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Resumen

En anos recientes el uso de cdmaras omnidireccionales ha aumentado de manera
considerable tanto en la comunidad de robdtica como en la de visién por computador.
La mayor ventaja de este tipo de cdmaras es su gran campo de vista, lo que les
permite obtener informacién de toda la escena en una sola imagen. Este tipo de
sistemas han sido usados en una gran cantidad de aplicaciones como: videovigilancia,
seguimiento de objetos, navegacién visual, odometria visual, localizacién y SLAM,
reconstruccion a partir de movimiento, visién activa, fotogrametria, redes de camaras,
etc. Emntre los tipos méas populares de cadmaras omnidireccionales, destacan los
sistemas catadiéptricos, que son una combinacion de camaras convencionales y
espejos, asi como las lentes fisheye que se adaptan a cdmaras convencionales. Para
interactuar y obtener informacién 3D del entorno en el que se encuentra el sistema
de visién omnidireccional es necesario contar con una serie de tareas basicas. Estds
tareas consideran la calibracién del sistema de vision, el tipo de caracteristicas a
utilizar como elementos relevantes en la escena, las relaciones geométricas que estan
presentes entre dos o mas imédgenes, incluyendo la combinacién de diferentes tipos de
camaras. En la presente tesis tratamos todas estds tareas para los sistemas de visién
omnidireccional catadiéptricos. También presentamos algunas aplicaciones robéticas
que usan una o mas de las tareas béasicas mencionadas. En particular se han tratado
los siguientes problemas con sistemas catadiéptricos:

e Calibracién de sistemas catadiéptricos. Existen diversos métodos de
calibracién de sistemas catadiéptricos. Algunos requieren multiples vistas de
un patrén, otros de ciertos elementos como lineas o circulos, otros aprovechan
elementos invariantes y unos mas atacan el problema desde un punto de vista
puramente éptico, reconstruyendo con precision la geometria del espejo. En esta
tesis presentamos el primer método lineal para calibrar sistemas catadidptricos
centrales y fisheye usando correspondencias 3D-2D.

e Caracteristicas disenadas para sistemas catadiéptricos. En la deteccién
de caracteristicas o puntos relevantes en imagenes catadioptricas, cuya geometria
es mas compleja que las imagenes convencionales, se siguen utilizando las
técnicas desarrolladas para cdmaras convencionales. Recientemente han surgido
enfoques que consideran la geometria de los sistemas catadidéptricos evitando
problemas de aliasing y ancho de banda. En particular usan la geometria
diferencial y la métrica de Riemann directamente en la imagen catadiéptrica.
En esta tesis presentamos un enfoque genérico para calcular el espacio de escalas
de cualquier sistema de proyeccién central usando geometria de Riemann y el
modelo genérico de la esfera.

¢ Relaciones geométricas de dos vistas entre imagenes convencionales
y omnidireccionales no calibradas. El emparejamiento de imagenes de la



misma escena adquiridas con sensores cuya geometria es diferente ha sido un
reto en los ultimos afios. Para dotar al emparejamiento de robustez se debe
seleccionar la estrategia correcta para eliminar emparejamientos espurios. En
este aspecto las restricciones geométricas han demostrado ser una buena opcién.
En esta tesis estudiamos en detalle tres modelos de matrices fundamentales
hibridas y tres modelos de homografias hibridas.

Localizacién métrica en un ambiente de interiores. La localizacion de
un robot dependiendo tinicamente de imagenes puede ser tratada usando es-
trategias de triangulacion. Los requerimientos de este enfoque son parejas de
imédgenes con una “baseline” lo suficientemente grande que permita calcular la
posicién relativa de las camaras. En esta tesis tratamos el problema de local-
izacin combinando sensores, en particular camaras convencionales con sistemas
catadiéptricos, ambos no calibrados. Una cdmara convencional adquiere las
imagenes y previamente se ha adquirido una coleccién de imagenes omnidirec-
cionales del entorno. Esto abre la oportunidad de usar estrategias usando la
geometria hibrida de dos vistas.

Calculo de la orientacién de un sistema catadiéptrico. En entornos
construidos por el hombre, la presencia de lineas rectas sobre las direcciones
dominantes es un factor que se explota para calcular la orientacién de un
sistema de vision. Usando camaras convencionales dicha orientacion se calcula
usando puntos de fuga. En imédgenes omnidireccionales el mismo esquema es
utilizado, pero la complejidad del calculo de esta orientacién aumenta, ya que
las lineas se transforman en coénicas en este tipo de imagenes. En esta tesis
atacamos el problema de la deteccion de proyecciones de lineas paralelas y el
célculo de los correspondientes puntos de fuga en imagenes catadidéptricas.
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Abstract

Omnidirectional cameras wide field of view (FOV) is a great advantage over the
conventional systems. Their usage have increased among the computer vision and
robotics communities in recent years. This type of cameras allow to include the whole
scene in a single view. They have been used in such different areas as surveillance,
tracking, visual navigation, localization and SLAM, structure from motion, active
vision, visual odometry, photogrammetry, camera networks, reconstruction of cultural
heritage, etc. The more popular ones are the catadioptric systems, which are a
combination of camera lenses and mirrors and the fisheye lenses which are attached to
conventional cameras. When the goal of our applications is to interact and to obtain
3D information from the environment, there are several basic steps that should be
performed beforehand. Among these tasks we consider the calibration of the vision
system, the selection of the particular feature to extract the relevant information
from the image, the two-view geometrical relations between images that can be
acquired with different imaging systems. In this thesis we consider all these areas for
the central catadioptric vision systems. We also deal with some robotics applications
that use one or more of the previously mentioned basic tasks. In particular we
analyzed the following problems involving central catadioptric systems:

e Calibration of central catadioptric systems. There exist several calibra-
tion methods for central catadioptric systems. Some of them require multiples
views of a certain pattern or the presence of certain elements such as lines or
circles in a single view. Some others take advantage of the geometric invariants
as the absolute conic or compute the geometry of the mirror using a purely
optical approach. In this thesis we present the first linear method to calibrate
all central projection systems and fisheye cameras. This method requires 3D-2D
correspondences.

e Scale space for all central projection systems. Nowadays the extraction
of features, specially scale invariant features, from catadioptric images is
performed using approaches designed for conventional cameras. Although the
geometry of catadioptric cameras is more complex than the geometry of the
conventional ones. Recently, some approaches which consider the geometry
of the catadioptric systems have been proposed. These approaches use the
Riemannian geometry to overcome the problems of bandwidth and aliasing
present in the approaches based on the Fourier transform on the sphere. In this
thesis we combine the Riemannian geometry with the sphere camera model to
compute a generic approach to obtain the scale space of any central projection
system, which is the base to compute scale space features.

e Two-view relations between uncalibrated conventional and catadiop-
tric cameras. In recent years the task of matching images acquired with



different imaging sensors has become a challenge. In particular the combination
of conventional and catadioptric images. In this thesis we explore the role of
hybrid two-view relations to construct robust matching approaches. In partic-
ular we analyze three models of hybrid fundamental matrices with different
dimensions. We also analyze in an analogous way three models of hybrid planar
homographies.

Self-localization of a robot in an indoors environment. In this thesis
we tackle the problem of localizing a robot in an indoors environment using
only visual information. We combine omnidirectional images and conventional
images. The environment is described by a previously acquired set of omni-
directional images which is called visual memory. This visual memory can
be shared with any robot. The only requirement for the robots to localize
themselves on the environment is to have a conventional camera with which
they can acquire images from the environment.

Computing the orientation of a hand-held catadioptric system. In
man-made environments the presence of straight lines associated to the dom-
inant directions is common. This characteristic is exploited to compute the
orientation of the camera with respect to the scene using the vanishing points.
These vanishing points are computed from the intersection of the projections
of parallel lines. In catadioptric images the same scheme is used. The prob-
lems faced with this type of cameras are more complex since the projections
of straight lines are no longer lines but conics. In this thesis we deal with
the problem of extracting conics from catadioptric images that represent the
projections of straight lines. Then we compute the intersection of such conics
from which the vanishing points are computed. Finally, the orientation of the
catadioptric system is extracted from the already computed vanishing points.

vi
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Chapter 1

Introduction

In recent years the use of omnidirectional cameras has widely increased among the
computer vision and robotics communities. The major advantage of this type of
cameras is their wide field of view (FOV) which allows them to include the whole scene
in a single view. They have been used in such different areas as surveillance, tracking,
visual navigation, localization and SLAM, structure from motion, active vision, visual
odometry, photogrammetry, camera networks, reconstruction of cultural heritage,
etc. There exist several types of omnidirectional cameras which can be classified as
central and non-central. Among the non-central cameras we can find the rotating
camera, which consists of a conventional camera with a mechanic system that allows
it to move along a circular trajectory and to acquire images from the surroundings.
Polycameras which are camera clusters of conventional cameras pointing to different
directions in a particular configuration. Another type of omnidirectional systems
are dioptric systems which use wide-angle lenses such as fish-eye lenses combined
with conventional cameras. On the other hand, central omnidirectional cameras are
those which satisfy the single-viewpoint property. This is an important property
since it allows to easily calculate the directions of light rays coming into the camera.
Baker and Nayar| (1999) extensively studied the catadioptric systems, combinations
of camera lenses and mirrors. They proved that the elliptic, parabolic and hyperbolic
mirrors, combined with conventional cameras, are the only ones that ensure the single-
viewpoint property, provided that the mirror is positioned appropriately relative
to the camera. The two most popular of such systems are the hypercatadioptric
and the paracatadioptric ones. The former is composed by a hyperbolic mirror
and a perspective camera. The latter is composed by a parabolic mirror and an
orthographic camera. Including fish-eye lenses, these are the three omnidirectional
systems most used by the computer vision and robotics communities.

There exist several geometric and analytic models to deal with omnidirectional
systems, see [Sturm et al.| (2011). In the case of central catadioptric systems Svoboda
and Pajdla (2002) propose different models for different mirrors and give formulae
for the associated epipolar geometry. [Strelow et al. (2001)) deal directly with the
reflection properties of the rays on the mirror. A unified model was proposed by [Geyer



Chapter 1. Introduction

and Daniilidis| (2000]), where they present the sphere camera model which allows to
deal with any central catadioptric system. Later this model was extended by |Barreto
and Araujo (2001) and [Ying and Hu (2004a)). Recently, another improvement to this
model, which completes the model of central catadioptric systems, was presented
by |Sturm and Barreto| (2008). They explain the generic projection matrix, as well
as the general 15 x 15 fundamental matrix, and plane homographies. This model is
one of the most used models in current days, since it provides important information
about the mirror shape. This information can be used in different tasks such as
calibration, line detection, computing geometrical invariants, computing the scale
space for a particular mirror, etc. With respect to the slightly non-central systems,
in particular for fish-eye lenses we can find the following approaches. [Swaminathan
and Nayar (1999) model this type of projections as a combination of three types
of distortion. These distortions are the shift of the optical center, radial distortion
and decentering distortion. Micusik and Pajdlal (2003)) compute the projection of 3D
points to the camera plane using trigonometric functions which are linearized through
Taylor series. This is done for a particular type of camera. [Kannala and Brandt
(2004)) propose a generic model to deal with all cameras equipped with fish-eye lenses.
They consider the projections as a series of odd powers of the angle between the
optical axis and the incoming ray, then they complete the model by adding radial
and tangential distortion. (Courbon et al.| (2007) propose a generic model to calibrate
any fish-eye system based on the sphere camera model. Another category that should
be mentioned is the generic methods that can model any arbitrary imaging system.
Grossberg and Nayar| (2001]) propose a method based on virtual sensing elements
called raxels which describe a mapping from incoming scene rays to photo-sensitive
elements on the image detector. This work has inspired many works and a list of
some of them can be found in Ramalingam et al.| (2005).

1.1 Overview

In this thesis we focus on omnidirectional multi-view systems, in particular central
catadioptric systems. We go from the very early step of calibration to the high level
task of 3D information recovery. We also consider a very important intermediate
step, which is the development of properly adapted features for central catadioptric
systems. In the following paragraphs we describe in more detail the goals reached on
this thesis.

We selected the sphere camera model to deal with the central catadioptric
systems since it gives information about the elements of the system than other
models. In particular it gives important information about the mirror shape used
in the catadioptric system. We introduce this model in detail in Chapter [2| along
with an analysis of the relation between this model and actual central catadioptric
systems. We also introduce the so-called lifted coordinates. In [Sturm and Barreto
(2008) the complete general theoretic projection matrix that considers all central
catadioptric systems has been presented. We use this projection matrix to construct

2



1.1. Overview

a new approach to calibrate any single-viewpoint catadioptric camera. Chapter
presents this approach, which requires twenty 3D-2D correspondences to compute
the projection matrix. The 3D points must lie on at least three different planes.
The projection of 3D points on a catadioptric image is performed linearly using a
6 x 10 projection matrix, which uses lifted coordinates for image and 3D points. From
this matrix, an initial estimation of the intrinsic and extrinsic parameters of the
catadioptric system is obtained. We use these parameters to initialize a non-linear
optimization process. This approach is also able to calibrate slightly non-central
cameras, in particular, fish-eye cameras. Since reprojection error is not sufficient to
determine the accuracy of the approach, we decide to perform a 3D reconstruction
from two omnidirectional images.

During the development of our proposed calibration algorithm we realize that
there was a lack of deep analysis and comparison of the existing calibration methods
for central catadioptric systems. Moreover, for the robotics community where most
tasks require to recover information from the environment, calibration of cameras is a
basic step. At the same time this step should be easy to perform and reliable. In this
order we perform a classification of the existing approaches. On the other hand we
select those approaches which are already available as OpenSource and which do not
require a complex pattern or scene to perform a comparison using synthetic and real
images, so the user could select the more convenient for its particular case. Chapter
presents these methods and an analysis of their advantages and drawbacks.

In Chapter [5] we present a deep analysis of the two-view relations of uncalibrated
central catadioptric systems. We particularly pay attention to the mixture of central
catadioptric systems and perspective cameras, which we call hybrid. The two-view
geometric relations we consider are the hybrid fundamental matrix and the hybrid
planar homography. These matrices contain useful geometric information. We study
three different types of matrices, varying in complexity depending on their capacity
to deal with a single or multiple types of central catadioptric systems. The first and
simplest one is designed to deal with paracatadioptric systems, the second one and
more complex, considers the combination of a perspective camera and any central
catadioptric system. The last one is the complete and generic model which is able
to deal with any combination of central catadioptric systems. We show that the
generic and most complex model sometimes is not the best option when we deal
with real images. Simpler models are not as accurate as the complete model in the
ideal case, but they provide a better and more accurate behavior in presence of noise,
being simpler and requiring less correspondences to be computed. Finally using the
best models we present the successful matching between perspective images and
hypercatadioptric images introducing geometrical constraints into a robust estimation
technique.

Another basic step in vision and robotics applications is feature detection/extraction.
Through the years several techniques have been developed for conventional (perspec-
tive) cameras. The SIFT proposed by [Lowe| (2004) has become the most used feature
extraction approach. This scale invariant approach is based on the approximation
to the Laplacian of Gaussians (LoG) through the difference of Gaussians (DoG).

3



Chapter 1. Introduction

The Gaussian filtering in Euclidean computer vision, which is required to construct
the scale space of the images can be computed in two ways: either using convolu-
tion with a Gaussian kernel or by implementing the linear heat flow. In Chapter
[6] we develop a new approach to compute the scale space of any omnidirectional
image acquired with a central catadioptric system. We combine the sphere camera
model and the partial differential equations framework on manifolds, to compute
the Laplace-Beltrami (LB) operator which is a second order differential operator
required to perform the Gaussian smoothing on catadioptric images.

In Chapters [7}, [8, [9] we present three applications we have developed using
multi-view omnidirectional systems. The first one performs the self-localization of a
robot using reference omnidirectional images in an indoors environment. We only
need one omnidirectional image of the whole scene stored in the robot memory
and a conventional uncalibrated on-board camera. We match the omnidirectional
image and the conventional images captured by the on-board camera and compute
the hybrid epipolar geometry using lifted coordinates and robust techniques. We
map the epipole in the reference omnidirectional image to a ground plane through
a homography in lifted coordinates also, giving the position of the robot in the
planar ground, and its uncertainty. The second application consist of computing the
orientation of a hand-held catadioptric system. We use the vanishing points which
contain geometric information related to the orientation of the catadioptric system
with respect to the dominant directions in man-made environments. The vanishing
points are computed from the intersection of parallel lines. The 3D lines are projected
in catadioptric images as conics, actually degenerate conics. We extract analytically
the projected lines corresponding to straight lines in the scene by using the internal
calibration and two image points that lie on the corresponding line projection. The
last application instead of using a catadioptric system it uses a LadyBugﬂ camera,
which corresponds to the Polycamera previously described. The unified coordinate
frame as well as the intrinsic parameters of each camera are known. We develop a
new way to compute a topological map using only orientation information. Similar
to the last application but with a calibrated camera we exploit the natural presence
of lines in man-made environments in dominant directions. From the parallel lines
we robustly compute the three dominant directions using vanishing points. With this
information we align the camera with respect to the scene and we identify the turns
in the trajectory, assuming a Manhattan world where the changes of heading in are
related by multiples of 90 degrees. We also use geometrical image-pair constraints as
a tool to identify the visual traversable nodes that compose the topological map.

1.2 Contributions

The most relevant contributions of the present thesis can be summarized as follows:

e A new method to calibrate central catadioptric systems using a single image of

Thttp://www.ptgrey.com



1.2. Contributions

a 3D pattern. It computes linearly a generic projection matrix, using the well
known Direct Linear Transformation (DLT) from which we extract an initial
estimation to the intrinsic and extrinsic parameters.

Associated publications:

1. [Puig et al. (2011)] L. Puig, Yalin Bastanlar, P. Sturm, J. J. Guerrero
and J. Barreto, Calibration of Central Catadioptric Cameras Using a
DLT-Like Approach, International Journal of Computer Vision, Volume
93, Number 1, pages 101-115 - 2011.

2. |Bastanlar et al.| (2008)] Y. Bastanlar, L. Puig, P. Sturm, J. J. Guerrero
and J. Barreto, DLT-like Calibration of Central Catadioptric Cameras,
OMNIVIS 8th Workshop on Omnidirectional Vision, Camera Networks
and Non-Classical Cameras, Marseille, France, pp. 14. 2008.

e A deep comparison of calibration methods for central catadioptric systems,
using synthetic and real images. We calibrate several central and non-central
systems. This work also includes a classification of the existing approaches.
Associated publications:

1. [Puig et al. (2012))] L. Puig, J. Bermidez, P. Sturm and J. J. Guerrero,
Calibration of Catadioptric Systems in Practice. A Comparison of Meth-
ods. Computer Vision and Image Understanding,Volume 116, Issue 1,
January 2012, Pages 120-137.

e A new scale invariant feature adaptable for every particular central catadioptric
system that can be described by the sphere camera model. We solve the heat
diffusion equation through the Laplace-Beltrami operator.

Associated publications:

1. |Puig and Guerrero| (2011))] L. Puig and J. J. Guerrero, Scale Space
for Central Catadioptric Systems. Towards a generic camera feature
extractor, 13th International Conference on Computer Vision, ICCV,
Barcelona, Spain, November, 2011.

e A deep analysis of the two-view relation between uncalibrated central catadiop-
tric systems. In particular we analyze the relation between central catadioptric
systems and conventional cameras. It also includes an application to robustly
match catadioptric views with conventional images.

Associated publications:

1. L. Puig, J. J. Guerrero and P. Sturm, Homographies and Fundamental Ma-
trices, Mixing Uncalibrated Omnidirectional and Conventional Cameras.
Machine Vision and Applications, 2012. (Under review)

2. [Puig et al. (2008a))] L. Puig, J. J. Guerrero, P. Sturm, Hybrid Matching of
Uncalibrated Omnidirectional and Perspective Images, 5th International
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Conference on Informatics in Control, Automation and Robotics, Madeira,
Portugal, 125-128, May, 2008.

3. [Puig et al.| (2008b)] L. Puig, J. J. Guerrero and P. Sturm, Matching of
Omnidirectional and Perspective Images using the Hybrid Fundamental
Matrix, OMNIVIS 8th Workshop on Omnidirectional Vision, Camera
Networks and Non-Classical Cameras, Marseille, France, pp. 14. 2008.

e A localization application for hybrid uncalibrated systems. It combines the
hybrid fundamental matrix and the hybrid homography to localize the conven-
tional camera inside omnidirectional views stored in a robot visual memory.
Associated publications:

1. [Puig and Guerrero| (2009)] L. Puig and J. J. Guerrero, Self-location from
monocular uncalibrated vision using reference omniviews, IROS 2009:
The 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, St. Louis, MO, USA, pp. 5216-5221, 2009.

e Two applications to compute the orientation of omnidirectional systems in
man-made environments using vanishing points. The first one use a central
catadioptric system and a new way to estimate lines in non-vertical systems.
The second one uses a Polycamera and a conventional way to compute the
vanishing points but proposes a new way to compute a topological map using
only orientation information.

Associated publications:

1. [Puig et al.| (2010a)] L. Puig, J. Bermudez and J. J. Guerrero, Self-
orientation of a hand-held catadioptric system in man-made environments,
ICRA 2010: IEEE International Conference on Robotics and Automation,
Anchorage, Alaska, USA, pp. 2549-2555, 2010.

2. [Puig et al.| (2010b)] L. Puig, Kostas Daniilidis and J. J. Guerrero, Topo-
logical map from only visual orientation information using omnidirectional
cameras, IEEE ICRA 2010 Workshop on Omnidirectional Robot Vision,
Anchorage, Alaska, USA, 2010.

I also collaborated with my supervisor in the direction of two undergraduate
thesis projects, from which the following papers arise:

e [Rituerto et al.|(2010a)] A. Rituerto and L. Puig and J. J. Guerrero, Comparison
of omnidirectional and conventional monocular systems for visual SLAM (Best
Paper Award), OMNIVIS - 10th Workshop on Omnidirectional Vision, Camera
Networks and Non-classical Cameras, Zaragoza, Spain, 2010.

e [Rituerto et al. (2010b))] A. Rituerto, L. Puig and J. J. Guerrero, Visual SLAM
with an Omnidirectional Camera, 20th International Conference on Pattern
Recognition, Istanbul, Turkey, August, 2010.
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e |[Bermudez et al.| (2010)] J. Bermudez, L. Puig and J. J. Guerrero, Line
extraction in central hyper-catadioptric systems, OMNIVIS - 10th Workshop
on Omnidirectional Vision, Camera Networks and Non-classical Cameras,
Zaragoza, Spain, 2010.
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Chapter 2

Background

In this thesis we model the central catadioptric systems, which are a composition of
cameras and mirrors, by using the sphere camera model, proposed originally by |Geyer
and Daniilidis| (2000) and later improved by Barreto and Araujo (2001). Recently a
general model was presented in |Sturm and Barreto| (2008), which proves the existence
of a bilinear matching constraint for all central catadioptric cameras. In this chapter
we present the projection of points and lines under the more recent and complete
model. On the other hand we explain the relation between the sphere camera model
and the actual central catadioptric systems with its constructive mirror, optics and
camera parameters. Another useful tool to deal with the central catadioptric systems,
and more specific with the non-linearities introduced by the sphere camera model,
are the lifted coordinates. Barreto and Daniilidis| (2006) use Veronese maps to create
these lifted coordinates. They can represent in a single entity, the conic, the two
image points generated by the projection of a 3D point under the sphere camera
model. Moreover, because of the dual principle, they can also represent two lines
using the same entity, the conic. These lifted coordinates are particularly useful
when we explain the two-view relations between central catadioptric systems and
the general projection under the sphere camera model. Another relevant tool to
deal with central catadioptric systems are the partial differential equations, since
the mirrors of the catadioptric systems can be seen as parametric surfaces. These
equations will allow us to compute the metric of corresponding mirror which encodes
its geometrical properties. These three elements are basic tools for the development
of the majority of the contributions of the following thesis, so they are presented in
this initial background chapter.

2.1 Sphere Camera Model

The sphere camera model used to explain central catadioptric systems was initially
introduced by |Geyer and Daniilidis| (2000). All central catadioptric cameras can
be modeled by a unit sphere and a perspective projection, such that the projection
of 3D points can be performed in two steps (Fig. . First, one projects the

9



Chapter 2. Background

point onto the unit sphere, obtaining the intersection of the sphere and the line
joining its center and the 3D point. There are two such intersection points, which

are represented as sy ~ (Q1,Q2,Q3, £/QF + Q3 + Q%)T. These points are then
projected in the second step, using a perspective projection P resulting in two image
points q+ ~ Ps4, one of which is physically true. This model covers all central
catadioptric cameras, encoded by &, which is the distance between the center of the
perspective projection and the center of the sphere, and ¥ which is the distance
between the center of the sphere and the image plane. We have & = 0 for perspective,
& =1 for paracatadioptric and 0 < £ < 1 for hypercatadioptric cameras.

Let the unit sphere be located at the origin and the optical center of the perspective
camera, at the point C, = (O,O,f)T. The perspective camera is modeled by the
projection matrix P ~ AR, (I pr), where A, is its calibration matrix. We assume
it is of the form

0 ¢
A, = 0 f ¢ (2.1)
0 0 1

with f the focal length and (cz, ¢y) the principal point. The rotation R, denotes a
rotation of the perspective camera looking at the mirror (this rotation is usually very
small, thus often neglected). Rotation about the z—axis can always be neglected
since it is coupled with the rotation of the whole system about the z—axis. Since both
intrinsic and extrinsic parameters of the perspective camera are intrinsic parameters
for the catadioptric camera, we replace A,R, by a generic projective transformation
K. Note that the focal length of the perspective camera in the sphere model is
different from the focal length of the physical camera looking at the mirror; its value
is actually determined by the physical camera’s focal length f., the mirror parameters
(&, 1) and the rotation between the camera and the mirror (R,). More explicitly, the
projection of the points on the sphere s to points on the omnidirectional image are
obtained as

0
g+ ~ Psy, where P~K| I 0], (2.2)
-
with I, a 3 x 3 identity matrix. Giving the final definition of

Q1
Q2 .
Q3 +£&6/Q7 + Q3 + Q3

To simplify, it is usual to work with the intermediate image points r4+ ~ K~ 1q..
Explicitly defined as ry = (Q1,Q2,Q3 = &/Q?2 + Q3 + Q%)T, before giving final
results for the actual image points q+. The theoretical 2 image points q+ can be
represented in a single geometric object, which is the degenerate dual conic generated
by the two points. This conic contains all lines incident to either one or both of these
2 points Q ~ qrq + q,q];.

q+ ~ K (23)

10



2.1. Sphere Camera Model and Central Projection Systems (CPS)

image plane q. q,

£

projection center

Figure 2.1: Projection of a 3D point to two image points in the sphere camera model.
The z-axis of the camera coordinate system is positive upwards. The camera is
looking up.

2.1.1 Projections of Lines

The projections of lines under the sphere camera model are explained as follows. Let
IT = (ng, ny, ns, O)T a plane defined by a 3D line and the effective view point in the
sphere camera model O (see Fig. . The 2D line n associated to the 3D line by P
can be represented as n = (ng, ny, nz)T. Then, the points Q lying on the 3D line are
projected to points q. These points satisfy n'q = 0 and q = Kr, so n"Kr = 0. This
equality can be written as

r'Qr =0 (2.4)
where the image conic is
n2 (1 — 52) — n2¢? NNy (1 —& NgMy
Q= ngny (1 —&2) nz (1—¢%) —n2¢ nyn, (2.5)
NNy Ny n?

and the image of the conic in the catadioptric image is

Q=K oK (2.6)

Notice that €2 is a degenerate conic when the 3D line is coplanar with the optical
axis (Barreto and Araujo|, 2005).

2.1.2 Relation Between the Real Catadioptric System and the Sphere
Camera Model

Here we analyze the relation between the parameters present in a real catadioptric
system and their representation in the sphere camera model. We recover the intrinsic
parameters of the real catadioptric system from their counterparts in the sphere
camera model. We also analyze the tilting and focal length f of the conventional
camera.

11
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n-plane /‘\\4

Figure 2.2: Projection of a line under the sphere camera model

The focal length in the sphere model is not the same as the focal length of the
real camera, looking at the mirror. This is best seen for the paracatadioptric case,
where the real camera is orthographic (infinite focal length) whereas the perspective
camera in the sphere camera model has a finite focal length. The analogous is also
valid for tilting parameters.

Tilting

Tilting in a camera can be defined as a rotation of the image plane with respect to
the pinhole. This is also equivalent to tilting the incoming rays since both have the
same pivoting point: the pinhole. In the Fig. the tilt in a catadioptric camera is
represented. Similarly, the tilt in the sphere model (R, in K = A,R;) corresponds
to tilting the rays coming to the perspective camera of the sphere model (Fig. .
Although the same image is generated by both models, the tilting angles are not
identical, even they are not proportional to each other. So, it is also not possible
to obtain the real system tilt amount by multiplying the sphere model tilt by a
coefficient.

