simple es viva para un marcado Mj, toda RdP inter-
pretada construida a partir de la red es viva para My, si todos los eventos asociados
a las transiciones pueden producirse. [J

5.3.3 RdP no auténoma: marcados alcanzables y secuencias disparables

Después de haber realizado una presentacion informal de los resultados basicos que
establecen las conexiones entre el andlisis de las RAP auténomas y el anélisis de las
RdP no-auténomas, es conveniente reflexionar globalmente sobre el origen de las
diferencias aparecidas.

Si el lector determina el conjunto de marcados alcanzables de cualquiera de las
redes presentadas en este capitulo, observard que éste se reduce a un subconjunto
de los marcados alcanzables de la correspondiente red auténoma. Esto puede com-
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prenderse facilmente, puesto que la temporizacion y la interpretacion asociada a una
red introducen restricciones adicionales sobre las secuencias de disparo posibles en
la red auténoma. Es decir e/ grafo de marcados de la RAPT o RdAPI es un subgrafo
del grafo de marcados de la red autdnoma.

Habida cuenta de estas observaciones, se deducen las tres propiedades siguientes,
las cuales constituyen un resumen de los resultados presentados a lo largo del
capitulo:

1) La limitacion de la RdP auténoma es suficiente, pero no necesaria, para la li-
mitacion de la RAP no auténoma. En efecto, si el subconjunto de marcados
alcanzables en la red no auténoma es finito, ésta serd limitada aunque la red
auténoma sea no limitada.

2) Una RdP no auténoma puede ser limitada a pesar de que exista una evolucion
desde un marcado M; a otro marcado superior M;. En efecto, si M; 2 Miy o
es la secuencia que provoca la evolucion, M; 5 M, la red no auténoma po-
dr4 ser limitada si la temporizacidn o la interpretacién impiden la aplicacion
de o un nimero no acotable de veces.

3) La vivacidad de la RdP auténoma no es necesaria ni suficiente para la vivaci-
dad de la RdP no auténoma. Esta propiedad se comprende también con facili-
dad, puesto que el conjunto de secuencias disparables en la red no auténoma
es un subconjunto de las secuencias disparables en la red auténoma, de donde
se deduce que la vivacidad de la red auténoma no es suficiente para la vivaci-
dad de la red no auténoma. Por otro lado, el subconjunto de secuencias de
disparo de la red no auténoma puede conducir a que ésta sea viva, aunque la
red auténoma no lo fuera.

Ademads de los resultados anteriores, puede deducirse que la exclusion mutua del
marcado de dos lugares de una red auténoma es condicidn suficiente, pero no nece-
saria, para la exclusion mutua del marcado de los mismos en la red no auténoma.
En efecto, esta propiedad es consecuencia de que el conjunto de marcados alcanza-
bles en la red no auténoma estd contenido en el conjunto de marcados alcanzables
en la red auténoma.

En conclusién, la limitacién y la exclusién mutua se conservan al hacer que la red
evolucione de forma no auténoma. De forma mds general se puede afirmar que fo-
das las relaciones invariantes sobre los marcados (§4.7.7) siguen siendo vdlidas a pe-
sar de que la red no sea auténoma. Los invariantes de disparo serdn en general vali-
dos, aunque algunos de ellos puedan ser afectados por la interpretacion que se le
asocie a la red. Desgraciadamente, la vivacidad no se conserva, pero su estudio so-
bre las redes autonomas es interesante, puesto que es razonable admitir que una
«buena» descripcién debe poseer una estructura tal que la red auténoma sea viva.

EJercicio. Para la ciclicidad de una red no auténoma ¢es necesaria y/o suficiente la ciclici-
dad de la red auténoma correspondiente?

5.4 VALIDACION DINAMICA DE UNA DESCRIPCION

En este apartado consideramos brevemente lo que se denominan métodos dindmicos
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de validacién y que, fundamentalmente, consisten en la utilizacién de técnicas de
simulacidn.

Desde un punto de vista conceptual, cuando los métodos de andlisis estatico (véa-
se el capitulo 4) son aplicados a RdP auténomas, dan resultados exactos, absolutos.
Normalmente los métodos de andlisis dindmico no producirdn nunca resultados
absolutos, dado que no se basan en la demostracién de una propiedad, sino que per-
siguen una comprobacion parcial, relativa al 4mbito especifico del funcionamiento
simulado. De forma mds precisa, se puede decir que el andlisis por simulacién
permite obtener una cierta confianza sobre la descripcion o bien evidenciar determi-
nadas situaciones mal descritas (incompatibilidades, olvidos, etc.).

La simulacidn del funcionamiento de un sistema descrito con una RdP interpreta-
da implica la simulaci6n de los sistemas con los cuales interacciona. Para ello, exis-
ten sistemas de ayuda al disefio (Computer Aided Design, CAD) concebidos bajo esa
Optica.

La verificacion por simulacion de las propiedades caracteristicas del buen funcio-
namiento puede abordarse directamente, a través del estudio de las evoluciones del
marcado inducidas por las secuencias normales de funcionamiento (éstas las debe
introducir explicitamente el disefiador o emplear un subsistema para su generacidn).
Se concluird sobre la calidad del comportamiento obtenido, al observar, en cada pa-
so de simulacién (o cada k-pasos), las propiedades de buen funcionamiento objeto
de verificacién. Una mejora sustancial de la calidad de las conclusiones que se pue-
dan extraer de la simulacidn, se obtiene al realizar, previa o simultdneamente, un
andlisis de la RAP auténoma. De esta forma, se podran caracterizar con eficiencia
algunas situaciones de violacién de las propiedades de buen funcionamiento. Por
ejemplo, se puede examinar el marcado de un cerrojo durante la simulacién. Evi-
dentemente, si un cerrojo se vacia, la RdP serd no viva, independientemente de la
interpretacién asociada.

Esta aproximacién hibrida a la simulacién permite la deteccién de funciona-
mientos defectuosos, incluso si éstos son muy dificiles de observar a partir de una
simulacion directa, como es el caso de la existencia de bloqueos parciales (RdP inter-
pretada parcialmente viva).

En resumen, la simulacién de una RdP interpretada constituye una ayuda mads
para el dificil problema que nos ocupa: la validacién del modelo de un sistema cons-
truido con RdP interpretadas. Por otro lado, la simulacién es hoy en dia una herra-
mienta muy importante para el estudio de prestaciones del sistema modelado, pues
permite obtener valores sobre tiempos de respuesta a determinadas solicitaciones,
tasas de actividad de procesos o de utilizacién de recursos, etc. Es decir, un simula-
dor adecuadamente disefiado permite estudios funcionales y comportamentales so-
bre el modelo o modelos del sistema que se considere.

5.5 METODOS DE DESCRIPCION DE SISTEMAS COMPLEJOS:
ASPECTOS BASICOS

Los diferentes conceptos y resultados expuestos a lo largo del presente texto, aconse-
jan la definicién de algunas lineas directrices que permitan abordar con eficacia la
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descripcién y la validacion de sistemas, especialmente si existe un alto grado de con-
currencia. :

Todo método de descripcion de un sistema complejo basado en una iteracién so-
bre las fases de descripcion y validacion adolece de algunas dificultades importantes
puesto que el proceso de descripcion-validacién ha de ser reiterado tantas veces co-
mo la validacién arroje resultados insatisfactorios. Este proceso iterativo conlleva
dos inconvenientes bdsicos:

1) la falta de criterios generales para proceder a la modificacion (correccion) del
modelo que no ha cumplido los requisistos exigidos en la validacidn.

2) la dificultad operativa intrinseca a la fase de validacion. Obviamente esta se-
gunda dificultad se hallara atenuada si se dispone de un sistema de concepcién
asistida por computador (Computer Aided Design, CAD).

Partiendo de estas reflexiones, parece deseable enunciar unas recomendaciones
generales para la descripcion de sistemas complejos. Estas recomendaciones deben
guiar la especificacién y modelacion de los sistemas, asi como facilitar la validacién
de los modelos resultantes.

Los apartados que siguen presentan dos aproximaciones complementarias a la
descripcion: la descendente y la modular.

La descripcion descendente permite simultanear la modelacién de un sistema y su
validacion. Todo proceso de descripcién descendente opera detallando de forma
progresiva las acciones que se deban realizar; es decir, refinando el modelo. Se trata
del proceso inverso al de reduccion de un modelo (§4.5). Normalmente se pretenderd
que, por construccion, el modelo sea vdlido.

Cuando un sistema es muy complejo, a veces resulta dificil su descripcion em-
pleando sélo un razonamiento de tipo deductivo (descripcion descendente). En estos
casos puede resultar mas adecuado elaborar una descripcion en dos etapas:

1) Descripcion independiente de diferentes subsistemas. La descomposicion ini-
cial del sistema es tarea del disefiador.

2) Establecimiento de las diferentes relaciones existente entre subsistemas. Estas
relaciones pueden clasificarse en dos grandes grupos que son las sincronizacio-
nes entre actividades que persiguen directamente un objetivo comiin (relacio-
nes de cooperacidn) y las sincronizaciones derivadas de la utilizacién comparti-
da de recursos (relaciones de competencia)

A esta tltima forma de proceder en la construccion de un modelo para un sistema,
se denomina método de descripcion modular.

Desde un punto de vista conceptual, ambas aproximaciones permiten aplicar, se-
gun principios diferentes y complementarios, el célebre aforismo «divide y vence-
ras». Bn efecto, en una descripcién descendente totalmente estructurada se parte de
un modelo inicial que sitiia las fases principales del funcionamiento para, posterior-
mente, desarrollar de forma independiente la descripcién de cada fase.

5.5.1 Descripcion descendente (fop-down)

En todo proceso de descripcion descendente de un sistema se parte de modelos con-
densados e incompletos del mismo (descripciones abstractas). Posteriormente, me-
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diante sucesivas transformaciones locales del modelo original, se van obteniendo
descripciones mds detalladas (concretas). Las sucesivas transformaciones se denomi-
nan con el nombre genérico de refinamientos. Basicamente, en un refinamiento se
expresa una macroaccion en funcién de acciones y eventos mas elementales. Dado
que una macroaccion puede estar asociada al disparo de una transicién o al marcado
de un lugar, hablaremos de refinamientos de transiciones y de lugares. En términos
estructurales, el refinamiento de una transicion o de un lugar se realizara sustituyen-
do la transicion o el lugar por una determinada subRdP.

Ademas de los refinamientos de lugares y transiciones, en el proceso de descrip-
cién se podrdn introducir lugares implicitos, los cuales creardn nuevas componentes
conservativas.

5.5.1.1 Descripcion descendente y reglas bdsicas de expansion

En una primera aproximacion, podemos considerar las reglas de reduccién §4.5y
§3.3) tomadas en sentido inverso, como reglas de expansion (refinamiento). Actuan-
do de esta forma, es posible construir una descripcién detallada, preservando las
propiedades que se deseen validar (vivacidad, limitacién, exclusién mutua, . . .). Asi
se podra:

(1) Sustituir: a) lugares por subRdP reducibles a un lugar (§4.5.1);
b) conjuntos de transiciones que representen secuencias de eventos/
/acciones por un lugar y otro conjunto de transiciones (84.5.2).
(2) Afadir: a) lugares implicitos (§3.3);
b) transiciones idénticas y transiciones identidad (§4.5.3).
Desde un punto de vista practico, conviene considerar especialmente los casos
particulares de reglas de expansién definidos por la figura 4.26 asi como la regla de
la figura 4.26bis. Cifidmosnos de momento a las reglas ilustradas por la figura 4.26:

(1.a) En su forma méds elemental, la sustitucién de un lugar por una subRdP re-
ducible (RA.2) permite expresar, en funcién de acciones mas elementales,
una macroaccion secuencial asociada a un lugar.

(1.6) En su caso mds simple, la sustitucién de un conjunto de transiciones por un
lugar y otro conjunto de transiciones (RA.1) permite expresar, en funcion
de acciones mds elementales, una macroaccion secuencial asociada a una
transicion. También permite asociar a un lugar (el que se afiade) la accidn
que estaba asociada a la transicidn.

(2.a) La adici6n de lugares implicitos puede tener dos objetivos bésicos:

1) Posibilitar la posterior definicién de evoluciones paralelas en las que se
sincroniza su comienzo y su terminacidon (RB.1).

2) Posibilitar la posterior definicién de la actividad de un subsistema que
evoluciona concurrentemente (RC.1). La introduccién de un lugar iden-
tidad permitird la imposicidn de ciertas restricciones a la evolucién de la
RdP. Por ejemplo, para garantizar la exclusién mutua en el acceso a un
recurso.

(2.b) La adicién de transiciones idénticas (RB.2) permitira la expresion de alter-
nativas (selecciones en la evolucién). En su forma més elemental, la adicién
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de transiciones identidad (RC.2) posibilitara la expresion de iteraciones en
la evolucion.

Como puede comprobarse, las reglas RB.2 y RC.2 parten de una asigna-
cién de las macroacciones a las transiciones. Aplicando posteriormente la
regla RA.2 a las mencionadas transiciones, se pueden asociar a lugares las
acciones alternativas o la accion a iterar.

Para ilustrar las ideas expuestas vamos a construir por refinamientos sucesivos,
por un lado, un modelo para el sistema productor-consumidor con accesos exclu-

yentes al almacén (§2.5.2) y, por otro, un modelo para el sistema de los cuatro filo-
sofos (§5.2.2).

EJEMPLO. SISTEMA PRODUCTOR-CONSUMIDOR CON EXCLUSION MUTUA. Puesto que el enuncia-
do es ya conocido (§2.4.1), procedemos a establecer una descripcion (modelo). La figura 5.8
ilustra las diferentes fases de un proceso de refinamiento. El almacén es el subsistema sobre
el que se desarrollar4 la iteracién entre los subsistemas de produccién y de consumo (figura
5.8a). O y H representan el nimero de objetos y de huecos en el mismo, respectivamente.
En la figura 5.8b se han afiadido tres lugares implicitos (identidad). Sus funciones son las
siguientes:

1) Representar la actividad del agente productor (P;).

2) Representar la actividad del agente consumidor (Cs).

3) Garantizar la exclusién mutua en los accesos al almacén (recurso) (Ar).

M) (0]
extraccion depdsito G,
(60) H

(a) Red inicial (b) Adicién de lugares implicitos

(c) Refinamiento de lugares (d) Refinamiento de transiciones

Figura 5.8. Construccion por refinamientos sucesivos de una descripcion del sistema produc-
tor-almacén-consumidor con accesos excluyentes al almacén.
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Gracias al lugar monomarcado Ar no se pueden disparar simult4neamente las transiciones
etiquetadas por extraccidn 'y depdsito. Es decir, ambas operaciones est4n en exclusién mutua.

En la figura 5.8c se ha detallado la actividad de los agentes productor y consumidor. Esta
se compone de dos estados, que son la produccién (respec. consumo) y la espera para acceder
al almacén. Por 1ltimo, la RdP de la figura 5.8d refleja en detalle el acceso al almacén. Si
comparamos las figuras 2.21 y 5.8, observaremos que, independientemente de la disposicién
de los elementos, ambas redes describen la misma relacién evento-accion.

Es importante observar, a modo de comentario final, el papel desempefiado por las compo-
nentes conservativas elementales. En efecto, todas se encuentran en la figura 5.85 y su signifi-
cacién ya ha sido comentada. Por otro lado, la RdP final es una red simple, lo cual garantiza
que el sistema esté libre de monopolio.

EJEMPLO. PROBLEMA DE LOS FILOSOFOS. Su enunciado fue presentado en §5.2.2. En la figura
5.9a se establecen las relaciones fundamentales entre usuarios (filésofos) y recursos (tenedo-
res). Como podra observarse con facilidad, la RdP es no simple. Para que la descripcién no
posea monopolio, se ha procedido a una primera expansién (figura 5.9b). La regla de expan-
sién utilizada es una generalizacién de la ilustrada por la figura 4.26bis. El significado de la
descripcion obtenida es evidente, asf como el posterior proceso de refinamiento (éste conduce
al modelo de la figura 5.5).

(@) RdP no simple en la que se establece la relacién general entre usuarios y recursos (filoso-
fos y tenedores respectivamente).

e Fll J ¢1 o F21 o ¢’2 s Fg] o 'v'/3 o F41 \&4

Fia ()F> O OFs,

o

(b) RdP sirﬁple obtenida al refinar la red de la figura anterior.

Figura 5.9. Refinamientos y problema de los filésofos.
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Todo método de descripcién basado en la aplicacion de las reglas bésicas de ex-
pansién (figuras 4.26 y 4.26bis) implica la interesante propiedad que enunciamos a
continuacion.

Proposicion 5.8

1) La red marcada final, (R, Mo), es viva, sii la red inicial (Rin, Min,) €S Viva.
2) Si k; representa el nimero de marcas que posee el j-ésimo lugar implicito afia-
dido durante el proceso de construccion del modelo, y ko es el limite de la red
inicial, (Rin, Min,), €l limite de la red marcada final es k¥ = max(ko, k1, .. .). [J

DEMOSTRACION. La vivacidad se garantiza dado que toda red construida de acuer-
do con esta aproximacién es reducible a la red inicial. La k-limitacion se puede de-
mostrar observando que al afiadir los lugares implicitos se introducen componentes
conservativas elementales cuyos lugares poseen como maximo k; marcas. [

5.5.1.2 Descripcion descendente y subRdP

En el apartado anterior se consider6 el proceso de refinamiento utilizando exclusiva-
mente reglas bésicas. Desde un punto de vista préctico, interesa con frecuencia la
sustitucion directa de una transicidén o de un lugar por una subRdP capaz de repre-
sentar un determinado conjunto de evoluciones. Asi, surge de forma natural la idea
de construir catdlogos de subRdP. En éstos se incluirdn aquellas subredes de uso
mds frecuente para la clase de aplicaciones que se modele.

Si en el marco de una evolucion puramente secuencial, una determinada macroac-
cién «a» asociada a un lugar debe ser expresada en funcion de acciones mds elemen-
tales, se recomienda la utilizacién de subredes obtenidas por composicion entre las
reglas de expansion estructurada. En la figura 5.10.1 se representa la macroaccion

a C C ay
a ai az a C
az C a
Y c

(1) Red original (2) Secuencia (3) Discriminacién condicional (4) Iteracion (5) Repeticion

Figura 5.10 Reglas de expansion secuencial estructurada cuando las acciones estan asociadas a
los lugares. (La repeticién puede obtenerse a partir de otras reglas; es redundante.)
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que se desea refinar. Las figuras 5.10.2, 3 y 4 representan las reglas bésicas de ex- .
pansién estructurada secuencial:

® secuencia: a = a1} az;
e discriminacion condicional: a = si C entonces a; si no as;
® jteracion: a = mientras que C hacer a;

La figura 5.10.5 representa un ejemplo de regla de expansién estructurada no bé-
sica pero de gran utilidad préctica. Esta regla se puede obtener por composicion de
las reglas basicas de iteracién y de secuenciacidn:

= [a1; a2];
® Repeticidn: a = repetir [a;; a;] hasta C; = .
P petir [a1; ] ’ mientras que C hacer [a;; a2];
Erercicio. Obténgase la regla de repeticidn a través de un proceso de composicidn de las

reglas bésicas y una posterior simplificacion de la subRdP. (Sugerencia: 1a regla de simplifica-
cién que se debe utilizar es la de fusidn de lugares equivalentes, §3.4.1.)

La experiencia acumulada utilizando las anteriores subredes en el proceso de refi-
namiento ha demostrado que se cometen pocos errores, asi como se mejora osten-
siblemente la legibilidad, la comprensibilidad y la modificabilidad de los modelos.
Indudablemente, la autodisciplina en la modelacidn de las evoluciones secuencia-
les que conlleva la utilizacién exclusiva de las anteriores reglas de expansién puede
tener como contrapartida que el modelo no sea minimo en nimero de lugares o/y
transiciones. Ahora bien, como se dijo en el capitulo 3, optimizar una descripcién
con respecto a un criterio puede llevarnos a un mal modelo con respecto a otros cri-
terios.

Observacion importante. Si la iteracidn o repeticién en la ejecucion de una accién a tiene
el sentido de mantenerla y no el de reejecutarla (por ejemplo, mantener abierta una vélvula
hasta que un nivel sea el adecuado), las subredes de las figuras 5.10.4 y 5 degeneran en la
de la figura 5.10.1. (Compruébese.) Ahora bien, en esta tiltima subred, la transicién de salida
del lugar que tiene asociada la accién estard condicionada por la negacién de C (condicién
de mantenimiento de la accién @). Para evitar ambigiiedades, en este caso se especificara
«mantener @ hasta que C». Evidentemente esta regla es facilmente generalizable tanto si se
ejecutan varias acciones como si se esperan diversas condiciones que conduzcan a diferentes
estados.

Dado que todas las subRdP de la figura 5.10 son reducibles a un lugar (§4.5.1,
®1), si la RdP inicial es viva, binaria y ciclica, también lo serd la red que se obtiene
después de la expansion (independientemente de que la red inicial exprese evolucio-
nes simultdneas).

Ademds de las reglas de expansion secuencial estructurada (figura 5.10) se puede
definir una regla de expansion estructurada que cree ramas con evoluciones parale-
las. Esta consiste simplemente en desdoblar el lugar al que se asocian las macroac-
ciones en otros tantos lugares (implicitos) que posean idénticos conjuntos de transi-
ciones de entrada y de salida. A cada uno de los lugares resultantes se les asocia una
o un conjunto de acciones o macroacciones.
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La utilizacidn exclusiva de las reglas de expansidn estructurada a partir de un lu-
gar conduce a subRdP que pueden representar evoluciones paralelas y que son redu-
cibles a un unico lugar. Aquellas subRdP compuestas de mayor utilidad serdn candi-
datas a ser catalogadas (eventualmente tras una simplificacion) para su reutilizacién
inmediata.

Eiercicio. Exprésese de forma algoritimica la macroaccion a en funcion de a,, a» y as (fi-
gura 5.11). ;Cudl es el comportamiento global de la red?

Figura 5.11. Expansién de la accién (estructurada) «a».

Antes de abordar brevemente el refinamiento de transiciones, interesa resaltar que
la utilizacidn de las reglas de expansion estructurada debe completarse con otras re-
glas (adicién de lugares, etc.) de forma que se puedan insertar restricciones sobre
las evoluciones simultdneas en el sistema objeto de modelacién. Dicho de otro mo-
do, la consideracién exclusiva en un 4mbito concurrente de las reglas de expansion
estructurada puede ser insuficiente.

A lo largo de este apartado se ha comentado la sustitucién de lugares por subRdP
(su expénsién). De forma dual, es posible hablar de la sustitucion de transiciones
por subredes. La figura 5.12 es suficientemente explicativa en este sentido. Si la
subRdP es reducible a una transicidn, al sustituir la transicidn se preservard la viva-
cidad, la limitacién y la ciclicidad. Asi, la subRdP de la figura 5.12a es reducible
a una transicién; puesto que la red de la figura 5.12b es viva y binaria, la red que
se obtiene tras la sustitucion (figura 5.12¢) es viva y binaria.

Si la subRdP es irreducible, se pueden plantear dificultades al sustituir una transi-
cién, puesto que la red resultante puede hacerse no viva y/o no limitada y/o no cicli-
ca. En este sentido es altamente recomendable el estudio detallado del ejemplo si-
guiente.

Esempro. La RdP marcada de la figura 5.13a es viva y ciclica. La subRdP de la figura 5.13b
no es reducible a una transicién. La red que se obtiene al afiadirle el lugar monomarcado
O’ es viva y ciclica. Del mismo modo, la red que se obtiene al afiadirle el lugar O’ con dos
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(a)
t -
(9]
®)

Figura 5.12. Sustitucion de ¢ por una subRdP.

(@ ()

Figura 5.13. La sustitucion de la transicion #4 (2-sensibilizable) por la subred conduce a una
red no viva.
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marcas es también viva y ciclica. (Compruébese.) Sin embargo, la sustitucién de la transicion
ts de la figura 5.13a (3 Mk tal que My(ps) = 2a(p4, ts) = 2; es decir, para My, 4 es 2-sensibili-
zable) por la mencionada subred conduce a una red global que no es ni viva ni ciclica, circuns-
tancia que es facil de comprobar aplicando, por ejemplo, la secuencia de disparos
o = titatatitititstéts. De forma intuitiva se puede comprender la no vivacidad de la red final
al constatarse en la figura 5.13b que si Mo(O’) = 2, existen secuencias para las que el disparar
dos veces la transicién 5 requiere més de dos disparos previos de ¢{, lo que es imposible en
la red de la figura 5.13a. Por otro lado, la red considerada con Mo(O’) = 1 es tal que toda
secuencia de disparos que comienza disparando una vez ¢i permite disparar una vez #§ sin que
se tenga que volver a disparar #1. En este caso, la sustitucién de cualquier transicién que no
sea 2-sensibilizable (todas las de la figura 5.13a menos #) por la subRdP de la figura 5.13b
conducirfa a una RdP viva y ciclica.

Los estudios generales sobre condiciones suficientes para sustituir una transicion
por una subRdP se basan en la teorfa de lenguajes formales (véase, por ejemplo,
[ANDR 80], [SUZU 80]). Su consideracion escapa a los objetivos bésicos de este tex-
to. En cualquier caso, debe indicarse que, desde un punto de vista préctico, es muy
razonable pensar que las subredes mas utilizadas son reducibles, con lo que el refina-
miento no plantearda problema alguno.

Para concluir este apartado sobre descripcion descendente (§5.5.1) hemos de sig-
nificar que el proceso de modelacion del sistema aparece como una serie de transfor-
maciones sucesivas de descripciones abstractas. Cada transformacién (refinamien-
to) acerca el modelo abstracto a una descripcion completa. Como recurso basico del
disefiador ha aparecido el concepto de catdlogo de subRdP, que no es més que una
coleccién de soluciones a problemas tipicos encontrados en la (su) practica. En cual-
quier caso, es evidente que la existencia de estos catdlogos permite una gran econo-
mia de esfuerzos en el modelado de sistemas complejos.

5.5.2 Descripcion modular

La comprension del funcionamiento de un sistema complejo es tanto mas facil cuan-
to su descripcion se aborde de forma mads estructurada y progresiva. De este modo,
en gran numero de aplicaciones complejas, los sistemas concurrentes se describen
sincronizando las descripciones (realizadas independientemente) de diferentes sub-
sistemas o modulos. A continuacién introducimos algunos de los esquemas elemen-
tales de sincronizacién mas frecuentes, sefialando posibles inconvenientes que pue-
den plantearse de cara a la validacién del sistema completo.

La figura 5.14 presenta algunos esquemas de interconexién entre subsistemas (sin-
cronizaciones). La significacion de cada uno de ellos es suficientemente clara. A mo-
do de comentario sélo indicaremos que el esquema de autorizacién memorizada de
evolucién mutua (doble semdaforo, figura 5.14e) es, de acuerdo con la regla de reduc-
cién ilustrada por el ejercicio 4.8, equivalente a los esquemas de sincronizaciéon mutua
con evolucién simultdnea. (Compruébese.) Para ilustrar esta forma de proceder, va-
mos a modelar un sistema ya conocido, aunque su complejidad no sea importante.

EseMpLo. Reconsideremos una vez mas el sistema productor-consumidor con accesos exclu-
yentes a almacén (§2.4.1 figura 2.6; §5.5.1.1, figura 5.8). En este caso, los dos subsistemas
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S1 52 S1 S2

(a) S; desactiva a S, (b) S; activa a S
51 52 S1 52 :

(c) S; autoriza sin memorizar la evolucion (d) S: otorga a S, una autorizacién me-

de S, morizada de evolucion (semaforo, fi-

s gura 4.41)
1 82 51 5

(e) Autorizacion memorizada de evolucidn (f) Sincronizaciéon mutua con desactiva-

mutua (doble semaforo) cién de uno de los subsistemas

S

o
Bl

(g) Sincronizacién mutua con evolucion simultanea

Figura 5.14. Algunos esquemas tipicos de sincronizacién entre médulos. (Nota. «Activa-
cién» y «desactivacién» tienen pleno sentido, desde un punto de vista mas for-
mal, si los subsistemas son, por ejemplo, grafos de estado monomarcados.)
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Fe e

c@

Figura 5.15. Construccion por interconexion de descripciones parciales de una descripcién
del sistema productor-almacén-consumidor.

activos tienen un funcionamiento similar, descrito por la figura 5.15a. Como puede apreciar-
se, se distinguen un estado de trabajo (produccion o consumo), uno de eventual espera para
acceder al recurso (almacén) y uno de trabajo con el recurso (depdsito o extraccién). El fun-
cionamiento descrito por la figura 5.15a es incompleto puesto que se permite retirar objetos,
incluso si no los hay (j!). En efecto, al ser independiente el funcionamiento del productor y
del consumidor, nada impide que el proceso de consumo sea mas rdpido que el de produc-
cién. Para resolver este problema se introduce un semdforo (figura 5.14d) por el que el subsis-
tema de produccion otorga una autorizacion (al haberse producido un objeto) de evolucién
al subsistema de consumo (operacién de retirar el objeto producido). Este seméforo esté re-
presentado por el lugar O (figura 5.15b), su funcion es, en resumen, memorizar los objetos
depositados y no retirados atn. Es decir, cuenta los objetos existentes en el almacén si no
estan en curso operaciones de depdsito o extraccion. El lugar O impone un avance sincrénico
nulo entre las transiciones {1,2} y {3,4].

La adicién del lugar O, hasta ahora la tinica restriccion entre las evoluciones del productor
y el consumidor, no impide que si el productor es mas rapido que el consumidor, se intente
depositar un numero no limitado de objetos en el almacén (la RdP es no limitada si sdlo se
afiade el lugar O). Dado que todo almacén serd de capacidad finita, si éste estd lleno, es im-
portante no autorizar una operacion de depdsito hasta que se haya producido una de extrac-
cion. Esto es, hay que limitar el avance de las transiciones {3, 4} con respecto a {1,2}. Este
avance se limita afiadiendo un lugar (seméforo) el cual vendr4 a contar el nimero de huecos
existentes en el almacén. Si hay huecos, se autoriza una operacion de depdsito. Si se supone
que el sistema arranca con el almacén vacio, el lugar H tendrd tantas marcas como capacidad
el almacén. En este punto es interesante observar que los lugares afiadidos, O y H, pertenecen
a una componente conservativa, lo que garantiza la limitacién de la RdP obtenida:
M(O) + M(H) + M(E) + M(D) = 4.

La RdP de la figura 5.15b no cumple todas las especificaciones del problema puesto que
nada impide un acceso simult4dneo al almacén por parte del productor y el consumidor. Para
garantizar la exclusion mutua entre los lugares E'y D, M(E)M(D) = 0, se puede crear otra
componente conservativa afiadiendo un lugar Ag. Es decir, Ar debe ser tal que
M(E) + M(D) + M(AR) = 1, lo cual exige que /(E) + I(D) + I(Ar) = 0. Haciendo el cdlculo
se obtiene Ar (figura 5.8d) y la descripcion cumple las especificaciones. Como es facil com-
probar, el subconjunto de lugares que determinan la componente conservativa, (E, D, Ar},
representa los tres estados de utilizacién en que se puede encontrar el almacén (recurso). El
marcado de A representa la inactividad del recurso; Ag es un semdforo de exclusion mutua,
relacion de sincronizacion no ilustrada en la figura 5.14.
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Observacidon. El razonamiento anterior permite construir una RdP en la que de forma es-
tructural se fuerza la exclusion mutua a partir del marcado inicial. Este método de construc-
cién de la exclusion mutua no es el tinico, puesto que se podia haber razonado de forma que
se obtuviese un esquema como el basado en la red de la figura 4.36. No obstante, calificare-
mos de mala aproximacién a esta ultima pues, ademéds de obtenerse una red mds compleja,
la demostracion de la exclusion mutua es netamente mds complicada (no existe una compo-
nente conservativa que describa los estados del recurso).

El ejemplo anterior ha permitido esbozar una aproximacion a la construccién de
modelos cuando se parte de la descripcion independiente de subsistemas. Su desa-
rrollo ha mostrado que, dada la forma de proceder, al irse introduciendo restriccio-
nes sobre los disparos de transiciones (es decir, al introducir lugares) se pueden obte-
ner comportamientos anomalos (no limitacidn,...). A diferencia de un método de
descripcion descendente en el que por construccion el modelo es vélido, en este caso
hay que tener en cuenta el andlisis del modelo obtenido. Asi, por ejemplo, las rela-
ciones activar (figura 5.14a) o desactivar (figura 5.14b) no pueden ser las tinicas es-
tablecidas entre los dos subsistemas secuenciales de un determinado sistema, puesto
que, de lo contrario, el modelo seria estructuralmente no limitado o no vivo,
respectivamente.

Esercicio. Supdngase que se tienen descritos dos subsistemas secuenciales, siendo sus mo-
delos vivos y binarios. Determinese cuales son las relaciones de sincronizacién que pueden
utilizarse aisladamente y preservan la vivacidad y la binariedad.

5.6 CONCLUSION

Los resultados fundamentales de este capitulo han sido los siguientes:

1) No se pueden trasladar directamente y de forma general los resultados del ana-
lisis de las RdP auténomas sobre las RdP no-auténomas (temporizadas o
interpretadas).

2) Toda RdP simple marcada y viva es libre de monopolio.

3) El andlisis por simulaciéon no garantiza ninguna propiedad de la descripcién,
salvo si éste es exhaustivo.

4) La descripcion descendente permite obtener modelos que, por construccion,
son validos.

5) La descripcion modular es necesaria para describir sistemas muy complejos.
No obstante, ésta puede acarrear algunos problemas al modelo construido
que, de forma intuitiva, han sido resaltados.

Por ultimo, es importante sefialar que el tratamiento de los aspectos metodolégi-
cos que se han presentado no constituye mas que una primera aproximacion al pro-
blema de la modelacion de sistemas complejos. Interesa resaltar, en cualquier caso,
que las buenas metodologias de descripcion estardn siempre definidas en funcién de
los resultados del analisis.

En resumen, no sélo conviene disponer de una potente herramienta de descripcion
(las redes de Petri), sino que es fundamental el utilizarla convenientemente. Estable-
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ciendo un simil automovilistico, para ganar una competicion no sélo es interesante
disponer de un coche potente, sino que es fundamental el conducirlo de forma ade-
cuada.

EJERCICIOS

5.1 Describase mediante refinamientos sucesivos el sistema compuesto por dos lectores y dos
redactores (§2.5.5).

5.2 Repitase el ejercicio anterior construyendo una descripcion a partir de la interconexién
de las descripciones parciales de cada lector y cada redactor.
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Realizacion cableada

6.1 INTRODUCCION

Después de haber utilizado las redes de Petri para la descripcidn y validacién de sis-
temas con evoluciones concurrentes, vamos a presentar las técnicas basicas que per-
miten realizar los sistemas descritos. Es decir, vamos a abordar el estudio de técnicas
que posibiliten la construccion de dispositivos fisicos capaces de simular, con mayor
0 menor precision, el comportamiento del modelo funcional construido para el siste-
ma. La realizacion aparece como la iltima fase del proceso de sintesis.

El estudio de técnicas de realizacién lo llevaremos a cabo en cuatro capitulos. El
primero de ellos, éste que nos ocupa, aborda la realizacidn mediante el conexionado
directo de biestables y puertas logicas (realizacion cableada); el segundo capitulo,
capitulo 7, presenta técnicas para la realizacion de RdP utilizando las memorias
muertas (RoM) y las matrices logicas programables (PLA); el capitulo 8 estudia en
profundidad los autdmatas programables de uso general y su aplicacion a la simula-
cion de RdP; por tltimo, el capitulo 9 estd dedicado exclusivamente a la simulacion
de RdP con computadores de propdsito general y a los autématas programables es-
pecializados en la simulacién de RdP.

El conjunto de métodos de realizacion que presentaremos a lo largo de los capitu-
los citados se centra esencialmente en las RAP binarias, clase de modelos que, como
se recordard (§1.5 y 6, §2.4 y 5), es bastante adecuada para la descripcion de siste-
mas logicos. No obstante, observaremos que gran parte de los métodos de realiza-
cion de RAP binarias que se estudien son inmediatamente generalizables para reali-
zar redes de Petri ordinarias k-limitadas.

Las técnicas de realizacidn que se presentan en este capitulo permiten la obtencién
directa del circuito ldégico a partir de la RdP, con lo que se suprimen dos de las mds
delicadas y fastidiosas etapas de la sintesis cldsica de los sistemas secuencialest: /a
codificacion del estado y la escritura de ecuaciones ldgicas. Por otro lado, es impor-
tante sefialar que, ademads de las reglas de conexionado de los dispositivos 16gicos

T Véase, por ejemplo, [HILL 78].
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bésicos (puertas y biestables), se presenta una metodologia extremadamente simple
para el estudio de funcionamientos secuenciales aleatorios. En particular, se propo-
nen técnicas de conexionado que garantizan la ausencia de los mencionados funcio-
namientos aleatorios.

La idea fundamental que preside las técnicas de realizacién cableada que se pro-
ponen consiste en materializar cada lugar (binario) por un biestable que memorice
si el lugar estd o no marcado. Diremos que se trata de realizaciones modulares de
las RdP. La realizacion modular de RdP no binarias utilizard por cada lugar que
pueda contener hasta k marcas, un contador modulo k + 1 o mayor. (Nota. El +1
es necesario para memorizar la ausencia de marcas, M(p) = 0.)

La realizacion cableada de RdP utilizando las ideas antes esbozadas conducird a
realizaciones en las que el nimero de memorias (biestables y contadores) no sera
normalmente minimo?t. No obstante es importante sefialar que actualmente el coste
de los materiales decrece continuamente y que el esfuerzo de economizacién debe
llevarse a cabo sobre otros aspectos como son e/ disefio, la puesta a punto y el man-
tenimiento del circuito. En este sentido, es de destacar que la realizacion de RdP
utilizando las técnicas cldsicas de sintesis de maquinas secuenciales es doblemente
complicada. En efecto, antes de aplicar las mencionadas técnicas, se ha de transfor-
mar la RdP en uno o varios sistemas secuenciales. Esto puede hacerse de diversas
formas, por ejemplo:

1) transformando la RdP en un grafo reducido de acuerdo con el método expues-
to en §1.5.4 (atencion al posible nimero de estados).

2) descomponiendo la RdP en un conjunto de grafos reducidos interdependien-
tes, problema que se abordard en el préximo capitulo (§7.4) al considerar las
realizaciones con ROM y PLA.

Por otro lado y dejando aparte la no despreciable complejidad operatoria de las
técnicas cldsicas de sintesis de maquinas secuenciales, se ha de mencionar que los
circuitos que se obtienen se caracterizan normalmente por su dificultad de compren-
sion y de modificacion.

La dificultad de comprension es fruto de la enorme diferencia que suele existir
entre la descripcion funcional del circuito (qué es lo que hace) y la descripcion es-
tructural del mismo (cémo estd hecho). Como botén de muestra, el lector puede
constatar en la figura 6.1 un sistema secuencial descrito funcionalmente mediante
una RdP (GR) y dos posibles realizaciones. El origen de la diferencia entre la des-
cripcién funcional (figura 6.1a) y las estructurales (figuras 6.1b y ¢) reside en la fuer-
te codificacion del estado (2 variables internas codifican los 4 estados). Ademads, con
frecuencia, la significaciéon funcional de las variables internas es muy dificil de esta-
blecer. Entre otros problemas, la dificultad de comprensién hace que /a puesta a
punto y el mantenimiento del circuito se compliquen.

La dificultad de modificacién proviene también de la fuerte codificacion del esta-
do puesto que, en estos casos, el circuito tiene sentido funcionalmente al conside-
rarlo como un todo y no en sus partes. Dicho de otro modo, resulta muy complejo

1 Esto va en contra de un objetivo fundamental de los métodos cldsicos de sintesis de madquinas secuencia-
les: minimizar el mimero de componentes a emplear en el circuito.
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o incluso imposible proceder a modificaciones locales, 1o cual implica un dificil

mantenimiento en las instalaciones en las que evolucionen sus especificiaciones fun-
cionales.

alert+e) Z e Z/es &l + e)

(a) Descripcién funcional
de un sistema secuencial

172 codifica p;
J1y2 codifica ps
Y12 codifica p;3
172 codifica p, L@

e
e

» —D—“D'TTDZL:D—— %

1z
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e
(b) Una realizacién 16gica sin biestables (variables internas de
memorizacién: yi, yz)
hic 13 codifica p,
e
—:D—;:D_I_ S 0 b G192 codifica ps
1 q1q: codifica p3
_ R | @132 codifica p;
e3
YA
gl e;—%S Q a: e
(7 2 i
3 R q2

(¢) Una realizacion 16gica con biestables (variables internas de
memorizacién: qi, q2)

Figura 6.1 Descripcién funcional de un sistema secuencial y dos realizaciones 16gicas obteni-
das al codificar el estado con dos variables internas. (Nota. En la segunda realiza-
cién Z puede generarse también como Z = q1(G, + es3).)
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La realizacién modular, al establecer una relacién directa entre la descripcion fun-
cional (RdP) y la estructural (circuito), facilita la comprension y la modificabilidad del
circuito, ademads de reducir enormemente el tiempo necesario en la fase de disefio.

En los apartados 6.2 y 6.3 se presentan realizaciones asincronas, mientras que en
el apartado 6.4 se estudian realizaciones sincronas. Por ultimo (§6.5), se comentan
rapidamente algunas cuestiones adicionales de gran interés préctico.

6.2 REALIZACION ASINCRONA (I): FUNCIONAMIENTO POR
TRANSFERENCIA IMPUSIONAL

Este método de realizacion de RdP binarias se basa en las dos ideas siguientes:

1) A cada lugar (binario) se le asocia un biestable especial, al cual denominare-
mos genéricamente célula (de memoria).

2) La activacion de una célula se realiza al disparar alguna de las transiciones de
entrada del lugar que materializa; andlogamente, la desactivacion se realiza al
disparar alguna de los transiciones de salida de dicho lugar. Es decir, se sigue
directamente la regla de evolucién del marcado de una RdP binaria.

Puesto que la simulacién del disparo de una transicién es un pulsot y éste es el
que provoca directamente toda la evolucién del marcado, el presente modo de fun-
cionamiento se denomina por transferencia impulsional. En lo sucesivo, se supon-
dr4 que la RdP no presenta conflictos efectivos.

6.2.1 La célula de memoria

Antes de introducir la célula, consideramos rdpidamente el biestable rR-s con activa-
cién prioritaria. La figura 6.2 presenta su esquema légico bésico asi como otras dos
realizaciones alternativas que utilizan sélo puertas NOR y NAND, respectivamente.
Con la ayuda de cualquiera de esos esquemas, se puede comprobar su comporta-
miento 16gico (comportamiento ideal):

R S Q Estado

0o 0 Q memorizacion

0o 1 1 activacién

1 1 1 activacién (prioritaria)
1 0 O desactivacioén

A modo de observacion, es importante subrayar que el comportamiento expresa-
do por la tabla anterior se circunscribe a los momentos en que no hay puertas l6gicas

+ Como veremos mis adelante (§6.2.4), su duraci6n es del orden de varias veces la de la conmutacién
de una puerta ldgica.
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S 0 § — >>-——Q

. R—] R—
(@) O/Y (OR/AND) (b)) NO—Y/NO— Y (NAND/ NAND)
g 0
R

(¢) NO—O/NO—O (NOR/NOR)

Figura 6.2 Esquemas l6gicos de un biestable R-s con activacién prioritaria: Q: = S + QR.

conmutando; es decir, cuando el circuito esta en régimen estdtico. La importancia
de esta precision radica en que, merced a los retrasos en la conmutacion de las puer-
tas, cuando en un circuito se interconectan diversos componentes l6gicos, pueden
sobrevenir diferencias entre el comportamiento esperado y el observado. Estas dife-
rencias se denominan con el nombre genérico de fendmenos aleatorios; en §6.2.4 se
estudiardn condiciones que permiten garantizar su ausencia.

Esercicio. Compruébese que los biestables de la figura 6.2 pueden ser utilizados como
biestables con desactivacion prioritaria sin mas que cambiar la denominacién de sus entradas
y salidas de acuerdo con la regla siguiente: R por S, S por R y complementar légicamente
la definicién de la salida, Q por Q.

La célula de memoria necesaria para realizar modularmente RdP binarias es un
biestable r-s (Reset-Set) con activacidn prioritaria (activacién cuando RS = 1) y ge-
neralizado (con varias condiciones de activacioén, {Cy,}, y varias condiciones de de-
sactivacion, {Cp;}). En efecto, para realizar un lugar binario (1-limitado) hace fal-
ta una memoria que se 4active al dispararse una de las transiciones de entrada del
lugar que materializa. Ademads, la memoria debe desactivarse al dispararse alguna
de las transiciones de salida del lugar que realiza. Es decir, si denominamos Cy; y
Cp, las condiciones de disparo de una transicién de entrada # (condicién de activa-
cién) y de otra de salida ¢#; (condicién de desactivacién) del lugar p, podremos es-
cribir:
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S=CA=ZCA‘ donde p = (#}
]
R=Cp=3Cp, dondep = ().
J
El interés de la activacion prioritaria se pone de manifiesto en el caso de que para
algun lugar se disparen «simultdneamente» una transicion de entrada y otra de sali-

da; en este caso el lugar debe permanecer marcado. Esta situacién se ilustra, si
a = b, mediante p> en la figura 6.3.

Observacion sobre validacion y realizacion. La RdP de la figura 6.3 con @ = b es un caso
tipico en el que un adecuado estudio de validacion (capitulos 4 y 5), hubiera detectado la si-
guiente anomalia: la RdP con a = b es binaria pero si fuese a # b, no lo seria puesto que p; .
y p2 podrian contener hasta dos marcas. En ambos casos, la RdP es viva para el marcado
inicial que exhibe.

1(0)
oo c
b

3

(a) RdP (b) Grafo de marcados (¢) Grafo de marcados
(p1 y p2 pueden tener 2 marcas) cuando a = b (binario)

Figura 6.3 Si a = b, p> se marca y desmarca simultdneamente.

Ademis del argumento que, sobre el interés de la activacion prioritaria en la célu-
la, ofrecen redes como la de la figura 6.3 con a = b, mds adelante se presentardn
otros adicionales. En efecto, en §6.2.4 se argumentar4 en base a razonamientos Zec-
noldgicos, considerando los efectos de los retrasos en las conmutaciones de los esta-
dos 16gicos de las puertas del circuito. Por otro lado, se ha de sefialar que al estudiar
otra técnica de realizacién que utiliza la misma célula (conexionado por llamada-
respuesta, §6.3) se justificard también la necesidad de la activacion prioritaria argu-
mentando desde un punto de vista conceptual.

De acuerdo con lo anteriormente expresado, la célula deber ser un biestable rR-s
generalizado y con activacion prioritaria. En la figura 6.4 se presentan tres realiza-
ciones posibles de la misma. Como puede observarse, la inica modificacién introdu-
cida con respecto a los esquemas de la figura 6.2 son las sustituciones de R y S por
sus valores:

S=Cs=Y,Cux R =Cp= ) Cp;
i J
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(Cu) T -

Cay —

Ca,

= T

(a) O/Y (OR/AND)

(G };T_Q o -
: —©Q

CAn ;'C

(b)) NO—Y/NO—Y (NAND/NAND)

(Ca) 0 Ca
Cu i p—0

n

(Cp)) l < I

(c) NO—0/NO—O (NOR/NOR)

Figura 6.4. Esquemas lOgicos de una célula y representacion simbdlica.

Desde un punto de vista préactico, hay que sefialar que bajo la denominacién cusa
(Cellule Universelle pour Séquences Asynchrones) se encuentran disponibles dos cé-
lulas del tipo definido. Estas estdn realizadas en tecnologia TTL y su esquema ldégico
es del tipo NAND-NAND [SESC 75]. La src 607 posee 6 condiciones de activacion (de-
nominadas entradas primarias) y 7 condiciones de desactivacion (denominadas en-
tradas secundarias). La src 608 (2 células en un chip) posee 3 condiciones de cada
tipo. En cualquier caso, la célula puede ser realizada mediante un biestable rR-s con
activacion prioritaria (figura 6.5), aunque conviene resaltar que la realizacion direc-
ta con puertas NAND es mds econdmica en nimero de componentes y utiliza un idén-
tico nimero de conexiones (compdrense los esquemas de las figuras 6.4 y 6.5). De
este modo, el 7420 (doble puerta NAND de 4 entradas) permite realizar una célula
con 3 condiciones de activacidn y otras 3 de desactivacion.



202 REALIZACION CABLEADA

Figura 6.5. Una posible realizacion de la célula a partir de un biestable rR-s construido con
puertas NAND.

La utilizacién conjunta de un 7410 (triple puerta NAND con 3 entradas) y un 7430
(puerta NAND con 8 entradas) permite obtener una célula con 2 condiciones de acti-
vacion y 2 de desactivacion y otra con 2 (o 7) condiciones de activaciéon y 7 (o 2)
de desactivacion.

6.2.2 Realizacién por transferencia impulsional

Sea Qk la salida de la célula que realiza px, Qx = M(px). Para poder realizar una
RdP quedan por definir las conexiones entre las diferentes células. Estas se realizan
a través de la materializacion de las condiciones de activacion y de desactivacion.

La activacidn de una célula se realizard al dispararse alguna de las transiciones
de entrada del lugar que materializa. Considerando la figura 6.6, podremos escribir
la condicién logica de activacién de la célula j:

Ch=2.C% =245 T] Qe
i i [+3

Ay An

A"J Ajm

Figura 6.6. Configuracién genérica alrededor de p; (Nota. El marcado de p; se representara
por Qj, salida de la célula asociada al lugar.)
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La desactivacion de una célula se realizard al dispararse alguna de las transiciones
de salida del lugar que materializa. De acuerdo con la notacién de la figura 6.6, ten-
dremos que la condicion 16gica de desactivacidn de la j-ésima célula es la siguiente:

Ch= ;C’bk = ;A,-k II Q.
)

a

X

(@) Nudo Y (b) Nudo O

- a b,

i J1 p— ! > Yo : ! Yo—4—
X

: : o A

if
]

Ly ¥

im >—'jnD'—'

.
i

(¢) Realizaciones utilizando la célula NOR/NOR

a bl

[ —

im Jn b—

(d) Realizaciones utilizando la célula NAND-NAND.

Figura 6.7. Realizaciones de los nudos O e Y por transferencia impulsional. (Obsérvese que
d son duales.)
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Cada término de C; y CJ, representa el disparo de una transicién y, por lo tanto,
es utilizable para construir las condiciones de activacién o de desactivacién de otras
células. Por ejemplo, el término Ak [ Qj, sirve para desactivar las células asocia-
das a los r lugares de entrada de la transicidn etiquetada con A y para activar las
células asociadas a los b lugares de salida de la mencionada transicién. A partir de
esta consideracion y de las dos ecuaciones anteriores se pueden establecer sin dificul-
tad las reglas para realizar la conexién de las células. La figura 6.7 presenta dos
construcciones locales tipicas en RdP (nudo O y nudo Y) y dos cableados posibles
para la realizacion de cada una de ellas. En el caso de la lectura de un lugar, el cone-
xionado puede adoptar la forma simplificada que se muestra en la figura 6.8. En
ésta se puede observar que la sefial que representa el disparo de f no activa y desacti-
va simultdneamente al lugar ps;, puesto que su efecto seria inobservable.

B e
O © 1 p -/ D 2 p— Q@
o‘ |

(a) Lectura del marcado de p; 3 p&

(b) Cableado utilizando la célula NOR-NOR

Figura 6.8. Lectura de un lugar y esquema préactico de cableado.

Una vez definida la conexién de las células, la realizacién de las salidas es inme-
diata. La figura 6.9 presenta un ejemplo suficientemente ilustrativo. En éste sélo
hay que sefialar que si las especificaciones exigen una determinada duracién de
PULSO, se ha de afiadir un monoestable ajustado al valor deseado. Para terminar
los comentarios bdsicos sobre la realizacion, hemos de indicar que toda sefial de ini-
cializacién general, I, debe activar las células asociadas a los lugares marcados ini-
cialmente (p; en la RdP de la figura 6.9a) y debe desactivar las memorias asociadas
a los lugares no marcados inicialmente. (Nota. La desactivacion inicial no ha sido
cableada en la figura 6.9b.)

6.2.3 Cuestiones adicionales de indole practica

6.2.3.1 Realizacion cuando el evento es un flanco

En este caso, el método de realizacién expuesto no puede aplicarse directamente da-
do que éste es valido sdlo con sefiales de nivel. Una solucién indirecta consiste en
modificar previamente la descripcidn del sistema que se desea realizar aplicando las
reglas 3 o 4 de transformacion de eventos (§2.3.3, figuras 2.15 y 2.16). Eliminados
los eventos de tipo flanco de subida o bajada, la realizacién puede llevarse a cabo
utilizando el método expuesto a lo largo del apartado 6.2.2.
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En 6.4.5 se volver4 sobre la realizacién cuando el evento es un flanco, pero utili-
zando biestables sincronos.

c¢/* PULSO

(@)
VA
T lf ; C : PULSO
a —_-CU ?
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§ L
:
®) 5 .

Figura 6.9. RdP y esquema de su realizacion por transferencia impulsional utilizando la célula

NAND-NAND. (Nota. PULSO es una accidén impulsional asociado al disparo de la
transicion que etiqueta.)

6.2.3.2 Realizacidn de una temporizacion

La figura 6.10 presenta un esquema. El tinico punto que merece la pena considerar
en éste es el retraso Ag (realizable con puertas en serie). En efecto, el retraso Ao debe
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impedir el disparo de la transicion de salida de A al activarse la célula y no haberse

disparado aun el monoestable. Para Ag se puede tomar como valor 6 (figura 6.10b)
o ligeramente superior.
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Figura 6.10. Temporizacién. (Nota. El pulso U dura § unidades de tiempo.)

6.2.4 Andlisis del comportamiento dindmico de los circuitos légicos diseiiados y
estudio de fenomenos aleatorios

Los circuitos disefiados hasta ahora tienen un comportamiento l6gico adecuado si
se supone que todas las puertas pueden conmutar su estado instantdneamente.
Ahora bien, ninguna realizacion fisica de las puertas 16gicas exhibe un comporta-
miento dindmico idéntico al de la puerta considerada como elemento ideal. En efec-
to, siempre existen retrasos en la conmutacion del estado de la variable de salida con
respecto al instante en que conmutaron las entradas. La figura 6.11 ilustra la obser-
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Figura 6.11. Todo dispositivo fisico presenta retrasos a la conmutacién.
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vacién anterior en un caso elemental: la puerta es un inversor. Con los subindices
sy b afiadidos a la denominacién de la puerta, I, se definen los retrasos a la subida
y a la bajada de la variable de salida. La presencia generalizada de estos retrasos
constituye la principal limitacidn del digebra de BooOLE en el andlisis y sintesis de sis-
temas ldgicos.

El objetivo de este apartado es el de estudiar en que medida los retrasos en la con-
mutacién de las puertas afectan al buen comportamiento de la realizacién de una
RdP por transferencia impulsional.

Metodolégicamente, procederemos, en primer lugar, estableciendo condiciones
que garanticen que la simulacién del disparo de una transicion cumpla los tres pun-
tos siguientes:

1) La activacién de los lugares de salida.

2) La desactivacién de los lugares de entrada.

3) La continuidad de una eventual salida asociada a dos lugares, uno de entrada
y otro de salida de la transicién.

Una vez considerados estos tres puntos, se impondrén ciertas restricciones sobre
la duracién minima de los eventos y el solape mdximo entre dos eventos complemen-
tarios, e y &. Por ultimo, se comentard brevemente el problema de los conflictos.

6.2.4.1 Estudio de la simulacion del disparo de una transicion

La figura 6.12b presenta un circuito 16gico que realiza una transicién con un lugar
de entrada y otro de salida (figura 6.12a). El cronograma detalla la evolucion provo-
cada por la transicién de e desde 0 a 1 (graficamente se ha considerado que
As = B; = Ty = Ty = Dy). En éste se ha supuesto que e no vuelve a cero hasta que,
por lo menos, no se haya terminado de realizar la evolucion. Esta hipotesis simplifi-
cadora la matendremos a lo largo de todo este apartado. Como se ha anunciado,
con posterioridad (§6.2.4.2) se calculard una duracién minima de e a 1 para que el
disparo de una transicién sea simulado correctamente.

A continuacién establecemos con precision las tres condiciones que, en gene-
ral, permitirdan afirmar si se ha simulado de forma adecuada el disparo de la
transicién:

1) La activacion de la célula 2 estard asegurada siempre que la duracion del pulso
6 sea superior al tiempo necesario para que la segunda entrada de la puerta D
se anule. Con ello se garantiza que Q> permanecerd a 1. Algebraicamente se
puede escribir que si As + By + Ts > D + Cp, se activara la célula 2.

2) Ladesactivacion de la célula 1 estara garantizada siempre. En efecto, la bajada
de Qi, es la que provoca la subida de 6, por lo cual se tendrad que, al menos
una entrada de la puerta A estard a cero.

3) La continuidad de la salida S se cumple siempre que la activacion de la salida
de la célula 2 preceda a la desactivacion de la salida de la célula 1. Algebraica-
mente, si Ds < A5 + Bsp, se garantiza la continuidad de S.

Si, como es de esperar, el circuito se realiza utilizando componentes de una unica
tecnologia y dado que las puertas que realizan las células y sus conexiones son del
mismo tipo, se puede afirmar que aproximadamente As; = Bs= Cs=Ds = T =
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Figura 6.12. Realizacién y cronograma del disparo de una transicién. (Nota. Subindices:
s, subida; b, bajada.)

y Ap = By = Cp = Dy = Tp = €. Simplificando las condiciones algebraicas anteriores
se puede concluir que:

—Ila célula 2 se activa, dado que 6 > 0;
—Ila salida S se genera con continuidad, dado que € > 0.

En resumen, la transicion se simula correctamente. Si una transicion ¢ posee va-
rios lugares de entrada y varios lugares de salida (7 = { pi}, " = {pj}), las células
asociadas a éstos se desactivardn y activaran en paralelo. El disparo de la transicién
t duraré 6 = min; (As; + Bp;) + Ts y se realizard correctamente si se cumple que el
pulso 6 dura més que:
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1) la activacidén de la célula mds lenta entre las asociadas a ¢':

8¢ > max (Ds; + Cp));
J

2) la desactivacion de la célula mds lenta entre las asociadas a '#:

& > mg’tx (As; + Bp).

De acuerdo con las condiciones anteriores, normalmente se puede admitir el co-
rrecto desarrollo de la simulacion del disparo de la transicion ¢. Para «garantizarlay»
basta con incrementar 6. Esto se puede hacer introduciendo un retraso en la salida
(entre Q1 y la puerta 7) o en la realimentacién desde Q; a la puerta 4.

Nota. La célula denominada CUSA posee incorporados unos retrasos sobre la salida que
permiten eliminar las aleatoriedades sobre la desactivacién y activacién de células y sobre la
continuidad de las salidas [DAVI 80].

La utilizacién de un conexionado que conduzca a un funcionamiento por
llamada-respuesta (§6.3) permite, por principio, garantizar la activacién de las célu-
las asociadas a los lugares de salida de la transicion; la desactivacién de todas las
células asociadas a los lugares de entrada de la transicién no puede ser garantizada
«a priori», salvo bajo ciertas condiciones (normalmente verificadas) que seran
presentadas.

Observacion muy importante. El solapamiento entre Q1 y O; es interesante cuando las ac-
ciones asociadas a los lugares son niveles; es decir, lo importante es su continuidad en la gene-
racién. Si por el contrario, como suele ocurrir en los sistemas digitales de los computadores
y su periferia, interesa considerar las acciones como asociadas a las activaciones de los luga-
res, es importante que no exista el solapamiento en la accién generada. Una solucién 16gica
inmediata a este problema consiste en inhibir la accién asociada a un lugar con la condicién
de disparo de la transicién que marca el siguiente lugar al que se le asocia la misma accién.
As, en la figura 6.12b podriamos tener S = Q1C% + Q, en vez de S = Q1 + Qa.

LYl
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Figura 6.13. Realizacién de una transicién utilizando una célula con desactivacién priori-
taria.

Erercicio. La figura 6.13 presenta otra realizacién l6gicamente correcta del esquema de
la figura 6.124. En ésta se utilizan biestables rR-s conexionados de forma que el comporta-
miento que exhiben es de desactivacién prioritaria. Compruébese que:
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1) Si Bs; + Ts > Cs + Dy, se activard la célula 2.
2) Si Ts > Ab, se desactivara la célula 1.
3) No existe continuidad en la salida S (aleatoriedad en la salida).

