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The massive accumulation of genome-sequences in public databases promoted

the proliferation of genome-level phylogenetic analyses in many areas of biological

research. However, due to diverse evolutionary and genetic processes, many loci

have undesirable properties for phylogenetic reconstruction. These, if undetected,

can result in erroneous or biased estimates, particularly when estimating species

trees from concatenated datasets. To deal with these problems, we developed

GET_PHYLOMARKERS, a pipeline designed to identify high-quality markers to estimate

robust genome phylogenies from the orthologous clusters, or the pan-genome matrix

(PGM), computed by GET_HOMOLOGUES. In the first context, a set of sequential

filters are applied to exclude recombinant alignments and those producing anomalous

or poorly resolved trees. Multiple sequence alignments and maximum likelihood (ML)

phylogenies are computed in parallel on multi-core computers. A ML species tree

is estimated from the concatenated set of top-ranking alignments at the DNA or

protein levels, using either FastTree or IQ-TREE (IQT). The latter is used by default

due to its superior performance revealed in an extensive benchmark analysis. In

addition, parsimony and ML phylogenies can be estimated from the PGM. We

demonstrate the practical utility of the software by analyzing 170 Stenotrophomonas

genome sequences available in RefSeq and 10 new complete genomes of Mexican

environmental S. maltophilia complex (Smc) isolates reported herein. A combination

of core-genome and PGM analyses was used to revise the molecular systematics of

the genus. An unsupervised learning approach that uses a goodness of clustering

statistic identified 20 groups within the Smc at a core-genome average nucleotide

identity (cgANIb) of 95.9% that are perfectly consistent with strongly supported

clades on the core- and pan-genome trees. In addition, we identified 16 misclassified

RefSeq genome sequences, 14 of them labeled as S. maltophilia, demonstrating
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the broad utility of the software for phylogenomics and geno-taxonomic studies. The

code, a detailed manual and tutorials are freely available for Linux/UNIX servers under the

GNU GPLv3 license at https://github.com/vinuesa/get_phylomarkers. A docker image

bundling GET_PHYLOMARKERS with GET_HOMOLOGUES is available at https://hub.

docker.com/r/csicunam/get_homologues/, which can be easily run on any platform.

Keywords: phylogenetics, genome-phylogeny, maximum-likelihood, species-tree, species delimitation,

Stenotrophomonas maltophilia complex, Mexico

INTRODUCTION

Accurate phylogenies represent key models of descent in modern
biological research. They are applied to the study of a broad
spectrum of evolutionary topics, ranging from the analysis
of populations up to the ecology of communities (Dornburg
et al., 2017). The way microbiologists describe and delimit
species is undergoing a major revision in the light of genomics
(Vandamme and Peeters, 2014; Rosselló-Móra and Amann,
2015), as reflected in the emerging field of microbial genomic
taxonomy (Konstantinidis and Tiedje, 2007; Thompson et al.,
2009, 2013). Current geno-taxonomic practice is largely based on
the estimation of (core-)genome phylogenies (Daubin et al., 2002;
Lerat et al., 2003; Tettelin et al., 2005; Ciccarelli et al., 2006; Wu
and Eisen, 2008) and the computation of diverse overall genome
relatedness indices (OGRIs) (Chun and Rainey, 2014), such as
the popular genomic average nucleotide identity (gANI) values
(Konstantinidis and Tiedje, 2005; Goris et al., 2007; Richter and
Rosselló-Móra, 2009). These indices are rapidly and effectively
replacing the traditional DNA-DNA hybridization values used
for species delimitation in the pre-genomic era (Stackebrandt and
Goebel, 1994; Vandamme et al., 1996; Stackebrandt et al., 2002).

The ever-increasing volume of genome sequences
accumulating in public sequence repositories provides a
huge volume of data for phylogenetic analysis. This significantly
improves our capacity to understand the evolution of species
and any associated traits (Dornburg et al., 2017). However,
due to diverse evolutionary forces and processes, many loci
in genomes have undesirable properties for phylogenetic
reconstruction. If undetected, these can lead to erroneous or
biased estimates (Shen et al., 2017; Parks et al., 2018), although,
ironically, with strong branch support (Kumar et al., 2012). Their
impact is particularly strong in concatenated datasets (Kubatko
and Degnan, 2007; Degnan and Rosenberg, 2009), which are
standard in microbial phylogenomics (Wu and Eisen, 2008).
Hence, robust phylogenomic inference requires the selection of
well-suited markers for the task (Vinuesa, 2010).

For this study we developed GET_PHYLOMARKERS, an
open-source and easy-to-use software package designed with
the aim of inferring robust genome-level phylogenies and
providing tools for microbial genome taxonomy. We describe
the implementation details of the pipeline and how it integrates
with GET_HOMOLOGUES (Contreras-Moreira and Vinuesa,
2013; Vinuesa and Contreras-Moreira, 2015). The latter is a
popular and versatile genome-analysis software package designed
to identify robust clusters of homologous sequences. It has

been widely used in microbial pan-genomics and comparative
genomics (Lira et al., 2017; Nourdin-Galindo et al., 2017;
Savory et al., 2017; Sandner-Miranda et al., 2018), including
recent bacterial geno-taxonomic (Gauthier et al., 2017; Gomila
et al., 2017), and plant pan-genomic studies (Contreras-Moreira
et al., 2017; Gordon et al., 2017). Regularly updated auxiliary
scripts bundled in the GET_HOMOLOGUES package compute
diverse OGRIs, at the protein, CDS and transcript levels,
provide graphical and statistical tools for a range of pan-genome
analyses, including inference of pan-genome phylogenies under
the parsimony criterion. GET_PHYLOMARKERS was designed
to work both at the core-genome and pan-genome levels,
using either the homologous gene clusters or the pan-genome
matrix (PGM) computed by GET_HOMOLOGUES. In the first
context, it identifies single-copy orthologous gene families with
optimal attributes (listed further down) and concatenates them
to estimate a genomic species tree. In the second scenario, it
uses the PGM to estimate phylogenies under the maximum
likelihood (ML) or parsimony optimality criteria. In addition, we
implemented unsupervised learning methods that automatically
identify species-like genome clusters based on the statistical
analysis of the PGMand core-genome average nucleotide identity
matrices (cgANIb).