Focal Length f

The composition of paracatadioptric and hypercatadioptric systems is different. The
first one uses a parabolic mirror and an orthographic camera. In this case the focal
length of the real system, f., is infinite.

For the hypercatadioptric system, we are able to relate f with the focal length
of the perspective camera in the real system, f.. We start defining explicitly the
projection matrix K. Assuming image skew is zero, R, = I and principal point is
(0,0), K is given in Barreto and Araujo| (2005) as

W-&f 0 0
K=| 0  @-9f 0 (2.7)
0 0 1

12



2.2. Lifted Coordinates and Matrices

single-viewpoint
% effective

\ S r pinhole image
< plane
mirro\ N
surface
B
C

effective
pinhole

image
plane _ _

A

Figure 2.4: Tilt in the sphere camera

Figure 2.3: Tilt in a central catadiop- model

tric system.

where 1) corresponds to the distance between the effective viewpoint and the re-
projection plane (cf. Fig. . The relation between the focal lengths is f = (¢ —¢&) fe.
From the same reference Barreto and Araujo (2005 we get

d d+2p
_ S e 2.8
Vd? 4 4p? v Vd? + 4p? (28)
where d is the distance between the foci of the hyperboloid and 4p equals to the latus
rectum. Developing the equations we obtain p in terms of d and &, 2p = dy/1 — £2/¢,
which is used to obtain ¢ = £ + /1 — £2. With this final relation we can write

f=rfev1-¢€ (2.9)

from which we extract the focal length of the perspective camera in the real system

_
Vi-¢

2.2 Lifted Coordinates and Matrices

£

fe= (2.10)

The derivation of (multi-)linear relations for catadioptric imagery requires the use
of lifted coordinates. They allow to generalize the transformations and multiview
tensors from conventional perspective images to catadioptric systems, where the
projective invariant entities are quadrics instead of lines.

The Veronese map V,, 4 of degree d maps points of P" into points of an m
n+d

dimensional projective space P™, with m = ( d

) — 1. Consider the second order

13
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Veronese map Va2, that embeds the projective plane into the 5D projective space,
by lifting the coordinates of point q = (q1, g2, Q3)T to

-
)

a= (a4, q1a. G, 0143, ©203, 45 (2.11)

This lifting preserves homogeneity and it is suitable to deal with quadratic functions
because it discriminates the entire set of second order monomials (Barreto and
Daniilidis|, 2006)).

As we observe, if ¢ = (c1, 2, ¢3, ¢4, 5, 06)T represents a conic, its equation ¢;¢3 +
29192 + c;;q% + c4q1q3 + c592q93 + ch§ =0, can be written as §'c = 0.

When the conic ¢ has the particular shape of a circle, we have co = 0 and ¢; = c3.
We then use the simplified lifted coordinates of a point q = (q1, ¢2,¢3) in a 4-vector
defined as

Q= (¢ +6, qas, s, &) (2.12)

There are two ways to compute this lifting, which not only involves vectors but
matrices. The first one is presented by Barreto and Daniilidis (2006) and makes use
of the ' operator. The second one is more general and it is presented by [Sturm and
Barreto| (2008). It makes use of symmetric matrix equations.

2.2.1 Lifted coordinates and matrices using the [ Operator

The lifting presented in (Barreto and Daniilidis, 2006]) is limited to transform 3 x 1
vectors into 6 X 1 vectors and 3 X 3 matrices into 6 X 6 matrices. It makes use of the
I operator, which is defined for two points q and q as follows:

_ _ Pt ei - qh+ah @i+ T
Ma,q) = (a1, — 5 0w 5 ; 5 ,43G3) - (2.13)

When this operator is used with the same point we obtain the lifting of its
coordinates. .
Ma,q) = (41, 142, 65, 143, G203, G3) (2.14)

With respect to 3 x 3 matrices, the way the I' operator is used to perform the
lifting is the following. Matrices can be considered as linear transformations. Let
us define a linear transformation L, which maps points x and X to points Lx and
Lx, respectively. The operator T, that lifts the transformation L from the projective
plane p? to the embedding space ©°, i.e., maps a 3 x 3 matrix L to a 6 x 6 matrix L
must satisfy

M(Lx, L) = T(L).T(x, %) (2.15)

Such operator can be derived by algebraic manipulation. Let vi, vo, v be the
column vectors of L and I';; = I'(v4,v;) , the lifted representation of matrix L is

E = T(L) = [r11r12r22r13r23r33]6, with 6 = diag{l, 2,1,2,2, 1}. (2.16)
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2.2.2 Lifted coordinates and matrices using symmetric matrix equa-
tions

This approach used in (Sturm and Barretol, [2008) is more general than the previously
presented. It can deal with higher dimension vectors, since it is based on symmetric
matrix equations. In general terms it can be described as the lower triangular
part of matrix M, which is obtained from the multiplication of the vector q by its
corresponding transpose vector q', M = qq'. More specifically, a vector q and
matrix qq' are composed by the same elements. The former can be derived from the
latter through a suitable re-arrangement of parameters. Define v(U) as the vector
obtained by stacking the columns of a generic matrix U (Horn and Johnson, |1991)).
For the case of qq, v(qu) has several repeated elements because of the matrix
symmetry. By left multiplication with a suitable permutation matrix S that adds
the repeated elements, it follows that

q=D"'Sv(aq"), (2.17)

with D a diagonal matrix, D;; = Ey'\:/llu Sij-

If U is symmetric, then it is uniquely represented by vy, (U), the row-wise
vectorization of its lower left triangular part:

Vsym(U) = D_ISV(U) = (U117 Us1,Us2,Us1, - - -, Unn)T (218)

Since S gives us the position of the repeated elements of v(U), it is easy to recover
v(U) from vy, (U)

v(U) = STveym(U) (2.19)

There are two particular liftings that are useful in the present thesis. The one
we explained in last section, which corresponds to the Veronese map V32, which
maps 3-vectors into 6-vectors. The second one corresponds to the Veronese map V3 o,
which maps 4-vectors Q = (Q1, Q2, @3, Q4)T into 10-vectors Q Using the theory
explained above we can define the Veronese map V59 as

- a7 41492 4143
d=vym(aa )= || 12 & | 9293
4193 G293 g3

.
= (¢}, a2, 43, 193, @243, G3) - (2.20)

and the Veronese map V32 as
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Q1
Q1Q2
Q3
Q1Q2 1Q3 (104 Q1Q3
Q1Q2 Q7 |3 Qs | _ | Q203
Q1Q3 Q2Q3 Q3 | Q304 Q3
Q1Q1 Q2Q4 Q3Q4 Qf 1Q4
Q2Q4
Q3Q4
Q3

Q = Vsym(QQT) = (2'21)

Let us now discuss the lifting of linear transformations (matrices), induced by
lifting of points. Consider A such that r = Aq. The relation rr’™ = A(qq")AT can be
written as a vector mapping

virrT) = (A@ A)v(aq"), (2.22)
with ® denoting the Kronecker product (Horn and Johnson, 1991). Using the

symmetric vectorization, we have q = vsym(qu) and T = vsym(rrT)
(©-19) and ([2.22):

, thus, from

i =Aqg=D1S(A®A)STq (2.23)

where the 6 x 6 matrix E\, represents the lifted linear transformation.
Finally, let us note that useful properties of the lifting of transformations are
given in (Horn and Johnson, (1985, 1991}):

AB=AB A-1=A"1 AT=DIATD. (2.24)

2.3 Generic projection to build a metric for a Rieman-
nian manifold

The mirrors of central catadioptric systems, which are composed of cameras and
mirrors, can be seen as parametric surfaces M in R3. Their geometrical properties
are encoded in their induced Riemannian metric g;;, for which the partial differential
equations are a very versatile tool that is well suited to cope with the computation
of such metric.

In the catadioptric systems, any ray incident in one of the foci of the mirror is
projected to the other focus. In the case of the paracatadioptric system this focus is
located at the infinity. A pixel is created where the reflected light ray intersects the
camera plane.

Let (q1, ¢2) and (Q1, @2, Q3) be coordinates in the image plane, which we consider
an open subset = C R?, and on the mirror surface, respectively. The image formation
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process previously described induces a mapping between manifolds from the surface
of the mirror to the camera plane

V. M—-Z=

(Q1,Q2,Q3) — (q1.¢2) (2.25)

This mapping allows to transport the metric g;;(Q1, @2, @Q3) and to provide the
image with a pullback metric hi;(q1, g2)

0 0
it = ——Qr—-Qugrss k1€ {1,2},15 € {0,1,2}, 2.26
Kl 6qu aqug {1,2} { } (2.26)

the Einstein’s convention summation is used. Notice that the image plane (Z, h)
carries a very specific geometry encoded in its metric h;;. This geometry is inherited
from that of the mirror (M, g), but it uses a more conventional domain = C R2.
Therefore with this simpler and geometrically accurate parameterization we are able
to perform computations on M easily.

Omnidirectional images can be treated as scalar fields on parametric manifolds.
With this idea Riemannian geometry is used to derive generalizations of concepts of
smoothing and scale-space for this particular type of images. A general framework
is derived based on energy minimization and partial differential equations. The
parameterization is used to compute efficiently these operations directly from the
camera plane and at the same time respecting the complex geometry of the manifold.

2.3.1 Paracatadioptric system: two differential metrics.

Here we show two ways to obtain the differential metric representing the parabolic
mirror. The first one represents the ray reflected in the mirror surface and then
projected to the image plane through an orthographic projection. The second one
uses the inverse stereographic projection which reconstructs a perfect viewpoint
at the focus of the mirror |Geyer and Daniilidis (2000). The same sensor image is
endowed with different geometries, depending on which information one wishes to
process.

On the parabolic mirror

The parabolic mirror is defined by the paraboloid P? (Fig. [2.5(a)), which is a
quadratic surface and it is represented as Q1 = Q3 + Q3. Defining this paraboloid in
polar coordinates (r,¢) we have

Q=1
Qa=rcosp, 0<@<2m, r>0 (2.27)
Q3 =rsingp
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Q,
Q,
- ~ .
(r, o)
(r.@)
| Q, : 0,0,
A 7 (q,.q,)
/7

(a) (b)

Figure 2.5: Geometry of the paraboloid P? embedded in R3. (a) The original
coordinates (Q1, @2, Q3) expressed in polar coordinates (r, ¢) are mapped to coordi-
nates (q1,g2) after focal projection. (b) The focal projection coincides with a simple
orthographic projection in this case.

To construct the metric of the surface we need to define the Euclidean line
element, which for the paraboloid in cartesian and polar coordinates is

di? = dQ? + dQz3 + dQ3 = (1 + 4r%)dr? + r2dy? (2.28)

from which we extract the metric on P? as

2
1+4r 0> (2.29)

gij(ra @) = < 0 r2

Since the focal projection ® from the mirror M to the camera plane is simply
the orthographic projection (see Figl2.5(b)), i.e., (¢1,92) = (Q2,Q3). The induced
metric on the camera plane in (g1, g2) coordinates is needed. Since r? = q% + ¢35 and
(p = arctan %' The 2D Euclidean line element is

di* = (1 + 4¢})dg; + 8q1gadqidgs + (1 + 4¢3)dg3 (2.30)

which corresponds to the following metric

1+4¢  4q1q2
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N |

(8.9)

(R,q)) Image plane
(b)

Figure 2.6: Geometry of the 2-sphere S?. (a) Spherical polar coordinates. (b)
Stereographic projection.

Using the projection on the sphere

Geyer and Daniilidis| (2001a)) showed that the paracatadioptric projection is equivalent
to the inverse stereographic projection. In this case we need to introduce another
manifold, which corresponds to the two-dimensional sphere S? in R3. Notice that
using this approach not only the paracatadioptric systems can be modeled through a
projection on the sphere, but all central projection systems.

We now require to link the geometry of S? to the one of the sensor image. This
will allow to process the spherical image directly using the sensor output. Consider a
sphere of radius r (Fig. (a)). A point s on S? is defined in cartesian and polar
coordinates as

(s1,582,83) = r(cosf,sinfsin p,sinfcosp), with 6 €[0,7), p €[0,2m) (2.32)
The Euclidean line element can be represented in cartesian and polar coordinates

di? = ds? + ds3 + ds? = r*(df? + sin? fd?) (2.33)

The stereographic projection (see Fig. [2.6(b)) sends a point (6,¢) on the sphere
to the point with polar coordinates (R, ¢) in the plane, with ¢ = ¢ and R = 2r tan g.

Then the terms in (2.33]) are

1612 1672
d6* = ———=dR? in*(0) = ———55 Rk’ 2.34
0 (4R2—|—r2)2dR , sin“(0) (R2+4r2)2R (2.34)
simplifying
2 167" 2 27 2
dl* = 0z +4r2)2(dR + R*dy?) (2.35)
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Let (q1,g2) € R? on the sensor plane define cartesian coordinates, where R? =
@ + ¢3, ¢ = arctan Z—f and r = 1. The line element becomes

16
(44 ¢ +¢3)?

giving the Riemannian metric h;;

di? = (dg? + dg3) (2.36)

%7622 O
hij(q1,q2) = <(4+q10+q2) 16 > (2.37)
(44493 +q2)2

and its corresponding inverse h"

.. (4+q712+q§)2 0
] — 16
h (QL QQ) = 0 (4+¢2+4¢2)? (238)
16

Metrics that differ only by a multiplicative factor are conformal equivalent. The
stereographic projection endows the plane with a metric conformal to the regular
Euclidean metric.

Observe that metrics (2.31]) and (2.37) are different. This is because the first
one corresponds to light intensity on the parabolic mirror while the second one
corresponds to light intensity perceived by an observer at the focus of the mirror.
The same sensor image is thus endowed with different geometries.
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Chapter 3

Calibration of Central

Projection Systems Using a
DLT-like Approach

In this chapter, we present a new calibration technique that is valid for all single-
viewpoint catadioptric cameras. We are able to represent the projection of 8D points on a
catadioptric image linearly with a 6 x 10 projection matriz, which uses lifted coordinates
for image and 3D points. This projection matriz can be linearly computed from 3D-2D
correspondences (minimum 20 points distributed in three different planes). We show
how to decompose it to obtain intrinsic and extrinsic parameters. Moreover, we use this
parameter estimation followed by a non-linear optimization to calibrate various types
of cameras. Our results are based on the sphere camera model. We test our method
both with simulations and real images, and we analyze the results performing a 3D
reconstruction from two ommnidirectional images.

3.1 Introduction

Since their introduction to the computer vision community, catadioptric omnidirec-
tional cameras have been utilized in many application areas such as surveillance,
tracking, tele-presence, visual navigation, localization and SLAM, structure from
motion, active vision, visual odometry, photogrammetry, camera networks, recon-
struction of cultural heritage, among others.

Camera calibration is essential when we want to extract metric information from
images. It establishes a relationship between the 3D rays and their corresponding
pixels in the image. This relationship makes possible to measure distances in a real
world from their projections on the images [Faugeras (1993). Camera calibration is
basically composed of two steps. The first step consists of modeling the physical and
optical behavior of the sensor through a geometric-mathematical model. There exist
several approaches that propose different models to deal with central catadioptric
systems Kang| (2000); Svoboda and Pajdlal (2002)); |Scaramuzza et al.| (2006); Toepfer
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and Ehlgen! (2007));|Geyer and Daniilidis (2000). The second step consists of estimating
the parameters that compose this model using direct or iterative methods. These
parameters are of two types, intrinsic and extrinsic. The intrinsic parameters basically
consider how the light is projected through the mirror and the lens onto the image
plane of the sensor. The extrinsic parameters describe the position and orientation
of the catadioptric system with respect to a world coordinate system.

Several methods have been proposed for calibration of catadioptric systems. Some
of them consider estimating the parameters of the parabolic (Geyer and Daniilidis,
2002a; |[Kang, 2000), hyperbolic (Orghidan et al., [2003) and conical (Cauchois et al.,
1999)) mirrors together with the camera parameters. Some others separate the
geometry of the mirror from the calibration of the conventional camera (Svoboda
and Pajdlal 2002; Morel and Fofi, 2007)). Calibration of outgoing rays based on a
radial distortion model is another approach. Kannala and Brandt| (2004) used this
approach to calibrate fisheye cameras. [Scaramuzza et al.| (2006) and Tardif et al.
(2006) extended the approach to include central catadioptric cameras as well. Mei
and Rives (2007)), on the other hand, developed another Matlab calibration toolbox
that estimates the parameters of the sphere camera model. Parameter initialization
is done by user input, namely, the location of the principal point and depiction of a
real world straight line in the omnidirectional image (for focal length estimation).

In this chapter a new method to calibrate central catadioptric systems is proposed.
An ongoing proposal was presented at the 8th OMNIVIS, Bastanlar et al. (2008)).
The improved final version |[Puig et al.| (2011)), which also includes: the studying
of the use only two planes and additional constraints to perform the calibration;
the relation between the intrinsic parameters of the sphere camera model and the
actual camera; and a 3D reconstruction experiment to show the effectiveness of
the approach; was published on the International Journal of Computer Vision. In
this work the calibration theory of central cameras proposed by [Sturm and Barreto
(2008) is put into practice. We compute the generic projection matrix, Peqsq, with
3D-2D correspondences, using a straightforward DLT-like (Direct Linear Transform
Abdel-Aziz and Karara| (1971)) approach, i.e. by solving a linear equation system.
Then, we decompose P4 to estimate intrinsic and extrinsic parameters. Having
these estimates as initial values of system parameters, we optimize the parameters
based on minimizing the reprojection error. A software version of our method is
available at my Web pageﬂ When compared with alternate techniques our approach
has the advantage of not requiring input for parameter initialization and being able to
calibrate perspective cameras as well. Although it only requires a single catadioptric
image, it must be of a 3D calibration object.

3.2 Generic Projection Matrix P,

As explained in section a 3D point is mathematically projected to two image
points. Sturm and Barreto, (2008]) represented these two 2D points via the degenerate

"http://webdiis.unizar.es/~1puig/DLTOmniCalibration/Toolbox.tar.gz
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3.2. Generic Projection Matrix P,

dual conic generated by them, i.e. the dual conic containing exactly the lines going
through at least one of the two points. Let the two image points be q+ and q_; the
dual conic is then given by

Q~dqrq’ +q-q] (3.1)

The vectorized matrix of the conic can be computed as shown below using the
lifted 3D point coordinates, intrinsic and extrinsic parameters.

Vaym () ~ Kox6X¢Roxo (Is Toxa) Quo (3.2)

Here, R represents the rotation of the catadioptric camera. X¢ and Tgx4 depend
only on the sphere model parameter ¢ and the position of the catadioptric camera
C = (tg, 1y, t2) respectively, as shown here:

1 0 0 0 0 0
O 1 0 0 0 0
0O 0 1 0 0 0
=19 0 0 1 0 o0 (3.3)
0O 0 0 0 1 0
€2 0 =€ 0 0 1-¢2
—2t, 0 0o ¢
—t,  —ty 0t
0 —2t 0 12
Toxa = 40 v ey t;zz (3.4)
0  —t. —t, tyt.

0 0 —2t, 2

Thus, a 6 x 10 catadioptric projection matrix, P ., can be expressed by its
intrinsic and extrinsic parameters, like the projection matrix of a perspective camera.

Peata = KX¢ Roxe (I Texa) (3.5)
~—~
Acata, Tcata

3.2.1 Computation of the Generic Projection Matrix

Here we show the way used to compose the equations using 3D-2D correspondences
to compute P.u,. Analogous to the perspective case ([q]xPQ = 0), we write the
constraint based on the lifted coordinates |[Sturm and Barreto (2008):

—~ ~

[q}x Pcata Q =0 (36)

This is a set of 6 linear homogeneous equations in the coefficients of P.q,. Using
the Kronecker product, this can be written in terms of the 60-vector peqtq containing
the 60 coefficients of P gq:

o~

(QT ® [Q]X> Pcata = Og (3.7)
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Stacking these equations for n 3D-2D correspondences gives a system of equations
of size 6n x 60, which can be solved by linear least squares, e.g. using the SVD
(Singular Value Decomposition). Note that the minimum number of required corre-
spondences is 20: a 3 X 3 skew symmetric matrix has rank 2, its lifted counterpart rank
3. Therefore, each correspondence provides only 3 independent linear constraints.

3.3 Generic Projection Matrix and Calibration

The calibration process consists of getting the intrinsic and extrinsic parameters of a
camera. Once P.q, has been computed from point correspondences, our purpose is
to decompose Pqq as in ((5.10). Consider first the leftmost 6 x 6 submatrix of Pegtq:

P, ~ KXR (3.8)

Let us define M = P,D~!P/]. Using the properties given inA_:2.24) and knowing
that for a rotation matrix R~! = RT, we can write R~! = D"!RTD. And from that
we obtain D™! = RD™!RT which we use to eliminate the rotation parameters:

M ~ KXcRDTIRTXIKT = KX DTIXIKT (3.9)
Equation 1) holds up to scale, i.e. there is a A with M = )\RX§ D_1X£TRT. For
initialization we assume that the camera is well aligned with the mirror axis, i.e.
J0ce
assume that R, = I, thus K =A, = <0 f ;)

001
We then use some elements of M to extract the intrinsic parameters:

Mig = A (—(f2€*) + (" + o (1 - €2)?)

_ f: 2 10 cd 22
Myg = A 2‘*‘%(254‘(1 £°)7)

Mig = Aes (260 + (1 - €92) (310
Mss = Ay (26" + (1= €%)%)
Mes = A (26 + (1 - €%)?)
The intrinsic parameters are computed as follows:
oM Msg _
“ " Mgs Y Mes
(3.11)

After extracting the intrinsic part A.q of the projection matrix, we are able to
obtain the 6 x 10 extrinsic part T.qtq by multiplying P.qt, with the inverse of Acqta:

Tcata = §6X6(I6T6X4) ~ (Rxf)_lpcata (312)
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3.3. Calibration of Central Projection Systems Using P..:.

Hence, the leftmost 6 x 6 part of T, will be the estimate of the lifted rotation
matrix ﬁest. If we multiply the inverse of this matrix with the rightmost 6 x 4 part
of Tcata, We obtain an estimate for the translation (Tgx4). This translation should
have an ideal form as given in and we are able to identify translation vector
elements (t;,t,,t;) from it straightforwardly.

We finally have to handle the fact that the estimated ﬁest will not, in general, be
an exact lifted rotation matrix. This lifted rotation matrix in particular is oversized
since it con51ders the lifting of a full rotation matrix R = R.(y )ﬁy(ﬁ)Rm(a). For
illustration in we show the lifting of a rotation matrix around the x—axis.

1 0 0 0 0 0
0 cosa 0 —sin« 0 0
-~ 0 0 cos? o 0 —2cosasina sin? o
Re(a) = 0 sina 0 CoS v 0 0 (3.13)
0 0 Cos a sin o 0 cos2a —sin2a  — cos asin
0 0 sin? « 0 2 cos asin a cos? o

Since P4t has been estimated up to scale it is impossible to extract the rotation
components from single elements of /Iiest. To deal with this problem we algebraically
manipulate the ratios between the elements of this lifted matrix and we extract
the angles one by one. First, we recover the rotation angle around the z axis,

v =tan"! (M) Then, R’est is modified by being multiplied by the inverse of the

est,41

rotation around the z axis, ﬁest = ﬁ;l(y)ﬁest. Then, the rotation angle around the
y axis, 3, is estimated and ﬁest is modified 8 = tan™! <M), ﬁest = ﬁ;l(ﬁ) ﬁest.

Rest,22

Finally, the rotation angle around the z axis, a, is estimated as a = tan™* (%).
est,22

3.3.1 Other Parameters of Non-linear Calibration

The intrinsic and extrinsic parameters extracted in closed-form in Section are not
always adequate to model a real camera. Extra parameters are needed to correctly
model the catadioptric system namely, tilting and lens distortions.

As mentioned before K = A/Ep = A /R; where R, is the rotation between camera
and mirror coordinate systems, i.e. tlltmg. Tilting has only R; and R, components,
because rotation around the optical axis, R,, is coupled with the external rotation
around the z axis of the entire catadioptric system. Note that tilting angles of the
sphere camera model are not equivalent to the tilting angles of the actual perspective
camera looking at the mirror.

As is well known, imperfections due to lenses are modeled as distortions for
camera calibration. Radial distortion models contraction or expansion with respect
to the image center and tangential distortion models lateral effects. To add these
distortion effects to our calibration algorithm, we employed the approach of [Heikkilal
and Silven (1997).
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Radial distortion:

Az = z(k1r? + kort + kgrb + )
2 1 6 (3.14)
Ay = y(kyre + kar® + ksr® + ..)
where r = /22 + 32 and kq, ko.. are the radial distortion parameters. We observe
that estimating two parameters is enough for an adequate estimation.
Tangential distortion:

Az = 2pizy + pa(r? + 22?)
A — 5 9 (3.15)
y =p1(r® +2y%) + 2pozy
where r = \/x2 + y2 and p1, po are the tangential distortion parameters.
Once we have identified all the parameters to be estimated we perform a non-linear
optimization to compute the whole model. We use the Levenberg-Marquardt method
(LM)H The minimization criterion is the root mean square (RMS) of distance between
a measured image point and its reprojected correspondence. Since the projection
equations we use map 3D points to dual image conics, we have to extract the two
potential image points from it. The one closer to the measured point is selected
and then the reprojection error measured. We take as initial values the parameters
obtained from P, and initialize the additional 4 distortion parameters and the tilt
angles in Ry, by zero.

3.3.2 Algorithm to Compute Py,

Here we summarize the algorithm used to compute the generic projection matrix

Pcata .

1. Linear Solution. Using 3D-2D correspondences we compute P.qq by a DLT-
like approach.

2. Intrinsic/Extrinsic Parameter Extraction. Assuming that the perspec-
tive camera is perfectly aligned with the mirror axis, i.e. there is no tilting
and that the images are not distorted. We extract from the linear solution, the
intrinsic (€, f, ¢z, ¢y) and extrinsic (o, 8,7, tz, ty, t;) parameters in closed-form.

3. Initialization Vector. An initialization vector is constructed with the ex-
tracted parameters. Two parameters are added to consider the tilting angles
(rz,ry) and four more corresponding to the radial (k1, k2) and tangential (p1, p2)
distortion.

4. Non-linear Optimization Process. Using this vector as an initialization
vector, we perform a non-linear optimization process using the LM algorithm.
The minimization criterion is the reprojection error.

2Method provided by the function lsqnonlin in Matlab
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3.4. Theoretical and Practical Issues

3.4 Theoretical and Practical Issues

In the last section we explained that twenty 3D-2D correspondences are enough to
compute the calibration of the central catadioptric systems. In principle these twenty
correspondences can be located anywhere inside the FOV of the catadioptric system.
Since we want to construct a feasible calibration system based on planar patterns we
restrict the 3D points to be located in planes. From simulations we observed that
the minimum number of planes where the 3D points should be located is three in
the general case. In particular, two planes can be used to compute Py, if several
constraints are imposed, but the simplicity of using linear equations is lost.

Since we restrict the calibration points to lie on planes (planar grid-based cal-
ibration) some degeneracies can appear if the calibration points are located in a
particular configuration. Something similar to the pinhole camera case with the
twisted cubic (Buchanan, |1988), for which calibration fails even if the points lie on
more than two planes. However, a complete analysis of such degeneracies is out of
the scope of this thesis.

In this section we present a proof that points lying in three different planes are
required to linearly and uniquely compute the generic projection matrix Peqq. We
also show that under several assumptions we can compute Py, from points lying in
just two planes.

3.4.1 Three Planes Are Needed to Compute P.,;, Using Linear
Equations.

Here we show that in order to compute P44, the 3D calibration points must lie in at
least 3 different planes. We first prove that two planes are not sufficient. Let II; and
II5 be the two planes. Hence, each calibration point Q satisfies (HIQ) (H-Q'—Q) = 0.

This can be written as a linear constraint on the lifted calibration points: pTQ =0,
where the 10-vector p depends exactly on the two planes. Thus, if P, is the true
6 x 10 projection matrix, then adding some multiple of p' to any row of Pey, gives
another 6 x 10 projection matrix, |5mta, which maps the calibration points to the
same image entities as the true projection matrix. We may write the ambiguity as

lscata = Pcata + VpT (316)

where v is a 6-vector and represents the six degrees of freedom (DoF) on P.q, that
can not be recovered using only linear projection equations and calibration points
located in only two planes. This is not the case for perspective cameras, where two
planes are enough to compute the 3 x 4 perspective projection matrix.