Aceptando como validos los resultados enunciados en el ejercicio anterior, se ob-
servard que el cableado de la figura 6.13 puede llegar a exhibir funcionamientos
aleatorios del tipo no activar la célula 2 y, si se tiene € > 6, también del tipo no de-
sactivar la célula 1. En cualquier caso, no se asegura la continuidad de la salida S.
Estas son las razones de tipo tecnoldgico que, como se anuncio en §6.2.2, nos incli-
nan a preferir el conexionado que establece un comportamiento de activacién priori-
taria para los biestables r-s generalizados que definen la célula.

La técnica utilizada para analizar la simulacion del disparo de una transicion se
puede emplear con otras realizaciones de la célula. No obstante, se puede afirmar
que el andlisis del comportamiento de los circuitos que utilizan células realizadas con
dos puertas NOR arrojara resultados idénticos a los encontrados, puesto que serdn
circuitos isomorfos a los considerados (figura 6.7).

6.2.4.2 Condiciones complementarias para una buena simulacion

Volvamos sobre el analisis del circuito 16gico de la figura 6.12b. En este apartado
vamos a considerar, como cuestiones complementarias, la duracién minima de e a
1, las aleatoriedades esenciales y los conflictos. El ejercicio 6.7 presenta una condi-
cién adicional.

a) Duracion minima de e a 1

Hasta ahora se ha venido considerando que la duracién de e a 1 era suficientemen-
te grande. Una cuestion que surge inmediatamente es determinar la minima dura-
cion de e a 1 que permite una correcta simulacion del disparo de la transicién. Para
responderla basta con observar que (figura 6.12) la minima duracién de 6 a 0 que
provoca:

—Ila activacion de la célula 2 es: Ds + Cp;
—1la desactivacion de la célula 1 es: A + Bp.

Por consiguiente, la mfnima duracién del pulso 6 a 0 tiene que ser:
' max (Ds + Coy As + Bp) = 6 + €.

Por otro lado, la duracién de 0 a 0 se puede expresar en funcidn de la duracién
deeal, E:

E-Ty+Ts=E—¢€+0.

En conclusién, la condicién buscada estd dada por E— €+ 6> 6 + e = E > 2¢;
es decir, e debe permanecer a 1 como minimo dos veces el retraso de la conmutacidn
a 0 de una puerta. Evidentemente, desde un punto de vista prictico, conviene consi-
derar un valor mayor para compensar las posibles fluctuaciones en los valores de
los 6 y los e.
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b) Aleatoriedades esencialest

Existe una aleatoriedad esencial en una descripcion realizada con una RdP marcada
receptiva a e, cuando difieren los marcados obtenidos al realizar uno o tres cambios
consecutivos en el estado de e (véase la figura 6.14). Una aleatoriedad esencial existe
debido a las especificaciones del sistema que se desea realizar. Es decir, la existencia
de aleatoriedades esenciales es independiente de la técnica de realizacion que se vaya
a emplear. Si existe tal aleatoriedad al realizar una RdP, el origen tecnoldgico de
los funcionamientos andmalos que pueden sobrevenir, de acuerdo con la técnica de
realizacién considerada (§6.2.2), es el solapamiento entre e y e. En efecto, suponga-
mos que a partir del marcado de la figura 6.14 se tiene fisicamente e¢ = 1 durante
un lapso de tiempo significativo; en esas condiciones se producird una errénea simu-
lacién del comportamiento de la RAP dado que se llegard a marcar el lugar k.

o

Figura 6.14. Aleatoriedad esencial.

La cuestién que se plantea ahora es saber si, considerando que el solape mdximo
entre e y e viene dado por I (figura 6.11), la técnica de realizacién de RdP binarias
que se ha propuesto conduce a circuitos que pueden exhibir funcionamientos ané-
malos. La respuesta al problema es inmediata. El retraso a la activacion de Q, (figu-
ra 6.12) es Tp + Ds. Como se puede admitir 7p = I, entonces 7y + Ds > I y, en
conclusion, el solapamiento admitido entre e y € no provocard una simulacion
incorrecta.

¢) Conflictos

Considérese el caso en que dos transiciones estdn en conflicto efectivo (¢1 y 2 en la
figura 1.21; IT; y I'l2 en la figura 4.6) (Definicidn 4.10). Si X7 y X, son dos eventos
asociados a #; y #; respectivamente (figura 1.21), el conflicto se resuelve lIdgicamente
haciendo que X1 y X3 se excluyan mutuamente. Ahora bien, si por razones tecnold-
gicas existieran solapamientos entre X; y X» cuando el lugar estuviese marcado, se
produciria un funcionamiento anémalo. En efecto, las células asociadas a los luga-
res de salida de #; y £, resultarian activadas simultdneamente y, por tanto, se viola-
rian las reglas de evolucion de las RdP.

El problema planteado anteriormente no tiene una solucion puramente ldgica. No
obstante, puesto que los automatismos industriales evolucionan muy lentamente

T Las aleatoriedades esenciales generan una de las principales clases de problemas que plantea la sintesis
de méquinas secuenciales por métodos cldsicos [HILL 78] [UNGE 69]. Como se verd en este apartado,
estas aleatoriedades no plantean mayor problema con las técnicas de realizacidn presentadas.
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con respecto a la dindmica del circuito 16gico (segundos frente a nanosegundos si
en la realizacién se emplea tecnologia TTL), su influencia es muy escasa en aquéllos.

En los sistemas de muy alta velocidad de trabajo (fundamentalmente de tipo infor-
matico) su consideracion debe ser imperativa. En este caso, los conflictos se resuelven
(tratan de resolver) con unos dispositivos especiales denominados drbitros. (Véase
[PLUM 73].) Un drbitro es un dispositivo disefiado especificamente para la resolucion
de conflictos tal que sus decisiones deben estar exentas de aleatoriedades. La principal
aplicacion de los arbitros se encuentra en los sistemas informaticos, en los que hay
que resolver conflictos cuando varios usuarios pueden acceder a un mismo recurso.

6.3 REALIZACION ASINCRONA (II): FUNCIONAMIENTO POR
LLAMADA-RESPUESTA

En este apartado presentamos otro tipo de realizacién de RdP que emplea la misma
célula anterior (§6.2.1) pero utilizando una técnica de conexionado diferente lo que
le confiere al circuito un modo de funcionamiento distinto.

La utilizacién de técnicas de conexionado entre células que conduzcan a un funcio-
namiento por /lamada/respuesta tienen una gran aceptacion industrial. A continuacion
(§6.3.1) presentamos el principio en que se basa dicho funcionamiento, asi como esque-
mas bdsicos de cableado que permiten un tipo de realizacién simplificada. Por dltimo
(86.3.2), se presenta una limitacion del método simplificado de cableado y una con-
dicién que, si es cumplida por la RdP, permite utilizarlo sin dificultad.

6.3.1 Conceptos basicos

Desde un punto de vista conceptual, el funcionamiento por llamada-respuesta es tal
que el disparo de una transicion se realiza en dos fases perfectamente definidas:

1) La llamada, en la que se activan los lugares de salida de la transicion disparada.
2) La respuesta, en la que la activacién de los lugares de salida de la transicion
disparada posibilita la desactivacion de los lugares de entrada de la misma.

e L— . L
Ci Ci
103 Q2
O O
(a) Funcionamientc por llamada-respues- (b) Funcionamiento por transferencia im-
ta (ciclo cerrado Ca1 = Qa1 = Qil = Cal) pulsional (figura 6.12) (Q:1 no se garan-

tiza por el principio de funcionamiento)

Figura 6.15. Comparacién de las relaciones causa-efecto en la simulacion del disparo de
una transicion.
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El funcionamiento por llamada-respuesta establece un ciclo cerrado de relaciones
causa-efecto entre C5, Q> y Q; en el proceso de simulacién del disparo de una transi-
cién. La figura 6.15 compara conceptualmente el funcionamiento por llamada-
respuesta con el que se obtiene por transferencia impulsional. En este tiltimo modo
de funcionamiento, la activacion de Q, se realiza, o no, independientemente del ci-
clo cerrado de relaciones causales establecido entre C2 y Q;.

En el funcionamiento por llamada-respuesta, la condicién de activacién de una
célula sigue siendo la unién de las condiciones que simulan el disparo de las transi-
ciones de entrada del lugar que representa (//amadas). Utilizando la nomenclatura
de la figura 6.6, la condicién general de desactivacion de una célula (respuesta) se
expresa de la forma siguiente:

Ch = 3 Ch, donde Ch = (IﬁI Qkﬁ) ; (Ajkrp[ QJ-,,>.

Esto quiere decir que el lugar p; se desactiva merced al disparo de la transicion
etiquetada con Aj (condicién C%) si:

1) todas las células asociadas a los lugares de salida de la transicidn etiquetada
con Ajx estan activadas;
2) la transicién etiquetada con Aj es la disparada.

A primera vista, la segunda condicién puede parecer redundante, por lo cual pos-
teriormente justificaremos, de forma intuitiva, su necesidad (§6.3.2). Desde un pun-
to de vista préctico se suele utilizar la condicién de desactivacion simplificada si-
guiente (s6lo la condicién 1 anterior):

Ch=2] TI Oxs.
i

Si el marcado de los lugares se mantiene durante lapsos de tiempo significativa-
mente superiores a los de la simulacion del disparo de una transiciéon, con la condi-
cién simplificada de desactivacion se puede garantizar la desactivacion de todos los
lugares de entrada de la transicion disparada (la respuesta simplificada es un nivel).
(Compriebese.) Sin embargo, la condicién completa de desactivacion permanecera
a «1» solo hasta que se desactive una célula de las asociadas a los lugares de entrada
de la transicién disparada (la respuesta es s6lo un pulso). En este caso no se puede
garantizar mds que la desactivacién de un lugar y no la de todos.

La principal ventaja de que el disparo de una transicién se simule por llamada-
respuesta reside en que si e (figura 6.124) se mantiene a «1» durante un tiempo sufi-
ciente, la activacién del (de los) lugar(es) de salida de la transicién y la continuidad
de la(s) salida(s) estdn garantizadas. Ademds, si la sefial de respuesta representa la
condicién simplificada de desactivacion y si los lugares permanecen marcados du-
rante lapsos de tiempo importantes frente a la duraciéon del disparo de una transi-
cién, la desactivacion de todos los lugares de entrada de la transicidn estard también
garantizada.

La figura 6.16 presenta esquemas de cableado bésicos en los que se ha empleado
la condicién de desactivacion simplificada. Como puede comprenderse facilmente,
la realizacion de la lectura de un lugar (figura 6.8a) sélo puede efectuarse de acuerdo
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con un esquema como el de la figura 6.16b puesto que de lo contrario, si se cablea-
ran las condiciones de activacidn y de desactivacion de la célula 3 debidas a ¢ (figura
6.8a), la actividad de la propia célula 3 terminarfa desactivdndola.

i — J1 —
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g W —§

(a) Realizaci6n de los nudos Y e O (figura 6.7a) utilizando la
célula NOR-NOR.
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(b) Realizacién de la lectura del marcado de ps (figura 6.8a)
utilizando la célula NOR-NOR.'

Figura 6.16. Conexionado por llamada/respuesta que utiliza la condicién de desactivacion
simplificada.

Esercicio. ;Qué ocurriria al realizar por llamada-respuesta la red de la figura 6.17 si se
utilizara un biestable con desactivacién prioritaria? ;Y si el biestable es de activacion priorita-
ria (célula)?

Ejercicio. La realizacién por llamada-respuesta necesita mas puertas légicas que la realizacion
por transferencia-impulsional siempre que se utilicen las células realizadas s6lo con puertas NOR
0 NAND. ;Por qué? ;Es valido el resultado anterior para cualquier tipo de realizacién de la célula?
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Ay

AjAp=0

Figura 6.17. Ciclo de longitud 2.

6.3.2 Limitacién del funcionamiento por llamada-respuesta cuando se utiliza la
condicién de desactivacion simplificada

Considérese la RdP de la figura 6.18. Si se dispara la transicidn etiquetada b, se mar-
card ps y, por lo tanto, de acuerdo con las reglas simplificadas del funcionamiento
por llamada-respuesta, se debe desactivar p», lo cual,es incorrecto. En conclusidn,
la condicion simplificada de respuesta (desactivacion) no se puede utilizar con cual-
quier red marcada viva y binaria. Obsérvese que utilizando la condicidn de desacti-
vacién C} = Yk Ajx ITs Qs (notacion de la figura 6.6) no se resuelve tampoco el
problema, como se demuestra si tomamos a = b en la figura 6.18. El origen del pro-
blema planteado estd claro: la condicién simplificada de respuesta desactiva indis-
criminadamente a todas las células asociadas a los lugares de entrada de las transi-

Figura 6.18. RdP conforme que no puede ser realizada por llamada-respuesta utilizando la
condicién simplificada de desactivacién.
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ciones de entrada de p4 (transiciones etiquetadas a y b). A la condicidn simplificada
de respuesta le falta informacion para definir exclusivamente la transicion disparada
y desactivar (responder) s6lo las células asociadas a los lugares de entrada de la men-
cionada transicién. Precisamente ésta es la informacién que, al definir la condicion
simplificada, se elimind de la definicién de la condicidn general de desactivacién
(§6.3.1).

La utilizacién de la condicién simplificada no es posible en aquellas RdP en las
que se pueda encontrar un marcado tal que e/ conjunto de lugares de salida de una
transicidn esté marcado simultdneamente con alguno de sus lugares de entradat. A
partir de este enunciado, y empleando el concepto de componente conservativa
(84.7.2), se puede formular una condicidon que no necesita del calculo de los marca-
dos de la red:

Todo lugar p; que pertenezca a una componente conservativa monomarca-
da (de la forma >; M(p;) = 1) puede ser realizado utilizando la condicién
simplificada de desactivacion.

En efecto, su demostracion es trivial: toda componente conservativa en la que
aparezca un lugar que pueda estar marcado simultdneamente con todos los lugares
de salida de una de sus transiciones de salida, es forzosamente de la forma
2iM(p)) = 2, de donde el resultado enunciado.

En la RdP de la figura 6.18 se tiene: M(p2) + M(p3) + M(ps) + M(ps) +
+ M(p7) = 2, luego es posible que se pueda producir una simulacién errénea de la
evolucién del marcado de uno de esos lugares (ésta se produce para p,).

La aplicacién de la condicidn sobre componentes conservativas permite concluir
afirmativamente sobre la utilizacién de la condicion simplificada en la gran mayoria
de las redes marcadas binarias de este texto (dado que éstas pueden ser, normalmen-
te, descompuestas en un conjunto de grafos de estado monomarcados).

Observaciones:

1) Enlared de la figura 6.18, p, es implicito. Su supresion elimina el problema considera-
do.

2) Sialared de la misma figura se le afiade un lugar implicito, ps, definido entre las transi-
cionesaye (po = {a}, p'o = [e}) y desmarcado inicialmente, jla RdP obtenida (la red
de la figura 3.5) es realizable correctamente utilizando la condicién de desactivacién
simplificada!

6.3.3 A modo de resumen

La simulacién de RdP binarias basada en un funcionamiento por llamada-respuesta
emplea la célula con activacion prioritaria (§6.2.1). Ademds, utiliza la misma condi-
cién de activacién que el conexionado que conduce a un funcionamiento por trans-
ferencia impulsional. Por consiguiente, las dos cuestiones adicionales de indole
préctica (§6.2.3) asi como las condiciones complementarias para una buena simula-
cién (§6.2.4.2), tienen total vigencia. De la misma forma, toda sefial de inicializa-

+ Afortunadamente, en la préctica esta condicion no se verifica casi nunca, lo cual permite comprender
en parte la amplia difusién de las técnicas simplificadas de llamada-respuesta en dmbito industrial.
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cién general debe activar las células asociadas a los lugares marcados inicialmente
y debe desactivar las células asociadas a los restantes lugares. Las diferencias entre
los conexionados que conducen a un funcionamiento por transferencia impulsional
o por llamada-respuesta estriba en la condicién de desactivacién que se emplee. El
segundo método conduce a una simulacién mds «robusta» (puesto que se establece
un ciclo cerrado de relaciones causa-efecto entre las sefiales que intervienen en la si-
mulacién del disparo transicién) pero mds lenta y en la que el solapamiento entre
Q2 y Q1 es mds importante (véase el ejercicio 6.6).

A partir de la condici6n general de desactivacién, se ha introducido una condicién
simplificada y se han caracterizado RdP binarias en las que se puede utilizar sin difi-
cultad. En este sentido, es importante sefialar que la generalizacion a RdP no bina-
rias del conexionado que conduce a un funcionamiento por llamada-respuesta es
muy complicada (dado que debe detectarse el incremento de valor de todos los con-
tadores asociados a los lugares de salida de la transicién disparada). Por ultimo, si
se puede utilizar la condicion de desactivacién simplificada y si el marcado de los
lugares dura bastante mds que la simulacién del disparo de una transicién, la simula-
cién serd correcta.

6.4 REALIZACION SINCRONA

Las técnicas que se presentan en este apartado utilizan los principios bésicos enun-
ciados anteriormente:

1) Realizacion modular. La célula tendrd la misma definicién funcional basica (R-
s generalizado con activacion prioritaria).

2) Conexionado de células de acuerdo con los métodos de transferencia impulsio-
nal o de llamada-respuesta.

A modo de observacidn preliminar, conviene destacar que como concepto, las
RdP estén orientadas hacia la construccién de modelos asincronost, aunque eviden-
temente se puede asociar una interpretacidn sincrona a su evolucion.

Las técnicas utilizables para el conexionado de células pueden ser las presentadas
anteriormente en los apartados 6.2 y 6.3: transferencia impulsional y llamada-
respuesta. No obstante, hay que sefialar que el conexionado que conduce a un fun-
cionamiento por llamada-respuesta no tiene interés puesto que no aporta nada a la
eliminacion de aleatoriedades; ademads, durante todo un periodo de reloj habr4 sola-
pamiento en la actividad de las células asociadas a los lugares de entrada y de salida
de una transicién disparada.

El disefio de células sincronas (en definitiva biestables sincronos) se va a realizar
a partir de biestables sincronos que se encuentran disponibles en el mercado. Es de-
cir, el disefio se reducird al problema clésico de la transformacién de un biestable
dado en un biestable de otro tipo, y consiste en determinar la logica de transforma-
cion (figura 6.19).

T En su acepcion comportamental, de evolucién no controlada.
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Figura 6.19. Modelo para la transformacién de un biestable sincrono en otro.

Representacién grafica Tabla de estados Ecuacién caracteristica
(resumida)
Ck J K|t Q* = QJK + 0JK +
+ QJK + 1JK =
J Q 0 0| Q =QJ+ QK
01 0
1 1| 0
K Q 1 0 1
Ck
D | Q* Q*=0D+1D=
Q =D
D 0|0
[0) 1|1
Ck
Q T | Q" Q* =QT+ QT
T 0| Q
110
Q

Tabla 6.1 Definicion y representacion de los biestables J-K, Dy T. (Notas. (1) Qy QF re-
presentan el estado interno actual y en el siguiente periodo, respectivamente;
(2) el preset y el clear no se han considerado.)
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En la tabla 6.1 se definen los biestables sincronos 1-k, p y T. En la misma se indica

el calculo de la ecuacion caracteristica de cada biestable a partir de su tabla de esta-
dos resumida.

Esercicio. Compruébese que los biestables D y T pueden obtenerse a partir del biestable

1K haciendo J= K =D y J = K = T, respectivamente.

Ck l Ck

o ) D7 o}
o lcn,lDK ol

(@) )

(Ca)) '

[CD_/, :

ICk

[CAII : }:D
[CD_,] H D-J- ) 0

(©)
le Icrc

(CAI]

o ol—

(Ca)) H
DT [cu,la‘ T
(o) er— or—
@) (e)

Figura 6.2v. Diversas realizaciones de la célula sincrona con (casos a, ¢ y d) y sin (casos b
y e) activacidn prioritaria.
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6.4.1 Sintesis utilizando el biestable 1-x

Esta se puede realizar de forma inmediata, dado que el biestable 1-k tiene un com-
portamiento idéntico al del biestable r-s (§6.2.1) salvo para J= K = 1. Por consi-
guiente, basta con hacer (figura 6.20a):

J=CAyK=CACD.

Si C4Cp = 0 (C4 y Cpnunca se verifican simultdneamente), K = C4Cp + C4Cp =
= Cp (figura 6.20b). Es decir, si no se presentan simultineamente la activacién y
la desactivacion, es innecesaria la condicidén sobre la activacién prioritaria.

Desde un punto de vista préctico, si C4Cp = 0, se pueden utilizar como mdédulos
(célula + ldgica de elaboracion de las condiciones de activacion) las denominaciones
74H71 (3-K maestro/esclavo con preset) y 714101 (3-x disparable por flanco negativo
con presef). En ambos casos se tiene Ca=J=JuJiz+ J1Jo2 y Cp=K=
= K11 K12 + K21K>.

6.4.2 Sintesis utilizando el biestable D

La ecuacién caracteristica del biestable R-s con activacidn prioritaria es
0% =8+ RQ. Igualando ésta con la del biestable D se determina inmediatamente:
D = S + RQ. Sustituyendo S por C4y R por Cp se obtiene la célula: D = C4 + CpQ
(la figura 6.20c ilustra una realizacion).

Esercicio. Compruébese que la célula obtenida no se puede simplificar mds, aunque no
se exija la activacion prioritaria (por cumplirse C4Cp = 0).

La tinica posibilidad de simplificar la célula se da cuando CpQ = 0. En este caso,
la elaboracién de D se simplifica enormemente: D = C4. {En qué condiciones se tie-
ne CpQ = 0y, por lo tanto, se puede simplificar la realizacion? Dado que partimos
del estado de activacidon de la célula, Q =1, la tnica solucién posible es que
Cp = 0= Cp = 2,;Cp, = 1; es decir, cuando al estar activa la célula, la unién de las
condiciones de désactivacion sea cierta. Por consiguiente, cada activacién de la célu-
la durard un unico ciclo de reloj.

Esta simplificacion, que en un principio parece tener poco interés préctico, en rea-
lidad si lo tiene. En particular, es muy importante detectar el caso en que p, lugar
que se realiza, es el Unico lugar de entrada de sus transiciones de salida (p" = {#]}
y Vk ‘tx = {p}). En este caso Cp = Q2 Ax = 2 Ax = 1 (Q = 1 habida cuenta que
la célula estaba activa); es decir, basta con que la unién de los eventos (condiciones)
asociados a sus transiciones de salida sea cierta. Considerando la RdP de la figura
5.11, los lugares p2(X + X = 1), p3(Y + Y = 1) y ps (ausencia de evento asociado a
su transicion de salida) cumplen la condicion enunciada, por lo que su realizacién
no necesita mas que células simplificadas: s6lo biestables de tipo D mds la légica de
elaboracién de las condiciones de activacion.

A modo de comentario final, queremos insistir sobre la importancia de la simplifi-
cacién expuesta cuya utilidad cubre un amplisimo espectro de aplicaciones (secuen-
ciadores de computadores, etc.).

Esercicio. Realicese la RdAP de la figura 5.11.
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6.4.3 Sintesis utilizando el biestable T

Para obtener una realizacién econémica de la célula, hay que emplear un razona-
miento ligeramente mads sutil que los anteriores. La entrada del biestable T debe valer
1 sélo cuando se conmute el estado de la célula. La tabla de KARNAUGH siguiente
(tabla 6.2) define 7 en funcién de C4, Cp y Q, considerando exclusivamente un co-
nexionado que conduzca a un funcionamiento por transferencia impulsional.

CsCp a) T (J,1,0) =@, porque no se puede tener
T 00 01 11 10 Cp = 1 si la célula estd desactivada, Q = 0.

b) T (1,0,1) = @, porque la RdP es binaria.

c¢) T(1,0,0) =1, es la activacién de la célula.

d) T(0,1,1) =1, es la desactivacion de la célula.

—
o
-
(=)

Q-

Tabla 6.2. Definicién de T(C4, Cp, Q).

Considerando la anterior tabla se tiene: T = C4@® Cp (figura 6.20d). Si
C4Cp =0, no ha lugar considerar la activacién prioritaria. En este caso se puede
utilizar el término C4Cp para simplificar la realizaciéon de T: T" = (C4 @ Cp) +
+ C4Cp = C4 + Cp (figura 6.20e).

6.4.4 A modo de resumen

Una rdpida observacion de la figura 6.20 pone de manifiesto que la realizacion de
la célula con biestables sincronos es mas simple si no se impone la activacién priori-
tariat. La ausencia de ésta exigencia supone que C4Cp = 0 ( C4 y Cp nunca se verifi-
can simultdneamente), lo cual se cumple para sistemas sincronos si:

1) Sélo se emplea el conexionado de células que conduce al funcionamiento por
transferencia impulsional. Con ello se impide el intentar <esmarcar un lugar
no marcado; es decir, QCp = 0 en los instantes definidos por el reloj.

2) La RdP marcada y sin interpretacién (la red como grafo) es binaria. En efecto,
la condicién (1) impide tener QC4Cp = 1. Por otro lado, si la RdP marcada
es binaria, no se puede tener QC4Cp = 1 porque al disparar la transicion de
entrada antes que la de salida se tendrian dos marcas en un lugar, lo que va
contra la hipotesis de binariedad.

Para evitar aleatoriedades si las variables de entrada no estdn naturalmente sin-
cronizadas con el reloj, se debe proceder a su sincronizacién. En su forma mds sim-
ple, ésta se puede hacer enviando al circuito la salida de un biestable b alimentado
por la variable externa. En [HILL 78] se estudia en detalle un sincronizador mds
elaborado.

T Recuérdese (§6.2.1) que en funcién de la definicion de las variables de entrada y de salida, una misma

célula asincrona puede exhibir un comportamiento de activacion prioritaria o de desactivacién priori-
taria.
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6.4.5 Realizacién asincrona cuando el evento es un flanco

En este apartado se sugiere una solucion alternativa a la considerada en §6.2.3.1,
que se basa en el empleo de un biestable sincrono activable por flancos. Las ideas
fundamentales son:

1) La variable o funcidén que define el flanco entra a la célula como reloj.

2) El biestable debe memorizar la condicién de activacion, eliminada la variable
o funcion que define el flanco.

3) La desactivacion de la célula se realizard a través del borrado (clear) del biesta-
ble utilizando la condicion simplificada que conduce a un funcionamiento por
llamada-respuesta.

Eyempro. Sien la figura 6.12¢ sustituimos e por ath y se emplea un biestable 5-x disparable
por flanco de subida, tendremos:

Ck = a; J = Q1b; K =0; clear = Q3

Esercicio. Compruébese que si utilizamos un biestable p, se deberd tener D = Q1b + O,
Ck = a, clear = Qs.

6.5 CUESTIONES ADICIONALES SOBRE REALIZACION CABLEADA

6.5.1 Las acciones (salidas)

Desde un punto de vista industrial, interesa disponer de una célula (mddulo) que
permita la f4cil integracion de ciertas seguridades funcionales o/y de los modos de
marcha del sistema. De este modo han sido propuestas, por ejemplo, las células de
accion [TELE 77]. Una célula de accidn facilita el control de los accionadores ofre-
ciendo una logica disefiada especificamente (figura 6.21).

Salidas
Funcionales

Inhibicién
control automét.
Marcha manual

Inhibiciones . ¥ \ Hacia el control
del pcciohador

y )
Seguridades _—

Figura 6.21. Célula de accién

6.5.2 Interés de la simplificacion de la descripcién

La simplificaciéon de una RdP fué abordada en el capitulo 3. A continuacién vamos
a presentar brevemente algunas de las consideraciones, que, después de haber de-
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cidido proceder a una realizacion cableada, se deben tener en cuenta al simplificar
una RdP.

a) (Merece la pena simplificar el lugar implicito, p;, de la figura 6.22? Obsér-
vese que en la RAP simplificada, para realizar la salida S; hace falta la unién légica
de m sefiales y, por lo tanto, como minimo otras tantas conexiones. Es decir, la
eliminacién del lugar implicito puede conducir a una realizacién cableada mds
compleja.

b) La obtencion de transiciones fuente puede conducir a eventos del tipo de cam-
bio de estado (flanco de subida o de bajada et o el), lo cual suele complicar la reali-
zacion final.

¢) Los circuitos combinatorios que generan las salidas tienen que estar disefiados
de forma que no presenten aleatoriedades. Puede suceder que la consideracion de
simplificaciones del tipo fusion de lugares, llegue a no ser interesante en ciertos
casos.

D Si
P2 Si
Pm Si

Figura 6.22. Lugar implicito: interés de su eliminacidn si la realizacién es cableada-modular.

En conclusién, volvemos sobre la idea de base expresada en el capitulo dedicado
ala simplificacién. Dada la ausencia de criterios bien definidos, en cada caso el dise-
fiador debe evaluar la conveniencia de simplificar o no, una descripcién. En cual-
quier caso, es fundamental que, para tomar las decisiones pertinentes durante el
proceso de simplificacién, se tenga muy presente el método de realizacién que se va
a emplear.

Para evitar que se concluya demasiado rdpida o drasticamente sobre la relativa
inutilidad de la simplificacién de cara a una realizacién, reconsideremos una vez
mds el ejemplo de los dos carros que van y vienen (figuras 1.9 y 1.15a). Si el lector
trabajo el ejercicio 3.2, observaria que la RdP de la figura 1.154 (8 lugares y 6 transi-
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(a) RdP
(b) Realizacion

Figura 6.23. Descripcion simplificada y realizacién del sistema de dos carros que van
y vienen.

ciones) se podria reducir a un GR con 2 lugares y dos transiciones (figura 6.23a).
La realizacion modular de la red de la figura 1.154 necesita 8 células y 6 puertas ex-
ternas. La realizacién modular de la red de la figura 6.23a necesita 2 células y 6 puer-
tas externas. (Compruébese.) Por otro lado, si Q1(Q-) representa la salida de la célu-
la asociada a pi(p2), dado que M(p1) + M(p2) = 1, se tendrd Q1 = 0,. Dicho de
otro modo, el sistema se puede realizar con una tnica célula (o biestable r-s) y 6
puertas 16gicas (figura 6.23b). En definitiva, con respecto a la realizacion inicial se
ahorraran 7 células y, lo que es también muy importante, 21 conexiones. (Comprué-
bese.) Por tltimo, es interesante sefialar que el circuito final se puede realizar con
solo dos integrados:

1. Un cuddruple de puertas Nor de dos entradas (S: = E;, E;,), denominacion
7402 (TTL) 0 4001 (cMOS) (0 similar).
2. @) En version sincrona: un biestable R-s 0 J-K precedido por puertas AND. (Ob-
sérvese que la sustitucidén del biestable rR-s por el 5-k es vélida puesto que
AB =0y CD = 0, lo que implica JK = (MAC) (BD) = 0.) Se pueden utili-
zar las denominaciones 7470 & 74L71 (t1L) 6 4095 (cMoOS).
b) En version asincrona: un doble AND-NOR (denominacién 74L51 o similar)
conexionado como indica la figura 6.24.

6.5.3 Realizaciones autoverificables («self-checking»)

La proteccién contra las averias en los sistemas 1dgicos se basa en el empleo de re-
dundancias. Estas pueden ser de dos tipos:

—redundancias funcionales (a nivel de la descripcion funcional),
—redundancias estructurales (a nivel de la realizacion).

Este comentario lo vamos a centrar en las tltimas. Con ¢l se pretende unicamente
dar una orientacién sobre tan importante tema.
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74L51
pesE e 1
M i
C |
|
I , 0
clear ; | .
|
|
|
|
| |
preset i
. i _ 0
| {
B |
D 1
b o s s — - ——— — — — ———— J

Figura 6.24. Mddulo asincrono con una condicién de activacién (C4 = MAC) y otra de des-

activacién (Cp = Bd). (Nota. Preset y clear permiten forzar el marcado inicial
cuando C4 = Cp =0.)

De forma intuitiva, un sistema autoverificable es un sistema capaz de detectar su
mal funcionamiento cuando éste es ocasionado por una averia perteneciente a un
conjunto predeterminado.

Para realizar un sistema autoverificable se pueden considerar dos tipos de redun-
dancias estructurales:

1) Redundancias separables, en las que la deteccidn de la falta se obtiene al afiadir
al bloque en funcionamiento normal, otro(s) bloque(s) que trabaja(n) paralelamen-
te. Las salidas (y eventualmente estados internos) son comparados posteriormente
mediante un circuito de votacién o comparacion.

2) Redundancias no separables, en las que se utiliza una codificacién redundante de
la informacién (por ejemplo, una palabra perteneciente al cddigo 1 entre n). La de-
teccién de las averias se realiza cuando la informacién no pertenece al cdigo preesta-
blecido (por ejemplo, si se obtiene una palabra perteneciente al codigo 2 entre n).

Una vez hechas estas consideraciones preliminares, vamos a presentar algunas
ideas bdsicas en la realizacién autoverificable de RdP con redundancia no separable.
Se supone que las averias que puedan sobrevenir se traducen finalmente en la apari-

cién o desaparicién intempestiva de marcas. Ello conduce a considerar la codifica-
cion del marcado.

6.5.3.1 Método de ponderacion [MARI 75]

Sea R una RdP conservativa (§4.6); es decir, existe un vector Y e N" denominado

vector de pesos tal que Y7 - M;\c = YT. My = A. El entero A4 se denomina peso activo
de la RdP marcada (R, M,).
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Se define el peso total de la RdP, m, como la suma ponderada siguiente:

s ; Y(p)) m:flx (Mi(pi)),

es decir, se pondera el peso de cada lugar por el maximo niimero de marcas que pue-
de contener a partir del marcado inicial. Si la RdP es conforme, entonces  serd sim-
plemente la suma de los pesos de todos los lugares.

A partir de los conceptos expuestos, el método de autoverificacién denominado
de ponderacién se basa en la construccion de un cédigo «A entre 7». Si en un mo-
mento determinado, el circuito de verificacidn detecta que el circuito que realiza la
RdP envia un peso activo diferente de A4, entonces genera una sefial que indica la
existencia de un fallo.

6.5.3.2 Utilizacion de cddigos de HAMMING [SIFA 78]

Se transforma una RAP marcada (R, M,) en una RdP equivalente (R’, M) afia-
diendo lugares implicitos. (R’, M) es tal que M(R’, M) conjunto de marcados su-
cesores de Mj, posee una distancia de HaMMING dada: d. En estas condiciones, es
posible detectar todos los errores de multiplicidad d — 1 y corregir todos los de mul-
tiplicidad (d — 1)/2 (resultados clésicos en la teoria de codigos detectores y correcto-
res de error). Un error de multiplicidad u corresponde a la modificacion de un mar-
cado correcto en otro incorrecto de forma que difieran en x componentes. Un error
simple (x = 1) traduce la generacién o la desapariciéon imprevisible de marcas en un
lugar de la RdP.

Tanto este método como el anterior se basan en la existencia de componentes con-
servativas en la RdP.

Por tltimo debemos plantearnos una pregunta bésica: ;jen qué medida es valido
aceptar la hipdtesis de que los fallos se traducen por la generacion o la destruccion
intempestiva de marcas? Esta es una cuestion muy dificil de responder. No obstante,
es de resaltar que la decisidn de realizar los sistemas «calcando» la descripcién fun-
cional permite dar mayor grado de verosimilitud a las hipdtesis de manifestacion de
averias establecidas (generacion y desaparicion de marcas).

6.6 CONCLUSIONES

El hilo conductor sobre el que se ha desarrollado este capitulo ha sido la obtencién
de un circuito légico isomorfo a la RAP que describe el comportamiento funcional
del sistema. Es decir, el sistema es realizado tal y como es descrito (eventualmente
utilizando una descripcién simplificada). Las motivaciones por las que se adopt6 es-
te criterio de realizacion han sido comentadas ampliamente: facil comprensibilidad,
modificabilidad, etc. Ademds en §6.5.3 se han sugerido conceptos y técnicas para
abordar realizaciones autoverificables o autocorrectoras.

A lo largo del capitulo, hemos presentado técnicas de sintesis asincrona y sincro-
na, mostrandose como los dispositivos definidos (células, etc.) podrian ser realiza-
dos con circuitos de facil adquisicién. La conexién simplificada que conduce a un
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funcionamiento por llamada/respuesta plantea problemas con ciertas redes; éstos
pueden ser eliminados utilizando la conexidn por transferencia impulsional (que si-
gue la definicién de la evolucién del marcado de las RdP) o la conexién completa
por llamada/respuesta. Esta ultima realiza el disparo de una transicién en base a
un ciclo cerrado de relaciones causa-efecto. Uno de sus mayores inconvenientes es
su dificil empleo con RdP no binarias.

La critica mayor que se puede hacer a la modularidad en la realizacién cableada
puede provenir del nimero de circuitos integrados y conexiones a realizar cuando
la RdP tiene muchos lugares (a titulo indicativo digamos que del orden de una doce-
na), puesto que el coste material crece linealmente con la complejidad de la red. Por
otro lado, la fiabilidad del equipo decrece con el aumento del nimero de circuitos
y conexiones.

Evidentemente, estas criticas tendrdn tanto mds sentido cuanto: (1) mayor sea la
serie de ejemplares que se desea realizar y (2) menores sean las expectativas de modi-
ficacién o reparacién de estos productos. En estos casos se podrian adoptar, entre
otras intermedias, dos soluciones diferentes:

1) Cambiar el nivel de integracion de los componentes légicos que se utilizardn en
la realizacién. Los préximos capitulos abordan esta opcién cada dia mas impor-
tante en la practica.

2) Mantener el nivel de integracion (pequefia escala de integracién, ss1, y elementos
de la mediana, Ms1) pero romper la modularidad para tratar de economizar puer-
tas, biestables, etc. Esta via podria desarrollarse buscando una fuerte codifica-
cién de los marcados, lo que conduciria a circuitos dificilmente comprensibles,
y modificables, etc; ademds, en las realizaciones asincronas seria extremadamen-
te complicado el garantizar la ausencia de aleatoriedades. Por otro lado, normal-
mente la fuerte codificacion del marcado conduciria a circuitos combinatorios
complejos por lo que convendria sustituirlos mas o menos directamente por me-
morias o matrices légicas programables. Es decir, se deberian utilizar macrocom-
ponentes (de gran escala de integracion, 1s1). En §7.3 y 7.5 se abordar4 la realiza-
cién de GR y RdP con memorias muertas (RoM) y/o matrices programables
(pLA). La realizacién de RdP utilizando las técnicas propias a los GR exige su
transformacion previa, lo que se abordard en §7.4.

En resumen, salvo en casos excepcionales, si la realizacién modular no conviene,
deben utilizarse componentes de un mayor nivel de integracién. Ello cambia radical-
mente las técnicas de realizacion, que culminardn con la utilizacién de computado-
res mas o menos especializados (capitulos 8 y 9).

EJERCICIOS

6.1 Obténgase un circuito asincrono que realice la RdP de la figura 6.1a (Sugerencia. Obsér-
vese que ps3 es fuente con respecto a es.)

6.2 Propdngase una realizacién asincrona de la RdP de la figura 1.15a tras cambiar M por M?t,

6.3 Compruébese, construyendo un ejemplo, que existen RdP no-simples y conformes reali-
zables por llamada-respuesta.



228 REALIZACION CABLEADA

6.4

6.5

6.6

6.7

6.8

Determinese el efecto de introducir un retraso entre Q; y la puerta T (figura 6.12a) o bien
entre Q; y la puerta A. (Sugerencia. Tracense los cronogramas correspondientes al dispa-
ro de la transicién.) '

El ejercicio anterior permite constatar que la introduccion de retrasos en los puntos espe-
cificados no introduce aleatoriedades. Compruébese que, si un circuito asincrono funcio-
na por transferencia impulsional, la insercién de retrasos, entre la puerta que simula el
disparo de la transicién y la activacién de las células asociadas a sus lugares de salida pue-
de introducir aleatoriedades sobre las salidas.

Calculese el tiempo que tarda en desarrollarse totalmente la simulacién del disparo de
una transicién (figura 6.124) si el circuito realizado funciona por llamada-respuesta.
(Cudnto tiempo estdn solapados Q: y Q,? Compérense estos valores con los obtenidos
para el circuito funcionando por transferencia impulsional (figura 6.12b).

Norta. Este resultado demuestra que las técnicas de realizacién expuestas en §6.2 y 3 ad-
miten que los pulsos lleguen a solaparse.

Supdngase que todas las variables de entrada de un circuito asfncrono (transferencia im-
pulsional o llamada respuesta) son pulsos. Demuéstrese que si su duracién es la minima
(§6.2.4a), el circuito funciona correctamente si los flancos de subida de dos pulsos conse-
cutivos distan més de e + & unidades de tiempo. Compruébese que al aumentar la anchu-
ra de los pulsos, se disminuye en idéntica cantidad la distancia e + 8. ;Qué significaria
un valor negativo en la distancia entre dos pulsos consecutivos?

El circuito integrado 7425 posee dos puertas Nor de 4 entradas con habilitacion (strobe).
La funcién 16gica de la puerta i es Hi(Ei + Ei, + Ei, + Ej;). Diséfiese una célula
asincrona con tres entradas de activacidn, otras tres de desactivacion, y la inicializacién
(marcado o desmarcado inicial).




7

Realizacion con memorias y matrices l6gicas
programables

7.1 INTRODUCCION

La evolucion tecnoldgica ha hecho posible que el disefiador de sistemas digitales dis-
ponga de una amplia gama de componentes programables de gran escala de integra-
ciont, macrocomponentes. En este capitulo expondremos un conjunto de técnicas
para la realizacién de sistemas 16gicos basadas en dos clases de macrocomponentes
ampliamente difundidos:

1) Las memorias Idgicas con decodificador fijo, que pueden ser de:

a) S6lo lectura y por ello también denominadas memorias muertas. Entre ellas
se encuentran las RoM (Read Only Memory) y sus variantes tecnolégicas [Pro-
gramable RoM: PROM; Erasable PROM: EPROM;. . .].

b) Lectura y escritura o RaM (Random Access Memory).

2) Las memorias logicas con decodificador programable, comiinmente denomina-
das matrices Idgicas programables. Entre éstas se encuentran las LA (Program-
mable Logic Array)y sus variantes [FPLA, Field PLA; SPLA, Sequential PLa, . . .].

En lo sucesivo utilizaremos las memorias s6lo en modo de lectura, por lo que el
primer grupo de macrocomponentes se designard, a veces, de forma abreviada con
el nombre de su mds tipico representante, Rom. Del mismo modo, el segundo grupo
de macrocomponentes serd designado de forma abreviada por prLA.

Para sistemas de una cierta complejidad, serd més interesante, normalmente, una
realizacién con macrocomponentes que otra construida exclusivamente con puertas
ldgicas y biestables, componentes de pequeria escala de integracion (Small Scale In-
tegration, ss1). En efecto, al utilizar componentes altamente integrados se observa que:

1) el coste de los componentes por funcién que se desea realizar disminuye;

2) el conexionado entre componentes se reduce, lo cual implica una importante
disminucion del coste de montaje y de prueba, incrementéndose la fiabilidad
del equipo;

t1s1, Large Scale Integration.
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3) la modificabilidad del equipo aumenta debido a las posibilidades inherentes a
la programacion;

4) el tamaiio del equipo y su consumo energético se reducen de forma ostensible;

5) debido a la alta regularidad del disefio, éste y su posterior prueba de correcto
funcionamiento son, en gran parte, automatizables.

La realizacion de RdP con memorias y matrices logicas programables se basa en
los métodos utilizados para realizar sistemas secuenciales (GR) y éstos a su vez en
los empleados para realizar sistemas combinacionales. Por ello, el plan de exposi-
cién adoptado en este capitulo parte de la definicién funcional de las RoM y PLA,
y su aplicacién directa a la realizacion de funciones l6gicas combinacionales. Poste-
riormente, y de forma progresiva, se abordan técnicas de realizacién de sistemas se-
cuenciales (representados con grafos reducidos, GR) y concurrentes (representados
con redes de Petri, RdP). La dificultad o ineficiencia de la realizacién directa de
RdP conduce a su descomposicion en sistemas secuenciales interconectados que si-
mulan su comportamiento.

7.2 ROM Y PLA: DEFINICION FUNCIONAL Y SINTESIS DIRECTA DE
FUNCIONES LOGICAS COMBINACIONALES

La definicion funcional de las memorias RoM, PROM y EPROM es idéntica. Su diferen-
cia esencial estriba en que la programacién de la RoM la realiza el fabricante del ma-
crocomponente, mientras que la PRoM y la EPROM pueden ser grabadas por el usuario
(la primera de ellas una sola vez). La diferencia establecida entre la RoM y la PROM
es la misma que permite distinguir la PLA y la FPLA.

La utilizacién de una roM para realizar de forma directa las funciones 16gicas
combinacionales se basa en las representaciones tabulares de éstas. La materializa-
cién con pLA puede llevarse a cabo utilizando representaciones tabulares abreviadas
de las funciones o bien representaciones algebraicas (dlgebra de BooLE). En §7.2.3
se presentardn técnicas para un tipo de optimizacién de las realizaciones basadas en
ROM O PLA.

7.2.1 Memorias ROM

7.2.1.1 Definicidn funcional

Un registro es un subsistema digital capaz de almacenar informacién. En lo sucesi-
vo, los registros se designardn mediante letras versalitas (a, B, C, .. .) y su contenido
por las letras que lo identifican escritas entre paréntesis. Por ejemplo, (R1) significa
«el contenido del registro RI».

Una memoria rRoM (figura 7.1) estd compuesta por:

1) Un conjunto de C registros numerados de 0 a C-1. A cada uno de los registros
se denomina palabra o posicién de memoria. El niimero que identifica univoca-
mente a una palabra se denomina direccion de la palabra.
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2" términos minimos que se pueden
formar con las r variables (d;].

0
1‘
do—»f % .
é dy —»] % .
8‘ E Gl
§ a
a |8
dr-l g "
\c—l

o"x‘ ll—l

Figura 7.1 Esquema funcional de una memoria de solo lectura (RoM/PROM/EPROM).
(Nota. el decodificador es exhaustivo: r a 2".)

La capacidad de una memoria, C, es el nimero de registros que contiene. La lon-
gitud de una memoria, /, es el nimero de digitos binarios (bits, binary digits) que
componen cada palabra.

2) Un decodificador, dispositivo que a partir de una direccién selecciona la palabra
correspondiente. El decodificador genera los 2" términos minimos que se pueden
formar con las r variables l6gicas que codifican la direccién en base binaria, {d;}.
Evidentemente: C = 2",

En una roM (PROM, ...), €l acceso a cada palabra se puede efectuar sélo para leer
su contenido y de forma directa (también denominada aleatoria), por lo que el tiem-
po de acceso es constante.

Desde un punto de vista cuantitativo, una memoria Rom puede caracterizarse por
el par <C, ), siendo C!/ el niimero de puntos elementales de memoria que contiene.
La figura 7.2 presenta diversas interconexiones posibles para cambiar el par (C, I
en{C’,!’). Enla figura 7.2a puede observarse la utilizacién de un selector de circui-
to (chip select, cs), entrada cuya mision consiste en permitir la extensién de la capa-
cidad de direccionamiento global. Una memoria no estard direccionada si su cs no
se encuentra activado. El direccionamiento de la figura 7.2b se denomina, a veces,
a dos niveles (decodificador/multiplexor).

7.2.1.2 Aplicacion a la sintesis directa de funciones Idgicas combinacionales

La realizacién directa de funciones l6gicas combinacionales con memorias RoM, se
reduce a la realizacion de la tabla de verdad del conjunto de dichas funciones (fi-
gura 7.3).

Las variables de entrada se utilizan para definir una direccién. Cada palabra con-
tiene el valor que toma el conjunto de las funciones que se realizan, para el argumen-
to definido por la direccién. De acuerdo con esta convencién, se puede comprobar
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|

CS
dr;]———— (@) Aumento de la capacidad.

(1]
b
dr_,
CS dk
Ot o[[1 - 2k
do qa=
ﬁ dk—l 7 < L
{2C, 1)

(Cq,l/q)

(b) Aumento de la capacidad
a costa de la longitud (direc-
cionamiento a dos niveles).

(C,2)

/]

L il

(¢) Aumento de la longitud de la palabra.

Figura 7.2. Modificacién de capacidad y/o longitud.

que la palabra nimero 1001 (4 = D = 1,B = C = 0) registra la activacion de las
funciones F; y F», de donde se deduce que:
Fi(ABCD) = F;(ABCD) =1 y F3(ABCD) = F4(ABCD) =0
Un rédpido andlisis del método sugiere las observaciones siguientes:
1) La longitud de la palabra ha de ser igual o mayor que s, nimero de salidas
o funciones que se desean realizar: / > s.
2) La capacidad de la memoria no ha de ser inferior a 2°, donde e es el nimero
de variables de entrada, con las que se define el conjunto de las s salidas:
C > 2° (jes decir, el crecimiento de C es exponencial!).

3) Las expresiones algebraicas son innecesarias.

Como se puede comprender facilmente, la principal limitacién del método de sin-
tesis expuesto reside en el crecimiento exponencial de la capacidad de la memoria.
Ello se debe a la propia definicion del decodificador de la RoM que es fijo y comple-
to. En el préximo pérrafo se considera la PLA, macrocomponente que, considerado
como memoria, posee un decodificador programable, por lo que permite disponer
de un mayor nimero de variables de entrada para la misma capacidad.
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AB

Fi|o00|o1] 11 10

(F, = ABCD cp 00|00l B | O
F, = ABD 01| O |O| F |F,F
Fy=AB+ CD 11| O | QO |F,Fi | B, Fy
\Fs = ABC + ACD 10| F5 | F; |Fs,Fy| Fs

a) Expresiones algebraicas b) Tabla de KARNAUGH

A B C D F, F, F3 F,

0 0 0 o 0O 0 0 o 0 0 0 O

0 0 0 o 0O 0 0 1 0 0 0 O

0 0 1 o 0O 0 1 o 0 01 O

0 0 0 o 0 0 1 1 0 0 0 O

0 0 0 o 0 1 0 0 0 0 0 O

0 0 0 o 0o 1 0 1 0 0 0 O

A —> 0 0 1 o 0 1 1 0 0 01 0
B —» 0O 0 0 o 0o 1 1 1 0 0 0 O
C — 0 0 0 o 1 0 0 0 0 0 0 O
D —» 1 1 0 o 1 0 0 1 1 1 0 0
0 0 1 o 1 0 1 O 0 01 O

0 1 0 1 1 0 1 1 0 1 o0 1

0 0 1 o 1 1 0 O 0 0 1 O

0 0 1 o 1 1 0 1 0 0 1 O

0 0 1 1 1 1 1 0]0 01 1

0 0o 1 1 1 1 1 1 0 0 1 1

(d) Inscripcién en la memoria (c) Tabla de verdad de las
realizando Fy, F, F3 y F. funciones Fy, F», F3 y Fj.

A B C|S S
(=)0 1 1 |11

()1 X 0 10 (c) Tabla de programacién
' (la no participacién de
(™)1 0 X |0 1 una variable en un tér-
mino producto se mar-

MATRIZ-Y MATRIZ-O ca con X).

Figura 7.3 Idea basica para la realizacién de funciones ldgicas combinacionales con ROM.
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7.2.2 Matrices logicas programables: PLA

7.2.2.1 Definicién funcional y aplicacion a la sintesis directa de funciones
Iégicas combinacionales

Una PLA estd compuesta basicamente por dos matrices Idgicas programables, la
MATRIZ-Y (AND-ARRAY) y la MATRIZ-O (OR-ARRAY) (figura 7.4). La MATRIZ-Y realiza
intersecciones (funcién légica v) de subconjuntos seleccionados de variables de en-
trada o de sus complementost. Para simplificar las referencias, normalmente supon-

w1 W2 W3

|
i
v

]
' 1
| J| B
B | . |
! [
: 1 (o
Cq 1 ID& 4
e )
-i R b 51
[} : 52 4D"S1
I B LR Jd
MATRIZ-O D
4 Sz
(a) Diagrama 16gico esquemdtico (b) Diagrama ldgico equivalente
O ’/- Términos producto
MaTriZ [, | MATRIZ
Y : (e)

~~
<L >

MATRIZ | MATRIZ
Y (o)

(d) Representaciones de una PLA.

Figura 7.4. Matrices l6gicas programables (PLA).

+Toda seleccién se representa graficamente con un punto: L
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dremos incluida en la MATRIZ-Y la generacion del complemento de las variables de
entrada. Cada interseccion realizada por la MATRIZ-Y se denomina férmino producto
(p-term). La MATRIZ-0 suma ldgicamente subconjuntos de términos producto selec-
cionados, generando las salidas.

Para reducir el nimero de términos producto utilizados al realizar una (varias)
funcién(es), ciertas PLA permiten, mediante programacidn, invertir funciones gene-
radas. Asi, por ejemplo, la funcién F = (a + b)(c + d) necesita para su generacién
4 términos producto (implicantes), mientras que su inversa sélo necesita 2,
F=ab+cd.

Una Pp1LA se caracteriza cuantitativamente por el triple (e, s, 7) que representa el
niimero de entradas, ¢l de salidas y el de términos producto (p-terms). La pLA de
la figura 7.4 se caracteriza por el triple (3, 2, 3). Valores tipicos son e = 14 y 16,
s =8y m =96 (obsérvese que 7<2°)., En una rpLA, normalmente, 7 = 48.

Cuando las funciones que se desean realizar son demasiado complejas y, por lo
tanto, desbordan la capacidad de una pLA (a pesar de eventuales simplificaciones u
optimizaciones), puede procederse a la definicién de estructuras multi-pLA. Como
se puede observar en la figura 7.5, la extension del nimero de p-términos o de sali-
las es muy simple, sin embargo la extension del numero de entradas conlleva dificul-
tades. En el ejemplo de la figura 7.5¢ se exhiben las restricciones sobre las funciones
generadas.

AND AND
OR o ‘ ~ OR
wo o= L
OR [— o OR f :
(@) <e,s,27) (®) <e,2s,27)
Er =) AND

Ey . OR
M
AND s
g iy S

©) S=¢1(X, ), donde X = p3(Eo, E) € Y = ¢3(Eo, E7)

Figura 7.5. Algunas estructuras multi-PLA.
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Las PLA secuenciales (SPLA) son PLA a las que se les ha afiadido un conjunto de
biestables sincronos (registro) con las conexiones internas para su excitacion (figura
7.6). Su caracterizacidn necesita un cuarto pardmetro, b, que indique el nimero de
biestables integrados, asi como su tipo (J-K,D, T, ...). El registro de una spLA estd
destinado al almacenamiento del cddigo del marcado (estado interno) de un sistema
16gico secuencial. A modo de ejemplo, la TMs2000 y la TMs2200 se caracterizan por
(17,18,60,81-x) y (13, 10, 72, 103-x ), respectivamente.

r ______________________ 1
|

ENTRADAS ‘ +——Reloj
= \ Pt &
+ . > Matriz ) | cero
: Y Bl- :
! K "] esma
| Dn ) : BLES !
| |
| - |
| Matriz —J | '
: o | >SALIDAS
I L ¥ '
' I
L_________:_________.._.‘-J

Figura 7.6. pPLA-secuencial (SPLA).

7.2.2.2 Cuestiones adicionales sobre sintesis directa de funciones ldgicas
combinacionales

Segtin la convencidn légica utilizadat, una pLA realiza las funciones combinaciona-
les bajo una de sus dos formas candnicas:

1) Ldgica positiva. 1.* forma canénica: suma de productos
(IT >, AND-OR, NAND-NAND).

2) Ldgica negativa. 2.* forma candnica: producto de sumas
(II 2, OR-AND, NOR-NOR).

Utilizando la primera convencidn, las LA de la figura 7.7 realizan de dos maneras
las funciones l6gicas de la figura 7.3. En la correspondiente a la figura 7.7a se ha
buscado la minimizacién del nimero de términos-producto (5). Esta realizacidn se
puede obtener utilizando los métodos cldsicos de sintesis de funciones booleanas
(Quine-McCluskey [FLET 80], o de los consensos o de Tison [TISO 71]). Como pue-
de observarse facilmente, si A = B=C =1y D=0, el segundo, tercero y cuarto
término-producto estardn activados simultdneamente.

La realizacién de la figura 7.7b es tal que todos los términos-producto son dis-
Jjuntos, por lo que nunca puede haber dos activados simultdneamente. Esta pro-

t Ldgica positiva: 1-estado de actividad. Logica negativa: 0-estado de actividad.
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MATRIZ-Y MATRIZ-O MATRIZ-Y MATRIZ-O

MJ1too01|1100]]110X]|0010[1
@l11xXx[oo010|{1001]|1100[®@
G|IXX10|0010|[1011|0101/|@
@l111Xl0001[|111X|0011]|®
®ftrotr1|ot1o01|lox10|l0010/®)

ffff ;;;; 1010]0010]/()
@ ABCD FIF, F3 F, P ;*{}(b)

AB CD P F F F,

Figura 7.7. Relaciones de las funciones légicas definidas en la figura 7.3. (Nota: en el caso
b los términos producto son disjuntos. La LA puede considerarse como una me-
moria asociativa).

piedad permite contemplar la PLA como una memoria asociativa (Content Address
Memory, cam); es decir, una memoria en la que se selecciona una palabra por
el contenido de uno de sus campos y no por una direccién. Observando la pLA
desde esta perspectiva, toda linea se lee como una proposicién 16gica «si condi-
cién entonces accidn». (Por ejemplo, la primera linea se leera: si ABC entonces
Fi:=F:=F:=0y F3:=1;).

De acuerdo con lo expresado anteriormente, al contemplar una PLA como memo-
ria asociativa, se puede afirmar que:

1) La maTRIZ-0 cumple idéntica funcién que el conjunto de palabras que compo-
nen una RoM. Dicho de otro modo, la MATRIZ-0 cumple la funcidn de «memo-
ria» en una PLA. La capacidad de esta memoria es el nimero de términos-
producto que posee.

2) La MATRIZ-Y cumple la funcién de decodificador programable.

En resumen, una RoM es un caso particular de pLa en el que el decodificador es
fijo (no programable) y genera los 2° términos minimos, en vez de 7 términos pro-
ducto. La realizacién de funciones légicas con Rom se lleva a cabo expresandolas
como suma de términos minimos; con la utilizacién de pLA, la realizacién puede ha-
cerse sumando términos producto (éstos también se denominan en la literatura im-
plicantes 0 monomios ldgicos).

A modo de observaciones finales sobre optimizacion, puede establecerse que:

1) Si un sistema combinacional se define como una memoria asociativa, normal-
mente es posible reducir el nimero de términos-producto necesarios utilizando
las técnicas cldsicas de minimizacion de funciones ldgicas.
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2) El problema de la extensidon del nimero de entradas a una prLA conduce al
estudio de una particidn de éstas (figura 7.5¢) o al establecimiento de un pro-
cesamiento previo a la pLA. Asi, por ejemplo, resulta evidente que si hemos
de realizar las funciones: F; = ABC(DE + EF),F, = D(ABC + EF) y F3 =
= E(A + B + C + D), al calcular previamente Z = ABC, pueden obtenerse
las F; con una pLA de sdlo cuatro entradas (Z,D, E, F').

Desafortunadamente, no existen métodos generales eficaces para particio-
nar las variables de entrada o realizar procesamientos previos. El lector intere-
sado puede orientarse sobre la optimizacidon de pLA a partir de las referencias
[ROTH 78], [AUGI 78], [FLET 75] y [PERE 80].

7.2.3 Reducciéon de la longitud de la palabra en ROM o PLA

En lo expresado anteriormente se ha supuesto que a cada funcion se le asignaba un
digito binario (bit) de las palabras de la RoM o de la PLA. La primera reduccién que
puede sugerirse es, evidentemente, la eliminacién de funciones idénticas (se elimina-
ran todas menos una). Las funciones a y b (tabla 7.1) son idénticas. Cuando las fun-
ciones son incompletamente especificadas, se dice que son pseudo-idénticas si son
idénticas para alguna especificacion de las indeterminaciones. La pseudo-identidad
es una relacion de compatibilidadt. Todo conjunto de funciones pseudo-idénticas
dos a dos (clase compatible) puede reducirse, tras las correspondientes especificacio-
nes, a una unica funcion.