To demonstrate these capabilities and benchmark
performance, we applied the pipeline to critically evaluate
the molecular systematics and taxonomy of the genus
Stenotrophomonas. Species delimitation is problematic and
far from resolved in this genus (Ochoa-Sánchez and Vinuesa,
2017), despite recent efforts using genomic approaches with a
limited number of genome sequences (Patil et al., 2016; Yu et al.,
2016; Lira et al., 2017).

The genus Stenotrophomonas (Gammaproteobacteria,
Xhanthomonadales, Xanthomonadaceae) (Palleroni and
Bradbury, 1993; Palleroni, 2005) groups ubiquitous, aerobic,
non-fermenting bacteria that thrive in diverse aquatic and
edaphic habitats, including human-impacted ecosystems (Ryan
et al., 2009). As of March 2018, 14 validly described species were
listed in Jean Euzeby’s list of prokaryotic names with standing
in nomenclature (http://www.bacterio.net/stenotrophomonas.
html). By far, its best-known species is S. maltophilia. It is
considered a globally emerging, multidrug-resistant (MDR)
and opportunistic pathogen (Brooke, 2012; Chang et al.,
2015). S. maltophilia-like organisms display high genetic,
ecological and phenotypic diversity (Valdezate et al., 2004;
Vasileuskaya-Schulz et al., 2011), forming the so-called S.
maltophilia complex (Smc) (Svensson-Stadler et al., 2012; Berg
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and Martinez, 2015). Heterogeneous resistance and virulence
phenotypes have been reported for environmental isolates of
diverse ecological origin classified as S. maltophilia (Adamek
et al., 2011; Deredjian et al., 2016). We have recently shown
that this phenotypic heterogeneity largely results from problems
in species delimitations within the Smc (Ochoa-Sánchez and
Vinuesa, 2017). We analyzed the genetic diversity of a collection
of 108 Stenotrophomonas isolates recovered from several water
bodies in Morelos, Central Mexico, based on sequence data
generated for the 7 loci used in the Multilocus Sequence Typing
(MLST) scheme available for S. maltophilia at https://pubmlst.
org. We assembled a large set of reference sequences retrieved
from the MLST database (Kaiser et al., 2009; Vasileuskaya-Schulz
et al., 2011) and from selected genome sequences (Crossman
et al., 2008; Lira et al., 2012; Davenport et al., 2014; Vinuesa and
Ochoa-Sánchez, 2015; Patil et al., 2016), encompassing 11 out
of the 12 validly described species at the time. State-of-the-art
phylogenetic and population genetics methods, including the
multispecies coalescent model coupled with Bayes factor analysis
and Bayesian clustering of the multilocus genotypes consistently
resolved five conservatively-defined genospecies within the Smc
clade, which were named S. maltophilia and Smc1-Smc4. The
approach also delimited Smc5 as a sister clade of S. rhizophila.
Importantly, we showed that (i) only members of the Smc clade
that we designed as S. maltophilia were truly MDR and (ii) that
S. maltophilia was the only species that consistently expressed
metallo-beta-lactamases (Ochoa-Sánchez and Vinuesa, 2017).
Strains of the genospecies Smc1 and Smc2 were only recovered
from the Mexican rivers and displayed significantly lower
resistance levels than sympatric S. maltophilia isolates, revealing
well-defined species-specific phenotypes.

Given this context, the present study was designed
with two major goals. The first one was to develop
GET_PHYLOMARKERS, a pipeline for the automatic and
robust estimation of genome phylogenies using state-of-the
art methods. The emphasis of the pipeline is on selecting
top-ranking markers for the task, based on the following
quantitative/statistical criteria: (i) they should not present signs
of recombination, (ii) the resulting gene trees should not be
anomalous or deviating from the distribution of tree topologies
and branch lengths expected under the multispecies coalescent
model, and (iii) they should have a strong phylogenetic signal.
The top-scoring markers are concatenated to estimate the
species phylogeny under the ML optimality criterion using either
FastTree (Price et al., 2010) or IQ-TREE (IQT) (Nguyen et al.,
2015). The second aim was to apply GET_PHYLOMARKERS
to challenge and refine the species delimitations reported
in our previous MLSA study (Ochoa-Sánchez and Vinuesa,
2017) using a genomic approach, focusing on resolving the
geno-taxonomic structure of the Smc and S. maltophilia sensu
lato clades. For this purpose we sequenced five strains from
the new genospecies Smc1 and Smc2 and analyzed them
together with all reference genome sequences available for the
genus Stenotrophomonas as of August 2017 using the methods
implemented in GET_PHYLOMARKERS. The results were used
to critically revise the molecular systematics of the genus in light
of genomics, identify misclassified genome sequences, suggest

correct classifications for them and discover multiple novel
genospecies within S. maltophilia.

MATERIALS AND METHODS

Genome Sequencing, Assembly, and
Annotation
Ten Stenotrophomonas strains from our collection were selected
(Table 1) for genome sequencing using a MiSeq instrument
(2× 300 bp) at the Genomics Core Sequencing Service provided
by Arizona State University (DNASU). They were all isolated
from rivers in the state of Morelos, Central Mexico, and classified
as genospecies 1 (Smc1) or 2 (Smc2), as detailed in a previous
publication (Ochoa-Sánchez and Vinuesa, 2017). Adaptors at the
5′-ends and low quality residues at the 3′ ends of reads were
trimmed-off using ngsShoRT v2.1 (Chen et al., 2014) and passed
to Spades v3.10.1 (Bankevich et al., 2012) for assembly (with
options –careful -k 33,55,77,99,127,151). The resulting assembly
scaffolds were filtered to remove those with low coverage (<7X)
and short length (< 500 nt). All complete genome sequences
available in RefSeq for Stenotrophomonas spp. were used as
references for automated ordering of assembly scaffolds using
MeDuSa v1.6 (Bosi et al., 2015). A final assembly polishing step
was performed by remapping the quality-filtered sequence reads
on the ordered scaffolds using BWA (Li and Durbin, 2009)
and passing the resulting sorted binary alignments to SAMtools
(Li et al., 2009) for indexing. The indexed alignments were
used by Pilon 1.21 (Walker et al., 2014) for gap closure and
filling, correction of indels and single nucleotide polymorphisms
(SNPs), as previously described (Vinuesa and Ochoa-Sánchez,
2015). The polished assemblies were annotated with NCBI’s
Prokaryotic GenomeAnnotation Pipeline (PGAP v4.2) (Angiuoli
et al., 2008). BioProject and BioSample accession numbers are
provided in Table S1.

