000070662 001__ 70662
000070662 005__ 20200221144224.0
000070662 0247_ $$2doi$$a10.1016/j.ijpharm.2016.06.044
000070662 0248_ $$2sideral$$a97105
000070662 037__ $$aART-2016-97105
000070662 041__ $$aeng
000070662 100__ $$aRodríguez-Nogales, C.
000070662 245__ $$aDevelopment and characterization of polo-like kinase 2 loaded nanoparticles-A novel strategy for (serine-129) phosphorylation of alpha-synuclein
000070662 260__ $$c2016
000070662 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070662 5203_ $$aPolo like kinase 2 (PLK2), a serine/threonine serum inducible kinase, has been proposed to be the major factor responsible for phosphorylating alpha-synuclein (a-syn) at Serine-129 (Ser-129) in Parkinson''s disease (PD). A suitable strategy to gain insights into PLK2’s biological effects might be to increase PLK2 intracellular levels with the aim of reproducing the slow progressive neuronal changes that occur in PD. The goal of this study was to develop and characterize a novel drug delivery system (DDS) for PLK2 cytosolic delivery using Total recirculating one machine system (TROMS), a technique capable of encapsulating fragile molecules while maintaining their native properties. A protocol for nanoparticle (NP) preparation using TROMS was set up. NPs showed a mean diameter of 257 ± 15.61 nm and zeta potential of -16 ± 2 mV, suitable for cell internalization. TEM and SEM images showed individual, spherical, dispersed NPs. The drug entrapment efficacy was 61.86 ± 3.9%. PLK2-NPs were able to enter SH-SY5Y cells and phosphorylate a-syn at Ser-129, demonstrating that the enzyme retained its activity after the NP manufacturing process. This is the first study to develop a DDS for continuous intracellular delivery of PLK2. These promising results indicate that this novel nanotechnology approach could be used to elucidate the biological effects of PLK2 on dopaminergic neurons.
000070662 536__ $$9info:eu-repo/grantAgreement/ES/ISCIII/PI12-01730
000070662 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070662 590__ $$a3.649$$b2016
000070662 591__ $$aPHARMACOLOGY & PHARMACY$$b56 / 256 = 0.219$$c2016$$dQ1$$eT1
000070662 592__ $$a1.323$$b2016
000070662 593__ $$aPharmaceutical Science$$c2016$$dQ1
000070662 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000070662 700__ $$aGarbayo, E.
000070662 700__ $$aMartínez-Valbuena, I.
000070662 700__ $$0(orcid)0000-0002-6873-5244$$aSebastián, V.$$uUniversidad de Zaragoza
000070662 700__ $$aLuquin, M. R.
000070662 700__ $$aBlanco-Prieto, M.
000070662 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000070662 773__ $$g514, 1 (2016), 142-149$$pInt. j. pharm.$$tInternational Journal of Pharmaceutics$$x0378-5173
000070662 8564_ $$s243853$$uhttps://zaguan.unizar.es/record/70662/files/texto_completo.pdf$$yPostprint
000070662 8564_ $$s111529$$uhttps://zaguan.unizar.es/record/70662/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000070662 909CO $$ooai:zaguan.unizar.es:70662$$particulos$$pdriver
000070662 951__ $$a2020-02-21-13:16:44
000070662 980__ $$aARTICLE