Funciones que se generan

alb|c|d|e|flg\h|i|Jj|k

Configuraciones 1/1(1f1f1|1{1|/0/0]|0]|0O]|O
diferentes

Tabla 7.1 Conjunto de las 5 diferentes configuraciones que aparecen en la MATRIZ-0 de la fi-
gura 7.8.

t Reflexiva y simétrica. En §3.4.2.1 se introdujeron los conceptos de clase de compatibilidad y compati-
ble mdximo; ademds se present6 un algoritmo para la obtencién de los compatibles mdximos.
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Al margen de estas reducciones mds o menos inmediatas, a continuacién se con-
sideran dos esquemas clésicos de codificaciéon. Estos se basan en la generacién de
unas funciones intermedias que, tras una cierta decodificacién, permiten obtener las
funciones deseadas. En cualquier caso, es importante sefialar que al insertar un nue-
vo nivel de decodificacidn, el tiempo de respuesta del sistema se vera incrementado;
es decir, la realizacion serd mas lenta.

7.2.3.1 Codificacidn total

Sea D el nimero de configuraciones diferentes que aparecen al definir el contenido
de una RoM o PLA (en la tabla 7.1, D = 5). Considerando la méxima codificacién
posible, las D configuraciones pueden representarse con A = [log, D| variables. El
método de compactacion consiste en sustituir cada configuracidn por un c4digo in-
termedio y, posteriormente, decodificar éste (figura 7.84). De este modo, las 5 confi-
guraciones de la tabla 7.1 pueden codificarse con 3 bits ([log25] = 3).

Estimando por yDA el coste de la MATRIZ-Y, donde +y es el coste relativo de un
bit de la MATRIZ-Y con respecto a uno de la MATRIZ-0, el esquema de codificacién
total puede ser interesante si:

Cl> CA + vDA + DI.

Enelcasodelatabla7.1: C-10>C-3+y-5-3+5-10=7C> 15y + 50. Ad-
mitiendo y = 27, el esquema de codificacién total puede interesar si C > 12.
Los dos problemas principales que plantea este método de reduccién son:

1) Su poca flexibilidad (la introduccién de alguna variacion puede implicar gran-
des cambios).
2) La relativa complejidad del decodificador final (RoM o PLA).

En este punto interesa sefialar que una adecuada estrategia en la eleccion de las
A variables intermedias que codifican las D configuraciones puede reducir significa-
tivamente la longitud de la palabra del decodificador. En efecto, basta con utilizar
directamente como variables intermedias cuantas funciones sea posible de entre las
que se desean generar (figura 7.8b).

Para tratar sistemdticamente la anterior reduccién se puede proceder como sigue.
Sea X un subconjunto de las funciones que se desea generar. Se define ry como el
mayor numero de veces que se repite el contenido de una fila en la matriz formada
por el subconjunto de las columnas indicado por X. De acuerdo con esta definicidn,
si X = {a, c} (tabla 7.1), entonces ry = 2 («00» se repite en la 4.* y 5.2 fila); del mis-
mo modo, si X' = {a, e}, r¢ =3 («00» se repite en la 2.2, 4.2 y 5.2 fila).

Supodngase que de las A variables intermedias necesarias para codificar las D con-
figuraciones, |X| son simultdneamente funciones que se tienen que generar. Veamos
acto seguido que condicidn deben cumplir las funciones X; € X para que se puedan
utilizar como variables intermedias, sin incrementar el total de A. Dado que rx ex-
presa el maximo numero de filas que, codificadas con las variables de X, poseen
idéntica representacion para que todas las filas puedan tener distinto cddigo, es ne-

T Por cada variable de entrada e existen dos lineas: e y é.
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cesario que las A — | X| variables restantes puedan diferenciar esos grupos de rx fi-
las. Como A — | X| variables pueden diferenciar como méaximo 2% ~¥! posibilida-
des, se deduce que es necesario que ry < 2%~ ¥,

X3 X2 X1
MATRIZ-Y MATRIZ-O
X1 X2 X;
0 0 OfF={1 1 1.1 10 00 O0O
0 0101 0 0011100
RowypLw)| |0 1 OfF= 10000 0 1 1 1 0|DECODIFICADOR
01 1 001 00 O0T1O0TO0]1
loogOOOOIOIOOO
[ A A
=1EREERER
b ac de fg h i jk
(a) Eleccion arbitraria de las
variables intermedias.
I—l___‘
X3X2Xl
(b) Variables intermedias elegidas
entre las que se tienen que
generar.
MEMORIA
(ROM/PLA)
MATRIZ-Y MATRIZ-O
X1 X2 X3
1 111100 000
0 10p>0 011100
1 00F=0 O 0 1 1 1 O0|DECODIFICADOR
0 01F»~0 0 01 0O0 1
0 00 01 01 0 0 O
e iR
ol
b e g h i j k
t by LB N
a c¢c d o(X)
g el
X

~ Figura 7.8. Reduccién de la longitud de la palabra mediante codificacion total y decodifi-
cacién posterior.
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En el ejemplo que venimos considerando, @ y ¢ pueden ser utilizadas como varia-
bles intermedias puesto que rx- = 2 < 2*~2 = 2. Sin embargo, @ y e no pueden ser
utilizadas habida cuenta que rx'=3>2"2=2. Entre otras muchas ternas,
X = {a,c,d) puede ser utilizada para codificar las 5 configuraciones porque
ri=1<23"3=1 (figura 7.8b).

En general, desde un punto de vista algoritinico, se puede proceder construyendo
conjuxlto's Ide | X| = 1,2,... vectores mientras que se vaya cumpliendo la condicién
ry <28°M,

Esercicio. Compruébese que en determinados casos es imposible utilizar alguna funcién
de las que se desean generar para codificar las D configuraciones. (Sugerencia. Sea j> 1y
témense, por ejemplo, las 27 configuraciones de vectores de longitud 2/ y un tinico 1.)

7.2.3.2 Codificacion independiente por campos

Entre el esquema de codificacidn total (§7.2.3.1) y el de partida (completamente decodi-
ficado: 1 bit por funcién) existe un esquema intermedio denominado codificacidén por
campos (figura 7.9). La idea bdsica en este nuevo esquema de codificaciéon consiste en:

1) agrupar las funciones en subconjuntos mutuamente excluyentes,
2) codificar de forma independiente cada uno de los subconjuntos obtenidos.

accion

a c d e i X1 X2 i lhs codificada
. -1-- CEEEE R 0 0 f
1 1 1 1 010 O 0 1 §
coade s sale s v . 1 o j
ol1jofol1f[o 1 B
“1loflolol11 o
! l ,l YYYYE Y

b a ¢ dh eif g jk

Figura 7.9. Codificacién independiente por campos.
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Dos funciones son mutuamente excluyentes si nunca estén activas simultaneamente.
(Dicho de otro modo, dos funciones se excluyen mutuamente si son disjuntas, su inter-
seccion es nula; es decir, no poseen en comun ningun término producto o implicante).
La relacidn de exclusion mutua es una relacion de compatibilidad, de donde los sub-
conjuntos mutuamente excluyentes son clases de compatibilidad (cfr. §3.4.2.1).

Cuando la unidn de las B; funciones de una clase de compatibilidad es la unidad,
la clase puede codificarse con [log,B;| variables booleanas; en caso contrario, la
codificacién de la clase necesita [loga(Bi + 1) |, donde se afiade el « + 1» para codi-
ficar la ausencia de funcion activa. Para facilitar el razonamiento que sigue, se dird
que una clase de compatibilidad es principal si la unién de las funciones que conside-
ra es la unidad o bien B; # 2/(j € N). Es decir, una clase es principal si no es necesa-
rio codificar la «ausencia de funcion activa» o bien, si siendo necesario codificarla,
su consideracion no incrementa el coste de la codificacién de la clase. En estas con-
diciones es facil demostrar que toda clase no principal puede dividirse en dos subcla-
ses sin incrementar el coste de la realizacion. (Demuéstrese.)

El problema de optimizacion (reduccidn) que se plantea naturalmente es el de en-
contrar conjuntos de funciones mutuamente excluyentes (compatibles) que minimi-
cen la longitud de la palabra y realicen todas las funciones. No es dificil comprobar
que siempre existe solucién dptima que considera sélo clases principales disjuntas
(su interseccién es nula). Por otro lado, es evidente que el niimero de clases que for-
ma cualquier solucién debe ser igual o superior al cardinal del mayor incompatible
mdximo. En el ejemplo de la tabla 7.1 (no considerando b por ser idéntica a a) exis-
ten incompatibles de 5 elementos (por ejemplo, {a, ¢, d, e, f}, puesto que en la con-
figuracion 1 se tienea=c=d=e=f=1).

La primera columna de la tabla 7.2 presenta la lista de los subconjuntos maximos
de funciones de la tabla 7.1 mutuamente excluyentes (compatibles maximos)t. En

Lista de Lista tras

compatibles | seleccionar

maximos 6y8 Solucién | Coste
1|lagk a a 1
2|cjk c c 1
3|dgj d d 1
4\di di — —
5|egjk — — —
6|eh eh 1
7| eik i i 1
8 |faik feik | 2
9| fik i — —

Coste total 7

Tabla 7.2 Obtencién de una solucién compactada por campos.

+En §3.4.2.1 se presentd un algoritmo para calcular los compatibles mdximos.
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esta lista todas son principales salvo las clases 4 y 5. Los pares de clases principales
disjuntas son: {1, 6}, (2,6}, (3,6}, (3,7}, (3,9}, {6,8}) y {6,9]. Ahora bien, las
clases 6 y 8 no necesitan codificar la ausencia de activacién puesto que e + 4 = 1
y f+ g+ j+ k=1. Toméandolas para la solucién final y eliminando las variables
que contiene en el resto de compatibles, se obtiene la segunda columna de la tabla
7.2. Se eligen para la solucion las clases principales disjuntas: a, ¢, d € i. (Obsérvese
que la clase {d, i} no es principal y por lo tanto puede dividirse en dos sin que el
coste de una solucién se incremente. En este caso se reobtiene: d e i.) La figura 7.9
presenta el resultado final, en el que f, g,/, y &k son codificados mediante las varia-
bles intermedias x; y X».

Resumiendo desde un punto de vista metodoldgico, el proceso de codificacién por
campos independientes esbozado, procede en dos fases netamente diferenciadas:

1) La obtencién de una particion de las funciones, en la que cada elemento de
la particion definird un campo.
2) La codificacion independiente de cada campo con variables intermedias.

A modo de comentario final sobre la codificacion por campos, se puede afirmar
que es un esquema:

1) razonablemente flexible (modificaciones locales) y eficiente
2) que utiliza sélo decodificadores estdndar (decodificador x — a — 2%), para los
que solo una salida puede estar activa en un momento dado.

7.3 REALIZACION DE GRAFOS REDUCIDOS

Dadas las variables de entrada (E) y las de salida (S) de un sistema secuencial pro-
ceder a su realizacidn consistird en materializar:

(1) el estado (Q);.

(2) la funcidn de transicion entre estados (6:E X Q— Q);

(3) la funcidén de salida (\1:Q — S, si es una maquina de MOORE 6 \2:E X Q— S,

si es una maquina de MEALY).

En el capitulo 6 se vi6 que la realizacidn cableada utiliza: (1) un conjunto de bies-
tables, que pueden ser globalmente considerados como un registro donde se almace-
na el estado (marcado) actual del sistema; (2) un circuito combinatorio (ss1) que cal-
cula el préximo estado (6) y (3) un circuito combinatorio (ss1) que calcula las sa-
lidas (A).

Las realizaciones que se presentan en este apartado poseen andlogamente un registro
de estado (donde se almacena el estado actual). El circuito combinatorio discreto que
determina las salidas y parte del que determina el proximo estado son sustituidos por
una memoria (ROM) 0/y una matriz légica programable (pLA). El registro de estado ata-
cara la ROM 0 PLA, conviertiéndose en un registro de direccién, al menos parcialmente.

Para sistematizar su estudio, clasificamos los métodos de realizacién que siguen
en dos grandes grupos:

1) Métodos ldgicos de transicion directa (§7.3.1).
2) Métodos con secuenciador (también denominado métodos con interpretador
o microprogramados) (§7.3.3).
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En §7.3.2 se presentan dos métodos pertenecientes al primer grupo pero que per-
miten establecer con cierta continuidad la evolucién conceptual entre éstos y los del
segundo grupo.

Los primeros, en sus esquemas bdsicos, utilizan exclusivamente un registro de
estado y 1a RoM o PLA. En esquemas mds elaborados aparecen circuitos decodifica-
dores que reducen la longitud de la palabra y circuitos selectores (esencialmente mul-
tiplexores) destinados a reducir el nimero de variables de entrada a la memoria o
matriz ldgica. Las técnicas de sintesis se basan en una codificacidn del estado segui-
da de una cumplimentacién (escritura) mas o menos inmediata, de la tabla de verdad
en la RoM o la pLA. El estado sucesor de uno dado se alcanza en un tnico ciclo de
reloj (una unica lectura de la RoM 0 PLA).

En los métodos del segundo grupo emerge el concepto de programa y, por consi-
guiente, la nocién de dispositivo secuenciador que lo decodifica y ordena su ejecu-
cién. Dada la sencillez de las instrucciones (microinstrucciones), el secuenciador sue-
le ser extremadamente rudimentario. Las técnicas de sintesis terminan siendo de
programacién. Considerando la descripcion original, un estado sucesor de uno dado
se obtendrd, en general, a través de diversas transiciones intermedias.

Para aligerar la presentacion de las diferentes técnicas, nos cefiiremos a la realiza-
cién de GR con salidas incondicionales (maquinas de MooRrE). (En particular, utili-
zaremos el GR de la figura 7.10a.) La transformacién de mdquinas de MOORE en m4-
quinas de MEALY se presentd en §1.3.1.

Di v1 U2 Vi

D | {A,B} | 2

p C 1

2 | (€] v =max () = 2
= ps | (4,0} | 2 '

ps | {B,C} | 2

(b) Variables relevantes para
(@) Grafo reducido. cada estado.

Figura 7.10. Sistema secuencial tipo MOORE que se desea realizar.

7.3.1 Métodos l6gicos de transicion directa

Se parte de una codificacién previa de los estados del GR que se desea realizar. El
cédigo que identifica al estado presente se almacena en un registro, denominado re-
gistro de estado. Cada palabra de la ROM o PLA, representa una transicion en el GR
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o ¢l mantenimiento del estado presente (cuando éste coincide con el estado sucesor;
es decir, no existe evolucion). Para ello una palabra posee dos campos:

1) siguiente estado o estado sucesor (lugar de salida de la transicién), que en con-
diciones de no evolucién (mantenimiento del estado) permite volver a obtener
el estado actual;

2) salidas, campo a partir del que se pueden calcular las acciones o salidas.

Desde un punto de vista estructural, la realizacidén consta de una memoria o ma-
triz ldgica que tiene como entradas las variables de entrada del sistema y las del re-
gistro de estado; la memoria o matriz légica alimenta al registro de estado (figura
7.6, sPLA) y, eventualmente, a un registro de salidas. En lo sucesivo, supondremos
que siempre existe el registro de salidas, por lo que debido a su presencia, el campo
«salidas» de cada palabra contendrd informacion destinada al célculo de las salidas
asociadas al estado sucesor y no a las del estado presente. La ausencia del registro
puede conducir a aleatoriedades sobre las salidas. (Obsérvese que las variables de
entrada al sistema forman parte de la direccién de la memoria, aun cuando realize-
mos maquinas de MOORE.)

Para facilitar la comprension de la sintesis de las funciones de transicidn y de lec-
tura, «conviene» considerar la matriz logica programable como una memoria
asociativa. De esta forma: (1) la realizacidon con RoM se deduce por simple expansién
de cada término producto en los correspondientes términos minimos y (2) salvo para
la realizacién «optimizada» con pLa, el proceso de sintesis no tiene que recurrir al
calculo de ecuaciones légicas, con frecuencia engorroso.

A continuacidn, sintetizaremos el GR de la figura 7.10a utilizando pras. Los regis-
tros de estado y de salidas estardn formados por biestables que utilicen una tnica varia-
ble de entrada, D o T, con lo que se reducir4 la longitud de la palabra. Para minimizar
el campo de estado, en vez de utilizar un cddigo 1 entre n (método modular, capitulo
6) se utilizara la maxima codificacidn posible; es decir, el registro de estado serd de
[logan| biestables. De esta forma, la codificacién de los cuatro estados del GR de
la figura 7.10a puede llevarse a cabo con sélo dos biestables, {g2, g1}. En este pun-
to, a modo de importantisima observacién, ha de sefialarse que la minimizacién de
la longitud del registro de estado implica la reduccion del nimero de variables de
entrada a la RoM o la PLA, lo que es extraordinariamente interesante puesto que:

1) la capacidad de la RoM crece exponencialmente con el nimero de sus variables
de entrada (§7.2.1.1):

2) la expansidn de las entradas en estructuras multi-pLAs es extremadamente difi-
cil (§7.2.2.1).

7.3.1.1 Sintesis utilizando registros constituidos por biestables D

Un biestable D memoriza el valor de su entrada Dt. Por ello los campos de estado
y de salidas sucesores contendran directamente el cddigo del estado y las salidas aso-
ciadas. La definicion de una tabla de programacién necesita solo la prev1a eleccién
del cddigo que representard a cada estado.

+

tLa evoluciéon Q — Q™ requiere, simplemente, D = Q* (ecuacion de excitacién del biestable D).
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La eleccién de un «buen» cédigo puede reducir la longitud de la palabra al hacer que
aparezcan funciones idénticas en los campos de estado y de salidas. Asi, habida cuenta
que a (figura 7.10q) estd asociada a 2 de los 4 estados, se puede utilizar ésta como una
de las dos variables intermedias o de estado necesarias, {g2, q1}. Sea por ejemplo,
g1 = a. Adoptando la codificacion: p1 = G241, p2 = G241, P3 = Q2G1Y Pa = G241, la ta-
bla 7.3 presenta la tabla de programacion de una PLA, la cual es directamente una tabla
de verdad compactada. En ésta puede observarse que a cada estado se le asocia, co-
mo minimo, un término para representar la condicion de mantenimiento; esta con-
dicién se obtiene al complementar la unidn de los eventos asociados a las transicio-
nes de salida del lugar. Las condiciones de mantenimiento en el ejemplo son:

p1:(A + B)=AB p3:ﬂ+/—1D)=/~11—)
puC=C ps:BC=B+ C =B+ BC,

de donde, a p4 han de asocidrsele dos términos producto. Para que la PLA pueda obser-
varse como memoria asociativa, todos los términos producto se han hecho disjuntos.

A B C D qg ¢ | g& qf b d Significacién

1 X X X 0 1 0 0 10 Ap1 — p2||o2 (transicion)
01 XX 0 1 0 0 1 0 | ABpi— p:l|o: (transicién)

0 0 X X 0 1 0 1 00 ABp: — pi||o1 (mantenimiento)
X X 1 X 0 O 1 0 00 Cp> — p3||o3 (transicion)
XX 0 X 0 0 0O 0 10 Cp2 = p2||o2 (mantenimiento)
0 X X1 1 0 0 1 0 0 | ADps— pil|o: (transicién)

1 X X X 1 0 1 1 01 Aps = pa||os (transicion)

0 XX 01 0 1 0 0 0 | ADps— ps||os (mantenimiento)
X1 1 X 1 1 1 0 00 BCp4 — ps||os (transicion)

X 0 XX 1 1 1 1 01 Bp4 - ps||os (mantenimiento)
X1 0 X 1 1 1 1 01 BCp4 = pal|os (mantenimiento)

Tabla 7.3 Tabla de verdad y de programacion de una PLA para realizar con biestables b el GR
de la figura 7.10a. (Nota: git = ay b = c.) o; representa las salidas asociadas a p.

Esercicro. Compruébese que el calculo de las funciones légicas realizadas arroja el siguien-
te resultado (pueden utilizarse los diagramas de KARNAUGH o los diagramas de KARNAUGH
con variables introducidas [CLAR 73] [FLET 80]):

gi = ABqi + ABgq: + Dq2q1 + Cq2q1 + Aq24s;
g3 = Cq2q1 + Dq> + q2q1 + Aga;
b=c=q'ar;
d=gqi qi".
Esercicio. Reduzcase la longitud de la palabra utilizando la técnica expuesta en §7.2.3.1.

(Sugerencia. Compruébese que las cuatro configuraciones distintas que existen pueden codifi-
carse a partir de g5 y g1 .)
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7.3.1.2 Sintesis utilizando registros constituidos por biestables T t

La utilizacién de biestables D conduce a una sintesis extraordinariamente simple puesto
que la tabla de verdad y la de programacién coinciden. No obstante, hay que resaltar
que si la realizacion se lleva a cabo con pLA, un nimero importante de términos pro-
ducto corresponden a condiciones de mantenimiento (5 sobre 11 en la tabla 7.3). La
utilizacién del biestable T permitird la programacion sin que se tengan que especificar
las condiciones de mantenimiento. En efecto, en toda condicién de mantenimiento, el
estado y salidas actuales coinciden con el estado y salidas sucesoras, de donde todas
las variables de entrada a los registros de estado y salidas deben ser nulas.

De acuerdo con la ecuacidn de excitacion de los biestables T, sus entradas deben
calcularse realizando el o-ExcLUSIVO entre el estado y salidas actuales y el estado y sali-
das sucesoras. Asi, por ejemplo, la primera linea de la tabla de verdad que corresponde
al GR de la figura 7.10q (tabla 7.3) representa una transicién de p; a p». Luego la exci-
tacion de los biestables T en una evolucién de p; a p» (0 p2 a p;) debe ser:

qz2 qi b d q2 q1 b d 02 01 Ob 0.{
(0O 01 00 ® (01 00 = (011 0
informacion informacién excitacion de los
asociada a p; asociada a p; biestables T

El vector obtenido es el contenido en las dos primeras transiciones de la tabla 7.4
(ambas transiciones son desde p; a p»).

En resumen, la utilizacién de biestables T permite reducir significativamente el ni-
mero de términos producto, por lo que puede ser muy atractiva con pLA. (Habida
cuenta que el nimero de términos minimos no se reduce, la utilizacién de los biesta-
bles T con RoM no es interesante.) Como dificultad mayor, es importante resaltar
que la adopcioén de biestables T hace que las tablas de verdad (tabla 7.3) y de progra-
macion (tabla 7.4) difieran.

A B C D q q 6, 6: 0O 64 Significacion (sdlo transiciones)
1 X X X 0 1 0 1 1 0 Ap1 = pa||o2
01 X X 0 1 0 1 1 0 ABp;— psl|o2
XX 1 X 0 0 1 0 1 0 Cp2 — ps||o3
0 X X1 1 0 1 1 0 0 ADps3 — ps||o;
1 X X X 1 0 0 1 0 1 Aps = pal|oas
X 1 1 X 1 1 0 1 0 1 BCps = psl|os

Tabla 7.4 Tabla de programacion de una pLa para realizar con biestables T el GR de la figura
7.10a. (Nota: 6, = 6,.)

T Como se recordard (figura 6.20) la salida de un biestable T (foggle) se complementa cada vez que el
pulso de reloj encuentre 7' = 1. En caso contrario, si 7= 0 el biestable memoriza el estado anterior.
Dicho de otro modo, la evolucién Q = Q* requiere T= Q@ Q% (ecuacion de excitacion).
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A modo de conclusidn, es interesante resaltar que desde el punto de vista de las
técnicas de disefio, no se han utilizado més que las tablas de verdad, que especifican
las funciones que se desean realizar, y las ecuaciones de excitacion de los biestables
que se utilizan. Las tablas de programacidn se obtienen facilmente a partir de la in-
formacién anterior.

Esercicio. Compruébese, sobre el ejemplo considerado (figura 7.10a y tabla 7.4), que al
utilizar biestables T, no es posible, en general, reducir la longitud de la palabra (§7.2.3.1) utili-
zando como variables intermedias aquellas que permiten obtener el estado sucesor (62, 61).
(Por qué?

Esercicio. Propdénganse soluciones para resolver el problema de la inicializacién del siste-
ma. ;Facilita la tarea el asignar el codigo 0...0 al estado inicial?

7.3.2 Reduccién del nimero de variables de entrada a la memoria o matriz
légica en los métodos de transicion directa

Las ideas que se presentan en este apartado permiten establecer de forma gradual
la evolucién de las maquinas 16gicas de transicion directa hacia las que utilizan un
secuenciador. En todo momento se persigue reducir la ocupacién total de memoria.
En §7.3.2.1 se aborda una optimizacion, valida en gran nimero de casos, de los es-
quemas propuestos en §7.3.1. En §7.3.2.2 se presenta, dentro de una continuidad
en la evolucién conceptual, una maquina de transicion directa, pero que admite una
inmediata interpretacién en términos algoritmicos (no 16gicos).

7.3.2.1 Planteamiento bdsico

Hasta ahora, el nimero de variables de entrada a la PLA o RoM utilizadas es
[logzn| , para codificar el estado (mimero minimo), mads una variable por entrada
al sistema. En el ejemplo que se viene considerando (figura 7.10a) se tienen
2 + 4 = 6 variables de entrada. Ello quiere decir que, si por ejemplo, se utiliza una
ROM, son necesarias 2¢ = 64 palabras de 4 bits (dos para el estado, y otros dos para
by d, puesto que a = gi y ¢ = b).

A tenor de lo enunciado anteriormente, es facil comprender que para grandes sis-
temas sea muy importante comprimir el nimero de variables de entrada a la memo-
ria (RoM o pLA). La técnica que se propone a continuacion se basa en la importantisi-
ma observacién siguiente: el mimero de variables de entrada a un sistema secuencial
que, a partir de un estado, intervienen en la elaboracién de la funcién de transicion f
es, normalmente, muy inferior al nimero total de variables de entrada al sistema.

Asi, la figura 7.10b representa las variables de entrada relevantes para cada esta-
do. El valor maximo, », es 2, mientras que el nimero de variables de entrada es 4,
(4,B,C, D).

A partir de la observacion anterior, la idea que se persigue es, mediante circuitos
de seleccidn extraer el subconjunto de variables de entrada que interesa a partir de
un estado dado. Un circuito estdndar de selecccion es el conocido multiplexor, MUX.

+ Si se realizan directamente maquinas de MEALY, hay que considerar también la funcidn de lectura o salida.
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La figura 7.11 presenta un posible esquema general basado en multiplexores. Las

salidas de los multiplexores atacan a la RoM, mientras que la variable seleccionada
por cada mMux es especificada mediante un campo afiadido a la palabra.

seleccién de

<—variables——
\ L] M M
/ Q3 U e e U +
X X bi
ut 1 v
.

e11:

[

pi | SALIDAS|

elq

€1,

Cm

Figura 7.11. Un primer esquema para reducir el nimero de variables de entrada a la memoria
(o matriz logica).

En resumen, con el esquema propuesto se reduce el nimero de variables de entra-
da a la RoM 0 PLA a costa de incrementar, en general, la longitud de la palabra y
de utilizar circuitos selectores (por ejemplo, multiplexores). Si, como se indica en
la figura 7.11, el cédigo asociado a p; forma la parte alta de la direccidn, las v varia-
bles definen 2” posiciones consecutivas, en las que se representan todas las transicio-
nes posibles a partir de p;.

La realizacién con multiplexores, conectando a cada uno de ellos todas las varia-
bles de entrada, es una solucién viable. Ahora bien, no todas las variables tienen
que ir a cada multiplexor. La minimizacién del nimero de variables de entrada por
multiplexor es doblemente interesante puesto que de este modo:

1) se minimiza su complejidad (multiplexores més pequefios) y,
2) se reduce la longitud de la palabra, a través de la reduccion de los campos se-
lectores (Mux1,..., MUXp, en la figura 7.11).

Toda solucidn aceptable para la distribucidn de las variables de entrada debe per-
mitir que las p; variables relevantes para el i-ésimo estado puedan ser seleccionadas
simultdneamente. La solucidn ideal, si es posible, es aquella en la que cada variable
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se asocia a un unico multiplexor. Considerando el ejemplo de la figura 7.10, si co-
nectamos 4 a Muxl, las variables B y D deben ir a Mux2. Afortunadamente By D
no deben considerarse simultdneamente. Por otro lado, dado que B va a Mux2, C
debe ir a Mux1t. La figura 7.12 presenta una posibilidad de conexi6n. Esta, unida
a la codificacion del estado que se ha elegido, permiten fusionar las funciones g;"
y MUX1, por una parte, y gi", MUX2 y a, por la otra. La figura 7.12b muestra el con-

tenido de la RoM, suponiendo que los registros de entrada y salida estdn realizados
con biestables D.

: : DIRECCION  CONTENIDO
l : @@ v | glat (b d
g i) o ! 00/00|0 010 O
~<qz{q' ! 0o0lo1f{o 1|00
v l | 00|01 1|01
1 ) | ! 000|111 1|01
| | 01(00]0 100
v
2 : : 01/01f1 0|10
o1|j10fl10(10
J ‘ ‘ ‘ 01{11]101]|10
10/0o0o0f10(10
4 @_a| | 1ojo 11010
10/10}]00]0
c Ld 10/11]00]00
11{]0 0|1 101
D ——==b¢ 11{o1f11]o01
B | 11{1o0]11]01
11]1 10 0|0 O
nsmno} mm‘wms Pi’toxmosxomMAs
PRESENTE PRESENTES ESTADO SALIDAS
(@) Esquema de la realizacién. (b) Programa almacenado en la memoria.

Figura 7.12. Realizacién «optimizada» del GR de la figura 7.10. (Notas: (1) py =01, p, =

=10, p3 = 00y ps = 11; (2) el estado presente selecciona, en este caso, a las va-
riables v; y va. AdemésI a=q.)

Eiercicio. Obténgase una tabla de programacidn de una PLA si los registros estuviesen rea-
lizados con biestables T.

Ejercicro. Propéngase un método general para distribuir las variables de entrada entre los
diferentes multiplexores. Apliquese el método desarrollado al caso de la figura 7.10a supo-
niendo que el evento que provoca la evolucion de p; a p3 es AC. (Nota: este dltimo caso de-
mostrard que, a veces, es necesario repetir variables en 2 o mas multiplexores.)

7.3.2.2 Mdquina de decisiones explicitas 2’-arias

Sea & el nimero de bits que codifica el estado (€ = [logz n | ), o el mimero de salidas
arealizar y 0 la longitud total de los » campos selectores (campo de test). El esquema

T Obsérvese que nunca dos variables que interesan en un estado deben conectarse s6lo a un mismo MUX.
Esta prohibicidn es simétrica pero no transitiva, por lo que una vez mds se define una relacién de com-
patibilidad.
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general de la figura 7.11 indica que la ocupacion total de memoria para codificar
un GR es: 25*%(0 + & + o). Utilizando este esquema se emplean 2 palabras para
definir una direccién en la que se encontrard un estado sucesor.

Si se desea reducir la ocupacién total de memoria, una forma de proceder es
asignar a cada estado una unica palabra. En este caso, para determinar la direccion
asociada al estado sucesor basta con expresar explicitamente en cada palabra las 2”
alternativas. La figura 7.13 presenta la idea en un caso en el que » = 2, cuando se
pretende realizar el GR de la figura 7.10. Como puede observarse, esta maquina ne-
cesita, ademds de los elementos ya considerados en las anteriores, un multiplexor
de 27 vias de € bits cada una. La ocupacién memoria es, naturalmente, siempre infe-
rior a la de los esquemas anteriores, ya que se tiene una ocupacion:

250 + 2°8 + 0) < 28*¥(0 + & + o).

PROXIMO ESTADO SALIDAS

A A

7
My M2 o, 0, Oh 12 v U2 U1 U

pil0]olo ofo 1jo 1jotfifofo
> pp| 1| 0 1 0 1 1 0 1 0 011 0
qz
pi| 0|1 1 0 0 0 1 1 1 1 0|00
a1 \\
ps| 1|0 1 1 1 1 1 1 1 0 1101
v\ = L S-AI.ID—A; }
4 T
¢ a bcec d
B Codigo (direccion)
2 i 2 q
D1 0 0
D2 0 1
D3 1 0
P 1 1

Figura 7.13 Mdéquina de decisiones explicitas cuaternarias (la existencia de un registro de sali-
das provocaria el retraso de éstas con respecto al estado en un ciclo de reloj).
(Nota. J =0 o 1, indiferente.)

Antes de continuar, conviene resaltar que al adoptar la estructura de la figura
7.13, en una palabra coexisten las direcciones (c6digos) de los estados sucesores con
las acciones del estado actual. Dicho de otro modo, en esta maquina, la existencia
del registro de salidas provoca un retraso de éstas de un ciclo de reloj. Una solucion
vélida, pero muy costosa, para evitar el retraso de las salidas podria ser la utilizacién
de 2” campos de salidas (asociados a cada uno de los estados sucesores) mds el co-
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rrespondiente multiplexor. Otra solucién, mucho més econdmica, consiste simple-
mente en eliminar el registro de salidas, lo cual se puede hacer ahora sin problemas
mayores ya que las variables de entrada al sistema no forman parte de la direccion
de la memoria.

Una cuestion interesante en la maquina que nos ocupa es la interpretacion algorit-
mica que se le puede asignar a cada una de las palabras (estados). Si consideramos
la figura 7.13, la primera palabra asociada a p;, significa (el simbolo «||» quiere de-
cir «en paralelo»):

p1: caso de vi-v, donde vy =A y v, =B
0-0: ir a p;
0-1: ir a p;
1-0: ir a p»
1-1: ir a p»
fin del caso || hacer a:=1, b:=0,d:=0;

En resumen, con la mdquina de decisiones explicitas 2°-arias se observa que:

1) Se necesita una por cada 2” palabras de las maquinas del §7.3.2.1, pero éstas
son mds largas.

2) Cada palabra representa un estado del GR. Dicho de otra forma, el cddigo del
estado es, simultineamente, la direccion de la palabra donde se encuentra
definido.

3) Toda palabra se interpreta como un caso de (define un salto miltiple) y un ha-
cer (define las acciones) a ejecutar en paralelo.

4) El estado siguiente se obtiene en un unico ciclo de reloj, por lo que es un méto-
do de realizacién de transicion directa.

Esercicio. (1) Cambiese la conexién de B y D a muxl (figura 7.13). Compruébese que la
longitud de la palabra, en este caso, puede reducirse inmediatamente en 4 bits. Ademads, la
utilizacion de dos inversores permite eliminar otros dos bits mds.

(2) Asignesele otro cddigo (direccion) a los estados, p;, de forma que el campo de test
(M;-M,) se pueda fusionar con el 7; 2. ;Por qué es posible? ;Qué otras reducciones son posi-
bles en este caso?

7.3.3 Métodos bdsicos con secuenciador: Mdquinas de decisiones binarias

A lo largo de §7.3.2 se adopt6 umtipo de realizacién que emplea multiplexores con
lo que se pueden seleccionar simultdneamente todas las variables que interesen, en
cualquier estado. A continuacién se aborda la realizacién cuando se utiliza un dnico
multiplexor, por lo que basicamente se ejecutardn decisiones binarias (si v enton-
ces/si no).

Como se vera, las mdquinas de decisiones binarias pueden realizar cualquier GR
aunque para evaluar funciones complejas se requieran varias instrucciones de deci-
sién. Las méquinas de decisiones binarias, dadas su simplicidad de realizacion y po-
tencia, constituyen un estdndar de amplia utilizacién. Normalmente, la ocupacién
memoria total es reducida.

Estructuralmente, las maquinas de decisiones binarias basicas comprenden: (1) el
multiplexor para las entradas, (2) la memoria o matriz Idgica 'y (3) el secuenciador.



REALIZACION DE GRAFOS REDUCIDOS 253

El secuenciador es un conjunto de elementos l6gicos con los que se calcula la di-
reccién de la préoxima palabra (instruccidn) que debe ser leida (determina la secuen-
cia de instrucciones). Basicamente suele comprender un registro o contador de pro-
grama mds cierta 1dgica en la que, a veces, se encuentra un selector (multiplexor)
de direcciones.

El GR de la figura 7.10a (v = 2) no puede realizarse directamente con la mdquina
de la figura 7.14a (ésta es estructuralmente andloga a las de las figuras 7.11 y 12,
pero con un unico multiplexor). En §7.3.3.1 se considera la necesaria transforma-

“cién. Los apartados que siguen presentan diversos modelos de maquinas de decisio-

Al

TesT ‘ESTADO SALIDAS
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(@) v permite definir dos direcciones consecutivas

v v
- Test DiF(6F) pic(5C) ©/LIDAS
P4 ob o4

A-— 2 |

8 = MULTIPLEXOR

C —

D._X a bc d
Gl @2 q

(b) Méquina bdsica de decisiones binarias

Figura 7.14. Méquinas con un unico multiplexor.
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nes binarias. En §7.3.3.2 se considera el modelo bésico, a partir del que se pueden
obtener otros, mediante transformaciones que tienden a reducir la longitud de la pa-
labra. En cualquier caso, si para el GR que se desea'realizar » > 1, la realizacién
con cualquier maquina de decisiones binarias ha de proceder en secuencia; es decir,
la transicion entre estados no serd directa sino que se hara en pasos sucesivos (lectu-
ras de la memoria o matriz 1égica).

7.3.3.1 Grafo reducido equivalente con alternativas binarias: transformacién

Para que un GR pueda realizarse directamente con la méquina de la figura 7.14a,
es necesario que el GR se transforme en uno equivalente, GR, para el que » = 1 Si
» =1, el GR debe ser tal que:

1) Todo lugar posea dos transiciones de salida. Es decir, todo lugar sea una selec-
cion binaria.

2) Los eventos asociados a las dos transiciones de una seleccion sean una variable
y su complemento: v y 7.

De acuerdo con lo establecido, la transformacion de GR en GR debe realizarse de
modo que:

1) siun estado es una seleccion de orden superior a dos, se descomponga en cade-
nas de selecciones binarias.

2) todo evento no elemental se descomponga en una cadena de decisiones
binarias.

Mas que proceder a la presentacion de técnicas formales de transformaciént, ape-
lamos a la intuicién del lector quien podra constatar facilmente que los GR de las
figuras 7.10a y 7.15a son equivalentes y el segundo de ellos cumple las condiciones
anteriores (para éste, » = 1). La figura 7.15b presenta un organigrama «equiva-
lente» al GR de la figura 7.15a. En cualquier caso, en ésta se puede observar que
los estados pi, ps ¥ ps del GR original han sido descompuestos en dos cada uno (p11
y pP12; P31Y D32; Da1Y Da2). Evidentemente, siempre se puede afirmar que las transfor-
maciones anteriores nunca disminuyen el numero de estados.

La realizacion del GR con la méaquina de la figura 7.14q es inmediata, puesto que
v = 1. (EJERCICIO.) Obsérvese en este punto que la descomposicion de los estados
de GR conduce a evaluaciones en secuencia de las condiciones de evolucion. Es de-
cir, en general las transiciones no seran directas, sino que se realizaran tras una serie
de ciclos de reloj.

7.3.3.2 Instruccidn unica y direcciones explicitas

La eliminacidn de v (figura 7.14a) en el direccionamiento de la memoria, utilizando
la aproximacién presentada en §7.3.2.2, conduce a la mdquina de la figura 7.14b.

+ En definitiva, el problema que subyace es la realizacion de conjuntos de funciones booleanas (para cada
estado se han de realizar los eventos asociados a sus transiciones de salida) mediante programas de deci-
siones binarias. Las referencias [SILV 78, 79b, 82b], [MANG 82], [THAY 81] consideran el menciona-
do problema, cuyo tratamiento formal y optimizado escapa a los objetivos de este texto.
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_____ —————————y

a:=1b:=c:=d: =0 P

(@) GR (b) Organigrama

Figura 7.15. Grafo y organigrama «equivalentes» al GR de la figura 7.10a.

En ésta, cada palabra (microinstruccidn) se interpreta como la ejecucion en paralelo
de:

pi: si U entonces ir'a pif si no ir a pi& || hacer «salidas»

Representando la anterior instruccion de forma abreviada por «pi:v|pif|pit|| sali-
das activas; », el GR de la figura 7.15a (figura 7.10a) se podra programar como
sigue:

P11:A|p2|p2il|a; c; D31:A|p32|pas;
P12:B|pii|p2il|a; Dp32:D|pa1|p11;
P21:C|p21|ps1||b, c; Ppa1:B|pai|pazl|a, d;

P42:C|pa1|psi1||a, d;

Evidentemente, toda ordenacion de las instrucciones es correcta, puesto que siem-
pre se designa explicitamente la instruccion que se debe ejecutar a continuacion.

Para terminar con el comentario sobre la mdquina de la figura 7.14b, basta sefia-
lar que el registro de estado (RE/P) juega el papel de puntero del microprograma,
puesto que designa la préxima microinstruccion a ejecutar. Dicho de otro modo, los
conceptos de estado del GR y de direccidn del microprograma convergen. El registro
de estado se convierte en, registro de programa o microprograma.
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> Test  |C/F 8C/F SALIDAS
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Figura 7.16. Instruccién tnica y una direccién implicita. (Nota. CP es un contador up/down
con carga paralela.)

Con objeto de reducir la longitud de la palabra de que se dispone, se pueden adop-
tar dos transformaciones. Estas conducen a las maquinas de las figuras 7.16 y 7.17.
La aplicacion conjunta de ambas transformaciones conduce a la maquina de la figu-
ra 7.18. La reduccion de la longitud de la palabra supondra siempre un incremento
(aunque con frecuencia relativamente menor) en la longitud del microprograma.

C.0.
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1 SALIDAS 6C
!
A V -+
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v
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R.E/P. a He
1 1}
]

Figura 7.17. Dos instrucciones y direcciones explicitas.
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Figura 7.18. Dos instrucciones y direccién implicita.

7.3.3.3 Instruccidn dnica y una direccion implicita

Una forma posible de reducir la longitud de la palabra usada en la mdquina de la fi-
gura 7.14b consiste en predefinir una de las dos direcciones (cierto, 6C, o falso, 6F)
como la que sigue a la actual. Esta reduccién de la palabra es tanto mds interesante
cuanto que en la practica se suele constatar que los GR contienen partes lineales
importantes. En este caso, el registro de estado o programa se convierte realmente
en un contador de programa, sobre el que se podrén realizar operaciones de carga
o incrementacion.

La figura 7.16 presenta una posible estructura de maquina en la que sélo es digno
de especial comentario la existencia de un campo adicional, (CIERTO/FALSO), que
completa el de test y que permite definir el test sobre v (bit c/F = 1) 6 & (bit ¢/F = 0).
La restringida capacidad de salto en este tipo de maquina hara que aparezca la nece-
sidad de un salfo incondicional. Dicho de otra forma, las instrucciones de salto in-
condicional aparecen como una penalizacién debida a la eliminacién de uno de los
dos campos de salto explicito existentes en la mdquina de la figura 7.14b.

El GR de la figura 7.15a puede codificarse como sigue:

pii:A|pa||a; p33:D|ps1; {simula un salto incondicional}
p12:Blpul|a; Pas:B|pail|a, d;

p21:Clpai||b,¢; paz:Clpsi||a, d;

D31:A|pas; p43:C|pa1||a, d; (simula un salto incondicional}.
Pp32:D|p1y;

En este programa se ha de resaltar la introduccion de las instrucciones (estados) pss3
y pa3 que simulan un salto incondicional al comprobar el estado del complemento
de las variables consideradas en ps» y pa42, respectivamente.



258 REALIZACION CON MEMORIAS Y MATRICES LOGICAS PROGRAMABLES

Observacidn. El «truco» utilizado en el programa anterior para simular el salto incondicio-
nal no es formalmente correcto puesto que la variable de entrada designada puede cambiar
efectivamente su estado 16gico al irse a ejecutar la segunda de las instrucciones. Para evitar
este problema, normalmente se afiade al multiplexor una entrada con la constante «1» légico.
La designacion de la entrada correspondiente provocard indefectiblemente el salto.

Dado que nunca se designan explicitamente las instrucciones sucesoras, a diferen-
cia del programa presentado en §7.3.2, en este caso no es vdlida cualquier ordena-
cion de las microinstrucciones. Por otro lado, es importante sefialar que el nimero
de saltos incondicionales a insertar depende de la ordenacién de estados elegida al

escribir el microprograma. De este modo, se puede comprobar facilmente (EJERCI-
c1o) que la ordenacioén:

1) p32-p11-P12-P21-D31-Dar-Pa2, requiere un unico salto incondicional al final del
programa (pa3:C|pai||a, d;).
2) p11-P12-D31-D32-P21-P41-P42, Tequiere cuatro saltos incondicionales que son:

p13:B|pai||a; (después de pi2)
D22:C|p31]|b, ¢; {después de p»}
p33:D|ps1; (después de psz)
p43:(_3|p41||a, d; {después de p42].

El analisis de las diferentes ordenaciones anteriores permite concluir facilmente
sobre el nimero de saltos incondicionales que hay que insertar. _Eite es igual al nu-
mero de subsecuencias que la ordenacidn considerada define en GR. Asi, por ejem-
plo, p11-p12-p21-p31-p32 forman una subsecuencia (camino segun la terminologia de
la teoria de grafos, anexo 2) que se acaba al aparecer ps1, puesto que éste no es des-
cendiente directo de psz; por ello se introduce el salto incondicional ps;;. Habida
cuenta que en GR (figura 7.15a), p32-p11-P12-P21-P31-P41-P42 forman una unica secuen-
cia, solo se necesita un salto incondicional.

En funcion de lo establecido, la minimizacion del nimero de saltos incondiciona-
les se resuelve obteniendo una ordenacidén en la que exista un minimo de subsecuen-
cias disjuntas que cubran todos los estadost. La obtencion de un resultado 6ptimo
es factible, pero costosa. Afortunadamente, no es dificil definir heuristicas que con-
duzcan a soluciones subdptimas.

7.3.3.4 Dos instrucciones y direcciones explicitas

Otra forma de reducir la longitud de la palabra usada en la méquina de la figura
7.14b, alternativa a la presentada en §7.3.3.3, consiste en descomponer la microins-
truccion en dos (figura 7.17):

1) microinstruccion de salto condicional:

si D entonces ir a OF si no ir a 6C;

1 En términos de la teoria de grafos, este problema se enuncia como: obtencién de una particién de cardi-
nalidad minima de los nudos del grafo (estados) en caminos. .
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2) microinstruccidn de asignacion y salto incondicional:
hacer «salidas»|| ir a 6C;

Esta descomposicion suele ser 1til, porque en la prictica se observa que, con fre-
cuencia, las acciones o salidas se mantienen en varias microinstrucciones ejecutadas
en secuencia (por ejemplo ps; y ps» en el microprograma de §7.3.3.2).

La diferenciacion entre los dos tipos de microinstrucciones se puede realizar gra-
cias al contenido de un bit. Surge el concepto de cddigo de operacion.

El GR de la figura 7.15a se puede programar de la forma siguiente (H = microins-
truccién de asignacion, S = microinstruccién de salto):

pio:H(a||p11); p3o:H(||pa1);

P1iS(A|p12|p20);  P31:S(A|P32|pao);

P12:8(B|p11|p20);  p32:S(D|ps1|pio);

p20:H(b, c||p21);  paoiH(a, d||par);

P21:S(C|pa1|p30);  Par:S(B|pai|paz);

P42:S(C|pa1|p3o).

Como se puede observar, se han afiadido microinstrucciones (estados) pi en las que
se posicionan las salidas. Este programa realiza directamente el organigrama de la
figura 7.15b. Habida cuenta que cada microinstruccion indica explicitamente su su-
cesora(s), cualquier ordenacién de las microinstrucciones es valida.

Para concluir los comentarios sobre esta maquina, es preciso poner de relieve que
la descomposicién de la microinstruccién primitiva en una de decisidn (si) y otra de
accion (hacer), permite separar netamente las fases de evaluacién de funciones y de
asignacién de valores. De este modo, se facilita la realizacidn secuencial de funcio-
nes légicas combinatorias 0 de mdquinas de MEALY.

7.3.3.5 Dos instrucciones y direcciones implicitas

Aplicando las transformaciones de secuencializacion (§7.3.3.3) y descomposicion
(§7.3.3.4) a la microinstruccidn bdsica (§7.3.3.2), se obtienen las microinstrucciones
que siguen:

1) microinstruccién de salto condicional:

A:si v® ber éntonces iradc/Fsinoira A + 1;
2) microinstruccidn de asignacion:

A: hacer «salidasy;

La figura 7.18 presenta una mdquina capaz de ejecutar las microinstrucciones
presentadas.

Esercicro. Escribase un microprograma que realice con la maquina de la figura 7.18 el GR
de la figura 7.15a. (Observacion. Dado que se trata de una maquina con direcciones implici-
tas, es importante elegir una ordenacién de microinstrucciones vélida y econdmica.)
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Esercicio. Simplifiquese la mdquina de la figura 7.18 si se supone que se elimina la posibi-
lidad de saltar cuando v = 0 (salto si falso).

Esercicio. Compruébese que la maquina simplificada conduce, normalmente, a microprogra-
mas mads largos. (Sugerencia. Escribase un microprograma que realice el GR de la figura 7.15a.)

7.3.3.6 Realizacién asincrona-autosincronizada: ejemplo

Las diferentes mdquinas para la realizacidn de sistemas secuenciales presentadas a
lo largo de §7.3 son sincronas. Es decir, se ha supuesto que el reloj que acompasa
el desarrollo de las instrucciones es de origen externo y frecuencia fija. La mdquina
que se presenta en este apartado posee un funcionamiento sincrono, pero el reloj
es generado por ella misma, a partir de los eventos que provienen del sistema que
se desea controlar. Este tipo de funcionamiento se suele denominar asincrono-
autosincronizado, o simplemente autosincronizado.

La figura 7.19 presenta un ejemplo de maquina. Sus elementos principales son:
(1) la memoria roM, (2) la matriz de receptividad y (3) el secuenciador (registro, ge-
nerador del reloj y ldgica adicional).

5.5‘ S CODIFICACION
S q S :
8§%§m~< plaa| & | e
X01X01 +—4 pPi|0 O0|A+B —
1 XXX1X 8B {0 1| C| —
»1XX1XX~—-C P31 0| A | AD
X1XXXX [—D pal1 1| — | BC
111000
100100 g
vi Q reloj MgeMoRrIA (¢ = 0 6 1, indiferente)
110000 T - ssalto  salidas
T ol o1 0 0 [(&)
MATRIZ DE RECEPTIVIDAD gt ale ¢l 0 1 0 |m)
0]0 0] 0 0 0 |(p)
q1
1011 0 1 |
a d

b,c

Figura 7.19. Mdquina asincrona-autosincronizada, programada para realizar el GR de la
figura 7.10.

La programacién de los dos primeros elementos define el GR que se realiza. La
matriz de receptividad (normalmente realizada con una PLA), tiene como mision el
generar dos variables légicas disjuntas a partir del estado, q, y de las variables de
entrada: (1) variable de incremento, vi, y (2) variable de salto, vs (vivs = 0).
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Las variables v; y vs vienen a sustituir a la variable v que aparecia en los sistemas
anteriores; v; y vs representan los resultados de dos tests disjuntos e independientes.
Si vs = 1, la préxima microinstruccion que se debe ejecutar estard definida por un
campo de la memoria, denominado direccidn de salto, 6. Si v; = 1 la préxima mi-
croinstruccion que se ejecutard es la siguiente en la memoria. Las salidas emitidas
son las correspondientes a la microinstruccion que se ejecuta (estado actual). La ac-
tivacion de v; o de vsindica al secuenciador la necesidad de proceder a una evolucién
hasta que se alcance el estado (microinstruccién) final correspondiente. Cuando
vi + vs = 0, el secuenciador permanece en reposo. Es decir, la mdquina no evolucio-
na en permanencia como ocurre con todos los métodos presentados anteriormente.
Esta es una diferencia importante con las maquinas sincronas.

De acuerdo con lo enunciado, «se puede» resumir la significacién de una mi-
croinstruccién de la forma siguiente (vivs = 0):
si v; entonces cp: = §
si v; entonces CP: = Cp + | ||hacer «salidas»;
si U;0; entonces CP : = CP.

El formato de la g-ésima microinstruccién, programada sobre dos componentes
independientes, puede «interpretarse» de esta forma:

Campo de: test «s» * test «i» direccién de salto acciones
qes - qei 1) SALIDAS
Us Uj
MATRIZ DE
MEMORIA
RECEPTIVIDAD

Como se puede comprobar, este es un esquema del tipo «instruccion iinica y una
direccion implicita» (§7.3.3.3), aunque bastante mds elaborado.

Para microprogramar un GR, la tnica transformacion previa necesaria (figura
7.20) es la que conduce a otro equivalente, GR, tal que las selecciones sean de orden
no superior a dos (sélo se puede ir a la siguiente microinstruccién o a la de salto).
Dado que una de las direcciones de la decisidn es implicita, la ordenacion de los esta-
dos tiene su importancia a la hora de reducir el nimero de saltos incondicionales.

La figura 7.19 muestra una forma de realizar el GR de la figura 7.10.

En resumen, la realizacién presentada en este apartado:

(1) es asincrona-autosincronizada.

T En [AND 76] se presentan algoritmos para la ordenacién. Estos, dada la mayor flexibilidad de la pre-
sente maquina con respecto a la del §7.3.3.3, son netamente mds simples.
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(2) trabaja en base a selecciones binarias en las que existen dos condiciones de
test que pueden ser funciones complejas (la matriz de receptividad las calcu-
la): v; y vs. El GR debe ser transformado (figura 7.20).

(3) adopta el principio de utilizar una direccion implicita, por lo que interesa de-
terminar una ordenacién adecuada para las microinstrucciones, que reduzca
los saltos incondicionales. (Nota. Las dos consideraciones anteriores llevan a
la conclusién de que este método no es, en general, de transicién directa.)

(4) difiere, desde el punto de vista material, de la realizacién de la figura 7.16 en
la presencia del generador interno del reloj y en la matriz de receptividad (ésta
sustituye al multiplexor).

(4] €4

ez

(@) GR

Figura 7.20. Transformacidon de un grafo, GR, en otro cuyas selecciones sean de orden
no superior a dos.

Esercicio. La matriz de receptividad y la memoria (figura 7.19) pueden fusionarse en una
Unica matriz ldgica programable, puesto que la entrada a la memoria (g2 — ¢1) ataca también
a la matriz de receptividad. Obténgase, para el GR de la figura 7.10a, el contenido de la pra,
cuando se hace desaparecer la memoria. Comparese este ultimo tipo de realizacién con los
presentados en §7.3.1 (tablas 7.3 y 4).

7.3.4 A modo de resumen

La realizacion de grafos reducidos se ha ido desarrollando a partir de métodos pura-
mente /dgicos (§7.3.1) hasta llegar a métodos en los que el planteamiento més natu-
ral es de tipo algoritimico (§7.3.3).

Desde el punto de vista de las técnicas de disefio, en §7.3.1 no se utilizan funda-
mentalmente mas que las tablas de verdad, las ecuaciones de excitacion de los biesta-
blesy, solo a veces, el digebra de BooLE. El paso esencial desde los métodos cablea-
dos (capitulo 6) reside en la implementacion directa de las tablas, no considerandose
el nivel de puertas ldgicas.

En §7.3.2 se modificaron los esquemas bdsicos para disminuir el nimero de variables
de entrada al macrocomponente programable (memoria o matriz logica). Concep-
tualmente, la modificacién de los esquemas del §7.3.1 posibilitan una aproxima-
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cién, dentro de una cierta continuidad, a los métodos mds informdticos de realiza-
cién, con frecuencia denominados microprogramados.

El proceso seguido en el estudio de mdquinas bdsicas de decisiones binarias
(§7.3.3) se resume en la figura 7.21. La rdpida presentacién de una maquina autosin-
cronizada, sirve como contundente ejemplo de que en este dominio, la principal li-
mitacién a la hora de concebir nuevas maquinas es la imaginacién del disefiador.
Para «aplicaciones especiales», es seguro que «maquinas especiales» conducirdn a
«las mejores» soluciones.

(§7.3.3.2,
[ Test| oF 5C Smmas | fHOSh

Secuenci y Wosicién

fo] Tesr] oF | oC |

| Test|E| oC/F | Saumas |
(§7.3.3.3 SALIDAS j 6

figura 7.16) (§7.3.3.4,
- figura 7. 17)
Descomposicién Secuencializacién

(o] Test|§] sc/F ] ggﬁ:ﬁ‘)ﬁm

[ _Swmw ]

Figura 7.21. Relaciones entre los formatos de las microinstrucciones de las maquinas basicas
de decisiones binarias.

Por ultimo, es importante sefialar el cardcter basico del material presentado. Actual-
mente existen comercializados secuenciadores de potencia superior a los considerados.
Asi, por ejemplo, es frecuente encontrar en éstos facilidades como: (1) llamadas y
retornos de submicroprogramas ( el secuenciador suele contener una pequefia pila
para las direcciones de las microinstrucciones); (2) direccionamientos relativos con
lo que, entre otras propiedades, se puede reducir la longitud de la palabra (el secuen-
ciador suele contener una unidad aritmética elemental); (3) contadores de iteracio-
nes, para simplificar la microprogramacién de bucles;...

7.4 REALIZACION DE REDES DE PETRI

Una vez estudiada la realizacion de sistemas 16gicos combinacionales y secuenciales,
en este apartado se aborda la realizacion de sistemas concurrentes descritos con
RdP. En lo sucesivo se considerardn inicamente RdP binarias. Redes con un reduci-
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do nimero de lugares no binarios podrian ser transformadas en binarias, realizando
la cuenta de marcas de estos lugares en una parte operativa (figura 2.19).

Para la realizacion directa de RdAP binarias, a menudo se adoptara uhia simulacién de
su comportamiento basada en la inteconexion de diversos GR. Una discusion sobre téc-
nicas especiales para la descomposicion de RdP binarias en GR se presenta en §7.4.3.

7.4.1 Métodos logicos de transicion directa

La realizacion de RdP, igual que la de GR (§7.3), consiste en materializar:

1) el marcado, que representa el estado del sistema,
2) la funcidn de fransicion entre marcados (estados),
3) la funcién de salida.

La realizacién de la funcion de salida no plantea problema especifico alguno y
podré ser disefiada utilizando conceptos y técnicas presentadas anteriormente. Aho-
ra bien, el marcado de una RdP es en si una codificacion especial del estado interno
del sistema, por lo que su realizaciéon y la de su funcidn de transicidén presentaran
ciertos rasgos especificos.

La forma ma4s directa de realizar una RdP binaria consiste en: (1) asociar un biesta-
ble a cada lugar y (2) materializar con una memoria o matriz légica programable la
funcién de transicion; es decir, la activacion y desactivacion de dichos biestables. Este
primer método posee la ventaja de permitir un disefio fécil y general, conceptualmente
similar al presentado en el capitulo 6 (realizacién cableada modular), por lo que la
realizacion de RdP no binarias es también inmediatat. Su principal inconveniente ra-
dica en el bajo rendimiento que se alcanza, normalmente, en la utilizacién de Roms y
pLas. En efecto, baste constatar simplemente que la realizacidn directa de la RdP
de la figura 7.22 necesitara 12 entradas (5 entradas al sistema y 7 variables de marca-
do), 7 biestables [asociados a los lugares y cuyas salidas con las variables que repre-
sentan el marcado, M(p;)] y 11 salidas (dado que b = ¢ sélo hay 4 salidas del siste-
ma; si los biestables fueran D o T, se necesitardn 7 funciones de excitacién, pero si
los biestables fuesen R-s 0 J-K, se necesitarian dos funciones de excitacion por biesta-
ble, con lo que el nimero total de salidas a generar seria 18 en vez de 11).

Si 7 es el nimero de lugares de la RdP, n = |P|, el anterior esquema de codifica-
cién representa el marcado con n variables, M(pj). Para reducir de forma importan-
te este niimero, se puede optar por una codificacién fofal (§7.2.3.1) o independiente
por campos (§7.2.3.2).

7.4.1.1 Codificacion total del marcado

Toda realizacién basada en una codificacion total del marcado se ha de desarrollar
en dos fases:
1) Obtencién de los diversos marcados (éstos son las configuraciones, segun la
terminologfa de §7.2.3) y las evoluciones. Dicho de otro modo, la obtencion
del GR equivalente a la RdP (§1.5.4).

+ Basta con utilizar contadores en vez de biestables. La activacion y la desactivacion de un biestable se
convierten en la incrementacidn y la decrementacién de un contador.
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2) Realizacion del GR obtenido, para lo que se pueden utilizar las técnicas presen-
tadas en §7.3.

La realizacion basada en la codificacion total del marcado circunscribe a las RdP
al modelado, puesto que la realizacion contemplard al sistema como secuencial
(GR). Desde un punto de vista préctico, la codificacién total puede ser interesante
con sistemas en los que no exista un paralelismo tal que conduzca a un numero exce-
sivamente grande de marcados.

Los mayores inconvenientes que presenta esta forma de proceder residen en la
complejidad operatoria y en la escasa flexibilidad de las realizaciones (una pequefia
modificacién en la RdP puede provocar importantes cambios). En el caso de la RdP
de la figura 7.22, el GR equivalente tiene 10 estados, de donde son necesarias 4 va-
riables de estado, como minimo.