Reference Genomes
On August 1st, 2017, a total of 169 annotated Stenotrophomonas
genome sequences were available in RefSeq, 134 of which were
labeled as S. maltophilia. The corresponding GenBank files were
retrieved, as well as the corresponding table with assembly
metadata. Seven complete Xanthomonas spp. genomes were also
downloaded to use them as outgroup sequences. In January 2018,
the genome sequence of S. bentonitica strain VV6 was added
to RefSeq and included in the revised version of this work to
increase the taxon sampling.

Computing Consensus Core- and
Pan-Genomes With GET_HOMOLOGUES
We used GET_HOMOLOGUES (v05022018) (Contreras-
Moreira and Vinuesa, 2013) to compute clusters of
homologous gene families from the input genome sequences,
as previously detailed (Vinuesa and Contreras-Moreira, 2015).
Briefly, the source GenBank-formatted files were passed to
get_homologues.pl and instructed to compute homologous gene
clusters by running either our heuristic (fast) implementation
of the bidirectional best-hit (BDBH) algorithm (“-b”) to explore
the complete dataset, or the full BDBH, Clusters of Orthologous
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TABLE 1 | Overview of key annotation features for the 10 new genome assemblies reported in this study for environmental isolates recovered from Mexican rivers and

classified as genospecies 1 (Smc1) and 2 (Smc2) in the study of Ochoa-Sánchez and Vinuesa (2017).

Genome Size_nt CDSs (coding) rRNAs tRNAs Pseudo-genes RefSeq Acc. num.

Stenotrophomonas genospecies 1 (Smc1; Sgn1) ESTM1D MKCIP4 1 4,475,880 3,904 6 59 67 CP026004

Stenotrophomonas genospecies 1 (Smc1; Sgn1) SAU14A NAIMI4 5 4,570,883 4,020 6 69 66 CP026003

Stenotrophomonas genospecies 1 (Smc1; Sgn1) ZAC14A NAIMI4 1 4,698,328 4,150 7 45 66 CP026002

Stenotrophomonas genospecies 1 (Smc1; Sgn1) ZAC14D1 NAIMI4 1 4,702,461 4,131 6 42 66 CP026001

Stenotrophomonas genospecies 1 (Smc1; Sgn1) ZAC14D1 NAIMI4 6 4,700,343 4,128 6 45 63 CP026000

Stenotrophomonas genospecies 2 (Smc2; Sgn2) SAU14A NAIMI4 8 4,479,100 3,893 5 54 69 CP025999

Stenotrophomonas genospecies 2 (Smc2; Sgn2) YAU14A MKIMI4 1 4,487,007 3,918 7 43 67 CP025998

Stenotrophomonas genospecies 2 (Smc2; Sgn2) YAU14D1 LEIMI4 1 4,319,112 3,819 6 51 66 CP025997

Stenotrophomonas genospecies 2 (Smc2; Sgn2) ZAC14D2 NAIMI4 6 4,431,104 3,882 6 52 66 CP025996

Stenotrophomonas genospecies 2 (Smc2; Sgn2) ZAC14D2 NAIMI4 7 4,468,731 3,918 6 66 62 CP025995

Details of their isolation sites and antimicrobial resistance phenotypes can be found therein. All genomes consist of a single gapped chromosome. Table S1 provides additional information

of the assemblies. Their phylogenetic placement within the Stenotrophomonas maltophilia complex is shown in Figure 5 (clades Sgn1/Smc1 and Sgn2/Smc2).

Groups—triangles (COGtriangles), and OrthoMCL (Markov
Clustering of orthologs, OMCL) algorithms for the different
sets of selected genomes, as detailed in the relevant sections and
explained in the GET_HOMOLOGUES’s online manual (eead-
csic-compbio.github.io/get_homologues/manual/manual.html).
PFAM-domain scanning was enabled for the latter runs (-D
flag). BLASTP hits were filtered by imposing a minimum of
90% alignment coverage (-C 90). The directories holding the
results from the different runs were then passed to the auxiliary
script compare_clusters.pl to compute either the consensus
core genome (-t number_of_genomes) or pan-genome clusters
(-t 0). The commands to achieve this can be found in the
online tutorial https://vinuesa.github.io/get_phylomarkers/#
get_homologues-get_phylomarkers-tutorials provided with the
distribution.

Overview of the Computational Steps
Performed by the GET_PHYLOMARKERS
Pipeline
Figure 1 presents a flow-chart that summarizes the
computational steps performed by the pipeline, which are
briefly described below. For an in-depth description of each step
and associated parameters, as well as for a full version of the
pipeline’s flow-chart, the reader is referred to the online manual
(https://vinuesa.github.io/get_phylomarkers/). The pipeline is
primarily intended to run DNA-based phylogenies (“-R 1 -t
DNA”) on a collection of genomes from different species of
the same genus or family. However, it can also select optimal
markers for population genetics (“-R 2 -t DNA”), when the source
genomes belong to the same species (not shown here). For more
divergent genomes, the pipeline should be run using protein
sequences (“-R 1 -t PROT”). The analyses are started from the
directory holding single-copy core-genome clusters generated
either by “get_homologues.pl -e -t number_of_genomes” or
by “compare_clusters.pl -t number_of_genomes.” Note that
both the protein (faa) and nucleotide (fna) FASTA files for the
clusters are required, as detailed in the online tutorial (https://
vinuesa.github.io/get_phylomarkers/#get_homologues-get_

phylomarkers-tutorials). The former are first aligned with
clustal-omega (Sievers et al., 2012) and then used by pal2nal

(Suyama et al., 2006) to generate codon alignments. These are
subsequently scanned with the Phi-test (Bruen et al., 2005)

to identify and discard those with significant evidence for
recombinant sequences. Maximum-likelihood phylogenies are

inferred for each of the non-recombinant alignments using by

default IQT v.1.6.3 (Nguyen et al., 2015), which will perform
model selection with ModelFinder (Kalyaanamoorthy et al.,

2017) and the “-fast” flag enabled for rapid computation, as
detailed in the online manual. Alternatively, FastTree v2.1.10

(Price et al., 2010) can be executed using the “-A F” option,

which will estimate phylogenies under the GTR+Gamma
model. FastTree was compiled with double-precision enabled for
maximum accuracy (see the manual for details). The resulting
gene trees are screened to detect “outliers” with help of the R
package kdetrees (v.0.1.5) (Weyenberg et al., 2014, 2017). It
implements a non-parametric test based on the distribution
of tree topologies and branch lengths expected under the
multispecies coalescent, identifying those phylogenies with
unusual topologies or branch lengths. The stringency of the
test can be controlled with the -k parameter (inter-quartile
range multiplier for outlier detection, by default set to the
standard 1.5). In a third step, the phylogenetic signal of each
gene-tree is computed based on mean branch support values
(Vinuesa et al., 2008), keeping only those above a user-defined
mean Shimodaira-Hasegawa-like (SH-alrt) bipartition support
(Anisimova and Gascuel, 2006) threshold (“-m 0.75” by default).
To make all the previous steps as fast as possible, they are run
in parallel on multi-core machines using GNU parallel (Tange,
2011). The set of alignments passing all filters are concatenated
and subjected to maximum-likelihood (ML) tree searching,
using by default IQT with model fitting, to estimate the genomic
species-tree.