For three planes, there is no linear equation as above that holds for all calibration
points. Hence, also supported by our experiments, it seems plausible that three
planes are sufficient for uniquely computing the projection matrix. Note that by
planes we do not mean that calibration grids have to be composed of three or more
planar grids. The planes can be virtual: whenever it is possible to fit the two planes
to the whole set of 3D points, P.4, can not be computed.
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3.4.2 Adding Constraints to Estimate the Projection Matrix from
Points on Two Planes Only

In the last section we observe that to compute Py, linearly and uniquely, 3D points
must be sufficiently well distributed, such that no two planes contain all of them. In
this section we analyze what prior information allows nevertheless to compute the
calibration parameters using two planes. We know by that the true projection
matrix is related to any other solution by

Peata = F_)cata - VPT (317)

Consider the equation to eliminate the extrinsic parameters:
M~ P,DIP] (3.18)
where P is the leftmost 6 x 6 submatrix of P..;,. Now we redefine it as follows:
M ~ (P, — vpI)D~L(P, — vpl)' (3.19)

where Py is the leftmost 6 x 6 submatrix of Peqe and ps is the first 6 elements of the
10-vector p. Assuming that the two planes are perpendicular to each other, we can
write IT; = [1,0,0,0]" and IT = [0,1,0,0]" which gives us ps = [0,1,0,0,0,0]" (we
obtain p by vsym(ﬂlﬂg + HgHI) since Hlﬂg represents a degenerate dual conic
on which all Q lie).

Let us develop (3.19)):

M ~ F_’SD_IISI —P,.D !p, vl — VpID_llsS +v pID_lpS v’ (3.20)
v —— —_—— ——
M b bT P
M~M-bv' —vb" +pvv' (3.21)

We can compute p, it is 2(Das = 2). So we just need to obtain elements of v to
recover P.qutq. The principal point can be computed using different approaches, one
of these is shown in (Mei and Rives, 2007)), which requires the user interaction. Let
us suppose we know the principal point (c;,c¢,), and we put the origin of the image
reference system on it (¢; = 0,¢y, = 0). Then we have:

A0 0 0 0 — 2
o L 0o o0 o0 0
0 0 0 0 —f2e
M = ! 2 U (3.22)
o o o L o 0
o o o o & 0
2 0 —f¢ 0 0 2'+(1-¢)?

From this matrix we can extract 6 equations to solve for the elements of v. For
example: My; — Mgz = 0, My; — 2Mgg = 0, Myy — M55 = 0, M3 = 0, M35 = 0,
M56 = 0.
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We test the case where f, = f, using simulated data with perfect 3D-2D corre-
spondences. We observe that as explained in theory, the only modified column is the
second one, described by the vector ps = [0, 1,0,0,0, O]T. In this case we are able
to obtain the correct P.q,. However, when we added Gaussian noise to the 3D-2D
correspondences, more than one column is modified making very difficult to recover
the real projection matrix. Therefore, we conclude that the approach using points
lying in just two planes is not suitable to compute the generic projection matrix in
real situations. We continue our experiments with calibration grids having three
planes.

3.5 Calibration Experiments with a Simulated Environ-
ment

We use a simulated calibration object having 3 planar faces which are perpendicular
to each other. The size of a face is 50x50cm. There are a total of 363 points,
since each face has 11x11 points and the distance between points is 5cm. The
omnidirectional image fits in a 1 Megapixel square image. To represent the real world
points we expressed the coordinates in meters, so they are normalized in a sense.
This is important because we observed that using large numerical values causes
bad estimations with noisy data in the DLT algorithm. Normalization of image
coordinates is also performed since we observed a positive effect both on estimation
accuracy and the convergence time. Therefore, in the presented experiments, 3D
point coordinates are in meters and image coordinates are normalized to be in the
same order of magnitude, this is performed by dividing the image coordinates by a
constant.

We performed experiments for different settings of intrinsic parameters and
varying position of the 3D calibration grid. We especially tested the accuracy of
calibration to variations in the intrinsic parameters (£ and f), the distance between
the camera and the grid and the orientation of the grid w.r.t. the camera. In all
these cases, we measure the errors in final estimates of £ and f, the main parameters
of the sphere camera model. Errors are depicted in Fig. where an individual
graph is plotted for each case for clarity. In all experiments, Gaussian noise with
o =1 pixel is added to the actual coordinates of grid corners. The plotted errors are
errg =100 - |&nontin — &reat] /Ereat @and erry =100 - | frontin — freall / freat- For all the
nodes in the graphs, the experiment was repeated 100 times and the mean value of
estimates is plotted.

Fig. shows the effect of changing distance between the camera and the grid.
From left to right in the graph distance-to-grid increases and distance values are
selected randomly within the given ranges. When the distance is small, we reach an
“optimal” position, such that the grid fills the image well. As the grid moves away
from the omnidirectional camera, its image gets smaller and smaller. Examples of the
omnidirectional images generated are shown in Fig. In Fig. [3.2h, distance-to-grid
is 45 cm., whereas in Fig. [3.2b it is 60 cm. The quality of parameter estimation
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Figure 3.1: Relative errors for £ and f after non-linear optimization (in percent)
for varying intrinsic parameters and varying position of the 3D calibration grid.
For all the nodes in the graphs, the experiment was repeated 100 times and the
mean value of estimates is plotted. Real intrinsics, distance and orientation values
are selected randomly from the ranges given in x—axis. Intrinsic parameters range
1: (&, £)=[(0.96,360) (0.84,300)], range 2: (&, f)=[(0.84,300) (0.72,250)], range 3:
(&, £)=[(0.72,250) (0.60,210)]. Distance-to-grid (in cm.) range 1: [40 50], range
2: [50 60], range 3: [60 70]. In (a), (b) and (c), errors depicted versus increasing
distance-to-grid, decreasing (&, f) pairs and increasing rotation angle respectively.

decreases with increasing distance. Since the grid covers a smaller area, the same
amount of noise (in pixels) affects the non-linear optimization more and errors in
non-linear results increase as can be expected. We observe the importance of a good
placement of the calibration grid, i.e. such that it fills the image as much as possible.

Fig. shows the effect of real £ and f values on the estimation error (for two
different distance-to-grid value ranges). From left to right in the graph, £ and f values
decrease. They decrease in parallel, otherwise decreasing £ with fixed f would cause
grid to get smaller in the image. We truncated (&, f) pairs at £=0.6 since even smaller
¢ values are unlikely for omnidirectional cameras. We observe that larger (&,f) values
produce slightly better results especially for increased distances. This observation
can also be made in Fig. since the errors are depicted with two different ranges
of intrinsic parameter values. The reason is that for fixed distance-to-grid values,
higher (&,f) spreads the grid points to a larger area in the image, which decreases
the effect of noise. Observe Fig. with Fig. |3.2c, where distance-to-grid values
are equal but Fig. has higher (&,f).

Fig. [3-Ik shows the effect of changing orientation of the grid w.r.t. the camera.
This is expressed in terms of the angle between the optical axis of the omnidirectional
camera and the grid center. The grid is not rotated independently from the camera
axis because camera (mirror) has to see the inside of the 3D grid always. Fig. [3.2d
shows the case when the grid is rotated so that the angle between its center and
camera optical axis is 40°. Compare with Fig. [3.2b, where the intersection of the
three planes of the grid is at the image center. We observe improvement with rotation
specially for increased distance-to-grid since grid points are more spread and effect
of noise decreases.
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Figure 3.2: Omnidirectional images generated with varying intrinsics, distance-
to-grid and orientation. (a) (£, f)=(0.96,360), distance=45cm., no rotation.
(b) (& £)=(0.96,360), distance=60cm., no rotation. (c) (&, f)=(0.76,270), dis-
tance=60cm., no rotation. (d) (&, f)=(0.96,360), distance=60cm., rotated by 40°.

Distance-to-grid

45 cm. 60 cm.
Ereal | 0.96 | 0.8 0.96 | 0.80
frea | 360 | 270 | 360 | 270

Eprr | 0.54 [ 0.40 [ 0.04 | 0.03
forr | 361 | 268 | 243 | 190
Enontin | 0.96 [ 0.80 [ 0.98 | 0.78
Frnontin | 360 | 270 | 365 | 266
erre | 0.0 ] 0.0 [ 21 [ 25
erry 0.0 0.1 14 1.5

Table 3.1: Initial and optimized estimates with different intrinsics and distance-to-
grid values. Amount of noise: ¢ = 1 pixel. &prr,forr and &oniins frontin are the
results of the DLT algorithm and non-linear optimization respectively, err¢ and erry
are the relative errors, in percent after non-linear optimization.

In Table we list the results of the algorithm after linear (DLT) and non-linear
steps for a few cases. Our main observation is that the errors in linear estimates,
Eprr and fprr, are biased (values are smaller than they should be). For all the cases,
however, the true intrinsic parameters are reached after non-linear optimization,
modulo errors due to noise.

3.5.1 Estimation Errors for Different Camera Types

Here we discuss the intrinsic and extrinsic parameter estimation for the two most
common catadioptric systems: hypercatadioptric and paracatadioptric, with hy-
perbolic and parabolic mirrors respectively. We also discuss calibration results for
perspective cameras.
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Real oc=0.5 c=1
values | Initial | Estimated | Initial | Estimated
f 360 361 360 354 360
Ca 500 503 500 505 500
Cy 500 498 500 509 500
& 0.96 0.84 0.96 0.53 0.96
R;(a) | -0.62 | -0.60 -0.62 -0.40 -0.62
R, (B) 0.62 0.62 0.62 0.65 0.62
R.(v) 0.17 0.15 0.17 0.18 0.17
te 0.30 0.38 0.30 0.45 0.30
ty 0.30 0.40 0.30 0.44 0.30
t, 0.20 0.05 0.20 0.01 0.20
RMSE 0.70 1.42

Table 3.2: Non-linear optimization results for a hypercatadioptric system, 10 param-
eters (rotation, translation and intrinsic) are optimized. Distance-to-grid is 45 cm.
and grid center coincides with camera optical axis (no rotation).

Hypercatadioptric System.

Table shows non-linear optimization results including the rotation and translation
parameters for fixed intrinsic parameters which corresponds to a hypercatadiop-
tric system. 3D pattern is used at the “optimal” grid position, i.e. it fills the
omnidirectional image like Fig. [3.2h. Results are in accordance with Table [3.1] and

Fig.

Paracatadioptric System.

Here £ = 1, which has a potential to disturb the estimations because X¢ becomes a
singular matrix. We observe that the results of the DLT algorithm are not as close
to the real values when compared to the hypercatadioptric system (cf. initial values
in Table . However, the non-linear optimization estimates the parameters as
successful as the hypercatadioptric examples given in Table

Perspective Camera.

In the sphere camera model, £ = 0 corresponds to the perspective camera. Our esti-
mations in linear and non-linear steps are as successful as with the hypercatadioptric
case and thus not shown in detail here.

3.5.2 Tilting and Distortion

It seems intuitive that small amounts of tangential distortion and tilting have a
similar effect on the image. In our simulations we observed that trying to estimate
both of them does not succeed. Therefore, we investigate if we can estimate tangential
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3.6. Experiments with Real Images using a 3D Pattern

Figure 3.3: (a) 3D pattern, (b) Omnidirectional image of the 3D pattern (1024 x768
pixels).

distortion of camera optics by tilt parameters, or estimate tilt in the system by
tangential distortion parameters.

When there exists no tilt but tangential distortion and we try to estimate tilting
parameters, we observed that the direction and amount of tilt,, tilt,, ¢, and ¢,
changes proportionally to the tangential distortion applied and the RMSE decreases.
However, the RMSE does not reach as low values as when there is no distortion. In
the noiseless case, for example, the RMSE is not zero. Hence, we concluded that tilt
parameters compensate the tangential distortion effect up to some extent, but not
perfectly. We also investigated if tilting can be compensated by tangential distortion
parameters and we had very similar results. Thus, tangential distortion parameters
have the same capability to estimate tilting.

3.6 Experiments with Real Images using a 3D Pattern

In this section we perform experiments of camera calibration using a 3D pattern, cf.
Fig. [3.3[(a). The 3D pattern has been measured accurately doing a photogrammetric
reconstruction by bundle adjustment. We use 6 convergent views taken with a
calibrated high-resolution camera (Canon EOS 5D with 12.8Mpix.) and software
PhotoModeler. The estimated accuracy of the 3D model is better than 0.lmm. The
omnidirectional images were acquired using a catadioptric system with a hyperbolic
mirrorﬂ We computed the projection matrix P.u, from a total of 144 3D-2D
correspondences and extracted the intrinsic and extrinsic parameters as explained in
Section[3.2] From simulations, we observed that we have better and faster estimations
if the 3D-2D correspondences are in the same order of magnitude. So 3D points
are given in meters and 2D points are normalized in all the experiments. A second
evaluation of the calibration accuracy is performed by a Structure from Motion
experiment from two omnidirectional images.

3Neovision H3S with XCD-X710 SONY camera
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Real | Using distortion | Using tilting
f 279.84 297.24 306.11
Cx 531.83 528.08 552.75
Cy 407.98 406.28 427.89
I3 0.96 0.86 0.93
RMSE 0 0.34 0.27

Table 3.3: Parameters estimated using either tangential distortion or tilting angles.

Theoretic | Peqiq approach | [Mei and Rives,07]
f 279.84 297.24 298.65
& 0.96 0.86 0.72
Cy 531.83 528.02 528.15
Cy 407.98 406.28 403.39

Table 3.4: Comparison between our method and Mei’s.

3.6.1 Intrinsic Parameters

The first experiment is focused on obtaining the intrinsic parameters from P 444 to
get initial estimates of these values. As mentioned previously, we do not compute
tilting and distortion parameters from P4, but it is possible to include them in the
non-linear optimization. From simulations we observed that we can compute either
the tangential distortion or the tilting parameters which are coupled and can not
be separated. We tested which one of these (tangential distortion and tilting) can
deal better with the intrinsic parameter estimation. Table shows a comparison
of the estimations performed with these two options. The real values given in the
table were computed using the calibration data of the perspective camera (previously
calibrated) and the mirror parameters (provided by the manufacturer).

Catadioptric camera calibration using tilting gives a better RMSE but the intrinsic
values obtained are far from the real ones. Estimation using distortion parameters
increase slightly the RMSE but the intrinsic parameters are close to the real ones,
except for £ but this error can be attached to the configuration of the system (the
optical center of the perspective camera may not be exactly located at the other
focal point of the hyperbola describing the mirror) and not to the model.

After these results, we decided to use tangential distortion because it gives better
results and depicts better the real catadioptric system.

In order to verify our approach we compare our intrinsic parameter estimates to
the ones obtained by [Mei and Rives| (2007) (Table [3.4). As we can see neither Mei’s
approach nor P, approach can estimate the theoretic f and £ parameters, but
they give a good estimation to ¢, and c,. Mei computes the initial values directly
from the inner circle of the omnidirectional image and using information given by
the user. Our approach computes all the initial values from Py, in closed form.
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Experiment 1 Experiment 2 Experiment 3
Real | Estimated | Real | Estimated | Real | Estimated

R, | 001 | -0.02 |-001| -0.003 |-0.01| -0.002
R, |0.02 | 002 |002] 00l |002]| 003
R. | — — — — — -
t. | 039 | 039 | 039 039 | 039 038
t, | 020 | 021 | 033] 033 |023| 023
t. | -018| -018 |-018[ -018 |-018] -0.18

RMSE 0.26 0.20 0.26

Table 3.5: Rotation and translation of the camera with respect to the 3D pattern.
Rotation angles are in radians. Translations are in meters. Real values were computed
by the PhotoModeler software and a high resolution camera.

3.6.2 Extrinsic Parameters

To obtain ground truth extrinsic parameters we have taken two additional images
with the high resolution camera, observing the omnidirectional camera and the
pattern. These images are added to the ones used to measure the 3D pattern. From
this set of images the orientation and translation of the camera with respect to the
pattern are computed. Location of the focal point was difficult since the points are
not easy to identify in the images and indeed inside the mirror.

We performed experiments with 3 different camera locations. Table shows the
rotations and translations obtained from these experiments. Using PhotoModeler
software we were just able to compute the direction of the z-axis but not the rotation
around it. So we just show rotation estimations for the x and y axis. We can observe
that the extrinsic parameter estimation is performed with a good accuracy having
an average error of 0.0096 radians for rotations and 0.0022 meters for translations.

3.6.3 Structure from Motion

The second experiment to evaluate the accuracy of our approach consists of obtaining
the Structure and Motion (SfM) from two omnidirectional images observing the 3D
pattern. Fig. (a) shows the 3D pattern with the angles between the planes com-
posing it. Fig. [£.4(b) depicts the configuration used to perform the SfM experiment.
Using the internal calibration provided by our method we compute the corresponding
3D rays from each omnidirectional image. We use these correspondences of 3D rays to
compute the essential matrix E which relates them. From this matrix we compute two
projection matrices P; = [I|0] and P2 = [R|t]. Then, with these projection matrices
and the 3D rays as input for a linear triangulation method |Hartley and Zisserman
(2000) we compute an initial 3D reconstruction. Both the 3D reconstruction and the
camera location are later refined by a non-linear optimization process. We use 144
points which were extracted manually from the images. We measure the average
error between the real 3D points and their estimations and the angle between the
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Figure 3.5: Images used in the SfM experiment.

planes. We use as ground truth the data computed by the photogrammetric software.
The angles between the planes as depicted in Fig. 4.4(a) are a = 90.06°, 8 = 89.60°
and v = 90.54°. The estimated values are o = 89.22°, 8 = 90.55° and v = 89.73°.
We have an average error of 0.86°. We also measure the accuracy of the 3D points.
The dimensions of the planar grids used in the 3D pattern are 210mm x 294mm. We
compute the Euclidean distance between each reconstructed point and the ground
truth. The average error is 1.03mm.

3.7 Closure

In this chapter we presented a new calibration technique based on the sphere camera
model which is able to represent every single-viewpoint catadioptric system. We
employed a generic 6 x 10 projection matrix, which uses lifted coordinates for image and
3D points. We estimated this projection matrix using 3D-2D correspondences. We
use a single catadioptric image of a 3D calibration pattern. From the decomposition
of this matrix we obtain an initial estimation of the intrinsic and extrinsic parameters
of the catadioptric system. We used this parameter estimation as the initialization
for a non-linear optimization process. We are able to calibrate various types of
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cameras. This method was tested both with simulations and real images. Since
the reprojection error is not definitive to show the good behavior of calibration
approaches, we also present a Structure from Motion experiment to test the accuracy
of our calibration method. For that reason we can provide error measurements in
both pixels and millimeters.
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Chapter 4

Comparison of Calibration
Methods for Omnidirectional
Cameras

The number of calibration methods for central catadioptric has increased in recent years.
These methods are based on different camera models and they can either consider the
central catadioptric system as a whole or as a separated camera and mirror system.
Many times the user requires a versatile calibration solution without spending valuable
time in the implementation of a particular method. In this chapter we review the existing
methods designed to calibrate any central omnivision system and analyze their advantages
and drawbacks doing a deep comparison using simulated and real data. First we present a
classification of such methods showing the most relevant characteristics of each particular
method. Then we select the methods available as OpenSource and which do not require a
complex pattern or scene. The evaluation protocol of calibration accuracy also considers

3D metric reconstruction combining ommnidirectional images. Comparative results are
shown and discussed in detail.

4.1 Introduction

Most of the applications of computer vision techniques, such as visual navigation,
localization and SLAM, structure from motion require to recover metric information
from the environment. This 3D information is crucial when the omnidirectional
cameras interact in real scenarios. The metric information depends entirely on the
complete calibration of the omnidirectional system. For these practical applications
the camera calibration is a basic step for subsequent and higher level tasks, and
their final accuracy relies on the accuracy of the camera calibration. A considerable
number of approaches to either calibrate central catadioptric systems or to calibrate
fish-eye lens systems or both have been recently developed. Moreover, as we have
observed they can use different projection models. With respect to central cata-
dioptric systems, there exist some approaches that separate the calibration of the
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perspective /orthographic camera from the computation of the mirror parameters
(Svoboda and Pajdlal [2002; [Morel and Fofi, [2007). However most of them deal with
the catadioptric system as a whole. Some of these methods use single or multiple
views of a 2D pattern (Kannala and Brandt, [2004; Scaramuzza et al., 2006} Mei
and Rives, 2007; Deng et al., [2007} [Frank et al., 2007} |Gasparini et all, [2009), 3D
pattern (Puig et all 2011} Bastanlar et all [2008)), cylinder pattern (Toepfer and
Ehlgen), [2007), some others use a single image containing features like lines @
land Daniilidis|, 2002al, 1999} [Barreto and Araujo, [2002 2005} [Ying and Hul [2004a);
[Ying and Zhal, 2005; Vandeportaele et al., 2006; Wu et al., 2006; [Caglioti et al.l 2007}
Wu et al., 2008). Finally there are other methods that perform a self-calibration of
the system (Kang [2000; [Micusik and Pajdla, 2006} [Ramalingam et al.| 2010} [Espuny]
and Burgos Gil, 2011)).

As observed above there exist many calibration methods. They use different
techniques and models to calibrate the omnidirectional systems. Some works have
tried either to classify or to compare them. [Ying and Hu| (2004a) classify the
calibration methods in three categories: (i) Known World Coordinates; (ii) Self-
calibration and (iii) Projection of lines. They only consider 7 methods. On the
other hand, they do not perform any comparison with any of such methods. A
more specific classification is given by Deng et al. (2007) where 10 methods are
grouped in five categories: (i) Self-calibration; (ii) Sphere-based calibration; (iii)
Line-based calibration; (iv) Point-based calibration and (v) 2D calibration. We
observe that methods based on 2D patterns have appeared emulating calibration
methods for conventional cameras. The sphere-based category only contains one
method, which also uses lines and it could be classified in that category. In that work
there is no comparison of the proposed method to any other. [Frank et al.| (2007)
identify three big groups of calibration methods: (i) Known World Coordinates which
include those based on 2D patterns, which from our point of view should belong to
different categories; (ii) Geometric Invariants which include the methods based on
projections of lines and (iii) Self-calibration methods. They mention a total of 8
methods. A comparison of the proposed method with the online available methods
(Scaramuzza et al., 2006; Mei and Rives, [2007)) is presented. They use 4 different data
sets including two fisheye, a paracatadioptric system and a system with very small
distortion. Since (Mei and Rives, 2007) does not allow the manual extraction of grid
points, the authors only consider those images where the grid points are extracted
successfully, having a limited set of images. This situation has as consequence a poor
calibration of the system. In this thesis we extract the grid points manually, allowing
the methods to have the maximum data available, which permits to obtain the
best performance and in consequence to perform a fair comparison of the methods.
'Toepfer and Ehlgen| (2007) do not present a classification but a comparison of their
proposed method with (Scaramuzza et al., 2006; Mei and Rives|, 2007} [Tsai, [1987).
The performance of the methods is given considering a combination of the root mean
square error (we assume the reprojection error) with the number of parameters of
the method, through the principle of minimum description length. However it is not
clear which catadioptric system has been calibrated neither how the method
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1987)) is adapted to work with catadioptric systems.

In this chapter we firstly present a classification of the existing approaches to
calibrate omnidirectional systems. We propose five categories based on the main
entity required by each method to perform the calibration of the systems. We also
present in Table the relevant information of each method according to valuable
criteria: pattern or entity required, considering the minimum number of elements,
number of views, analytical model, type of mirror, or if the method requires the
separate calibration of the mirror and the camera.

Since the amount of calibration methods is considerable, the selection of a
particular calibration method seems to be difficult and even more so if we consider the
problems involved in the implementation process. Among all approaches mentioned
previously, there is a group of calibration methods for omnidirectional systems
(catadioptric and fish-eye) available online as OpenSource toolboxes. These methods
can save time and effort when the goal is beyond the calibration itself and when
the user is more interested in obtaining 3D motion and structure results than to
deal with complex projection models. In this thesis, we evaluate these methods and
provide an analysis with simulations and real images. Moreover, we use a Structure
from Motion application with two omnidirectional images, where we become users of
the calibrations provided by these approaches. This experiment shows the behavior
of the approaches in a real scenario. Besides the performance, we also consider the
ergonomics and ease of usage, as well as the type of features, the algorithm and the
type of pattern, since they are important elements that can help the user to select
the best approach. Moreover we present an up-to-date list of the calibration methods
developed that consider catadioptric and fish-eye systems, allowing the reader to
decide to implement a different method. These calibration methods are:

1. |Mei and Rives (2007)E| which uses the sphere camera model and requires several
images of a 2D pattern. We will call this approach Sphere-2DPattern.

2. |Puig et al. (2011)E| which obtains a solution in closed form requiring a set of
3D-2D correspondences. It also uses the sphere camera model. We call this
approach DLT-like.

3. Barreto and Araujo (2002)E| uses also the sphere camera model and requires a
single omnidirectional image containing a minimum of three lines. We call it
Sphere-Lines.

4. Scaramuzza et al. (2006)E| which models the omnidirectional images as distorted
images where the parameters of distortion have to be found. We call this
approach Distortion-2DPattern.

"http://www.robots.ox.ac.uk/~cmei/Toolbox.html

Zhttp://webdiis.unizar.es/~1puig/DLTOmniCalibration

3http://www.isr.uc.pt/~jpbar/CatPack/main.htm

4h‘l'.tp: //asl.epfl.ch/~scaramuz/research/Davide_Scaramuzza_files/Research/
OcamCalib_Tutorial.htm
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4.2 Classification of Calibration Methods for Omnidi-
rectional Cameras

As observed above there exist many calibration methods. They use different tech-
niques and models to calibrate the omnidirectional systems. Some of them first
calibrate the perspective camera and after that find the mirror parameters. In this
section we present a review and classification of existing calibration methods. We
propose five categories based on the main entity required to perform the calibration
of the systems.

Line-based calibration. Many methods are based on the projection of lines
in the omnidirectional images. The main advantage of using lines is that they are
present in many environments and a special pattern is not needed. These approaches
compute the image of the absolute conic from which they compute the intrinsic
parameters of the catadioptric system. (Geyer and Daniilidis (2002a)) calibrate para-
catadioptric cameras from the images of only three lines. |Ying and Hul (2004a))
analyze the relation of the camera intrinsic parameters and imaged sphere contours.
They use the projection of lines as well as projections of the sphere. The former
gives three invariants and the latter two. Vasseur and Mouaddib| (2004) detect lines
in the 3D scene which are later used to calculate the intrinsic parameters. This
approach is valid for any central catadioptric system. [Ying and Zha (2005)) show
that all line images from a catadioptric camera must belong to a family of conics
which is called a line image family related to certain intrinsic parameters. They
present a Hough transform for line image detection which ensures that all detected
conics must belong to a line image family related to certain intrinsic parameters.
Barreto and Araujo| (2005]) study the geometric properties of line images under the
central catadioptric model. They give a calibration method suitable for any kind of
central catadioptric system. Vandeportaele et al. (2006) slightly improves (Geyer and
Daniilidis|, 2002a)) using a geometric distance instead of an algebraic one and they
allow to deal with lines that are projected to straight lines or to circular arcs in a
unified manner. |Wu et al. (2006) introduce a shift from the central catadioptric model
to the pinhole model from which they establish linear constraints on the intrinsic
parameters. Without conic fitting they are able to calibrate para-catadioptric-like
cameras. (Caglioti et al.|(2007) calibrate a system where the perspective camera is
placed in a generic position with respect to a mirror, i.e., a non-central system. They
use the image of one generic space line, from which they derive some constraints that,
combined with the harmonic homology relating the apparent contours of the mirror
allow them to calibrate the catadioptric system. More recently Wu et al.| (2008])
derive the relation between the projection on the viewing sphere of a space point
and its catadioptric image. From this relation they establish linear constraints that
are used to calibrate any central catadioptric camera.

2D pattern calibration. This kind of methods use a 2D calibration pattern
with control points. These control points can be corners, dots, or any features that
can be easily extracted from the images. Using iterative methods extrinsic and
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intrinsic parameters can be recovered. [Scaramuzza et al. (2006) propose a technique
to calibrate single viewpoint omnidirectional cameras. They assume that the image
projection function can be described by a Taylor series expansion whose coefficients
are estimated by solving a two-step least squares linear minimization problem. Mei
and Rives (2007) propose as Scaramuzza a flexible approach to calibrate single
viewpoint sensors from planar grids, but based on an exact theoretical projection
function -the sphere model- to which some additional radial and tangential distortion
parameters are added to consider real-world errors. |Deng et al. (2007)) use the
bounding ellipse of the catadioptric image and the field of view (FOV) to obtain the
intrinsic parameters. Then, they use the relation between the central catadioptric
and the pinhole model to compute the extrinsic parameters. |Gasparini et al.| (2009))
compute the image of the absolute conic (IAC) from at least 3 homographies which
are computed from images of planar grids. The intrinsic parameters of the central
catadioptric systems are recovered from the IAC.