Figura 7.22. Red de Petri que se desea realizar.

7.4.1.2 Codificacidn independiente por campos del marcado

Después de obtener los marcados alcanzables en la RdP (es decir, las configuracio-
nes del caso que nos ocupa), la codificacion independiente por campos se puede lle-
var a término en dos fases (presentadas en §7.2.3.2):

1) Obtencién de una particion de las funciones M(p;) de modo que en todo ele-
mento de la misma, campo, se excluyan mutuamente los M(p;).
2) Codificacidn independiente de cada uno de los campos obtenidos.

A diferencia de lo presentado en §7.2.3.2, que se situaba en un contexto combina-
cional, aqui el préximo marcado depende del actual. Por consiguiente, la secuencia
de valores que toma un campo es funcién del valor de los otros: existe una interde-
pendencia en la evolucion.



266 REALIZACION CON MEMORIAS Y MATRICES LOGICAS PROGRAMABLES

Volviendo a considerar la RdP de la figura 7.22, se puede observar que, por ejem-
plo, ®1= {M(p1), M(p2), M(p3), M(ps)} y ®2= [(M(ps), M(ps), M(p7} forman
una particién de las funciones M(p;) tal que cada grupo estd definido por lugares
cuyos marcados estan en exclusion mutua. En el caso que nos ocupa es f4cil consta-
tar que @1 y ®2 son clases principales disjuntas y, ademads, ®; es una clase maxima
de compatibilidad.

Codificando ®@; y ® con las variables intermedias g2-q1 y r2-r1, respectivamente,
se obtendrdn realizaciones con 9 entradas, 4 biestables y 8 salidas. (Esercicio. Ob-
téngase una utilizando biestables D.)

Aq;

(@) PLA (las partes sombreadas estan (b) Grafos que simulan la RdP de la
totalmente desaproveechadas). figura 7.22.

Figura 7.23. Esquema de una posible realizacion de la RdP de la figura 7.22. (Nota. El mar-
cado po significa s6lo que { ps, ps, p7} estan desmarcados.)

La figura 7.23a, presenta «macroscopicamente» la PLA de otra realizacion en la
que se generan adicionalmente dos funciones 16gicas de sincronizacion (éstas son
redundantes):

1) g3 = g2 q1 (g3 = 1 sii ps estd marcado: g3 = M(p3)),
2) r3s=rr1 (rs=1 sii p; estd marcado: r3 = M(p»)).

Como se puede comprobar facilmente, gracias a la adicién de g3 y de r3, la PLA
(figura 7.23a) mds los correspondientes biestables realizan dos sistemas secuencia-
les que son précticamente disjuntos (las salidas son disjuntas y las entradas com-
parten s6lo A y B), pero mutuamente sincronizados (a través de las variables g3 y
r3). La figura 7.23b representa los dos GR que, en este caso, simulan el comporta-
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miento de la RdP. (El segundo de ellos, cambiando 3 por D, es el utilizado en el
§7.3, figura 7.10a.)

Una rapida consideracion de la pLA de la figura 7.23a permite constatar que en
gran parte su superficie estd totalmente desaprovechada. Con el objeto de mejorar
el rendimiento de utilizacién de los macrocomponentes, surge la idea de realizar la
RdP interconectando mdquinas secuenciales; cada una de ellas realizard un GR. De
este modo, se puede obtener una realizacidén con dos pLA, una de 6 entradas y 6 sali-
das y otra de 7 entradas y 4 salidas (verifiquese).

En resumen, al utilizar métodos 16gicos de transicion directa se observa que la
codificacion total del marcado conduce a realizar el GR equivalente a la RdP. La
utilizacion de una codificacion independiente por campos «equivale» a simular el
comportamiento de la RAP mediante varios GR interconectados. (Se obtiene una
descomposicién de la RdP binaria en GR.) Mds que realizar la RdP con una tinica
PLA, normalmente serd mds econémica la interconexién de mdquinas secuenciales
(basadas en PLAs mds pequefias) que realicen los diferentes GR. Si en vez de PLAS
se utilizan rRowMs, habida cuenta del crecimiento exponencial de su capacidad con el
numero de entradas, practicamente siempre serd mds econémico el realizar las RdP
por interconexién de maquinas secuenciales.

A modo de observacion final, interesa constatar que la realizacion de varios GR
con una unica RoM se lleva a cabo calculando el GR productot de los que se desean
realizar. En efecto, dado que para seleccionar una palabra, €l decodificador de la
ROM genera términos minimos (disjuntos), la lectura de palabras es secuencial; por
tanto, la realizacién de varios GR con una roM se llevara a cabo como si se tratase
de un unico GR, el GR producto. Esto constituye una diferencia fundamental con
las realizaciones basadas en una pPLA, puesto que en este ultimo caso, pueden haber
varios términos producto simultdneamente activos («lectura simultdnea de varias
palabras»). De lo anterior se desprende que si se desea realizar una RdP que presente
evoluciones simultdneas con una tinica RoM, serd mas econdmica la utilizacion del
esquema de codificacion total (el GR equivalente a la RdP nunca tendrd més estados
que el GR producto de los GR en que se descomponga la red).

Erercicio. Realicese con una tinica pra de 8 entradas y 10 salidas la RdP de la figura 7.22
(Sugerencia: utilicense dos multiplexores aplicando el planteamiento basico sobre la reduc-
cién del numero de variables de entrada, §7.3.2.1.)

Esercicio. (1) Descompdngase en GRs la RdP de la figura 7.254. (2) Impdngase como res-
triccién suplementaria a la descomposicién el que cada salida deba ser generada por un tinico
GR (particion de las salidas en GR).

7.4.2 Realizaciéon con maquinas de decisiones binarias

El funcionamiento de las maquinas de decisiones binarias (§7.3.3) es puramente se-
cuencial, por lo que la realizacién directa de RAP con evoluciones paralelas no es
posible, salvo si se microprograma el GR equivalente. .

T Si GR; tiene n; estados, el grafo GR = GR; X GR; poseerd, como méximo, n;n; estados (producto car-
tesiano de los estados de GR; y de GRy).
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Una segunda posibilidad para realizar una RdP consiste en interconectar tantas
madquinas de decisiones binarias como GR se hayan obtenido al descomponerla. Pa-
ra que este esquema funcione correctamente, deben sincronizarse las diferentes ma-
quinas. La figura 7.24 muestra uno de los métodos mds simples, utilizable con las
maquinas de dos instrucciones presentadas en §7.3.3.4 y 5. La sefial comienzo de
ciclo establece la adquisicion de las entradas al cargar un registro (se hace un mues-
treo de éstas) a la vez que se activan los biestables que autorizan la evolucion de las
maquinas (si un biestable estd desactivado, la maquina correspondiente no evolucio-
na puesto que no le llegard su reloj, CK;). Cuando la i-ésima mdquina ejecuta una
instruccién de salida (cddigo de operacion a 1, C@; = 1), se desactiva el biestable
de autorizaciéon de funcionamiento y queda bloqueada hasta que se genere el proxi-
mo comienzo de ciclo; es decir, hasta que todas las maquinas hayan ejecutado una
microinstruccidn de salida. Procediendo de este modo, si todas las méquinas son mi-
croprogramadas de forma que de no existir evoluciéon en el GR que realiza, se ejecu-
te la microinstruccién de salida asociada al estado, el funcionamiento global serd
correcto y se basard en una interpretacién sincrona de la evolucién de la RdP.

As C@ CQD2
4 | cK

)cx, )
: R QH R O

F, 1 2
F s 0 —s 0
CK; = Reloj para la
j-ésima maquina.
. - CQ@i = Cébdigo de operacién
Comienzo de ciclo de la i-ésima méquina.

Figura 7.24. Dispositivo para la sincronizacién de méaquinas de decisiones binarias con dos
instrucciones. (Nota. Esta particularizado para la realizacién de la RdP de la
figura 7.22.)

Una tercera posibilidad para realizar una RdP consiste en ejecutar todos los GR
con la misma maquina de decisiones binarias, multiplexando en el tiempo la activi-
dad de ésta entre los diferentes GR. Es decir, se secuencializa el tratamiento de los
GR con lo que el sistema se hace més lento. En la explotacion de computadores,
este tipo de técnica se denomina multiprogramacion. Las maquinas presentadas en
las figuras 7.14, 7.16, 7.17 y 7.18 no pueden ser multiprogramadas puesto que, sin
considerar por el momento la realizacién de las salidas, solo poseen un registro o
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contador de estado o de programa y se necesitaria uno por GR. La relativa especifi-
cidad y complejidad material de las nuevas mdquinas asi como de sus técnicas de
programacion, hardn que no exploremos mas esta via. (En el capitulo 9, utilizando
microcomputadores estdndar y técnicas de programacidn mads simples, se obtendrén
realizaciones multiprogramadas.)

En resumen, con una maquina de decisiones binarias (§7.3.3) se puede realizar el
GR equivalente a una RdP dada. Mediante la interconexién material de varias ma-
quinas, se pueden realizar los GR en que se haya descompuesto la RdP. En este ulti-
mo caso no debe olvidarse la sincronizacidén entre las maquinas.

Esercicio. Programense dos mdquinas de dos instrucciones y direccidn implicita (§7.3.3.5)
para realizar la RdP de la figura 7.22.

7.4.3 Descomposicién de una RdP binaria en GR

En este apartado se presentan técnicas para la descomposicion de una RdP binaria.
El lector que abordara el ultimo ejercicio del §7.4.1, observaria que el método direc-
to de descomposicion sugerido en ese parrafo resulta muy laborioso pues se han de
seguir los siguientes pasos:

a) Obtener los marcados alcanzables (estados), M.

b) Construir los compatibles méximos con los M(p)).

¢) Determinar una particion de los M(p;) que los cubra a todos.
d) Codificar los diferentes campos.

e) Determinar los eventos y salidas de interconexion entre GR.

En §7.4.3.1 se presenta una técnica que sustituye a las tres primeras fases, con
lo que la descomposicion suele ser extremadamente facil. En §7.4.3.2 se presenta
otra técnica que permite descomponer la RdP en menos GRs que elementos tiene
el incompatible maximo de los M(p;). De este dltimo modo, la realizacién final po-
drd hacerse con un menor nimero de mdquinas funcionando en paralelo.

Para simplificar los tratamientos posteriores, en lo sucesivo se utilizara el macro-
grafo (MG) asociado a la RAP que se desea realizar. Es decir, la RdP que se obtiene
al sustituir por macrolugares (ML) las subRdP reducibles (§4.5.1). Evidentemente,
este tipo de reduccion es vélido puesto que los marcados de los lugares de un ML
de una RdP binaria estarén en exclusiéon mutua. Por otro lado, resultara «natural»
que todo grupo de lugares reducibles a un ML se realice en un mismo GR.

7.4.3.1 Descomposicidn en componentes conservativas y cobertura de los
macrolugares (ML)

a) Descomposicion:

Sea Y una componente conservativa monomarcada del MG asociado a la RdP que
se pretende realizar. Es decir, sea Y una componente conservativa tal que Y7 - My =
=YT-M=1.

Si todos los lugares del MG (o RdP) pueden estar marcados, entonces Y € {0, 1}". De
ello se desprende que Y” - M, = 1 puede ser reescrito como Vp; € [| Y]] 2pi M(pi) = 1.
Por consiguiente, los marcados M(p;) tales que los p; pertenecen al soporte de una
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s, 812)  Z2 = {sa1)
531,832} Zs = [su)

NN
I

Figura 7.25. RdP y MG asociado

componente conservativa monomarcada, definen directamente un compatible méxi-
mo [los M(p:) est4n en exclusién mutua y no se puede afiadir otro M{(p;)]. Ademas,
la subRdP que definen los lugares, p;, con sus transiciones de entrada y de salida
es un GE binario. _

Si el MG asociado a la RdP que se desea realizar es vivo (cosa que es de esperar),
toda componente conservativa monomarcada serd elemental, por lo que para su de-
terminacion bastara con aplicar el algoritmo del §4.7.2.2. En efecto, la vivacidad
exige que sean disparables todas las transiciones del MG y, por consiguiente, exige
que para toda componente conservativa, Y, se verifique: YT-My>1 (proposicion
4.17). Si Y no fuese elemental, cabria la p051b111dad de descomponerla: Y = Y+ 7Y;
ello implicaria: Y7 Mo= (Y + ¥)T - Mo= YT My + Y My > 2, de donde la no
elementaridad de Y implica el que no pueda ser monomarcada.

La aplicacion del algoritmo que permite calcular las componentes conservativas
elementales (§4.7.2.2.) al MG (RdP) de la figura 7.25b arroja el siguiente resultado
(todas son monomarcadas):
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Y{=(11000100) ||Y1]| = (ML4, MLg, ML)
Y7=(11000011) || Y2|| = (ML4, MLg, MLg, MLx)
Y7=(10110100) || Y3]| = {ML4, ML¢c, MLp, ML}
Yi=(10110011) || Y4|| = {ML4, MLc, MLp, ML, ML)
YT=(10101001) || ¥s|| = (ML4, MLc, MLE, MLy}.

b) Cobertura:

La realizacion de la RdP (figura 7.25a) puede hacerse de modo que cada ML; se ma-
terialice una unica vez, en uno de los GR que se obtengan. Esto plantea el problema
de la cobertura de los macrolugares por las componentes conservativas monomar-
cadas.

Entre las miiltiples coberturas posibles, interesa seleccionar una que simplifique
la realizacién final. Asi, por ejemplo, puede ser «razonable» la determinaciéon de
una (la) cobertura que minimice el niimero de GR necesarios. (Nota. Este problema
es andlogo al que se presenta en la segunda fase del método de Quine-McCluskey
para simplificar la realizacion de funciones 16gicas combinacionales con puertas: la
determinacién de un subconjunto minimo de términos producto que cubra la fun-
cién légica [HILL 78].)

La tabla 7.5 presenta la tabla de cobertura para el ejemplo considerado. La com-
ponente Ys es esencial en toda cobertura puesto que es la tinica que permite cubrir
MLE. Al retener Ys, se pueden eliminar las columnas asociadas a los ML; que cubre:
ML4, ML¢, MLy.

Macrolugares (elementos a cubrir)

( (
M}A ML3 M\},c MLp | MLg | MLr | MLg \ngH
N {
Componentes Y: % X / X )
conservativas { {
monomarcadas Y, } X ) X ?{
(elementos
cobertores) Y; ; & X X >
f —
Y4 } >< X X ?(
Ys >r/’/ ; E— %
) ) l )

Ys es esencial en
toda cobertura

Tabla 7.5 Tabla de cobertura (una X en la casilla i~/ significa que Y; cubre a ML)).
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Se denomina irredundante toda aquella cobertura en la que la eliminacion de un
elemento cobertor implique que alguno(s) de los elementos a cubrir no sea(n) efecti-
vamente cubierto(s); es decir, en una cobertura irredundante todos los cobertores
son necesarios. Considerando la tabla 7.5, tras eliminar las columnas ML4, MLc¢
y MLy, se constata que para cubrir: '

—ML 3 se tiene que tomar Y; o Y3
—MLp se tiene que tomar Y3 o Yy
—MLF se tiene que tomar Y; o Y3
—MLg se tiene que tomar Y o Yi

Sea Y, la variable 16gica que expresa la pertenencia de Y; a una cobertura. El con-
junto de todas las coberturas irredundantes resultara del producto de las funciones
de cobertura de cada elemento a cubrir. En el del caso que nos ocupa viene dado por:

Ys(Y1 + Y2)(Ys + Ya) (Y1 + Ya) (Y2 + Ya) = Y2Y3Ys + Y1YaYs.

donde Ys representa al cobertor esencial, Y; + Y2 es la funcion de cobertura de
MLg, Y3 + Yas es la funcién de cobertura de MLp, etc.

La RdP de la figura 7.25a puede cubrirse a partir de las componentes
{ Y2, Y3, Ys}) o bien { Yy, Y4, Ys}. En ambos casos se definen GE monomarcados.

¢) Lugar de reposo:

Consideremos en lo sucesivo, por ejemplo, la cobertura obtenida a partir de
{ Y1, Y4, Y5}. Cada una de las componentes de esta cobertura permitird la definicion
de un GR. La interconexion de los tres GR permitira la simulacion de la RdP.

Antes de continuar, conviene observar que el macrolugar ML4 aparece tres veces
(una en cada componente) y los macrolugares MLc y MLy aparecen dos veces (en
Y4 e Ys). Como para realizar la RdP basta con que cada ML; se materialice en un
unico GR, se podran llevar a cabo ciertas simplificaciones. Estas consistirdn en sus-
tituir una vez cada uno de los ML; por la subRdP correspondiente; en las demds
apariciones de cada ML se procederd a mantenerlo como un unico lugar, /;. Habida
cuenta de que los lugares /; que aparecen en un grafo no conservan informacion al-
guna sobre la coordinacién evento-accidn definida por la RdP inicial, podrén ser
fusionados en uno unico, al cual denominaremos /ugar de reposo, LR (todo GR
puede tener un tnico LR). La denominacién «lugar de reposo» se ha adoptado por
ser éste el uinico lugar marcado cuando los macrolugares sustituidos en el GR estdn
desmarcados. (Nota: éste es el papel de po en la figura 7.23b.)

Volviendo sobre el ejemplo considerado (figura 7.25), en la figura 7.26 se represen-
tan tres GR. Estos han sido obtenidos al realizar determinadas sustituciones de macro-
lugares por las subRdP que representan. Las sustituciones realizadas son las siguientes:

1) Todos los macrolugares de Y4; el grafo que se obtiene es GR;. GR; no tiene
lugar de reposo.

2) ML y MLr de Yi; se obtiene el grafo GRz. LR> se obtiene puesto que MLy,
se sustituyd en GR;

3) MLg de Ys; se obtiene GR3. LR3 proviene de la fusion de /4, lc, /n, todos susti-
tuidos en GR;.
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LR3 = {l4,lc, IH)

—~
—

=
-y

GR3

Figura 7.26. Grafos que simulan el comportamiento de la RdP de la figura 7.24.

d) Eventos:

Para terminar la definicidn de los GR basta con definir los eventos asociados a
las transiciones de salida de los diferentes macrolugares. Ello ha de hacerse de forma
que la coordinacién entre los GR simule a la RdP original. Asi, a los eventos que
etiqueten transiciones de salida de los ML, deber4 afiadirsele, eventualmente, la con-
dicién que complete la sensibilizacién de su transicién. En la figura 7.26, los eventos
etiquetados con «?» puede que tengan que ser completados.

La evolucién p3 = ps se produce (figura 7.254) si M(ps)d = 1. Por consiguiente,
d? = d para la transicién 1 (figura 7.25). Del mismo modo, la evolucién p; = pro
se llevard a cabo si gM(ps)M(p-) = 1. El evento asociado a la transicion 3 debe com-
pletarse hasta gM(ps). El marcado de ps se produce cuando M(ps)d = 1, luego la
transicién 6 debe etiquetarse M(ps)d. El cdlculo de los nuevos eventos arroja el si-
guiente resultado:

) dr=d 6) d? =dM(ps)
2) f1=f 7) g7 =gM(p7)
3) g7 =gM(ps) 8) 11 = IM(p14)
4) k? = k M(p13) 9) S =fM(ps)
5) 1?7 =[M(po) 10) k? = k M(pro).

El conjunto de GR de la figura 7.26, completados los eventos segtin la lista ante-
rior, permite simular el comportamiento de la RdP de la figura 7.25a.
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Erercicio. Obténganse tres GR que simulen la RdP de la figura 7.25a a partir de la cober-
tura { Y2, Y3, Ys}. Obsérvese que, en este caso, es posible obtener una mejor realizaciéon que
la de la figura 7.26, puesto que se puede obtener una particidn de las salidas en GR (es decir,
cada salida estard generada por un unico GR).

e) Limitacion:

A pesar del atractivo que su simplicidad operativa le proporciona, el método de des-
composicién en GR presentando en este apartado no es siempre utilizable puesto
que existen RdP binarias y vivas que no se descomponen en componentes conserva-
tivas monomarcadas. Asi, a modo de ejemplo, la figura 7.27 presenta dos de tales
redes. (Aunque la primera de ellas es binaria y viva gracias al interpretacion, la se-
gunda lo es considerada como red auténoma.) Ambas redes estan constituidas por
una unica componente conservativa elemental, ¥ = (2111 1), no monomarcada:
YT My =2.

Desde un punto de vista préactico, hay que sefialar que, afortunadamente, rara vez
una RdP binaria y viva que modela un determinado sistema no se descompone en
componentes conservativas monomarcadas.

Figura 7.27. RdP vivas y binarias que no pueden descomponerse en componentes conservati-
vas elementales monomarcadas.

Esercicio. Compruébese la afirmacién anterior utilizando las RdP que modelan sistemas
en los capitulos 1, 2 y 3.

EJERCICIO. ;jMerece la pena simplificar las RdP utilizando el método de los eventos fuente
(§3.5) cuando se va a proceder a una realizacion con PLA 0 RrROM?
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7.4.3.2 Descomposicion en RAP binarias y vivas

Hasta ahora, las RdP binarias y vivas han sido descompuestas directamente en GR.
Para una RdP dada, son necesarios, como minimo, tantos GR como lugares simul-
taneamente marcados existan (éstos forman un incompatible). De este modo, la des-
composicion directa de la RdP de la figura 7.25a conduce a 3 GR. Por otro lado,
la RdP de la figura 7.27b puede llegar a tener sélo 2 lugares simult4neamente marca-
dos, pero su descomposicién directa conduce a 3 GR. (Esto puede comprenderse al
observar que los marcados alcanzables son: { P1, P2-D3, Pa-Ds, P2-D2-Ds, P3-Ds )} y, evi-
dentemente, {M(pz), M(ps), M(ps)} forma un incompatible (méaximo), a pesar de
que p2-p3-ps no pueden estar simultdneamente marcados.)

La reduccion del niimero de GR necesarios en la descomposicion y cobertura de una
RdP puede ser interesante para obtener una realizacién con un menor nimero de
subsistemas fisicos. A continuacin se presenta un método que procede recubriendo
la RdP original por tantas otras redes como se desee. Posteriormente, cada red em- .
pleada en la cobertura podr4 ser realizada directamente o previa transformacién en
GR (§1.5.4). En este iiltimo caso, se dird que la descomposicién en GR es indirecta.
Como es de esperar las descomposiciones indirectas en GR suelen ser menos flexi-
bles que las directas, aunque pueden permitir realizaciones mas econdmicas.

ALGORITMO DE COBERTURA CON RDP Y REDUCCION:

(1) Obténgase el MG asociado a la RdP.

(2) Particionense los macrolugares del MG de acuerdo con el criterio del dise-
fiador. [Cada elemento de la particién, ®;, generard una de las RdP que
constituirdn la cobertura.]

(3) Para cada @; {elemento de la particién anterior)
hacer (3.1) Apliquense las reglas de reduccién (§4.5) a los macroluga-

res que no pertenezcan a @, sabiendo que ningiin macrolugar
podra ser sustituido si ello afecta a transiciones de entrada
y/o de salida de los macrolugares pertenecientes a ®;.

(3.2) Obténganse los eventos asociados a las transiciones de tal
forma que se mantenga la coordinacién evento-acciént.

(3.3) Sustitliyanse los macrolugares que pertenezcan al elemento de
la particion que se trata, por las correspondientes subRdP que
los definen en la RdP inicial.

Esempro. Sea de la RdP de la figura 7.254.

Paso 1: Se obtiene el MG (figura 7.25b).

Paso 2: Se elige, por ejemplo la particién de los macrolugares; ®; = (A,B,C,D} y
®> = {E,F, G, H}. Por consiguiente, la cobertura que se obtenga tendra sélo dos
elementos.

T En este paso puede ser interesante el aplicar el método de simplificacién denominado fusidn de lugares
(§3.3) a los macrolugares de la RdP resultante que no pertenecen a @;.
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Paso 3:
1.2 iteracidn: Sea ®, (macrolugares sombreados en la figura 7.28a).
(3.1) *MLrF es implicito (lo implican ML y MLg). Se elimina.
*MLE es implicito (lo implican MLp y MLg). Se elimina.
*MLg y MLy pueden reducirse a MLgH. :
*MLgx no puede ser sustituido puesto que sus transiciones de entrada y de
salida son compartidas con macrolugares de ®;, {MLg, MLp, ML4].
(3.2) *La unica transicién que es preciso considerar es la transicion de salida de
MLgg. Su disparo es posible sdlo si pg y p1s (figura 7.26a) estdén marcados
y se produce /.
(3.3) La sustitucién de {ML4, MLg, MLp) conduce a la RdP de la figura 7.28b.
2.2 iteracion: (Realicese como ejercicio.)

IM(po)M(p14)

®

Figura 7.28. Obtencion del elemento de la cobertura de la RdP que corresponde a los ML:
A, B, C, D. (Obsérvese que una transformacion local puede eliminar el parale-
lismo final.)

7.5 CONCLUSION

En el presente capitulo hemos abordado la realizacion RdP con memorias (ROM,...)
y matrices légicas programables (pLA,...), macrocomponentes que han sido defini-
dos funcionalmente.



Ejercicios 277

La relativa ineficiencia de la realizacion directa de RdP con pLA 0/y ROM ha con-
ducido a su simulacién mediante GR (realizables con maquinas secuenciales) inter-
conectados. Es decir, la realizacién de sistemas concurrentes estd basada principal-
mente en la realizacion de sistemas secuenciales. Dado que estos tltimos se llevan
a cabo como combinacionales realimentados a través de un registro, se comprenderé
la estructura con que se ha dotado al capitulo.

Desde un punto de vista conceptual, puede decirse que las realizaciones con RoM
y PLA son esencialmente tabulares, lo que las diferencia de las presentadas en el capi-
tulo 6.

Dentro del marco de realizaciones tabulares, éstas evolucionan desde las que defi-
nen directamente tablas de verdad hasta las que representan microprogramas, enten-
didos éstos ultimos en el sentido mds algoritmico.

La multitud de variaciones imaginables a partir de los métodos de realizacién ex-
puestos, asi como de otros posibles, hace que el material presentado constituya sélo
una primera aproximacion a la realizacion microprogramada. Sin duda alguna, la
aplicacién mds importante de este tipo de técnicas ha sido la realizacién de secuen-
ciadores para computadores digitales. Los textos [HUSS 70] (auténtico pionero) y
[KATZ 77], permiten completar la perspectiva en este drea de aplicaciones
secuenciales.

A modo de comentario general sobre el disefio, hay que sefialar que la relativa
«distancia» existente a veces entre la descripcién de un sistema (RdP) y la realizacién
con un determinado tipo de médquina, sugiere el interés del empleo de paquetes de
ayuda al disefio (cap, Computer Aided Design).

Por ultimo, es interesante resaltar cémo el concepto de estado de un GR se
aproxima al de direccién de un microprograma (§7.3.3). De este modo, resulta
natural llegar a establecer organigramas «funcionalmente equivalentes» a un GR
o RdP. En el anexo 1 se establece una relacién similar desde un punto de partida
distinto.

EJERCICIOS

7.1 Dado el GR de la figura 3.7, obténganse microprogramas que lo realicen sobre las maqui-
nas de decisiones binarias con dos instrucciones. Especifiquese el contenido real de las
memorias.

7.2 Obténgase una cobertura directa con GR de la RdP de la figura 2.3. ¢Cémo podria pro-
cederse para que cada salida sea generada por un tnico GR? (Sugerencia. Mejorese la
solucién trivial que consistiria en expansionar cada ML tantas veces como sea necesario
para particionar las salidas. La simplificacién por fusién de lugares puede ser de gran
utilidad.)

7.3 Diséfiese un sincronizador para maquinas de decisiones binarias con una tinica instruc-
cion. (Sugerencia. La definicion de una funcién de salida extra para la sincronizacién fa-
cilita la tarea.)

7.4 Diséfiese un sincronizador para maquinas asincronas-autosincronizadas (8§7.3.3.5).

7.5 Desde el punto de vista de la realizacién de RdP vivas y binarias, jse podria haber defini-
do el concepto de macrolugar como todo componente conexo obtenido al eliminar de la
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Figura E.7.1 RdP binaria y viva en la que la subRdP formada a partir de {pa2, ps, pa, Ps, P7)
puede contener més de una marca.

RdP inicial las transiciones de tipo Y? (Sugerencia. La RdP de la figura E.7.1 puede serle
1til para apoyar sus razonamientos.)

7.6 (Qué modificaciones habria que hacer en las técnicas presentadas en §7.4 para poder rea-
lizar RAP con arcos inhibidores? Realicese la RAPAI de la figura 2.20.

7.7 Para la RdAP de la figura 7.22, obténgase una realizacion cableada (no modular) funcio-
nalmente equivalente a la basada en el método 16gico de transicién directa. (Sugerencia.
Después de obtener la tabla de programacion de la pLaA, calciilense las ecuaciones 16gicas
que realiza y propéngase una implementacién con puertas légicas.)
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Realizacion programada (I):
automatas programables generales

8.1 INTRODUCCION

Desde principios de la década de los setenta, se observa que las técnicas de realiza-
cién de automatismos l6gicos evolucionan hacia métodos programados.
Las principales razones de esta evolucion se pueden resumir en los puntos que siguen:

1)

2)

3)

4)

3)

La flexibilidad de los sistemas programables, que facilita de forma importante

la automatizacién de procesos complejos 0/y existentes en un pequefio nimero

de ejemplares. Por otro lado, la programabilidad simplifica extraordinariamente

la adaptacion de los automatismos ante los posibles cambios del proceso (cade-

nas de fabricacién de «familias de piezas», procesos quimicos con diagrama

de flujo modificable, etc.).

La integracion en el automatismo, a bajo coste, de funciones complejas muy

diversas. De este modo, al lado de las funciones légicas, pueden integrarse fun-

ciones de servicio (archivado, elaboracién de balances, edicién de mensajes,

etc.) e incluso funciones de regulacion (reguladores PID, etc.).

La disminucidn del coste relativo al desarrollo y a la produccién del equipo,

gracias a la utilizacion de macrocomponentes (disminucién del nimero de tar-

jetas, conectores, conexiones, etc.).

El aumento de la seguridad de funcionamiento, obtenido en base a:

® una mayor fiabilidad, debida a la disminucién en el nimero de componentes
del sistema.

® una mayor reparabilidad, facilitada por la existencia de programas y/o dis-
positivos de diagnostico de averias.

La posible descentralizacion del control, facilitada por la capacidad de comu-

nicacién de los microprocesadores, asi como de otros macrocomponentes.

Esta evolucion trajo consigo la aparicién de computadores especializados en el trata-
miento de problemas ldgicos en un 4mbito industrial que se denominan Autdmatas
Programables, ap (Programmable Logic Controllers, pLc). En realidad se trata de un
fenémeno de transposicion técnica similar al que se produce, de forma paralela, al
reemplazar las cadenas analdgicas de regulacién por computadores numéricos.

279
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A pesar de su reciente aparicion ([HOLZ 69] es considerada cronoldgicamente co-
mo la primera referencia), los AP son, hoy en dia, sistemas ampliamente utilizados.
Entre otros aspectos claves que justifican su aceptacion, pueden citarse:

a) los lenguajes de programacion, faciles de entender por personal no cualificado
en informatica.

b) la modularidad, especialmente a nivel de entradas y salidas.

¢) la adaptacion a condiciones ambientales adversas como puedan ser temperatu-
ras entre 0° y 60° C, humedades relativas elevadas (hasta 95%), polvo, abun-
dancia de parasitos eléctricos, etc.

En resumen, los constructores de Ap han buscado la definicién de equipos que,
introduciendo innovaciones técnicas, no trastornen «las costumbres» de los usuarios
directos de los mismos (personal de mantenimiento, operadores del proceso, etc.).

El objetivo que persigue cubrir este capitulo es una presentacion general de la
programacion, la estructura y el funcionamiento de los Ap. Para su lectura es reco-
mendable un conocimiento bdsico sobre la estructura y el funcionamiento de los
computadores digitales, nivel que se cubre con holgura en textos de introduccién
(por ejemplo [MEIN 72)).

Desde un punto de vista estructural, en este capitulo se diferencian claramente dos
partes. En la primera de ellas se presentan las caracteristicas generales de la estructu-
ray el funcionamiento de los AP (§8.2), asi como los rasgos basicos de los principales
tipos de lenguajes de programacion (§8.3). En este ultimo apartado, se dedica espe-
cial atencién a la presentacion de técnicas de programacion de RdP; en particular,
se consideran problemas que surgen debido a la simulacién puramente secuencial
de la evolucidn del marcado de las RdP. Ello llevara a distinguir entre simulaciones
sincronas y no sincronas.

En la segunda parte del capitulo (§8.4) se consideran, con cierto nivel de detalle,
diversos ap-tipos. Las peculiaridades de su estructura y funcionamiento buscan la
méxima simplificacion de los lenguajes de programacion y la eficiencia en su inter-
pretacién, de forma que la respuesta del AP a solicitaciones externas sea lo mas rapi-
da posible (no debe olvidarse que los AP trabajan siempre en tiempo real, mandando
un proceso).

El estudio de sistemas especificamente disefiados para simular eficientemente las
descripciones basadas en RdP se llevard a cabo en el préximo capitulo. La mayor
simplicidad de la estructura y funcionamiento de los AP generales nos ha inclinado
a adelantar su presentacion con respecto a la de sistemas especialmente adaptados
a la simulacién de RdP.

8.2 ELEMENTOS SOBRE LA ESTRUCTURA Y EL FUNCIONAMIENTO
DE LOS AUTOMATAS PROGRAMABLES

Los autématas programables utilizan normalmente estructuras clésicas, empleadas
con frecuencia en los mini y microcomputadores. La figura 8.1 ilustra una estructu-
ra bésica de Ap. En este parrafo van a ser presentados, a un nivel general, cada uno
de los bloques que aparecen, asi como nociones sobre el funcionamiento de esta cla-
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Unidad Unidad de Unidad de Unidad de
central de memoria de Entrada/ memoria de Periféricos
Procesamiento; Programas Salida variables '

T 1 1 1 T

>

—/

. BUS (datos, direcciones y control)

Figura 8.1 Estructura basica de un AP.

se de sistemas. Como cualidad funcional importante, se puede observar que un AP
ejecuta ciclicamente una unica tarea. Se denominarad ciclo de tratamiento a una eje-
cucién completa del programa introducido por el usuario.

8.2.1 Estructura de un AP. Generalidades

Las caracteristicas principales de la estructura de un AP son:

a) Separacion de la memoria en memoria de programas (organizada en palabras)
y memoria de variables (organizada en bits).

b) Especializacién de la Unidad de Tratamiento para el procesamiento de proble-
mas de tipo légico.

¢) Existencia de periféricos especiales.

d) Interconexion entre los diferentes bloques mediante uno o varios buses.

La estructura representada en la figura 8.1 se denomina de bus-unico (unibus).
En ella el bus permite el trafico de todas las informaciones: datos, direcciones y con-
trol. Ciertos AP utilizan estructuras multibus y, en particular, es frecuente la separa-
cién en bus-memoria y bus de entrada/salida (figura 8.2). Esta separacién permite
el procesamiento paralelo de informacién sobre ambos buses, por lo que la ejecu-
cién de los programas del usuario puede ser mds réapida.

Antes de abordar el funcionamiento de un Ap, se presentaran rapidamente las pe-
culiaridades de los distintos bloques que lo componen.

' ] . ' | 1
beritrior IM“(‘,‘:"“I cPU Memoria| | p/g | Perifércos
i | t Variables L |

T
T I 101 1 7 3

N—

BUS-MEMORIA BUS-E/S

Figura 8.2. Estructura con bus-memoria y bus-g/s (Nota. cpu, Central Processing Unit).
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8.2.2 Unidad de memoria

Como se ha dicho, se distinguen:

a) la memoria de programa, Mp, que esta organizada en palabras (8, 12 o 16 bits)
y suele ser de sélo lectura (RoM, PROM 0 EPROM), con lo cual se incrementa la
seguridad de su buen funcionamiento frente a parasitos eléctricos, caidas de
tensién en la alimentacidn, etc.

b) la memoria de variables, mv, que esta fundamentalmente organizada en bits,
y es de lectura y escritura (RAM).

8.2.3 Unidad de entrada/salida

Habida cuenta que la principal aplicacion de los AP es el tratamiento de problemas
l6gicos, las entradas y salidas (g/s) son fundamentalmente de tipo binario aunque
en ciertos equipos aparezcan E/s numéricas (8, 16 o 24 bits) e incluso, a veces, anald-
gicas.

En su forma mds simple, las entradas y salidas se pueden adquirir o emitir directa-
mente, en el momento en que se necesite la variable de entrada o se haya calculado
el valor de la variable de salida. Ahora bien, si se desean evitar de forma sistematica
los funcionamientos andmalos que puedan provenir de la alteracion de los valores
de las entradas durante un ciclo de tratamiento, éstos han de ser adquiridos simulta-
neamente y memorizados durante el ciclo. El anterior proceso se denomina mues-
treo. La memorizacion mencionada suele llevarse a cabo en una memoria imagen
de las entradas, MIE, que, normalmente, serd actualizada al comienzo de cada ciclo.
La actualizacidon puede ser llevada a cabo por la unidad central de procesamiento
o mediante un procesador especial, denominado procesador de entrada/salida. Otra
forma de proceder, algo mds costosa pero de amplia utilizacién, consiste en cargar
directamente los valores que se adquieren (correspondientes a las variables que se
muestrean) en registros dispuestos en las interfases de entrada. En este wltimo caso,
el conjunto de registros de entrada forma la MIE y su actualizacion se puede realizar
auténticamente de forma simultdnea, en un unico ciclo de reloj.

La emisidn de las salidas se suele hacer directamente, a medida que se elaboran
en cada ciclo de tratamiento. Si se desea realizar una emision «cuasi-simultdnea,
se debera utilizar una memoria imagen de las salidas, M1s, donde se vayan almace-
nando éstas a medida que son elaboradas. Al finalizar un ciclo, la unidad central
de procesamiento o, si existiese, el procesador de entrada/salida, copiara la imagen
sobre los registros de las interfases de salida. Procediendo de este modo, la utiliza-
cién de una memoria imagen permite lograr, ademds de la emision cuasi-simultdnea,
una mayor seguridad de buen funcionamiento ante posibles parasitos que puedan
alterar puntualmente el contenido de registros de las interfases de salida. En efecto,
si una perturbacién ha alterado una variable de salida en la interfase, al recopiar
su imagen, se restaurara el valor correcto.

La figura 8.3 presenta la arquitectura de un Ap que posee un procesador de entra-
da/salida, memoria imagen de las entradas y memoria imagen de las salidas. EI pro-
cesador de entrada/salida se suele encontrar en los grandes sistemas y se ocupa de
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Figura 8.3. Memoria imagen (M1) y procesador de entrada/salida (p-£/S) en un Ap.

realizar (ciclicamente o bajo demanda de la cpu) las adquisiciones y las emisiones
de las entradas y las salidas (respectivamente), a partir de una MIE y de una mis con
las cuales trabaja la cpu.

Desde un punto de vista tecnoldgico, las E/s se presentan agrupadas en tarjetas
enchufables (una tarjeta suele poseer un total de 8 a 16 g/s); es decir, se presentan
de forma modular. Bdsicamente las interfases de entrada transforman los 24 o 48
voltios continuos o los 110 o 220 voltios alternos, que provengan del proceso, en
sefiales de «bajo nivel» (energético), utilizables por la cpu. Las entradas suelen estar
fuertemente protegidas. Asi, es frecuente observar la presencia de aislamientos op-
toelectronicos y mecanismos de proteccion contra pardsitos (por ejemplo, filtrado
analdgico con 7 = 8-20 mseg.)

Las interfases de salida, ademas de los aislamientos optoelectrénicos, generan se-
flales de «alto nivel» (energético), capaces de mandar los accionadores (normalmen-
te 24-48 voltios continuos o 110-220 voltios alternos, pudiendo llegar las corrientes
hasta varios amperios).

Las consideraciones anteriores sobre las E/s hacen que, para sistemas AP de una
dimensién media (= 200 E/s), su coste sea muy importante, oscilando entre el 60
y 80% del coste total del equipo. El nimero de /s de los Ap varia tipicamente entre
16 y 10240.

8.2.4 Unidad central de procesamiento

La cpu (Central Processing Unit) aparece como una unidad especializada, funda-
mentalmente, en el tratamiento de problemas 18gicos, que, a veces, ofrece la posibi-
lidad de su extensidn para realizar cdlculos numéricos.

La realizacion de la cpu puede ser especifica (circuiteria especialmente disefiada)
o bien basarse en un procesador estdndar (mini o microprocesador). En este dltimo
caso, un conjunto de programas-sistema permite que el Ap sea capaz de interpretar
y ejecutar los programas del usuario. En lo sucesivo permaneceremos a un nivel con-
ceptual, por lo que se hablard de los Ap como mdquinas virtuales; es decir, indepen-
dientemente de su realizacién fisica.

En la estructura de la cpu de un AP asi como en la de cualquier computador digi-
tal, se distinguen dos partes claramente definidas:

— La parte operativa, po.
— La parte de control, pc.
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La pc o unidad de control, uc, tiene por misiones:

1) extraer de la memoria de programa las instrucciones,
2) interpretarlas (determinar su significado) y
3) ordenar su ejecucion.

Para extraer las instrucciones de la memoria de programa, la uc dispone de un
registro que sefiala la préxima instruccion que se debe ejecutar (contiene su direc-
cién): el contador de programa, cp.

Para interpretar las instrucciones, el contenido de la palabra de la memoria cuya
direccidn estd siendo designada por el cp es enviado a un registro especial, denomi-
nado de instruccion, r1. A partir de este registro se alimenta un decodificador, que
parametriza la evolucidn de un sistema secuencial, denominado secuenciador. Este
ultimo tiene por mision generar las 6rdenes elementales (microdrdenes) que permi-
ten el funcionamiento del AP (transferencias entre registros, lectura/escritura de la
memoria de variables, etc.).

La po o unidad de tratamiento, ut, comprende dos grandes categorias de compo-
nentes:

1) Los registros.
2) El dispositivo de calculo, normalmente una unidad Idgica.

La unidad l6gica, UL, constituye, casi siempre, el nicleo de la unidad de trata-
miento. Se trata de un dispositivo, no siempre combinacional, capaz de realizar ope-
raciones ldgicas. La ineficiencia relativa de las unidades aritméticas y ldgicas, UAL,
de los computadores de propdsito general para el computo de funciones logicas (re-
presentadas mediante expresiones booleanas, diagramas légicos, esquemas con re-
1és, etc.) ha conducido al desarrollo de UL basadas en principios muy diferentes. En
§8.4 se presentan, a nivel funcional, algunas de éstas.

Los AP son mdquinas de una direccion, por lo que, a veces, aparece(n) un (varios)
registro(s) acumulador(es) cuya funcion es la de servir como origen y destino de las
operaciones de célculo. En los AP, el acumulador, Ra, es de un solo bit (figura 8.4).

PC PO
| CP ] [y
UL
i [ RI l

Figura 8.4. Registros basicos y unidad légica de una cpu de ap. (Nofa. Posteriormente, en
el §8.4 se verd como esta estructura basica puede presentar notables variaciones
en ciertos AP.)

Para aumentar la seguridad de funcionamiento, las CpPU de los AP presentan, a ve-
ces, mecanismos qutodetectores de error. Asi, por ejemplo, es frecuente que se com-
puten una funcién y su complemento, de forma que la comparacion final permita
detectar errores en el calculo.
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Desde el punto de vista de su realizacidn, las cpu suelen ser unidades micropro-
gramadas especialmente, o bien unidades basadas en un microprocesador estdndar.
Evidentemente, en este ultimo caso, las prestaciones temporales (velocidad de célcu-
lo) son inferiores a las que presentan las primeras.

8.2.5 Periféricos
8.2.5.1 Bateria de temporizadores y de contadores

Considerada, a veces, como parte integrante de la unidad de tratamiento, propor-
ciona las referencias de tiempo, por un lado, y asegura la funcién de cuenta, por
otro.

8.2.5.2 Consola de programacion

Se trata de un periférico muy complejo, frecuentemente disefiado alrededor de un
microprocesador estdndar monolitico, que realiza las funciones de:

—Traductor del lenguaje de programacion.

—Cargador.

—Monitor de ayuda a la puesta a punto de los programas.
—Programador de memorias (PROM, EPROM).

Cuando el AP esté en servicio, normalmente la consola de programacién estard
desconectada. En ciertos Ap, sobre todo en aquellos organizados alrededor de un mi-
croprocesador monolitico estandar (M6802, 18085, etc.), las funciones de la consola
de programacién son realizadas por la unidad central del mismo AP, aprovechando-
se de este modo el cardcter universal del microprocesador del sistema.

8.2.6 Funcionamiento de un AP

Después de haber presentado los elementos bésicos de un ap, estudiaremos su fun-
cionamiento. Para ello, procederemos en dos tiempos, estudiardo por un lado €l
funcionamiento a nivel de desarrollo de una instruccidn y, p-x otro, el funciona-
miento a nivel de desarrollo de un programa.

8.2.6.1 Desarrollo de una instruccion

Del mismo modo que en los computadores de propdsito general, en el desarrollo de
una instruccion se distingue la siguiente serie de fases o tratamientos elementales:

¢ la busqueda (extraccién de la instruccién designada por el cp)

® la decodificacion (determinacioén de la significacion de la instruccién)

® ]la ejecucién

® la preparacién para el desarrollo de la siguiente instruccién que se deba ejecutar
(incremento del cp; es decir, cp: = cp + 1).

Desde el punto de vista temporal, la duracidn de la fase de ejecucién es funcion
de la instruccién en curso. En particular, si la instruccion hace referencia a un ope-
rando, la fase de ejecucion comprenderd la bisqueda o almacenamiento de éste.
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Al terminar la ejecucion de la fase de buisqueda de una instruccidén, normalmente
se ejecuta, en paralelo con otras fases de su desarrollo, la preparacion para el desarro-
llo de la instruccidén siguiente.

8.2.6.2 Desarrollo de un programa. ciclo de tratamiento

Un programa se ejecuta gracias al encadenamiento en la ejecucion de instrucciones.
Como se comentd anteriormente, una caracteristica esencial de los AP es su funcio-
namiento ciclico: al terminar completamente una ejecucién del programa de control
(tarea basica en el sistema), se puede iniciar otra nueva. En lo sucesivo, T significa-
ra ciclo de tratamiento.

El encadenamiento en la ejecucion del programa de control suele ser directo; es
decir, al terminar un ct comienza el siguiente. A veces, un reloj externo lanza los
cT periddicamente, cada § mst, lo cual da origen a un encadenamiento sincrono de
ciclos. Por ultimo, en algunos sistemas se lanza un ct s6lo cuando, habiéndose ter-
minado el cT anterior, se detecta por hardware externo un cambio de estado en algu-
na de las variables de entrada. Este método de encadenamiento de cT se denomina
autosincronizado.

El encadenamiento directo es el de mas facil realizacién, pero el Ap es monopoli-
zado por la ejecucion del programa de control. El encadenamiento sincrono es de
facil realizacién y permite que el AP ejecute otros trabajos distintos al programa de
control. Estos se denominan genéricamente trabajos de fondo (background) y pue-
den consistir en la comunicacion con otros computadores, en la edicion de mensajes,
en la elaboracién de balances, etc.

El encadenamiento autosincronizado conducird, normalmente, a un menor nime-
ro de lanzamientos de cT. De esta forma cabe esperar que el Ap dispondrd de mds
tiempo para realizar los trabajos de fondo, sin que por ello se degraden las presta-
ciones temporales de la ejecucidon del programa de control. El inconveniente princi-
pal del lanzamiento autosincronizado es que su realizacién es mds costosa.

Desde el punto de vista de la adguision (A) y de la emision (E) de informacion,
los cT pueden clasificarse fundamentalmente en tres grupos:

(1) Adquisicion en bloque (AB) y emision en bloque (EB):

Adquisicion . Emision
Tratamiento
— | de todas las — — | de todas las—
global .
entradas salidas

«—— ciclo de tratamiento ——

En este caso, se dice que el sistema funciona en modo sincrono con respecto a las
entradas y salidas, aunque la duracion del ciclo no serd forzosamente constante. Es-
te modo de funcionamiento necesita una memoria imagen de entradas y salidas.

+Se supone que 6 es superior al tiempo que tarda el mds duradero ct de la aplicacion.
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(2) Adquisicion en bloque (AB) y emision directa (ED)t:
Adquisicion

— |detodaslas=T-E-T-E— ... T-E —

entradas

«—— ciclo de tratamiento ——

La adquisicion en bloque implica la necesidad de una memoria imagen de las en-
tradas. Las salidas se emiten a medida que se realiza su computo. La emisién directa
de las salidas puede presentar problemas de continuidad en las acciones; de este mo-
do, debe evitarse que, aunque transitoriamente, se ordene a un motor girar en am-
bos sentidos a la vez.

(3) Adaquisicion directa (AD) y emisidn directa (ED)f}:

— | A-T-E- A-T-E-A-T-E-...A-T-E —
ciclo de tratamiento ————

La adquisicidn directa implica que una variable de entrada pueda ser considerada
en un mismo ciclo con diversos valores, lo cual puede conducir a importantes pro-
blemas. La tinica ventaja que presenta es poder considerar varias veces en un ciclo
a alguna variable especialmente critica. No obstante, su empleo es peligroso.

Ademads de estos tres esquemas basicos de ciclo de tratamiento, la presencia de
un procesador de entrada/salida puede introducir otros. Asi, por ejemplo, se encuen-
tran sistemas en los que las entradas son adquiridas y las salidas emitidas cada § mili-
segundos, independientemente de la duracidn del ciclo de tratamiento.

Con frecuencia los Ap incorporan dispositivos que supervisan parcialmente el buen
desarrollo de un ciclo de tratamiento. En su forma mds simple, éstos supervisan la
duracién de cada ciclo. Si un determinado ciclo tarda en ejecutarse mds que la maxi-
ma duracidn prevista, se generard una alarma que advertird a los operadores y, even-
tualmente, bloqueara la evolucion del ap. El mencionado mecezismo, en esencia un
monoestable rearmable, se denomina perro guardidn (watchdog).

8.3 LENGUAJES DE PROGRAMACION

La programacion de los automatas programables es extremadamente simple, debido
a que sus lenguajes estdn adaptados a la forma de expresién del usuario de automa-
tismos 16gicos. Son lenguajes orientados al problema.
A partir de esta premisa, se observan en los lenguajes dos concepciones bastante
diferentes segiin que la ldgica programada sea considerada:
® como transposicion tecnoldgica inmediata de los esquemas de realizacion ca-
bleada de los automatismos
® 0 como transcripcidn, en forma programada, de una descripcion funcional de
los automatismos.

+ A, adquisicion; E, emision; T, tratamiento.
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La principal ventaja que ofrecen los sistemas del primer grupo, es la de no modifi-
car en absoluto el modo de razonamiento de los técnicos de mantenimiento (esque-
ma cableado). Por consiguiente, sus lenguajes de programacidn poseen instruccio-
nes adaptadas a la descripcion de componentes (relés, médulos Y-0-MEMORIA, etc.).
Desgraciadamente, estos tipos de lenguajes poseen diversas limitaciones entre las
que, con frecuencia, cabe destacar una restringida capacidad expresiva, € incluso
una relativa ambigiiedad en la descripcion de ciertos esquemas.

Las herfamientas de descripcion funcional de automatismos logicos en las que
se basan los lenguajes del segundo grupo son los organigramas, los grafos redu-
cidos, las redes de Petri, etc. La utilizacion de cualquiera de estas herramientas
de descripcion se encuentra normalmente completada con la incorporaciéon en el
lenguaje de la notacidn booleana, lo cual facilita la descripcion de funciones combi-
nacionales.

Desde un punto de vista histdrico, los lenguajes del primer grupo han sido utiliza-
dos desde el nacimiento de los Ap hacia 1969, mientras que los lenguajes del segundo
grupo aparecieron hacia 1975.

Con el objeto de simplificar y de adaptar los lenguajes de programacion a la clase
-de problemas para la que son concebidos, normalmente éstos tienen como caracte-
risticas basicas las siguientes:

1) La existencia de muy pocas instrucciones (tipicamente de 10 a 35).

2) La utilizacion casi exclusiva del direccionamiento directo de operandos. Si
existen instrucciones de salto (incondicional y/o condicional), suelen utilizarse
los direccionamientos directo y/o relativo al contador de programa.

3) La nocidén de subprograma aparece raramente y, en caso de estar incluida, se
suele definir un tnico nivel de anidamiento.

4) La ausencia de inferrupciones manipulables por el programador.

A continuacién, presentaremos diversos tipos de lenguajes de programacion que
evidencian diferentes herramientas para la descripcién de automatismos logicos.
Los dos primeros (§8.3.1 y 2) se basan en los esquemas de relés y en los diagramas
16gicos, respectivamente. Son lenguajes que pertenecen claramente al grupo que pre-
coniza la transposicién tecnoldgica inmediata de los esquemas de realizacion
cableada.

El tercer lenguaje que se presenta (§8.3.3) utiliza la notacion algebraica de BooLE
para describir las funciones combinatorias. La presencia o ausencia de saltos condi-
cionales tiene un enorme impacto sobre la programaciéon de funciones secuenciales
y concurrentes.

Por tiltimo, en el capitulo 9 (§9.2) se presentard un tipo de lenguaje de especifica-
cién de descripciones basadas en RdP. Al margen de su adaptacion a la descripcion
de RdP, estos lenguajes exhiben caracteristicas muy diferentes a las de los anterio-
res.

Para facilitar la comprension, se presentaran lenguajes simplificados. En éstos se
considerardn tan sélo las instrucciones fundamentales que posibilitan la programa-
cién de las funciones 16gicas; es decir, lo que podriamos denominar el lenguaje bdsi-
co. Entre las instrucciones que tipicamente suelen afiadirse al lenguaje bdsico, se en-
cuentran aquellas que conciernen a las temporizaciones y a los contadores.
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8.3.1 Lenguaje basado en los esquemas de contactds (ladder diagrams)

Adaptados a las descripciones realizadas con elementos de tipo electrotécnico (re/és)
comprenden, por ejemplo, las siguientes instrucciones:

1) 4+ X ; contacto X abierto
2) =4 X ; contacto X cerrado
3) O~ Y ;salidayY

4 1 ; apertura de rama
5) 7~ ; retorno a la ultima rama abierta
6) 1T ; cierre de una rama

De este modo, si se considera el esquema de la figura 8.5a, se obtendrd como pro-
grama el de la figura 8.5b. Se recomienda el estudio del programa, fijdndose, en par-
ticular, en la utilizacién de la instruccién « ——». Debe observarse que, aunque, a
primera vista pudiera pensarse en la asociacion:

C = apertura de paréntesis
T = cierre de paréntesis en la notacidon booleana
Y =unidn logica

ésta no es valida (compruébese a partir de la figura 8.5).

A pesar de que la idea motriz que conduce al disefio de los lenguajes de este grupo
es la de transcribir directamente los esquemas de relés, surgen dos tipos de dificulta-
des en la programacion:

1) Dificultad de tipo estructural: sélo los esquemas serie-paralelo pueden progra-
marse directamente. En efecto, los lenguajes existentes no permiten la progra-
macion directa (sin transformacién) de los esquemas en puente (figura 8.6)

2) Dificultad de tipo dindmico: puesto que la ejecucidn del programa es secuen-
cial, el orden en que se alinean las instrucciones es fundamental. Esta impor-
tante diferencia entre tratamiento secuencial del programa y evolucidn paralela
en el modelo construido con relés, puede originar falsas acciones o secuencias
de acciones.

Las aleatoriedades producidas por una interpretacidn secuencial de un modelo
que evoluciona en paralelo (esquema de contactos, diagrama logico, RdP, etc.) se
denominaran genéricamente aleatoriedades de programacion.

Las peculiaridades de los lenguajes basados en los esquemas de contactos ha-
cen que en los sucesivo no se les vuelva a considerar. No obstante, es obligado sefia-
lar que su utilizacién es masiva en equipos procedentes de EEUU, donde argumen-
tan que el verdadero usuario de un AP es el técnico de mantenimiento, hoy en dia,
normalmente, de formacion electrotécnica.

8.3.2 Lenguaje basado en los diagramas légicos

En este paragrafo vamos a distinguir dos puntos. Después de presentar el lenguaje
(§8.3.2.1), consideraremos un modo de programar redes de Petri con éste (§8.3.2.2).
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Figura 8.5. @) Esquema de contactos (serie-paralelo).
b) Programa que permite simular el esquema de contactos.

8.3.2.1 El lenguaje
Este tipo de lenguajes permite la descripcion de un diagrama logico, mddulo por
mddulo. Comprenden, por ejemplo, las instrucciones siguientes:

1) ENT VAR ; Entrada a un mddulo de la variable VAR
2) ENTC VAR ; Entrada a un médulo de la variable VAR complementada
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Figura 8.6 Esquema de contactos en puente.

3) Y VAR ; El valor de la interseccion ldgica de las variables definidas co-
; Mo entradas se asigna a la variable VAR (OPERACION Y.)

4) O VAR ; Asignacién a la variable VAR de la unidon légica de las
; entradas al mddulo (oPERACION O.)

5) ACT VAR ; Activacién de la variable VAR si el resultado de la intersec-
; cion (FUNCION Y) de las variables de entrada al médulo es «1»

6) DACT VAR; Desactivacion de la variable VAR, condicionada por la intersec-

cién considerada en la instruccién anterior
7) SAL DIR ; Saltar a la direccion DIR

Si consideramos el diagrama 18gico de la figura 8.7a, se podr4 escribir un progra-

ma como el de la figura 8.7b. Debe observarse, sin embargo, que no es valida la

D A 2
B

Vs
S
H — 6
K f—q 6
(@
ENTC G ENT v4 ENT V2
ENTC D ENT J 3 ENT K /5 ENT V6 7
O V3 (0] A4 (0] V7
ENT V3 ENT \'A) ENT V7
ENT H (4 ENT F 6 ENT E (8
ENTC B Y V4 ENTC 1 Y S
®) Y V6

Figura 8.7 Diagrama l6gico (realiza la funcion S de la figura 8.54) y programa que permite

simularlo.
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escritura de los mddulos en un orden cualquiera. Asi pues, siempre deberd escribirse
en dltimo lugar el mddulo 8 y delante de éste el 7. Para construir un programa co-
rrecto (que no genere aleatoriedades de programacion), es necesario calcular la sali-
da de un mddulo después de haber calculado todas sus entradas. Por consiguiente,
la programacién de un sistema secuencial fuertemente realimentado puede conducir
a problemas de dificil solucion.

Para encadenar el siguiente ciclo de tratamiento, se insertard al final de cada pro-
grama una instruccion «SAL direccidn inicial».

En algunos lenguajes pertenecientes a este grupo, se encuentran instrucciones que
permiten programar directamente otros médulos como son los No-Y (NAND), NO-O
(NOR), 0-EXCLUSIVO (EXOR), PASO-A-PASO, etc. No obstante, las instrucciones presenta-
das permiten programar con facilidad algunos médulos que no aparecen explicita-
mente. En efecto, aplicando las leyes de MORGAN del algebra de BOOLE puede escribirse:

ENTC A
VNY = No-Y (4, B) = o(4 ,B) { ENTC B ; mddulo NO-Y (NAND)
O VNY

ENTC A
VNO = No-0 (A4, B) = Y(A4, B) < ENTC B } m6dulo No-0 (NOR)
Y VNO

Por otro lado, es frecuente que, después de definir un conjunto de variables de
entrada, se pueda definir una lista de salidas (asignaciones), correspondientes a mo-
dulos con idénticas entradas. Asi por ejemplo, la funcién O-exclusivo, OEX, (EXOR),
puede programarse de la forma siguiente:

1) ENT A 5) ENT W
_ = - |2 ENTC B 6) ENTC ¥;
VOX = 0Ex (A, B) = fIl/B + /II/B 3) Y Vi 7O VOX
"o Vs

Por tltimo, las instrucciones ACT y DACT permiten una programacion directa de
los biestables. De este modo, resultan evidentes los programas siguientes:

modulo OEX

Biestable r-s con Biestable r-s con
activacion prioritaria: desactivacion prioritaria:
ENT R ENT S

DACT Q ACT Q

ENT S ENT R

ACT Q DACT Q

8.3.2.2 Programacion sincrona y no-sincrona de RdP

Las RdP, asi como los circuitos 16gicos, evolucionan en paralelo. Dado que los ap
son maquinas secuenciales, éstos procederdn simulando en serie las evoluciones de
las RdP.
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Utilizando el lenguaje presentado en el apartado anterior, para codificar RdP se
puede proponer un primer esquema basado en la simple transcripcion del diagrama
légico que se obtiene al realizarla por transferencia impulsional (§6.2). Para proce-
der de forma sistemética, lo mas natural parece ser la codificacion en dos fases (figu-
ra 8.8b):

1) A cada fransicidn se le asocia el cddigo que permita evaluar la condicidn de
disparo (interseccion de la condicion de sensibilizacién y del evento asociado).
Ademads, en el caso en que haya que disparar la transicidn, se dispondr4 el c6-
digo que permita desactivar sus lugares de entrada, activar sus lugares de salida
y, eventualmente, activar las acciones impulsionales asociadas.