The complete GET_PHYLOMARKERS pipeline is launched
with the master script run_get_phylomarkers_pipeline.sh, which
calls a subset of auxiliary Bash, Perl and R programs to perform
specific tasks. This architecture allows the user to run the
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FIGURE 1 | Simplified flow-chart of the GET_PHYLOMARKERS pipeline showing only those parts used and described in this work. The left branch, starting at the top

of the diagram, is fully under control of the master script run_get_phylomarkes_pipeline.sh. The names of the worker scripts called by the master program are

indicated on the relevant points along the flow. Steps involving repetitive computational processes, like generating multiple sequence alignments or inferring the

corresponding gene trees, are run in parallel with the aid of GNU parallel, which is called from run_parallel_cmmds.pl. The right-hand branch, at the top of the

diagram, summarizes the analyses that can be performed on the pan-genome matrix (PGM). In this work we only present the estimation of maximum-likelihood and

parsimony pan-genome phylogenies. However, unsupervised learning approaches are provided by the hcluster_pangenome_matrix.sh script (not shown) for statistical

analysis of the PGM. In addition, the plot_matrix_heatmap.sh script was used to analyze average nucleotide identity matrices generated by get_homologues.pl. It

implements the unsupervised learning method described in this work to define the optimal number of clusters in such matrices. The plot_matrix_heatmap.sh script is

distributed with the GET_HOMOLOGUES suite.

individual steps separately, which adds convenient flexibility
for advanced users (examples provided in the Supplementary
Materials). The pipeline is highly customizable, and the reader is

referred to the latest version of the online manual for the details
of each option. However, the default values should produce
satisfactory results for most purposes, as these were carefully
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selected based on the benchmark analysis presented in this
work. All the source code is freely available under the GNU
GENERAL PUBLIC LICENSE V3 from https://github.com/
vinuesa/get_phylomarkers. Detailed installation instructions
are provided (https://github.com/vinuesa/get_phylomarkers/
blob/master/INSTALL.md), along with a hands-on tutorial
(https://vinuesa.github.io/get_phylomarkers/). The software has
been extensively tested on diverse Linux distributions (CentOS,
Ubuntu and RedHat). In addition, a docker image bundling
GET_HOMOLOGUES and GET_PHYLOMARKERS is available
at https://hub.docker.com/r/csicunam/get_homologues/. We
recommend running the docker image to avoid potential
trouble with the installation and configuration of diverse
dependencies (second party binaries, as well as Perl and R
packages), making it easy to install on any architecture, including
Windows, and to reproduce analyses with exactly the same
software.

Estimating Maximum Likelihood and
Parsimony Pan-Genome Trees From the
Pan-Genome Matrix (PGM)
The GET_PHYLOMARKERS package contains auxiliary
scripts to perform diverse clustering and phylogenetic analyses
based on the pangenome_matrix_t0.∗ files returned by the
compare_clusters.pl script (options “-t 0 –m”) from the
GET_HOMOLOGUES suite. In this work, consensus PGMs
(Vinuesa and Contreras-Moreira, 2015) were computed as
explained in the online tutorial (https://vinuesa.github.io/get_
phylomarkers/#get_homologues-get_phylomarkers-tutorials).
These represent the intersection of the clusters generated
by the COGtriangles and OMCL algorithms. Adding the -T
flag to the previous command instructs compare_clusters.pl
to compute a Wagner (multistate) parsimony tree from the
PGM, launching a tree search with 50 taxon jumbles using
pars from the PHYLIP (Felsenstein, 2004b) package (v.3.69).
A more thorough and customized ML or parsimony analysis
of the PGM can be performed with the aid of the auxiliary
script estimate_pangenome_phylogenies.sh, bundled with
GET_PHYLOMARKERS. By default this script performs a
ML tree-search using IQT v1.6.3 (Nguyen et al., 2015). It will
first call ModelFinder (Kalyaanamoorthy et al., 2017) using
the JC2 and GTR2 base models for binary data, the latter
accounting for unequal state frequencies. The best fitting base
model + ascertain bias correction + among-site rate variation
parameters are selected using the Akaike Information Criterion
(AIC). IQT (Nguyen et al., 2015) is then called to perform a
ML tree search under the selected model with branch support
estimation. These are estimated using approximate Bayesian
posterior probabilities (aBypp), a popular single branch test
(Guindon et al., 2010), as well as the recently developed
ultrafast-bootstrap2 (UFBoot2) test (Hoang et al., 2017). In
addition, the user may choose to run a parsimony analysis with
bootstrapping on the PGM, as detailed in the online manual
and illustrated in the tutorial. Note however, that the parsimony
search with bootstrapping is much slower than the default ML
search.

Unsupervised Learning Methods for the
Analysis of Pairwise Average Nucleotide
(ANI) and Aminoacid (AAI) Identity Matrices
The GET_HOMOLOGUES distribution contains the
plot_matrix_heatmap.sh script which generates ordered
heatmaps with attached row and column dendrograms
from squared tab-separated numeric matrices. These can
be presence/absence PGM matrices or similarity/identity
matrices, as those produced with the get_homologues -A
option. Optionally, the input cgANIb matrix can be converted
to a distance matrix to compute a neighbor joining tree,
which makes the visualization of relationships in large ANI
matrices easier. Recently added functionality includes reducing
excessive redundancy in the tab-delimited ANI matrix file
(-c max_identity_cut-off_value) and sub-setting the matrix
with regular expressions, to focus the analysis on particular
genomes extracted from the full cgANIb matrix. From version
1.0 onwards, the mean silhouette-width (Rousseeuw, 1987)
goodness of clustering statistics is included to determine
the optimal number of clusters automatically. The script
currently depends on the R packages ape (Popescu et al., 2012),
dendextend (https://cran.r-project.org/package=dendextend),
factoextra (https://cran.r-project.org/package=factoextra) and
gplots (https://CRAN.R-project.org/package=gplots).