3D Point-based calibration. These methods require the position of 3D points
observed usually in a single image. |Aliagal (2001) proposes an approach to estimate
camera intrinsic and extrinsic parameters, where the mirror center must be manually
determined. This approach only works for para-catadioptric systems. [Wu and Hu
(2005) introduced the invariants of 1D /2D /3D space points and use them to compute
the camera principal point with a quasi-linear method. [Puig et al.| (2011]) present an
approach based on the Direct Linear Transformation (DLT) using lifted coordinates
to calibrate any central catadioptric camera. It computes a generic projection matrix
valid for any central catadioptric system. From this matrix the intrinsic and extrinsic
parameters are extracted in a closed form and refined by non-linear optimization
afterwards. This approach requires a single omnidirectional image containing points
spread in at least three different planes.

Self-calibration. This kind of calibration techniques uses only point correspon-
dences in multiple views, without needing to know either the 3D location of the
points or the camera locations. Kang| (2000) uses the consistency of pairwise tracked
point features for calibration. The method is only suitable for para-catadioptric
systems. Micusik and Pajdla (2006) propose a method valid for fish-eye lenses and
catadioptric systems. They show that epipolar geometry of these systems can be
estimated from a small number of correspondences. They propose to use a robust
estimation approach to estimate the image projection model, the epipolar geometry
and to avoid outliers. Ramalingam et al.| (2010) use pure translations and rotations
and the image matches to calibrate central cameras from geometric constraints on
the projection rays. Espuny and Burgos Gil (2011]) developed a similar approach
that uses two dense rotational flows produced by rotations of the camera about two
unknown linearly independent axes which pass through the projection center.

Polarization Imaging. This method is proposed by Morel and Fofi (2007)).
It is based on an accurate reconstruction of the mirror by means of polarization
imaging. It uses a very simple camera model which allows them to deal with any
type of camera. However they observe that developing an efficient and easy-to-use
calibration method is not trivial.
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Number of

Method H Pattern/Entity . Model Mirror ‘ W/Ss ‘
views
. . Particular Central .
Kang (2000) 10 point tracks Multiple Catadioptric Parabolic w
- . Particular Central .
Svoboda and Pajdlal (2002) — Single Catadioptric Generic S
TP 1 line + . Part. Non-central .
Caglioti et al.| (2007)) mirror contours Single Catadioptric Generic w
- . . Part. Non-central .
Aliagal (2001) 3D known points Multiple Catadioptric Parabolic w
3D pattern/2D pattern Single/ Particular Central Hyperbolic &
Toepfer and Ehlgen| (2007) (multiple points) Multiple Catadioptric Parabolic w
Geyer and Daniilidis| (2002aj) 3 lines Single Sphere Parabolic w
Geyer and Daniilidis| (1999) 2 vanishing points Single Sphere Parabolic w
Barreto and Araujo| (2005) 3 lines Single Sphere Generic w
Ying and Hul (2004a) 2 lines/3 spheres Single Sphere Generic w
Ying and Zha (2005) 3 lines Single Sphere Generic w
Vandeportaele et al.| (2006)) 3 lines Single Sphere Parabolic W
‘Wu et al.| (2006) lines Single Sphere Parabolic w
‘Wu et al.| (2008) 3 lines Single Sphere Generic w
: lines . .
Vasseur and Mouaddib| (2004} L. Single Sphere Generic w
(minimum no. n/a)
Mei and Rives| (2007) (mil]?i;)lzt;eorir;lts) Multiple Sphere Generic w
Puig et al.| (2011) 3D pattern (20 3D-2D Single Sphere Generic W
correspondences)
2D pattern . .
Deng et al.| (2007) (multiple points) Multiple Sphere Generic W
— 2D pattern . .
Gasparini et al.| (2009) (multiple points) Multiple Sphere Generic w
‘Wu and Hul (2005) 4 correspondences Multiple Sphere Generic w
Scaramuzza et al.| (2006)) QDA patterln Multiple Distortion Generic w
(multiple points)
Frank et al.| (2007) 2D4 pattern Multiple Distortion Generic w
(multiple points)
Micusik and Pajdlal (2006) 9 §orrespondences Multiple Distortion Generic w
(epipolar geometry)
Morel and Fofi| (2007) 3 polarized images Multiple Generic Camera* Generic S
— 2 Rotational & . . « .
Ramalingam et al.| (2010) Translational Flows Multiple Generic Camera Generic w
Espuny and Burgos Gil| (2011) 2 Rgt{s‘tvlsnal Multiple Generic Camera* Generic w

Table 4.1: Classification of the calibration methods for omnidirectional systems. W
= whole system. S = separate calibration (1. camera and 2. mirror parameters).
*They use the same approach Sturm and Ramalingam)| (2004)).

4.3 Calibration Methods Analyzed

In this section we summarize the four OpenSource methods used to calibrate om-
nidirectional systems. The purpose of this section is to show a general view of the
methods that help the reader to understand the core of each method.

4.3.1 Sphere-2DPattern Approach

This approach (Mei and Rives, 2007) uses the sphere model explained in the last
section, with the difference that it does not consider the image flip induced by (i — &),
it uses (£ — 1) in x and y coordinates. This approach adds to this model distortion
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parameters to consider real world errors. This method is multiview, which means
that it requires several images of the same pattern containing as many points as
possible. This method needs the user to provide prior information to initialize the
principal point and the focal length of the catadioptric system. The principal point
is computed from the mirror center and the mirror inner border. The focal length is
computed from three or more collinear non-radial points. Once all the intrinsic and
extrinsic parameters are initialized a non-linear process is performed. This approach
is also valid for fish-eye lenses and spherical mirrors.

This approach uses a total of 17 parameters to relate a scene point to its projection
in the image plane:

e Seven extrinsic parameters (q, t) representing the relation between the camera
reference system and the world reference system. A 4-vector q represents the
rotation as a quaternion and a 3-vector t represents the translation.

e One mirror parameter &.

e Four distortion parameters Dist = [k1, k2, p1,p2], two for tangential distortion
and two for radial distortion (Heikkila and Silven, |1997).

e Five parameters representing a generalized camera projection P = [0, 71,2, ug,
vo]. (71,72) are the focal lengths of the catadioptric system for x and y axis, 0
is the skew parameter, and (ug,vg) is the principal point.

The 2D pattern used to calibrate the camera is composed of m points X; with their
associated image values x;. The solution of the calibration problem is obtained by
minimizing the reprojection error using the Levenberg-Marquardt algorithm.

4.3.2 Sphere-Lines Approach

This method (Barreto and Araujo, |2005) is based on computing the absolute conic
Qoo = H[TH[1 and the mirror parameter £ under the sphere camera model. In
omnidirectional images 3D lines are mapped to conics. So the first step is to fit
these conics. With the information provided by these conics and the location of the
principal point an intermediate step is performed. It computes entities like polar
lines, lines at infinity and circle points. From these intermediate entities and some
invariant properties like collinearity, incidence and cross-ratio the mirror parameter
£ is computed. From the image of a conic in the omnidirectional images it is possible
to compute two points that lie on the image of the absolute conic. Since a conic
is defined by a minimum of 5 points at least three conic images are required to
obtain (.. Once the image of the absolute conic Qo is computed, from its Cholesky
decomposition we obtain

Yz ﬁ Cx
He=|[0 v ¢ (4.1)
0O 0 1
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with the intrinsic parameters 7, and -, (focal lengths), skew () and principal point

(Czscy).

4.3.3 DLT-like Approach

This approach (Puig et al. [2011) also uses the sphere camera model. To deal with the
non-linearities present in this model, the lifting of vectors and matrices is used. This
method computes a lifted 6 x 10 projection matrix that is valid for all single-viewpoint
catadioptric cameras. The required input for this method is a single image with a
minimum of 20 3D-2D correspondences distributed in 3 different planes.

In this approach a 3D point X is mathematically projected to two image points
X4, X, which are represented in a single entity via a degenerate dual conic 2. The
relation between them is Q ~ x; x' + x_xl.

This conic represented as a 6-vector ¢ = (¢y, ¢z, 3, ¢4, C5, 06)T projected on the
omnidirectional image is computed using the lifted 3D point coordinates, intrinsic
and extrinsic parameters as:

¢ ~ Hex6XeRox6 (Is Toxa) Xio (4.2)

where, R represents the rotation of the catadioptric camera. X¢ a 6 x 6 matrix and
Tex4 depend only on the sphere model parameter £ and position of the catadioptric
camera C = (t,,ty,t.) respectively. Thus, a 6 x 10 catadioptric projection matrix,
Pcata, is expressed by its intrinsic At and extrinsic T.q¢q parameters

Peata = ﬁcxg Rex6 (Ie Texa) (4.3)
A T

This matrix is computed from a minimum of 20 3D-2D lifted correspondences
in a similar way to the perspective case (Hartley and Zisserman), 2000) using least
squares

(B ® X) Peata = 06 (4.4)

The 60-vector peqtq contains the 60 coefficients of Pegt,. Manipulating this matrix
algebraically the intrinsic and extrinsic parameters are extracted. These extracted
values are used as an initialization to perform a non-linear process (Levenberg-
Marquardt). In this process some parameters that are not included in the sphere
camera model are added. These parameters are, as in Sphere-2DPattern approach,
the radial and tangential distortion which are initialized to zero. This approach
uses two parameters for each type of distortion. The minimization criterion is the
root mean square (RMS) of distance error between a measured image point and its
reprojected correspondence.
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4.3.4 Distortion-2DPattern Approach

In this approach (Scaramuzza et al. 2006) the projection model is different from the
one previously presented. The only assumption is that the image projection function
can be described by a polynomial, based on Taylor series expansion, whose coefficients
are estimated by solving a two-step least squares linear minimization problem. It
does not require either any a priori knowledge of the motion or a specific model of the
omnidirectional sensor. So, this approach assumes that the omnidirectional image is
in general a highly distorted image and we have to compute the distortion parameters
to obtain such a distorted image. This approach, like Sphere-2DPattern, requires
several images from different unknown positions of a 2D pattern. The accuracy
depends on the number of images used and on the degree of the polynomial.

Under this model a point in the camera plane x' = [z, 3/ ]T, is related to a vector
p which represents a ray emanating from the viewpoint O (located at the focus of
the mirror) to the scene point X. This relation is encoded in the function g

p=g(z)) = PX (4.5)

where X € R* is expressed in homogeneous coordinates; P € R#3%% is a perspective
projection matrix. The function g has the following form

g(x') = (@',y/, f@a',y), (4.6)
and f is defined as

F@' ) = a0+ arp’ +azp? + - + anp™ (4.7)

where p’ is the Euclidean distance between the image center and the point. In
order to calibrate the omnidirectional camera the n+ 1 parameters (ag, a1, as, ..., a,)
corresponding to the coefficients of function f need to be estimated.

The camera calibration under this approach is performed in two steps. The first
step computes the extrinsic parameters, i.e., the relation between each location of
the planar pattern and the sensor coordinate system. Each point on the pattern
gives three homogeneous equations. Only one of them is linear and it is used to
compute the extrinsic parameters. In the second step, the intrinsic parameters are
estimated, using the extrinsic parameters previously computed and the other two
equations. The authors do not mention it, but after this linear process a non-linear
optimization is performed using the Gauss-Newton algorithmﬂ

4.4 Experiments

In order to compare the different calibration methods we calibrate a hypercata-
dioptric systerrﬂ a fish-eye and a commercial proprietary shape mirrmﬂ which we

5This algorithm is provided by the Isqnonlin Matlab function
5Neovision H3S with XCD-X710 SONY camera
"http:/ /www.0-360.com
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name unknown-shape system. Additionally, we displace the perspective camera of
the hypercatadioptric system far from the mirror. This allows the displacement of
the optical center of the perspective camera from the other focus described by the
hyperbolic mirror, leading to a non-central system. We calibrate these four systems
with the four methods and compare the results with a reconstruction experiment
which is explained in section The set up used to calibrate the omnidirectional
system for every method is explained as follows.

Sphere-2DPattern approach. This approach requires images of a single 2D pattern.
These images have to cover most of the omnidirectional image area. This approach
asks the user for the image center and for the outer mirror border to compute the
principal point. Then it asks for four aligned edge points on a non-radial line to
compute the focal length. With this information it asks for the four corner points of
the pattern and uses a subpixel technique to extract the rest of the points present in
the pattern. If the focal length is not well estimated then all points have to be given
manually.

DLT-like approach. In the DLT-like approach a single image of a 3D pattern
was used. This approach does not have an automatic extractor so all points are
given manually. This method requires as input a set of points lying on at least three
different planes with known relative position.

Distortion-2D approach. This approach also uses images coming from a 2D
pattern. The last version of this method has an automatic corner detector which
detects most of the corners present in a single pattern. The amount of corners given
manually is minimum. Once all the points in all the images are given the calibration
process starts.

Sphere-Lines approach. This approach is based on the projections of lines in
the omnidirectional images. This method only requires one omnidirectional image
containing at least three lines.

4.4.1 Evaluation Criteria

Previous to the comparison of the real system we perform an experiment using
simulated data. The purpose of this experiment is to observe the behavior of
all approaches under optimal conditions and to measure their sensitivity to noise.
We simulate two central catadioptric systems, a hypercatadioptri(ﬁ with mirror
parameter £ = 0.7054 and a paracatadioptric system. Firstly, we generate five
synthetic images, each one containing a calibration pattern, that cover the whole
FOV of the omnidirectional image, two of these images are shown in Fig. 4.1|(a) and
Fig. (b) These images are used by the Sphere-2DPattern and the Distortion-2D
approaches. We combine the five calibration patterns in a single image (Fig. 4.1c))
that is used by the DLT-Like approach. These three approaches use the same points.
In the case of the Sphere-Lines approach four lines are present in a single image with
a total of 904 points (Fig. 4.1{d)). We add Gaussian noise to the image coordinates.

Shttp://www.accowle.com
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Figure 4.1: Synthetical images used by the calibration methods. Sphere-2DPattern
and Distortion-2DPattern approaches use five images similar to (a) and (b). DLT-like
approach uses a single image containing 5 planar patterns (c¢) and Sphere-Lines
approach use 4 image lines (d).
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Figure 4.2: Reprojection error in pixels
as a function of noise (o) corresponding
to the hypercatadioptric system.

Figure 4.3: Reprojection error in pixels
as a function of noise (o) corresponding
to the paracatadioptric system.

For every noise level o (in pixels) we repeat the experiment 100 times in order to
avoid particular cases due to random noise. In Fig. and Fig. we show the
mean and the standard deviation of the reprojection error corresponding to the
hypercatadioptric and the paracatadioptric systems, respectively for the analyzed
approaches.

As we observe the behavior of the four approaches is quite similar. All of them
respond in the same way to the amount of noise present in the images. This experiment
shows that under optimal circumstances the performance of the four approaches is
quite similar. One thing we observe with respect to the Sphere-Lines approach is that
four lines are enough to compute the calibration. We try to calibrate the systems
using a higher number of lines which caused the approach being slower and in some
occasions it did not converge. This behavior is due to the lines containing a high
number of points, therefore increasing 2 or more lines means to increase hundreds of
points.

We observe that the reprojection error is not sufficient to decide which method is
endowed with the best performance, however it is a necessary condition to qualify
an algorithm as performing well. Moreover, a disadvantage of this error measure
is that we can make it smaller by just adding more parameters to a model. As
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an example we can observe the reprojection error of the hypercatadioptric system
given by the Sphere-2DPattern approach (see Table . The obtained reprojection
error during calibration was considerably small, only 0.000005 pixels, which could be
considered as zero. This approach adds five distortion parameters: three for radial
distortion and two for tangential distortion. Originally, these parameters are not
considered in the model. To verify the impact of these parameters in the calibration
we repeated the calibration. When we only consider radial distortion (3 parameters),
the reprojection error increased to 0.42 pixels. When no distortion is considered
at all, the reprojection error increased to 0.64 pixels. As previously stated, the
reprojection error is not definitive in showing which approach performs the best.

Instead of the reprojection error we choose to consider a Structure from Motion
task from two calibrated omnidirectional images of a 3D pattern (Fig. built in
our lab. The pattern has been measured with high accuracy using photogrammetric
softwareﬂ Thus, a 3D reconstruction by bundle adjustment has been made. We used
6 convergent views taken with a calibrated high-resolution camera (Canon EOS 5D
with 12.8Mpix.). The estimated accuracy of the location of the 3D points is better
than 0.1mm. Fig. shows the configuration used for the SfM experiment. Using
the calibration provided by each method we compute the corresponding 3D rays
from each omnidirectional image. The correspondences between the two images were
given manually. We use these correspondences to compute the essential matrix E
which relates them. From this matrix we compute two projection matrices P1 = [1/0]
and P2 = [R|t]. Then, with these projection matrices and the 3D rays we compute an
initial 3D reconstruction using a linear triangulation method (Hartley and Zisserman,
2000) which is later refined by a bundle adjustment optimization process. The 3D
reconstruction depends on the number of correspondences. We use a set of 144 points
to compute the reprojection error and to evaluate the 3D reconstruction results. We
choose two different criteria to measure the accuracy of each model. These criteria
are:

e The average error between the real 3D points and their estimations.

e The reprojection error. We project the ground truth 3D pattern in the two
cameras with the locations given by the SfM algorithm. We measure the error
in pixels between the image points and the ground truth reprojection.

4.4.2 Hypercatadioptric System

The hypercatadioptric system is composed by a perspective camera with a resolution
of 1024 x 768 and a hyperbolic mirror having a 60 mm diameter and parameters
a =281 mm and b = 234 mm according to manufacturer information. The mirror
parameter for the sphere camera model is £ = 0.9662. In Fig. we observe some of
the images used to calibrate this system. We use one image to calibrate the system

9PhotoModeler software was used.
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To=IR]

Figure 4.4: 3D pattern built at lab. Figure 4.5: StM configuration to test
the calibrations.

£ (ug, vo)
Manufacturer Info | 0.9662 | (511.88,399.25)
Sphere-2DPattern | 0.9684 | (513.93,400.76)
Sphere-Lines 1.0215 | (523.82, 416.29)
DLT-like 0.9868 | (509.95, 398.54)

Table 4.2: Comparison of the physical parameters given by the 3 methods based on
the sphere model.

using the Sphere-Lines and the DLT-like approaches. Eleven images of the 2D pattern
were used to calibrate the system using both Sphere-2DPattern and Distortion-2D
approaches. In Fig. we show the images used for the SfM experiment.

Mirror Parameter and Principal Point

Three of these methods are based on the sphere camera model. In Table we
present the estimations of the principal point (ug,vp) and the mirror parameter &
since they are related with sphere model parameters. The Distortion-2DPattern
approach does not offer information about the catadioptric system. As we can see,
the best estimation of the mirror parameter is given by Sphere-2DPattern but also
the DLT-like algorithm gives a good approximation. Sphere-Lines gives a value
bigger than 1 which does not correspond to a hyperbolic mirror. With respect to
the principal point the estimation of Sphere-2DPattern and DLT-like are close to
the real one. The difference is that the Sphere-2DPattern method asks the user to
give the image center and the rim of the mirror to compute the principal point and
the DLT-like algorithm does not need any of this a priori information but requires
known positions of the 3 planes in the pattern.

In Fig. we show the histogram corresponding to the accuracy in millimeters
of the 144 reconstructed 3D points. We observe that the Sphere-2DPattern approach
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Chapter 4. Comparison of Calibration Methods for Omnidirectional Cameras

Figure 4.6: Some images used to calibrate the hypercatadioptric system.(a) Sphere-
Lines. (b) DLT-like approach. (c,d) Sphere-2DPattern and Distortion-2DPattern
approaches.

Method Original paper | Calibration | Structure from Motion
Sphere-2DPattern 0.40 0.00005 0.34
Sphere-Lines n/a 1.11%* 1.19
DLT-Like 0.30 0.47 0.40
Distortion-2DPattern 1.2 0.82 0.45

Table 4.3: Reprojection error from different sources corresponding to the hypercata-
dioptric system. (Since the Sphere-Lines does not use the reprojection error we take it from
simulations with Gaussian noise o = 1pizel).

has the highest number of reconstructed points closer to the ground truth. The
highest error corresponds to Sphere-Lines and Distortion-2DPattern with one point 5
mm far from the ground truth. In Fig. we show the reprojection error of the 288
points of the two images used in the experiment. We observe that all the approaches
are below the 2 pixel error and three of them within the 1 pixel error.

The hypercatadioptric system is the more complex catadioptric system under
the sphere camera model since the mirror parameter £ is in the interval ]0,1[. In
opposition, the paracatadioptric system where £ = 1 simplifies considerably the
model. In this context we decide to present the reprojection error corresponding
to this system from three different sources (see Table : the reprojection error
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Figure 4.7: Images used in the SfM experiment with reprojected points superimposed
(hypercatadioptric).
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Figure 4.8: Number of reconstructed 3D  Figure 4.9: Number of reprojected points
points within an error in millimeters us- within an error distance in pixels using a
ing a hypercatadioptric system. hypercatadioptric system.

shown in the original paper where the approach was firstly presented (first column),
the reprojection error obtained when we calibrate the system, and the reprojection
error from the Structure from Motion experiment. This information provides the
reader with a clear idea about the performance of all approaches under different
circumstances and allows us to observe that the reprojection error given at the
calibration time is less informative that the reprojection error of a Structure from
Motion experiment where the calibration is an early step and all the approaches are
under the same circumstances.

4.4.3 Fish-eye Lens

The fish-eye lens used in this experiment is a Raynox DCR-CF185PRO with a FOV
of 185° on all directions. It is mounted on a high-resolution camera. In Fig. 4.10] we
show some of the images used to calibrate this system. We use 8 images to perform
the calibration with the Sphere-2DPattern and Distortion-2DPattern approaches and
only one image using the DLT-like approach. We use the image of 7 lines to perform
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Figure 4.10: Some images used to calibrate the fish-eye system.(a) Sphere-Lines. (b)
DLT-like approach. (c,d) Sphere-2DPattern and Distortion-2DPattern approaches.

Figure 4.11: Images used in the SfM experiment with reprojected points superimposed
(fish-eye).

the calibration with the Sphere-Lines approach. Since none of the methods provides
any information about the system we just show the results obtained from the SfM
experiment. Fig. shows the images used for this experiment.

In Fig. and Fig. we show the results of this experiment. We observe
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that the methods that claim to be able to calibrate the slightly non-central fish eye
systems indeed give good results. This is the case of the Sphere-2DPattern, DLT-like
and the Distortion-2DPattern approaches. The opposite case is the Sphere-Lines
approach which is not able to correctly calibrate this camera. It gives reprojection
errors close to one hundred pixels. We observe that the three valid approaches give
similar results. The DLT-like gives the best results with the highest number of
reconstructed points within 1 mm error, although it is not designed to handle fish-eye
lenses. With respect to the reprojection error, we observe a similar behavior of the
three approaches with a maximum error of 2 pixels.

4.4.4 Unknown-shape Catadioptric System

This system is the combination of a commercial proprietary shape mirror and a
high-resolution camera. We use 6 images of a 2D pattern to calibrate this system
for the Sphere-2DPattern and Distortion-2DPattern approaches. We use an image
with 4 lines to perform the calibration with the Sphere-Lines approach. We observed
several difficulties when more than 4 lines were used to calibrate the system using
the Sphere-Lines approach. Sometimes the calibration results contained complex
numbers or there were problems of convergence. In Fig. [£.14] we observe some of the
images used to calibrate this system under all the analyzed approaches. In Fig. [£.15]
we show the images used to perform the SfM experiment.

We decided to use a more complex reconstruction scenario to observe the behavior
of the approaches under these conditions (Fig. [4.15| (a), (b)). The results of the
experiments, the 3D accuracy and the reprojection error are shown in Fig. [4.16
and Fig. [A.I7] respectively. We observe that the Distortion-2DPattern approach
has the highest number of points within the 5 mm error, 131 out of 144. The worst
performance is given by the Sphere-Lines approach with maximum errors of 35
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Figure 4.14: Some images used to calibrate the unknown-shape catadioptric system.
(a) Sphere-Lines. (b) DLT-like approach. (c,d) Sphere-2DPattern and Distortion-
2DPattern approaches.

Figure 4.15: Images used in the SfM experiment with reprojected points superimposed
(unknown-shape).
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Figure 4.16: Number of reconstructed
3D points within an error in millimeters
using an unknown-shape system.
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Figure 4.17: Number of reprojected
points within an error distance in pix-
els using an unknown-shape system.

mm. The other two approaches show similar performance, with the majority of the
reconstructed 3D points within the 10 mm error. The lowest reprojection error is
given by the Distortion-2DPattern with all the points within the 1 pixel error and the
other three approaches have a similar behavior with the majority of the reprojected
points within the 3 pixel error.

4.4.5 Non-central Hypercatadioptric System

This system is the one described in the hypercatadioptric experiment. The only
difference is that the perspective camera is displaced as far as possible from the
mirror. This causes that the optical center of the perspective camera is not located at
the other focus of the hyperbolic mirror, which is the basic condition for this system
to be central. Some of the images used to perform the calibration of this system
under the different models are shown in Fig. As in the hypercatadioptric case
we compute the mirror parameter and the principal point. This result is shown
in Table [4.4] We observe that DLT-like and Sphere-2DPattern give similar mirror
hyperbolic parameter and Sphere-Lines estimates a parabolic mirror with £ = 1.

The 3D error and the reprojection error are shown in Fig. and Fig.
respectively. We observe that all the approaches have a similar behavior even with a
non-central system. The Sphere-2DPattern has all its reconstructed 3D points within
the 3 pixel error. The DLT-like and Distortion-2DPattern approaches show similar
results with one 3D reconstruction error within the 5 mm error. The worst result is
given by the Sphere-Lines approach with maximum reconstruction error of 8 mm.
We observe that the reprojection error for all the methods is below 2 pixels.
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Figure 4.18: Some images used to calibrate the non-central catadioptric system.(a)
Sphere-Lines. (b) DLT-like approach. (c,d) Sphere-2DPattern and Distortion-
2DPattern approaches.

Figure 4.19: Images used in the SfM experiment with reprojected points superimposed
(non-central hypercatadioptric).

4.4.6 Distribution of the Calibration Points in the Catadioptric
Image

The accuracy of the computed calibration relies on the area occupied by the calibration
points in the calibration images. In this experiment we show the importance of the
distribution of the calibration points inside the catadioptric images. We define the
area to be used by selecting those points closer than r pixels from the image center.
The system to calibrate is a central hypercatadioptric system. Since the images used
by each approach are not the same, and also the approaches use different features
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§ (u0, o)
Ground Truth | 0.9662 | (511.88,399.25)
Sphere-2DPattern | 0.8463 | (519.14,407.87)
Sphere-Lines 1.00 | (537.50,409.82)
DLT-like 0.8819 | (525.05,411.89 )

Table 4.4: Comparison of the physical parameters given by the 3 methods based on
the sphere model in the non-central system.
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millimeters using a non-central hyper- els using a non-central hypercatadiop-
catadioptric system. tric system.

(points and lines), a full comparison using the same distances for all the approaches
is not possible. Since the approaches Distortion-2DPattern and Sphere-2DPattern
share the calibration images set we present their corresponding results together. In
the case of DLT-like and Sphere-2DPattern the results are shown separately. The
radii  were chosen depending on the requirements of each approach to calibrate the
catadioptric system.

Distortion-2DPattern and Sphere-2DPattern

These two approaches require several images to perform the calibration. We select
the calibration points that lie closer than r pixels from the image center in all the
images of the set in which these points exist. An example for two different radii r
can be observed in Fig. In Fig. we show the mean of the reconstruction
error for each calibration performed with the points within the areas described
by the radii ». We observe that both approaches give similar results. When the
area is small, the number of points decreases and the estimation is worse. The
Distortion-2DPattern has an error of 4 mm and the Sphere-2DPattern 2 mm in
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Figure 4.22: Points contained inside the areas described by (a) r = 150 pixels and
(b) r = 400 pixels.
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the worst case. This behavior can be explained by the fact that Sphere-2DPattern
estimates the image center from data given by the user and the Distortion-2DPattern
does it automatically, depending more on the distribution of the points. In Fig. [£:24]
we show that reprojection error that is under 1 pixel error for both approaches, even
with the smallest 7.

DLT-like

Since the DLT-like approach only requires one single image, the points are selected di-
rectly using different radii 7. In Fig. [4.25|we show two examples of the points selected
for two different radii. In Fig. and Fig. we show the 3D reconstruction
error and the reprojection error, respectively. We observe a similar behavior to the
previous approaches using large radii. With small radii the results are worse, since
with small radii only very few points of the second and third planes are considered
(see Fig. [4.25(a)).
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Figure 4.25: Points contained inside the areas described by (a) r = 300 pixels and
(b) r = 400 pixels.
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Sphere-Lines

This approach also requires a single image. The image must contain at least 3 line
images. The radii limit the length of the lines used to calibrate the system. An
example can be observed in Fig. We particularly observed that this approach is
quite sensitive to the length and the position of the lines. We show the results where
the calibration was possible in the corresponding radii. Fig. and Fig. [£:30] show
the 3D reconstruction error and the reprojection error, respectively. We observe a
similar behavior to the other approaches, but having a bigger error, both in the 3D
reconstruction error and the reprojection error.