2) A cada lugar se le asocia el cddigo que posibilite la elaboracion de las acciones
asociadas.

FASE 1 FASE 2
6t3: ENTC E op3: ENT A

ENT p; ENTC B

ENT ps ENT ps

ACT p Y S3

DACT p;3

DACT ps

@ 19

Figura 8.8. RdP y programacion no-sincrona. (Nota. 6t; y 8p; representan las direcciones
donde comienzan los segmentos de codigo asociados a #; y pj, respectivamente.)

Observacion. La técnica sugerida para programar RdP es muy sistemdtica, pero puede ser
simplificada en ciertos casos. Asi, por ejemplo, en la codificacién de la red de la figura 8.8a
se puede tomar p; = 5, y ps = s5. Con ello, ademas de no utilizar las variables p, y ps, se redu-
cird la longitud del programa y la duracién de su ejecucion.

Por desgracia, la técnica de programacion presentada anteriormente puede con-
ducir a ciertos funcionamientos anémalos de los designados con el nombre genérico
de aleatoriedades de programacidn. Esencialmente, éstas derivan de la simulacién
en serie (secuencial) de una clase de modelos (RdP) que evolucionan en paralelo. Pa-
ra ilustrar esta afirmacidn, se van a considerar dos casos, basados en las redes de
las figuras 6.3a y 8.8a:

Caso 1. Sea la RdP de la figura 6.3a. Si dado que la red es binaria, el marcado se
representa mediante un vector de booleanos, p;, la simulacion serd inco-
rrecta siempre que se programe f; antes que #,. En efecto si se dispara #;
antes que 7, para la red considerada se alcanzaria transitoriamente un mar-
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cado no-binario, valor cuya representacién no es posible con un vector
booleano de marcados.

Caso 2. Seala RdP de la figura 8.8a. Supdngase que las transiciones se programan
en el orden #1f2¢3441s. Si al iniciarse un cT se tiene M(p1)ABC = 1, el mar-
cado de la red evolucionar4 directamente desde p: a p3-ps. Por consiguien-
te, si las salidas se emitiesen en blogue (al final del cT), S2 no seria emitida,
con lo que la simulacion seria incorrecta.

Como puede observarse facilmente, para resolver los dos problemas planteados,
basta con programar 7, antes que #1, lo que revela que el resultado de un ct depende
del orden en que se programen las transiciones. Aunque factible, la adopcion del
principio de jugar con el orden en que se programen las transiciones puede compli-
car sensiblemente la programacién en un caso general.

Un método simple y sistematico para resolver aleatoriedades de programacion
consiste en hacer que la RAP evolucione de forma sincrona. Es decir, la RdP se codi-
ficard de forma que su marcado evolucione en un ciclo de tratamiento como si es-
tuviese realizada con biestables sincronos. Obsérvese que la definicion de simula-
cién sincrona adoptada no exige la presencia de un reloj tiempo real que lance los
ciclos de tratamiento a una cadencia fija, ni que las salidas sean emitidas cuasi-
simultdneamente.

La simulacién sincrona de una RdP se puede dividir en tres fases:

1) Célculo de las condiciones de evolucion del marcado, en la que se pueden ela-
borar las condiciones de disparo de las transiciones o, directamente, las condi-
ciones de marcado-desmarcado de los lugares.

2) Actualizacién del marcado; es decir, célculo del nuevo marcado.

3) Elaboracidn de las acciones asociadas a los lugares.

FASE 1 FASE 2 FASE 3

8t3: ENTC E 663: ENT 03 op3: ENT A

ENT ps3 ACT p ENTC B
ENT ps DACT p3 ENT p3
Y 63 DACT pa Y S3

Figura 8.9 Una programacién sincrona de la RdP de la figura 8.8a (63 representa la condicion
de disparo de 3).

La figura 8.9 presenta una programacion sincrona de parte de la RdP de la figura
8.8a. En ella la actualizacion del marcado se hace transicion por transicion, a partir
de sus condiciones de disparo. Ahora bien, la programacion de la RdP de la figura
6.3a no es correcta si en la actualizacién del marcado se considera #; antes que ;
es decir, sigue vigente parte del problema de aleatoriedades de programacion, habi-
da cuenta que la activacién de un lugar debe ser prioritaria sobre la desactivacion.
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La forma mds inmediata y sistematica de resolver la dificultad apuntada consiste en
considerar dos subfases en la fase de actualizacién del marcado:

1) Subfase de desactivacion de lugares, en la que a partir de las condiciones de
disparo de las transiciones se desactivardn sus lugares de entrada:

ENT 03

DACT P3
DACT y 22

2) Subfase de activacidn de lugares, en la que a partir de las condiciones de dis-
paro de las transciones se activardn sus lugares de salida:

ENT 03
ACT D1

En resumen, se ha de resaltar que la simulacién serie de un modelo que posee
evoluciones simultdneas presenta dificultades para su programacién. La programa-
cion sincrona resuelve de forma sistemdtica el problema de la simulacién de RdP,
pero necesita mayor cantidad de cddigo, asi como un mayor tiempo para la ejecu-
cién de los programas que la programacién no-sincrona.

8.3.3 Lenguajes basados en la notacién booleana

Estos lenguajes estdn normalmente desprovistos de primitivas que faciliten la pro-
gramacion de automatismos con memoria; no obstante, a veces, se encuentran com-
plementados con instrucciones de salto condicional, lo cual permite la programacién
de descripciones realizadas con organigramas.

Los esquemas de las figuras 8.5 y 8.7 se programan, por ejemplo, mediante la
asignacion ldgica siguiente:

S:=(AB(C+ D)+ F(G + J)H + K)I)E.

La interpretacion y ejecucion de las expresiones 16gicas puede realizarse de di-
versas maneras. Si éstas se realizan de forma directa, la expresién se encontrard,
simbolo por simbolo, en la memoria del ap. En este caso, para facilitar la ejecucién,
la variable a la que debe asigndrsele el valor de la funcidn, se suele escribir en
ultimo lugar:

(AB(C + D) + F(G + J)H + K)I)E =: S.

Habida cuenta que la ejecucion directa de expresiones légicas es complicada, a
veces, se imponen ciertas restricciones a la escritura algebraica; de este modo, se ob-
serva que con frecuencia sélo puede haber un wnico nivel de paréntesis. En otros
sistemas, se admite la apertura de varios niveles de paréntesis, pero un paréntesis
de cierre produce la cerrazén de todos los paréntesis abiertos con anterioridad. En
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estas circunstancias, la expresion algebraica anterior debe transformarse, por ejem-
plo, en la siguiente:

ABE(C + D) + FIEKK + HG + J) =

La mayor parte de las veces, la expresion algebraica es traducida a otro lenguaje
maés facilmente ejecutable; es decir, se compila el programa del usuario.

A continuacion, se considera la programacion de RdP utilizando exclusivamente
ecuaciones algebraicas de BoorLE. En §8.3.3.2 se presentara el impacto que, sobre
la programacién de RdP, supone la introduccion de instrucciones de salto condicio-
nal en el lenguaje.

8.3.3.1 Lenguaje exclusivamente basado en la notacion algebraica y
programacion de RdP

En el capitulo 6 se vid que un lugar se puede materializar con una memoria de acti-
vacion prioritaria, cuya ecuacion es la siguiente (§6.2.1):

Y] V= CA_,+ ),_,CIDJ.

Por lo tanto, si se realiza una programacion sincrona, ésta podrd responder al es-
quema que se presenta a continuacion (en todas las fases se procede lugar por lugar):

1) Célculo de las Cy4; y Cp; (funciones de las condiciones de disparo de las
transiciones).

2) Calculo del nuevo marcado: Yj: = C4; + Y;Cp;.

3) Célculo de las acciones asociadas a los lugares.

Como puede comprobarse, en esencia la programacion sincrona de la figura 8.9
y la aqui sugerida s6lo difieren en la fase de actualizacion del marcado que en
este caso se realiza lugar por lugar. Precisamente, dado que la actualizacién del
marcado se realiza lugar por lugar, la programaciéon de RdP binarias que podrian
conducir a marcados transitoriamente no-binarios (figura 6.3a) no planteara pro-
blemas.

La ecuacién que representa un lugar puede incorporar de forma sistemadtica la en-
trada de inicializacion general, I. En este caso conviene distinguir los lugares inicial-
mente marcados de los otros. Las ecuaciones serdn las siguientes:

1) Si pj debe estar inicialmente marcado, se puede escribir Cluj = Caj + I, 1o cual
implica Yj: = Caqj + Y;Cpj + 1

:+2) Si p; debe estar inicialmente desmarcado, se puede escribir Cii=Cuyl y
Cpj = Cpj + I, lo cual implica Y; :: = (Cy; + Y;Cp)I; es decir, I es una desac-
tivacion prioritaria.

8.3.3.2 Lenguaje provisto de saltos condicionales y programacion de RdP

La programacion de RdP puede realizarse siguiendo los esquemas utilizados ante-
riormente (§8.3.2.2 y §8.3.3.1). Al utilizarse los saltos condicionales, no se ejecuta-
ran exhaustivamente todas las instrucciones de los programas. La ejecucion serd
mads rapida.
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Considerando la actualizacion del marcado se podra escribir:
1) Tratamiento transicion por transicion (§8.3.2.2):
ot;: Si éj ir a 6¢j41;
«activar los lugares de salida de #»;
«desactivar los lugares de entrada de #»;
2) Tratamiento lugar por lugar (§8.3.3.1):
opj: si Cpjir a ypj;
«desactivar Y;»;
vpj: si Cajir a 8pjs1;
«activar Y;»;

Esercicro. (En qué medida son extensibles a las RAP no-binarias técnicas de programacién
de RdP binarias?

Esercicro. Si se utilizaran contadores para representar el marcado de los lugares, no seria
necesario distinguir dos subfases en la fase de actualizacién del marcado. ;Por qué?

8.4 PRESENTACION SIMPLIFICADA DE ALGUNOS AUTOMATAS
PROGRAMABLES

La diversidad de principios que se emplean en la interpretacién de diagramas y ex-
presiones l6gicas nos han impulsado a presentar, desde un punto de vista funcional,
diversos tipos de maquinast. Para facilitar la lectura global del apartado, se mostra-
r4 una rdpida panordmica en §8.4.1; posteriormente, en §8.4.6 se resumir4 de forma
tabular (tabla 8.4) los principales rasgos considerados.

La presentacion de los diferentes tipos de méquinas adoptard siempre el siguiente
esquema (en algin caso, dos apartados se fusionaran en uno solo):

a) Presentacion intuitiva del lenguaje de la méquina en forma simbdlica (ensam-
blador).

b) Definicidn precisa de su seméntica, basdndose en la presentacién de una es-
tructura de unidad de tratamiento y de un lenguaje de fases asociado.

¢) Comentarios, en los que se resaltardn algunas de sus peculiaridades.

Para precisar la semdntica de las instrucciones de los lenguajes, punto b, se utili-
zard un formalismo que expresa las transferencias de informacion entre registros
y/o posiciones de memoria.

Sus dos reglas bdsicas son:

1) La colocacién del nombre de un registro entre paréntesis designa su contenido.
Asi, () designa al contenido de a. Por otro lado, ((a)) designa al contenido
de la posicién de memoria designada por el contenido de A, (a).

T Todos ellos estdn inspirados en sistemas reales.
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2) ««<» es el operador de transferencia de informacion. De este modo, A « (B)
expresa que el contenido de B se transfiere al registro a; es decir, A : = B. Por
otro lado, A « (B) op (c) expresa que el resultado de la operacion op se tranfie-
re al registro A; es decir, A: =B op C.

Si r1 y cp designan el registro de instruccion y el contador del programa de una
madquina, de acuerdo con la notacién anterior, la busqueda de una instruccion se
expresara globalmente por la transferencia r1 < ((cp)). Del mismo modo, la prepa-
racion para la ejecucion de la siguiente instruccion se expresara: cp < (Cp) + 1.

En lo sucesivo, ademads de las anteriores denominaciones, se utilizaran las siguientes:

¢ p[ri], subregistro de rI que almacena la parte de direccion contenida en la
instruccion.

e T, registro de trabajo, transparente al programador, denominado fampdn.

® ¢, i-ésima subfase de la ejecucidn especifica de una instruccidn. ¢o serd la bus-
queda (fetch) de la instruccion. (Nota. Siempre se supondrd que al comenzar ¢; ya
se ha incrementado el cp; es decir, se ha realizado la preparacion para la ejecucién
de la instruccion siguiente.)

8.4.1 Presentacion general

Los cuatro sistemas AP que presentaremos en sucesivos apartados responden a con-
cepciones diferentes. Estos son los siguientes:

1) Interpretador de diagramas Idgicos. Sistema disefiado para ejecutar directa-
mente los programas escritos en el lenguaje basado en diagramas Idgicos
(§8.3.2). Necesita una unidad légica con dos acumuladores: uno acumula las
intersecciones, mientras que el otro acumula, simultdneamente, las uniones.

2) Interpretador de expresiones Idgicas postfijas. Sistema que ejecuta, de forma
muy eficiente, las cadenas postfijas (éstas se pueden obtener a partir de la nota-
cion algebraica infija).

La eficiencia de este tipo de sistemas se incrementa notoriamente cuando se
codifican en instrucciones secuencias de simbolos (operadores y variables) que
aparecen con frecuencia en las cadenas postfijas. Se emplea una pila (especial)
para la evaluacién de las expresiones.

3) Mdquina basada en el concepto de operacion Idgica. Sistema que corresponde
a la estructura cldsica del computador de préposito general. Se trata de una
maquina con instrucciones de una direccion, lo cual hace necesario la presencia
de un registro acumulador. Los célculos se describen exclusivamente en térmi-
nos de transferencias entre registros.

4) Interpretador mixto de operaciones ldgicas y saltos condicionales. Sistema si-
milar al anterior, desde el punto de vista estructural. Las prestaciones de la
evaluacién de expresiones légicas se mejora al introducir el salto condicional.
En efecto, de esta forma se evita la evaluacion de subexpresiones que no pue-
den alterar el resultado global de una expresion.

Ademds de estos tipos de sistemas, se deben mencionar:

1) Las mdquinas de decisiones binarias (véase §7.3.3), que, como es facil compro-
bar, no poseen ninguna unidad ldgica de cdlculo.
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2) Los analizadores booleanos de estados finitos, que ejecutan directamente to-
das aquellas expresiones booleanas en las que un unico paréntesis de cierre pro-
voca el cierre de todos los paréntesis previamente abiertos. Esta clase de siste-
mas utiliza un autémata sincrono de estados finitos ([SILV 78]) para calcular
el valor de la expresion. Su relativa especificidad y complejidad conceptual han
hecho que no los consideremos en este texto.

8.4.2 Interpretador de diagramas légicos (M)
a) Lenguaje ensamblador de la mdquina (L)

El lenguaje del sistema que se considera en este apartado es el presentado en §8.3.2.

CP| ] Or
RI[CO T D 1] [Jray @
[OrAO
OsA
S UL,
1l op """ Zofpm==m=m--- ==

)

Complementacién

Figura 8.10. Arquitectura de la CPU, y posible esquema ldgico de la UL;. (Nofa. T, RAO y
RAY son biestables D, mientras que BA es R-S.)

b) Estructura de la unidad de tratamiento y lenguaje de fases (figura 8.10 y
tabla 8.1)

Puesto que en todo programa codificado en L, se define el tipo de médulo 16gico
(Y,0,...)después de especificar sus entradas, esta UT utiliza dos registros acumula-
dores, uno destinado al célculo de la inferseccidn (operacién v, RAY) y otro destina-
do al cdlculo de la unidn (operacién o, rRAO).
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¢1 b2

si (BA) =1
entonces| RAY < (T),

RAO < (T),

BA +«0;

RAY + (T)A(RAY),

RAO < (T)V (RAO);

ENT V T « ((D[R1)));

si no

si (BA) =1
entonces| RAY <« (T),
ENTC V | T (R B e

RAY < (T)A(RAY);

si no 5
RAO < (T)V (RAO);

Y \Y% (D[r1]) « (RAY),
BA« 1;

(0] V | (o[r1]) « (r40),

BA< 1}
si (RAY) =1
ACT V entonces | (D[R1]) < 1,
BA <« 1; -
si no BA «1;
si (RAY) =1
DACT V entonces | (D[RI]) < 1,
BA < 1; -
si no BA «1;

SAL d cp < (D[r1]),
BA«

Tabla 8.1. Descripcion de L; mediante lenguaje de fases.

El registro BA es un registro de estado de un bit, denominado bif de asignacion.
Su misién es la de diferenciar si la ejecucion de las instrucciones ENT y ENTC se
ha realizado después de:

(1) Una instruccién de asignacion, {O, Y, ACT, DACT]}, o de salto, {SAL}, en
cuyo caso (BA) = 1.
(2) Una instruccién ENT o ENTC, en cuyo caso (BA) = 0.

Cuando (8a) = 1, la ejecucidn de las instrucciones ENT y ENTC produce la carga
de los registros acumuladores RA0 y RAY. Cuando (8a) = 0 se realizan las correspon-
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dientes acumulaciones sobre RAO y RAY. Es decir, la presencia del registro Ba hace
que las instrucciones ENT y ENTC puedan servir como instrucciones de carga o de
acumulacion. Dicho de otro modo, si no existiese el registro B, tendrian que susti-
tuirse las instrucciones ENT y ENTC por las correspondientes de carga, CARENT
y CARENTC y acumulacion, ACENT y ACENTC.

La figura 8.10b muestra la simplicidad de la unidad I6gica. Esta se obtiene direc-
tamente a partir de las diferentes asignaciones a RA0O y RAY, expresadas en la tabla
8.1 ((J2 de las instrucciones ENT y ENTC). Las puertas sombreadas en la figura
8.10b son las que, en esencia, multiplexadas en el tiempo, permiten el computo de
cualquier funcidn ldgica.

¢) Comentarios

C.1 Dado que la unica instruccién de salto, sAL, es incondicional, todas las ins-
trucciones del programa serdn ejecutadas en cada ciclo de tratamiento; por
ello, diremos que la maquina M; efecttia un barrido exhaustivo del pro-
grama.

C.2 La ausencia de una instruccién que indique el comienzo de un nuevo ciclo
de tratamiento permite pensar que éste se desarrollara utilizando una admi-
sién y emisién de informacién directas. Para ello se supone que no existe
convencion por la cual la ejecucién de la instruccion de una determinada di-
reccién, A, representa el comienzo de un ciclo (A podria ser, por ejemplo,
la primera direccion del espacio memoria de programa).

C.3 Las primitivas ACT y DACT, poco usuales, permiten la programacion sim-
plificada de las RdP (§8.3.2).

C.4 El traductor que genere el cdigo maquina serd un simple ensamblador, en-
cargado de sustituir el nombre simbdlico de: (1) cada variable por su direc-
cién y (2) cada cédigo de operacion por su cédigo mdquina.

8.4.3 Interpretador de cadenas postfijas (mdquina de pila) (M>)

La notacién polaca postfija es una convencidon de escritura por la que los paréntesis
de una expresion son suprimidos. En ella los operadores figuran a continuacién de
los operandos. Por ejemplo, S;:=F-((G + J)-H+K)-I se escribira:

SIFGJ+H-K+ I :=, por lo que resulta facil observar que:

1) El orden de los operandos es el mismo en ambos casos.

2) Una cadena postfija se analiza de izquierda a derecha. Las operaciones debe-
ran realizarse a medida que se encuentren los operadores. Estos se aplicaran
sobre los dos operandos situados inmediatamente a su izquierda (eventualmen-
te después de haber operado).

En el ejemplo desarrollado anteriormente, el operador «-», situado a la izquierda
de I, tiene efecto sobre F'y OP;:
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(FGJ+H-K+ -1-
x __
OP; ............ OP1=G+J
< * Ok
OPsss sien s v s OP, = OP,-H
* ok
e —
L OP5: onos v ¢ OP; = 0P, + K

En nuestro contexto el interés de esta notacién es doble puesto que:
® permite una compilacion elemental de las expresiones algebraicas, sin tener que
considerar restriccion alguna sobre ellas.
® la ejecucion de un programa puede ser muy rapida; ademds, ésta puede ser ace-
lerada siempre que se utilicen ciertos artificios. Algunos de éstos los estudiare-
mos més adelante.

Para fijar ideas, podemos definir un lenguaje ensamblador elemental adaptado
a esta notacién, que comprenda las instrucciones siguientes:

(1) LL V ; Llamada de la variable V

(2) LLC V ; Llamada de la variable V Complementada

3) + ; Unidn ldgica de los dos tltimos operandos

@) e ; Interseccion 16gica de los dos 1ltimos operandos

(5) :=V ; Asignacién a la variable V

Con este lenguaje, podemos codificar la cadena anterior mediante el si-
guiente programa (12 instrucciones):

1) LLF 5) LLH 9) e

2) LLC G 6) e 10) LLC I
3) LLJ 7) LLK 11) o
4) + 8) + 12) :=S;

Como fué anunciado anteriormente (§8.4.1), se puede incrementar la eficiencia
de este tipo de sistemas mediante la codificacion, en instrucciones independientes,
de subsecuencias de simbolos que aparezcan con frecuencia en las cadenas postfijas.
En las observaciones que siguen se desecha la codificacidn de ciertas subsecuencias
y se comprueba que siempre serd necesario disponer de los operadores aislados (sin
operandos). Posteriormente, se define un lenguaje «optimizado» que posibilita la
escritura de programas mas cortos y rapidos.

Observacion 1. Debido a la propiedad de asociatividad de los operadores « + » y «-», toda
cadena postfija puede ser transformada de tal forma que nunca dos operadores idénticos es-
tén consecutivos. Por ejemplo: s, = a- b - ¢ - d, se puede escribir:

ssabed-- = de donde la cadena s:cd-b-a-:=

Evidentemente, s;ab-c-d-:= es también una cadena correcta.

Observacion 2. Normalmente (no siempre) las sucesiones de tres operadores « + - +» y
«+ + -» pueden ser eliminadas.
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De forma intuitiva, se expone a continuacién una regla para transformar la cadena «postfi-
ja directay, obtenida a partir de la notacién infija. Sea la siguiente asignacion:

Y=f-(@a+b-(c+d-(e+ g)). Bscrita de forma «postfija directa» resulta la cadena si-
guiente:

Yfabcdeg+ -+ +::=

=1

REGLA DE FORMACION DE LA NUEVA CADENA:

(1) Se coloca el nombre simbélico de la funcién, Y;

(2) Cada vez que aparezcan consecutivamente los dos operandos y el operador, se les sitia
al final de la cadena en construccién. [J

Procediendo de esta forma, la cadena anterior se transforma en la siguiente:
Y eg+d-c+b-a+ f:=
|

Observacidn 3. No siempre es posible eliminar toda secuencia de tres operadores.
Para convencerse de ello, basta con analizar la expresién siguiente:

Zi=(@-b+c-d)-(e-f+g-h)=Zab-cd- +ef-gh- + :=

Las observaciones anteriores vienen a sefialar que:

1) se pueden evitar las secuencias de operadores «--» Yy «+ +».
2) sino se codifican las ternas de operadores « + - +» y «- ++» en macrooperacio-
nes, es necesario disponer de operadores aislados (sin pardmetros): « +» Y «».

El lenguaje que se presenta a continuacién dispone de los operadores aislados, de
éstos con una variable y, por ultimo, codifica secuencias de operadores «-+» y
«+-» con operando. Este lenguaje especial permite una reduccién ostensible de la
longitud de los programas a la vez que acelera el computo de funciones ldgicas.

a) Lenguaje ensamblador (L)

;; II:'ILJ' c :,,} ; Llamada de la variable V (eventualmente complementada)

3) IN V) ; Interseccidn 18gica de la variable V (ev. complementada) con el re-
4) INC V} sultado previo

5) UN V] ; Unién légica de la variable V (ev. complementada) con el resul-
6) UNC V} tado previo

7) UI V1 ; Uni6n l6gica de la variable V (ev. compl.) con el resultado previo,
8) UIC V} seguida de interseccién légica con el resultado anterior (++)
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9 Vv . A |
10) IUC v} ; Interseccion seguida de Unién (- +)
11) := V ; Asignacién del resultado a la variable V

12) SAC d ; Salto condicional si el resultado previo es cierto (se manipula como
una asignacion)

La representacion aislada de operadores se realiza haciendo V = 0. De este modo,
las instrucciones {IN 0, INC 0, UN 0, UNC 0. UI 0, UIC 0, IU 0, IUC 0]} represen-
tan sélo operadores. Por ejemplo, la instruccion IN O representa el operador inter-
seccidn, el cual se aplica sobre los dos resultados previos. Por otro lado, la instruc-
cion LL 0 es una instruccion de no-operaciéon, NOP. La instruccién LLC 0 es una
instruccidén que complementa el valor del resultado previo (fruto de una operacién
légica o llamada de variable).

EsempLO. Sea la programacioén de Sy :=F- (G +J)-H+K) - L
La cadena postfija es SiFGJ + H- K+ -I-:= de donde resulta el programa siguiente:

1) LLF (5) UIK
2) LLCG  (6) INCI
3) UNJ @ =8
4) INH

Es decir, sélo se emplean 7 instrucciones (6 con variables + 1 asignacién).

El hecho de que, normalmente, un programa tenga tantas instrucciones como
apariciones de variables mds una (para la asignacion), unido a las observaciones pre-
sentadas, permite esperar que la minimizacion del nimero de instrucciones de un
programa, y por tanto de la duracién de su ejecucion, se obtenga al minimizar el
niimero de apariciones de variables en la expresion ldgica.

Esercicio. Codifiquense las asignaciones siguientes:

1) S:= XY+ YZ + Z X (necesita sélo 6 instrucciones).
2) Z:=(ab + cd) - (ef + g h) (necesita 10 instrucciones).

b) Estructura de la ut y lenguaje de fases asociado

La estructura de la uT se define alrededor de una pila (figura 8.11). Una pila es una
estructura de datos en la que se accede a las informaciones introducidas en orden
inverso al utilizado para almacenarlas; es decir, utiliza una politica de tipo «ultimo
en entrar-primero en salir» (last-in-first-out, Liro). La cima de la pila contiene el ul-
timo elemento entrado (tras llamada u operacién). La cima de la pila es, en el caso
presente, el registro acumulador, RA.

La tabla 8.2 presenta una definicion formalizada de L,. Como puede observarse,
la pila es especial puesto que, ademds de a Ra, puede accederse a X; ¥ Xa.

Nota. La pila (figura 8.11) es en esencia un simple registro de desplazamiento.
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b1 b2
si VAR< >0
entonces T« ((D[RI])); RA < (T), X1+ (RA),
LL VAR Xiv1 < (Xi); vi=1,...,n-1
si no T < (RA); RA < (T);
si VAR< >0
entonces T « ((D[R1])); RA < (T) A (RA);
INVAR [ rrrmmm
si no — RA < (X1) A (RA),
Xi—Xiv1); Vi=1l,...,n—1
si VAR< >0
entonces T < ((D[R1))); RA < (T) V (RA);
UN VAR | mmmmmmmmmmm e e
si no — RA « (X1) V (RA),
Xi (Xis1); Vi= 1,...,n—1
si VAR< >0
UI VAR smlumcess —oBDR | ) L
si no — RA < [(X1) V (RA)] A (X2),
Xie Xiv2); Vi=1,...,n-2
si VAR< >0
entonces T« ((D[R1])); RA < [(T) A (RA)] V (%),
IU VAR sy 0 Wikl =
si no — RA < [(X1) A (RA)] V (x2),
Xi‘—(Xi+2); vi=1,...,n-2
e (@R1) < (ra); RA < (X1),
VAR Xie—(Xiv1); Vi=1,...,n-1
si (Ra) =1
Bhe entonces cP < (D[RI]); -
Tabla 8.2. Descripcién de L, mediante lenguaje de fases.

c¢) Comentarios

(Nota. Las instrucciones LLC, INC, UNC, UIC e IUC son idénticas a sus correspondien-
tes, sélo que en ¢, debe considerarse (T) en vez de (7). De este modo «LLC 0» provoca
la complementaci6n del contenido del registro RA.)

C.1 La evaluacién de funciones légicas se hace ejecutando todas las instrucciones;
es decir, procediendo a un barrido exhaustivo del programa. Ahora bien, es f4-
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CPL ]
RI | 1

Figura 8.11. Arquitectura de la CPUj;: registros y pila.

cil comprobar que un programa en L; es mds corto (posee menos instrucciones)
y mds rapido de ejecutar que un programa en L, si se supone que las fases du-
ran el mismo tiempo.

C.2 L, permite la evaluacidn de cualquier expresion légica mediante una compila-
cién elemental.

C.3 La presencia del salto condicional permite la programacién a partir de organi-
gramas. La programacion de RdP puede realizarse de forma similar a la ya ex-
puesta en §8.3.3.

Esercicio. La consideracién de la operaciéon «O-exclusivo» y «O-exclusivo complementa-
do», ile podria restar validez a las observaciones que han permitido disefiar L,?

Erercicio. Diséfiese una UL para la maquina de pila definida.

8.4.4 Mdquina basada en el concepto de operacion légica (Ms)

Esta es una médquina de registros cldsica de una direccién. Sus instrucciones facilitan
la evaluacidon de expresiones logicas.

a) Lenguaje (L3)

La evaluacién de una expresion se programa definiendo una serie de transferencias
(algunas con célculo) entre registros y memoria. La estructura mds elemental que
podemos considerar es aquella que contiene los registros Cp, RI, RA y un registro T
(transparente al utilizador), ademds de una unidad ldgica (figura 8.4).

El lenguaje puede ser del tipo:

1) CAR V ; Cargar el RA con V: RA < (V)

2) CARC V ; Cargar complemento: RA < (V)

3) INT V ; Interseccidn: RA < (RA) A (V)

4) INTC V ; Int. complemento: RA < (RA)A (V)
5) UNI V ; Unidn: RA < (RA)V (V)

6) UNIC V ; Unién complemento: RA < (rRA) V (V)
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7) ALM V ; Almacenar: v « (RA)

8) ALMC V ; Almacenar complemento: v « (Ra)

9) OEX V ; O-exclusivo: RA < (RA) @ (V)

10) OEXC V ; O-exclusivo complemento: Ra « (RA) @ (\2)
11) SAL d ; Salto incondicional: cp « d

Esercicio. Aséciense sendos lenguajes de fases al lenguaje L; si se dlspone fisicamente de
UL31 y UL3; (figura 8.12).

Unién Excl.

af |
r ------- - eem e -_—
| -! UL3;
| |
T I !
lbjd I
I
s YAN
Complementacién : {, : RA }—
¢ & | OPERACION|I %—ﬁ ]
| X
0 0 | Carga ) (o} :
0 1 Interseccién : )%— - |
I 0 | Unién Incl. |} :
11 L

o e ) @)

INT OEX UNI

I———-l— —{—-
ULj |

H

®

Complementacion be e — = — — . —

Figura 8.12. Dos posibles esquemas l6gicos para UL3. (Nota. Todos los biestables son del ti-
po D excepto RA, en la figura 8.12b que es de tipo 1-K.)
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b) Comentarios

B.1

B.2

B.3

B.4

A partir de una expresidn algebraica, la generacion de cédigo, necesita el con-
curso de un compilador, aunque éste sea elemental (véanse obras especializadas
en compilacion. [GRIE 75], por ejemplo).

La programacidn de funciones ldgicas puede exigir el recurso de variables inter-
medias que tienen que designarse explicitamente. En M3, las variables interme-
dias se encuentran en la pila, pero no son designadas explicitamente. La progra-
macién de Z = A B + C B necesita, al menos, una variable intermedia (sea V1):

1) CAR A 5) INT B
2) INTC B 6) UNI Vi
3) ALM V, 7y ALM  Z
4) CARC C

La definicidn de las salidas se lleva a cabo utilizando dos instrucciones de asig-
nacién (complementada o no).

El célculo de una expresion 1gica se realiza ejecutando todas las instrucciones
que codifican la expresion. En el préximo parrafo veremos como este tipo de
programacion puede que no resulte interesante. La presencia de saltos condicio-
nales permite el uso de otras técnicas de programacién de expresiones ldgicas
mas eficientes.

Un programa en L3 nunca serd mds corto que en L, tanto si ambos poseen ins-
trucciones OEX-OEXC, como si carecen de ellas.

8.4.5 Interpretador mixto de operaciones légicas y saltos condicionales (M)

La definicion del lenguaje L4 se basa en la siguiente observacidon: puesto que una
funcién logica no posee mas que dos resultados posibles «0» y «1», su evaluacion
puede realizarse comprobando si su valor:

a) No puede ser «O». Por ejemplo, si Fi = ahc + ¢dh + ad, la condicién m; = 1
N

" " iy

implica que F; = 1, independientemente del valor de mz y ms.

b) No puede ser «1». Por ejemplo, si Fo = (¥ + v+ ) (7 + v+ (v + 1), la con-

N
My Mo My

diciéon M; = 0, implica que F, = 0, independientemente del valor de M, y Ms.

Esta observacion elemental permite una evaluacion répida de las expresiones 16gi-

cas siempre que se disponga de instrucciones de salto condicional.

a) Lenguaje mdquina, estructura y lenguaje de fases de My

Sea por ejemplo, el subconjunto de Ls:

1) CAR V 5y ALM V
2) CARC V 6) ALMC V
3) INT V 7) SAL d
4) INTC V
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al cual le afiadiremos las dos instrucciones especiales de salto condicional siguientes:

8) SCU d; Salto Condicional tipo Unién (salto si cierto) a la direc-
cion d.

9) SCI d; Salto Condicional tipo Interseccion (salto si falso) a la di-
reccion d.

De forma intuitiva, diremos que el primero servird para sustituir al operador
«+ », mientras que, el segundo lo utilizaremos, normalmente, para sustituir al ope-
rador « * », siempre que vaya seguido de «(», «* (».

La estructura de la cpu de esta maquina es idéntica, a nivel de registros, a la de
Ms: {cp, RI, RA, T). La definicién de las instrucciones SCU y SCI se expone en la
tabla 8.3

é1

SCU d si (RA) = 1 entonces cp « (D[R1])
si no RA < 1

SC1d si (RA) = 0 entonces cp < (D[R1])

Tabla 8.3. Descripcion (parcial) de Ly mediante
lenguaje de fases.

Para facilitar la comprensién de los comentarios que seguirdn, presentamos tres
ejemplos de programacion con Ly:

EempLo 1. Seaa-b+¢-b=Z. ErempLO 2. Sea E;(Jb+é)+5'd= Y.
1) CAR «a 1) CAR aJ
2) INTC b 2) SCI 7
3) SCU 6 3) INT b
4) INTC ¢ 4) SCU 9
5) INT b 5) INTC e
6) ALM Z 6) SCU 9 ———
7) INTC ¢
8) INT d
9) ALM Y
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EJEMPLO 3. Sea}a+5+6+e=F@ abce = F.

1) CAR «a 1) CARC a
2) SCU 8 Complementando 2) INT b
3) INTC b| = ambos miembros = |3) INT c
4) SCU 8 de la expresion 4) INTC e
5) INTC ¢ 5) ALMC F
6) SCU 8
7) INT e
8) ALM F|

b) Comentarios

B.1

B.2

B.3

B.4

Al igual que con Ly y L3, la programacidn directa de expresiones ldgicas en
forma algebraica no es posible. Se requiere un proceso de compilacion.
La asignacién RA < 1 (tabla 8.3) realizada al ejecutarse la instruccion «SCU
d» cuando (RA) = 0, permite la utilizacidn de las instrucciones INT e INTC
inmediatamente después del salto. De este modo, en el ejemplo 1 se progra-
mo «INTC ¢» como cuarta instruccion. Si la mencionada asignacién no se
llevara a cabo, la instruccién anterior habria de ser sustituida por « CARC
¢». De acuerdo con esta observacion, interesa resaltar que las instrucciones
«CAR» y «CARC» desempefian, en los programas presentados, un papel
mas restringido que el de la carga del acumulador; se utilizan como delimita-
dores de expresiones. A estas instrucciones se les asocia, con frecuencia, una
definicién nemotécnica distinta; por ejemplo, principio de expresion, «PEX
v» y PEXC v».

Por tltimo, cabe sefialar que las mencionadas instrucciones «PEX v» o
«CAR v» podrian ser eliminadas si afiadiéramos a M4 un bit de asignacion,
BA. De esta forma, la programacién de expresiones se simplificaria al méxi-
mo, puesto que habria un tnico tipo de instruccién de llamada de variables.
Esta opcién ha sido adoptada en el sistema COLERES [DACL 76] en el que las
instrucciones se denominan test de variable, «<TV v» y «TVCo».

Las instrucciones SCU y SCI permiten saltar todas aquellas instrucciones cu-
ya ejecucion no puede cambiar el resultado de la expresion logica en proceso
de evaluacién. Hablaremos de salto explicito en la evaluacion de expresiones
16gicas. Merced a esos saltos la evaluacion puede ser muy réapida.

La programacion de expresiones logicas mediante Ls no necesita la definicion
de variables intermedias. La comparacion de los programas que codifican la ex-
presién Z = ab + cb con L3 y Ly es suficientemente ilustrativa. La ausencia de
necesidad de variables intermedias en los programas codificados en L4 puede
comprenderse facilmente. En efecto, las variables intermedias se utilizan para
memorizar el resultado de una subexpresion; esta memorizacion no es necesaria
si utilizamos L, en cuyo caso todo programa se reduce a un encadenamiento de
intersecciones de variables y saltos condicionales.

Nota. En [MART 80] se presentan, informalmente, algoritmos para la generacion de codi-
go en un lenguaje préximo a L4 a partir de una expresion algebraica.
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Hemos considerado en este apartado un grupo de cuatro tipos de Ap especialmente
disefiados para la interpretacién de diagramas y expresiones l6gicas. En el proximo
capitulo analizaremos la simulacién de RdP en maquinas de propdsito general.

La tabla 8.4 resume gran parte de los comentarios realizados al analizar los dife-
rentes sistemas. En ella se reflejan algunos de los aspectos mds caracteristicos encon-
trados. Mencién aparte merece la complejidad de los traductores del lenguaje de
programacion a lenguaje mdquina (ejecutable).

M;(§8.4.2, M2(§8.4.3, | M;(§8.4.4, M4(§8.4.5, M;(§7.4.3,
Diagramas Miquina |MaAquina de | Operaciones Decisiones
Légicos) de Pila) Registros) y Saltos) Binarias)
Dispositivo de | Unidad UL UL UL (sdlo inter- |No
Célculo Légica (UL) secciones) posee
Numero de | RAY 1 (cima 1 1 No
Acumuladores RAO de la pila) posee
Necesidad de SI SI SI NO NO
variables (implicitas
intermedias en la pila)
Utilizaciéon de |NO NO NO SI SI
saltos en la
evaluacion
Bit de SI NO NO NO NO
Asignacién
Instrucciones * Almacenar = ALM ALM Activacion/
de asignacion | resultado ALMC ALMC /desactivacion
(Y,0) incondicional

* Activacion/
/desactivacion
condicional

Tabla 8.4 Resumen de peculiaridades de los ap considerados.

El lenguaje L; (Diagramas Logicos) es ejecutable casi directamente siempre que
las variables se designen por sus direcciones y no por sus nombres simbdlicos. Es
decir, s6lo necesita un ensamblador elemental. Los programas en Ly, Ly y L4 se
obtendran, a partir de una expresion algebraica, mediante compilacion, cuya com-
plejidad crece progresivamente.
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En lo que concierne al tratamiento de expresiones logicas, hemos presentado los
principales métodos que existen. No obstante, cabe mencionar atin la evaluacion de
expresiones légicas por aplicacion de mdscaras a vectores de variables. Asi, por
ejemplo, si se desea calcular ¢ = AB 'y en una palabra se posee la siguiente disposi-
cion de variables:

V=|A|B|C|...|H

es facil observar que su interseccion con la mdscara de seleccion:

ms=|1]1[0}|...[0

seguida de un O-exclusivo con la mdscara de cdiculo:

Me = 1 0 O e O]

es nula si y solo si A =1y B=0 (de donde se desprende que ¢ = 1); es decir,
V- -m)y®@me=06 o =1.

Eiercicio. Determinense las operaciones que se debe realizar, asi como las mascaras nece-
sarias, para calcular las funciones:

1) A+B
2) A+ BC

Finalmente, dentro de los comentarios generales sobre los AP presentados, intere-
sa resaltar que si se les supone una realizacion material especifica, las operaciones
correspondientes a la fase (J» de una instruccién podran siempre realizarse en para-
lelo con la fase (o de la instruccidn siguiente. En efecto, baste observar que duran-
te (J las operaciones son siempre internas a la unidad de tratamiento.

8.5 CONCLUSION

Los autdmatas programables constituyen un concepto de computador para el control
16gico de procesos. Una filosofia de equipo. Los microprocesadores son recursos tec-
noldgicos cada vez mas empleados en la realizacion de autématas programables.

Bésicamente los AP aparecen como maquinas que simulan en secuencia el compor-
tamiento de un conjunto de dispositivos l6gicos cableados. Es decir, se sustituye una
realizacion espacial (cdlculo paralelo con operadores aislados) por una secuencial
(un procesador tinico con un conjunto restringido de operadores trabaja simulando,
uno tras otro, el comportamiento de los diferentes dispositivos 16gicos). Este modo
de proceder tiene diversas ventajas (flexibilidad, coste, etc...), pero plantea dos pro-
blemas :
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1) La aparicion de funcionamientos no previstos, debidos a la simulacion secuen-
cial (en realidad, el conjunto de circuitos que se desea simular opera en parale-
lo). Las aleatoriedades de programacion.

2) El tiempo de respuesta del AP serd, normalmente, muy superior al del sistema
cableado (si ambos se realizan con la misma tecnologia), lo que, para determi-
nados procesos muy rapidos, puede ser una limitacién importante.

La tendencia actual es hacia la definicién de AP que manipulen directamente des-
cripciones funcionales (basadas en grafos de estado, redes de Petri, etc...) con lo que
ademds de ganar en seguridad de la descripcidn, se pueden evitar sisteméticamente
las aleatoriedades de programacidén. El capitulo 9, se ocupa de ello.

Funcionalmente los AP se caracterizan por ofrecer un lenguaje de programacion sim-
ple y adaptado a la clase de problemas, con pocas instrucciones, direccionamiento di-
recto (casi exclusivamente) y la no existencia de subprogramas ni de interrupciones ma-
nipulables por el programador. Operacionalmente los AP son sistemas muy evolutivos
fisicamente (modularidad en E/S, modularidad en memoria, procesadores etc...),
disponen de periféricos que pueden ser muy sofisticados para la edicion y puesta a
punto de programas (maletas de programacion) y ofrecen una elevada seguridad de
funcionamiento. En efecto, la mantenibilidad se ve mejorada gracias a la existencia de
programas de diagndstico y localizacién de averias junto con la modularidad fisica;
la credibilidad se aumenta gracias a la existencia de «perros guardianesy, dispositi-
vos de deteccion de errores en la UT, etc.,... Tecnoldgicamente en los AP se cuidan
aspectos tan importantes como la inmunidad ante parasitos o perturbaciones en la
alimentacion y se ofrecen equipos adaptados a ambientes industriales de trabajo (ad-
miten humedades relativas del 90 a 95 por 100, la presencia de polvo, etc...).

En lo que respecta a la evolucion tecnoldgica, la aparicion de los u-procesadores
(4-8 bits) ha provocado la aparicion de los dos fendmenos fundamentales en los Ap:

1) La evolucién hacia los sistemas de control y regulacion general, comprendien-
do cada vez mas funciones complementarias de regulacién, archivado, etc.

2) La evolucién hacia estructuras de control descentralizadas, gracias a la «capa-
cidad de didlogo» de los u-procesadores.

Por ultimo, es importante resaltar que la aparicién de u-procesadores de un bit
(u-aP) evidencia el interés industrial de esta clase de sistemas, si bien parece ser que
su éxito comercial no se ha consolidado.

EJERCICIOS

8.1 Progrdmese en L, con seis instrucciones, la expresion logica: (4 + B) - (CD + EF). ;Se
puede programar con menos instrucciones? jPor qué?
8.2 Concibase un AP elemental, con las instrucciones siguientes:

)LL V
2) LLC V
3) +

4)

5) ==

8.3 Programese la expresion S: = AB(C + D) + FI(K + H(G + J), en los lenguajes Ly, L3 y
La. Compaérense los diferentes programas.






9

Realizacion programada (II):
microcomputadores y automatas
programables especiales

9.1 INTRODUCCION

Los computadores presentados en el capitulo anterior, autématas programables de
uso general, estdn especializados en el tratamiento de expresiones logicas, con fre-
cuencia definidas indirectamente merced a esquemas de relés o diagramas logicos.
La simulacién de RdP se puede llevar a cabo con aquellos AP ejecutando las expre-
siones logicas que definen:

1) el disparo de cada transicién y las acciones que éstos generan.
2) las acciones asociadas a cada lugar.

En este capitulo se proponen esquemas mejor adaptados para la simulacién de
RdP binarias. Esencialmente se basan en la utilizaciéon de microcomputadores de
propdsito general y persiguen una simulacién mas eficiente (mds répida y, eventual-
mente, con menor ocupacion de memoria) y sin aleatoriedades. Estos requisitos se
consiguen gracias a una cierta sofisticacién en los algoritmos de simulacion, a pesar
de lo cual seguiran siendo bastante simples.

Para presentar los métodos principales de realizacién, puede optarse, entre otros,
por los dos enfoques siguientes:

1) Partir de la representacién matricial de una RdP, analizar sus inconvenientes
e introducir representaciones alternativas que, normalmente, permitan mejo-
res prestaciones.

2) Partir de las técnicas clasicas de realizacidén de grafos de estados reducidos,
GR, y generalizarlas hasta obtener esquemas vélidos para simular RdP.

La diversidad de técnicas que se pueden emplear para la simulacidon y el elevado
numero de posibilidades existentes para codificar informaciones relativas a las RdP
(estructura, lugares marcados, transiciones sensibilizadas, etc.) nos han inclinado a
utilizar el primero de los dos enfoques anteriormente enunciados. Al proceder de
este modo, la unidad conceptual entre los diversos métodos de realizacién se hace
mads patente. Por otro lado, la extension directa de los métodos cldsicos de realiza-
cién de GR no permite obtener de forma «naturaly las diferentes clases de métodos
de simulacién posibles. La consideracion de un «panoramay relativamente general

315
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de métodos de simulacién tiene su interés dado que, segun la clase de RdP, se pue-
den definir métodos especificos con los que obtener las mejores prestaciones. Dicho
de otro modo, no existe un método unico, dptimo para simular cualquier RdP.

Este ultimo capitulo comienza considerando la especificacién de RdP mediante
lenguajes textuales (§9.2) y exponiendo una serie de cuestiones previas a la realiza-
cion (§9.3). Posteriormente (§9.4, §9.5, §9.6 y §9.7), de acuerdo con el enfoque
adoptado, se aborda la simulacion cuando la estructura y el marcado de la RdP se
representan mediante unas fablas (estructuras de datos) que son accedidas por un
algoritmo interpretador o de simulacion. Asi, en §9.4 se considera una eficiente re-
presentacion matricial, mientras que en §9.5 se introduce una representacién deriva-
da de la anterior pero que utiliza /istas, con lo que, normalmente, se obtienen codifi-
caciones mas compactas. En §9.6 y §9.7 se modifica el esquema de representacion
de §9.5 para obtener simulaciones mads rapidas. Esencialmente, la idea sera la de res-
tringir el calculo de las condiciones de sensibilizacién a un subconjunto de las transi-
ciones de la red. En §9.8 se define un AP cuya programacion se realizard gra-
cias a la existencia de un lenguaje algoritmico de bajo nivel (tipo ensamblador)
especial.

Los diferentes algoritmos se presentan con una notacion relativamente informal
que posibilita una rdpida traduccidn a lenguajes ensambladores de microcomputa-
dores de propdsito general. A pesar de su apariencia «estructurada», los algoritmos
no suelen estar estructurados porque se ha buscado la maxima eficiencia en los pro-
gramas, cortos pero de una elevadisima frecuencia de ejecucion. Las tablas 9.4, 9.5
y 9.6 presentan codificaciones de algunos de los esquemas bésicos de simulacién en
el lenguaje ensamblador del microprocesador MOTOROLA 6801.

9.2 LENGUAJES DE ESPECIFICACION DE RdP

9.2.1 Lenguajes

Los lenguajes que permiten la definicion de RdP pueden clasificarse, en una primera
aproximacidn, en dos grandes grupos. Estos son:

1) lenguajes algoritmicos, también denominados procedimentales o dindmicos;
2) lenguajes no-algoritmicos, también denominados no-procedimentales o estdticos.

Los lenguajes del segundo grupo se dice que son de especificacion, no de progra-
macion. Desde un punto de vista conceptual, los del primer grupo provienen de mo-
dificaciones, mas o menos importantes, de lenguajes similares a los presentados en
el capitulo anterior. Su innovacion suele residir en la introduccién de instrucciones
primitivas capaces de manipular con mayor o menor comodidad o/y eficiencia, la
descripcion y la simulacién de las RdP. En §9.8 se presenta un ejemplo de este tipo
de lenguajes.

En el presente contexto, los lenguajes del segundo grupo son bastante mds intere-
santes. Se dice que un lenguaje es no-algoritmico si no contiene instrucciones, enten-
didas éstas como 6rdenes que controlen explicitamente el comportamiento dindmico
de un computador real o virtual (simulado). Un lenguaje no-algoritmico no asocia
significacién alguna al orden en el que se presentan las frases que describen el com-
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portamiento que se desea realizarf. Cada frase es un conjunto de instrucciones que
lleva asociado una etiqueta mediante la que se define(n) la(s) condicion(es) que de-
be(n) cumplirse para que se lleve a cabo su ejecucion.

Los lenguajes de especificacidon que se pueden definir varian entre los del tipo de
cumplimentacion de estadillos (fill-in-the-blank) y otros de «mayor nivel». En todos
ellos se puede adoptar una definicidén conjunta de la estructura e interpretacién aso-
ciada a la RdP, o proceder a su definicién por separado.

A continuacion, se considerara un ejemplo de lenguaje que define separadamente
la estructura e interpretacion asociada a la RdP. En éste, la estructura y el marcado
inicial se especifican con un sublenguaje del tipo cumplimentacion de estadillos,
mientras que los eventos se expresan en un sublenguaje que acepta la notacidn
algebraica. :

La tabla 9.1a especifica la RdP de la figura 9.1. Como puede observarse facilmen-
te, se trata de una simple transcripcion textual de la mencionada figura. La estructu-
ra de la RdP se especifica transicidn por transicién. Cada transicion se define
mediante:

1) sus lugares de entrada y de salida y
2) el evento asociado (si existe).

La interpretacion se especifica definiendo:

1) los eventos y
2) las acciones asociadas a‘'cada lugar.

El marcado inicial se define después de la especificacion de la estructura de la red.
En este punto caben dos observaciones de interés:

1) Si por razones de seguridad, se juzgara importante la redundancia en la especifi-
cacion de la estructura de la RdP, ésta se puede redefinir completamente espe-
cificando para cada lugar sus transiciones de entrada (funcion de incidencia
posterior) y las de salida (funcidn de incidencia previa). La tabla 9.1b reespeci-
fica la estructura de la red de la figura 9.1.

2) Si existiesen acciones asociadas al disparo de las transiciones, éstas podrian es-
pecificarse con los eventos o en un apartado independiente (acciones impulsio-
nales).

Algunas otras facilidades para especificar RdP pueden consistir en la capacidad
de definicidn y utilizacion de macrolugares, macrotransiciones, subRdP,. . . . De es-
te modo, la especificacidn de grandes sistemas podria simplificarse, utilizando direc-
tamente algunos de los principios metodoldgicos de descripcion esbozados en el ca-
pitulo 5 (§5.5).

Las principales ventajas de la clase de lenguajes sugerida en este apartado frente
a los lenguajes algoritmicos son:

1) La especificacion directa de la RdP, lo que facilita la tarea de programacion hasta
el punto de no requerirse conocimientos informaticos para su desarrollo.

T Recuérdese que en los lenguajes algoritmicos (la inmensa mayoria), la ordenacién de las instrucciones
es fundamental: permite definir las secuencias de operacidn.
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Figura 9.1. Red de Petri binaria.

ESTRUCTURA ESTRUCTURA

t1:p1|p2, pa$er; pritalty;

t2:pa|p3$er; Daity|ta;

t3=p4|p5$83; p31t2|t4;

ta:ps3, ps|p1; Daiti|ts;

ts:ps|ps $es; Ds 13, ts|ta, ts;

te:ps|ps S es # De:ts|te #
MARCADO INICIAL p; # (b)
EVENTOS

e1:=A;e:=BC; Notas:

es:=D;es:=E+ D; 1) «#» es un separador entre las diferen-
ACCIONES tes partes de una especificacion.

p2iay; 2) «$», «|» y «;» son otros tantos separa-

P3ias; dores.

DP4aiaz, as;

D62, a4 #

(@

Tabla 9.1 Especificacion de la RdP de la figura 9.1

2) La eliminacion de aleatoriedades de programacién, como las aparecidas en el
capitulo anterior, no tiene que ser resuelta por el programador.

3) La estructura y el marcado de la RdP pueden ser validados directamente.

4) La especificacion redundante de la estructura de la RdP permite reducir consi-
derablemente los errores en el proceso de entrada de datos.
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9.2.2 Representacion interna de la RdP y traduccion

En el apartado anterior se ha considerado la especificaciéon de RdP desde el punto
de vista del operador/programador. Ahora bien, no resulta dificil comprender que
por diversas razones (entre las que se puede encontrar la mejora de prestaciones)
puede suceder que la anterior forma de especificacién no sea adecuada para que la
madquina lleve a cabo directamente la simulacion. Dicho de otro modo, si la forma
en que el programador especifica el sistema que se desea realizar difiere de la forma
en que el computador debe considerarla, tiene que insertarse un proceso de traduc-
cion. Obsérvese que los procesos de traduccidn a que se hace referencia son absolu-
tamente cldsicos en informatica. De este modo, un programa en lenguaje PASCAL
(0 FORTRAN, o COBOL, etc.) no se suele ejecutar directamente, sino después de
una cierta transformacién. Por tratarse de transformaciones entre dos lenguajes
(formas de representacidn de ideas), éstas se denominan genéricamente traduccio-
nes.

En nuestro proceso de traduccidn, el programa fuente es el que define la RdP.
El producto de la traduccidn puede variar entre dos formas radicalmente distintas,
seguin el modo de ejecucion elegido para la simulacion. Asi, ésta puede realizarse
gracias a un programa interpretador que toma de unas tablas (estructuras de datos)
la informacion que codifica la RdP; es decir, no existe de forma explicita el concepto
de instruccidn con su cddigo de operacion. Este tipo de técnica de simulacion se de-
nomina conducida por tabla (table driven) y permite codificar las RdP con una ocu-
pacién de memoria minima, pero a costa de una simulacion que puede ser relativa-
mente lenta.

La segunda forma bésica que puede tomar el producto de la traduccion es una
(varias) secuencia(s) de instrucciones. Es decir, se produce un programa. La simula-
cion se dird conducida por programa. Si éste es ejecutable directamentet, el proceso
de traduccion se denomina compilacion. Cuando el proceso de traduccion genere
un programa cuyas instrucciones no pertenezcan al computador (sean instrucciones
de un computador virtual), deberd existir otro programa, también denominado in-
terpretador, que analice y ordene la ejecucion del programa in‘ermedio obtenido.
Tanto en este ultimo caso como en el de la simulacién conducida por tabla, se dice
que la realizacion es interpretada por programa.

En §9.4, §9.5, §9.6 y §9.7 se considerardn realizaciones mixtas en las que la simu-
lacion global estard dirigida por tablas, pero la evaluacidén de eventos se realizard
gracias a programas similares a los presentados en §8.3. En §9.8 se considerard una
realizacidn en la que el proceso de traduccion debe generar un programa ejecutable
sobre una mdquina (virtual si el soporte es un microcomputador estandar).

Para concluir estos comentarios, baste con seiialar que el proceso de traduccion
desde los lenguajes de especificacion como el considerado en §9.2.1 hacia la repre-
sentacion interna utilizada por el computador de simulacidn, suele ser razonable-
mente simple en términos generales. Dicho de otro modo, los traductores considera-
dos no suelen ser programas ni muy voluminosos ni muy complejos.

t Es decir, si las instrucciones generadas pertenecen al repertorio del computador sobre el que se llevard
a cabo la simulacién.
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9.3 CUESTIONES PREVIAS A LA REALIZACION DE SISTEMAS
ESPECIALIZADOS EN LA SIMULACION DE RdP BINARIAS

A la hora de proceder a la definicidén de sistemas especializados en la simulacion de
RdP binarias, cabe plantear un cierto numero de cuestiones previas de tipo general.
En este apartado se pretende dar una breve perspectiva de algunas de éstas, a la vez
que se establecen determinadas decisiones sobre los sistemas que se presentaran
posteriormente.

9.3.1 Computador soporte

Entre los diferentes AP especializados en la simulacion de RdP binarias que se han
propuesto en la literatura técnica, existen dos grandes grupos:

1) Los sistemas basados en un hardware especificamente disefiado. Entre éstos
los hay que emplean secuenciadores microprogramables (por ejemplo, COLE-
RES [DACL 76] esta disefiado alrededor de la serie 3000 de INTEL) 0 micropro-
cesadores especiales mds un cierto hardware adicional (por ejemplo, en [DEFE
79] se utiliza el microautémata MoTorOLA 14500B). Normalmente, €stos siste-
mas son muy rapidos en la simulacién.

2) Los sistemas basados en microcomputadores de propdsito general (MOTOROLA
6802, INTEL 8085,. . .), cuya especializacidn se realiza por software. Evidente-
mente los sistemas de este grupo son mas lentos que los del anterior.

En los apartados que siguen se considerard esencialmente la utilizacion de esque-
mas basados en microcomputadores de proposito general. La transposicion de fun-
ciones software al hardware permitira la definicidn de sistemas especializados mds
rapidos. Asi, por ejemplo, en [SILV 80a] se presenta un sistema que, ademds del
microcomputador estdndar, utiliza un explorador de lugares marcados, procesador
elemental especializado.

9.3.2 Definicion de las entradas y salidasf

En su forma mds simple, las entradas y salidas se pueden adquirir o emitir directa-
mente, en el momento en que se necesite la variable de entrada o se haya elaborado
la variable de salida. Ahora bien, si se desean evitar las aleatoriedades que puedan
provenir de una alteracién de los valores de las variables de entrada durante un ciclo
de tratamiento, éstas se han de adquirir simultdneamente y memorizarlas en un pro-
ceso que se denomina muestreo.

La anterior memorizacién puede llevarse a cabo en una memoria imagen de las
entradas, que seré actualizada por el microcomputador al comenzar cada ciclo de
tratamiento. Otra forma de proceder, algo mds costosa y eficiente, pero de amplia
utilizacién, consiste en cargar directamente los valores correspondientes en registros
dispuestos en las interfases de entrada. En este ultimo caso, el conjunto de registros

+Los conceptos que aqui se consideran fueron presentados en el capitulo 8. La breve mencidn que se
establece en este apartado persigue facilitar la lectura independiente de este capitulo.
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de entrada forma la memoria imagen de las entradas, y su actualizacion se realiza
simultdneamente en un unico ciclo de reloj.

La emision de las salidas se suele hacer directamente, a medida que se calculan.
Si se desea una emision «cuasi-simultdanea» de todas ellas, se utilizard una memoria
imagen de las salidas, en la que éstas se van almacenando a medida que son elabora-
das. Al finalizar el ciclo de tratamiento, el microprocesador copiard esta imagen so-
bre los registros de las interfases de salida. La utilizacion de una memoria imagen
de las salidas permite, ademds de la emision cuasi-simultdnea, una mayor seguridad
ante posibles parasitos que hayan alterado puntualmente el contenido de registros
de la interfase de salida. (En efecto, si ha habido alteracién, al recopiar la ima-
gen de la variable de salida, se restaurara el valor correcto.)