RESULTS

Ten New Complete Genome Assemblies
for the Mexican Environmental
Stenotrophomonas maltophilia Complex
Isolates Previously Classified as
Genospecies 1 (Smc1) and 2 (Smc2)
In this study we report the sequencing and assembly of five
isolates each from the genospecies 1 (Smc1) and 2 (Smc2)
recovered from rivers in Central Mexico, previously reported
in our extensive MLSA study of the genus Stenotrophomonas
(Ochoa-Sánchez and Vinuesa, 2017). All assemblies resulted in
a single chromosome with gaps. No plasmids were detected.
A summary of the annotated features for each genome are
presented in Table 1. Assembly details are provided in Table S1.

Rapid Phylogenetic Exploration of
Stenotrophomonas Genome Sequences
Available at NCBI’s RefSeq Repository
Running GET_PHYLOMARKERS in Fast
Runmode
A total of 170 Stenotrophomonas and 7 Xanthomonas reference
genomes were retrieved from RefSeq (see methods). Figure 2A
depicts parallel density plots showing the distribution of the
number of fragments for the Stenotrophomonas assemblies at
the Complete (n = 16), Chromosome (n = 3), Scaffold (n = 63),
and Contig (n = 88) finishing levels. The distributions have
conspicuous long tails, with an overall mean andmedian number
of fragments of ∼238 and ∼163, respectively. The table insets
in Figure 2A provide additional descriptive statistics of the
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FIGURE 2 | Density plots showing the distribution of the number of fragments of the Stenotrophomonas genomes available in RefSeq as of August 2017, plus the

genome of S. bentonitica VV6, released in January 2018. (A) Distribution of the number of fragments in the assemblies of 170 annotated Stenotrophomonas

genomes, as a function of assembly status (contigs vs. scaffolds), plus 7 Xanthomonas genomes used as outgroup to root the tree. Inset tables provide additional

summary statistics of the RefSeq assemblies. (B) Distribution of the number of fragments in the assemblies of the 119 genomes selected for the analyses presented in

this study, which include 102 reference Stenotrophomonas genomes, 10 new genomes generated for this study, and 7 complete Xanthomonas spp. genomes.

distributions. A first GET_HOMOLOGUES run was launched
using this dataset (n = 177) with two objectives: (i) to test its
performance with a relatively large set of genomes and (ii) to get
an overview of their evolutionary relationships to select a non-
redundant set of those with the best assemblies. For this analysis,
GET_HOMOLOGUES was run in its “fast-BDBH” mode (-b),
on 60 cores (-n 60; AMD OpteronTM Processor 6380, 2500.155
MHz), and imposing a stringent 90% coverage cut-off for
BLASTP alignments (-C 90), excluding inparalogues (-e). This
analysis took 1 h:32 m:13 s to complete and identified 132 core
genes. These were fed into the GET_PHYLOMARKERS pipeline,
which was executed using a default FastTree search with the
following command line: “run_get_phylomarkers_pipeline.sh
-R 1 -t DNA -A F,” which took 8 m:1 s to complete on
the same number of cores. Only 79 alignments passed the
Phi recombination test. Thirteen of them failed to pass the
downstream kdetree test. The phylogenetic signal test excluded
nine additional loci with average SH-alrt values < 0.70. Only
57 alignments passed all filters and were concatenated into a
supermatrix of 38,415 aligned residues, which were collapsed
to 19,129 non-gapped and variable sites. A standard FastTree
maximum-likelihood tree-search was launched, and the resulting
phylogeny (lnL= −475237.540) is shown in Figure S1. Based on
this tree and the level of assembly completeness for each genome
(Figure 2A), we decided to discard those with >300 contigs
(Figure 2B). This resulted in the loss of 19 genomes labeled as
S. maltophilia. However, we retained S. pictorum JCM 9942, a
highly fragmented genome with 829 contigs (Patil et al., 2016)
to maximize taxon sampling. Several S. maltophilia subclades

contained identical sequences (Figure S1) and were trimmed,
retaining only the assembly with the lowest numbers of scaffolds
or contigs.

Selection of a Stringently Defined Set of
Orthologous Genes Using
GET_HOMOLOGUES
After the quality and redundancy filtering described in the
previous section, 109 reference genomes (102 Stenotrophomonas
+ 7 Xanthomonas) were retained for more detailed investigation.
Table S2 provides an overview of them. To this set we added
the 10 new genomes reported in this study (Table 1). Figure 2B
depicts a density plot and two inset tables summarizing the
distribution of number of contigs/scaffolds in the selected
reference genomes and the new genomes for the Mexican
environmental Smc isolates previously classified as genospecies 1
(Smc1) and 2 (Smc2) (Ochoa-Sánchez andVinuesa, 2017). A high
stringency consensus core-genome containing 239 gene families
was computed as the intersection of the clusters generated by the
BDBH, COG-triangles and OMCL algorithms (Figure 3A).

GET_PHYLOMARKERS in Action:
Benchmarking the Performance of
FastTree and IQ-Tree to Select Top-Scoring
Markers for Phylogenomics
The set of 239 consensus core-genome clusters
(Figure 3A) was used to launch multiple instances of the
GET_PHYLOMARKERS pipeline to evaluate the phylogenetic
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FIGURE 3 | Combined filtering actions performed by GET_HOMOLOGUES and GET_PHYLOMARKERS to select top-ranking phylogenetic markers to be

concatenated for phylogenomic analyses, and benchmark results of the performance of the FastTree (FT) and IQ-TREE (IQT) maximum-likelihood (ML) phylogeny

inference programs. (A) Venn-diagram indicating the number consensus and algorithm-specific core-genome orthologous clusters. (B) Parallel box-plots summarizing

the computation time required by FT and IQT when run under “default” (FTdef, IQTdef) and thorough (FThigh, IQThigh) search modes (s_type) on the 239 consensus

clusters, as detailed in the main text. Statistical significance of differences between treatments were computed with the Kruskal-Wallis (robust, non-parametric,

