Optimization of the ionization time of an atom with tailored laser pulses: a theoretical study
Resumen: How fast can a laser pulse ionize an atom? We address this question by considering pulses that carry a fixed time-integrated energy per-area, and finding those that achieve the double requirement of maximizing the ionization that they induce, while having the shortest duration. We formulate this double-objective quantum optimal control problem by making use of the Pareto approach to multi-objective optimization, and the differential evolution genetic algorithm. The goal is to find out how a precise time-profiling of ultra-fast, large-bandwidth pulses may speed up the ionization process. We work on a simple one-dimensional model of hydrogen-like atoms (the Pöschl-Teller potential) that allows to tune the number of bound states that play a role in the ionization dynamics. We show how the detailed shape of the pulse accelerates the ionization, and how the presence or absence of bound states influences the velocity of the process.
Idioma: Inglés
DOI: 10.1140/epjb/e2017-70741-4
Año: 2017
Publicado en: EUROPEAN PHYSICAL JOURNAL B 90, 5 (2017), 91 [16 pp.]
ISSN: 1434-6028

Factor impacto JCR: 1.536 (2017)
Categ. JCR: PHYSICS, CONDENSED MATTER rank: 46 / 67 = 0.687 (2017) - Q3 - T3
Factor impacto SCIMAGO: 0.43 - Electronic, Optical and Magnetic Materials (Q2) - Condensed Matter Physics (Q3)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C3-2-P
Financiación: info:eu-repo/grantAgreement/ES/MINECO/FIS2014-61301-EXP
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Rights Reserved All rights reserved by journal editor

Exportado de SIDERAL (2019-07-09-11:31:58)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2018-05-22, last modified 2019-07-09

Rate this document:

Rate this document:
(Not yet reviewed)