En algunos casos, para simplificar la programacién, la memoria imagen de las sa-
lidas es borrada (puesta a cero) al comienzo de cada ciclo de tratamiento. MIB signi-
ficara Memoria Imagen Borrada al comenzar un ciclo de tratamiento. En este caso,
en cada ciclo de tratamiento debe calcularse completamente el nuevo vector de sa-
lidas.

Normalmente se supondra que las salidas se emiten directamente. Para presentar
un esquema radicalmente distinto, en §9.8 se utilizard una MIB. Dado que la utiliza-
cién de una memoria imagen de las entradas permite la eliminacidn de aleatorieda-
des debidas a los cambios de valor de las entradas durante un ciclo de tratamiento,
en lo sucesivo se supondrad que siempre existe ésta.

9.3.3 Simulacion sincrona/no sincrona

En lo sucesivo, se dird que la simulacién de una RdP es sincrona si el marcado evolu-
ciona globalmente en un momento determinado. (Normalmente al finalizar el clcu-
lo del nuevo marcado.)

Obsérvese que la definicidn de simulacion sincrona adoptada no exige la presencia
de un reloj tiempo real que lance los ciclos de tratamiento con una cadencia fija,
ni que las salidas sean emitidas cuasi-simultdneamente.

La definicion de evolucién sincrona solo pretende evitar las aleatoriedades que
puedan surgir de una modificacion en serie de los componentes del marcado, cuya
evolucion real deberia ser paralela. De este modo, una simulacién no-sincrona de
la RdP de la figura 6.3a dara un marcado intermedio no binario siempre que la tran-
sicién superior se trate antes que la otra de idéntica etiqueta. De lo anterior se des-
prende que si, por ejemplo, el marcado se representa con un vector booleano, la si-
mulacidn serd incorrecta puesto que transitoriamente este llegard a tener dos marcas
en p;. Por otro lado, es interesante observar que con evoluciones no-sincronas, el
marcado final que se obtendria al terminar un ciclo de tratamiento depende del or-
den en que se consideren las transiciones.

La interpretacion sincrona es siempre mas costosa en memoria puesto que se ha
de disponer del marcado anterior (el existente al comienzo del ciclo de tratamiento)
y de informacidn necesaria para construir el nuevo marcado. Evidentemente, la si-
mulacidn sincrona serd también algo mads lenta. En evitacion de aleatoriedades, en
lo sucesivo se adoptard siempre una simulacion sincrona.
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9.3.4 Sobre la interpretacion asociada a las RdP que se simulan

La definicién de eventos puede variar desde la consideracién de una tinica variable
(complementada o no) hasta la definiciéon de expresiones algebraicas, incluyendo
flancos. En lo sucesivo se supondran definidos los eventos mediante expresiones 16~
gicas de las variables de entrada.

La definicién de las acciones asociadas a los lugares, puede ser incondicional o
condicionada por una determinada funcidn légica. La consideracion exclusiva de
acciones incondicionales asociadas a los lugares, permite simplificar la simulacién
puesto que, en este caso, se pueden representar todas las acciones como asociadas
al disparo de transiciones (figura 9.2).

A A/ACTIVAR (a1, @2)
a, ax

B B/DESACTIVAR (a3)
[}

C C/DESACTIVAR (a1)

Figura 9.2. Las acciones incondicionales asociadas a los lugares pueden representarse como
asociadas al disparo de transiciones.

En §9.4, §9.5, §9.6 y §9.7 se considerardn acciones asociadas a las transiciones
y acciones incondicionales asociadas a los lugares. En §9.8 se supondra que existen
acciones condicionales asociadas a los lugares. En este ultimo caso, la simulacién
realizard, normalmente, dos tratamientos bien diferenciadost:

1) evolucién del marcado y generacion de acciones asociadas a las transiciones;
2) generacion de las acciones asociadas a los lugares.

9.4 METODO MATRICIAL BASICO PARA LA SIMULACION DE RdP
BINARIAS '

En este apartado se presenta un algoritmo de simulacion basado en una representa-
cién matricial de la estructura de una RdP. Considerando el problema en toda su

+En el capitulo 8 estos dos tratamientos corresponden a dos fases bien diferenciadas de la simulacién.
El método de simulacién que se presentaré en §9.8 procede en una unica fase, utilizando un esquema
conceptualmente algo mds complicado, pero eficiente.
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generalidad, la evolucidn del marcado puede obtenerse facilmente, mediante calcu-
los aritméticos que utilicen las matrices de incidencia previa y posterior (§2.2.1),
aunque si la RdP es, pura bastara con la ecuacién de estado (§2.2.2):

My=Mix_1+C-U.

Restringiendo la simulacion a RdP binarias, a continuacidn se transformarén los
anteriores cdlculos aritméticos en célculos /dgicos, mucho mds répidos de ejecutar
y conducentes a una menor ocupacion de memoria. En el presente caso se ha optado
por una simulacién sincrona, dirigida por tabla (matrices), en la que no existen ac-
ciones condicionales asociadas a los lugares, pero en la que si se dispone de una me-
moria imagen de las entradas.

9.4.1 Fundamentos

Sean:

1) Enxm (= Cixm) la matriz de incidencia previa de una RdP ordinaria. (Dado
que la red es ordinaria, E serd una matriz booleana.)

2) Cnxmla matriz de flujo de marcas asociada a la RdP binaria y F, x» 1a matriz
booleana, en la que Fj; = 1 si y sblo si p; es lugar de entrada o de salida de ¢;
pero no simultdneamente lugar de entrada y de salida. Es decir, F;; =1 sii
Cij # 0. (Expresado de otra forma: F= C~® C*.)

3) Myux1 el vector booleano que representa el marcado de una RdP binaria.

4) A’ la j-ésima columna de la matriz A.

De acuerdo con la notacion anterior, es facil observar que:

a) t; esté sensibilizada por M sii E/ < M. Es decir: Vi, E; < M(p)).
b) el disparo de ¢; permite obtener el marcado M * definido por la suma aritméti-
ca de My la j-ésima columna de C: M = M + C’.

Ahora bien: [E/ < M] & [E/ AM < MAM] & [E/ AM = 0]. Por consiguiente, #;
estard sensibilizada por M si y sélo si es nula la interseccion Idgica de los vectores
booleanos E’ y M, E/ AM = 0, condicion vectorial facil de comprobar. Por otro la-

th o 13 14 s Ig th b 13 t4 ts Is

10 00 0 0] 100100 1] m

010000 110000 0| p

000100 010100 0| ps
E=1001000 F=1i 01000 il T

000110 001111 0| ps

(0 000 0 1] 0000 11 0| ps

Tabla 9.2 Matrices E, F y M correspondientes a la RdP de la figura 9.1 (y tabla 9.1).



324 REALIZACION PROGRAMADA (II): MICROCOMPUTADORES Y AUTOMATAS PROGRAMABLES ESPECIALES

do, el nuevo marcado, M™*, se obtiene, en general, mediante una suma aritmética
de los vectores My C/: M* := M + €’. Habida cuenta que M y M* son vectores
booleanos, la anterior suma puede considerarse médulo 2 si se reemplaza € por F
(matriz booleana que representa a C médulo 2). En resumen, M* := M + CY puede
reescribirse como M™* := M@ F/, donde @ simboliza la suma mddulo 2 u o-
exclusivo (operacion loglca) Puesto que la sensibilizacion de ¢#; se ha realizado utili-
zando M, convendra complementar la ecuacion vectorial-booleana que permite cal-
cular el nuevo marcado, M* := M@ F/, de donde bastara operar con M.

El algoritmo de simulacién resultante es elemental (tabla 9.3). Este trabaja sobre
las matrices E y F (que definen la estructura de la RdP) y el vector complemento
del marcado, M. Los eventos y acciones asociados a cada transicion se codifican en
procedimientos independientes (procedimientos evento-accidn, pevac).

Eventos y Acciones asociados a la RdP de

SIMULADOR (INTERPRETADOR) la figura 9.1

(1) Adquisicion de las entradas (muestreo procedimiento pevac 1
de éstas); §:=A;{8:=e1}

m: pevac m;

procedimiento pevac 3
&:=D; {&:=es3)

fcaso si & entonces a; : = 0;as : = 0 fsi
si & entonces fproc
t=M* @ F, procedimiento pevac 4
fsi a;:=0; 8:=1;
fsi fproc
fpara; procedimiento pevac 5
3) M:=M"*: §:=E+D; (8 :=es)
@) ira 1; si & entonces az : = 1,a4 : =1 fsi

fproc
procedimiento pevac 6
&:=D; {8 :=es3}

si & entonces @z : = 0;as : = 0 fsi

fproc

(2) para i: = 1 hasta m hacer si € entonces a; :=1,a2:=1,a3 : =1 fsi
si E‘'AM = 0 entonces fproc
caso i de procedimiento pevac 2
1: pevac 1; & :=BC; (& := e}
si & entonces a, : =0,a3 : =1 fsi
it pevac i, fproc

Tabla 9.3 Algoritmo bdsico de simulacién matricial.

Observaciones:

1) El algoritmo de simulacién presentado en la tabla 9.3, pretende, esencialmente, una fa-
cil comprensién de los fundamentos. Para obtener una realizacién mas eficiente con mi-
crocomputador pueden introducirse diversas modificaciones. En §9.4.3 se consideran
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algunas de éstas y se presenta un simulador escrito en el lenguaje ensamblador del mi-
croprocesador MOTOROLA 6801.

2) Si existiesen acciones condicionales asociadas a los lugares, bastaria con insertar las corres-
pondientes ecuaciones entre los puntos (3) y (4) del algoritmo de simulacion (tabla 9.3).

3) Si no se exigiese una simulacion sincrona, bastaria con hacer M = M™* y, por consi-
guiente, eliminar el punto (3).

4) Aunque sea evidente, interesa resaltar que el algoritmo presentado procede calculando
la condicidon de disparo de todas las transiciones de la red y que la simulacion es sincro-
na. Por lo tanto, si la red posee un conflicto efectivo,se «disparardn» todas las transicio-
nes del mismo, de donde el marcado final sera incorrecto. Expresando la idea de otro
modo, lo que se pretende resaltar es que la simulacion sincrona serd correcta sélo si la
RdP no presenta conflictos efectivos. Si la simulacion no fuese sincrona (M = M), al
disparar una transicidn, sus lugares de entrada se desmarcarian, de donde se desensibili-
zaria el resto de las transiciones en conflicto. Es decir, la simulacion asincrona resuelve
todo conflicto ddndole prioridad al disparo de la transicion que el simulador considere
en primer lugar.

9.4.2 Prestaciones

El método matricial expuesto en el apartado anterior basa su eficiencia en la compa-
cidad de la representacién booleana de la estructura (matrices E y F) y el marcado
(vectores M y M*) de la RdP binaria. En efecto, si suponemos, por ejemplo, que
el simulador se construye utilizando un microcomputador de 8 bits, cada matriz
ocupard [n/8] - m octectos (es decir, [n/8] octetos por columna). Por otro lado,
puesto que a cada transicion se le asocia un par evento-accidn, se necesitard un pun-
tero que sefiale el emplazamiento del correspondiente procedimiento (cada puntero
ocuparé 2 octetos). Asimismo, los vectores My M* ocupardn [n/8] octectos de
memoria viva cada uno. De lo anterior se deduce que dada una RdP con n =16y
m = 16 (normalmente n=m), la representacion de la estructura y el marcado nece-
sitard (2 +2)-16+2-16+ 2 -2 = 100 octetos. Para obtener la ocupacién de me-
moria total, basta con afiadir a los valores anteriores la ocupacién del algoritmo
interpretador o simulador (del orden de 80 octetos) y la ocupaciéon memoria de los
procedimientos donde se evaluan los eventos y se calculan las acciones.

De acuerdo con lo expresado y admitiendo que normalmente n = m, el crecimien-
to de la ocupacion de memoria es cuadratico en n (o m), lo que quiere decir que
si la RdP es muy grande, la ocupacion de memoria puede ser considerable. No obs-
tante, el bajo coste de las memorias y su tendencia a bajar indican que esta dificultad
en el crecimiento de la ocupacién memoria no serd, en principio, un factor limitativo
muy importante.

Desde un punto de vista temporal, interesa resaltar que el algoritmo anterior eje-
cuta m (=n) tests del tipo E/ AM = 0, y cada uno puede necesitar [n/87] operacio-
nes (octetos de E' y M). Es decir, la duracién de un ciclo de simulacién es también
cuadrética en n (admitido que n=m).

Para mejorar las prestaciones de los métodos matriciales, en §9.5 se procederd a:

1) Representar mediante /istas la estructura de la RdP, con lo que se pretende re-
ducir la ocupaciéon memoria. En efecto, la esperada reduccidén se basard en
que, normalmente, £ y F son matrices cuasi-vacias.
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2) Iterar en la simulacién sobre el subconjunto de transiciones sensibilizadas
(u otro subconjunto que lo comprenda, pero de cardinal similar) en vez de sobre
el conjunto de todas las transiciones de la RdP. Con esta nueva politica de
simulacion se pretende reducir el tiempo de ejecucion de un paso de simulacion.

9.4.3 Una realizacion del simulador matricial

Para obtener una realizacion mds eficiente del simulador considerado en §9.4.1,
pueden tenerse en cuenta las siguientes observaciones:

1) Después de ejecutarse cualquier procedimiento evento-accién (pevac), siempre se
vuelve al mismo punto del simulador, por lo cual la direccién de retorno puede
estar en ellos. Es decir, los «pevac» no tienen porque ser subprogramas cerrados.

2y Después del retorno de cada «pevacy» existe un nuevo test sobre &, por lo que
enNQ sucesivo, los «pevac» se estructurardn como sigue:

pevac-i: 1) Calcular &;
2) si &
entonces
Ejecutar las acciones asociadas al disparo de ¢;
ir a ACTMAR; {actualizar el marcado}
si no
ir a SIGTRA; { siguiente transicion }
fsi;
De acuerdo con lo anterior, el algoritmo de simulacién puede adoptar la estructu-
ra siguiente:

1) CCICLO: i:=1; {comienzo de ciclo]}
Muestrear las entradas;
2) SENSIB: Calcular E‘AM
si E‘AM = 0 (t; esté sensibilizada}
entonces ir a pevac-i fsi;
3) SIGTRA: i:=i+1;
si i=m + 1 {se trataron todas las transiciones)
entonces M : = M*; {fin de ciclo de tratamiento}
ir a CCICLO;
si no ir a SENSIB

fsi;
4) ACTMAR: M*:=M* @ F';
ir a SIGTRA;

Si se adopta la estructura de datos ilustrada por la figura 9.3, la tabla 9.4 presenta
una codificacién «optimizada» del simulador en lenguaje ensamblador del micro-
computador MOTOROLA 6801. En ésta se han empleado las siguientes matrices y
vectores:

1) MIPREV, que representa, transicién por transicién, la informacion sobre la
matriz de incidencia previa (E) y el puntero hacia los correspondientes procedi-
mientos evento-accidn, «pevac».
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Tabla 9.4. Codificaciéon en lenguaje ensamblador MotoroLA 6801 de un simulador
matricial de RdP binarias y ejemplo de RdP (figura 9.1).

* Programa de simulacion del interpretador matricial sincrono de RdP

*

*

* Programa interpretador. Su ejecucién comienza en CCICLO.

*

* ACTualizacion del MARcado

*
ACTMAR LDAA
STAA
*
LDS
LDX
LDAB
#
*

PTMIPR + 1
PTMFLJ + 1

PTMFLJ
# MAUXM
#NUMLUG

Apuntar sobre MBFLUJ a la transicion dis-
parada, k

El registro SP apunta a MBFLUJ

El registro X apunta a MAUXM

Cargar el Acumulador B con el nimero de
bytes por transiciéon

* BUcle de actualizacion del MARcado: MAUXM := MAUXM @ MBFLUJIk]

*

BUMAR PULA
EORA
STAA
INX
DECB
BNE

*

0,X
0,X

BUMAR

Actualizacién de un byte

Preparar el siguiente byte
Decrementar el contador de bytes
Hasta que estén todos actualizados

* Célculo de la SIGuiente TRARsicion a testear

#
SIGTRA LDAB
ADDB
TSTRAN CMPB
*
BNE
*

PTMIPR + 1
#NUMLUG + 2
#LONGC

SENSIB

* Fin de un CICLO de tratamiento

*

Actualizar el puntero sobre MIPREV

Si no se han testeado todas las
transiciones,
Calcular sensibilizacién de la transicion

(Continiia)
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Tabla 9.4. (Cont.) Codificacién en lenguaje ensamblador de MoToroLA 6801 de un simu-
lador de RdP binarias y ejemplo de RdP (figura 9.1).

FCICLO

COPIA

*

LDAB
LDX
LDS
PULA
STAA
INX
DECB
BNE

#NUMLUG
# CMLMAR
# MAUXM-1

0,X

COPIA

* Comienzo de CICLO de tratamiento

*
ccicLo
*

*
*
*

*

LDAA

CLRB

VMIS

L CMLMAR := MAUXM

Muestreo de las entradas y Volcado de la
Memoria Imagen de las Salidas. (La instruc-
ciébn genera estas sefiales por hardware
que detecta un acceso a la posiciéon de me-
moria VMIS.)

Iniciar el puntero sobre MIPREV

* Calculo de la SENSIBilizacién de una transicién

*

SENSIB

*

STAB
LDS
LDX
LDAB

PTMIPR + 1
PTMIPR

# CMLMAR
#NUMLUG

El registro SP apunta a MIPREV
El registro X apunta a CMLMAR
Cargar Acc. B con el n. bytes/transicién

* | a transicion esta sensibilizada si y sélo si MIPREV - CMLMAR = 0

*

BUCLE1

*

PULA
ANDA
BNE

INX
DECB
BNE

0,X
SIGTRA

BUCLE1

Verificar la condicion sobre un byte
Si MIPREV - CMLMAR # 0, probar con otra
transicion

Si no, preparar siguiente byte

Hasta verificar todos.

* La transicién esta sensibilizada, por lo que se saltar4 al «pevac» correspondiente. Sila
* transicion se ha disparado, la vuelta se realiza sobre ACTMAR, si no sobre SIGTRA.

*

(Continiia)
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Tabla 9.4. (Cont.) Codificacién en lenguaje ensamblador MoToroLA 6801 de un simula-
dor matricial de RdP binarias y ejemplo de RdP (figura 9.1).

*

IRPEVA PULX Leer direccion del «pevac»
JMP 0,X

*

* DEFINICION DE LA ESTRUCTURA DE DATOS UTILIZADA PARA DESCRIBIR LA
*RdP DE LA FIGURA 9.1

*
NUMLUG EQU 1 NUMero de bytes necesarios para represen-
tar los LUGares de una transicién

NUMTRA EQU 6 NUMero de TRAnsiciones de la RdP
*
* Definicién de la Matriz de Incidencia PREVia. Como puede observarse, ésta esté repre-
* sentada por filas (transiciones). Cada una de ellas ocupa (NUMLUG + 2) bytes (los 2
* bytes corresponden a la direccién del «pevacy asociado a la transicién
*

ORG (* +$FF)I.$FFO0  Debe comenzar pagina
MIPREV FCB 0 Reservado para apuntar con el SP

FCB % 10000000 {t1)

FDB PEVAC1

FCB %01000000 {12}

FDB PEVAC2

FCB % 00010000 {13}

FDB PEVAC3

FCB %00101000 {14}

FDB PEVAC4

FCB % 00001000 {t5}

FDB PEVACS

FCB %00000100 (16}

FDB PEVAC6
*
* Definicién de la Matriz Booleana de FLUjo. Como puede observarse ésta esta represen-
¥ tada por filas (transiciones). Cada una de ellas ocupa (NUMLUG + 2) bytes (los 2 bytes
* nulos corresponden a la direccién del «pevac» en MIPREV, y se reservan por razones
* de eficiencia)
*

ORG (* + $FF)I.$FF00 Debe comenzar p4gina

MBFLUJ FCB 0 Reservado para apuntar con el SP

(Continiia)
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Tabla 9.4. (Cont.) Codificacion en lenguaje ensamblador MoTtoroLA 6801 de un simula-
dor matricial de RdP binarias y ejemplo de RdP (figura 9.1).

FCB %11010000 {11}
FDB 0
FCB %01100000 {t2}
FDB 0
FCB %00011000 {13}
FDB 0
FCB %10101000 (t4)}
FDB 0
FCB %00001100 {t5)
FDB 0
FCB 900001100 {16}
FDB 0
*
LONGC EQU (NUMLUG+2)*NUMTRA Numero de bytes de MIPREV (o de
* MBFLUJ)
*  Definicion del marcado inicial
*
CMLMAR FCB %01111111 Complemento de la Memoria de Lugares
* MARcados (p1 marcado)
MAUXM FCB %01111111 Memoria AUXiliar del Marcado de lugares
* (p1 marcado)
*

*  Definicién de los punteros utilizados

*

PTMIPR FDB MIPREV PunTero sobre la Matriz de Incidencia
* PRevia
PTMFLJ FDB MBFLUJ PunTero sobre la Matriz booleana de
* FLujo
*

END CCICLO

2) MBFLUJ, que representa la informacién booleana sobre el flujo de marcas
asociado al disparo de cada transicién (F).

3) CMLMAR, memoria que representa el complemento Idgico del vector de mar-
cado de los lugares (Complemento Memoria Lugares Marcados)

4) MAUXM, memoria (vector) auxiliar del marcado.

Los punteros PTMIPR y PTMFLJ sefialan la transicién cuya condicién de sensi-
bilizacion se esté calculando y la tltima transicion disparada o en curso de disparo,
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respectivamente. En la figura 9.3 PTMIPR apunta a #; mientras que PTMFLJ apun-
ta a 1. Como la simulacion es sincrona, CMLMAR representa el complemento del
marcado ilustrado en la figura 9.1 y MAUXML representa el complemento del mar-
cado obtenido a partir del anterior, tras disparar f;.

Observacion. En la codificacién de la tabla 9.4 se han adoptado las dos siguientes restric-

ciones:

1) La matriz MIPREV (y por tanto MBFLUJ) puede ocupar, como méximo, 256 octetos.
Es decir, la dimensién de la RdP simulable ha de ser tal que: m([n/8] + 2) <256 lo
que significa, por ejemplo, que se pueden simular redes con 32 lugares y 42 transiciones,
o 40 lugares y 36 transiciones.

2) Las direcciones de comienzo de MIPREV y MBFLUI son tales que el segundo octeto
es uno (comienzan pagina, desperdiciando el primer octeto), lo que unido a la restric-
cién del punto anterior, implica que el primer octeto de los punteros PTMIPR y
PTMFLIJ serén constantes.

CMLMAR:[0 11
MAUXM: [10
PTMIPR: o— Memoria viva (RAM)
PTMFLIJ: ®
)
MIPREV: [T 0000000 MBFLUX[T T 0T 0000~~~
o> pevac-1 5}
01000000|] ~~~~~~°°77°° 01100000}
o————1—» pevac-2 4]
L 00010000 ~~~~ "~~~ °77 “[ooo11000| "~
o——————» pevac-3 £]
00101000 ~~~T~T "7 10101000~
[ - pevac-4 7
6001000 =~~~ 7 00001100]
> L—» pevac-5 ts
000100 T TTTT77 00001100  ~
ot pevac-6 ts

Figura 9.3. Una estructura de datos adoptada para representar matricialmente RdP. (En
concreto se representa la red de la figura 9.1.)

9.5 REPRESENTACIONES BASADAS EN LISTAS (I): ESQUEMA BASICO

La ocupacion de memoria de la representacién matricial de una RdP ordinaria es
bésicamente proporcional a nm. En éste y en los siguientes apartados se introducen
representaciones con listas, cuyas ocupaciones de memoria son normalmente linea-
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les en n'y m. (La reduccion en la ocupacion de memoria proviene de la representa-
cion exclusiva de los valores no nulos de las matrices, dado que éstas son, normal-
mente, cuasi-vacias.)

Después de considerar informalmente los conceptos de lista y puntero (§9.5.1) se
introduce un esquema bdsico para la representacion de RdP con listas (§9.5.2). En
los apartados que siguen se planteardn conceptos y técnicas que permitan reducir
aun mads la ocupacién de memoria de la codificacion de RdP y, sobre todo, reducir
la duracion de la simulacion (duracién del ciclo tratamiento). Este ultimo objetivo
conducira a esquemas de simulacion dirigidos por el marcado (§9.6) o las transicio-
nes sensibilizadas (§9.7).

9.5.1 Nociones previasf

Una lista lineal es una estructura de datos en la que un conjunto de elementos se
presentan totalmente ordenados de una cierta forma. La relacidon de orden se expre-
sa conceptualmente mediante la funcion siguiente. El elemento «siguiente (e)» es el
sucesor del elemento e en la lista. Si u es el ultimo elemento de la lista, siguiente
(1) tomara el valor nulo que indicard la no existencia de elemento sucesor de u.

Para representar la relacion de orden se pueden utilizar dos tipos de técnicas dis-
tintas:

1) Representaciones contiguas, en las que el (k + 1)-ésimo elemento se representa
en la memoria a continuacion del k-ésimo.

2) Representaciones discontiguas (encadenadas) o con punteros, en las que la orde-
nacion de los elementos en la lista no tiene que coincidir con la ordenacién de su
representacién en memoria. En este caso, la definicion de siguiente (e) exige la
presencia de una informacién asociada al elemento e que permita calcular la di-
reccion donde se encuentra la informacion relativa al elemento sucesor. Esta in-
formacién se denomina puntero. Para el ultimo elemento de la lista, el puntero
toma el valor nulo, que indica la no existencia de elemento sucesor.

Nota. En las representaciones contiguas de listas puede decirse que el puntero estd implicito.

La figura 9.4 esquematiza dos representaciones de una RdP mediante listas en las
que cada elemento debe codificar una transicion. La primera lista utiliza explicita-
mente punteros para encadenar los elementos. Desde el punto de vista de la progra-
macidn, cada uno de esos punteros codificard la direcciéon que corresponde a la posi-
cién de memoria donde se encuentra la informacidn relativa al siguiente elemento.
Puesto que 7 es la ultima transicion de la red, el puntero asociado no sefiala a nin-
gin otro elemento, y toma el valor nulo. (Si no se va a ubicar ningun elemento a
partir de la posicién (7, es frecuente tomar este valor de puntero como nulo. Si el
puntero vale (7, ello no quiere decir que el siguiente elemento se encuentre a partir
de la direccién @, sino que no existe elemento sucesor.)

+ La informacién que sobre listas se presenta en este apartado es absolutamente introductoria. Para pro-
fundizar acerca de estas estructuras de datos, se recomienda la lectura de textos sobre programacion
de computadores tales como [WIRT 76], por ejemplo.
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@ [afeplo] g o] ] g{el g

oflel n]la]ls]al]s]s]

Figura 9.4. Dos representaciones fisicas de una RdP con seis transiciones mediante una lista.
(Cada elemento debe disponer de toda la informacidn relativa a la transicién co-
rrespondiente.)

La figura 9.4b esquematiza una segunda representacidn, en la que se precodifica
el numero de elementos, 6, y, posteriormente, se les considera uno a continuacién
de otro (los punteros no aparecen explicitamente, ya que el siguiente elemento en
memoria es el sucesor en la lista). En lo sucesivo solo se utilizardn estas dos represen-
taciones de una lista. La primera de ellas se emplearé para representar una RdP co-
mo una lista de transiciones. La segunda forma se utilizard para representar, por
ejemplo, la lista de lugares de entrada asociada a una transicién.

La representacion de una matriz mediante una lista puede hacerse columna por
columna o fila por fila. Si para economizar en la ocupacion de memoria sélo se re-
presentan los valores no-nulos, cada elemento de la lista representard una fila o co-
lumna de la matriz (respectivamente) y serd, a su vez, una lista. La figura 9.5 codifi-
ca de dos formas distintas la matriz de incidencia previa de la RdP de la figura 9.1.
Como puede observarse se ha utilizado la propiedad de que E es una matriz boolea-
na, por lo que un elemento esta representado si y sélo si vale «1». De todo lo ante-
rior resulta facil deducir que este tipo de representacion de matrices es especialmente
interesante si las matrices son cuasi-vacias.

[T AR T

t 17) 13 ts ts te

(a) Representacién por columnas (transiciones)

Lilafeg{fa]goe] o] og=f 1o | o 2]ulel-H [ «]/

Y41 D2 D3 Da Ds Ps

(b) Representacién por filas (lugares)

Figura 9.5. Representacion mediante listas de la matriz E (tabla 9.2).

9.5.2 Esquema bdasico de representacion de RdP con listas

La regla de evolucion del marcado de una RdP esta definida a partir de las transicio-
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nes, por lo cual toda codificacion de una red debe presentar de forma facilmente
accesible la informacion asociada a cada transicién. Por ello, para codificar con lis-
tas una RdP, conviene considerar listas de transiciones. Si se representa la RdP con
una unica lista de transiciones (figura 9.4a), cada elemento de la lista deberd poseer
toda la informacidn relativa a una transicion.

La transformacidn directa del esquema de representacion matricial (§9.4) indica
que cada elemento debe contener:

1) La lista de lugares de entrada de la transicion (con #flo se representa la matriz
de incidencia previa, E).

2) La lista de lugares cuyo marcado evoluciona al Hisparar la transicién (con ello
se representa la matriz booleana de flujo de marcas, F).

3) El puntero hacia el procedimiento evento-accion asociado a la transicion
(pevac-i).

4) El puntero hacia la siguiente transicion.

De acuerdo con el esquema anterior, la figura 9.6a codifica la informacion relati-
va a la transicién #;. Dado que, normalmente, los lugares de entrada a una transi-
cién deben cambiar su marcado al dispararse ésta, el esquema anterior no serd muy
eficiente (los lugares de entrada se representaran, normalmente, dos veces). Para re-
mediar esta fuente de ineficiencia se puede proceder a representar la RdP mediante
las matrices de incidencia previa e incidencia posterior. La figura 9.6b representa
t; utilizando las listas de lugares de entrada y de salida.

6ty 1 oty: 1

y 4 (@ P )
3 pevac-l o —»
4 ot ot »
p2 2
Ps D2

pevac-l e——» D4

6ty o——>

Figura 9.6. Dos codificaciones de la informaci6n relativa a una transicion. (Nofa. 6t; es la
direccién donde comienza la informacién asociada a #).

Nota. En ambas listas la colocacién de los punteros hacia pevac-1y t2 s6lo responde a crite-
rios de eficiencia en la simulacion, pues de este modo podré realizarse mds rdpidamente.

Adoptando el esquema de la figura 9.6, la codificacién de la estructura de una
RdP se obtiene considerando el conjunto de todas las transiciones de la red.
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La representacion del marcado de una red binaria puede llevarse a cabo de multi-
ples formas. Por ejemplo, mediante:

a) Un vector booleano de marcado, M, y otro vector auxiliar, necesario para rea-
lizar las evoluciones sincronas, M* . Al finalizar un paso de simulacién se hard
M:=M".

b) Un vector booleano de marcado, M, y una lista auxiliar que se construird en
cada paso de simulacién (ciclo de tratamiento) conteniendo los lugares cuyo
marcado, debido a los disparos realizados, ha de cambiar. Al finalizar el paso
de simulacién se complementard el marcado de todos los lugares que aparez-
can en la lista.

¢) Una lista con los lugares marcados y otra lista auxiliar que se construird en ca-
da paso de simulacién con lugares que deberdn estar marcados al comenzar el
siguiente paso. Al finalizar el paso de simulacion, la lista recién construida pa-
sar4 a ser la lista de los lugares marcados mientras que la nueva lista auxiliar
se inicializard como vacia.

Como puede observarse, los tres casos enunciados utilizan diversas técnicas para
la representacion y construccion del nuevo marcado. Asi, desde el punto de vista
de las técnicas de representacion del marcado, se utilizan las siguientes estructuras
de datos:

a) 2 vectores: My M
b) Vector M vy lista de variaciones en el marcado.
¢) 2 listas: M y construccién del nuevo marcado, M.

La utilizacidn de listas serd tanto mds interesante cuanto mayor sea el porcentaje
de los lugares no marcados (mds vacio esté el vector del marcado).

En lo que concierne a la construccién del nuevo marcado, en los tres casos ante-
riores se utilizan los siguientes principios de operacion:

a) Operar sobre el marcado M para obtener el nuevo marcado, lo que representa
la aplicacion directa de la ecuacion de estado. (Es el principio utilizado en
§9.4.)

b) Construir una representacion de las variaciones sobre el marcado, que final-
mente aplicadas a éste permita obtener el nuevo marcado.

¢) Construir el nuevo marcado sin utilizar «directamente» el marcado anterior.
En efecto, si la RdP es binaria, el disparo de una transicién hard que se mar-
quen sus lugares de salida mientras que sus lugares de entrada serdn desmarca-
dos. Por otro lado, si no se dispara ninguna de las transiciones de salida de
un lugar marcado, éste permanecera marcado.

La codificacion de la estructura de la RdP como una lista de transiciones (codifi-
cacioén similar a la de la figura 9.5b) en la que cada transicién adopta el esquema
de la figura 9.6b permite una fécil utilizacion de las codificaciones del marcado de-
nominadas «a» y «b». La simulacion eficiente de RdP utilizando la codificacion del
marcado denominada «c» exige una representacion de la estructura de la RdP dife-
rente de la considerada. Sobre este punto se volverd posteriormente, en §9.6.

Adoptando las estructuras de datos antes mencionadas para codificar la RdP, el
algoritmo de simulacion puede tener la siguiente forma:
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CCICLO: Muestrear las entradas; {comienzo de ciclo}
tii=ty (it =1}
mientras que 6¢; # nulo hacer
SENSIB: Calcular la condicidén de sensibilizacion de ¢;, 2 ;
si ) = cierto
entonces ir a pevac-i ;
fsi;
SIGTRA: t;:= siguiente (t;); {i:=i+ 1}
fmgq;
Obtener el nuevo marcado;
ir a CCICLO;
ACTMARActualizar el marcado;
ir a SIGTRA

De acuerdo con lo expresado en §9.4.3 sobre la estructura que en lo sucesivo se
supondrad a los procedimientos evento-accion, el retorno de pevac-i al algoritmo de
simulacidn se producird mediante saltos a ACTMAR o SIGTRA, seguin que la tran-
sicién se haya disparado o no. Si el marcado se representa mediante los vectores M
y M, actualizar el nuevo marcado consiste en modificar el valor de M, mientras
que obtener el nuevo marcado consiste en copiar M* sobre M(M: = M™).

Si el marcado se representa mediante el vector My la lista de lugares cuyo marca-
do debe cambiar, la actualizacién del marcado sélo afiade a la lista los lugares de
entrada y de salida de la transicion disparada. Por ultimo, la obtencién del nuevo
marcado se producir4 en este caso complementando el valor 16gico de las posiciones
de M correspondientes a los lugares que aparecen en la lista considerada (recuérdese
que solo se tratan RdP binarias).

Observacion. Para una programacion mas eficiente en lenguaje ensamblador del anterior
algoritmo, se recomienda reestructurarlo, presentdndolo de la forma siguiente (su ejecucion
comienza en CCICLO):

ACTMAR: Actualizar el marcado;
SIGTRA: ;= siguiente (t;); {i: =i+ 1)}

si ; = nulo [se han terminado las transiciones a tratar, i = m + 1}

entonces Obtener el nuevo marcado;
CCICLO: Muestrear las entradas;
' tii=ty; {ir=1)

fsi;
SENSIB: Calcular la sensibilizacién de #;, 2

si 2, = cierto entonces ir a pevac-i;

si no ir a SIGTRA;

fsi;
9.5.3 Prestacipnes

La ocupacién de memoria de la representacion anterior puede calcularse facilmente.
Si se utiliza un microcomputador de 8 bits, representando los punteros con 2 octetos
y los enterds con un Winico octeto, la transicién #; necesitard 6 + |" #:| + |ti°| octectos.
Definiendo el factor de paralelismo, fp, como el nimero medio de lugares de salida
de una transicion y el factor de sincronizacion, fs, como el nimero medio de lugares
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de entrada a una transicién, la representacion es memoria de la estructura de la RdP
ocupard m - (6 + f» + f5) octetost. Por otro lado, la representacion del marcado, M
y M," sera lineal en n (2[n/8] octetos si se utilizan dos vectores).

Observacidn. Aunque la ocupacién de memoria es ahora lineal en n y m, la ocupacion de
la representacién matricial de RdP ordinarias (§9.3.1) puede ser inferior con redes de dimen-
sién relativamente pequefias. Asi, si n = m = 16 y f, = fs = 1.25, la ocupacion con listas serd
de 140 octectos mientras que la ocupacién de la representacién matricial podra ser de 100
octetos.

La duracién de un paso de simulacion es algo mas complicada de establecer, pero
en cualquier caso es facil observar que, aunque empledndose técnicas distintas, tan-
to con la representacion matricial como con la basada en listas, se calcula la con-
dicion de sensibilizacién de fodas las transiciones. La reduccion de calculo de condi-
ciones de sensibilizacién a subconjuntos de transiciones permitird reducir de forma
notoria la mencionada duracion.

Las anteriores reflexiones sobre las prestaciones indican que los métodos de simu-
lacién de RdAP considerados en este apartado (§9.5) no tienen un gran interés en si
mismos. Basicamente han sido presentados para introducir de forma progresiva las
realizaciones en las que la simulacion es dirigida por el marcado. Estas se abordan
en el préximo apartado.

9.6 REPRESENTACIONES BASADAS EN LISTAS (II): SIMULACION
DIRIGIDA POR EL MARCADO

Las diferentes transformaciones a que se sometera en este apartado a la codificacion
de RdP presentada en §9.5.2 persiguen una mds eficiente representacién (menor
ocupacién de memoria) y una mds rapida simulaciéon.

Para proceder de forma progresiva en la exposicidn, se parte de la simulacién de
una subclase de RdP bien conocida, los grafos reducidos (GR). La generalizacién
de las ideas bdsicas sobre la simulacion de GR conducird a métodos de simulacion
de RdP dirigidos por el marcado. En este punto conviene resaltar que la previa pre-
sentacidn de técnicas de simulacion de GR estd motivada por razones de tipo peda-
gogico ya que los esquemas de simulacion de §9.6.2 y §9.6.4 pueden obtenerse direc-
tamente por transformacion del presentado en §9.5.2.

9.6.1 Simulacion de grafos reducidos

La figura 9.7a presenta un GR. Como en un GR todas las transiciones poseen un
unico lugar de entrada y otro de salida, la codificacidén de las transiciones pueden
simplificarse (véase la figura 9.7b para t;).

+ Para un GE f, = f; = 1. Normalmente, pero no siempre, en las RdP se tiene f, = fs. Sus valores suelen
estar comprendidos entre ly 1,5.
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Figura 9.7. Grafo reducido y simplificacion de la codificacion de ¢;.

A partir de la simplificacion introducida, la figura 9.8a presenta, parcialmente,
una codificacién del GR anterior. Para mejorarla se van a introducir conjuntamente
dos modificaciones:

1) Factorizar las transiciones de salida de un lugar, lo que conducira a una reduc-

cion de los datos necesarios para codificar la estructura de la RdP.

2) Dirigir el proceso de simulacién del GR de forma que s6lo se considere el codi-
go asociado a las transiciones de salida del ¥nico lugar marcado que haya en
cada paso de simulacion.

El lugar p; (figura 9.7a) tiene tres transiciones de salida, por lo que en cada una
de ellas (figura 9.8a) aparece p; como lugar de entrada. La anunciada factorizacion
permite escribir como codigo asociado a p; el que aparece en la figura 9.85. En la
mencionada figura se puede apreciar que a partir de p; se apunta /a lista de sus tran-
siciones de salida. Habida cuenta que después de #3 no existe ninguna otra transicion
de salida de pi, el puntero de «siguiente transicion» toma el valor nulo. Si f; (factor
de descendencia) indica el numero medio de transiciones de salida de un lugar, la
economia de memoria que se obtiene serd de n- (fz — 1) - 2 octetos, dado que:

1) cada direccion ocupard 2 octetos;

2) solo se tiene una direccidén asociada al lugar de entrada (el puntero que estéd

al lado del vector de marcado en la figura 9.8).

Para el GR de la figura 9.74, la reduccidén en memoriaesde 4-(7/4 —1)-2=6
octetos.

En otro orden de ideas, puesto que un GR tiene siempre marcado un unico lugar,
s6lo estaran sensibilizadas sus transiciones de salida y, por lo tanto, s6lo podra dis-
pararse una de éstas. Para acelerar la simulacién, en vez de considerar en cada paso
todas las transiciones del GR, bastard con tener en cuenta /las de salida del lugar
marcado. La primera forma de realizar esta idea se expone globalmente en la figura
9.8b en la que el acceso a las transiciones de salida del lugar marcado se realiza es-
crutando el vector del marcado.
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Figura 9.8. Diversas formas de codificar la estructura y el marcado de un GR (el de la figura
9.7a). (Nota. En la figura «b», la siguiente transicion de 3 es un puntero nulo,
puesto que p; no posee ninguna otra transicién de salida.)

En esencia, el algoritmo de simulacion adopta la estructura siguiente:
CCICLO: Muestrear las entradas;
pei=1;
SENSIB: si M[pi] =1
entonces /; : = primera transicién apuntada por p;;
ir a pevac-j;
fsi;
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SIGLUG: i:=i+1;
si i < = n entonces ir a SENSIB;
si no ir a CCICLO;
fsi;
SIGTRA: t;: = siguiente (t));
si ¢; = nulo entonces ir a CCICLO;
si no ir a pevac-j;
fsi;
ACTMAR: Actualizar el marcado;
ir a CCICLO;

Observacion. El algoritmo anterior hace terminar la actualizaciéon del marcado con «ir a
CCICLO» puesto que se supone una simulacién sincrona y, por lo tanto, en un GR sélo se
puede disparar una transicion. Otra forma menos eficiente, pero mas proxima a la que se
adoptard para la simulacién de RdP (en un paso pueden dispararse varias transiciones) con-
siste en poner «ir a SIGLUG» vy utilizar otra estructura de datos auxiliar para construir el
siguiente marcado.

La mejora temporal obtenida al dirigir la simulacién por el marcado es tanto mds
acusada cuanto mayor sea la relacién entre el nimero total de transiciones y el nu-
mero medio de transiciones de salida de los lugares (es decir, el nimero medio de
transiciones sensibilizadas).

Para concluir esta introduccion a la simulacién de GR basta observar que el
vector del marcado es cuasi-vacio y, por consiguiente, puede ser interesante codifi-
carlo como una /ista. Ahora bien, dado que en un GR siempre habrd un dnico lugar
marcado, la lista tendrd en permanencia un unico elemento (véase la figura 9.8¢).

Procediendo del modo apuntado, se pueden obtener dos ventajas:

1) Reducir la ocupacién de memoria (esta reduccién serd tanto mas importante
cuanto mayor sea el numero de lugares).

2) Eliminar la escrutacion del marcado de los lugares, puesto que se obtendrd di-
rectamente el puntero que sefiala las transiciones sensibilizadas (transiciones de
salida del lugar marcado).

Los algoritmos de simulacién que codifican la informacién sobre el GR de la for-
ma indicada en la figura 9.8c adoptan, basicamente, el esquema siguiente:

CCICLO: Muestrear las entradas;
tj : = transicion apuntada por ESTADO;
ir a pevac-j;
SIGTRA: ¢ : = siguiente ());
si t; = nulo entonces ir a CCICLO;
si no ir a pevac-j
fsi;
ACTMAR: Actualizar el marcado; {despositar en ESTADO la direccion
del lugar de salida de #;}

ir a CCICLO;
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Observacion. La actualizacion del marcado termina con un «ir a CCICLO» puesto que en
un GR sélo hay un lugar marcado; si se considerasen RdP podrian haber varios lugares mar-
cados y, por lo tanto, habra que buscar el siguiente elemento de la lista de lugares marcados,
hasta escrutar completamente la lista.

Ejercicio. Modifiquense los algoritmos anteriores para el caso en el que se considere la
simulacion de g (g > 1) GR.

9.6.2 Simulaciéon de RdP dirigida por escrutacién del vector de marcado

En este apartado se generaliza el primer esquema presentado para la simulacién diri-
gida por el marcado de grafos reducidos (GR) (§9.6.1). Las diferencias mds impor-
tantes que se observaran en la simulacién de RdP binarias con respecto a la de los
GR provienen de la posibilidad de que existan:

1) varios lugares marcados simultdneamente.
2) transiciones con varios lugares de entrada y/o de salida.

De las diferencias apuntadas anteriormente, la que implicard mayores considera-
ciones serd el que una transicién pueda tener varios lugares de entrada. En efecto,
ello hace que existan varios lugares que poseen la transicién como una transicién
de salida. Dado que, evidentemente, una transicion sélo debe considerarse una vez
en cada paso de simulacién, habrd que designar un unico lugar de entrada para reali-
zar los cdlculos que, eventualmente, puedan llevar a su disparo.

Si al lugar p; se le asocia la informacioén correspondiente al disparo de la transi-
cién #; (¢; sera una transicion de salida de p), se dird que p; representa a t;. Si p; es
el uinico lugar de entrada de #;, s6lo €l la puede representar y se dird que p; es el lugar
representante esencial de t;.

De acuerdo con lo expresado, al considerar la RdP de la figura 9.1 se observa que
D1, D2, Pa, Ds Y De son lugares representantes esenciales (representan a fy, t, #3, #s
y t¢ respectivamente). Por otro lado, ¢4 puede ser representada por p3 o por ps. Si
se decide representar a 4 por ps, p3 no representard a #4. Se dird que ps es un lugar
de sincronizacion con respecto a fa.

De una forma general se dird que px es un lugar de sincronizacion con respecto
a la transicidn tg si, siendo lugar de entrada, no la representa. Si un lugar como ps
(figura 9.1) s6lo es de sincronizacién, cumple un mero papel de indicador (flag).

En un grafo de estados todos los lugares son representantes esenciales y, por lo
tanto, no existen lugares de sincronizacion.

A modo de resumen, la codificacion de la estructura de una RdP a partir de sus
lugares puede realizarse, en principio, considerando cualquier subconjunto de luga-
res cuyas transiciones de salida cubran al conjunto de transiciones de la red. El con-
junto de lugares utilizados en una cobertura dada estara formado por lugares repre-
sentantes. Dado que pueden existir diversas coberturas para una RdP, se plantea de
forma natural el problema de elegir la «mejor cobertura» con respecto a un determi-
nado criterio. Para no interrumpir la introduccion de ideas bésicas sobre la simula-
cién de RdP por escrutacion del vector de marcados, se continuara con la codifica-
cion y simulacién de una red. En §9.6.3 se volvera sobre la obtencion de coberturas
de transiciones por sus lugares de entrada.
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Figura 9.9. Codificacion de la RdP de la figura 9.1. (La simulacién no podra ser sincrona
debido a que existe un vinico vector para el marcado, MLM.) (Nota. El puntero
de TBLUG asociado a ps es nulo puesto que p3 no representa a ninguna transi-
cién.)

La figura 9.9 presenta una codificacion de la estructura y marcado de la RdP de
la figura 9.1, si se decide que ps represente a 7. A partir de cada lugar existe una
lista de transiciones representadas (para ps la lista es vacia puesto que este lugar no
representa a #4). La informacidn relativa a cada transicion adopta la estructura
siguiente:

1) Lista de lugares de sincronizacién para #;, que comprende:

1.1 Su nimero (|| — 1).
1.2 La definicién de sus elementos (direcciones de los lugares).

2) Puntero al procedimiento evento-accidén asociado a la transicién, pevac-j.

3) Direccion de la siguiente transicion representada por el mismo lugar. Si no

existe otra mds, el puntero tomara el valor nulo.

4) Lista de los lugares de salida de #;, que comprende:

4.1 Su nimero (|#]).
4.2 La definicidon de sus elementos (direccién de los lugares).
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Al utilizar el esquema anterior, una RdP se codifica como un conjunto de listas.
Cada lista codifica e/ conjunto de transiciones de salida representado por un lugar.
Sea una representacion del marcado compuesta por:

1) Un vector booleano del marcado, MLM y

2) Un vector auxiliar, MAUXM, o bien una lista de los lugares a marcar y/o des-
marcar cuando finalice el paso de simulacidn.

Un primer esquema de algoritmo de simulacién sincrona eficiente puede tener la
estructura que sigue (la ejecucién de un ciclo comienza en CCICLO):

ACTMAR: Desmarcar lugares de entrada (lugar representante y lugares
de sincronizacion) de ¢;; {sobre MAUXM}
Marcar lugares de salida de #;; {sobre MAUXM}
SIGLUG:  repetir i : =i+ 1 hasta que MLM [p;] = 1; {buscar siguiente
lugar marcado
en MLM}
si i=n+ 1 {se consideraron todos los lugares de la red}

FCICLO: entonces Obtener el nuevo marcado; {MLM: = MAUXM }

CCICLO: i : = 0; {inicializar busqueda}
Muestrear las entradas;
ir a SIGLUG
si no t; : = primera transicion descendiente de p;;
fsi;
TRATRA: si t; es representada por p;
entonces
SENSIB: si p; es representante esencial de #; {|'Zj] — 1 =0)

entonces ir a pevac-j; {p; es el unico lugar de entr. de ¢;}
si no Calcular la sensibilizacién de #;, 2
si 2); = 1 entonces ir a pevac-j fsi

fsi;
fsi;
t; : = siguiente transicién de ‘St€pFRéutada por p;;
si tj = nulo

entonces ir a SIGLUG;
si no ir a TRATRA
fsi;

La comparacion de este algoritmo con el presentado en la observacion final de
§9.5.2 permite resaltar que en la simulacion dirigida por el marcado no se conside-
ran todas las transiciones de la RdP, sino el subconjunto de las representadas por
los lugares marcados. Cabe esperar, por lo tanto, que la simulacién sea mas rapida
con el método recién expuesto. Haciendo referencia una vez mds a la figura 9.1, la
simulacioén dirigida por el marcado hard que, como maximo, deban considerarse en
cada paso dos de las seis transiciones existentes.
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La tabla 9.5 presenta una codificacion del anterior algoritmo en lenguaje ensam-
blador del microcomputador MoToroLA 6801.

Una ulterior mejora de prestaciones del programa (algoritmo + estructura de da-
tos) anterior puede obtenerse al considerar que el vector del marcado, MLM, estd
formado por dos subvectores distintos (no forzosamente disjuntos):

1) el subvector del marcado de /ugares representantes con respecto a alguna tran-
sicién (algunos de ellos podrédn ser, ademds, de sincronizacion).

2) el subvector del marcado de lugares que no representan ninguna transicidn (to-
dos seran exclusivamente lugares de sincronizacién).

En estas condiciones, para alcanzar la anunciada mejora basta con que se realice
la escrutacidn sobre el subvector del marcado de lugares representantes. Procedien-
do de esta forma, se podra reducir el nimero de lugares a escrutar.

Observacidn. Si, ademds, los subconjuntos de lugares representantes y de sincronizacién
son disjuntos, se podra eliminar el test dispuesto en la etiqueta TRATRA (dado que todos
los lugares del subvector que se escrute serdn representantes de fodas sus transiciones de sali-
da). Sobre ello se volverd en §9.6.3.

Tabla 9.5. Codificacién en lenguaje ensamblador MoTororLAa 6801 de un simulador de
RdP binarias que procede escrutando el vector del marcado.

Programa de simulacién del interpretador sincrono de RdP utilizando vectores de luga-
res, con escrutacion del marcado. El disparo de cada transicion (efectuado en el «pe-
vacy correspondiente) provoca la actualizacion del marcado sobre un vector auxiliar
MAUXM. Al comenzar un nuevo ciclo de tratamiento, este vector es copiado sobre el
vector de lugares marcados: MLM.

Para reducir el tiempo de actualizacién del marcado, se ha hecho fijo el desplazamiento
entre los dos vectores de marcado (constante TOTLUG), con lo que se puede utilizar
un acceso indexado desde MLM. Sin embargo, esta decision limita a 255 el nGmero ma-
ximo de lugares de la red.

Programa interpretador. Su ejecucién comienza en CCICLO

OTLUG EQU 7 n = 6 lugares de la RdP (figura 9.1) + 1 (Comb.
General)

% % — %k k % % % % o %k %k *k k *k * %

* ACTualizacion del MARcado al ser disparada una transicién

*
ACTMAR LDX PTMLM Apuntar el lugar representante en MLM

coM TOTLUG,X Modificar el marcado del lugar sobre MAUXM
*

(Continia)
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Tabla 9.5. (Cont.) Codificacién en lenguaje ensamblador MoToroLa 6801 de un simu-
lador de RdP binarias que procede escrutando el vector del marcado.

LDS DIRCOM

PULB Lectura del nimero de lugares de sincronizacién
TSTB

BEQ FACTPR Si es = 0, actualizar marcado de lugares de salida

*

* ACTualizacién de los lugares de SINcronizacién de la transicién disparada

*

ACTSIN PULX Apuntar al lugar correspondiente en MLM
COM  TOTLUG,X Modificar el marcado de dicho lugar sobre

* MAUXM
DECB
BNE ACTSIN

*

FACTPR PULX Saltarse la direccion del «pevac» asociado
PULX Saltarse la direccion de la siguiente transicion
PULB Lectura del nimero de lugares de salida

*

* ACTualizacién de los lugares de salida (POSteriores)

*

ACTPOS PULX Apuntar al lugar correspondiente en MLM
COM  TOTLUG,X Modificar el marcado del lugar sobre MAUXM
DECB
BNE ACTPOS

*

* Busqueda del SIGuiente LUGar marcado

*
SIGLUG LDX PTMLM Recuperar la direccion del Gltimo lugar marcado
BUSQDA INX Apuntar al siguiente lugar
LDAA 0,X
BPL BUSQDA Hasta que un lugar esté marcado
STX PTMLM Salvaguardar la direccién del lugar marcado
*
LDX #TBDLUG Apuntar a la tabla de direcciones de lugares
LDAB PTMLM + 1
ABX
ABX
TTRA LDS 0,X Lectura de la direccién asociada al lugar marcado
BNE TRATRA Si no es la dltima (COMbinatorio), tratar el lugar
*

(Continiia)
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Tabla 9.5. (Cont.) Codificacién en lenguaje ensamblador MoToroLA 6801 de un simu-
lador de RdP binarias que procede escrutando el vector del marcado.

*

* Fin de un CICLO de tratamiento

*
FCICLO LDX #MLM El registro X apunta a MLM
LDAA #TOTLUG-1 Cargar el acumulador A con n — 1
*
* Bucle de COPia del MARcado: MLM: = MAUXM
* =
COPMAR LDAB TOTLUG,X Lectura del marcado de un lugar de MAUXM
STAB 0, X Copiar el marcado del lugar sobre MLM
INX Apuntar al siguiente lugar
DECA
BNE COPMAR Hasta que se haya copiado todo el vector
*

* Comienzo de un nuevo CICLO de tratamiento

*
CCICLO LDAA VMIS Muestreo de las entradas y Volcado de la Memo-
* ria. Imagen de las salidas. (La instruccion genera
% estas sefiales por hardware: deteccién de un ac-
* ceso a la posicién de memoria VMIS.
*
LDX #MLM Iniciar el puntero sobre MLM
BRA BUSQDA + 1 Basqueda del primer lugar marcado
*
* TRAtamiento asociado a una TRAnsicién descendiente del lugar marcado
*
TRATRA STS DIRCOM Guarda direccién de tratamiento de la transicion
PULB Lectura del nimero de lugares de sincronizacion
TSTB
BMI SIGLUG Si es negativo, el lugar es de sincronizacion
SENSIB BEQ IRPEVA Si es = 0, la transicion esta sensibilizada
*

* TeST de SENsibilizacion de las transiciones descendientes del lugar marcado
*

TSTSEN LDAA  #1000000B Cargar el acumulador A con valor légico «1»

BUCLE PULX Apuntar con el reg. X a un lugar de sinc. pi
ANDA 0,X A« (A)-M [pi]
DECB

(Continia)
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Tabla 9.5. (Cont.) Codificacion en lenguaje ensamblador MoTorora 6801 de un simu-
lador de RdP binarias que procede escrutando el vector del marcado.

BNE BUCLE Hasta haber recorrido todos lugares de sincroni-
% zacion

TSTA

BPL NODISP Si el producto légico es = 0, no esta sensibilizada
*

* Saltar a ejecutar el «pevacy asociado a la transicion

*

IRPEVA  PULX Lectura de la direccion de salto
JMP 0,X

*

* Célculo de la SIGuiente TRAnsicién a tratar

*
NODISP PULX Saltarse la direccién del «pevacy asociado
SIGTRA TSX
LDS 0,X Lectura de la direcc. de la sig. transicién descend.
BNE TRATRA
JMP SIGLUG Si es = 0, buscar un nuevo :lugar marcado
*
* ESTRUCTURA DE DATOS ASOCIADA A LA RdP DE LA FIGURA 9.1
*
* Vector Memoria de los Lugares Marcados. El marcado de un lugar est4 representado
* por el bit mas significativo del byte asociado. El méximo niimgro de lugares marcados
* es de 255 (incluido el Comb.)
*

ORG (* +$FF)I.$FFO0  Debe comenzar pégina

*
MLM FCB $80 {p1 marcado inicialmente}

FCB 0 {p2}

FCB 0 {p3}

FCB 0 {p4}

FCB 0 {p5)}

FCB 0 {p6)

FCB $80 { Combinatorio, marcado siempre}
*

* Vector Memoria AUXiliar del Marcado

*
MAUXM FCB $80 {p1 marcado inicialmente}
FCB 0 {p2]}
FCB 0 {p3}

(Contintia)
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Tabla 9.5. (Cont.) Codificacién en lenguaje ensamblador MoToroLa 6801 de un simu-
lador de RdP binarias que procede escrutando el vector del marcado.

FCB 0 {p4)
FCB 0 {pb}
FCB 0 {p6}
FCB $80 { Combinatorio, marcado siempre}
*
¥ TaBLa de las Direcciones de la E.D. asociadas a
* cada lugar
*
TBDLUG FDB DLUGO01-1 {p1}
FDB DLUG02-1 {p2)
FDB DLUGO03-1 {p3}
FDB DLUGO04-1 {p4}
FDB DLUGO05-1 {p5)
FDB DLUG06-1 {p6)
FDB 0 {Combinatorio}
*
PTMLM FDB MLM Puntero sobre la MLM
DIRCOM FDB 0 Direcciéon de comienzo de la transicion a tratar
*
DIRLMO EQU MLM-1 Direccién del marcado del lugar p1
*
DLUGO1 FCB 0 Namero de lugares de sincronizacién de t1
FDB PEVAC1 Direccion del «pevac»
FDB 0 Direccién de la siguiente transicion
FCB 2 Namero de lugares de salida
FDB DIRLMO + 2 {p2)
FDB DIRLMO + 4 {pd}
*
DLUG02 FCB 0 Numero de lugares de sincronizacion de t2
FDB PEVAC2 Direccion del «pevac»
FDB 0 Direccién de la siguiente transicién
FCB 1 Namero de lugares de salida
FDB DIRLMO + 3 {p3}
*
DLUGO3 FCB $FF p3 es un lugar de sincronizacién
*
DLUGO04 FCB 0 Namero de lugares de sincronizacion de t3
FDB PEVAC3 Direccion del «pevac»
FCB 1 Namero de lugares de salida
FDB DIRLMO + 5 {p5)

(Continva)
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Tabla 9.5. (Cont.) Codificacién en lenguaje ensamblador MoTtorora 6801 de un simu-

lador de RdP binarias que procede escrutando el vector del marcado.

*

DLUGO05 FCB 1 Namero de lugares de sincronizacion de t4
FDB DIRLMO + 3 {p3}
FDB PEVAC4 Direccion del «pevac»
FDB DTRANS — 1 Direccion de la siguiente transicién, t5
FCB 1 Numero de lugares de salida
FDB DIRLMO + 1 {p1}

*

DTRANS FCB 0
FDB PEVAC5

Numero de lugares de sincronizacién de t5
Direccién del «pevacy
FDB 0 Direccién de la siguiente transicion
FCB 1 Ndmero de lugares de salida
FDB DIRLMO + 6 {p6)
*
DLUGO06 FCB 0
FDB PEVAC6

Nuamero de lugares de sincronizacién de t6
Direccién del «pevacy

FDB 0 Direccién de la siguiente transicién

FCB 1 Namero de lugares de salida

FDB DIRLMO + 5 {p5}

END CCICLO

9.6.3 Codificacién de la estructura de una RdP: Lugares represzntantes y
lugares de sincronizacion

Tal y como se anunci6 en §9.6.2, l1a codificacion de la estructura de una RdP a partir
de sus lugares puede realizarse, en principio, considerando cualquier subconjunto
de lugares cuyas transiciones de salida cubran al conjunto de transiciones de la red.

