000070907 001__ 70907
000070907 005__ 20200221144242.0
000070907 0247_ $$2doi$$a10.1039/c6ra06990h
000070907 0248_ $$2sideral$$a106251
000070907 037__ $$aART-2016-106251
000070907 041__ $$aeng
000070907 100__ $$aKarmaoui, M.
000070907 245__ $$aHigh dielectric constant and capacitance in ultrasmall (2.5 nm) SrHfO3 perovskite nanoparticles produced in a low temperature non-aqueous sol-gel route
000070907 260__ $$c2016
000070907 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070907 5203_ $$aStrontium hafnium oxide (SrHfO3) has great potential as a high-k gate dielectric material, for use in memories, capacitors, CMOS and MOSFETs. We report for the first time the dielectric properties (relative permittivity and capacitance) of SrHfO3 nanoparticles (NPs), as opposed to thin films or sintered bulk ceramics. These monodisperse, ultra-small, perovskite-type SrHfO3 nanocrystals were synthesised through a non-aqueous sol-gel process under solvothermal conditions (at only 220 degrees C) using benzyl alcohol as a solvent, and with no other capping agents or surfactants. Advanced X-ray diffraction methods (whole powder pattern modelling, WPPM), CS-corrected high-resolution scanning transmission electron microscopy (HRSTEM), dielectric spectroscopy, and optical (UV-vis, Raman) and photoluminescent spectroscopy were used to fully characterise the NPs. These SrHfO3 NPs are the smallest reported and highly monodisperse, with a mean diameter of 2.5 nm, a mode of 2.0 nm and a small size distribution. The formation mechanism of the NPs was determined using NMR and GC-MS analysis of the species involved. Our SrHfO3 nanoparticles had a dielectric constant of 17, which is on par with literature data for bulk and thin film samples, and they also had a relatively large capacitance of 9.5 nF cm(-2). As such, they would be suitable for applications as gate dielectrics for capacitors and in metal-oxide semiconductor field-effect transistor (MOSFET) technology.
000070907 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C3-3-P$$9info:eu-repo/grantAgreement/EC/FP7/312483/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM 2
000070907 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000070907 590__ $$a3.108$$b2016
000070907 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b59 / 166 = 0.355$$c2016$$dQ2$$eT2
000070907 592__ $$a0.889$$b2016
000070907 593__ $$aChemistry (miscellaneous)$$c2016$$dQ1
000070907 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ1
000070907 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000070907 700__ $$aRamana, E.V.
000070907 700__ $$aTobaldi, D.M.
000070907 700__ $$0(orcid)0000-0001-6152-6784$$aLajaunie, L.
000070907 700__ $$aGraca, M.P.
000070907 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, R.$$uUniversidad de Zaragoza
000070907 700__ $$aSeabra, M.P.
000070907 700__ $$aLabrincha, J.A.
000070907 700__ $$aPullar, R.C.
000070907 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000070907 773__ $$g6, 57 (2016), 51493-51502$$pRSC ADVANCES$$tRSC Advances$$x2046-2069
000070907 8564_ $$s334632$$uhttps://zaguan.unizar.es/record/70907/files/texto_completo.pdf$$yVersión publicada
000070907 8564_ $$s110054$$uhttps://zaguan.unizar.es/record/70907/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000070907 909CO $$ooai:zaguan.unizar.es:70907$$particulos$$pdriver
000070907 951__ $$a2020-02-21-13:22:03
000070907 980__ $$aARTICLE