ANOVA-like) test. (C) Distribution of SH-alrt branch support values of gene-trees found by the FThigh and IQThigh searches. Statistical significance of differences

between the paired samples was computed with the Wilcoxon signed-rank test. This is a non-parametric alternative to paired t-test used to compare paired data

when they are not normally distributed. (D) Association plot (computed with the vcd package) summarizing the results of multi-way Chi-Square analyses of the lnL

score ranks (1–4, meaning best to worst) of the ML gene-trees computed from the set of 105 codon alignments passing the kdetrees filter in the IQThigh run (Table 2)

for each search-type. The height and color-shading of the bars indicate the magnitude and significance level of the Pearson residuals. (E) Statistical analysis

(Kruskal-Wallis test) of the distribution of consensus values from majority-rule consensus trees computed from the gene trees passing all the filters, as a function of

search-type. (F) Statistical analysis (Kruskal-Wallis test) of the distribution of the edge-lengths of species-trees computed from the concatenated top-scoring markers,

as a function of search-type.
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TABLE 2 | Comparative benchmark analysis of the filtering performance of the GET_PHYLOMARKERS pipeline when run using the FastTree (FT) and IQ-TREE (IQT)

maximum-likelihood algorithms, under default and high search-intensity levels.

Test FTdef FThigh IQTdef IQThigh

Alignments passing the Phi recombination test 127/239 (53.14%) 125/239 (52.30%) 125/239 (52.30%) 127/239 (53.14%)

Outlier phylogenies (kdetrees test; k = 1.0) out

of the indicated number of non-recombinant

alignments

22/127 (17.32%)

passing: 105

18 (14.17%)

passing: 107

19 (14.96%)

passing: 106

22 (17.32%)

passing: 105

Alignments passing the phylogenetic signal

(mean SH-alrt bipartition support; m ≥ 0.7) test

98/105 (93.33%) 99/107 (92.52%) 52/106 (49.05%) 55/105 (52.38%)

Concatenated top-scoring markers, lnL score,

substitution model and number of independent

searches

98 markers 99 markers 52 markers 55 markers

var. sites = 36,082 var. sites = 35,509 var. sites = 25,383 var. sites = 26,988

lnL = −917444.522 lnL = −899898.614 lnL = −666437.563 lnL = −707933.476

GTR+G GTR+G GTR+F+ASC+R6 GTR+F+ASC+R6

Searches = 1 Searches = 1 Searches = 1 Searches = 5

Total wall-clock time of runs on 50 cores 0 h:13 m:39 s 0 h:38 m:30 s 1 h:22 m:18 s 2 h:40 m:13 s

The analyses were started with the stringently defined set of 239 consensus core-genome clusters computed by GET_HOMOLOGUES for a dataset of 119 genomes (112

Stenotrophomonas spp. and 7 Xanthomonas spp.).

performance of FastTree (FT; v2.1.10) and IQ-TREE (IQT;
v1.6.3), two popular fast maximum-likelihood (ML) tree
searching algorithms. Our benchmark was designed to compare:
(i) the execution times of the FT vs. IQT runs under default
(FTdef, IQTdef) and thorough (FThigh, IQThigh) search modes
(see methods and online manual for their parameterization
details); (ii) the phylogenetic resolution (average support
values) of gene trees estimated by FT and IQT under both
search modes; (iii) the rank of lnL scores of the gene trees
found in those searches for each locus; (iv) the distribution
of consensus values of each node in majority rule consensus
trees computed from the gene trees found by each search
type; (v) the distribution of edge-lengths in the species-trees
computed by each search type. The results of these analyses are
summarized in Table 2 and in Figure 3. The first steps of the
pipeline (Figure 1) comprise the generation of codon alignments
and their analysis to identify potential recombination events.
Only 127 alignments (53.14%) passed the Phi-test (Table 2).
Phylogenetic analyses start downstream of the recombination
test (Figure 1). The computation times required by the two
algorithms and search intensity levels were significantly different
(Kruskal-Wallis, p < 2.2e-16), FastTree being always the fastest,
and displaying the lowest dispersion of compute times across
trees (Figure 3B). This is not surprising, as IQT searches
involved selecting the best substitution model among a range
of base models (see methods and online manual) and fitting
additional parameters (+G+ASC+I+F+R) to account for
heterogeneous base frequencies and rate-variation across sites.
In contrast, FT searches just estimated the parameter values for
the general time-reversible (GTR) model, and among-site rate
variation was modeled fitting a gamma distribution with 20 rate
categories (+G), as summarized in Table 2. Similar numbers of
“outlier” trees (range 18:22) were detected by the kdetrees-test
in the four search types (Table 2). However, the distributions of
SH-alrt support values are strikingly different for both search
algorithms (Wilcoxon, p < 2.2e-16), revealing that gene-trees
found by IQT have a much lower average support than those
found by FT (Figure 3C). Consequently, the former searches