Segun las denominaciones presentadas en la tabla 7.5, en este problema de co-
bertura, los elementos a cubrir son las transiciones, los elementos cobertores son
sus lugares de entrada y la tabla de cobertura no es ni mas ni menos que la ma-
triz de incidencia previa de la RdP. La tnica cobertura no redundante (§7.4.3¢)
de las transiciones de la RdP de la figura 9.1 por sus lugares de entrada es { p1,
D2, Pas D5, Dé ) .

Aunque para la red de la figura 9.1 sélo se ha obtenido una cobertura no redun-
dante, en general se pueden obtener varias, lo cual plantea de forma natural el pro-
blema de la obtencion de la mejor cobertura. Ahora bien, hablar de «la mejor» co-
bertura implica la previa definicién de objetivos que permiten calificar las diferentes
soluciones.
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Si se pretende mandar un proceso en tiempo real, el objetivo bdsico seré el elegir,
para una RdP dada, la codificacién que minimice la duracion de un paso de simula-
cién. En segundo lugar, se pretenderd también minimizar la ocupacién de memoria
de la codificacién de la RdP.

Sean:

1) ®r un conjunto de lugares representantes que determine una cobertura no re-
dundante de las transiciones de la red y

2) ®s el minimo conjunto de lugares de sincronizacién tal que ®r U®s = P (con-
junto de lugares de la RdP).

De acuerdo con las definiciones anteriores, la determinacion de un ®r y del ®s
correspondiente no depende mds que de la estructura de la RdP; es decir, no es fun-
cion del marcado inicial ni de la interpretacidén que se asocie a la red.

Desde el punto de vista de las prestaciones, la simulacién de una RdP segun el algo-
ritmo presentado en §9.6.2 (o su version mejorada de escrutacion sobre el subvector
de los lugares representantes) no es. muy sensible a los diferentes ®x posibles. No
obstante, es facil intuir que, normalmente, las mejores prestaciones se obtendran con
aquellas coberturas que tengan un menor numero de lugares representantes. En estas
condiciones, la obtencién de un (el) ®r Optimo es un problema clésico. A continua-
cién se presenta un algoritmo que procede heuristicamente y permite obtener con
gran rapidez una solucién subdptima (con frecuencia la solucién obtenida es 6ptima).

ALGORITMO PARA OBTENER UNA «BUENA» COBERTURA NO REDUNDANTE

Paso 1: a) ®r : = Lugares representantes esenciales;
b) ®s := Lugares de sincronizacién inducidos por los lugares
representantes esenciales;
¢) Eliminar de la RdP las transiciones de salida de los lugares
representantes esenciales;
Paso 2: mientras que no se hayan eliminado todas las transiciones
hacer
a) Elegir un lugar p de tal manera que sea lugar de entrada
del mayor numero de transiciones;
b) ®r:= ®PrUp; {afiadir p a ®r}
¢) Ps:=@®sU{ (p'} —p}; (afiadir a @s los lugares de
sincronizacién inducidos
por p};
d) Eliminar las transiciones de salida de p;
fmgq;

Esempro 1. Aplicando el algoritmo a la RdP de la figura 9.1 se tiene lo siguiente:

Paso 1: a) ®r : = {p1, D2, P4, D5, D6}
b) ®@s: = {ps3}
¢) Se eliminan todas las transiciones

Paso 2: Como se han eliminado todas las transiciones, ®r y ®s definen una solucién
(ésta es Optima).

EjempLo 2. Si se considera la red de la figura 2.9, se puede obtener lo siguiente:
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Paso 1: @) ®r : = {RL;, AL;, RL2, ALz, RR;, ARy, RR, AR;};

b) ®s:=(J;

¢) Se eliminan las transiciones:

{DL,, FL1, DL,, FL;, DRy, FR;, DR;, FR;}

Paso 2: primera aplicacion:

a) Pr:=PrUXy;

b) (Ps = [EL], ER], ERz, Xz];

¢) Se eliminan las transiciones {CL;, CR;, CR,}:
Paso 2: segunda aplicacién:

a) ®r : = PrUELy;

b) ®s:= @Ps;

¢) Se elimina la transicion CL;. Se han eliminado todas las transiciones.

La solucién obtenida (es dptima) estd definida por:

®r = (RLy, ALy, RL2, ALy, RRy, ARy, RR3, ARy, X1, EL, )
Ps = [EL], ER[, ERZ, XZ}

De las potencialmente multiples coberturas que minimizan el nimero de lugares
cobertores de una RdP, interesa destacar muy especialmente aquéllas en las que
®rN®s = (. Es decir, aquellas coberturas en las que los conjuntos de lugares re-
presentantes y los de sincronizacién son disjuntos. Una de las principales razones
que abogan por el mencionado interés es que los conflictos efectivos existentes en
la descripcién son resueltos por el algoritmo de simulacién de §9.6.2, dandole priori-
dad al disparo de la primera transicién de salida del lugar que aparezca y sea
disparable.

En efecto, a modo de consideraciones previas puede establecerse que:

a) Si ®rN®s = @, cada lugar representante (p € ®r) representard a fodas sus
transiciones de salida.

b) Una vez disparada una transicidn, el algoritmo de simulacién no busca la si-
guiente transicion representada por el mismo lugar (etiqueta SIGTRA) sino
que busca la lista de transiciones representada por el siguiente lugar represen-
tante marcado (etiqueta SIGLUG).

De las dos consideraciones anteriores se deduce que nunca se .odran disparar dos
transiciones de salida de un mismo lugar en un tinico paso de simulacion. La prime-
ra de las transiciones de salida del lugar representante que sea disparable es la inica
que se disparara.

Nota. La prioridad en el disparo de transiciones permite, a veces, simplificar los eventos.
De este modo, si dos transiciones de salida de un lugar estan etiquetadas 4 y AB, bastara
con programar el evento A para la primera transicidn y s6lo B para la segunda. Ello redunda-
rd, naturalmente, en codificaciones mas cortas y simulaciones més rapidas.

En otro orden de ideas, en §9.6.4 se presentardn otras dos razones que testimo-
nian el interés de las coberturas en las que son disjuntos los subconjuntos de lugares
representantes y de sincronizacién. Ambas razones permiten la obtencién de esque-
mas altamente eficientes para la simulacién de RdP binarias.

Por dltimo, después de lo resefiado en torno a cualidades de las coberturas tales
que PrNPs = (J, cabe sefialar que:
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1) En toda RdP simple, siempre puede encontrarse una particién. En efecto, si

2)

toda transicion tiene como maximo un lugar de entrada, p, compartido con
otras transiciones, la adicion del mencionado lugar a ®r permite tener
®PrN®Ps = @. Ademas, la eleccidn considerada posibilita la obtencién de una
cobertura con el minimo numero de lugares representantes.

La estructura de la RdP puede conducir, en ciertos casos, a una situacion tal
que PrNPs # @ (véase la figura 9.10a).

El andlisis de las RAP que modelan sistemas permite afirmar que, normalmente,
®rN®s = @. Ahora bien, si para una red dada, la condicién anterior no se verifi-
ca, siempre existen redes equivalentes para las que ésta se cumple. Las nuevas redes
se obtienen simplemente afiadiendo /ugares implicitos a 1a red de partida. Asi, la red
de la figura 9.10c es equivalente a la de la figura 9.10a (se le ha afiadido el lugar
implicito ps para representar su transicion de entrada y de salida) y sin embargo
PrNEPs = J.

(19 (29 (39
oogo

(@) P1(6 paes simultdneamente (b) Or = [P, P3P0, P5:P6: P1}) ®rNEs= @
lugar representante y de sin- ®s = (p2}
cronizacién: ®rNPs #= J.

() ®r = {P1,P3,Pa, P35, D6}
s= P2
de donde ®PrN®Ps = .

Figura 9.10. Sobre la disjuntividad de ®r y ®@s en redes no simples.

Erercicio. Demuéstrese que si ®rN®s = J, la cobertura no puede ser redundante.
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Esercicio. Propéngase un algoritmo para obtener ®x y ®s de modo que las coberturas que
se obtengan sean tales que ®rN®s = J (particién). (Indicacicn. Téngase en cuenta que en
determinados casos habrd que afiadir lugares implicitos.)

9.6.4 Simulacién de RdP por escrutacion de la lista de lugares representantes
m_arcados

Hasta ahora se ha venido adoptando una representacién vectorial del marcado de
una RdP binaria y se ha sugerido que cuando se desee la maxima rapidez en la simu-
lacién, conviene limitar la escrutacién del marcado al subvector de los lugares repre-
sentantes (a partir de los que se codifica la estructura de la red). Por otro lado, se
ha establecido que si el porcentaje medio de lugares marcados de una red es peque-
fio, el proceso de escrutacién, aun limitado al subvector de los lugares representan-
tes, puede ser relativamente ineficiente.

Para mejorar sensiblemente las prestaciones, es posible adoptar una nueva repre-
sentacidn del marcado compuesta por:

a) Una lista de los lugares representantes marcados.
b) Un vector del marcado de los lugares de sincronizacién.

El interés de realizar mediante una lista el subvector del marcado de los lugares
representantes es notorio puesto que, al proceder de esta forma, se pueden obtener
directamente las ép;, direcciones donde se encuentran las informaciones relativas a
las transiciones representadas por p;. Es decir, desaparece la operacién de escruta-
cién del vector booleano del marcado que es tanto mds ineficiente cuanto menor sea
la proporcién de lugares representantes marcados. El mantenimiento de la represen-
tacion vectorial del marcado de los lugares de sincronizacién pretende que se facilite
al maximo el calculo de las condiciones de sensibilizacién de las transiciones, 2;.

Las prestaciones del nuevo esquema de simulacién que se disefia podran ser opti-
mas (cuasi-Gptimas) si los lugares representantes y los de sincronizacién determinan
subconjuntos disjuntos; es decir, ®’x N®s = . En efecto, si px fuese simultdnea-
mente representante y de sincronizacién (px € ®xN®s), poseeria una doble repre-
sentaciéon en memoria, lo que supondria:

@) Una mayor ocupaciéon de memoria.
b) Una simulacién m4s lenta, al tenerse que gestionar su doble representacién en
memoria.

En lo sucesivo, se supondran disjuntos los subconjuntos de lugares representantes
y de sincronizacién elegidos para representar una RdP.

A la hora de realizar una simulacién sincrona, se pueden adoptar diversas codifi-
caciones de la informacién auxiliar sobre la evolucién del marcado. Dado que inser-
tar y eliminar elementos de una lista en posiciones arbitrarias son operaciones relati-
vamente costosas en tiempo, se utilizar4 la siguiente estrategia durante un paso de
simulacidén:

1) Construir integra y directamente la lista de lugares representantes que estaran
marcados al comenzar el paso siguiente.

2) Modificar el vector del marcado de los lugares de sincronizacién hasta obtener
el nuevo vector.
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De acuerdo con lo expresado y utilizando pilas (tipo especial de lista directamente
soportado en la mayoria de los microcomputadores comercializados, gracias a la
presencia de punteros de pila) la figura 9.11 representa globalmente el marcado de
la RdP de la figura 9.1 cuando se ha disparado la transicién #;. La pila que contiene
los lugares representantes marcados se denomina de tratamiento (PTRAT, su punte-
ro es PPTRAT), mientras que la pila que se va llenando con los lugares representan-
tes que estaran marcados al comenzar el ciclo siguiente se denomina en formacion
(PFORM, su puntero es PPFORM). La actualizacién final del marcado se reducird a:

1) Copiar sobre el vector del marcado de los lugares de sincronizacion el nuevo
vector; es decir, M[ps3] : = M*[ps].

2) Tomar como nueva pila de tratamiento la pila en formacién (PPTRAT : =
: = PPFORM) y reinicializar (vaciar) la pila en formacién. La reinicializacion
de la pila en formacién se realizard a partir de la direccion DCI (direccidn para
ciclo impar) o DCP (direccién para ciclo par) segin la paridad del ciclo de si-
mulacién. De este modo, lo que se pretende es simplemente reconstruir una pi-
la en formacidn sin alterar el contenido de la construida anteriormente (en este
momento pila de tratamiento).

En resumen:

PPTRAT : = PPFORM;
C : = C; {cambio de la paridad del ciclo}
si C = 0 entonces PPFORM: = DCI sino PPFORM : = DCP fsi;

M . M™* (en construccion)

"0pa
PPTRAT PPFORM

M [0 ; mps: [0]

Figura 9.11. Representacion del marcado de una RdP (figura 9.1) para una simulacién sin-
crona utilizando pilas y vectores. En M, estaba marcado el lugar representante
p1; en M™* estdn marcados los lugares representantes p2 y pa (M™ se alcanza a
partir de M al disparar #;). (Nota. El puntero de pila est4 listo para escribir, no
para leer.)
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Observacion. Puesto que la pila de tratamiento ha sido vaciada al terminar un ciclo, la ope-
racion que se describe en el punto 2 es equivalente a la de intercambiar los punteros de ambas
pilas, seguido de apilar en PFORM el valor nulo (fin de pila en formacidn):

AUXPUN : = PPTRAT;

PPTRAT : = PPFORM:

PPFORM : = AUXPUN;

Apilar en PFORM nulo; {realizable, en este caso, mediante:
PPFORM : = PPFORM - 2}

Antes de continuar, interesa resaltar una nueva e importante razén por la que
conviene que se codifiquen las RdP a partir de conjuntos representantes y de sincro-
nizacion que sean disjuntos. En efecto, sea de nuevo pi un lugar representante y de
sincronizacion (px € ®rN®s) marcado. Si no se dispara ninguna de las transiciones
representadas por pg, no se podra concluir de forma inmediata si py estard marcado
o no en el ciclo siguiente (ya que puede ser disparada alguna de sus transiciones de
salida de las que no es representante). Por lo tanto, no se puede apilar directamente
en la pila en formacién el puntero asociado a px, debiéndose realizar un tratamiento
mds complejo, que reduce notoriamente las prestaciones temporales.

Ahora bien, si a partir de un lugar representante se codifican todas sus transicio-
nes de salida, y si no se dispara ninguna de las transiciones que representa, éste po-
drd ser marcado inmediatamente (afiadido a la pila en formacién, PFORM).

La figura 9.12 ilustra la estructura de la RdP de la figura 9.1 adoptando una codifi-
cacion diferente para las informaciones relativas a los lugares de sincronizacién y repre-
sentantes. A partir de cada lugar representante se codifican todas sus transiciones
de salida. La informacidn relativa a cada transicién adopta la estructura siguiente:

1) Lista de lugares de sincronizacién para ;.

2) Puntero al procedimiento evento-accién asociado a ¢;.

3) Direccion de la siguiente transicion representada por el mismo lugar. Si no existe
otra, el puntero tomara el valor nulo.

4) Lista de los lugares de salida de ¢ que son representantes.

5) Lista de los lugares de salida de #; que son de sincronizacién.

La comparacion de las figuras 9.9 y 9.12 permite comprobar que la segunda codi-
ficacidn es algo mds costosa en memoria puesto que los lugares de salida de cada
transicidn se representan mediante dos listas:

a) lista de los lugares representantes.
b) lista de los lugares de sincronizacidn.

El incremento de ocupacién de memoria indicado serd (podrd ser), para la codifi-
cacion de la estructura de una RdP, de un octeto por transicién. La menor ocupa-
cién de memoria de la nueva representacioén del marcado compensaré, normalmen-
te, en parte el incremento de ocupacidn de la codificacion de la estructura de la RdP.

Codificada una RdP mediante una estructura de datos como la enunciada, un es-
quema de algoritmo de simulacién de RdP puede adoptar la forma siguiente:

ACTMAR: Desmarcar los lugares de sincronizacién de entrada a t;;
Marcar los lugares representantes de salida de ¢;;
Marecar los lugares de sincronizacion de salida de ¢;;
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SIGLUG:

FCICLO:

CCICLO:

SENSIB:

SIGTRA:

TRATRA:

Desapilar la direccién asociada al siguiente lugar representante
marcado de PTRAT, ép;;
si fin de pila {se trataron todos los lugares representantes mar-

cados}
entonces PPTRAT : = PPFORM;
C:=C;
siC=0
entonces PPFORM : = DCI
si no PPFORM : = DCP
fsi;
Msinc : = M™sinc; {actualizar el subvector
de sincronizacion}
Muestrear las entradas;
ir a SIGLUG
si no tj + = primera transicién representada por p;;
fsi;
si p; es lugar representante esencial de ¢;

entonces ir a pevac-j;
si no
Calcular la sensibilizacién de ¢;, 2
si 2, =1 entonces ir a pevac-j fsi;
fsi;
tj : = siguiente transicion representada por p;;
si ¢; = nulo entonces apilar p; en PFORM;
ir a SIGLUG;
si no ir a TRATRA
fsi;

La comparacion de este algoritmo con el presentado en §9.6.2 permite observar

que:

1) Todo lugar representante marcado ha de reapilarse en PFORM si no se dispara
ninguna de sus transiciones de salida.

2) Al actualizar un marcado sélo se han de desmarcar los lugares de sincroniza-
cién. El lugar representante se desmarcard debido a que no se apilard su direc-
cion en PFORM.

En resumen, el algoritmo propuesto (véase en la tabla 9.6 una codificacion en len-
guaje ensamblador) no resulta ser mds que una generalizacion del segundo conside-
rado en §9.6.1 para los grafos reducidos. Las diferencias principales entre ambos
provienen de los hechos siguientes:

1) En un GR existe un tinico lugar representante marcado y no existen lugares de
sincronizacidon. En una RdP existen lugares de sincronizacion y un nimero va-
riable de lugares representantes marcados.

2) En un GR todos los lugares son representantes esenciales, por lo que es innece-
sario el célculo de las condiciones de sensibilizacion de las transiciones.
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Figura 9.12. Codificacion de la RdP de la figura 9.1 en la que se diferencian los lugares re-
presentantes y los de sincronizacién.

9.6.5 Comentarios generales

La simulacion dirigida por el marcado ha sido abordada a lo largo de este apartado
insistiendo en dos tipos de esquemas basicos. Estos son los basados en la simulacién
a partir de la escrutacidn del vector de marcado o de la lista de lugares representan-
tes marcados. Previamente, en §9.6.1, han sido introducidos algoritmos para el caso
particular en que se simulen grafos reducidos.

Desde el punto de vista de la ocupacién de memoria es facil evaluar para cada
RdP el consumo que genera cada esquema de simulacién. En cualquier caso, las di-
ferencias totales (codificacidn de la estructura de la red m4s la de su marcado) nunca
seran muy significativas.

En lo que concierne a la duracidn de un paso de simulacidn, las diferencias depen-
derdn de la RdP que se considere, pero su valor puede ser relativamente importante.
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De este modo, aun sin pretender establecer conclusiones generales, puede decirse
que, suponiendo nula la duracion de los procedimientos evento-accion, para una red
con n=m=32, y unos 3 o 4 lugares marcados, la simulacién dirigida a partir de pi-
las (§9.6.4) serd, aproximadamente, el doble de rdpida que la simulacion diriga a
partir de vectores (§9.6.2) (véase [SILV 82b]). Para completar este primer cuadro
comparativo, es importante sefialar que la simulacion matricial (§9.5) serd unas cin-
co veces mds lenta que la dirigida a partir de pilas. Evidentemente, la consideracién
real de la duracion de ejecucion de los procedimientos evento-accion conduciré a re-
sultados globales mas uniformes.

Tabla 9.6. Codificacién en lenguaje ensamblador MoTororA 6801 de un simulador de
RdP binarias que procede escrutando la lista de lugares representantes marcados.

Programa de simulacion del interpretador sincrono de RdP utilizando dos pilas (PTRAT
y PFORM) para el tratamiento de los lugares representantes marcados, y dos vectores
booleanos (MLS y AUXMLS) para los lugares de sincronizacién. PTRAT contiene los
lugares representantes marcados en el ciclo de tratamiento considerado y PFORM los
que estaran marcados en el ciclo siguiente. Al finalizar cada ciclo de tratamiento, se in-
tercambian las dos pilas y AUXMLS es copiado sobre MLS.

Programa interpretador. Su ejecuciéon comienza en CCICLO

OTLUG EQU 7 n( = 6 lugares de la RdP de la figura 9.1) + 1
(Combinatorio General)

LUGSIN EQU 1 ndmero de lugares de sincronizacion

*

k — %k 3k k * *k % ¥k * * *

* ACTualizacion del MARcado al ser disparada una transicion
*

ACTMAR LDS DIRCOM
PULB Lectura del namero de lugares de sincronizacion
TSTB

BEQ ACTREP Si es = 0, actualizar marcado de lugares de salida
*

* DesMarCar los lugares de SINcronizacion de la transicién disparada
*

CLRA Cargar el acumulador A con valor l6gico «O»
DMCSIN PULX Apuntar al lugar correspondiente en MLM

STAA LUGSIN,X Desmarcar dicho lugar

DECB

BNE DMCSIN hasta haber desmarcado todos

*

* ACTualizacién de los lugares REPresentantes de salida
*

(Continua)
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Tabla 9.6. (Cont.) Codificacién en lenguaje ensamblador MoToroLa 6801 de un simula-
dor de RdP binarias que procede escrutando la lista de lugares repre-
sentantes marcados.

*
ACTREP PULX
PULX
PULB
*
TSTB
BEQ
*

ACTLSS

Saltarse la direccion del «pevacy asociado
Saltarse la direccién de la siguiente transicién
Lectura del nimero de lugares representantes de
salida

Si es = 0, marcar los lugares de sincronizaci6n

* MARcado de lugares REPresentantes de salida de la transicién disparada

*

LDX
PULA
DEX
STAA
PULA
STAA
DEX
DECB
BNE
STX

MARREP

*

PPFORM

0,X

1.X

MARREP
PPFORM

Inicializar puntero sobre PFORM
Lectura de la direccién de un lugar representante

Apilarla en PFORM

Actualizar puntero sobre PFORM

* ACTualizar los Lugares de Salida de Sincronizacion

*
ACTLSS  PULB
*
TSTB
BEQ
LDAA
*

SIGLUG

#1000000B

Lectura del nimero de lugares de salida de sincro-
nizacion

Si es = 0, buscar siguiente lugar marcado
Cargar el acumulador A con valor légico «1»

* MARcado lugares de SINcronizacién de salida de la transicién disparada

*
MARSIN PULX
STAA
DECB
BNE
*

LUGSIN, X

MARSIN

Lectura de la direccion del lugar a marcar
Marcar dicho lugar

hasta haber marcado todos

* Busqueda del SIGuiente LUGar marcado

*

(Continiia)
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Tabla 9.6. (Cont.) Codificacién en lenguaje ensamblador MoToroLa 6801 de un simula-
lador de RdP binarias que procede escrutando la lista de lugares repre-
sentantes marcados.

SIGLUG LDS
PULX
STS
TXS

BNE
*

PPTRAT

PPTRAT

TRATRA

Lectura del puntero sobre PTRAT
Desapilar un lugar marcado
Salvaguardar el puntero sobre PTRAT

Si no es el dltimo (Combinatorio), tratar el lugar

fr Fin de un CICLO de tratamiento: Intercambio de las pilas PTRAT y PFORM
*)

FCICLO LDX
STX
LDAA
coMm
BMI
LDAA

GUARDA STAA

*

* MLS:= AUXMLS
*

LDS#MLS + LUGSIN - 1

LDX
LDAB
COPLS PULA
STAA
DEX
DECB
BNE

*

PPFORM
PPTRAT

FPPARI.SFF

CiCLO
GUARDA

# FPIMP!.$FF
PPFORM + 1

#MLS
#LUGSIN

0,X

COPLS

El reg. SP apunta a AUXMLS
El reg. X apunta a MLS
Inicializar contador de lugares de sincronizacién
Lectura del marcado de un lugar
Salvaguarda del marcado

Hasta copiar todos los lugares de sincronizacion

¥ Comienzo de un nuevo CICLO de tratamiento

*

CCICLO LDAA
*

*
*
*

BRA
*

*

VMIS

SIGLUG

Muestreo de las entradas y Volcado de la Memo-
ria. Imagen de las salidas. (La instruccién genera
estas sefiales por hardware: deteccion de un ac-
ceso a la posicion de memoria VMIS.)

Basqueda del primer lugar marcado

* TRAtamiento asociado a una TRAnsicién descendiente del lugar marcado

(Continua)
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Tabla 9.6. (Cont.) Codificacién en lenguaje ensamblador MoToroLra 6801 de un simula-
dor de RdP binarias que procede escrutando la lista de lugares repre-
sentantes marcados.

*

TRATRA STS DIRCOM Guardar la direc. de comienzo
PULB Lectura del nimero de lugares de entrada — 1
TSTB

SENSIB BEQ IRPEVA Si es = 0, la transicién esta sensibilizada

*

* TeST de SENSsibilizacién de las transiciones descendientes del lugar marcado
%

TSTSEN LDAA  #10000000B Iniciar el acumulador A con valor l6gico «1»

BUCLE PULX Apuntar con reg. X a un lugar de sincr., pi

ANDA 0,X A« (A)-M [pi]

DECB

BNE BUCLE Hasta haber recorrido todos lugares de sincroni-
¥ zacion

TSTA

BPL NODISP Si el producto légico es = 0, no esta sensibilizada
*

* Saltar a ejecutar el «pevacy asociado a la transicién

*

IRPEVA PULX Lectura de la direccion de salto
JMP 0,X

*

* Calculo de la SIGuiente TRAnsicion a tratar

*
NODISP PULX Saltarse la direccién del «pevacy» asociado
SIGTRA TSX
LDS 0,X Lectura de la dir. de la sig. transicion descen.
BNE TRATRA Si queda alguna transicién descendiente, tratarla
LDX PPTRAT Si no, el lugar no se desmarca
DEX
LDX 0,X Lectura del lugar representante marcado
LDS PPFORM
PSHX Apilarlo en PFORM
STS PPFORM
JMP SIGLUG Buscar un nuevo lugar representante marcado
*

* ESTRUCTURA DE DATOS ASOCIADA A LA RdP DE LA FIGURA 9.1

*

(Continiia)
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Tabla 9.6. (Cont.) Codificacién en lenguaje ensamblador Motorora 6801 de un simula-
dor de RdP binarias que procede escrutando la lista de lugares repre-
sentantes marcados.

ORG  (*+$FF)I.$FFO0 Se comenzara pagina

*
MLS FCB 0 Memoria de Lugares de Sincronizacién {p3}
AUXMLS FCB 0 AUXiliar de la Memoria de Lugares de Sincroniza-
% ci6n (debe seguir a MLS)
*
PPTRAT FDB FPIMP-2 Puntero Pila de TRATamiento (p1 marcado inicial)
*
PPFORM  FDB FPPAR Puntero Pila de FORMacion
DIRCOM FDB 0
*
DLUGO1 FCB 0 Numero de lugares de sincronizacién de t1
FDB PEVAC1 Direccién del «pevacy
FDB 0 Direccién de la siguiente transiciéon
FCB 2 Numero de lugares representantes de salida
FDB DLUGO02 {(p2)
FDB DLUGO4 {p4}
FCB 0 Numero de lugares de sincr. de salida de t1
*
DLUGO02 FCB 0 Numero de lugares de sincronizacién de t2
FDB PEVAC2 Direccién del «pevac»
FDB 0 Direccién de la siguiente transicién
FCB 0 Nuamero de lugares representantes de salida
FCB 1 Nuamero de lugares de sincr. de salida de 12
FDB MLS {p3)
*
DLUGO04 FCB 0 Numero de lugares de sincronizacién de t3
FDB PEVAC3 Direccion del «pevac»
FDB 0 Direccién de la siguiente transicién
FCB 1 Numero de lugares representantes de salida
FDB DLUGO05 {p5)
FCB 0 Numero de lugares de sincr. de salida de t3
*
DLUGO05 FCB 1 Numero de lugares de sincronizacén de t4
FDB MLS {p3}
FDB PEVAC4 Direccién del «pevacy
FDB DTRANS-1 Direccion de la siguiente transicion — 1
FCB 1 Namero de lugares representantes de salida

(Continiia)
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Tabla 9.6. (Cont.) Codificacion en lenguaje ensamblador MoToroLA 6801 de un simula-
dor de RdP binarias que procede escrutando la lista de lugares repre-
sentantes marcados.

FDB DLUGO1 {p1}

FCB 0 Numero de lugares de sincr. de salida de t4
*
DTRANbS FCB 0 Numero de lugares de sincronizacion de tb

FDB PEVACH Direccion del «pevac»

FDB 0 Direccién de la siguiente transicion

FCB 1 Numero de lugares representantes de salida
*

FDB DLUGO06-1 {p6}

FCB 0 Numero de lugares de sincr. de salida de t6
DLUGO06 FCB 0 Namero de lugares de sincronizacion de t6

FDB PEVAC6 Direccién del «pevac»

FDB 0 Direccién de la siguiente transicién

FCB 1 Namero de lugares representantes de salida

FDB DLUGO05-1 {p5)

FCB 0 Ndmero de lugares de sincr. de salida t6
*

* Definicion de las pilas de tratamiento y formacién (PTRAT y PFORM)
* Deben estar en la misma pagina

*

RMB 10 Reservar memoria para la pila par
FPPAR EQU *_1

FDB 0 Base de pila par: Combinatorio General
*

RMB 8 Reservar memoria para la pila impar

FDB DLUGO1 Estd marcado el lugar p1
FPIMP EQU * 1

FDB 0 Base de pila impar: Combinatorio General
*
CICLO FCB $FF Por defecto se comienza con ciclo impar
*

END CCiCLO

A modo de un ultimo comentario general, es importante sefialar que las mejores
prestaciones temporales del método basado en pilas (§9.6.4) se pagan con unas
codificaciones de la estructura y el marcado de la red menos uniformes (existen
dos tipos de lugares: representantes y de sincronizacién), lo que supone un mayor
coste de traduccién desde la especificacién (§9.2). En este punto conviene recordar
que la particién de los lugares de una RdP en representantes y de sincronizacion
(PrN@s = ) permite no sdlo utilizar eficientemente el esquema de simulacién
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por escrutacion de la lista de los lugares representantes marcados (§9.6.4), sino tam-
bién resolver los conflictos durante la simulacion, de forma sistemdtica (§9.6.3).

9.7 REPRESENTACIONES BASADAS EN LISTAS (III): SIMULACION
DIRIGIDA POR LAS TRANSICIONES SENSIBILIZADAS

La aproximacion seguida a lo largo de §9.6 constituye una generalizacién de los mé-
todos usuales en la simulacién de grafos reducidos (§9.6.1). Ahora bien, al menos
desde un punto de vista meramente conceptual, cabe esperar que pueda realizarse
una més rdpida simulacidn de las RdP a partir del subconjunto de transiciones sensi-
bilizadas (es decir, en la simulacidén se considerard una transicion si y solo si estd
sensibilizada). A continuacion se introduce un método de simulaciéon valido para
RdP binarias y se comentan sus limitaciones.

Sea VECSEN un vector de enteros denominado de sensibilizacion en el que cada
componente memoriza el nimero de lugares de entrada no marcados de una transi-
cién. La i-ésima transicion estard sensibilizada si y solo si VECSEN [i] = 0. Obsér-
vese que VECSEN es una representacion indirecta, y posiblemente parcial, del mar-
cado de la red de Petri. En efecto, VECSEN = (C~)7-M, y puede que no exista una
matriz Cg, inversa generalizada, tal que Cg - (€)' =1

La escrutaciéon de VECSEN permite acceder al conjunto de los procedimientos
evento-accion asociados a las diferentes transiciones. Prescindiendo del céracter sin-
crono que se desea para la simulacién, el disparo de una transicién debera decre-
mentar los elementos de VECSEN asociados a las transiciones de salida de los lugares
de salida de la transicion disparada. De forma andloga, el disparo de una transicion
debe incrementar los elementos de VECSEN asociados a las transiciones de salida
de sus lugares de entrada. Con el fin de facilitar la simulacién de una RdP se adopta-
r4, para cada transicion, la codificacion que sigue:

1) Puntero al procedimiento evento-accién asociado, pevac-i.

2) Nimero de lugares de entrada de #;, |t

3) Lista de las transiciones de salida de los lugares de entrada de #;, menos #;: Le

4) Lista de las transiciones de salida de los lugares de salida de #;: Ls

La figura 9.13 representa, de acuerdo con el esquema anterior, la RdP de la figura
9.1. Un algoritmo de simulacion que proceda escrutando VECSEN puede adoptar
la estructura siguiente (la ejecucion de un nuevo ciclo comienza en CCICLO):
ACTMAR: VECSEN[i] : = |'#j|; {desensibilizacién de la transicion

disparada}
Incrementar los elementos de VECSEN asociados a las
transiciones de la lista Le;
Decrementar los elementos de VECSEN asociados a las
transiciones de la lista Ls;
SIGTRA: repetir i : = i + 1 hasta que VECSEN [i] = 0;
si TBLTRA [i] = nulo
CCICLO: entonces [ : = 0;
Muestrear las entradas;
ir a SIGTRA
si no ir a pevac-i
fsi;
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Admitiendo una duracién nula para la ejecucién de los diferentes procedimientos
evento-accion, el algoritmo de simulacién considerado, para una red con n = m =
= 32y 3 0 4 lugares marcados simultdneamente, es un 30-40% ma4s lento que el al-
goritmo expuesto en §9.6.5 (escrutacién de pilas). La transformacién de este esque-
ma de simulacién en otro en el que no se escrute un vector de sensibilizacién sino
una lista (pila) de transiciones sensibilizadas mejora las prestaciones temporales en
un 25-35%, aproximadamente. No obstante, el método més rdpido suele seguir sien-
do el expuesto en §9.6.5.

Nota. La relativa ineficiencia del método de simulacién basado en una /ista de transiciones sen-
sibilizadas en vez de un vector se debe a la complejidad en la manipulacién de la lista que se ob-
tenga de VECSEN (no debe olvidarse que atin para RdP binarias VECSEN es un vector de ente-
ros, no de booleanos). En [CHOC 80q] se presenta una aproximacién mixta con vector y lista.

Otros inconvenientes de los esquemas de simulacién dirigidos por las transiciones
sensibilizadas son:

»{pevac-l o——}—>»
9]
2
3
»1 Devac-2 —p>
1
0 "
VECSEN: TBLTRA:| ot o- | 1
o e ot
ofy e »{ pevac-3 >
ot. — 1
Ols o 0 13
lg  o— 2
Is
s
»1 pevac-4 —
esta componente indica fin 21
de las tablas s ]
1|
ol
- P2VAC-5 00— —
Nota. VECSEN(m + 1) =0, lo
que provocard la terminacién ts
de la escrutacién del vector. ; Oty 1
olg
»1 pevac-6 =
143
L}
s

Figura 9.13. Simulacién dirigida por transiciones sensibilizadas. Una representacion de la éstruc-
tura y el marcado de la RdP de la figura 9.1. (La simulacién no podra ser singrona
debido a que existe un tnico vector que indirectamente representa el marcado.)
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1) Su dificil o ineficiente extension al caso de RdP no binarias.

2) La imposibilidad directa de realizar acciones condicionales, pues no se conoce
el marcado (s6lo a través de VECSEN se dispone de informacion acerca del
mismo, pero su caracterizacion puede ser incompleta).

Estos inconvenientes, unido a que las prestaciones que se obtienen no son normal-
mente superiores a las que se alcanzan en los esquemas de simulacion dirigidos por el
marcado, hace que no se continde el estudio de algoritmos en los que la simulacién se
hace a partir de las transiciones sensibilizadas. No obstante, justo es de destacar que la
simulacion de grafos marcados puede ser més eficiente con métodos de simulacion
basados en listas de transiciones sensibilizadas, si no existen acciones condicionales.

Esercicio. Propdngase un algoritmo y una estructura de datos adecuados a la simulacién
de RdP binarias a partir de una lista de transiciones sensibilizadas.

9.8 UN AUTOMATA PROGRAMABLE CON LENGUAJE ESPECIAL

9.8.1 Generalidades

La exposicién del sistema simulador de RdP binarias que se considera en este apar-
tado pretende presentar una realizacion que parta de unos supuestos diametralmente
opuestos a los adoptados en las anteriores realizaciones (§9.4, §9.5, §9.6 y §9.7). De
este modo, el sistema se caracteriza por:

1) Disponer de un lenguaje de bajo nivel especifico. (La simulacién serd conduci-
da por programa, no por tabla, véase §9.2.2).

2) Permitir la asociacion de acciones condicionales a los lugares. (Hasta ahora s6-
lo se admitian acciones incondicionales.)

3) Codificar conjuntamente la estructura y la interpretacion (eventos y acciones)
de la RdP. (Hasta ahora estos aspectos se separaban en una estructura de datos
y los procedimientos evento-accion, respectivamente.)

4) Emplear una memoria imagen de las salidas que sea borrada sistemdticamente
al comenzar un paso de simulacién, MIB (§9.3.2). (Hasta ahora se consideraba
una emisién directa de las salidas.)

Ademas de las cuatro caracteristicas anteriores, el sistema:
1) Realiza una interpretacion sincrona de la RdP.

2) Emplea de forma eficiente un microcomputador de propdsito general (tipo Mo-
TOROLA 6801/6802/6809, ziLoc 80, INTEL 8088/8071, etc).

Dadas sus excelentes prestaciones, el sistema que se considera se basa en el esque-
ma de simulacién dirigida por la escrutacion de una lista de lugares representantes
marcados (§9.6.4), adoptando una particion entre lugares representantes y de sin-
cronizacion (PrN®s = &).

9.8.2 Estructura de un programa

Un programa se compone de tantas frases o segmentos de cddigo como lugares repre-
sentantes tenga la RdP, més una que se le asocia al conjunto de funciones combinacio-
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nales que se deseen realizar. Dentro de esta frase especial, que se denomina combi-
natorio general, se incluye la definicién de acciones asociadas a los lugares de sincro-
nizacidn.

Cada frase asociada a un lugar representante terminard con una instruccién «SP
pi», la cual no es mas que un separador o delimitador de c6digo parametrizado por
el lugar al que corresponde, p;. El combinatorio general estara prologado por la ins-
truccion PCOMB (principio del combinatorio) y terminaré con FCICLO (instruc-
cioén que indica el final de un ciclo de simulacién).

Las frases asociadas a lugares representantes comprenderdn dos partes netamente
diferenciadas en las que se codificardn:

1) Las transiciones de salida del lugar representante (para cada una se incluiré el
célculo de la condicién de sensibilizacion asi como las acciones que hayan de
emprenderse debido al posible disparo).

2) Las acciones asociadas al lugar. (Esta subfrase terminar4 con «SP Di».)

La figura 9.14 ilustra la representacién del marcado, estructura e interpretacion
de la RdP de la figura 9.1, suponiendo condicionadas las acciones as(por B) y a4
(por ED). El programa expuesto est4 redactado en el lenguaje definido en el siguien-
te apartado. El marcado que se ilustra corresponde al caso en que la transicion ¢,
acaba de ser disparada (p; es el tinico lugar marcado en la pila de tratamiento, y
el par p, — ps son los lugares que estardn marcados al comenzar el siguiente ciclo;
se encuentran en la pila en formacién).

9.8.3 Presentacion del lenguaje de programacién y funcionamiento global del
sistema

9.8.3.1 Funciones combinacionales
Para programar funciones combinacionales se ha adoptado la técnica de emplear
saltos condicionales, puesto que de este modo se pueden obtener ejecuciones muy
rdapidas. En efecto:
a) Si la funcién es de n variables, siempre se puede construir un programa que
conduzca a una ejecucién con # saltos condicionales como maximo.
b) El salto condicional es una instruccién que existe en todos los computadores
de propdsito general.
Las instrucciones necesarias para programar funciones légicas combinacionales
son (véase tabla 9.7):

1) SCVu, 6; {saltar si verdad: si v entonces ir a 6}

2) SCF v, §; {saltar si falso: si ¥ entonces ir a §)
3) SLI §; {saltar incondicionalmente: ir a §)
4) ACVy; {activar durante el ciclo siguiente la variable v: v: = 1}

Debido al sistemdtico borrado de la memoria imagen de las salidas, al comenzar
un ciclo de simulacion, no es necesario disponer de una instruccién de desactivacién.
De este modo, la expresion R : = A + BC se programara simplemente:

SCV A4, 6;
SCF B, 6,
SCV C, 6,
61: ACV R {1a activacién de R solo durante el proximo ciclo}
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C: D {paridad del ciclo)

PPTRAT

———— P1:

!
I Pl1A:
—> P2:

l P2A:

!—» P4:

P4A:

DCI:

|
! FP4:

Ps:

TS:

DCP:

Pé6:

p3:[0]

Figura 9.14. Codificacion de la RdP de la figura 9.1, suponiendo condicionadas as y as.

P*3 :m

P6A:

|
! P5A:
|
|

FP6:

-5# COMB:
|
l

FIN:

SCF A, PIA
MLR P2A
MULR P4A
SP P1
SCF B, P2A
SCF C, P2A
MLS P3
SPT

ACV Al

SpP P2

|~ SCF D, P4A
MULR P5A
ACV A2
SCV B, FP4
ACV AS

SP P4
SCF P3, TS
DLS P3
MULR PIA
SCF E, P5A
SCv D, P5A
MULR P6A
SP P5
SCF D, P6A
MULR P5A
ACV A2
SCF E, FP6
SCv D, FP6
ACV A4

SP P6
PCOMB

SCF P3, FIN
ACV A3
FCICLO

4L

t

~
w

— —— — ———— ——

k)
~

as/B

ts

~
=)

—_— — ———— - e

ag / ED

1 as/ps3

9.8.3.2 Instrucciones especiales para la programacion de RdP

Dentro de este grupo de instrucciones se encuentran los separadores, asi como las

instrucciones para el marcado o desmarcado de lugares.

Las instrucciones del primer grupo que ya fueron introducidas anteriormente son:

5) SP Di

{separador de la frase asociada a pi}
6) PCOMB {principio del combinatorio}
7) FCICLO {fin de un ciclo de interpretacion}
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SCV v,6 si v = 1 entonces ir a 6 fsi;

SCF v, 6 si v = 0 entonces ir a 6 fsi;

SLI & ir a §;

ACV v v: = 1; {la activacion es efectiva sélo durante el

proximo ciclo}

SP p; apilar p; en PFORM;
retornar; {considerar siguiente lugar representante
marcado }
PCOMB Msinc: = Msine;
FCICLO PPTRAT: = PPFORM;

C: = C; {complementar el bit C}
si C = 0 entonces PPFORM: = DCI
si no PPFORM: = DCP fsi;
muestrear entradas y emitir salidas;
borrar la memoria imagen de las salidas;
retornar; {considerar el primer lugar representante

marcado}
SPT retornar; {considerar siguiente lugar representante
marcado )
MLS k Mginelk]l: = 1; {k representa al k-ésimo lugar de
sincronizacion )
DLS k Mgsine [k]: = 0; {k representa al k-ésimo lugar de
sincronizacion }
MLR pi, ir a subprograma pi,; {apilar la direccién en

PTRAT; ir a pi,)

MULR pi, ir a pig;

Tabla 9.7. Instrucciones de un lenguaje bajo nivel adaptado a la programacién de RdP.

La tabla 9.7 define funcionalmente la instruccién «SP p», suponiendo que la pila
de tratamiento, PTRAT, es la pila hardware del microprocesador. Dicho de otro
modo, el puntero de la pila PTRAT, PPTRAT, es el puntero de pila del sistema,
SP (Stack Pointer en M6801, 18085, Z80, M6809, etc.). Al proceder de este modo,
se accede al cddigo asociado al siguiente lugar representante marcado mediante un
simple retorno de subprograma (instruccién RETURN o RTS, presente en casi to-
dos los microprocesadores).

Una nueva instruccion de separacidn es:

8) SPT (separador de transicion}
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Esta instruccion se utiliza para delimitar el cddigo asociado a una transicién. La
ejecucion de «SPT» sdlo tiene lugar al terminar el disparo de una transicion que no
marque ningun lugar representante. Su ejecucion posibilita el encadenar la ejecucién
de la frase asociada al siguiente lugar representante marcado (dicho de otro modo,
la ejecucion de SPT provoca el acceso incondicional a la siguiente frase ejecutable).
Dado que la pila de tratamiento serd la pila del sistema, ello se obtiene directamente
mediante una instruccion de retorno de subprograma (RETURN, RTS, ...). (Nota.
Recuérdese que en la pila de tratamiento se almacenan las direcciones donde co-
mienzan las frases asociadas a los lugares representantes marcados.)

Dentro del repertorio de instrucciones, para el desmarcado de lugares sélo se utili-
za una:

9) DLS k {desmarcar k-ésimo lugar de sincronizacidn}

La ausencia de instrucciones para desmarcar lugares representantes reside en el
propio método de simulacién adoptado (§9.6.4) para el sistema, el cual procede
(re)marcando los lugares representantes marcados en cada ciclo (por lo tanto, la
ausencia de tal accién de marcado supone el desmarcado). (Nofa. Recuérdese que
el (re)marcado del lugar representante p; se realiza al ejecutarse SP p;.)

Para marcar lugares de sincronizacidn es necesaria una instruccion:

10) MLS k {marcar el k-ésimo lugar de sincronizacién}

El marcado de lugares representantes se definird gracias a una instruccion, cuya
comprension es clave para entender el funcionamiento global del sistema. Esta ins-
truccién es:

11) MLR pi, {marcar el lugar representante p;}
Desde un punto de vista funcional, la ejecucién de MLR pj, debe posibilitar:

a) La generacion de las acciones asociadas a pi, puesto que este lugar estard mar-
cado al finalizar el ciclo.

b) El apilamiento de ép; en la pila en formacion, puesto que p; estara marcado
al comenzar el proximo ciclo.

¢) La ejecucién de la instruccion siguiente a «MLR pio».

Si «MLR pi.» es una llamada al subprograma emplazado en la direccion 6piq
(CALL 68pia), el funcionamiento obtenido serd el deseado. En efecto, la secuencia
de acciones que se producird ser4 la siguiente (recuérdese que la pila de tratamiento
es la pila del sistema):

a) Apilar en la pila de tratamiento la direccién de la instrucciéon que sigue a
«MLR pig».

b) Ejecutar el c6digo que comience en pia, €8 decir, el codigo que genera las ac-
ciones asociadas a pi.

¢) Ejecutar «SP py», es decir, apilar op; en la pila en formacion y, al ejecutarse
el retorno, comenzar la ejecucion de la instruccién que sigue a «<MLR pio»

Dado que es muy frecuente encontrar en la codificacién de RdP la secuencia de
instrucciones: MLR pi;
’

SPT,;
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se pueden mejorar las prestaciones definiendo una nueva instruccién que la sustitu-
ya (Nota. Véase el programa de la figura 9.14):

12) MULR piq; {marcar ultimo lugar representante) .

La ejecucién de «kMULR pjq» s6lo debe producir la generacién de las acciones aso-
ciadas a p; y el apilamiento de 8p; en la pila en formacién. Posteriormente, la ejecucion
debe continuar con el siguiente lugar representante marcado. Para realizar estas fun-
ciones debe ejecutarse un salto a dpj, pero sin que se apile previamente ninguna di-
reccién de retorno. Es decir, «tMULR pj,» serd un simple salto a 0Dia (IMP 8pis).

A modo de comentario final, s6lo queda por sefialar que el bit C (figura 9.14) in-
dica la paridad del ciclo que se ejecuta con lo que se puede efectuar la correcta asig-
nacion al puntero de la pila en formacién, PPFORM, al comenzar un nuevo ciclo
de tratamiento.

Observacidn. Intercambiando los punteros y apilando COMB en PFORM, se obtiene idén-
tico comportamiento; es decir:
AUXPUN : = PPTRAT;
PPTRAT : = PPFORM;
PPFORM : = AUXPUN;
Apilar COMB en PFORM,; (realizable, en este caso, mediante:
PPFORM : = PPFORM - 2}
Después de considerar las explicaciones anteriores, para comprender en detalle el
funcionamiento del sistema se recomienda la «ejecuciéon manual» de un paso de si-
mulacion, siguiendo con especial cuidado la traza del estado de las pilas.

Observacion. La codificacién de las diferentes instrucciones mediante el lenguaje ensambla-
dor de un microcomputador dado, es elemental. Quizas la instruccién aparentemente mas com-
pleja de codificar sea «SP p;,». Si se utiliza el microcomputador MoToroLA 6809, esta ins-
truccién se puede codificar simplemente mediante la secuencia (SP = PPTRA; UP = PPFOR):

LDX # pi, {carga inmediata de X}
STX ,--U ({apilamiento de X en la pila de usuario}
RTS {retorno de subprograma)

9.9 CONCLUSIONES

La simulacién de RdP binarias con microcomputadores de proposito general puede
seguir multitud de esquemas. En este capitulo se ha pretendido presentar, desde un
punto de vista conceptual, un panorama relativamente completo de métodos de rea-
lizacién. Todos ellos proceden simulando en serie (dentro de un ciclo) la evolucién
de una (las) RdP.

Para una aplicacién dada, definidos unos criterios de calidad y un computador
soporte, el lector podrd seleccionar el método que mds le interese. Aunque en gene-
ral no existira un método éptimo tinico, los métodos basados en la simulacién dirigi-
da por el marcado ofreceran generalmente, unas prestaciones muy aceptables. No
obstante, si la RdP tiene pocos lugares y transiciones (digamos menos de 16), la utili-
zacion de esquemas basados en la representacidn matricial booleana de RAP puede
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ser bastante eficiente, sobre todo cuando la palabra del microcomputador es de 16
bits. Ahora bien, asi como una palabra larga favorece las prestaciones de los méto-
dos matriciales, la presencia de métodos evolucionados de direccionamiento debe
facilitar la realizacién de los esquemas de simulacién basados en la escrutacion de
listas de lugares representantes marcados. En este sentido resulta significativa la
adecuacién del MoTororLa 6809 a la realizacion del autémata programable presenta-
do en §9.8.

La concepcidn de arquitecturas hardware especializadas en la simulacion de RdP
no ha sido tratada en este capitulo por su especificidad, lo que los hace, hoy en dia,
ser sistemas relativamente costosos. Evidentemente sus prestaciones pueden ser no-
toriamente superiores a la de los sistemas que se basan en microprocesadores de pro-
posito general. El previsible desarrollo de la tecnologia permitird, en un plazo de
tiempo relativamente corto, la realizacion de circuitos VLSI bajo demanda, a bajo
coste, con lo que se podran realizar econémicamente microautématas programables
especializados en la simulacién de RdP. Los algoritmos que bdsicamente utilizarén
estas maquinas serdn modificaciones, mds o menos importantes, de los algoritmos
presentados a lo largo de este capitulo.

Por 1ltimo, cabe sefialar que los diferentes algoritmos de simulacién de RdP pre-
sentados no son, en esencia, mas que elementales despachadores de tarea (dispat-
chers) de sistemas multiprogramados. Las fareas en el sistema estan asociadas a los
lugares representantes, mientras que de todas éstas s6lo se encuentran activas las ta-
reas asociadas a los lugares representantes marcados.

EJERCICIOS

E.9.1 Codifiquese de acuerdo con los esquemas presentados en §9.4, §9.5, §9.6y §9.7 la RdP
de la figura 2.9. Compérense los resultados.
E.9.2 Programese la RdP anterior con el lenguaje presentado en §9.8.
E.9.3 Redictense los diferentes simuladores bésicos en el lenguaje del microprocesador dis-
‘ ponible. Evaliense sus prestaciones temporales.



Anexo 1

Redes de Petri y programacion de
computadores

Objetivo del anexo. En este anexo se abordard la descripcién del flujo de
control de un programa de computador digital. Para ello, se asocia una nueva
interpretacion a las redes de Petri.

Dado un programa, la ejecucidn de una instruccidn (o bloque secuencial de ins-
trucciones) se representard por el disparo de una transicidn. La funcion de inciden-
cia previa de cada transicion determina la condicién que ha de cumplirse para que
la instruccidn se ejecute.

Un esquema de control de un programa secuencial puede obtenerse de forma in-
mediata adoptando el convenio de representacién que sigue a continuacién:

1) Las instrucciones sin seleccion se representan por una transicién y un lugar de
entrada a ésta.

2) Las instrucciones con seleccion (si/entonces/si no; caso de) se representan por
un lugar con tantas transiciones de salida como alternativas tenga la seleccion.

3) Existe un arco que une cada transicién al lugar que representa la instruccién
que debe ejecutarse a continuacion.

4) El marcado inicial comporta una tinica marca. Esta realiza las veces de punte-
ro, mediante el que se indica la primera instrucciéon que debe ejecutarse.

Se distingue normalmente un lugar inicial (representa la primera instruccién
ejecutable) y, al menos, una transicion final. Si el programa fuera ciclico, se
une, mediante un (varios) arco(s), la(s) transicién(es) final(es) al lugar inicial.

Un esquema de control de un programa concurrente se representa considerando
las tres primeras reglas enunciadas y, ademds, las dos siguientes:

4') El marcado inicial representa el conjunto de instrucciones inicialmente ejecu-
tables, asi como el estado de los diferentes recursos que pueda utilizar el pro-
grama.

5) Las instrucciones par. comienzo (respec. par. fin) se representan mediante una
transicidn con tantos lugares de salida (respec. de entrada) como instruccio-
nes, o bloques indivisibles de instrucciones, tengan que ser ejecutadas.

373
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EsemMpLo. En la figura A.l.1 se representa un programa concurrente con una sintaxis de
tipo PAscAL y una RdP que describe su flujo de control. A cada transicion se le asocia una
etiqueta constituida por el par Predicado/Instruccion. Si una transicidén no estd condicionada
por ningun predicado, se omite dicho campo en la etiqueta. Si una transicion no representa
a ninguna instruccion, se omite el campo correspondiente.

Principio: Ip

mientras que Condicion 1 hacer (*p;*)

si Condicién 2 entonces I; (*p3*)
si no I,

fsi (*ps*)
par. comienzo I3, I (*ps*)
par. fin (*ps, ps*)

fmq (*p2*)

ir a Principio

Figura A.1.1. Representacion del flujo de control del programa.

El marcado inicial asociado a la red (figura A.1.1) indica que en el programa co-
menzara un ciclo de ejecucion.

Una marca en p, indica que comienza la ejecucién de la instruccién compuesta
mientras que/hacer. Se puede establecer de idéntica forma la siguiente correspon-
dencia entre marcados e instrucciones que hay que ejecutar:

p3 — si/entonces/si no.
Marcado de § ps — par. comienzo.

Ds Y ps — par. fin.

Supongamos ahora que se desea obtener el esquema de control de una aplicacion
en la que varios procesos compiten por recursos del sistema (datos, programas, peri-
féricos, etc.). Si las sincronizaciones estdn expresadas con semdforost, el flujo de
control podra obtenerse de forma inmediata. En efecto, al nivel de detalle que inte-
resa aqui, un semaforo se representarda mediante un lugar marcado inicialmente

1 En §4.7.3 se modelan los seméforos con mayor detalle y se deduce el teorema del semdforo.
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V(Mutex)

2
32
retira
33
deposita 1 2

/

. J

Figura A.1.2. Modelo de sistema con los dos productores en exclusién mutua y un consu-
midor (capacidad del almacén 4).

con un numero de marcas igual al valor inicial del contador del semdforo. Las tran-
siciones de entrada a S, lugar asociado al seméforo, representan la ejecucion de las
primitivas sefialar (V). Las transiciones de salida de S representan la ejecucion y el
franqueo de las primitivas esperar (P).

EseEMPLO. Sea un sistema de produccién-consumo (véase también el §2.4.1) que comprende
dos procesos productores, un proceso consumidor y un tampdn circular de cuatro comparti-
mentos a través del cual se comunican los procesos. El acceso simultdneo de los Procesos pro-
ductores al tampén est4 prohibido.

Sean los semaforos Mutex, CL y CO, cuyas funciones son las siguientes:
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1) Mutex: garantiza la exclusién miitua de los procesos productores en su acceso al tam-
pén.
2) CO: representa el nimero de compartimentos ocupados. Garantiza el que no haya
superproduccion.
3) CL: representa el nimero de compartimentos libres. Garantiza el que no haya super-
consumo (consumo ficticio).

Inicializando los semaforos Mutex, COy CL, con 1, 0y 4 podremos describir la aplicacion
mediante el programa siguiente:

Productor 1 Productor 2 Consumidor
produce 1 produce 2 P (CO)

P (Mutex) P (Mutex) retira

P (CL) P (CL) V (CL)
deposita 1 deposita 2 consume

V (CO) V (CO)

V (Mutex) V (Mutex)

La RdP de la figura A.1.2 representa el esquema de control de la aplicacidn.



Anexo 2

Elementos sobre grafos

Objetivo del anexo. La presentacién de la terminologia bésica sobre gra-
fos a la que se hace referencia en el texto (véase, por ejemplo, [BERG 73]
[KAUF 76)).

A.2.1 CONCEPTO DE GRAFO. REPRESENTACION Y ALGUNAS
INTERPRETACIONES

Un grafo, G, es un par (Q,T') en el que:
1) Q es un conjunto finito, no vacio, de objetos denominados nudos.
2) T' C Q X Q es un conjunto de objetos (y«) denominados arcos (orientados).
Existe un arco que une ¢; a gj siy sélo si (gi,q) el.
Un nudo se representa graficamente mediante un punto (®) 6 una circunferencia
(). Un arco se representa por una flecha.
Existen dos representaciones matriciales cldsicas de un grafo:
1) La matriz «asociada» al grafo, que consiste en una matriz cuadrada con tantas
filas y columnas como nudos tiene el grafo. Sea A = [a;] la matriz asociada
a G. Esta se define de la forma siguiente:

a___{l si (gig)el
70 si (g q) eT

El grafo de la figura A.2.1 se representa por la matriz asociada siguiente:

a b c d e f

a (0100 0 0)
b |01 1100
4-€ (01000 0
d |0 01 000
e (000000
S 0oooo 1 1
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) 3
,,Q‘,/J;) ‘ G-
Q=(a,b,cdef)
v6 8 I = ((a, b), (b, b), (b,0),
7 Y4 O (lzl,, d), (¢, b), (d, ©),
[ ) f, e (L)
a f
d ﬁ
e

Figura A.2.1. Representacion grafica de G.

2) La matriz de incidencia nudo-arco (valida solo si los arcos no tienen ambos ex-
tremos en un mismo nudo; es decir, si no existe g; tal que (gi, gi) € T'). Se trata de
una matriz rectangular con tantas filas y columnas como nudos y arcos tenga, res-
pectivamente. Se define la matriz M = [m;;] de acuerdo con la expresidn siguiente:

~15si(gi,g) el
mij=+ +1si(g,q)el
0 en cualquier otro caso

Como puede observarse en la matriz de incidencia nudo-arco, un elemento vale
—1 si existe un arco saliente y +1 si existe un arco entrante.

El grafo obtenido al eliminar los arcos 2 y 8 (figura A.2.1) se representa por la
matriz de incidencia siguiente:

1 3 4 5 6 7
a (-1 0 0 0 0 0
b |41 =1 =1 41 0 ©
c 0 +1 0 -1 +1 O
M'd 0 0 +1 0 -1 0
e 0 0 0 0 0 +1

fF Lo o o o o -1

J

Una generalizacién natural del concepto de grafo se obtiene al asociar un peso
(un valor) a cada uno de los arcos. Se hablara de grafo ponderado. En este caso,
la relacion I' € Q x Q se transforma en una funcién que, por ejemplo, puede tomar
una de las formas siguientes:

{0, 1} (caso anteriormente considerado)
rgxgQg—-<N (enteros naturales)
R (reales)

Esta funcién se define de acuerdo con la aplicacién que se desee realizar con el
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grafo. Las matrices que representan el grafo tendrén por elementos los valores que
toma la funcion T'.

Los grafos se utilizan para muy diversas aplicaciones (optimizacién de problemas
de transporte, evolucion funcional de un sistema discreto, evaluacién de prestacio-
nes, ...). A cada tipo de aplicacion se le asocia una interpretacion diferente. Vea-
mos algunas de ellas:

1) Conexidn entre distintos puntos. Los nudos representan los puntos (ciudades,
emplazamiento de circuitos en una placa,. . .). A los arcos se les puede asociar
un valor que represente la distancia entre los dos puntos que une o, simplemen-
te, la existencia de una conexidn,. ..

