000070657 001__ 70657
000070657 005__ 20190709135421.0
000070657 0247_ $$2doi$$a10.1016/j.jcis.2016.09.059
000070657 0248_ $$2sideral$$a96676
000070657 037__ $$aART-2017-96676
000070657 041__ $$aeng
000070657 100__ $$aSantoro, S.
000070657 245__ $$aDevelopment of fluorescent thermoresponsive nanoparticles for temperature monitoring on membrane surfaces
000070657 260__ $$c2017
000070657 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070657 5203_ $$aIn this work, tris(phenantroline)ruthenium(II) chloride (Ru(phen)3) was immobilized in silica nanoparticles prepared according to the Stöber method. Efforts were devoted on the optimization of the nano-thermometer in terms of size, polydispersity, intensity of the emission and temperature sensitivity. In particular, the immobilization of the luminophore in an external thin shell made of silica grown in a second step on bare silica nanoparticles allowed producing fluorescent monodisperse silica nanoparticles (420 ± 20 nm). A systematic study was addressed to maximize the intensity of the emission of the fluorescent nanoparticles by adjusting the concentration of Ru(phen)32+ in the shell from 0.2 to 24 wt.%, whereas the thickness of the shell is affected by the amount of silica precursor employed. The luminescent activity of the doped nanoparticles was found to be sensitive to the temperature. In fact, the intensity of the emission linearly decreased by increasing the temperature from 20 °C to 65 °C. The thermoresponsive nanoparticles were functionalized with long aliphatic chains in order to obtain hydrophobic nanoparticles. The developed nanoparticles were immobilized via dip-coating procedure on the surface of hydrophobic porous membranes, such as Polyvinylidene fluoride (PVDF) prepared via Non-Solvent Induced Phase Separation (NIPS), providing local information about the membrane surface temperature.
000070657 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070657 590__ $$a5.091$$b2017
000070657 591__ $$aCHEMISTRY, PHYSICAL$$b33 / 146 = 0.226$$c2017$$dQ1$$eT1
000070657 592__ $$a1.221$$b2017
000070657 593__ $$aBiomaterials$$c2017$$dQ1
000070657 593__ $$aSurfaces, Coatings and Films$$c2017$$dQ1
000070657 593__ $$aElectronic, Optical and Magnetic Materials$$c2017$$dQ1
000070657 593__ $$aColloid and Surface Chemistry$$c2017$$dQ1
000070657 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070657 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza
000070657 700__ $$aMoro, A. J.
000070657 700__ $$aPortugal, C. A. M.
000070657 700__ $$aLima, J. C.
000070657 700__ $$aCoelhoso, I. M.
000070657 700__ $$aCrespo, J. G.
000070657 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000070657 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000070657 773__ $$g486 (2017), 144-152$$pJ. colloid interface sci.$$tJOURNAL OF COLLOID AND INTERFACE SCIENCE$$x0021-9797
000070657 8564_ $$s733617$$uhttps://zaguan.unizar.es/record/70657/files/texto_completo.pdf$$yPostprint
000070657 8564_ $$s83916$$uhttps://zaguan.unizar.es/record/70657/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070657 909CO $$ooai:zaguan.unizar.es:70657$$particulos$$pdriver
000070657 951__ $$a2019-07-09-11:26:29
000070657 980__ $$aARTICLE