were significantly more efficient to identify gene trees with
low average branch support values (Table 2 and Figure 3C).
This result is in line with the well-established fact that poorly
fitting and under-parameterized models produce less reliable
tree branch lengths and overestimate branch support (Posada
and Buckley, 2004), implying that the FT phylogenies may
suffer from clade over-credibility. These results demonstrate
that: (i) FT-based searches are significantly faster than those
performed with IQT, and (ii) that IQT has a significantly higher
discrimination power for phylogenetic signal than FT. Due to
the fact that the number of top-scoring alignments selected
by the two algorithms for concatenation is notably different
(Table 2), the lnL scores of the resulting species-trees are not
comparable (Table 2). Therefore, in order to further evaluate the
quality of the gene-trees found by the four search strategies, we
performed an additional benchmark under highly standardized
conditions, based on the 105 optimal alignments that passed the
kdetrees-test in the IQThigh search (Table 2). Gene trees were
estimated for each of these alignments using the four search
strategies (FTdef, IQTdef, FThigh, and IQThigh) and their
lnL scores ranked for each gene tree. An association analysis
(deviation from independence in a multi-way chi-squared test)
was performed on the lnL ranks (1–4, coding for highest to
lowest lnL scores, respectively) attained by each search type for
each gene tree. As shown in Figure 3D, the IQThigh search was
the winner, attaining the first rank (highest lnL score) in 76/105
of the searches (72.38%), way ahead of the number of FThigh
(26%), and IQTdef (0.009%) searches that ranked in the first
position (highest lnL score for a particular alignment). A similar
analysis performed on the full set of input alignments (n = 239)
indicated that when operating on an unfiltered set, the difference
in performance was even more striking, with IQT-based searches
occupying > 97% of the first rank positions (data not shown).
These results highlight two points: (i) the importance of proper
model selection and thorough tree searching in phylogenetic
inference and (ii) that IQT generally finds better trees than
FT. Finally, we evaluated additional phylogenetic attributes of
the species-trees computed by each search type, either as the
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majority rule consensus (mjrc) tree of top-scoring gene-trees,
or as the tree estimated from the supermatrices of concatenated
alignments. Figure 3E shows the distribution of mjrc values of
the mjrc trees computed by each search type, which can be
interpreted as a proxy for the level phylogenetic congruence
among the source trees. These values were significantly higher
for the IQT than in the FT searches (Kruskal-Wallis, p = 0.027),
with a higher number of 100% mjrc clusters found in the former
than in the latter type of trees (Figure 3E). An analysis of the
distribution of edge-lengths of the species-trees inferred from
the concatenated alignments revealed that those found in IQT
searches had significantly (Kruskal-Wallis, p = 1e-07) shorter
edges (branches) than those estimated by FT (Figure 3F). This
highlights again the importance of adequate substitution models
for proper edge-length estimation. Tree-lengths (sum of edge
lengths) of the species-trees found in IQT-based searches are
about 0.63 times shorter than those found by FT (Figure S2). As a
final exercise, we computed the Robinson-Foulds (RF) distances
of each gene tree found in a given search type to the species
tree inferred from the corresponding supermatrix. The most
striking result of this analysis was that no single gene-tree had the
same topology as the species tree inferred from the concatenated
top-scoring alignments (Figure S3).

Effect of Tree-Search Intensity on the
Quality of the Species Trees Found by
IQT-REE and FastTree
Given the astronomical number of different topologies that
exist for 119 terminals, we decided to evaluate the effect of
tree-search thoroughness on the quality of the trees found by
FT and IQT, measured as their log-likelihood (lnL) score. To
make the results comparable across search algorithms, we used
the supermatrix of 55 top-scoring markers (25,896 variable,
non-gapped sites) selected by the IQThigh run (Table 2). One

thousand FT searches were launched from the same number
of random topologies computed with the aid of a custom Perl
script. In addition, a standard FT search was started from the
default BioNJ tree. All these searches were run in “thorough”
mode (-quiet -nt -gtr -bionj -slow -slownni -gamma -mlacc 3 -
spr 16 -sprlength 10) on 50 cores. The resulting lnL profile for
this search is presented in Figure 4A, which reached a maximal
score of −717195.373. This is 121.281 lnL units better than
the score of the best tree found in the search started from the
BioNJ seed tree (lnL –717316.654, lower discontinuous blue line).
In addition, 50 independent tree searches were run with IQT
under the best fitting model previously found (Table 2), using
the shell loop command (# 5) provided in the Supplementary
Material. The corresponding lnL profile of this search is shown
in Figure 4B, which found a maximum-scoring tree with a score
of –707932.468. This is only 8.105 lnL units better than the
worst tree found in that same search (Figure 4B). Importantly,
the best tree found in the IQT-search is 9262.905 lnL units
better that of the best tree found in the FT search, despite the
much higher number of seed trees used for the latter. This result
clearly demonstrates the superiority of the IQT algorithm for
ML tree searching. Based on this evidence, and that presented in
the previous section (Table 2; Figure 3), IQT was chosen as the
default tree-search algorithm used by GET_PHYLOMARKERS.
The Robinson-Foulds distance between both trees was 46.

A Robust Genomic Species Phylogeny for
the Genus Stenotrophomonas: Taxonomic
Implications and Identification of Multiple
Misclassified Genomes
Figure 5 displays the best ML phylogeny found in the IQT
search (Figure 4B) described in the previous section. This is a
highly resolved phylogeny. All bipartitions have an approximate

FIGURE 4 | Comparative analysis of log-likelihood tree search profiles. (A) Sorted lnL profile of FastTree (FT) tree searches launched from 1,000 random trees + 1

BioNJ phylogeny, using the “thorough” tree-search settings described in the main text and the 55 top-ranking markers (26,988 non-gapped, variable sites) selected

by the IQThigh run for 119 genomes (Table 2). The dashed blue line indicates the score of the search initiated from the BioNJ tree. (B) Sorted lnL profile of 50

independently launched IQ-TREE (IQT) searches under the best-fitting model using the same matrix as for the FT search.
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FIGURE 5 | Best maximum-likelihood core-genome phylogeny for the genus Stenotrophomonas found in the IQ-TREE search described in Figure 4B, based on the

supermatrix obtained by concatenation of 55 top-ranking alignments (Table 2). The tree was rooted using the Xanthomonas spp. sequences as the outgroup. Arrows

highlight genomes not grouping in the S. maltophilia sensu lato clade (Smsl), for which we suggest a reclassification, as summarized in Table 3. Black arrows indicate

misclassified strains, while gray ones mark unclassified genomes. The shaded area highlights the strains considered as members of the S. maltophilia complex (Smc).

The genospecies 1 and 2 (Sgn1 = Smc1; Sgn2 = Smc2) were previously recognized as separate species-like lineages by Ochoa-Sánchez and Vinuesa (2017).

Strains grouped in the Smsl clade are collapsed into sub-clades that are perfectly consistent with the cluster analysis of core-genome average nucleotide identity

(cgANIb) values presented in Figure 7 at a cutoff-value of 95.9%. Integers in parentheses correspond to the number of genomes in each collapsed clade. Figure S4

displays the same tree in non-collapsed form. Strains from genospecies 1, 3, and 5 (Sgn1, Sgn3, Sgn5) marked with an asterisk may represent additional species,

according to cgANIb values. Nodes are colored according to the lateral scale, which indicates the approximate Bayesian posterior probability values. The scale bar

represents the number of expected substitutions per site under the best-fitting GTR+ASC+F+R6 model.

Bayesian posterior probability (aBypp) p ≥ 0.95. It was rooted
at the branch subtending the Xanthomonas spp. clade, used as
an outgroup. A first taxonomic inconsistency revealed by this

phylogeny is the placement of S. panacihumi within the latter
clade, making the genus Stenotrophomonas paraphyletic. It is
worth noting that S. panacihumi is a non-validly described,
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and poorly characterized species (Yi et al., 2010). The genus
Stenotrophomonas, as currently defined, and excluding S.
panacihumi, consists of two major clades, labeled as I and II in
Figure 5, as previously defined (Ochoa-Sánchez and Vinuesa,
2017).