One may think that a comparison of this method using just a few representative
elements, in this case lines, present in one single image, against others where hundreds
of representative elements (2D points), are extracted from several images, might be
unfair. In this order we tried to calibrate the central catadioptric systems using
as many lines as possible, present in the same images of the 3D pattern used to
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Figure 4.28: Points contained inside the areas described by (a) r = 230 pixels and
(b) 7 = 300 pixels.
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calibrate the system using the other approaches. A few examples of the lines used
are shown in Fig. [£:31] The results calibrating the central catadioptric systems using
this method did not succeed. We obtained several types of errors and sometimes
convergence problems. Because of that we calibrate the central catadioptric systems
using the maximum number of lines present in one single image, different from the
ones used by the other approaches.

4.4.7 Discussion

After all these experiments with different systems we observe that all the approaches
give good results, with the exception of the Sphere-Lines approach with the fish-eye
system, basically because this approach is not designed to deal with such systems. In
particular, for the fish-eye lens, the best calibration was achieved with the DLT-like
approach. In the case of the Unknown-shape camera, the Distortion-2DPattern
approach provided the best result. With respect to the non-central hypercatadioptric,
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Figure 4.31: Different configurations tested to calibrate the central catadioptric
systems using the Sphere-Lines approach. (a) Unknown-shape system, (b) Fish-eye
lens and (c) a combination of two images to cover the whole omnidirectional image
with lines.

DLT-like, Sphere-2DPattern and Distortion-2DPattern approaches all gave similar
accuracy. Finally, the hypercatadioptric system was calibrated slightly better by both
the DLT-like and the Sphere-2DPattern approaches. We also analyze the importance
of the area occupied by the calibration elements (points, lines) in the calibration
image(s). All approaches require this area to be as big as possible to compute a good
calibration. In the particular case of the Sphere-Lines approach the lines must be as
large as possible and must intersect far from the image center. In terms of computing
performance, all these approaches perform a non-linear step after the initialization
of the intrinsic and extrinsic parameters is computed. The DLT-like approach is the
fastest since it estimates less parameters. Next are the Sphere-2DPattern and the
Distortion-2DPattern with several extrinsic parameters corresponding to each image
to compute, plus the intrinsic parameters. The slowest method is the Sphere-Lines
approach, since it uses a complex geometry to compute the self-polar triangle and
takes into account every single pixel contained in the line images.

We also consider the importance on what we need to make these methods to
work and the problems observed at the calibration time.

e Sphere-2DPattern, Distortion-2DPattern. These two approaches require mul-
tiple images of a 2D pattern to perform the calibration. Both of them have
automatic corner extractors but most of the times these do not work properly
and the points have to be given manually. This is the most tedious part
since we have a minimum of eight to ten images, each image containing 48
points giving a total of 384 ~ 480 points. Besides that the Sphere-2DPattern
approach requires the user to indicate the image center and a minimum of
three non-radial points to estimate the focal length.

o DLT-like. This approach does not require any prior information but one single
omnidirectional image containing 3D points spread on three different planes.
The inconvenient with this method is to obtain the 3D points contained in the
3D pattern. All the image points in the 3D pattern images are given manually.
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We observed that depending on the image used the mirror parameter ¢ is better
or worse estimated. Something similar happens with the Sphere-2DPattern
approach.

e Sphere-Lines. This approach requires the easiest setting to be constructed.
It only requires one single omnidirectional image containing a minimum of
3 lines. One thing observed using this approach is that it strongly depends
on the principal point estimation. If this estimation is not accurate enough
the calibration is not performed properly. Also we observe some difficulties
while calibrating the unknown shape catadioptric system. The number and the
location of lines in the image is important to correctly calibrate the system.
Sometimes using more than three lines we had convergence problems or we
obtained calibrations containing non-real solutions.

Notice that each method has its own manner to extract the points from the
images. In this order we should decouple the matching process from the parameter
estimation process.

4.5 Closure

In this chapter we have presented a comparison of four methods to calibrate om-
nidirectional cameras available as OpenSource. Two of them require images of a
2D pattern, one requires images of lines and the last one requires one image of a
3D pattern. Three of these approaches use the sphere camera model. This model
can give some information about the mirror of the omnidirectional system besides
it provides a theoretical projection function. The other approach is based on a
distortion function. Both models can deal with any central catadioptric system and
fish-eyes. However the Sphere-Lines approach that uses the sphere camera model
cannot deal with the fish-eye system. All these approaches use a non-linear step
which allows them to have a reprojection error less than 1 pixel. In this chapter we
perform a SfM experiment to compare the different approaches with useful criteria.
This experiment showed that the calibration reached by any of these methods can give
accurate reconstruction results. The distribution of the points in the omnidirectional
images is important in order to have an accurate calibration. These points have to
cover as much as possible of the omnidirectional image and mainly in the peripheric
area.
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Chapter 5

Hybrid Two-view Relations of
Uncalibrated CPS

In this chapter we present a deep analysis of the hybrid two-view relations combining
images acquired with uncalibrated central catadioptric systems and conventional cameras.
We consider both, hybrid fundamental matrices and hybrid planar homographies. These
matrices contain useful geometric information. We study three different types of matrices,
varying in complexity depending on their capacity to deal with a single or multiple types
of central catadioptric systems. The first and simplest one is designed to deal with
paracatadioptric systems, the second one and more complex, considers the combination
of a perspective camera and any central catadioptric system. The last one is the complete
and generic model which is able to deal with any combination of central catadioptric
systems. We show that the generic and most complexr model sometimes is not the best
option when we deal with real images. Simpler models are not as accurate as the complete
model in the ideal case, but they provide a better and more accurate behavior in presence
of noise, being simpler and requiring less correspondences to be computed. Fxperiments
with synthetic data and real images are performed. With the use of these approaches we
develop the successful hybrid matching between perspective images and hypercatadioptric
images using SIFT descriptors.

5.1 Introduction

The combination of central catadioptric cameras with conventional ones is relevant
since a single catadioptric view contains a more complete description of the scene,
and the perspective image gives a more detailed description of the particular area or
object we are interested in. Some areas where the combination of these cameras has
an important role are localization and recognition (Menem and Pajdlal [2004), since
a database of omnidirectional images would be more representative with fewer points
of view and less data, and perspective images are the simplest query images. In
visual surveillance (Chen et al., 2003)) catadioptric views provide coarse information
about locations of the targets while perspective cameras provide high resolution
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images for more precise analysis. In active vision (Jankovic and Naish|, 2007)) this
mixture is naturally implemented; an omnidirectional camera provides peripheral
vision while a controllable perspective camera provides foveal vision.

We are particularly interested in the two-view relations between uncalibrated
catadioptric and conventional views working directly in the raw images. In the
literature very few approaches are presented to compute hybrid two-view relations
mixing uncalibrated catadioptric and conventional cameras. These approaches have
in common the use of lifted coordinates to deal with the non-linearities of the
catadioptric projection. Most of these approaches are presented theoretically and
with simple experiments. In this thesis we tackle this situation by performing a deep
evaluation of the hybrid fundamental matrix and the hybrid planar homography
using simulated data and real images.

To compute the two-view geometry we require pairs of corresponding points
between the views. These correspondences are built from previously detected relevant
features. Perhaps the most used extractor is the SIFT (Lowe, 2004). However, if STFT
features extracted in an omnidirectional image are matched to features extracted
in a perspective image the results are not good, this is because the SIFT descriptor
is scale invariant but not projective invariant. We observe that with a simple flip
of the omnidirectional image, SIF'T matching can still be useful, requiring neither
image rectification nor panoramic transformation. Moreover, with the combination
of a RANSAC approach with the hybrid two-view relations we are able to perform
the automatic robust matching between a conventional image and a catadioptric one
without requiring unwarping or any other transformation of the catadioptric image.

5.2 Related Work

The multiview geometry problem for central catadioptric systems has been studied in
recent years. Some approaches require the calibration of the systems. [Svoboda and
Pajdlal (2002) study the epipolar geometry for central catadioptric systems. Based
on the model of image formation they propose the epipolar geometry for catadioptric
systems using elliptic, hyperbolic and parabolic mirrors. |Geyer and Daniilidis| (2001b),
2002b) have shown the existence of a fundamental matrix for paracatadioptric cameras.
This has been extended by Sturm/ (2002) towards fundamental matrices and trifocal
tensors for mixtures of paracatadioptric and perspective images. Barreto| (2006]) and
Barreto and Daniilidis (2006) showed that the framework can also be extended to
cameras with lens distortion due to the similarities between the paracatadioptric and
division models. Recently, Sturm and Barreto (2008)) extended these relations to the
general catadioptric camera model, which is valid for all central catadioptric cameras.
They showed that the projection of a 3D point can be modeled using a projection
matrix of size 6 x 10. They also show the existence of a general fundamental matrix
for pairs of omnidirectional images, of size 15 x 15 and plane homographies, also of
size 15 x 15.

In last years some works have been developed considering the hybrid epipolar
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geometry for different combinations of uncalibrated central projection systems,
including the pin-hole model. To a lesser extent homographies have also been
studied using uncalibrated central systems. They establish a relation between the
projections on the omnidirectional images of 3D points that lie on a plane. In a
seminal work [Sturm| (2002) proposes two models of hybrid fundamental matrices, a
4 x 3 fundamental matrix to relate a paracatadioptric view and a perspective view
and a 6 x 3 fundamental matrix to relate a perspective view and a general central
catadioptric view. He also describes the 3 x 4 plane homography which represents
the mapping of an image point in a paracatadioptric view to the perspective view.
This mapping is unique, unlike the opposite one that maps a point in the perspective
image to two points in the paracatadioptric image. He also shows how to use the
homographies and fundamental matrices to self-calibrate the paracatadioptric system.
All these methods use only lifted coordinates of the points in the omnidirectional
image. Menem and Pajdla (2004)) propose an algebraic constraint on corresponding
image points in a perspective image and a circular panorama. They use a lifting from
3-vector to 6-vector to describe Pliicker coordinates of projected rays. |Claus and
Fitzgibbon (2005) propose the lifting of image points to 6-vectors to build a general
purpose model for radial distortion in wide angle and catadioptric lenses. |Chen and
Yang (2005) use their particular geometric projection of a parabolic mirror. They
define two homographies, one for each direction of the mapping. A 3 x 4 mapping
from the paracatadioptric image to the perspective image, and a 3 x 6 one from the
perspective view to the paracatadioptric, which because of its non-linearity requires
an iterative process to be computed. Barreto and Daniilidis| (2006) propose a general
model that relates any type of central cameras including catadioptric systems with
mirrors and lenses and conventional cameras with radial distortion. They apply the
lifted coordinates in both images. These lifted coordinates correspond to a map from
©> to > through Veronese maps, generating a 6 x 6 fundamental matrix.

Recently, Sturm and Barreto| (2008)) presented the general catadioptric funda-
mental matrix, a 15 x 15 matrix which uses a double lifting of the coordinates of the
points in both images. In this work they also present the general omnidirectional
plane homography. It corresponds to a 15 x 15 matrix that relates the fourth order
Veronese map of a point in the first omnidirectional or perspective image to a quartic
curve in the corresponding second image. To compute the 225 elements of such a
matrix, 45 correspondences of points are required since every correspondence gives 5
equations. |Gasparini et al.| (2009)) extend this work by simplifying the catadioptric
homography to a 6 x 6 matrix that relates a 6-vector that corresponds to the lifting
of a 3D point lying on a plane and a degenerate dual conic also represented by a
6-vector.

5.3 Hybrid Two-view Relations

In this section we explain the hybrid epipolar geometry between catadioptric and
perspective images. We also explain the hybrid homography induced by a plane
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observed in these two types of image. For both two-view relations we show and
analyze three different models. F66, F36 and F34 for fundamental matrices and H66,
H36 and H34 for hybrid homographies.

5.3.1 Hybrid Fundamental Matrices

Similar to the conventional fundamental matrix, the hybrid fundamental matrix
encapsulates the intrinsic geometry between two views. In this case a perspective
view and a catadioptric one. It is independent of the observed 3D scene and it can
be computed from correspondences of imaged scene points. This geometry can be
observed in Fig. Under this hybrid epipolar geometry, a point in the perspective
image qy is mapped to its corresponding epipolar conic in the catadioptric image c

c~ Fepap. (5.1)

The particular shape of the epipolar conics depends on the central projection system
we are dealing with, the angle between the epipolar plane and the mirror symmetry
axis and the orientation of the perspective/orthographic camera with respect to
the mirror. In the case of a paracatadioptric system (with a perfectly orthographic
camera) the shape of the epipolar conic corresponds to a circle (Svoboda and
Pajdla, [2002)) and can be represented as a 4-vector cpqr = (c1,c2,¢3,¢4) '. In the
case of hypercatadioptric systems the epipolar conics can be ellipses, hyperbolas,
parabolas, or lines. They are represented as 6-vectors cpy, = (c1, c2, ¢3, ¢4, c5, Cﬁ)T.
The representation of such conics as matrices are

261 0 (&) 261 Co Cy
Qpar = 0 2 c3 |, thp = ca 2c3 ¢5 . (52)
C2 C3 264 Cy Cs 266

To verify if a point q. = (q1, g2, q3)T belongs to a certain conic, it must satisfy the
identity q] Qq. = 0. If we develop this identity with Q = {Qpqr, Qpyp}t we will obtain
the expression g.c = 0 with ¢ = {cpar, Cpyp} and g, the lifted coordinates we already
studied in section In the first case as a 4-vector 4. = (¢? + 43, q143, 4243, qg)T
and as a 6-vector 4. = (¢7, 142, 45143, 4243, q%)T in the second one.

In the opposite direction, from the catadioptric view to the perspective one,
a point in the catadioptric image q. has to be lifted q. and then mapped to its
corresponding epipolar line in the perspective image

1~Fl 4. (5.3)

In general the relation between catadioptric and perspective images with the
fundamental matrix that we call hybrid fundamental matriz is established by

q, Fpelic = 0. (5.4)
Using the different lifted coordinates (cf. section in either the catadioptric
image or both the perspective and the catadioptric image, we can define different
fundamental matrices.
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Figure 5.1: Hybrid epipolar geometry.

General Catadioptric System, F66 and F36

As mentioned before the generic fundamental matrix between two central projection
systems (including catadioptric and perspective ones), is a 15 x 15 matrix which
uses a double lifting of the coordinates of the points in both the omnidirectional and
the perspective image (Sturm and Barretol 2008). This lifting represents quartic
epipolar curves. Since this matrix is intractable in a practical way we prefer to refer
to fundamental matrices easier to compute and that have been successfully applied.
Barreto and Daniilidis| (2006 propose a 6 x 6 fundamental matrix, which is able
to deal with different combinations of central catadioptric systems and conventional
cameras. This matrix is obtained from the lifted coordinates q. of points in the
omnidirectional and the lifted coordinates q, of points in the perspective images.

a, Fpedle = 0 (5.5)

This matrix establishes a bilinear relation between the two views, relating a point
in the omnidirectional image to a conic in the perspective one ¢, ~ Fj.q.. This conic
is composed by two lines. These lines are the forward looking epipolar line and the
backward looking epipolar line. These lines can be extracted from an SVD of the
epipolar conic. This 6 x 6 fundamental matrix is named F66 and corresponds to the
theoretically complete model.

A simpler formulation is established by where the lifted coordinates
are only applied to the point in the catadioptric image: q. = (q%, q192, q%, q193, 4243, qg
This matrix establishes a relation between a perspective or affine view and a gen-
eral central catadioptric view. In is mentioned that this matrix just
works in one direction but experiments in (Puig et al., 2008b)) show that it works in
both directions. We name this 3 x 6 fundamental matrix, F36. This matrix is an
approximation to F66.

)T
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Paracatadioptric system, F34

The paracatadioptric system is a particular catadioptric system composed by a
parabolic mirror and an orthographic camera. In this case the shape of the epipolar

conic is a circle and we use the simplified lifting q. = (q% + q%, q193, 9243, q%)T EI}
in the coordinates of the points in the omnidirectional image. The coordinates of the
points in the perspective image are normal homogeneous coordinates. We name this
3 X 4 fundamental matrix, F34.

Computation of the Hybrid Fundamental Matrix

We use a DLT-like approach (Hartley and Zisserman, 2000) to compute the hybrid
fundamental matrix. It is explained as follows. Given n pairs of corresponding points
qc < qp, solve the equations or to find F.,. The solution is the least
eigenvector of ATA, where AT is the equation matrix

ap, q011 o ApiQey,

AT = (5.6)

qpn qcnl T qpn qcnm

The number of pairs of corresponding points n needed to compute the hybrid
fundamental matrix depends on the number of elements of the fundamental matrix
to be computed. Each pair of corresponding points gives one equation. Therefore
35, 17 and 11 correspondences are required at least to compute the F66, F36 and
F34, respectively. It is recommended that n > size(Fj,.). The number of parameters
required to compute these approaches is crucial if we take into account that in
wide-baseline image pairs the correspondences are difficult to obtain, and much
more in images coming from different sensor types. In this case the F34 has a clear
advantage over the other two more complex approaches.

Rank 2 constraint

The above fundamental matrices are, like for the purely perspective case, of rank 2.
If the task we are interested in requires the epipoles, it is mandatory to ensure that
the estimated fundamental matrix has rank 2. To impose the rank 2 constraint we
have tried two options. One is to enforce this constraint minimizing the Frobenius
norm using SVD as explained in (Hartley and Zisserman, [2000) which we call direct
imposition (DI). The other option is to perform a non-linear re-estimation process
minimizing the distance from points in one image to their corresponding epipolar
conic or line in the other one, using the Levenberg-Marquardt (LM) algorithm. To
guarantee the rank 2 we use a matrix parameterization proposed by Bartoli and
Sturm| (2004) which is called the orthonormal representation of the fundamental
matrix. This approach was originally applied to O(3) matrices and we adapt it to
F34, F36 and F66.
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Computing the epipoles

The process involved in the computation of the epipoles from the three tested
hybrid fundamental matrices, F34, F36 and F66 is based on the computation of their
corresponding null-spaces.

The hybrid F34 matrix has a one-dimensional left null-space and one right null
vector. This one corresponds to the epipole in the perspective image. The two
epipoles in the omnidirectional image are extracted from the left null-space. We have
to compute the left null-vectors that are valid lifted coordinates. From these, the
epipoles are extracted in a closed form. The 4-vectors must satisfy the following
quadratic constraint:

% + ¢
- q193 PN 2 2
4c ~ s © GeyGes — Qzy — Goy =0 (5.7)
%

In the case of the F36 matrix we follow a similar process. The epipole in the
perspective image is also given by the right null vector and the two epipoles of the
omnidirectional image are extracted from the left null-space of this matrix. In this
case the valid lifted coordinates have to satisfy the following equations:

@

N

qc ~ 2 <~ Gey9cs — Q<2;4 =0 (5~8)
N3 (jcg (jCG - qus =0
4243
a3

In the case of the F66 matrix we use the same approach as for F36 to extract
the epipoles corresponding to the omnidirectional image from the left null-space of
the fundamental matrix. For the epipole in the perspective one a different process
is required. We extract it from the null-vector of the degenerate epipolar conic
Q, ~ F66q. projected from a point in the omnidirectional image to the perspective
image. This conic contains the two points q4+ and q-_.

5.3.2 Hybrid Homography

Hybrid homographies relate the projections of points that lie on a plane on different
types of images. In particular we analyze the homographies that relate omnidirectional
and perspective images. Similarly as before with fundamental matrices, we consider
three different models. The general model H66 and two simplified models H36 and
H34.
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Generic Model, H66

From (Sturm and Barretol [2008) the projection of a 3D point in any central catadiop-
tric system using lifted coordinates can be described by a 6 x 10 projection matrix

Pcata

d ~ PeataQ, Peata = Rxgﬁﬁxﬁ (Ie Texa) (5.9)

If we assume that the 3D points lie on a plane z = 0, Q = (Q1,Q>2,0, 17 the
non-zero elements of its lifted representation is a 6-vector Q. = (Q?, Q1Q2, Q3,
Q1,Qo, 1)T and the projection matrix reduces to size 6 x 6:

H66 = RXgﬁ (16X3[t1t2t4]) (510)

where t; is the i—th column of the matrix T and H66 is the 6 x 6 homography matrix
relating the lifting of the 2D coordinates of the points on the plane to their dual
conic representation on the image plane () as explained in section [2.1

This homography can also relate the projection of these 3D points in two different
images. And in particular in two images acquired with different sensors, a conventional
one q, and an omnidirectional one qc.

dp ~ H66 &, (5.11)

To compute this homography we use a DLT-like (Direct Linear Transformation)
approach. As in the perspective case we need correspondences q,, <> q; between
points lying on the plane in the conventional image qj, and in the omnidirectional

one q'. From (5.11)) we obtain

—

lgp),, H66 g =0 (5.12)

If the j-th row of the matrix H66 is denoted by h;!— and arranging l) we have

@l ®ac | F [ =0 (5.13)

These equations have the form A’h = 0, where A’ is a 36 x 6 matrix, and
h = (th, h! hl hl, hg, h6T)T is a 36-vector made up of the entries of matrix H66.
The matrix A’ has the form
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0 0 Q32,ac 0 _2(]3(]2ac Q%ac
0 —434c 0 43929 @BQde  —¢2q10c
' 430 0 0 —2¢3¢1qc 0 i qc
A" = 0 Q3QQac —(J3Q1ac _q%ac QQQIac 0
—q3029:  93¢19c 0 92q19 —qiqc 0
@3dc  2¢@qdc  ¢lqc 0 0 0

(5.14)
and is rank 3, so each correspondence gives 3 independent equations. Thus we need
at least 12 correspondences to compute H66 (Gasparini et al., [2009).

Simplified Homographies H34 and H36

We also consider two approximations of the hybrid homography. H34 and H36 are
two hybrid homographies that map a lifted vector or corresponding
to a point in the omnidirectional image q. to a point in the corresponding plane
qp in homogeneous coordinates. The former is related to the theoretical model of
a paracatadioptric system and the latter considers any central catadioptric system.
Similar to ([5.13]) we consider the Kronecker product of q, and ¢.. Both homographies
are computed using a DLT approach. Since each correspondence gives two equations
we require at least 6 correspondences to compute H34 and 9 correspondences to
compute H36.

5.4 Evaluation of the Hybrid Two-view Models

In this section we analyze the behavior of the three fundamental matrices (F66, F36,
F34) and the three homographies (H66, H36, H34). We present some experiments
performed with synthetic data and real images.

5.4.1 Simulated Data

We use a simulator which generates omnidirectional images coming from a hyper-
catadioptric system and perspective images from a pin-hole model. The two sensors
are placed in a virtual volume of 5 x 2.5 x 7 m. width, height and depth, respectively,
where points are located randomly (n > 35) in the case of the fundamental matrix
and in planes in the case of the homographies. The perspective camera has a resolu-
tion of 1000 x 1000 pixels and is located at the origin of the coordinate system. The
omnidirectional camera is located to have a good view of the whole scene. We use the
sphere camera model (Barreto and Daniilidis|, 2006) to generate the omnidirectional
image. We consider two real hypercatadioptric systems with mirror parameters of
& =0.9662 (ml) and £ = 0.7054 (m2), from two real hyperbolic mirrors designed by
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Figure 5.2: Behavior of the three fundamental matrices in function of image noise
(0): RMSE of points to epipolar conics and lines using mirrors (a) ml and (b) m2.
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Neovisionﬂ and Accowlﬂ respectively. As a common practice and because we are
using lifted coordinates we apply a normalization to the image coordinates where
the origin is the image center and the width and height are 1. Once the points are
projected we add Gaussian noise, described by o, in both images.

Analysis of the Fundamental Matrices

The fundamental matrices are computed using a Levenberg—MarquardtH non-linear
minimization of the geometric distance from image points to epipolar lines and conics
using the point to conic distance proposed by (Sturm and Gargallo, [2007). For
every o representing the amount of noise we repeat the experiment 10 times to avoid
particular cases due to random noise. We show the mean of these iterations. Fig.
shows the distances from points to their corresponding epipolar conics and lines
as a function of image noise.

From Fig. 5.2 we can observe that when there is no noise present in the image
the F66 shows the best performance, which is expected since F66 is the theoretically
correct model. This changes when noise increases. In this case the F34 and F36 show
a better performance, being consistent with the noise present in the images. The F34
shows a better performance with the mirror m1 since this one is closer to a parabolic
mirror, the one the matrix F34 was designed to deal with. The residuals of F36 are
slightly larger than the ones from F34. We observe that F66 is instable when noise is
present in the images. This behavior can be caused by the over-parameterization of
the model, the more the parameters the higher the sensitivity to noise; that can also
explain the difference between the F36 and F34.

We also estimate the epipoles from the 3 hybrid fundamental matrices, using the

"http:/ /www.neovision.cz
http://www.accowle.com
3lsqnonlin function provided by Matlab
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Figure 5.3: RMSE error from points to their corresponding epipolar conic and lines.
(a) Using the direct imposition of the rank 2. (b) Using the LM algorithm.

True F66 F36 F34
Value DI LM DI LM DI LM
ey (500,303.07) [(499.24,302.48)[(499.60,303.42)[(500.23,303.73)[(499.66,303.98)[(500.07,303.41)|(499.66,303.95)
e (500,200) _ |(503.31,199.17)|(501.55,201.08)|(501.03,201.27)|(501.52,202.03)|(500.53,201.79)|(501.29,202.42)
RMSE 0.0 18.04 0.76 1.16 1.01 0.85 0.99

Table 5.1: Epipoles estimated by the three fundamental matrices. DI = direct
imposition. LM = Levenberg-Marquardt.

ml hypercatadioptric system. In this experiment we add o = 1 pixel Gaussian noise
to both images. We test the two approaches DI and LM to get a rank 2 matrix (cf.
section . We evaluate the performance of these approaches by the accuracy of
the estimated epipoles and by the residual, which is the RMSE of the distances from
the points used to compute the fundamental matrix to their corresponding epipolar
lines and conics. In Fig. [5.3] we show the residuals for the three approaches imposing
the rank 2 constraint by the direct imposition and by using the LM algorithm with
orthonormal representation.

In Fig. a) we can observe that F66 is very sensitive to the direct imposition of
the rank 2 property with maximum errors of 8 and 12 pixels. This occurs because we
are transforming a good solution that passes through the points in the perspective
and omnidirectional images into a new matrix of rank 2 that contains the epipoles
and makes all epipolar lines and conics to pass through them but far from the points
in the corresponding images. This does not occur with the LM algorithm which
uses the orthonormal representation because it imposes the rank 2 property and at
the same time minimizes the distance between points and epipolar lines and conics,
having a maximum error of 3 pixels.

Table shows the epipoles from these two approaches. We can see from it
that the three approaches give similar results in computing the epipole but we also
observe an increment in the distance from points to conics and the minimization
obtained with the LM algorithm, all this as expected. Once more F34 shows an
interesting behavior giving a small distance to conics even with the DI approach.
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Figure 5.4: Behavior of the three fundamental matrices as a function of the mirror
parameter(£): Mean distances from points to epipolar conics in (a) omnidirectional
image, and (b) perspective image.
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Figure 5.5: Comparison between the three approaches to compute the hybrid homog-
raphy. Using mirrors (a) m1, (b) m2.

This adds another advantage to F34.

As observed from the previous experiments F34 shows a good performance dealing
with images coming from a hypercatadioptric system. In order to test this behavior
we designed the following experiment. We modify the mirror parameter £ from the
hyperbolic case (0 < £ < 1) to the parabolic case (£ = 1) (Barreto and Daniilidis|,
2006). We add o = 1 pixels Gaussian noise in both images and repeat the experiment
10 times to avoid bias since we are using random noise. In Fig. we observe that
F34 can deal better with hypercatadioptric images when the mirror shape is close
to a parabola (£ = 1) and not as good as F66 and F36 models which are designed
to deal with this type of systems but still having a RMSE of 1.28 pixels with the
hyperbolic mirror defined by & = 0.75.
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Analysis of Homographies

We perform experiments computing the hybrid homographies relating a plane in
the ground and its projection in an omnidirectional image as well as the projection
of a planar scene in both omnidirectional and perspective images. We use the
same simulator as in the fundamental matrix case also considering the two different
hyperbolic mirrors (m1) and (m2). The 3D points are distributed in a planar pattern.
This pattern is composed of a squared plane with 11 x 11 points and a distance
between points of 40cm. The goal of the first experiment is to know the behavior of
the three homography approaches in presence of noise. We add different amounts
of Gaussian noise described by its standard deviation (o) to the coordinates of the
points in the omnidirectional image. The DLT algorithm followed by a non-linear
step using Levenberg-Marquardt minimizing errors in the image are used to compute
the homographies. For every o we repeat the experiment 10 times in order to avoid
particular cases due to random noise. The error of the projected points in the ground
plane is shown in Fig. We observe that the three approaches have a similar
behavior. When the amount of noise is low the best performance is given by H66, in
fact it is the only one that has a zero error when we use noiseless data. When the
amount of noise increases the performance of H66 decreases and H34 and H36 remain
with smaller errors. This result shows that H66 is more sensitive to noise than the
other two approaches. The difference between the errors using the different mirrors
is explained because the area occupied by the plane using m2 is bigger than the area
covered using m1. With the m1 mirror we have errors of 5.2¢m with the H66 but
with the m2 mirror this error decreases to 3mm in both cases with o = 1pixel.