Los problemas tipicos que se definen sobre estos grafos son la optimizacion
del trazado de las conexiones (se pretende evitar cruces entre conexiones, etc.),
la eleccién de una ruta que pase por todos los emplazamientos (ciudades) de
tal manera que la longitud (costo) sea minima,...

2) Modelacidn funcional de un sistema secuencial. Los nudos representan los es-
tados del sistema. A los arcos se les asocian los eventos que provocan las tran-
siciones entre estados. Este tipo de aplicaciones se considera en el capitulo 1.

3) Procesos markovianos. Los nudos representan estados del proceso en estudio.
A los arcos se les asocia la probabilidad de transicién entre los estados.

Problemas tipicos que se definen sobre estos grafos son la evaluacién de
prestaciones (rendimientos, tasas de ocupacidn, etc.), de la seguridad de fun-
cionamiento,. ..

A.2.2 TERMINOLOGIA BASICA

Se dice que g; es predecesor de g; y g; sucesor de q; si (i, ;) €. El conjunto de
los nudos predecesores (respec. sucesores) de g; se representan por I' ™ (g;) (respec.
I"*(gi)). Se dice, de este modo, que un nudo g; es vecino de g; si q;j es predecesor
o sucesor de gi[gieI' ~(g)UT * (¢))].

Un camino o ruta es una secuencia {vi,y2, ... } de arcos tal que el extremo final
de v: coincida con el extremo inicial de ;i + 1. Un circuito es un camino que no pasa
dos veces por ningtin nudo y tal que el nudo inicial y el nudo final es uno mismo.
El nimero de arcos del camino (respec. circuito) es su longitud.

En el grafo de la figura A.2.1 se tienen, por ejemplo, el camino {1, v2} (de longi-
tud 2) y el circuito {+ys,vs, vs) (de longitud 3).

Un grafo es fuertemente conexo si existe, al menos, un camino entre dos nudos
cualesquiera. El grafo de la figura A.2.1 no es fuertemente conexo puesto que, por
ejemplo, no existe ninglin camino que llegue al nudo a. Un grafo es conexo si existe,
al menos, una secuencia de arcos no orientados (aristas) que una dos nudos cuales-
quiera. El grafo que se considera tampoco es conexo pues (e, f} no esta conectado
con {a,b,c,d}. .

El conjunto de nudos, {g;}, que pueden ser alcanzados por un camino a partir
de un nudo g;, y tales que a partir de g; se alcance g;, es la componente fuertemente
conexa definida por g; (o por uno cualquiera de los gj, pues la fuerte conexién es
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una relacion de equivalencia). Si no se considera la orientacion de los arcos, se defi-
ne la componente conexa con g;. {a,b,c,d} y {b,c,d)} (figura A.2.1) son respecti-
vamente una componente conexa y otra fuertemente conexa.

Si en un grafo se reduce cada componente fuertemente conexa a un nudo, se ob-
tiene un grafo sin circuitos.

Un grafo es bipartido si el conjunto de sus nudos puede ser particionado en dos
clases Q1 y O, de forma que dos nudos de la misma clase no estdn nunca unidos
a través de un arco. Un grafo bipartido se representa por G = (Q1, Q2,I'), 0 bien
por G ={Q1, 02, I'1,I2),donde I't S Q1 X Q> y ' € Q> X Q. Si se trata de un
grafo bipartido ponderado, I'i:Q1 X Q2= V, I'2:Q2 X Q1 > V.

Una red de Petri ordinaria es un grafo bipartido. Una red de Petri generalizada
es un grafo bipartido ponderado.

Un drbol es un grafo sin circuitos en el que:

1) Existe un dnico nudo, denominado nudo raiz, que no posee ningtin nudo pre-
decesor. Si go es el nudo raiz, entonces I' " (go) = J[|T" " (qo)| = 0].

2) Cualquier nudo del grafo que no sea el nudo raiz posee un tinico nudo predece-
sor [Vgie Q,qi # qo, |T' " (g3)| = 1].

3) Existe un subconjunto de nudos, Q. C @, que no tienen nudo sucesor
(Vg€ On, T'* (q)) = @). Son los nudos terminales u hojas.

Una aplicacion cldsica de los drboles es la representacion de la genealogia de una
persona o de una familia.

A.2.3 OBTENCION DE LAS COMPONENTES CONEXAS Y LAS
FUERTEMENTE CONEXAS DE UN GRAFO

En este apartado se presenta un algoritmo que permite obtener /a componente cone-
xa y la componente fuertemente conexa con un nudo dado. La aplicacion reiterada
de este algoritmo permite llevar a cabo la particién del grafo en componentes cone-
xas y también en componentes fuertemente conexas (ambas propiedades definen re-
laciones de equivalencia).

Sea el nudo g;.

ALGORITMO: CALCULO DE COMPONENTES CONEXA Y FUERTEMENTE CONEXA

1) Marcar « + —» y « — » el nudo gi.

2) Marcar « + » todo nudo sucesor, ain no marcado con « + », de un nudo
previamente marcado « + ».

3) Marcar « — » todo nudo predecesor, atin no marcado con « — », de un nu-
do previamente marcado con « — ».

4) Cuando no pueda marcarse ningin nudo mds, tendremos que:

4.1 la componente fuertemente conexa con g; viene dada por el conjun-
to de nudos marcado « + » y « — ».

4.2 la componente conexa con g; viene dada por el conjunto de nudos
marcado (« + » 0/y « — »).
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Volviendo sobre el grafo de la figura A.2.1, se puede deducir que si b es el nudo
marcado inicialmente « + » y « — », se obtienen los marcados siguientes:

a=[_]ab=c=d={+9 _}!e=f=®
por lo tanto:

b es conexo con {a,c,d)
b es fuertemente conexo con {c, d}
b no estd conectado con {e, f}

Notas

1) El conjunto de nudos marcados « + » contiene a los nudos que, mediante un cami-
no de longitud cualquiera, se pueden alcanzar a partir de g;. Se dice que dicho conjunto
de nudos es el cierre o espectro de g;. Se le representa por I' * (g)).

2) El conjunto de nudos marcados « — » contiene a los nudos a partir de los cuales,
mediante un camino de longitud cualquiera, se puede alcanzar g;. Se dice que dicho con-
junto de nudos es el cierre o espectro inverso de gi. Se le representa por I' ~(g)).

3) Los espectros de un conjunto de nudos, Cj, se definen como la unién de los espec-
tros de sus componentes:

Ir*©c)="0*@y)u... Ul (g

) = {f“(cj) =P @)V... UP~ @)






Anexo 3

Sistemas de ecuaciones lineales:
obtencion de bases de anuladores
de una matriz

Objetivo del anexo. La presentacion de un método eficaz para obtener bases
de anuladores (derechos e izquierdos) de una matriz. A modo de introduccién
se recuerdan algunos conceptos y resultados que son utilizados con
posterioridad. No obstante, se supone al lector familiarizado con los
conceptos basicos de espacios vectoriales y de matrices (véase, por ejemplo,
en castellano [HOFF 73] [BURG 77] [REZA 77] [ROJO 82)).

A.3.1 INTRODUCCION: SISTEMAS DE ECUACIONES LINEALES Y
HOMOGENEAS

Sea el sistema de n ecuaciones lineales con m incégnitas:

anuxi+anx2+ ... + Gmxm=0
anxi+anx+ ... + Gmxm=0 1]
auX1+amx2+ ... + Gunxm =0

(n puede ser mayor, igual o menor, que m).
Si A es la matriz definida por [a;]], xm y X el vector definido por [Xilm, el sistema
de ecuaciones [1] se puede reescribir matricialmente:

A-X=0. [1bis]

Se dice que X es solucidn del sistema de ecuaciones [1/ 1bis] si A - X = 0. Todo
sistema de ecuaciones lineales homogénas admite al menos una solucién que es
X = 0 (solucién trivial). El sistema de ecuaciones se denomina determinado o inde-
terminado segin que admita una tnica solucién (en este caso la trivial) o varias
soluciones.

Sea & el espacio engendrado por un conjunto de vectores. Se denomina dimensién
del espacio, dim(&), al maximo nimero de vectores del mismo que son linealmente
independientes. Todo conjunto de dim(8) vectores linealmente independientes es
una base del espacio y permite generar cualquier vector del mismo.

Sea § y C los espacios engendrados por las filas y las columnas de la matriz A4,
respectivamente. Sea rango(A) = r.

383
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Proposicién 1. La dimension de F y la de € coinciden. Su valor es el rango de
la matriz A: dim(%) = dim(C) =r. O

Sea Y el espacio engendrado por las soluciones de la ecuacion YT.A=0(Yes
un anulador izquierdo de A). Sea D el espacio engendrado por las soluciones de la
ecuacion A - X = 0 (X es un anulador derecho de A).

Proposiciéon 2. 2.1 dim(Y) =n —r.
2.2 dm®)=m—r. O
Una justificacién de 2.1 se obtiene al considerar que cualquier vector C del espa-
cio @ y cualquier vector Y del espacio Y son orfogonales (producto escalar nulo).
Por consiguiente, no se puede obtener ningtin vector ¥ como combinacion lineal de
vectores C, y viceversa. Al considerar el espacio suma de C e Y, y puesto que se
ha visto que son ortogonales:

dim(C + Y) = n = dim(C) + dim(Y) = r + dim(Y).

Una justificacién de 2.2 se puede obtener con el mismo tipo de razonamiento al
considerar los espacios D y &.

Corolario. Sir = n [r = m], entonces dim(}Y) = 0 [dim(C) = 0]; es decir, no existe
anulador izquierdo [derecho] distinto de la solucion trivial. El sistema homogéneo
de ecuaciones correspondientes es determinado.

A.3.2 TRANSFORMACIONES ELEMENTALES

Una gran cantidad de métodos de resolucién de sistemas de ecuaciones lineales se
basa en la idea de equivalencia. Si A y A son matrices con el mismo nimero de co-
lumnas, los sistemas A - X =0y A - X = 0 son equivalentes si toda solucién de uno
de ellos es solucion del otro, y viceversa.

Puesto que se consideran sistemas homogéneos, se trabajara sdlo con la matriz
del mismo, 4.

Se denomina transformacion elemental sobre A, a cualquiera de las operaciones
siguientes:

1) Permutar dos filas (o columnas) entre si.

2) Sumar a una fila (o columna) una combinacidn lineal de las restantes filas (o
columnas).

3) Multiplicar una fila (o columna) por un escalar no nulo.

Proposicién 3. Si la matriz A se obtiene por transformaciones elementales a partir
de A, entonces A y A son equivalentes (en particular, rango(A) = rango(A) =r).

A.3.3 OBTENCION DE BASES DE ANULADORES

Sea I, la matriz unitaria de rango 7. Utilizando unicamente transformaciones ele-
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mentales de filas y permutaciones de columnas, se puede transformar el par [I, i A]
en [I, i A], donde:

i <E F) {Erx, matriz triangular superior

Frx(m-—r)

Cada una de las filas de 7, que se corresponda con una fila nula de A4 es un anula-
dor izquierdo de A (y por tanto de A). Puesto que, de acuerdo con la proposicion
3, la matriz I, es de rango n, las n — r filas que se correspondan con filas nulas de
A son linealmente independientes. Por ultimo, como la dimension del espacio Y es
n — r, resulta que las n — r filas de I, que se han considerado, forman una base de
anuladores izquierdos de A, By.

A partir de esta situacion también es facil obtener una base de anuladores dere-
chos de la matriz A, Bp. En efecto,

s iF B
A'BD=<€-'"--> <BD1>=0=E'BD1+F'BD2=O
D2

donde Bp posee m filas y, segiin la proposicién 2, m — r columnas. Las matrices Bp;
Y Bpz poseen r y m — r filas, respectivamente. Eligiendo Bp; = I, -, se garantiza
que el rango de Bp; sea m — r y se simplifica el cdlculo. En este caso se tiene
Bpi = —E~!. F (E es inversible puesto que su rango es r).

En resumen, una base de anuladores derechos viene dada por

forma siguiente:

Observacion 2. Todo el razonamiento desarrollado para obtener dos bases de anuladores
puede hacerse a partlr de la matriz transpuesta de A, A7, En este caso, se obtiene primera-
mente una base de B y, a continuacién, una base BY. Si se desea calcular una By y una Bp
siendo n < m (tipicamente es el caso de las mdquinas de estado), el trabajo con la matriz A
suele ser més eficaz. Si n > m, conviene trabajar con A7 (tipicamente es el caso de los grafos
de sincronizacion o grafos marcados).






Anexo 4

Computo eficiente de todas las
componentes elementales de una
RdP generalizada

Objetivo del anexo. La presentacion de las bases tedricas de un algoritmo
que permite calcular eficientemente todas las componentes elementales de una
RdP [MART 815]. Se incluye un listado de su codificacion en PASCAL.

A.4.1 INTRODUCCION

En §4.7.2.2 se presentd un algoritmo para la obtencidn de todas las componentes
conservativas elementales. La aplicacion de éste a la RdP de la figura 3.5 demostro
que no solo se obtienen las componentes conservativas elementales sino que también
se obtienen componentes no elementales. Habida cuenta que, normalmente, sélo in-
teresa la determinacion de las componentes elementales (§4.7.2.3), debe resolverse
el problema de la eliminacidn de las componentes no elementales. Para ello, se pue-
den utilizar dos vias distintas que son:

1) Aplicar el mencionado algoritmo y, posteriormente, eliminar las componentes
no elementales por comparacion entre sus soportes.
2) Eliminar las componentes no elementales a medida que sean generadas.

La primera de las dos vias sugeridas presenta algunos inconvenientes que pode-
mos resumir en los dos puntos siguientes:

1) El algoritmo de generacidén de componentes serd, probablemente, lento en la
ejecucidn, dado que puede generarse un gran nimero de componentes no ele-
mentales (esto suele suceder si la mayoria de las transiciones poseen varios lu-
gares de entrada y de salida). Ademads, las componentes no elementales incre-
mentan la cantidad de memoria necesaria en la ejecucion.

2) El proceso final de seleccién de componentes elementales serd tanto mds largo,
cuanto mayor sea el nimero de componentes (elementales 0 no) generadas.

Por lo expuesto, se desarrollar4 la segunda alternativa. Una ventaja adicional de
ésta, es que nos permitird presentar una caracterizacion algebraico-lineal del concep-
to de componentes elemental.

387
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A.4.2 CARACTERIZACION DE LAS COMPONENTES CONSERVATIVAS
ELEMENTALES

Como se ha anunciado previamente, se pretende la eliminacién de las componentes
no elementales durante el propio proceso de generacion.

De acuerdo con la observacion realizada en la introduccién al §4.6, desarrollamos
la teoria utilizando la matriz de incidencia, pero si la RdP no es pura, se trabajara
con la matriz de flujos de marcas.

Sea I; la i-ésima fila de la matriz de incidencia, C, y sea Y7 = (A\1...7\g,0...0)
con \; € Z*, una componente de la RdP (el orden de los términos de la componente
no le resta generalidad).

Condicién necesaria y suficiente para que una componente conservativa sea ele-
mental (proposicién 1).

\,

; l
La componente Y es elemental si y sélo si g = rango<-i-1-> +1. 0
q

DEMOSTRACION. Dado que Y es una componente conservativa, se puede escribir
2 Aili = 0, N€ezZt 1

. l ; ’
Sir= rango< .i}' >, se pueden determinar r entre las g filas, (1, . . ., lg}, que for-
q

maran una base. Por lo tanto, si g > r + 1, existird una relacion distinta de [1] de
la forma:

bl {lje {hy ... 1)

ST uili = 0 donde 2]
j=1 pi€Z

Entre [1] y [2] puede eliminarse al menos uno de los términos en I, quedando una
relacién [3] similar a [1] con todos los coeficientes positivos y con menor numero
de términos (sean s términos):

III(IG {ll, .. .,lq}

Z ML =0, donde< M\ eZ* [3]
k=1 s<q

Sis> r + 1, puede reaplicarse el razonamiento presentado hasta llegar a otra rela-
cioén [3] con s” =r + 1 términos. En este caso, la relacion serd unica por serlo la
representacién de un vector en funcién de una base. Por consiguiente, [3] define una
componente elemental cuyas coordenadas no nulas seran los valores N"x. U

La insercién del resultado anterior en el bucle del algoritmo del §4.7.2.2 permite
generar fodas las componentes conservativas elementales y sdlo éstas. No obstante,
su utilizacién es poco eficiente desde un punto de vista computacional debido a la

; l ; .
necesidad de calcular el rango de las matrices < -i!- ) Para mejorar las prestaciones
q
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del algoritmo, se va a considerar un mayorante del rango, muy rapido de calcular:
el nimero de columnas no nulas de la mencionada matriz, ' 2= r. Por desgracia,
procediendo de este modo no se podrd garantizar la no generacién de componentes
no elementales, aunque la experiencia ha revelado su enorme interés.

Condicién necesaria para que una componente conservativa sea elemental (propo-
sicién 2). Para que la componente Y7 = (\y,.. ., N 0,...,0), donde \;€ Z™", sea
elemental es necesario que ¢ < 7' + 1. [

Su justificacién es inmediata, dado que ' > r y la componente Y es elemental si
y s6lo si g = r + 1 (proposicién 1).

La insercién de esta condicién como paso 2.3 en el algoritmo del §4.7.2.2 permite
eliminar, durante el proceso de generacién, aquellas componentes conservativas que
no cumplan la condicién necesaria de elementaridad. El algoritmo resultante se ha
mostrado, desde un punto de vista practico, excepcionalmente eficiente, permitien-
do, normalmente, la eliminacién de todas las componentes no elementales. Esta ex-
cepcional eficiencia puede comprenderse, en parte, dado que las matrices de inciden-
cia son normalmente casi-vacias y, con frecuencia, coinciden el rango, r, y su mayo-
rante, r'.

A.4.3 CODIFICACION DEL ALGORITMO

De acuerdo con lo expuesto en el apartado anterior, la insercién del resultado enun-
ciado por la proposicién 2 en el algoritmo presentado en el §4.7.2.2, conduce a otro
algoritmo en el que se elimina la mayoria (normalmente todas) de las componentes
no elementales. El siguiente listado es una codificacién en pascar del algoritmo
«mejorado». Para calcular el mayorante del rango, 7/, se asocia a C la matriz boo-
leana A. En A se asigna inicialmente a cada elemento nulo de la matriz de inciden-
cia, C, un booleano de valor FALSE; si el elemento de C es no nulo se le asigna el
valor TRUE. Posteriormente a cada elemento a;; € A se le asignar4 el booleano resul-
tado de las uniones l6gicas de aquellos asociados a los elementos que, por combina-
cién lineal, lo generen. El entero ' asociado a una componente conservativa es el
numero de booleanos que adoptan el valor TRUE en la fila correspondiente de la ma-
triz booleana A.
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PROGRAM componentes(input,output);

{

Calcula las componentes conservativas elementales de una Red de Petri a partir de su matriz
de incidencia.

CONST numcolumnas = 25; numfilas = 90;
{Dimensionar adecuadamente seg(n las necesidades)
TYPE matriz = ARRAY[1..numfilas,1..numcolumnas]OF integer;
{ Significado de las variables mas importantes:
A :Matriz de Trabajo, inicialmente igual a la de incidencia de la Red de Petri.
D :Matriz de componentes;
filavacia:Valor booleano asociado a cada fila de «A» que indica si esta vacfa, o bien
si debe ser eliminada (valor «true»).
valornonulo:Valor booleano asociado a cada elemento de «A»
puntero:indica el nimero de las filas de «A» y «D» utilizadas en un momento dado.
punterol:apunta a la ultima fila afiadida a «A» (y a «D») }
VAR filavacia:ARRAY[1..numfilas]OF boolean;
A,D:matriz; numtransiciones,numlugares:integer;
valornonulo:ARRAY[1..numfilas, 1..numcolumnas]OF boolean;
i,j k:integer; puntero,puntero?:integer;

PROCEDURE leer;
{Lee la matriz de incidencia de la red de Petri, la escribe en el fichero de salida e
inicializa «D» igual a la matriz identidad.
El fichero de entrada debe contener la siguiente informacion:
primera linea: nimero de filas y de columnas de la matriz de incidencia de la red.
sig. lineas: cada una contiene una fila de la matriz de incidencia, separdndose
mediante blancos los diferentes elementos }
VAR i,j:integer;
BEGIN
reset(input,’'ENTRAD,CCE’); rewrite(output,’SALIDA.CCE');
writeln(output, ‘MATRIZ DE INCIDENCIA');
read(input,numlugares,numtransiciones);
puntero : = numlugares;
FOR i: =1 TO numlugares DO
BEGIN
FOR j: =1 TO numtransiciones DO
BEGIN
read(input,Ali,jl); write(output,Ali,jl : 7);
IF Ali,jl=0
THEN valornonuloli,j] : = false
ELSE valornonuloli,jl : = true
END;
writeln{output); filavacialil : = false
END;
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FOR i: = numlugares + 1 TO numfilas DO filavacialil : = true;
FOR i: = 1 to numlugares DO
FOR j: =1 TO numlugares DO

IFi=j
THEN DIi,jl: = 1
ELSE DIi,jl: = 0

END; (Fin de leer}
{ }
PROCEDURE escribir (var M:matriz;nfilas,ncolumnas:integer); ‘
{Escribe en el fichero de salida la matriz «M», omitiendo las filas marcadas como
vacias. }
VAR i,j: integer;
BEGIN
IF nfilas <=0
THEN writeln(output, ‘NO EXISTEN COMPONENTES ELEMENTALES’)
ELSE

BEGIN
writeln(output, ‘COMPONENTES CONSERVATIVAS ELEMENTALES')

FOR i: =1 TO nfilas DO
BEGIN
IF NOT filavacialil
THEN
BEGIN
FOR j: =1 TO ncolumnas DO write(output,M[i,j] : 7);
writeln(output)
END
END
END
END; {Fin de escribir)

PROCEDURE combinacionlineallfila1,fila2,columna : integer);
VAR i1,j1,factor1,factor2 : integer;

{

FUNCTION mcd(uno,otro : integer) : integer;
{Calcula el maximo comun divisor de dos niimeros}
VAR dividendo,divisor,resto : integer;
BEGIN
IF uno > = otro
THEN BEGIN dividendo : = uno; divisor : =otro END
ELSE BEGIN dividendo : = otro; divisor : = uno END;
WHILE divisor < >0 DO
BEGIN
resto : = dividendo MOD divisor;
dividendo : =divisor; divisor : = resto
END;
mcd : = dividendo
END; {Fin de mcd)

{
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FUNCTION buscafilavacia : integer;
{Devuelve como resultado un puntero de la primera fila vacia de «A»}
VAR i,vacia : integer;
BEGIN
i:+=1; vacla:=0;
WHILE i < = numfilas AND NOT filavacia [i] DO i: =i+ 1;
buscafilavacia : =i
END; {Fin de buscafilavacia}

{ J

BEGIN {Procedure combinacionlineal

Realiza la combinacién lineal de dos filas (filal y fila2) de «A» de forma que se
anule su elemento «columnay. Realiza la misma combinacion con identicas filas
de «D». Los booleanos «valornonulo» asociados a los elementos de la fila resul-
tante se calculan como la unién lgica de los correspondientes a las filas antes
citadas. )

punterol : = buscafilavacia;

i1 : = med(abs(Alfila1,columnal,abs(Alfila2,columnal));

factor1 : = abs(A[fila2,k]) DIV j1;

factor2 : = abs(Alfila1,k]) DIV j1;

FOR i1: =1 TO numtransiciones DO

BEGIN
Alpuntero1,i1] : = Alfila1,i1] » factor1 + Alfila2,i1] « factor2;

valornonulo[puntero1,i1] : = valornonulolfila1,i1] OR valornonuloffila2,i1]
END;
FOR i1: =1 TO numlugares DO _
Dlpuntero1,j1] : = DIfila1,i1]  factor1 + DIfila2,i1] * factor2

END; {Fin de combinacionlineal}

PROCEDURE anulacolumnas;

(

FUNCTION cardinal (fila : integer) : integer;
{Calcula el cardinal del soporte de la componente «filay de «D»].

VAR il, card: integer;
BEGIN
card:=0;

FOR i1: =1 TO numlugares DO
IF DIfila,i1l < >0 THEN card : = card + 1;
cardinal : = card
END; {Fin de cardinal}




CODIFICACION DEL ALGORITMO 393

FUNCTION mayorantedelrango (fila1, fila2, columna: integer): integer;
{ Calcula un mayorante del rango del conjunto de filas que generan la componente
resultante de combinar «fila1» y «fila2» }
VAR i1,r: integer;
BEGIN
r: = columna;
FOR i1: =1 TO columna — 1 DO
IF NOT (valornonulol(fila1,i1] OR valornonulo(fila2,i1]) THEN r: =r — 1;
mayorantedelrango : = r
END; (Fin de mayorantedelrango}

FUNCTION buscaultimaocupada :integer;
{Devuelve como resultado un puntero de la ultima fila ocupada)
VAR i,ocupada : integer;

BEGIN
i : = numfilas;
WHILE (i > = 1) AND filavacia [l DOi:=i-1;

buscaultimaocupada : = i
END; {Fin de buscaultimaocupada}

PROCEDURE eliminanonulas(columna : integer);
{Marca como vacias las filas de «A» cuyo elemento «columna» sea no nulo}
VAR i: integer;
BEGIN
FOR i:=1 TO puntero DO
IF Ali,columnal < >0 THEN filavacialil : = true
END; {Fin de eliminanonulas}

BEGIN {Procedure anulacolumnas
Se encarga de controlar el algoritmo de generacién de componentes}
k:=1; {«k» es la columna de «A» que se est4 anulando}
WHILE k < = numtransiciones DO
BEGIN
i:=1; punterol:=0; ;
WHILE i < = puntero DO {Se toma la fila i-ésima}

BEGIN
IF (Ali,k] < > 0) AND NOT filavacfali
THEN
FOR j:=1i+ 1 TO puntero DO {Se toma la fila j-esima}
BEGIN

{Compara elemento k-ésimo de las filas «i» y «j»}
IF (Ali,k]* Alj,k] < 0) AND NOT filavacialj]
THEN {Al ser de distinto signo pueden combinarse linealmente}
BEGIN
combinacionlineal (i,j,k);
{Se comparan el rango vy el cardinal del soporte de la componente
resultante}
IF cardinal(puntero1) > mayorantedelrango (i,j,k) + 1
{Si la componente no puede ser elemental se elimina)
THEN filavacia [puntero1] : = true
END
END;
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it=i+1
END;

eliminanonulas(k); puntero : = buscaultimaocupada; k: =k + 1
END

END; (Fin de anulacolumnas}

{ J

BEGIN {Programa principal}

leer;

anulacolumnas;

escribir(d, puntero, numlugares)
END. {Fin del programa principal}



Anexo 5

Soluciones enteras no negativas de un
sistema de ecuaciones e inecuaciones
lineales

Objetivo del anexo: Abordar la determinacion de las soluciones enteras no ne-
gativas de un sistema de ecuaciones e inecuaciones lineales. Se presentan re-
glas de transformacidn que reducen el problema mencionado a la obtencion
de las soluciones no negativas de un sistema de ecuaciones lineales homogé-
neas, problema resuelto en §4.7.2.2 (en el anexo 4 se mejora el algoritmo pre-
sentado en §4.7.2.2). Los métodos de resolucién que se proponen no preten-
den ser dptimos desde el punto de vista de las prestaciones.

A.5.1 INTRODUCCION

La obtencion del conjunto fundamental o generador de las soluciones no negativas
de un sistema de ecuaciones e inecuaciones lineales es un problema que aparece en
diferentes cdlculos relacionados con la determinacidn de propiedades de RdP. De
este modo, el cdlculo de cerrojos (§4.8.2.1), el de trampas (§4.8.2.2) y el de cerrojos
y trampas (§4.8.2.3) puede ser resuelto resolviendo sistemas de inecuaciones de la
forma A7 E > 0, donde A4, x 1 es un vector y E, x s €s una matriz de enteros. Por otro
lado, en §4.7.1.1 se presenta una condicion suficiente para la verificacidn de restric-
ciones sobre el marcado de una RdP (proposicidn 4.12) tal que si la violacidn de res-
tricciones se expresa linealmente, el problema se reduce a investigar la existencia de
soluciones no negativas de un sistema de inecuaciones del tipo A7+ E > F”.

En este anexo se reducird la resolucion de un sistema homogéno de inecuaciones
a la resolucion de sistema homogéneo de ecuaciones. Posteriormente se reducird la
resolucion de urn sisterma no homogéneo de inecuaciones a la resolucion de un siste-
ma homogéneo de inecuaciones.

A.5.2 SISTEMA HOMOGENEO DE ECUACIONES E INECUACIONES:
VARIABLES DE HOLGURA

Para reducir el sistema de inecuaciones a un sistema de ecuaciones, basta con intro-
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ducir una variable no negativa de holgura por inecuacién. Cada variable de holgura
permite transformar una inecuacién en ecuacién.
Sean las dos transformaciones siguientes:

a) Al afiadir A; a la inecuacién (h; € N):
a1eli+aey+ ... +aei =0

se obtiene la ecuacion
aieii+amex+ ... +aei—hi=0
b) Toda inecuacién del tipo:

aej+mey+ ... +ae; <0

puede ser transformada en una inecuacién como la considerada anteriormente:
al(—ey) + ax(-ey) + ... +a(—ey) >0

Nota: También se puede escribir directamente:

aieyj+ @;ey+ ... +aei+ hi=0

En resumen, la transformacion b) permite reducir todo sistema homogéneo de
inecuaciones lineales a la forma A7 E > 0. La adicién de variables de holgura
(transformacidn a) permite la reduccién de las inecuaciones a ecuaciones:

AT'E>0@AT'E—HT=Oa(Ale’)@ =0

Este ultimo problema fue resuelto algoritmicamente en §4.7.2.2 y en el anexo 4.
Ahora bien, observando el tipo de sistema de ecuaciones que se obtiene, es facil de-
ducir una variante del algoritmo presentado en §4.7.2.2, vélido para sistemas de la
forma A7 E > 0y que no necesita incrementar la dimensién del sistema con varia-
bles de holgura.

Este puede adoptar el esquema siguiente:

(1) B: = E, D: = I, {matriz unitaria de dimensién n}
(2) Para i: =1 hasta s {nimero de columnas de E'}

2.1 Afiadir a la matriz [DiB] todas las filas que resulten como combina-
cion lineal positiva de pares de filas de [DiB] y que anulen la i-ésima
columna de B.

2.2. Eliminar de [Di B] las filas en las que la i-ésima columna de B sea ne-
gativa.

(3) Las filas de la matriz D final representan soluciones no negativas del siste-
ma de inecuaciones A7 - E > 0. Entre éstas se encontrardn, tras una even-
tual normalizacidn, todas las soluciones elementales.
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A.5.3 SISTEMA NO-HOMOGENEO DE ECUACIONES E INECUACIONES

Sea el sistema no homogéneo A” - E > FT, Introduciendo la variable entera y positi-
va v(ve N "), se puede escribir:

AT-E>v FTe AT E-v'FT>0% (ATgv)<-:ﬁ> >0
Una vez resuelto el sistema homogéneo de inecuaciones (segun lo postulado en
§A.5.2.), aquellas soluciones A/v, en las que v > 1 y A/v sea un vector de enteros,

comprenderdn al conjunto de las soluciones elementales del sistema original,
AT-E>F".






Anexo 6

Léxico sobre redes de Petri

La introduccion de este Iéxico se ha realizado habida cuenta la confusion terminolé-
gica existente en la literatura sobre la teoria y aplicaciones de las redes de Petri. Las
principales razones de la mencionada confusidn se pueden agrupar en las tres si-
guientes:

(1) La novedad de la teoria y de sus aplicaciones, puesto que, a pesar de datar
de 1962 el primer trabajo, el desarrollo de la disciplina se ha realizado préacti-
camente a partir de la década de los setenta y muy especialmente de su segun-
do lustro.

(2) El cardcter multidisciplinar de la teoria, asi como la diversidad de sus aplica-
ciones. De este modo, el desarrollo de la teoria ha ido surgiendo en base a
necesidades sentidas por especialistas del hardware y del software de los com-
putadores, de automatismos logicos industriales, de organizacion indus-
trial,... Ademads, en la teoria de redes de Petri, han trabajado matemadticos de
formaciones muy diversas.

(3) La ausencia de obras que unifiquen/definan la (una) terminologia.

La mencionada confusion terminoldgica alcanza hasta la definicién del mismo

concepto de red de Petri. Asi, encontraremos que esta definicion varia dentro de las
ocho posibilidades siguientes:

red de Petri ordinaria no marcada con capacidad infinita
0 0 6
red de Petri generalizada marcada con capacidad finita

De esta forma, en [PETE 77] o [AGER 79] el concepto de red de Petri es el de
RdP ordinaria/no marcada/con capacidad infinita (no existe el concepto de capaci-
dad). En el otro extremo, en [BRAU 80], se define con el mismo vocablo el concepto
de red de Petri generalizada/marcada/con capacidad finita. En general no existe
una contradiccién entre los conceptos representados por un mismo vocablo, pero
su nivel de generalidad varia. Asi, en [PETE 77] se define el concepto de red de Petri
conservativa como aquelia en la que el nimero de marcas es constante a lo largo
de cualquier evolucion. Este concepto ha sido definido en el texto (def. 4.22) de for-
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ma mads general, puesto que se considera la constancia de una suma ponderada de
las marcas.

En la traduccidn/adaptacion de términos, hemos querido evitar, en la medida de
lo posible, los anglicismos y galicismos. Asi, por ejemplo, se han introducido las de-
nominaciones de lugar y marcado.

Por dltimo, queremos resaltar que la diferencia conceptual entre el término Grafo
de Estados en un contexto cldsico y en el de las redes de Petri, nos impulsé a introdu-
cir la denominacién de Grafo (de Estados) Reducido. Este término sustituye al clasi-
co concepto de Grafo de Estados o Grafo de Transicion de Estados, evitdndose de
este modo la ambigiiedad. La justificacion de la acufiacién del nuevo término, Gra-
fo Reducido, esta implicita en el capitulo 1, §1.4.

El 1éxico que se presenta a continuacién no es exhaustivo. No obstante, ademas
de los vocablos basicos de la teoria de redes de Petri, se han incluido aquellos especi-
ficos a la consideracion de las redes como modelos de descripcidn de sistemas ldgi-
cos. Todos los vocablos se encuentran definidos en el texto, pudiéndose proceder
a su localizacion en base a la informacion, contenida entre paréntesis, que se le haya
asociado (Nota: d = definicidn, f = figura, § = parrafo). Los vocablos se encuen-
tran acompafiados de sus sinénimos mds usuales.

A

acontecimiento (d.2.14)
[evento]

alcanzable (marcado)
(d.2.12)

arco (d.2.2.1.1)

arco inhibidor (d.2.5.2.3)

atribucién (f.1.18)

avance sincronico (d.4.12)

avance sincronico
ponderado (d.4.13)

binaria (RdP)(§4.2.3)
[sana, segura]

C

cerrojo (d.4.27)
cerrojo minimo (§4.8.2)
ciclica (RdP)(d.4.5)

componente canonica
(d.4.25) [invariante
canodnico]

componente conservativa
(d.4.23) [invariante de
lugares]

event
reachable (marking)

arc
inhibitor arc

meet

synchronic lead

weighted synchronic
lead

safe (PN)

deadlock
minimal deadlock

minimal (vector ordering)
invariant

p-invariant component
[conservative component]

événement
atteignable (marquage)

arc
arco inhibiteur
[arc complementé]
attribution
avance synchronique
avance synchronique
ponderée

sauf (RdP)’ y
[sain, binaire]

verrou
verrou minimal
réinitialisable
[propre]
composante canonique

composante conservative
[p-flot]



componente elemental
(d.4.26) [invariante
elemental]

componente repetitiva
(§4.7.2.1) [invariante de
transiciones]

condicién envolvente de un
lugar (d.2.16)

condicién envolvente de un
marcado (d.3.4)

condicién externa (d.2.13)

conflicto efectivo (d.4.10)

conflicto estructural (d.4.9)

conforme (§1.5.3.2)

conjuncién (f.1.18)

conjunto de lugares de
entrada de #(d.2.4)

conjunto de lugares
implicantes (d.3.1)

conjunto fundamental (de
componentes conservati-
vas) (d.4.26) [generadores]

conj. de lugares de salida
de ¢ (d.2.4)

conj. de marcados
alcanzables (d.2.12)

conj. de transiciones de
entrada de p (d.2.4)

conj. de transiciones de
salida de p (d.2.4)

conj. de secuencias de
disparo (d.2.10)

conservativa (RdP) (d.4.22)

D

disparar (una transicion
sensibilizada) (d.2.9)
distribucién (f.1.18)
dual (RdP) (d.4.23)

E

ecuacion de estado de una
RdP (§2.2.2)
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minimal support invariant
t-invariant component
[consistent component]

effective conflict

structural conflict
[topologycal conflict,
conflict]

wait
pre-set of ¢

implicating places set

set of generators (for the p-
invariants)

post-set of

forward marking class
pre-set of p

post-set of p

set of firable sequences

conservative net
[p-invariant net]

firing (of a enabled
transition)

split

dual (PN)

state equation of a PN

composante élémentaire

composante consistente
[comp. repetitive, t-flot]

mondme enveloppe d’une
place

mondme enveloppe d’un
marquage

condition externe

conflit effectif

conflict structurel
[conflit topologyque]

conforme

jonction

ensemble de transitions
d’entrée de ¢

ensemble de places
impliquantes

ensemble fondamental (de
composant conservatives)
[generateurs])

ensemble de places de
sortie de ¢

ensemble de marquages
atteignables

ensemble de transitions
d’entrée de p

ensemble de transitions de
sortie de p

ensemble de séquences de
franchissement

conservatif (RdP)

franchir ou mettre 4 feu
(une transition validée)

distribution

dual (RdP)

equation d’état d’un RdP
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estructuralmente limitada
(RdP) (d.4.8)

estructuralmente viva (RdP)
(d.4.49)

evento (d.2.14)
[acontecimiento]

exclusién mutua (d.4.11)
(lugares en)

G

grafo de cobertura (§4.3)
[grafo de alcanzabilidad)

grafo de estados (d.2.17)
[médquina de estados]

grafo de marcados (d.4.14)

grafo de sincronizacion
(d.2.18)

grafo marcado (d.2.18)

I

incidencia previa (funcién)
d.2.1)

incidencia posterior
(funcién) (d.2.1)

L

libre de monopolio (RdP)
(d.5.1)

limitada (RdP) (d.4.7)

[acotada]

lugar (d.2.1)

lugar ascendiente de una
subRdP (d.2.16)

lugar complementario
(d.2.22)

lugar de sincronizacion
(§.9.6.2/3)

lugar descendiente de una
subRdP (d.4.16)

lugar fuente (d.3.6/7)

lugar identidad (§3.3.2)

lugar implicante (d.2.1)

lugar implicito (d.3.1)
[lugar redundante]

lugar k-limitado (d.4.6)

lugar representante de una
transicion (§9.6.2/3)

structurally bounded (PN)

structurally live (PN)
event

mutual exclusion

coverability graph
[reachability graph]
state graph
[state machine graph]
marking graph
synchronization graph

marked graph

input function
[pre-function,
backward function]

output function
[post-function,
forward-function]

monopoly free

bounded (PN)

complementary place

synchronization place

source place
identity place
implicating place
redundant place
[implicit place]
k-bounded place

structurellement borné
(RdP)

structurellement vivant
(RdP)

événement

exclusion mutuelle

graphe de couverture
[graphe d’atteignabilité]
graphe d’état
[machine d’état]
graphe des marquages
graphe de synchronisation

graphe marqué

fonction d’incidence avant

fonction d’incidence arriére

libre de monopole
borné (RdP)

place

place ascendante d’un sous
RdP

place complementaire

place de synchronisation

place descendante d’un
sousRdP

place source

place identité

place impliquante

place implicite
[place redondante]

place k-bornée

place pivot ou place clé
d’une transition



lugar sumidero (d.3.7)
lugar sustituible (d.4.18)
lugares compatibles (d.3.3)

lugares directamente
fusionables o equivalentes
d.3.2)

M

macrografo asociado a una
RdP (§7.4.3)

macrolugar (d.4.17)

maquina de estado (d.2.13)

marca (§2.2.1.2)

marcado (d.2.6)

marcado inicial (d.2.7)

marcado superior (§4.4.1)

matriz de incidencia previa
(§2.2.1.1)

matriz de incidencia
posterior (§2.2.1.1)

N

nudo 0 (f.1.18)
nudo Y (f.1.18)

P

parcialmente viva (RdP)
(d.4.3) [seudo-viva)

peso activo de una red
marcada (§6.5.3.1)

peso del arco (§2.2.1.1)

peso total de una red
(§6.5.3.1)

propiedad cerrojo-trampa
(d.4.29)

R
RdP con arcos inhibidores

(d.2.23)
RdP con capacidad (d.2.21)

sink place
substituable place

macroplace
state-machine

token (marker)
marking

initial marking
higher marking
pre-incidence matrix

post-incidence matrix

OR-node
AND-node

pseudo-live

arc multiplicity
[arc token width]

deadlock-trap property

PN with zero-test

capacity PN

LEXICO SOBRE REDES DE PETRI 403

place puits

place subtituible

places compatibles
[places fusionnables]

macrographe associé 4 un
RdP

macroplace

machine d’état

marque

marquage

marquage initial

marquage supérieur

matrice d’incidence avant

matrice d’incidence arriére

noeud OU
noeud ET

partiellement bloquée
[pseudo-vivant]

poids actif d’un réseau
marqué

poids de I’arc

poids total d’un réseau

propriété verrou-trappe

RdP avec test de zéro
[avec arcs inhibiteurs]
RdP 2 capacité
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RdP coloreada (§2.5.2.5)
RdP generalizada (d.2.1)
RdP interpretada (d.2.15)
RdP k-limitada (d.4.7)
RdP libre eleccién (d.2.19)
RdP marcada (d.2.7)
RdP ordinaria (d.2.2)

[red de Petri]
RdP pura (d.2.3)

RdP simple (d.2.20)

RdP temporizada (§2.5.2.6)
(d.2.20/20 bis)

repetitiva (RdP) (d.4.21)

S

secuencia de disparos
(d.2.10) [sec. de
franqueos]

seleccion (f.1.18)

soporte de una componente
conservativa (d.4.24)

subred de Petri (d.2.5)

subRdP potencialmente
reducible a un lugar
(d.4.15)

sustitucién de un lugar
(§5.5.1)

sustitucién de una
transicion (f. 5.12)

T

trampa (d.4.28)

trampa minima (§4.8.2.2)

transicion (d.2.1)

transicién conmutador
(§2.5.2.4)

transicion fuente (d.3.5)

transiciones idénticas
(d.4.19)

transicion identidad
(d.4.20)

transicion O-EXCLUSIVO
(f.2.22)

transicion receptiva (§2.4.1)

coloured PN
generalised PN
interpreted PN
k-bounded PN
free-choice PN
marked PN
Petri net

pure PN
[self-loop-free PN]

simple PN

timed PN

consistent PN
[t-invariant net]

firing sequence
branch
support of a p-invariant

Petri subnet

substitution of a place

substitution of a transition

trap

minimal trap
transition

switch transition

source transition

similar transitions
[identical transitions]

identity transition

EXOR-transition

RdP coloré

RdP généralisé
RdP interpreté
RdP k-borné
RdP & choix libre
RdP marqué
RdP ordinaire

RdP pure

RdP simple
RdP temporisé

RdP répetitif
[RdP consistant]

séquénce de franchissement
[séquénce de mise a feu]

sélection

support d’une composante
conservative

sous-réseau de Petri

sous-RdP pontentiellement
reductible a une place

substitution d’une place

substitution d’une
transition

trappe [piége]
trappe minimale
transition

transition source
transitions identiques

transition identité
transition OU-EXCLUSIF

transition receptive



transicion sensibilizada
(d.2.8) [validada]

A%

vector caracteristico de una
secuencia de disparos
(d.2.11)

vector de pesos (§6.5.3.1)

viva (transicion) (d.4.1)

viva (RdP) (d.4.2)

viva (RdP marcada) (d.4.2)

enabled transition

caracteristic vector of a
firing sequence

weights vector
live (transition)
live (PN)

live (marked PN)
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transition sensibilisée
[validée]

vecteur caractérisque d’une
séquence de
franchissements

vecteur des poids

vive (transition)

vive (RdP)

vivant (RAP marqué)
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REFERENCIAS CAPITULO 1

El andlisis y disefio de sistemas secuenciales es un tema cldsico ampliamente tratado
en la literatura. Entre otros textos se encuentran:

a) en espafiol: [HILL 78], [MAND 79], [aLDA 80].
b) en inglés: [MccL 65], [UNGE 69], [TorN 72], [FLET 80].
c) en francés: [PERR 67], [MANG 78].

Los trabajos de introduccién-motivacién hacia las redes de Petri no son muy nu-
merosos. Entre otros cabe citar [DACL 76], [PETE 77], [AGER 79], [sLv 82a].

REFERENCIAS CAPITULO 2

El trabajo pionero sobre las redes que nos ocupan es la tesis doctoral de C. Petri
[PETR 62] aunque es obligado constatar que la definicién original dista bastante de
las aceptadas hoy en dia. La terminologia bdsica sobre redes de Petri se recoge, con

diferentes variaciones, en [BrRaU 80], [MoaL 80] y [PETE 8la].
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Dos trabajos claves sobre subclases de redes de Petri son [comm 71] y [HACK 72].
En el segundo de ellos se introducen las redes de libre eleccién asi como las redes
simples. Entre las principales extensiones de las redes de Petri se pueden citar los
trabajos [AGER 73] (redes con arcos inhibidores), [GENR 79] (redes predicado-
transicion) y [7Ens 81] (redes coloreadas).

Otras referencias: Insertas en el texto del capitulo.

REFERENCIAS CAPITULO 3

En [pAcCL 76] se aborda la simplificacion de RdP por eliminacién de lugares implici-
tos. Desde un punto de vista algoritmico, la técnica empleada es poco eficiente en
general, puesto que se basa en la obtencién del Gr equivalente a la RdP. La presenta-
cién realizada en este capitulo deriva de [siLv 80c] (resultados basicos) y [MART 81b]
(fundamentos tedricos del algoritmo).

La fusion de lugares se aborda en [GIRA 73] (para los GR) y [DACL 76]. La presenta-
cién realizada en este texto deriva de las anteriores referencias. La simplificacién de
lugares fuente se introduce en [siLv 77] y [siLv 78]

Otras referencias: [BERT 78] caracteriza, para redes no limitadas, el concepto de
lugar implicito. El estudio de compatibles puede encontrarse en multitud de textos;
por ejemplo: [HILL 78], [PERR 67], [TORN 72]. En [DADD 76b] se considera la simplifi-
cacién de redes bajo una dptica distinta a la adoptada en el texto.

REFERENCIAS CAPITULO 4

Al presentarse en este capitulo el nicleo de la teoria de redes de Petri, las referencias
que sirven de fuente son muchas y, desgraciadamente, muy dispersas.

Los textos [BRAU 80] y [GIRA 82], permiten cubrir la mayor parte del material, pero
su presentacién es, en general,- muy abstracta. En [PETE 81a] se consideran sélo las
técnicas de analisis basadas en el arbol de alcanzabilidad (no presentadas en este tex-
to) y algebra lineal, aunque el tratamiento del segundo grupo es muy superficial. En
ningun caso se presentan de forma sistematica algoritmos que hagan operativos los
resultados que permiten el andlisis.

Las referencias principales, clasificadas por técnicas de andlisis, son:

(1) Enumeracidn: [KARP 69], [BERT 78].

(2) Reduccidn: [BERT 78, 79a, 79b], [szLA 771, [Bous 78], [sv 81]

(3) Algebra lineal y RdP: [LAUT 74], [LIEEN 76a, 76b], [MURA 77a]
[MEMM 78b, 79a, 79b], [srFa 78, 79b], [Ramc 73], [MART 81b].

(4) Cerrojos y trampas: [comm 71], [HACK 72], [MEMM 78a, 78b],[JANT 79], [SIFA
79b], [Toup 81].

REFERENCIAS CAPITULO 5

El impacto del tiempo y de la interpretacion sobre el andlisis de redes auténomas
fue planteado en [GHOS 77] y [MOAL 78], respectivamente.
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Los aspectos metodoldgicos en la descripcién de sistemas se basan en los concep-
tos de estructuracién-modularizacién, que aparecen en diversas ramas de la ingenie-
rfa. En particular, dentro del 4mbito de la programacion de computadores pueden
considerarse las referencias [paHL 72], [pIK 76], [LEDG 75].

La aplicacién de los conceptos de estructuracién y de modularidad a las redes de
Petri ha sido tratada, por ejemplo, en [VALE 76, 78a, 79], [suzu 80] [ANDR 80, 81b].

Otras referencias: [BRAU 80], [GIRA 82], [MoaL 81].

REFERENCIAS CAPITULO 6

La realizacion asincrona ha llevado a la definicién de una célula de memoria, fun-
cionalmente idéntica a la cusa [pavI 77, 80]. Los métodos, de cableado propuestos
difieren de los anteriores; en particular, el método de transferencia impulsional con-
duce a un cableado andlogo al propuesto en [DAvVI 80] pero en el que pueden elimi-
narse (bajo ciertas hipétesis ) los retrasos en la célula.

Metodoldgicamente, el an4lisis de aleatoriedades presentado se basa en [pavi 80].

La sintesis de células sincronas es un ejercicio cldsico de transformacién de biesta-
bles. (Véase, por ejemplo [HILL 78], [MaNG 78].)

Otras referencias: [DACL 76], [MARI 76], [stra 79a], [cour 80].

REFERENCIAS CAPITULO 7

Una interesante introduccién a la I6gica matricial y su aplicacion al disefio de sistemas
combinacionales y secuenciales se presenta en [LIPP 76]. La optimizacién de las rela-
ciones basadas en PLA se aborda, entre otras referencias, en [FLE1 75], [aUG 78], [RoTH
78] y [PERE 80]. La dltima de las anteriores considera la optimizacién desde el
punto de vista del constructor de PLAS, no como usuario de PLAS estandar. La mini-
mizacion de la longitud de una palabra por codificacién independiente de campos ha
sido enfocada siguiendo a [7ayA 76]; una més precisa caracterizacion del concepto de
clase principal ha permitido obtener mejores soluciones que en el trabajo mencionado.

Uno de los primeros trabajos sistematicos sobre la realizacién de sistemas secuen-
ciales con ROM es [CLAR 73]. La referencia [ANDR 81a] es una interesante monografia
sobre microprogramacion.

La idea de descomponer una RdP binaria en Gr para una posterior realizacién
microprogramada se propone en [ANDR 76] de forma heuristica. En [MART 8la] y
[Auat 79] se introducen las técnicas de descomposicién presentadas en §7.4.3.1. y
2, respectivamente.

Otras referencias: [Avac 77], [DADD 76a], [LEUN 77], [HOzI 79], [MANG 82].

REFERENCIAS CAPITULO 8

La informacién concerniente a los Autématas Programables (estructura, funciona-
miento y lenguajes de programacion) ha sido recogida de un estudio sistemdtico de
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los equipos ofrecidos por los constructores, asi como de diversos articulos de sintesis
aparecidos, entre otras, en las revistas Control Engineering y Automatique e Infor-
matique Industrielle. Una primera version de gran parte de este capitulo se encuen-
tra en [siLv 78].

Referencias adicionales son [GsLa 74], [MicH 79], [sv 77], [ToUL 78] Y [THEL 80].
Las tres ultimas se ocupan de la programacién de RdP con automatas
programables.

Otras referencias de interés: [HOLZ 69] (referencia histérica), [HEUM 75], [MORA
75], [caTI 79].

REFERENCIAS CAPITULO 9

La definicién de sistemas especiales para la simulacién de RdP binarias ha motivado
numerosos trabajos. Las referencias [DACL 76], [DEFR 79] v [SLv 80a] presentan
equipos en los que se ha disefiado especialmente el hardware o se ha afiadido hard-
ware especial a un microcomputador de propésito general. Utilizando exclusiva-
mente técnicas software sobre computadores de proposito general, se encuentran,
entre otras, las referencias [siv 78], [siLv 79¢], [TOUR 76], [croc 80], [cour 80] y
[swv 82c].

Desde un punto de vista conceptual, la presentacién del capitulo sigue, en gran
parte, el esquema adoptado en [sLv 82c].

La codificacién y simulacién de grafos reducidos (de estado) es un tema cldsico,
abordado, entre otras referencias modernas, en [PRAT 75], [ALAB 75] y [LAND 79].

La referencia [TAFA 79] presenta un interpretador de RdP con capacidad, exten-
sion no considerada en este texto.
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imagen de salidas (M1s) 282, 321
Método

cerrojos y trampas 323-325

de enumeracién 101-110

de fusion de lugares 75

de lugares fuente 78, 84

de ponderacién 225-226

de reduccion 155 (vedse Analisis)

dindmicos 100

estructural 137, 162

matricial de simulaciéon 323-325
Métodos

de analisis (vedse Andlisis)

de descripcion 92, 181

dinamicos 100

estaticos 100
Microcomputador 315, 320, 326, 344, 371
Microinstruccién 255

de asignacién 259

de salto condicional 258

de salto incondicional 259

unica 255
Microprocesador 285, 313
Microprograma 255, 263
Minimizacién 63-64
Modelacion (véase Descripcidn)
Modelo

estructural 1

funcional 1
Monomios légicos 237
Monopolio (RdP libre de) 177
MOoORE 5-6, 80-81, 243-244
Muestreo 282, 321
Multiplexores 248, 249, 251
Multiprogramacién 268, 372

N

Nudo 377

espectro de un 381

predecesor 379

raiz 380

sucesor 379

terminal 106, 380
Nudo-O 21, 48, 203
Nudo-Y 21, 48, 115, 203

(0]

O-exclusivo (transicién) 60
Ordinaria (RdP) 31
Organigrama 288-295

P

Parcialmente viva (RdP) 93, 152-153,
164-165
Parte
de control 2-3, 284
operativa 2-3, 284
Perro guardian 287
PERT, 49
Peso
activo de RdP 225
del arco 30, 51
total de la RdP 226
PEeTRI (véase de Petri)
Pila (Liro) 304, 354
de tratamiento 354-6
en formacién 354-6
PLA 229
definicién 234
estructuras multi- 235-245
secuenciales 236
tabla de programacion de 246
Polaca postfija (notacién) 301
Ponderacién (método de) 225-226
Potencialmente
alcanzable (marcado) 153
implicantes (lugares) 66, 153
implicito (lugar) 66-67, 153-154
reducible (subred) 111, 117
Procedimiento evento-accion 324, 342
abierto 326
cerradop 324
Productor-Consumidor 40, 192, 375
Programable
automata 279, 297
decodificador 237
matriz 16gica (véase PLA)
Programacion (véase Lenguajes)
concurrente 373
consola de 285
de computadores 373
estructurada 170
no sincrona de RdP 292
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Programacion (Cont.) (véase Lenguajes) generalizada 30, 51
secuencial 373 interpretada 36, 177
sincrona de RdP 292 k-limitada 94
tabla de 246, 249 libre eleccién 50, 165

Propiedad cerrojo-trampa 164-165 libre de monopolio 177

Propiedades de buen funcionamiento 92 limitada 96, 178

Puntero 332, 334 marcada 33
nulo 332 no-auténoma 30, 173, 179
representaciones con 332 no-limitada 22
siguiente transicion 334 ordinaria 31

Pura (RdP) 31, 157 parcialmente viva 93, 152-153, 164-165

pura 31, 157

repetitiva 128-129, 133-135
simple 50, 352
temporizada 61-62, 173-177
viva 21, 93-96
Reducido (grafo) 1, 10, 15, 19, 23, 196,
243, 261
Reduccion (andlisis por) 110-27
Reduccién de
longitud de palabra 238-243

R

Realizacion cableada de RdP 195, 222-226
asincrona 198-217
autoverificable 225
asincrona-autosincronizada 260
de una temporizacién 205
modular 196

sincrona 198, 217-222 ixi};{ dl ;0111217
Realizacién con macrocomponentes ;
5 ; S Redundancias
meétodos 16gicos de transicién directa
GR 243, 248 estructurales 225
RdP 25:1 funcionales 225
métodos con secuenciador no separables 225
GR 252, 262 separables 225
RdP 26:/ Registro

acumulador 284, 304, 311
contador de programa 253, 284
de estado 243-247, 255
de instruccién 284
de salidas 245, 251
Regla de evolucién del marcado 17, 33,

Realizacién programada de RdP binarias
(vease Simulacién programada de RdP)
con ecuaciones y saltos 296-297
con ecuaciones ldgicas 296-297
con diagramas légicos 292-295

Receptiva (transicién) 36

Receptividad 11, 36 & ?5 .
matriz de 260-262 claciones
Red de Petri u‘warla'mtes 179
auténoma 91, 169 smc_r<'51’cas 97
binaria 22, 94, 195 Repeticion (estructura de) 187
clclica 94-96 Repetitiva (RAP) 128-129, 133-135
Representante

coloreada 60

con arcos inhibidores 55-56
con capacidad 52

conforme 22, 122, 165
conservativa 128, 130, 133-134

de transicion (lugar) 341, 349
esencial 341, 349
ROM 229-230, 238

dual 131 S
ecuacion de estado de 34, 128, 323 :
estructuralmente limitada 95, 133-134 Salida(s)

estructuralmente viva 93, 134-136 continuidad de 207
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Salida(s) (Cont.)
funcién de 4
memoria imagen de 282, 321, 366
memoria imagen borrada de 321, 366
realizacién de 204-205
registro de 245-251
Secuencia
de disparos 33, 128, 159, 179
estructura 187
Secuenciador
dispositivo 244, 252, 260, 284
método con 252-262
Selecciéon 20
Semaforo 158, 191, 374
de exclusién mutua 192
teorema del 158-159
Sensibilidad de una salida 11, 36
Sensibilizada (transicién) 33, 68
Simple (RdP) 50, 352
Simplificacién de la descripcién 63-65,
222-225 '
Simulacién conducida por
programa 319
tabla 319
Simulacién programada de GR 337
Simulacién programada de RdP binarias
(véase Realizacion programada de RdP)
con diagramas légicos 294
con ecuaciones logicas 296
con ecuaciones y saltos 296-297
dirigida por el marcado
escrutacion lista 353, 366
escrutacion vector 341
dirigida por transiciones
escrutacion total 331
sensibilizadas 363
lenguajes especiales 366
método matricial 323
sincrona 320-321
Sincronizacién de maquinas secuenciales 268
Sincrono(a)
biestable 217, 221
célula 217-219
realizacion cableada 217
sistema 36
Sincronizacién
de maquinas secuenciales 268
entre subsistemas 190-191
Sistema
asincrono 6

concurrente 2, 16
lineal 35, 139, 383, 395
secuencial 1, 3, 10
sincrono 6, 36
Soporte de una componente 143
STIEMKE 134
Subconjunto final de estados 94
Subprograma 45, 326
Subred de Petri 32
potencialmente reducible 111
reducible 112, 116
Sumidero
lugar 83
transicion 83
Sustitucion
de un lugar 118-122, 183
de una transicion 188-189
Sustituible (lugar) 118-119, 124

T

T (biestable) 218, 221, 247
Tabla de

cobertura 271, 349

compatibilidad o de pares compatibles

78, 81, 110

estados 5

fases 1, 6

fases primitiva 7

KarNAUGH 221, 233

programacion 246, 248

verdad 233, 248, 262

verdad compactada 246
Temporizacion (realizacion de) 205
Temporizada 61-62, 173-177
Teorema

de CoMMONER 165

de STIEMKE 134

del semaforo 158-159
Término producto 235, 247
Tiempo de disparo 61
Trampa 162-164

minima 169
Transformacion

de descomposicién 259

de eventos 37-40, 80-82, 204

de GR 254

de secuencializacién 259

elemental 384
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Transicién 16, 30 Variable
conmutador 60 de holgura 141, 396
fuente 82 intermedia 239-240, 308, 310
identidad 123 interna de memorizacién 197
no estandar 59 nula 136
no viva 22 Vector(es)
O-exclusivo 60 caracteristico de una secuencia de
receptiva 36 disparos 34, 128
sensibilizada 33, 326 de pesos 225
sumidero 82 del marcado 32, 323
viva 21, 92 incomparables 144-145
Transiciones idénticas 123 Verificacion 91
TurING 57 Viva

transicién 21, 92
Red de Petri marcada 21, 93-96
A estructuralmente (RdP) 93,
134-136
Validacién 23, 91 Vivacidad 106, 152, 162-163, 174, 179
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