The next experiment maps a point from a plane in a perspective image to its
projection in the omnidirectional image. In this case we added Gaussian to both
perspective and omnidirectional image coordinates. We project a point from the
omnidirectional to the perspective image, where the map is direct. In Fig. [5.6] we
can observe the experiment using different amounts of Gaussian noise o. Again H34
and H66 give better results than H66 except for the case with a very small amount
of noise.

In the opposite direction, the homography maps a point in the perspective image
to a conic in the omnidirectional one. Since the extraction of the corresponding point
from this conic is difficult, a way to overcome this problem is to compute a different
homography, which maps lifted coordinates in the perspective image to a single point
in the omnidirectional one.

From the simulations we observe that the hybrid fundamental matrices and the
hybrid homographies with less parameters, F34 and H34 have a good performance
even dealing with hyperbolic mirrors. Also they are less sensitive to noise than
the theoretically correct and more general models F66 and H66. Note also that
simpler models F34 and H34 require fewer point correspondences to be computed
and therefore they have advantages in practice.
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Figure 5.6: Noise sensitivity of the hybrid homographies between omnidirectional
and perspective images. (a) Using m1 and (b) using m2.

Figure 5.7: (a-c) Epipolar conics using F34, F36 and F66. (d-f) Epipolar lines using
F34, F36 and FG66.

5.4.2 Experiments with Real Images

We also performed experiments with real images coming from a hypercatadioptric
system and from a conventional camera. We compare the accuracy of the three
methods to compute both the hybrid fundamental matrix and the hybrid homography.
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D2C D2L
F34 | F36 | F66 | F34 | F36 | F66
No Rank 2 | 0.68 | 0.66 | 0.67 | 1.10 | 1.05 | 0.9
DI 0.87 | 1.64 | 21.06 | 1.36 | 2.07 | 3.82
LM 0.71 ] 0.70 | 0.69 | 1.13 | 1.07 | 1.01

Table 5.2: Mean of the distances to epipolar conics (D2C) and lines (D2L) for
the 70 corresponding points in real images. Using Direct Imposition (DI) and
Levenberg-Marquardt(LM)

Figure 5.8: Images used to compute the hybrid homographies. (a) Perspective image.
(b) Omnidirectional image. Points used to compute the homographies are in red and
test points in green.

Hybrid Fundamental Matrix

In this case we use 70 manually selected pairs of corresponding points to compute
the three approaches (F34, F36, F66). In order to measure the performance of
F we calculate the root mean square error of the geometric distance from each
correspondence to its corresponding epipolar conic or line. Table shows these
distances for the estimated F without imposing rank 2 and for the two ways to obtain
the rank 2 fundamental matrix. We can observe that when we impose the rank 2 the
error increases in particular with F66. With the orthogonal normalization using the
LM algorithm F66 gives the best result but with very few difference with alternate
models F34 and F36. When we impose the rank 2 constraint we eliminate a few
degrees of freedom of the matrix that better adjusts to the data so, the residual error
must be worse actually. From Fig. we can observe the epipolar lines and conics
from the three approaches. We also observed that a great number of correspondences,
larger than the minimum is required to have a reasonable accuracy. Using F36 we
obtain good results with 50 (three times the minimum) correspondences. This gives
a good reason to use the F34 for further applications.
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Figure 5.9: Euclidean distance from the estimated points to the test points (a)
Omnidirectional image. (b) Perspective image.

SIFT points | Matches/Inliers
Omnidirectional 2877 137/9
Unwarped image 4182 179/68
Flipped image 2867 207/76

Table 5.3: Output from the SIFT matching using the original, unwarped and flipped
omnidirectional image.

Hybrid Homographies

In this experiment we select 55 correspondences manually. From these correspon-
dences we use 35 to compute the hybrid homographies H34, H36 and H66. We use
the rest as test points. If we want to map points in the opposite direction, i.e., from
the perspective image to the omnidirectional one we require the inverse mapping
of matrices H34 and H36. Since these matrices are not square their computation is
not possible. In this order we compute separate homographies to map points in this
direction. With this computation we also avoid the extraction of the points from
the corresponding conics. With respect to H66 it was shown in (Gasparini et al.,
2009) that two homographies have to be computed, since the inverse matrix does not
correspond to the opposite mapping. In Fig. [5.8 we show the images used to compute
the hybrid homographies. In Fig. [5.9(a) we show the error corresponding to the
Euclidean distance between the estimated and the test points in the omnidirectional
image. Fig. [5.9(b) shows the error in the perspective image. We observe that H34
and H36 have a similar behavior. In both images we also show the corresponding
means of the error. H34 has the best performance in the perspective image while H36
has it in the omnidirectional one. The worst behavior in both images corresponds
to H66. All the approaches show a considerable error, which can be caused by the
small area occupied by the points in the omnidirectional image.
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Figure 5.10: Matching directly the SIF'T points in the omnidirectional and perspective
images. (a) Using the unwarped image. (b) Using the flipped omnidirectional image.
The matches with the normal omnidirectional image are not shown since near by all
are outliers.

5.5 Automatic Matching Using Hybrid Two-view Rela-
tions

In this section we present the robust automatic matching between uncalibrated
hypercatadioptric images and perspective images. The first step of a matching
process between wide-baseline images is to obtain an initial or putative set of pairs
of corresponding features. Reasonable matching of two omnidirectional images using
well-known features like SIFT, SURF or MSER has been reported (Murillo et al.|
2007bj; (Guerrero et all 2008 Mauthner et al., 2006]). It is known that the SIFT
descriptor is scale invariant but not camera invariant, making it difficult to directly
match omnidirectional images with perspective images using standard SIFT features.
In (Puig et al., [2008b) we observed that by unwarping the omnidirectional image
we improved the number of matches between hybrid image pairs. This unwarping
included a vertical flip of the omnidirectional image. In (Puig and Guerrero, 2009))
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Figure 5.11: Some of the images used to test the automatic matching using the
fundamental matrix.

we realized that this improvement was mainly caused by the simple flip of the
omnidirectional image and not by the whole unwarping process. The SIFT descriptor
is designed to be scale and rotation invariant and even camera invariant if we consider
that flipping an omnidirectional image can produce good matches with a conventional
image. We observe that the SIFT descriptor is not projective invariant, since the
projective mirror effect is responsible for the majority of matching failures.

To evaluate that, we show in Fig. the direct matching between SIFT points
from a normal omnidirectional image and a perspective image. In this work we
use the SIFT implementation by . The inliers and outliers obtained
were counted manually. Table shows that near by all matches are wrong if
the omnidirectional image is directly used. Using the unwarped and the flipped
transformation of the omnidirectional image we repeat the experiment. In these
cases we observe an important increment on the number of correct matches showing
both similar results. More results are shown in Table .4l

Note that this initial matching between the perspective and the flipped omnidi-
rectional image has a considerable amount of inliers but also many outliers. This
scenario requires a robust estimation technique and a geometric model to detect the
inliers and reject the outliers. Depending on the situation, either the hybrid epipolar
geometry or the hybrid homography, can be used.
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5.5. Automatic Matching Using Hybrid Two-view Relations

Hybrid Fundamental Matrix

In a general case where the points are in any part of a 3D scene the fundamental matrix
is used. The automatic process to perform the matching between an omnidirectional
image and a perspective one, using the hybrid fundamental matrix as geometric
constraint is as follows:

1. Initial Matching. Scale invariant features (SIFT) are extracted from perspec-
tive and flipped omnidirectional images and matched based on their intensity
neighborhood.

2. RANSAC robust estimation. Repeat for r samples, where r is determined
adaptively:

(a) Select a random sample of k corresponding points, where k depends on
what model we are using (if F34, k = 11, if F36, k = 17 or if F66 k£ = 35).
Compute the hybrid fundamental matrix F., as mentioned before.

(b) Compute the distance d for each putative correspondence, d is the geo-
metric distance from a point to its corresponding epipolar conic (Sturm
and Gargallol 2007).

(c) Compute the number of inliers consistent with F., by the number of
correspondences for which d < ¢ pixels, ¢ being a defined threshold.

Choose the F., with the largest number of inliers.

3. Non-linear re-estimation. Re-estimate F., from all correspondences clas-
sified as inliers by minimizing the distance in both images to epipolar conics
(Sturm and Gargallo, 2007) and epipolar lines, using a non-linear optimization
process.

For the next experiments we have selected the F34 model since its performance
is similar to the other models and the number of correspondences required to be
computed is the smallest. In a RANSAC approach the number of parameters to
estimate is important since it determines the number of iterations required. In
practice, there is an agreement between the computational cost of the search in the
space of solutions, and the probability of failure (1 — p). A random selection of r
samples of k matches ends up with a good solution if all the matches are correct in
at least one of the subsets. Assuming a ratio e of outliers, the number of samples to
%. For example using a probability p = 99% of not failing in
the random search and 30% of outliers (£), 231 iterations are needed to get a result
using the F34. If we use the F36, 1978 iterations are needed for the same level of
confidence. In the case of the F66 the number of iterations increases to 1.2 x 10% and
becomes prohibitive for some applications.

Several omnidirectional and perspective image-pairs are used to perform the
experiment of automatic matching (Fig. . We avoid the rank 2 constraint

explore is r =
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Figure 5.12: Matching between omnidirectional and perspective image using the
hybrid epipolar geometry. (a) Experiment 1. (b) Experiment 4.

since we are just concerned about the matching problem. Table summarizes
the results giving the number of SIFT features extracted in the two valid versions
of omnidirectional images tested (unwarped and flipped), and in the perspective
one. It also shows the quantity of inliers and outliers in the initial (SIFT matching)
and the robust matching (hybrid fundamental matrix), using both the unwarped
and the flipped transformations. Fig. shows two examples of the matching
between omnidirectional and perspective images. In Experiment 1 we use images
Fig. [p.11j(a) and Fig. |5.11(e). The number of SIFT points extracted from the
flipped and the unwarped images are similar. We observe that the initial matches
are similar using the unwarped and flipped versions of the omnidirectional image,
with a small advantage for the flipped one. These results confirm that SIFT is not
projective invariant but it works well with such a distortion of catadioptric cameras.
Despite the use of either of the transformed omnidirectional images the automatic
matching using the hybrid epipolar geometry is able to filter most of the outliers. In
Experiment 4 the increment in the SIFT features of the perspective image is caused
by the resolution of the image(1280 x 960). The results show that the hybrid epipolar
constraint eliminates most of the outliers.
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Figure 5.13: Matching between omnidirectional and perspective image using, (a)
putative matches, (b) matches after the robust estimation using the hybrid homogra-

phy.

Unwarped Omni Flipped Omni Initial Matches Robust Epipolar Geometry
SIFT SIFT Persp SIFT (inliers/outliers) matches(inliers/outliers)
Unwarped Flipped| Unwarped Flipped
Experiment 1 3251 2867 1735 68/111 76/131 40/8 57/4
Experiment 2 4168 4172 1528 18/68 21/71 16/7 17/7
Experiment 3 3280 2967 1682 41/101 33/112 27/9 20/9
Experiment 4 2275 2208 15658 125/322 164/360] 80/5 129/22

Table 5.4: Numerical results of the hybrid matching using the set of images.

Hybrid Homography

Analogous to the matching process using the hybrid fundamental matrix we can use
the hybrid homography when most of the scene points lie in a plane. An example of
the automatic matching using the hybrid homography as a geometrical constraint
can be observed in Fig. [5.13] Fig. a) shows the putative correspondences given
by the SIFT matching and Fig. [5.13|(b) after applying the robust matching process,
computing a 3 x 4 homography.

5.6 Closure

In this work we have presented a deep analysis of the two-view geometry combining
a central catadioptric system and a conventional camera. In particular we studied
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the hybrid epipolar geometry and the hybrid planar homography. We use lifted
coordinates to generalize the two-view constraints, well known for perspective image
pairs. We selected three approaches to compute the hybrid fundamental matrix F34,
F36 and F66 and three approaches to compute the hybrid homography H34, H36 and
H66. We performed several experiments comparing the different approaches from
the more complex and complete (F66, H66) to a more particular and simplified one
(F34, H34), that in principle only can deal with a certain type of central catadioptric
systems. From the simulation and real data experiments these simplified models
obtained better results in presence of noise. We observed that the complete models
can deal with any catadioptric system under ideal conditions but these approaches
are more sensitive to the presence of noise. We successfully introduce the geometrical
constraints in a robust matching process with initial putative matches given by SIFT
points computed in the perspective image and the flipped version of the catadioptric
one.
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Chapter 6

Scale Space for Central Projection Systems.

Towards a Generic Camera Feature Extractor

In this chapter we present a new approach to compute the scale space of any omni-
directional image acquired with a central projection system. When these cameras are
central they are explained using the sphere camera model, which unifies in a single model,
conventional, paracatadioptric and hypercatadioptric systems. Scale space is essential in
the detection and matching of interest points, in particular scale invariant points based
on Laplacian of Gaussians, like the well known SIFT. We combine the sphere camera
model and the partial differential equations framework on manifolds, to compute the
Laplace-Beltrami (LB) operator which is a second order differential operator required to
perform the Gaussian smoothing on catadioptric images. We perform erperiments with
synthetic and real images to validate the generalization of our approach to any central

projection system.

6.1 Introduction

Image processing has developed through the years techniques for conventional (per-
spective) cameras. Among all these techniques, feature detection/extraction is one
of the most relevant, since it represents a crucial step on higher level techniques,
such as matching, recognition, structure from motion, SLAM, navigation, visual
localization, visual control, surveillance and many more. A particular useful property
for features is to be scale-invariant. There are different approaches to detect scale-
invariant features. Some of them are based on the scale-space analysis |Lowe, (2004));
Mikolajczyk and Schmid| (2004)). Some others are based on the grey scale intensity
Kadir and Brady| (2001); Matas et al.| (2002). SIFT Lowe| (2004)) has become the most
used feature extraction approach. It has also been used directly in omnidirectional
images (Guerrero et al.| (2008)), although it is not designed to work on them. This
SIFT approach has inspired different works trying to replicate its good results on
different imagery systems, in particular on wide-angle cameras. In Bulow]| (2004) a
Gaussian kernel is derived. It requires the omnidirectional image to be mapped to
the sphere. Then, the spherical Fourier transform is computed and convolved with
the spherical Gaussian function. In Hansen et al.| (2007) the image is mapped to the
sphere and obtain scale-space images as the solution to the heat diffusion equation on
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the sphere which is implemented in the frequency domain using spherical harmonics.
This approach introduces new drawbacks as aliasing and bandwidth selection. A
complete SIFT version computed on the sphere also using the heat diffusion equation
is presented by (Cruz et al. (2009). In |Hansen et al. (2010) an approximation to
spherical diffusion using stereographic projection is proposed. It maps the omnidirec-
tional image to the stereographic image plane through the sphere. It also maps the
spherical Gaussian function to an equivalent kernel on the stereographic image plane.
Then, the approximate spherical diffusion is defined as the convolution of the stereo-
graphic image with the stereographic version of the Gaussian kernel. More recently
Lourenco et al.| (2010) propose an improvement to the SIFT detector by introducing
radial distortion into the scale-space computation. In Bogdanova et al. (2007) a
framework to perform scale space analysis for omnidirectional images using partial
differential equations is proposed. It leads to the implementation of the linear heat
flow on manifolds through the Laplace-Beltrami operator. Omnidirectional images
are treated as scalar fields on parametric manifolds. Based on this work |Arican and
Frossard, (2010]) propose a scale invariant feature detector for omnidirectional images.
They deal with the paracatadioptric projection which is equivalent to the inverse of
the stereographic projection. They model this projection on the sphere and obtain
its corresponding metric. This metric is conformal equivalent to the Euclidean one
making the computation of the Laplace-Beltrami operator straightforward. Although
this approach could work with any catadioptric system, the metric describing the
reflecting surface (mirror) has to be provided, which in some cases can be difficult to
obtain.

In this chapter we show a new approach to compute the scale-space for any
central catadioptric system. We integrate the sphere camera model (Geyer and
Daniilidis|, 2000; [Barreto and Araujol 2001)), which describes any central catadioptric
system, selecting it by one single parameter, with the partial differential equations
on manifolds framework through the heat diffusion equation (Bogdanova et al., 2007;
Arican and Frossard| [2010)). Using this framework and the mirror parameter we
compute the metric representing that particular reflecting surface. Then we use this
metric to calculate the corresponding Laplace-Beltrami operator. This second order
operator allow us to perform the Gaussian smoothing on omnidirectional images.

6.2 Scale Space for Central Projection Systems

In this section we integrate the sphere camera model (section that models any
central projection system and the techniques developed to compute the differential
operators on non-Euclidean manifolds (Bertalmio et al., 2001)) such as the mirror
surfaces present in catadioptric systems.

6.2.1 Differential Operators on Riemannian Manifolds

The scale space representation I(z,y,t) is computed using the heat diffusion equation
and differential operators on the non-Euclidean manifolds. It is defined as
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Figure 6.1: Simplified sphere camera model, showing the different radial projection
functions. (a) spherical coordinates. (b) perspective projection. (c) paracatadioptric
projection. (d) hypercatadioptric projection.

Image plane

oI (x,y,t)
ot
where A is the Laplacian-Beltrami operator and t is the scale level. The initial
condition is I(x,y,tg) = I(z,y) where I(z,y) is the original image.

We briefly define the differential operators on the manifolds which make possible
the computation of the Laplace-Beltrami operator. Let M be a parametric surface on
R3 with an induced Riemannian metric gi;j that encodes the geometrical properties
of the manifold.

In a local system of coordinates x* on M, the components of the gradient reads

)
V'=g¢"— 6.2
957 (6.2)
where ¢% is the inverse of gij- A similar reasoning is used to obtain the expression of
the divergence of a vector field X on M

= Al(z,y,t) (6.1)

divX = \}gai(xi\/g), (6.3)

where ¢ is the determinant of ¢*/. Finally, combining these two operators we obtain
the Laplace-Beltrami operator, which is the second order differential operator defined
on scalar fields on M by
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AT = 20,(vag"0l) (6.4

6.2.2 Computing a Generic Metric on the Sphere

As explained in section [2.1] omnidirectional images are formed in two steps. The
first one projects a 3D point to the unitary sphere. Then this point is projected
from the unitary sphere to the image plane through a variable projection point,
which is determined by the geometry of the mirror (parameter £). If the system is
calibrated (Puig et al., |2011)), it is also possible like in any conventional camera, to
map the catadioptric image to the unitary sphere.

In Bogdanova et al. (2007)); |Arican and Frossard| (2010), the mapping from
paracatadioptric images to the sphere is used for the computation of the differential
operators explained before. This allows to process the spherical image directly using
the image coordinates. Here we extend that approach to all central catadioptric
systems.

Consider the unitary sphere S? (Fig. ) A point on S? can be represented in
cartesian and polar coordinates as

(X,Y,Z) = (sinf cos p,sin f sin p, cos 0) (6.5)

The Euclidean element in cartesian and polar coordinates is defined as

di? = dX? + dY? + dZ? = d6? + sin? 6dp? (6.6)

Under the sphere camera model, a point on the sphere (6, ), is mapped to a
point in polar coordinates (R, ) in the image plane. The # angle depends on the
central catadioptric system we are dealing with, while ¢ remain the same. For
example, a conventional perspective system is described with § = arctan(R) and a
paracatadioptric system with § = 2tan(%). In the general case (see Fig. ) we
have

2__P2(¢2_
6 = arctan R+ PR 1) (6.7)
I+ R2EH/ (1+€)? - R2(£2-1)
In terms of these new coordinates the metric becomes
2 (1+¢)dR?
EHE+y/ (1462 -R2(€2-1)) (R*dY*+ = Fai—17¢
a2 = ( ) ( YTICRE(E 1)+g) (6.8)

(RP+(14€)%)?

Let (z,y) € R? on the sensor plane define cartesian coordinates, where R? =
2? +y? and ¢ = arctan(¥)

4(1+4€) (zdz+ydy)?
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where

(¢4 /(TP — @) E@-1))

422 +y°) (2®+y*+(1+£)?)*

To verify the correctness of this approach we substitute £ to the values for which
we already know the metric. For £ = 1 the result is the same as that one presented in
(Arican and Frossard, 2010). In the case of £ = 0 that corresponds to the perspective
case we expect a cartesian metric but what we get is the following

A=

1 +y?)d2? — 2zydady + (1 + 22)dy?)
(14 22 + y2)?

This is explained since there is no map from the sphere to the plane being both
conformal and area-preserving. However, from the generic metric we have already
computed, we are able to compute the Laplace-Beltrami operator. To deal with the
perspective case we only need to use the classical Laplacian.

az = (6.10)

6.2.3 Computing the Generic Metric on the Normalized Plane

The previous approach computes the metric on the sphere and then it is projected to
the image plane through the angle § which encodes the radial projection function. We
have observed that using the sphere camera model we are able to compute the metric
directly on the image plane and at the same time take into account the geometry of
the mirror, which is given by the mirror parameter £.

Let’s observe the perspective projection in cartesian and spherical coordinates

77
The radial component is R = y/22 + y? = tan(f) and the Euclidean element in

this case just takes into account the (x,y) coordinates but also the two spherical
coordinates (6, )

<X Y) = (tan@cosgp,tan@singp) = (:L‘,y) (6.11)

ds? = d(tan  cos )2 + d(tan § sin p)? = da® + dy? (6.12)

The same approach applied to the paracatadioptric case £ = 1 gives

X Y _ (sinfcosg cos@cosgo) -
(1—Z71—Z) - ( 1—cos®’ 1—cosf /) (x,y) (6.13)

2 2
and its corresponding Euclidean element with 6 = 2arctan< x;y > and ¢ =

arctan (%) becomes
16(dx? + dy?)
2+ 2+4 2 2
($2 + y2 - 4)2( §22+52—432 - 1)
The generic metric equation for any catadioptric system is described by the
following Euclidean element on the normalized plane

di? =

(6.14)
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(€cosf — 1)2d6? + (€ — cos )2 sin? Hdp?
(& — cos)?

which allows to compute the Euclidean element on the normalized plane with the
substitution of § and ¢ in terms of z and y.

ds® =

(6.15)

6.2.4 Generic Laplace-Beltrami Operator

From we can compute the generic metric in matrix form g;; and its corresponding
inverse matrix g%

b (FE-DTERT a1
= (T e i) (6.16)
with )
B (22 +y°+(1+6)?)

2
(14+6) (E+€2+4/T- (a2 +92) (€2 1) 126 +€2)
The determinant of (6.16) is

(2+1+67+17) " (@2 +42)E-1)—¢-1)
(14€) (6241 @92 (@D +261€7)
With all these elements we are now able to compute the Laplace-Beltrami operator
(6.4) which is represented by the differential operators

det(gij) = —

(6.17)

021 021 01 oI oI

Al=X 87y2 Jzry ox y

_ (1) 1) (La4y?)?
M= @) -2/ @D (6.19)

_ (=)= D (1+a>+y?)’
2 = @) -2/ @ D) (6.20)

N = 2zy(¢2—1)(1+a?+y>)? (6.21)

—1-€+H(E - D)@ +y?)-26y/1- (€@ - D@ +?)
Ny = et (€2 D) 61 @ D) (6.22)

1= (- 1) (a2 +y?) 261 (€ 1) (e +4?)

Ny = WD) (22822 D)6 /1@ D) (6.23)
—1-24(€2-1) (22 +y?)—261/1—(2 - 1) (a2 +y?)

An analogous process has been performed for the computation of the metric in
the normalized plane, but the representation of the equations is not suitable to show
in these pages. The code used to generate the equations can be downloaded from my
Websitdﬂ From now on we use the metric computed on the sphere.

"http://webdiis.unizar.es/~1lpuig/Mathematica_code/Mathematica_code_LBO.tar.gz
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6.3. Experiments

Algorithm 1: Smoothing catadioptric images using the heat diffusion equation

InI)Ut :I(x7y)vtadt7£7[xalyalxy7lmxvlyy
Output: I(z,y,t)

Initialize required variables

[cIx,cly,cIxy,clxx,clyy]<— CDCoeff (I(x,y), &)

ntimes < t/d;

I(z,y,t) < I(z,y)

for i < 1 to ntimes do
ImIx « cIx *Convolve(I(x,y,t), Ix)
Imly < cly *Convolve(I(z,y,t), y)
ImlIxy < clIxy *Convolve(I(z,y,t), [zy)
ImIxx < cIxx *Convolve(I(z,y,t), [zx)
Imlyy < clyy *Convolve(I(x,y,t), [yy)
LBO « ImIx + Imly+ImIxy+ImIxx + Imlyy
I(z,y,t) < I(z,y,t) + d: * LBO

end

6.2.5 Smoothing Catadioptric Images Using the Generic Laplace-
Beltrami Operator

We compute the smoothing of the catadioptric images using the heat diffusion
equation. This equation is computed at successive time steps, t; = k%o2 is defined
in terms of the normalization and scale factors k and the base smoothing level o.
The differentiation with respect to time in the heat diffusion equation is discretized
with time intervals, d;. To compute the discrete differential representations of the
image %7 275’ %, % and giyg we convolve the catadioptric image with different

kernels

. 1 0 10
I,=[-11), I, = [ 1] e =11 =2 1], Iy = [2] Ay = [1 —4 1] (6.24)
1 0 1 0
For a particular catadioptric system defined by £ we compute the corresponding
coefficients which multiply its corresponding convolved image. Then we
compute the Laplace-Beltrami operator. Finally, smoothing is performed by updating
I(x,y,t) with the differences computed at previous time steps.

6.3 Experiments

In this section we perform several experiments using synthetic and real images to
evaluate the scale space for different catadioptric systems. The synthetic catadioptric
images are generated using the raytracing software POV—rayEIand correspond to
images from an office sceneﬂ Two hypercatadioptric systems with mirror parameters
of & = 0.966m1) and ¢ = 0.7054°m2) are considered. We also consider one
paracatadioptric system £ = 1 with radius » = 2.5cm. The real images are acquired
using the hypercatadioptric system designed by Neovision (m1).

"http://www.povray.org
2http://www.ignorancia.org
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Figure 6.2: Smoothed catadioptric images with ¢ = 3. The first column corresponds
to mirror m1, the second one to mirror m2 and the third one to the paracatadioptric
system. The first row represents the original images, the second represents the
smoothed images and the last one the corresponding LB operators.

6.3.1 Smoothing of Synthetic Images

We follow the algorithm [I| with d; = 0.01. All the coefficients A\;, i = 1...5 are
computed once since they only depend on the geometry of the image and not on the
gray values. Fig. shows smoothed images with different mirrors at the same scale
factor t = 3. They also show the corresponding generic LB operator. We observe that
the geometry of each mirror is taken into account when the smoothing is performed.
The LB operator of m1 and the one corresponding to the paracatadioptric system are
similar since the mirror parameter is close to 1. In the LB operators of mirrors m1
and m2, we observe how the intensities and thickness of the edges vary with respect
to the distance to the image center. The differences between these LB operators are
explained since the geometries of these mirrors are different.

3http://www.neovision.cz
“http://www.accowle.com
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Figure 6.3: Comparison between generic LB operator and cartesian Laplacian. The
first row show the smoothed images for scales t = {1,2,3,5} using our approach.
The second row shows the corresponding generic LB operators. The third row,
the cartesian Laplacians. The last row presents the sum of the values (scaled for
visualization purposes) of the generic LB and the cartesian Laplacian as a function
of the radius of a circle with origin at the image center.

In order to verify the validity of our approach we perform an experiment where
we compare the generic LB operator computed using our approach to the cartesian
Laplace operator. To obtain this operator we smooth the omnidirectional image to
the same scale t, using the corresponding Gaussian kernel. Then, we compute the
Laplacian of this image using the cartesian operator I,,. We select the hypercatadiop-
tric (m1) image for which we compute scales ¢t = {1,2,3,5} and their corresponding
generic LB and cartesian Laplacian. In Fig. [6.3] we show the results. We observe that
the generic LB operator considers a difference between the pixels close to the center
and those close to the periphery, while the cartesian Laplacian has the same effect
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on all pixels, without taking into account their location with respect to the center.

To quantify the last statement we sum the values of the generic LB operator
inside circles with different radii and origin at the image center. We perform the
same procedure with the cartesian Laplacian. The last row of Fig. [6.3] shows the
comparison of these sums for the the different scales. We observe that the pixels
in the periphery have smaller values in the generic LB operator than those on the
normal Laplace operator. In the center where the resolution of the catadioptric
images is bigger the values of the Laplace-Beltrami operator and the normal Laplace
are similar.

1st octave, 1024 x 768 pixels

4th octave, 128 x 96 pixels

o B

Figure 6.4: Scale Space of a real omnidirectional image, composed of four octaves
and four scales per octave.

6.3.2 Scale Space on Real Catadioptric Images

In Fig. we show the pyramid that compose the scale space of a hypercatadioptric
image computed using our approach. We define the scale space to be composed of
four octaves and four scales per octave. The initial sigma is defined as t = 0.8 and
the rest are computed as explained in Section [6.2.5] The value of the smoothing
interval is defined as k = 2%/3.
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Figure 6.5: Repeatability experiment using synthetic hypercatadioptric images. (a)
Reference image. (b) Image generated with the catadioptric system rotated 80°
around the z-axis. (c) Percentage of correct matches through rotations of the
catadioptric system around the z—axis. The x—axis represents the orientation of the
catadioptric system in degrees with respect to the initial position.

6.3.3 Repeatability Experiment

In this experiment we test the repeatability of the extrema points detected with the
scale space computed using our approach. The extrema points are obtained from the
approximation to the scale-normalized Laplacian of Gaussian through differences of
Gaussians, similar to Lowe| (2004). We generate nine synthetic images with rotations
from zero degrees to eighty degrees around the z—axis, with steps of ten degrees
between each pair of images. The two extreme images are shown in Fig. We
observe a drastic distortion on the images, this is produced by the conic shape of the
mirror.

Since the rotation of the catadioptric system is known, we can map the detected
features in the reference image X to the subsequent images and compute the distance
between them. The matching criteria is the following

% — x| < 6 (6.25)

where, X is the mapped point. We use the Euclidean distance. The distance threshold
64 has to be adapted to capture the matches with different scale levels, which is
04 = 0o - tx with dg the distance threshold parameter.

We compare our approach to SIFT algorithm. In particular we use Vedaldi’s
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implementation Vedaldi (2007). In Fig. c) we show the results of this experiment.
We observe that the LB approach has a clear advantage over the classical SIF'T
approach, obtaining double repeatability than the scale space used by SIFT in extreme
camera rotations. The low rate shows the difficulties of matching catadioptric images.

6.4 Closure

We have presented a new way to compute the scale-space of omnidirectional images.
We integrate the sphere camera model which considers all central catadioptric systems
with the partial differential equation framework on manifolds to compute a generic
version of the second order differential operator Laplace-Beltrami. This operator
is used to perform the Gaussian smoothing on catadioptric images. We perform
experiments using synthetic images generated with parameters coming from actual
manufactured mirrors. We observe that Laplace-Beltrami operator considers correctly
the geometry of the mirror, since the pixels at the periphery have a different weight
than those at the center. This situation explains the natural non-homogeneous
resolution inherent to the central catadioptric systems. The near future work is to
implement a complete scale-invariant feature detector also invariant to camera since
the sphere camera model allows to consider all central projections.
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6.4. Closure

Outline

In next three chapters we present three different applications that use omnidirectional
systems to perform tasks of 3D localization and orientation for robotics applications.
Chapter [7] and Chapter [8| use a central catadioptric system, in particular a hy-
percatadioptric system, while Chapter [9] uses a different type of omnidirectional
camera, a polycamera, more specific the LadyBug camera, which is composed of 6
wide angle aligned cameras.

Chapter [7] introduces a new application to localize a robot in an indoors envi-
ronment. It combines the use of a visual memory of omniviews of the environment
stored in the robot memory with current images coming from a conventional camera
mounted on the robot. With the aid of the hybrid two-view geometry between
conventional cameras and catadioptric systems, the location of the on-board camera
is computed through the location of the epipole in the memory of omniviews. Then
with the use of the hybrid homography, that position in pixels is mapped to a position
on the ground plane in meters.

In Chapter |8 a new technique to compute the orientation of a hand-held cata-
dioptric system is proposed. It makes use of geometric information embedded in
man-made environments. In particular the projections of straight lines into images are
useful to compute the vanishing points from projections of parallel lines. Vanishing
points contain the orientation information of the camera with respect to the scene.
In hypercatadioptric systems the first problem we face is the extraction of such lines
from the images. They are no longer lines but conics. Then the next problem is to
compute the intersection of such conics, from which the vanishing points will emerge.
In this chapter we show the way we came up to solve this problem and to compute
the orientation of the hypercatadioptric system using the vertical and horizontal
vanishing points.

Finally in Chapter [9] we present a new way to generate a topological map
using only orientation information. We use the orientation information to identify
turns, assuming continuous motion from an image sequence. The detected turns are
confirmed by a traversality test. This traversality test is based on the computation of
the fundamental matrix from correspondences between two images. This test is also
used to identity possible loops on the image sequence and to identify the keyframes
of our topological map.
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Chapter 7

Self-location from Monocular
Uncalibrated Vision Using
Reference Omniviews

In this chapter we present a novel approach to perform indoor self-localization using
reference omnidirectional images. We only need omnidirectional images of the whole
scene stored in the robot memory and a conventional uncalibrated on-board camera. We
match the omnidirectional tmage and the conventional image captured by the on-board
camera and compute the hybrid epipolar geometry using lifted coordinates and robust
techniques, where the epipole gives the robot location in the omnidirectional image. We
map the epipole in the reference ommnidirectional image to a ground plane through a
homography in lifted coordinates also, giving the position of the robot in the planar
ground, and its uncertainty. We perform experiments with simulated and real data to
show the feasibility of this new self-localization approach.

7.1 Introduction

In recent years the use of catadioptric omnidirectional systems in mobile robot
localization and navigation tasks and in visual surveillance applications has increased
considerably. The main advantages of such systems is their wide field of view and
the central single view point property. These characteristics allow overcoming the
visibility constraint and help the geometrical analysis of the information captured
by catadioptric cameras. |Ishiguro and Tsuji| (1996]) describe a method for robot
localization from memorized omnidirectional views, which are stored using Fourier
coefficients; similarly, Pajdla and Hlavéc (1999) use the image phase of a panoramic
view for robot localization. |Cauchois et al.| (2003) present a method for robot
localization by correlating real and synthesized omnidirectional images, but they
can only handle small viewpoint changes. [Matsumoto et al.| (1999) present a similar
method based on simply comparing cylindrical gray-level images. In |[Goedemé et al.
(2007)) they propose their own representation which is called fast wide baseline feature
matching and the use of a topological map instead of a metric one. In [Briggs
et al. (2006) a new method for navigation and localization using a collection of 1D
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omniviews-memory [
omnidirectional
camera

ground plane meters

Homography

perspective
image

pixels

ROBOT

Figure 7.1: Main steps of the self-localization approach. Left: matching between a
perspective and an omnidirectional image. Center: computing the epipole gives the
location of the robot in the scene. Right: with a homography the position in pixels
is mapped to a position in meters in the ground plane.

omnidirectional images formed by averaging the center scanlines of a cylindrical
view is proposed. More recently some authors assume they have a sequence of

omnidirectional images stored in memory, (Courbon et al. (2008); Murillo et al.
2007a)) from which they find the closest to the current frame. In|Courbon et al.

@D a fisheye lens is used. The essential matrix is computed from the current
frame and the next in the visual memory, which is used to feed a control law to guide
the robot to the next position. In Murillo et al.| (2007a)) a catadioptric system is
used to perform a hierarchical localization. They go from topological localization
using features matching to metric localization using the trifocal tensor.

As we have seen many authors try to deal with the problem of navigation and
robot localization using omnidirectional images acquired by dioptric (fisheye) or
catadioptric system mounted on the robot. Many times this type of sensors are
expensive and not easily available as perspective cameras. Some other times the
omnidirectional sensors are in a fixed position (surveillance) or they are used to
explore a certain environment as in the Street View Systenﬂ In these cases we could
use a different type of sensor to acquire the current image and to perform a matching
between them.

7.2 Our Proposal

In this work we propose a new approach to localize a robot in an indoors environment.
We depicted the main steps of our approach in Fig. [7.I] A mobile robot with a
perspective camera on-board has a visual memory of omniviews stored in its memory.
When it acquires a new perspective image the following steps take place:

1. Matching. The perspective image is matched with one of the omnidirectional
images contained in the visual memory. We use a robust matching algorithm
with a geometrical constraint, in this case the hybrid epipolar geometry.

Thttp://maps.google.com
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Figure 7.2: (a) Putative matching using just SIFT. (b) Matching using the hybrid
fundamental matrix.

2. Projective location of the robot camera. We extract the epipole from
the hybrid fundamental matrix, which corresponds to the current position of
the on-board perspective camera in the catadioptric view.

3. Mapping the position in the image to the ground plane. Using the
planar homography H34, previously computed, we map the position of the
on-board camera, represented by the epipole, to the actual ground plane. At
this step we have the relative position of the on-board camera in meters with
respect to the origin of the ground plane.

We also studied the uncertainty of the location of a point in the ground plane
adapting the methodology developed for conventional cameras (Criminisi et al., [1999),
to omnidirectional ones.

7.3 Robot location in the omnidirectional image

As it is well known, the epipoles are the location of the camera center in one view
seeing by the other view. If we are able to extract the epipole in the omnidirectional
image, we can localize the robot camera in a wide field of view. When the epipolar
geometry is encapsulated by the fundamental matrix, the computation of epipoles is
reduced to extract the null vectors of such matrix. This problem is more complex
when we use omnidirectional images, the null vectors become null spaces. We have to
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Figure 7.3: Example of epipolar lines (a) and epipolar conics (b) computed from the
hybrid fundamental matrix F34.

compute the null-vectors from the null space that are valid lifted coordinates. From
these, the epipoles are extracted in a closed form. These process is explained in more
detail in section (.3.11

Before computing the epipoles we have to compute the fundamental matrix
between an omnidirectional image and a perspective one. In this work we use the
hybrid F34 fundamental matrix. We choose this matrix because it requires less
correspondences and its performance is good enough with the mirror shape we use
in this work. The hybrid fundamental matrix is:

q, F34G. =0 (7.1)

where q. is the 4-vector lifted coordinates of a point in the catadioptric image
and q, represents a point in the perspective image in homogeneous coordinates.

The automatic computing of the hybrid fundamental matrix starts with a putative
matching between the SIFT points from the flipped omnidirectional images stored
in the robot’s memory with the SIFT points extracted from the current image
acquired by the perspective on-board camera. This step can be observed in Fig.
7.2(a). Then using a RANSAC approach combined with the computation of the
hybrid homography the outliers are avoided (see Fig. [7.2(b)). Finally, using only
inliers a updated version of the hybrid fundamental matrix is computed. In Fig. [7.3
we can observe examples of epipolar lines and conics computed using the hybrid
fundamental matrix. A more detailed explanation of the robust estimation of the
hybrid fundamental matrix is given in section [5.5

7.4 From Omniview to Ground Location

In this section we explain the process to map a point in the omnidirectional image
to a position in the ground plane. We assume a planar robot motion. To perform
this task we calibrate the omnidirectional image with respect to the ground plane
using a homography with lifted coordinates. In this work we use the homography
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H34 previously studied in chapter This homography has the advantages of
being less sensitive to noise and to have high accuracy. The homography H34
maps a 4-vector lifted coordinates of a point in the omnidirectional image q. ~
(@ + 43, 163, 423, qg)T to a point in the ground plane qg, in homogeneous coordinates

qgp = H34q.. (7.2)

To compute this homography we require at least 6 correspondences qép &
between points 'in the ground plane qg, and lifted coordinates of omnidirectional
image points q, since each correspondence gives two equations and H34 has 11
degrees of freedom.

7.4.1 Uncertainty

Since the homography transformation produces a non-homogeneous uncertainty
distribution we studied the error propagation from omnidirectional images to the
ground plane. We analyze in particular the hybrid homography H34. We adapt the
approach proposed by |Criminisi et al| (1999)) to omnidirectional images using lifted
coordinates. We assume uncertain image points q with o4, = 04, = o the covariance
in the image coordinates, represented in matrix form as

Y= (C’; 0%) , (7.3)

and we consider an exact H34. Since we are dealing with lifted coordinates in the
image plane we use the Jacobian

2q1 2qo

0

J= s (7.4)
0

q
1
0
0

of this lifting to translate the error into the lifted coordinates ([7.5)) then we propagate
the error from the points in the image to the points in the plane (|7.6)).

Ag = JxJT (7.5)
Aq = H34AgH34T
As result we have a covariance matrix for homogeneous coordinates of a point

in the plane Q = (Q1,Q2,@3) which have to be converted into a 2 x 2 covariance
matrix AéXQ:

A?QXQ = VfAQV ST, where  Vf =1/Q3 < %3 633 :g; ) 7
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CFOV in radians 1.83 | 1.13 | 1.04 | 0.97 | 0.75 | 0.54 | 0.26
Baseline(m) 291 | 250 | 2.12 | 1.80 | 1.58 | 1.50 | 1.58
Number of Matches | 246 | 219 | 200 | 176 | 149 | 119 90

Error in pixels 0.57 | 0.84 | 1.08 | 1.25 | 2.86 | 4.96 | 25.83

Figure 7.4: Three different CFOVs, represented by the common observable points
(red points) depending on the position of the perspective camera (green square).

Table 7.1: Error in the epipole estimation depending on the CFOV, defined by the
baseline and the number of matches.

7.5 Experiments

In order to verify the behavior of our proposal we analyze the different steps that
compose it. In first place, we analyze the influence of the common field of view
(CFOV) on the accuracy of the localization of the epipole. Then some experiments
with the error propagation through hybrid homography are presented. Finally, the
influence of the height of the catadioptric system with respect to the ground plane
on the localization accuracy is tested.

7.5.1 Epipole estimation

We analyze different positions for the perspective camera in the scene and compute
the epipole in the omnidirectional image. We move the perspective camera along the
y—axis at a height of 0.5m in the same = coordinate as the omnidirectional camera.
Fig. presents three omnidirectional images showing the matched points in the
scene (red points) being in the Common Field of View (CFOV) of both cameras. We
naturally observe that moving the perspective camera decreases the CFOV causing
a reduction in the number of matches and decreasing the accuracy of the epipole
computed. We add Gaussian noise with ¢ = 0.5 to points in both images. Table
shows the estimation of the epipole location depending on the size of the CFOV.
We observe that even when we have enough correspondences to compute the hybrid
fundamental matrix the estimation of the epipole could be 25 pixels far from the real
value. This is explained because these correspondences are localized in just a small
part of the omnidirectional image.
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Figure 7.5: Propagation error in the plane using H34. (a) Omnidirectional image
with Gaussian distributions in the central area (green) and in the periphery (blue).
Theoretical ellipses of uncertainty corresponding to the points close to the center (b)
and the points in the periphery (c).

Figure 7.6: Omnidirectional images of the pattern at two different heights with the
reprojection of the pattern points. (a) height = 50cm. (b) height = 100cm.

7.5.2 Uncertainty

Here we show the error propagation through H34. We select a point in the grid
used to compute the homography. This point is used as the center for a Gaussian
distribution with o = 1 pixel. In Fig[7.5] we observe the error propagation in the plane
corresponding to two different points in the omnidirectional image, one close to the
center Fig. b) with an error of +1.35¢m and the other one close to the periphery
Fig|[7.5(c) with an error of +14.66cm. We observe that the error varies depending on
the position in omnidirectional image. This is because of the perspective effect, since
there is high uncertainty approaching the line (conic) of the horizon of the ground
plane, which corresponds with far away observations.

7.5.3 Homography using real images

Here we test the influence of different heights of the omnidirectional camera on the
location accuracy. The plane used has 7 x 7 points and the distance between them
is 40cm giving a pattern of 240 x 240cm. The omnidirectional camera is located at
the center of the scene. In Fig. we can see two different omnidirectional images
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Real position | Estimated H50 | Estimated H100
Point 1 (154,-114) (155.92,-112.49) | (154.90,-110.92)
Point 2 (260,108) (266.07,106.22) | (259.70,106.39)
Point 3 (0.0,-471) (0.02,-469.36) (0.01,-467.62)

Table 7.2: Estimations of position in the plane using the lifted homography

l‘ 1 15 2 25 3

Figure 7.7: (a) Matching between omnidirectional and perspective images. (b) Epipo-
lar conics corresponding to the matched points. (¢) Epipole trajectory superimposed
in one single omnidirectional image. (d) Uncertainties of the epipoles in the ground
plane, units are in meters.

obtained from two different heights, 50cm (H50) and 100cm (H100), respectively.
We also show the reprojection of the points used to compute the homography. To
test the performance of the homographies we select three points that do not belong
to the pattern. The goal is to check the accuracy for points that are far from the
image center. Table shows the location results of this experiment in centimeters.
This inaccuracy is caused by the perspective effect and by the non-homogeneous
resolution of the omnidirectional image, a few pixels in the periphery of the image
means more distance than the same pixels close to the image center.

7.6 Self-localization of the robot

Here we show the behavior of the whole self-localization system (see Fig. . We
have a single omnidirectional image of the scene stored in the robot memory which
was acquired with a hypercatadioptric systenﬂ with a resolution of 1024 x 768pixels
and we acquire perspective images from a conventional camera at a resolution of

http://neovision.cz
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1024 x 768pixels at different positions. We match the perspective image with the
omnidirectional one to compute the fundamental matrix (Fig. [7.7[(a)). We observe
that the features have to be distributed in a wide part of the omnidirectional image to
have a good estimation of the epipole (Fig. (b)) The height of the omnidirectional
camera has already been calibrated with respect to the on-board perspective camera.
The robot follows a simple straight path, advancing for 3.5m. In Fig. (c) we show
the estimated epipoles at different times superposed in a single image. Fig. [7.7(d)
shows the uncertainty estimation of the position of the on-board camera. We observe
that the estimation of the position is better when the camera is in the central area
of the omnidirectional image. When the camera is in the periphery the location
uncertainty increases as expected.

7.7 Closure

We presented a new approach to perform robot self-localization, mixing reference
omnidirectional images and perspective images. We avoid the use of any catadioptric
system by storing the omnidirectional images of the scene in the robot memory. The
only sensor used is the on-board perspective camera installed on the robot. We
propose a schema where the epipole, computed from the hybrid fundamental matrix,
in the omnidirectional image is mapped to a ground plane by a hybrid homography
previously computed. We observed that the accuracy of the epipole estimation
depends on how well the correspondences are distributed in the perspective and
omnidirectional images. We observed that the major drawbacks in practice are
the hybrid matching and the computation of epipoles. In both cases the features
must be well distributed in both images which is difficult when the CFOV is small.
We also observed a high inhomogeneous uncertainty related to the position on the
omnidirectional image, which is however well coded in our model.
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Chapter 8

Orientation of a Hand-held
Hypercatadioptric System in
Man-made Environments

In this chapter we present a new approach to extract conics from catadioptric images,
in particular those which represent the projection of 3D lines in the scene. Using the
internal calibration and two image points we are able to compute the catadioptric image
lines analytically. The presence of parallel lines in man-made environments is exploited
to compute the dominant vanishing points in the omnidirectional image. The vanishing
points are extracted from the intersection of two conics in the catadioptric image, which
represent parallel lines in the scene. This intersection is performed via the common self-
polar triangle associated to this pair. From the information contained in the vanishing
points we obtain the orientation of a hand-held hypercatadioptric system. This approach
is tested by performing vertical and full rectifications in real sequences of images.

8.1 Introduction

In robotics when a catadioptric system is used it is commonly observed that it
has a vertical orientation. This is because most robotic platforms used are wheel-
based. Under this configuration planar-motion and/or 1D image geometry is assumed
which reduces the degrees of freedom (DOF) of the problem (Guerrero et al., 2008).
Moreover, in applications where line tracking or line matching is performed this
assumption is useful (Mezouar et al., [2004; Murillo et al., 2007b). Besides that
there exist robot platforms where the vertical assumption is not satisfied and they
require the development of new algorithms to interact with the environment. One
of this algorithms can be a self-orientation system to be used for stabilization of a
biologically-inspired humanoid robot platform (Miyauchi et al. 2007)). One of the
advantages of the non-vertical configuration is that both the horizontal and vertical
vanishing points are present in the image and can be computed by the intersection
of parallel lines. In man-made environments we can observe sets of parallel and
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orthogonal lines and planes that can be exploited to compute the orientation of the
system (Kosecka and Zhang, [2002). However, the extraction of lines in catadioptric
images becomes extraction of conics. Five collinear image points are required to
extract them in the uncalibrated case. However, two points are enough if we take
advantage of the internal calibration of the catadioptric system. We call these lines,
catadioptric image lines (CILs). Some works have been proposed to deal with this
problem. In (Vasseur and Mouaddibj, 2004), the space of the equivalent sphere
which is the unified domain of central catadioptric sensors combined with the Hough
transform is used. In (Ying and Hul, 2004b) they also use the Hough transform and
two parameters on the Gaussian sphere to detect the image lines. The accuracy
on the detection of these two approaches depends on the resolution of the Hough
transform. The higher the accuracy the more difficult to compute the CILs. In (Mei
and Malis|, [2006]) the randomized Hough transform is used to overcome the singularity
present in (Vasseur and Mouaddibj, 2004; Ying and Hu, 2004b) and to speed up
the extraction of the conics. This scheme is compared in converge mapping to a
RANSAC approach. In (Bazin et al., 2007) an scheme of split and merge is proposed
to extract the CILs present in a connected component. These connected components,
as in our case, are computed in two steps. The first step consist of detecting the
edges using the Canny operator. The second step is a process of chaining which
builds the connected components. In contrast to (Vasseur and Mouaddib, [2004;
Ying and Hu, 2004b; Mei and Malis|, 2006|) our approach does not use the Hough
transform, instead we compute the CIL directly from two image points present in a
connected component. Then a RANSAC approach is used to identify the points that
belong to this conic. As opposed to (Bazin et al., 2007)) we use an estimation of the
geometric distance from a point to a conic instead of an algebraic distance. Notice
that a connected component can contain more than one CIL and the process has to
be repeated until all CILs are extracted.

Once we have extracted the lines in the catadioptric images (CILs) we need to
compute the intersection of parallel CILs to extract the vanishing points. In this
paper we propose a modification to the computation of the common self-polar triangle
(Barreto, 2003) in order to compute the intersection between a pair of CILs. Instead
of having four intersections points between two general conics we have just two in
the case of CILs. When this intersection corresponds to parallel CILs these points
are the vanishing points. We compute all the intersection between the CILs present
in the image. Then with a voting approach we robustly determine which ones are
the vanishing points. The first vanishing point to compute is the vertical vanishing
point (VVP) from which we are able to perform a rectification of the omnidirectional
image. With this rectification we obtain an omnidirectional image fitting the vertical
assumption and the applications designed with this constraint can be used. Using
an analogous process we compute the horizontal vanishing point (HVP). From this
HVP we compute the last angle that gives the whole orientation of the catadioptric
system.
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Figure 8.1: Computing a CIL with (a) using the five point approach. (b) using our
approach with only two close points. The central blue point corresponds to the
vertical vanishing point.

8.2 Catadioptric Image Lines (CIL) Computing

In this section we explain the method used to extract the CILs from two image
points. As mentioned before in the case of uncalibrated systems we require five
points to describe a conic. If these points are not distributed in the whole conic, the
estimation is not correctly computed. Another disadvantage of a 5-point approach
is the number of parameters. When a robust technique is used, like RANSAC this
is quite important, because the number of iterations required hardly increases with
the number of parameters of the model. Our approach overcomes these problems
since two points are enough. As we assume the calibrated camera we can describe
the conics using only two parameters and the calibration parameters, which allows
to extract the CIL from 2 points. We compute the points in the normalized plane
r=(szsys) =(zyl) using the inverse of matrix K

r=Klq. (8.1)

As previously presented, a 2D line n in the normalized plane, which corresponds
to the projection of a 3D line under the sphere camera model, can be represented
as n = (Ng, Ny, nz)T. The points r in the normalized plane lying on this line satisfy
r"Qr = 0, where Q is defined as

ni (1 — 52) — n§§2 NNy (1 — 52) NgN
Q= Ny (1 - 52) ”12; (1 - 52) —n2e% nyn, (8.2)
Ny NyNz ng

Developing the relation r' Qr = 0 and after some algebraic manipulation we
obtain

(1 — 52) (ngx + nyy)2 +2n; (nzx + nyy) + nz (1 — &2 ($2 + y2)) =0 (8.3)
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simplifying
(1-¢r*)p*+28+(1-€) =0 (8.4)
where a change of variable to 8 = " andr? =2 + 42 is performed. We can
NgT + NyY
compute 8 by solving the quadratic equation
1 £

8= 1+7r2(1-¢&?) (8.5)

— +
1— 527«2 1— 527«2

After solving this quadratic equation we compute the normal n. Consider two
points in the normalized plane x; = (z1,91,1)" and x3 = (x2,y2,1) . From 1} we

compute the corresponding 51 and (2. Notice that there exist two solutions for £
and just one has a physical meaningﬂ Using these parameters we obtain the linear

system
1 Ny
Ty —g 0 >
( T2 Y2 —% ) v ( 0 (8.6)
Since n is orthonormal n2 + ng +n? = 1. Solving for ny, n, and n, we have

_w/Bwp/b o wfBime/B o sty g

v 1% 1%

T

with v = \/(w2y1 — 2192)? + (Y1 /B2 — y2/B1)? + (x2/B1 — x1/B2)2.

Notice that we have analytically computed the normal n that defines the projection
plane of the 3D line. In Fig. [8.1) we show a comparison of the computing of a image
line in the uncalibrated case using five points, and the calibrated case using our
approach with only two points. In this figure we can observe that our approach
obtains a better estimation even with two very close points. We also observe that
the distance of the conic to the vanishing point using our 2-point approach is much
better that the general 5-point approach.

8.2.1 Catadioptric Image Lines Extraction

Our line extraction proposal can be explained as follows. First we detect the edges
using the Canny algorithm. Then the connected pixels are stored in components. For
each component we perform a RANSAC approach to detect the CILs present into
this component. Two points from the connected component are chosen randomly
and the corresponding CIL is computed. The distance from the rest of the points to
this CIL is computed. The points with a distance smaller than some threshold vote
for this CIL. The process stops when the number of points that has not voted for
any conic and the number of points in the component are smaller than a threshold.
In Fig. [8.2] we can observe the three main steps to extract the CILs.

!'We have observed that the negative solution is the correct one.
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(b)

Figure 8.2: Extraction of image lines (CILs). (a) Canny edge detector result, (b)
connected components and (c) CILs extracted.

8.2.2 Distance from a point to a conic

In order to know if a point x lies on a conic C we need to compute the distance
from a point to a conic. Two distances are commonly used to this purpose. The
algebraic distance defined by which just gives an scalar value and the geometric
distance, which gives the distance from this point to the closest point on the conic.
This distance is more difficult to calculate and its computing is time consuming. We
propose an estimation to this distance replacing the point-to-conic distance by a point-
to-point distance (see Fig. . Our proposal is based on the gradient of the algebraic
distance from a point x. to a conic represented as a 6-vector C = (¢, ¢, ¢3, ¢4, C5, Cg)

datg = c12° + cozy + c3y® + ca + sy + . (8.8)
We define the perpendicular line to a point that lies on the conic C as
Vd
0] =xc+ An(x.), where  n(x.) = _alg (8.9)
||Vdalg||

The normal vector n is computed from the gradient of the algebraic distance.

of
Vdalg:<g%>:(2clx+62y+64> (8.10)

cox + 2c3y + c5

When a point does not lie on the conic x, we can compute an estimation to its
corresponding perpendicular line using the property that n(x.) = n(x,+Ax) ~ n(x,)

Zo + Aestﬁx(xo) )

- 8.11
Yo + )\estny (Xo) ( )

gest =X, t+ )\estﬁ(xo) = <

To compute Acgy we substitute @ by o + Aestz(Xo) and y by yo + AestTiy(%,0) in
(8.8), giving a quadratic equation
Aot (€172 + Cofigtiy + €3712) +Aest (201710 + 2¢370y + Co(Toity + Yoita)) +

@ ) )’ (8.12)
C1xg + c2oyo + €3y + caxo + csyo + 6 = 0

C
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Figure 8.4: Intersection of two CILs in

Figure 8.3: Approximation to the dis- .
the normalized plane.

tance from a point to a conic.

We observe that A\.s gives the two distances that intersect the conic so, we choose
the closest to x, as the distance from that point to the conic d = ||x, — X¢|| = Aest-

8.3 Intersection of Two CILs

In a general configuration, two conics intersect in four points. The intersection
of these points define three distinct pair of lines. The intersection of these lines
represent the vertices of the self-polar triangle common to a pair of conics (Barretol,
2003). We study the particular case where two CILs intersect, which is a degenerate
configuration with just two intersection points. As we observe in Fig. there exist
a line r that intersects these two points and the origin of the normalized plane. Our
goal is to compute this line and from it to extract the two intersections of the conics
that correspond to points P™ and P~.

Let n; = (nzl,nyl,nzl)T and ny = (nm,nyQ,nzg)T two normal vectors represent-
ing the projection of two lines in the scene and Q; and Q9 two conics representing the
image lines in the normalized plane. The vertices of the self-polar triangle associated
to the pencil Q(\) = Q1 + AQ satisfy

det(Ql + )\Qg) =0. (8.13)
If we develop this constraint we obtain a third order polynomial where just one
of the solutions is real and it corresponds to A\; = —n2;/n2,. So, the null-space of
QA1) = Q1 + A1y is the line r, expressed in a parametric way as
r=pev=p (Ux> = p (ninylnzl B ngln‘wn”) (8.14)
Uy N2 My Nzy — N2, Mgy Mz

The intersection of this line to both ©Q; and Q gives the two points P+ and P~.
To obtain them we solve for p in (8.15)) and substitute in (8.14)).

,uQ(clvi + Ccovpvy + 0311;) + p(cavy + csvy) + c6 = 0. (8.15)
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Figure 8.5: (a) Configuration of the catadioptric system in a hand-held situation.
(b) The VVP is in the center of the image. (¢c) The VVP moves in the vertical axis
when the camera rotates around the x-axis. (d) The VVP rotates around the image
center when the camera rotates around the z-axis.

8.4 Vanishing points and Image Rectification

The vanishing points indicate the intersection of image lines corresponding to parallel
lines in the scene. In vertical aligned catadioptric systems, vertical lines are radial
lines in the image representation. Their intersection point, the vertical vanishing
point (VVP), is located at the image center. When the camera is not vertically
aligned, the radial lines become conic curves. In this case the VVP moves from
the image center and its new location contains important information about the
orientation of the camera with respect to the scene.

We use a classic algorithm to detect the VVP. Let m be the number of putative
vertical CILs detected in the omnidirectional image and let n; their corresponding
representation in the normalized plane. For every pair of CILs (there is a total of
m(m — 1)/2 pairs), we compute their intersection as explained above. Then for each
line n; we compute the distance to these points. If the line is parallel to that pair of
CILs the distance is smaller than a threshold and then that line votes that possible
VVP. The most voted point is considered the VVP.
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8.4.1 Image Rectification

Here we explain the relation between the VVP computed in the normalized plane
and the orientation of the catadioptric system. Writing the VVP in polar coordinates
Xop = (Pups va)T (see Fig. (d)) we observe that there exist a relation between
the angle 0,, and the angle ¢ representing the rotation of the catadioptric system
around the z-axis . The negative angle is produced by the mirror effect which
inverts the catadioptric image.

¢ = =0y (8.16)

We observed that the component p,, is intrinsically related to the rotation angle
o and the mirror parameter £ of the catadioptric system. Since angles ¢ and ¢ are
independent, we consider the case where ¢ = 0 (see Fig. [8.5(c)). Using and
with a pair of parallel CILs in polar coordinates we compute the following
relationship

sin
Pop = 2 (8.17)

S cosp &

A lookup table can be built to speed up the computing of the vertical orientation.
An analogous process is performed to detect the horizontal vanishing point. With
the information provided by this point we are able to compute the full orientation of
the catadioptric system.

8.5 Experiments

In this section we present some experiments rectifying real images. We acquire
an image sequence with a calibrated hand-held hypercatadioptric systenﬂ. The
calibration was performed using (Mei and Rives|, 2007). The process to extract the
vanishing points and to perform the rectification can be summarized as follows: i) the
edges are detected by the Canny operator; ii) the process to construct the connected
components is performed; iii) a RANSAC approach is performed for each connected
component to extract all CILs present on it; iv) all CIL intersections are computed
and the vanishing points are estimated; v) the vertical correction is performed using
the orientation information obtained from the VVP; vi) The full rectification is
performed using the orientation information contained in the HVP.

In Fig. we show an example of full rectification using our approach for a
single frame of the image sequence. We observe how the VVP and the HVP are
computed. Once the rectification angles are computed we align the image to the
reference system given by the scene itself. This allows to see how the only movement
present in the sequence is translation (Fig. [8.7)).

http://www.neovision.cz/
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Figure 8.6: Example of full image rectification. (a) Frame 1 of the image sequence.
(b) Conic extraction using our approach. (c¢) Putative vertical and horizontal van-
ishing points. Yellow circles represent putative vertical vanishing points. The blue
ones represent the putative horizontal vanishing points and the green ones are the
intersections points that cannot be consider either vertical or horizontal vanishing
points. The white square is the estimated HVP and the black one is the VVP. (d)
Full-rectified image. The vertical CILs are shown in white and the horizontal ones in
red.

Frame 107 Frame 242

Figure 8.7: Panoramic representation of two full-rectified frames. Vertical lines are
shown in white and horizontal ones in red. The horizontal vanishing point is aligned
to the image center.
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8.6 Closure

In this chapter we presented a new way to extract lines in omnidirectional images
generated by a calibrated catadioptric system. We only use two points lying on
the CIL and an approximation to the geometric distance from a point to a conic.
We also showed how to compute the intersection of two image lines based on the
common self-polar triangle. From the intersection of CILs we compute the vertical
and horizontal vanishing points, which contain the orientation information of the
catadioptric system with respect to the scene. To show the effectiveness of this
approach we perform experiments with real images. We compute the orientation of
a hand-held hyper-catadioptric system through a video sequence.
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Chapter 9

Topological Map from Only
Orientation Information

In this chapter we present a new way to compute a topological map using only orientation
information. We exploit the natural presence of lines in man-made environments in
dominant directions. We extract all the image lines present in the scene acquired by an
omnidirectional system composed of 6 aligned wide angle cameras. From the parallel
lines we robustly compute the three dominant directions using vanishing points. With
this information we are able to align the camera with respect to the scene and to identify
the turns in the trajectory, assuming a Manhattan world where the changes of heading in
the navigation are related by multiples of 90 degrees. We also use geometrical image-pair
constraints as a tool to identify the visual traversable nodes that compose our topological

map.

9.1 Related Work

In the field of robotics the representation of the space plays a very important
role. In general this representation allows the robot to perform different tasks to
interact with the environment. Among these tasks we can mention localization, path
planning, navigation, etc. Along the years several representations have been proposed
but |[Kuipers (1999) proposes the Spatial Semantic Hierarchy where four levels are
considered. The two most used in the literature are the metric and the topological
maps. The metric maps are quantitative representations of the environment. This
representation usually uses raw data or lines and has some disadvantages. It requires
accurate determination of the robot position, it is inefficient for planning, the
resolution does not depend on the complexity of the environment (Thrun and Bcken,
1998). On the other hand the topological maps are purely qualitative, and many of
its benefits are independent of the accuracy or even the existence of quantitative
knowledge of the environment. These characteristics make the topological maps
robust to poor odometry and position errors. Topological approaches represent
the environment using a graph structure where nodes represent different places
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in the world and edges denote traversable paths between them (Goedemé et al.,
2006). Furthermore, the elements of the topological map are strongly related to the
semantics of the environments.

There exist several approaches that deal with the automatic generation of topolog-
ical maps. The difference between them depends on the method and the sensors used.
Tapus et al.| (2004)) use two laser range finders and one omnidirectional camera. They
propose the concept of fingerprints to characterize the places visited by the robot and
the partially observable Markov decision processes (POMDP) for global localization.
Goedemé et al.| (2006]) try to identify the loop closings. This happens when the
robot revisits a place. More specifically, an equivalent sensor reading occurs twice
in the sequence. They use a single omnidirectional sensor and the Dempster-Shafer
theory to model the uncertainty. Rybski et al.| (2003) use a panoramic sensor and two
different types of features, the Kanade-Lukas-Tomasi (KLT') and 3D color histograms.
The map is modeled as a physics-based mass and spring system. More recently
Booij et al.| (2007)) propose an appearance based topological map. They also use an
omnidirectional system combined with the planar motion constraint and the epipolar
geometry. They use the number of inliers and outliers to define a similarity value
that links different locations. These are the edges of the topological map.

9.2 Our Approach

In man-made environments the presence of straight lines is common (Murillo et al.,
2007a)). Moreover, these lines are aligned with the principal orthogonal directions of
the world coordinate frame (Kosecka and Zhang), 2002). From the images of parallel
lines we can compute the orientation of the camera with respect to the scene. With
the relative orientation of the camera and the guaranty that frames are reachable to
each other and the temporal ordering constraints given by a video sequence, we decide
to explore the creation of a topological map using only orientation information. With
the use of lines we overcome some problems of feature-based approaches, such as lack
of texture in the scene or the similarity of features, which is commonly observed in
long corridors.

We propose to combine the orientation information with the epipolar geometry to
build a topological map in an indoor environment. We extract the orientation of each
frame with respect to the scene using the vanishing points. The changes of direction
are detected when two consecutive frames have a drastic change on their orientation.
We use a feature matching, particularly SIFT Lowe| (2004)) features, between these
frames to identify the direction of the turn. Finally, the epipolar geometry is used to
identify the frames that represent the nodes in the topological map. We compute
the essential matrix between every n frames from which we extract the rotation
component and compare to that obtained from the visual compass. If they are
coherent we recompute the essential matrix with the next frame. The process stops
when either the rotations are not coherent or the essential matrix computation fails.
We choose the last frame as a new node in the topological map and the process
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restarts.

9.2.1 Computing the relative orientation

In this work we use a polycamera which is composed of 6 aligned wide-angle cameras,
having a unified reference system for the device as a whole. The position of each
camera with respect to this reference systems is given by the manufacturer, who also
provides the calibration of each camera. With the calibration and the alignment
information we are able to transform any point in the images to its corresponding
ray on the unitary sphere.

We compute the relative orientation of the camera with respect to the scene based
on the computation of the vanishing points. The vanishing points are computed
using a voting scheme. The first step consist of extracting the line segments 1; present
in every single image. The Canny extractor is used to extract the edges, then a
link function is used to compute the connected components. The two endpoints
of one of these connected components are qi,qe in the image plane. Using the
calibration and the global reference system we transform such points into s; and s
lying on the unitary sphere. The line segment passing through the two endpoints is
represented by a plane normal of a plane passing through the center of projection
and intersecting the sphere in a line 1, such that 1 = s; X s3. The unit vectors
corresponding to the plane normals 1; can be viewed as points on a unit sphere.
The vectors 1; corresponding to parallel lines in 3D world all lie in one plane. The
vanishing direction then corresponds to the plane normal where all these lines lie.
Given two lines the common normal is determined by v, =1; x ;. Then, for every
pair of plane normals we compute putative vanishing points v,,. The number of total
putative vanishing points corresponding to n plane normals are (n(n — 1)/2). The
third step consist of computing the distance between the putative vanishing points
and all the plane normals. Since in the noise free case 1;1 v,, = 0, we use this product
as a measure of error of the line 1; pointing in the dominant vanishing direction
V. The plane normals with a distance smaller than some threshold vote for the
corresponding vanishing point. The most voted is chosen as the first vanishing point
v;. Then we look for the second most voted and orthogonal to the first vanishing
point v;. Then we look for the third most voted vanishing point v, and orthogonal
to the other two. If just two vanishing points are computed, the third one is obtained
by computing the cross product of the other two v; = v; X v;. Since the vanishing
points are projections of the vectors associated with three orthogonal directions 4, j,
k, they depend on rotation only. In particular we can write that

v; = Re;, v; =Rej, vi =Re. (9.1)

From matrix R we can extract the orientation angles corresponding to the three main
axis (a, 3, 7).
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9.2.2 Topological Map

Topological maps try to simplify the representation of the environment by modelling
space using graphs. This representation is suitable when we just need to know if a
new place is reachable from our current position. In this case the metric information
of the environment is not needed. Depending on the task, topological or metric maps
are required to solve different problems. In this section we explain how to construct
a topological map from orientation only information. In this work we represent the
frames as nodes and edges meaning visual traversality between such frames.

Keyframes

The computation of the keyframes is performed in two steps. The first step is to
identify the keyframes from only orientation information. The frame where a change
of direction, i.e. a turn, is detected and added to the topological map automatically.
The change of direction of the motion axis is detected when a change of approximately
7/2 is observed in the magnitude of the angle of the main horizontal axis in two
consecutive frames. However, this change can also be observed in other circumstances.
To avoid false detection of turns we compute the visual traversality test between
the fifth frame prior to and the fifth frame after the possible turn frame. The visual
traversality test is explained in detail below. If these two frames are not connected,
the turn has been performed and the turn frame is added to the topological map.
This vanishing points based approach gives us the existence of a turn of 90° but the
projective information does not give the direction of turn. In order to identify the
direction of the turn (+90° or —90°) we measure the average motion in pixels of the
features in the two analyzed frames. If the features move to the left, the motion
performed by the camera is to the right and vice versa. When a turn is performed,
the direction of motion is assigned to the new one that is detected. This means that
the two horizontal axis are switched, an event that is recorded only in the topological
map.

In the second step we compute the visually traversable nodes of the topological
map. To decide if two frames are connected (visually traversable test), we compute
the essential matrix E = [t] xR between the frames f; and f, using a correspondence-
based approach. SIFT points are the most used local and robust features and we
use them in this work. From the essential matrix we extract the rotation matrix R
and translation vector t as explained in Hartley and Zisserman| (2000). Then we
compare the rotation matrix R to the one obtained from the combination of the
rotation matrix of f; and fo with respect to the scene, R, = RiRy", respectively. It
is graphically presented in Fig. 9.1} If both matrices are congruent and the number
of SIFT correspondences is bigger than a threshold, the two frames are connected.
In the real world, the interpretation is that the space between the two frames is
visually traversable. In this case we increment fs by n frames and compute again
the essential matrix. When the computing of the essential matrix is not possible,
that means the space between f; and fs is not visually traversable. In this case we
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world reference
system

Figure 9.1: Relation between the rotation matrices from Essential matrix and from
vanishing points.

Figure 9.2: Lines corresponding to the computed vanishing points.

add the frame f; as a visually traversable node to the topological map. We restart
the computation of the essential matrix with the node f as the initial image and
look for the next visually traversable node as explained before.

9.3 Experiments

In this section we present the experiments using an indoor sequence acquired by
an omnidirectional camera composed of 6 perspective camerasﬂ We use a total of
17,000 frames (3400 by each camera, the top sensor is not used). The trajectory
performed involves several turns inside a building. The calibration of the individual
cameras and the alignment matrices of the cameras with respect to the camera head
coordinate frame are given by the manufacturer.

Ladybug 2 http://www.ptgrey.com/
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Figure 9.3: Rotation angle around z-axis in radians corresponding to the to the
frame number indicated in the horizontal axis of the plot (red). In blue, number of
lines supporting the z-axis vanishing direction. In green, number of lines supporting
the y-axis vanishing direction. Both numbers are scaled by 0.01. (a) Whole sequence.
(b) Turn performed in the trajectory. (c) Change of orientation with respect to the
scene.

9.3.1 Orientation computation

As we mentioned before, the first step of our approach is to compute the vanishing
points. In Fig. [0.2] we observe the extraction and classification of the lines from the
cameras used by the omnidirectional system. Each color represents a direction in the
scene. From the three vanishing points obtained we extract the rotation angles for
each axis. As the camera moves on a platform an almost planar motion is performed.
The motion around the x-axis is the main motion observed through the trajectory.

In Fig. a) we show the computation of the rotation angle corresponding to
the main axis of the omnidirectional camera and the number of lines (scaled by 100)
supporting the two main directions of this system. We observe changes of magnitude
of /2 in consecutive frames. This displacement indicates a possible change on the
axis of motion. A few examples of these possible turns are the frames 287, 686, 1357,
3018 and 3081. We analyze two particular cases, given by frames 287 and 1645. In
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Figure 9.4: Change of direction corresponding to a turn detected in two consecutive
frames (a) and (b). (c) frame aligned to the new scene, the turn has been completed
(0.064 radians).

the first case (Fig. [9.3(b)), we observe an orientation change of 1.46 radians. In this
case a turn has been performed, from left to right. We observe that the number of
lines supporting the main axis decreases (blue) while the number of lines supporting
the other non-vertical orthogonal axis increases (green) and at the frame where the
turn is detected a switch is performed. In Fig. we show the two frames where the
turn was detected and a frame where the camera is aligned to the new position in
the scene, i. e. when the orientation angle of this frame with respect to the scene is
close to zero. In this particular case the turn has been performed in approximately
20 frames. To detect the turns performed in the opposite direction (right-to-left),
we observe the changes of orientation of magnitude close to 7/2. From negative to
positive values.

The second case analyzed corresponds to the 1645 frame (Fig. [0.3|(c)) where a
change of 1.53 radians has been observed. In this case the radical change on the
orientation does not correspond to a turn. The angle between the main axis of the
camera reference system and the motion axis is bigger than 7/4. In this case, the
camera is pointing to a different direction from where the motion is performed. A
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Figure 9.5: Change of direction that does not correspond to a turn. (a) frame 1645.
(b) frame 1672. (c) frame 1713. (d) Visual traversality test between frames 1640 and
1650.

characteristic of this behavior is that the camera is not aligned to the scene, i.e. its
orientation is not close to zero. The end of this phase is identified when there is a
change in the orientation from a negative value to a positive one with a magnitude
close to 7/2 (see Fig. [9.3|(c) frame 1713). In this case we also observe how the number
of lines supporting the two non-vertical directions switches when the radical change
of orientation is observed. The start, middle and ending steps of this phase can be
observed in Fig. [0.5(a-c). Fig. [0.5(d) shows the SIFT correspondences between the
frames 1640 and 1650. The number of correspondences indicates that the two frames
are connected. Therefore this change on the orientation does not correspond to a
turn.

9.3.2 Drawbacks of the approach

It is possible that the lines present in the scene are not aligned with the principal
orthogonal directions of the world coordinate frame. In this case the estimation of
the vanishing points is not reliable. We can observe this situation in Fig. a),
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Figure 9.7: Connected frames. Frames 35 and 45. (a) Putative matches. (b) Robust
matches.

from frame 200 to frame 283. An example of the lines detected in this situation can
be observed in Fig. [0.6]

9.3.3 Building Topological Map

In order to build a topological map we need to identify the keyframes that represent
the nodes. Above we explain how to identify the turn frames. These frames are added
to the topological map. The rest of keyframes are computed using an essential matrix
to identify the visual traversable frames. The essential matrix is computed using a
feature based approach. We extract the SIFT points from two frames. To have a
better distribution of the points we use a bucketing in every image. We match these
well distributed points to have the first putative correspondences (see Fig. 9.7(a)).
The presence of outliers is inevitable. In that order we use a robust approach with a
geometric constraint to avoid the outliers Fig. (b) With eight correspondences
we compute the essential matrix. From which we extract the rotation matrix.
From the rotation matrices corresponding to the two frames we extract the
rotation angles corresponding to each axis. If the difference between the angles is
greater than a predetermined threshold or the number of matches is less than 10,
these frames are not connected. In Fig. [9.8 we observe two non-connected frames. In
this case the second frame is selected as a keyframe and it is added to the topological
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Figure 9.8: Non-Connected frames. Frames 675 and 685. (a) Putative matches. (b)
Robust matches.

map. When the frames are connected we recompute the essential matrix with the
next frame and repeat this action until we find a couple of non-connected frames.
Fig. shows two frames that are connected.

As mentioned before we detect the turns in the trajectory (Fig. . To identify
the direction of the turn we verify the motion of the features between the two frames
where the turn was detected. An example of the topological map created by our
approach can be observed in Fig. The red circles are the detected turns and the
green ones are the visually traversable frames computed by the epipolar geometry.
The distance between the nodes is related to the number of frames that separates
them. We also observe the corresponding orientation of the frame with respect to
the scene. We take the orientation of the first frame as the world reference system.
The trajectory corresponds to a loop. The initial and final keyframes are not close
since we do not have the correct scale to plot the map. We observe that the initial
and final frames have a similar orientation. The blue circles represent areas where
a change of orientation is detected but it does not correspond to a turn (see Fig.
9.3((c)). As we observe the direction of the motion is not changed in these cases.

Loop-Closure detection

In order to detect the loop-closure we compute the essential matrix between the
actual keyframe and all the previous keyframes stored in the topological map. A
loop-closure is detected when the two keyframes have the same orientation and the
number of correspondences between the two frames is bigger that a previously defined
threshold. In the sequence used just one loop is present. In Fig. [9.10| we observe
frame 287 (-0.77 radians) and frame 3365 (-0.74 radians) that besides having a similar
orientation they have 46 correspondences validated by the epipolar geometry.
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Figure 9.10: Frames 287 and 3365 where the loop-closure is detected.

Corridor detection

To detect a corridor there are some premises that must be satisfied: i) a continuous
motion from the image sequence is assumed; ii) turns are not detected, meaning
the orientation of the omnidirectional system is within a certain range; and iii) the
number of lines supporting the non-vertical dominant direction is clearly bigger than
the rest. With this information we can infer that the camera is traversing a corridor.
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Figure 9.11: Corridor detection. (a) Detection in the sequence showing the number
of lines scaled by 0.01, supporting the two main directions of the camera. z-axis
(blue) and y-axis (green). (b) Initial frame. (c) Final frame.

In Fig. [0.11)(a) we observe how the angle (in red) is inside the range (0.4,0.7) radians.
It starts at frame 716 and finishes at frame 1357. The number of lines supporting
this dominant direction (blue line) is clearly superior to the rest (green line). In Fig.
b,c) we show the initial and the final frames where the corridor is detected.

Traversable area detection

In order to analyze the situation of the keyframes with respect to the scene we
compute the position of the lines present on the scene. We observe that the position
of lines perpendicular to the main axis of the omnidirectional camera indicate if
it is possible to move in that direction. We divided the space in four big areas
corresponding to the main directions, up, down, left and right. We count the number
of lines inside each area for each dominant direction. In Fig. [9.12| we show an example
where the number of perpendicular lines (green) in the left cell indicates that it
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Figure 9.12: Identification of traversable areas. (a) Frame 690 with lines supporting
the dominant directions x—axis (red), y—axis (green) andz—axis (blue). (b) Space of
lines represented by their normals and point to the corresponding vanishing points.
(c) Lines spread on the four displacement areas (up, right, down and left).

is possible to move into that direction. As we can see in Fig. (9.12((a), those lines
are pointing to the corridor where the camera come from. Therefore, it is actually
possible to move in that direction.

9.4 Closure

We have presented a new approach to compute a topological map in an indoors
environment using an omnidirectional camera. We exploit the presence of straight
lines to compute the vanishing points, from which we estimate the orientation of the
camera with respect to the scene. From only orientation information we are able to
detect turns in the trajectory and with an initial reference system we are able to
construct a coherent topological map. We use geometrical constraints, particularly
the essential matrix, to select the keyframes that represent the nodes in the topological
map. The nodes are visually traversable to each other. We performed experiments
with a sequence of real images in an indoor environment. We observe that the use
of only orientation information and the epipolar geometry as a tool give a coherent
construction of a topological map.
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Chapter 10

Conclusions

In this thesis we have studied omnidirectional cameras, in particular central catadiop-
tric systems. We analyzed from the very basic step of calibration, where we propose
a new method that is able to calibrate all central catadioptric systems including the
pin-hole camera. In practice this method showed that it could go further, being able
to calibrate non-central catadioptric systems, such as the popular wide-angle fish-eye
cameras. We also performed a deep analysis of the available calibration methods for
central catadioptric systems, considering also those used to calibrate fish-eye cameras.
The analysis is theoretical and practical. First, we present a classification of such
methods and give the most relevant information about them. For the practical part
we select those methods available on-line as OpenSource, since in the computer vision
and robotics communities, these methods can save time and effort when the goal
is beyond the calibration itself. The new calibration method and the analysis of
calibration methods were presented in Chapter [3] and Chapter (4] respectively.

In Chapter [5|we studied in great detail the two-view relations of central catadiop-
tric systems, in particular the combination of conventional cameras and catadioptric
systems. We select this combination since a single catadioptric view contains a more
complete description of the scene, and the perspective image gives a more detailed
description of the particular area or object we are interested in. We perform a deep
analysis on the behavior of three approaches to compute the hybrid fundamental
matrix and the hybrid planar homography. From the simplest, specific for a particular
mirror shape, to the generic ones, which consider all central catadioptric systems. We
show how to extract relevant information from the fundamental matrix, more specific
the extraction of the epipoles from the corresponding hybrid fundamental matrix.
We also show how to impose the rank 2 property to this matrix, which is required to
obtain the epipoles. We observed that the generic models are more accurate under
ideal conditions, but at the same time are more sensitive to perturbations (image
noise) that the simpler models. With the more reliable and simplest models we
successfully match perspective images with catadioptric views robustly.

We also studied in this thesis the scale-space for catadioptric systems. The scale-
space computation is the most important step on the extraction of scale invariant
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features. We presented a method which is able to compute this scale-space for all
central catadioptric systems. We propose to combine the sphere camera model and
the partial differential equations framework on manifolds. With this combination
we compute the Laplace-Beltrami (LB) operator related to any parametric surface,
in this case, the manifold which represents the mirror of the catadioptric system.
The LB operator is used to smooth the catadioptric images in order to construct the
scale-space. Once the scale-space is obtained the approximation to the Laplacian of
Gaussians (LoG) through the Difference of Gaussians (DoG) is performed and the
extrema points are detected. This approach and some results with synthetic and real
images are presented in Chapter [6]

In the second part of this thesis, which corresponds to chapters [7] [8] and [9] we
presented three different robotic applications using omnidirectional systems. In the
first application we show that with the use of the two-view relations, the hybrid
fundamental matrix and the hybrid planar homography it is possible to construct a
localization system for a robot. This robot is equipped with an on-board perspective
camera and a visual memory of omnidirectional images of the environment stored in
its memory. It robustly matches the current image acquired with the perspective to
the closest omniview stored in the visual memory, with the geometric constraint of
the hybrid fundamental matrix. From this matrix the epipole, given the position
of the on-board camera in the scene, is computed. Then this point (in pixels) is
mapped to the ground plane (in meters) through the hybrid planar homography.

In chapter [8| we compute the orientation of a hypercatadioptric system in a man-
made environment. We take advantage of the presence of straight line elements in
such environments. These elements are aligned to the dominant directions and their
projections give the orientation of the system with respect to that reference system. In
this chapter we propose different solutions to the different steps comprised computing
the orientation of the system. In first place, the extraction of the projections of
straight lines in the scene from the catadioptric image becomes more complex, since
these projections are no longer lines but conics. We propose a new strategy to extract
catadioptric image lines. This approach requires the calibration of the system and
only 2 points lying on the catadioptric image lines we want to extract. To decide if
a point belongs or not to a certain conic we propose a point-to-point distance that
approximates the distance from a point to a conic. With the lines extracted the
next step is to compute the intersection between projections of parallel lines. In this
order we propose the use of the common self-polar triangle adapted for catadioptric
image lines, which instead of having four intersections as in the general case, it has
only two and its computation is simplified to a solution of a quadratic equation.
Finally, a classic voting scheme is used to identify the intersections of parallel lines
with more supporting lines, which represent the vertical and the horizontal vanishing
point. From the computed vanishing points the extraction of the orientation of
the catadioptric system with respect to the absolute reference system given by the
dominant directions is straightforward.

The last application proposed in this part of the thesis uses a polycamera, the
popular LadyBug camera, in an indoors environment. We showed that with only
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orientation information and the assumption of continuous motion from an image
sequence we were able to construct a topological map. From the projections of
lines present in the scene we compute the vanishing points, which as mentioned
before, contain the orientation information of the camera system with respect to the
reference system given by the dominant directions. To identify the keyframes that
compose our topological map we propose the use of a traversality test. With this
test we are able to identify turns, intermediate keyframes in long corridors and also
loops in the camera trajectory. This traversality test is based on the computation of
the robust matching between camera frames using local features.

10.1 Future Work

As we can observe from this thesis, omnidirectional images are facing the same
problems as the conventional ones with a more complex geometry. The development
of omnidirectional vision is at the beginning if compared to the development of the
conventional one. Because of this situation all areas where omnidirectional sensors
could be used must be explored. In particular we would like to highlight the following:

e In the case of catadioptric systems where the information of the mirror is
required to take into account its geometry for further applications. This
situation opens an opportunity where automatic methods to extract this
information from the environment should be developed, instead of obtaining
the information from an off-line calibration process.

e The development of the omnidirectional vision should consider models that can
deal with the majority of projection systems. Facing at the same time the prob-
lems present in the conventional images and the more complex omnidirectional
ones.

e From conventional vision we observe that the first goal is to find reliable and
robust methods to solve the problems. The second goal is to speed up this
methods or to design faster ones based on the previously developed ones. This
should be the way to lead the development of the omnidirectional vision.
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