Clade I groups environmental isolates, recovered from
different ecosystems, mostly soils and plant surfaces, classified as
S. ginsengisoli (Kim et al., 2010), S. koreensis (Yang et al., 2006),
S. daejeonensis (Lee et al., 2011), S. nitritireducens (Finkmann
et al., 2000), S. acidaminiphila (Assih et al., 2002), S. humi,
and S. terrae (Heylen et al., 2007). The recently described S.
pictorum (Ouattara et al., 2017) is also included in clade I. These
are all rather poorly studied species, for which only one or a
few strains have been considered in the corresponding species
description or to study particular aspects of their biology. None of
these species have been reported as opportunistic pathogens, but
some contain promising strains for plant growth-promotion and
bio-remediation. Particularly notorious are the disproportionally
long terminal branches (heterotachy) of S. ginsengisoli and S.
koreensis (Figure 5). The potential impact of these long branches
on the estimated phylogeny needs to be evaluated in future
work.

Clade II contains the species S. rhizophila (Wolf et al.,
2002), S. chelatiphaga (Kaparullina et al., 2009), the recently
described S. bentonitica (Sánchez-Castro et al., 2017), along with
multiple species and genospecies lumped in the S. maltophilia
complex (Smc; shaded area in Figure 5) (Svensson-Stadler et al.,
2012; Berg and Martinez, 2015). The Smc includes the validly
described S. maltophilia (Palleroni and Bradbury, 1993) and S.
pavanii (Ramos et al., 2011) (collapsed subclades Sm6 and Sm2,
respectively, located within the clade labeled as S. maltophilia
sensu lato in Figure 5), along with at least four undescribed
genospecies (Sgn1-Sgn4) recently identified in our MLSA study
of the genus (Ochoa-Sánchez and Vinuesa, 2017). In light of
this phylogeny, we discovered 16 misclassified RefSeq genome
sequences (out of 119; 13.44%), 14 of them labeled as S.
maltophilia. These genomes are highlighted with black arrows
in Figure 5. The phylogeny also supports the classification,
either as a validly published species, or as new genospecies, of
8 (∼6.72%) additional RefSeq genomes (gray arrows) lacking
a species assignation in the RefSeq record, as summarized in
Table 3. In addition, the phylogeny resolved 13 highly supported
lineages (aBypp > 0.95) within the S. maltophilia sensu lato
(Smsl) cluster, shown as collapsed clades. They have a cgANIb

TABLE 3 | RefSeq genome sequences reclassified in this study based on the genomic evidence presented herein (see Figures 5–7).

DEFINITION (RefSeq classification) Species/Reclassification* Status Fragments BioProject BioSample PMID

Stenotrophomonas sp. 69-14 S. acidaminiphila Draft 27 PRJNA279279 SAMN05660631 NA

Stenotrophomonas maltophilia ZBG7B S. chelatiphaga Draft 145 PRJNA272355 SAMN03280975 26659682

Stenotrophomonas maltophilia AA1 Genospecies 2 (Sgn2/Smc2) Complete 1 PRJNA224116 SAMN06130959 28275097

Stenotrophomonas maltophilia 5BA-I-2 Genospecies 3 Draft 4 PRJNA224116 SAMN02641498 24604648

Stenotrophomonas sp. 92mfcol6.1 Genospecies 3 Draft 11 PRJNA224116 SAMN04488690 NA

Stenotrophomonas maltophilia PierC1 Genospecies 3 Draft 59 PRJEB8824 SAMEA3309462 26276674

Stenotrophomonas sp. RIT309 Genospecies 3 Draft 45 PRJNA224116 SAMN02676627 24812212

Stenotrophomonas sp. SC-N050 Genospecies 3 Draft 24 PRJNA224116 SAMN05720615 NA

Stenotrophomonas maltophilia SeITE02 Genospecies 3 Draft 63 PRJNA224116 SAMEA3138997 24812214

Stenotrophomonas sp. YR347 Genospecies 3 Draft 11 PRJNA224116 SAMN05518671 NA

Stenotrophomonas maltophilia B4 Genospecies 4 Draft 180 PRJNA224116 SAMN03753636 NA

Stenotrophomonas maltophilia Sm41DVV Genospecies 4 Draft 26 PRJNA323790 SAMN05188789 27540065

Stenotrophomonas maltophilia SmCVFa1 Genospecies 4 Draft 30 PRJNA323845 SAMN05190067 27540065

Stenotrophomonas maltophilia IAM 12423 Genospecies 4 Draft 9 PRJNA224116 SAMN04487782 NA

Stenotrophomonas maltophilia SIDR01 genospecies 4 Draft 2 PRJNA248909 SAMN06040735 NA

Stenotrophomonas maltophilia 13146 S. bentonitica complex Draft 60 PRJNA224116 SAMN07237143 NA

Stenotrophomonas maltophilia BR12S S. bentonitica Draft 80 PRJNA224116 SAMN03456145 26472823

Stenotrophomonas sp. HMSC10F07 S. bentonitica Draft 63 PRJNA269850 SAMN03287020 NA

Stenotrophomonas sp. LM091 S. bentonitica Complete 1 PRJNA344031 SAMN05818440 27979933

Stenotrophomonas maltophilia PML168 S. bentonitica Draft 97 PRJNA224116 SAMEA2272452 22887661

Stenotrophomonas sp. Leaf70 S. nitritireducens Draft 11 PRJNA224116 SAMN04151613 26633631

Stenotrophomonas sp. KCTC 12332 S. terrae complex Complete 1 PRJNA310387 SAMN04451766 28689013

Stenotrophomonas nitritireducens 2001 S. terrae complex Complete 1 PRJNA224116 SAMN05428703 NA

Stenotrophomonas maltophilia S028 Stenotrophomonas sp. Draft 297 PRJNA224116 SAMN02469568 23144428

Stenotrophomonas rhizophila QL-P4 Stenotrophomonas sp. Complete 1 PRJNA326321 SAMN05276013 NA

*The numbered genospecies correspond to novel unnamed species identified by Ochoa-Sánchez and Vinuesa (2017) and in this study. Strains assigned to the S. bentonitica and the

S. terrae complexes. Most likely represent novel species related to these species, respectively.
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>96% (Figure 5). These lineages may represent 13 additional
species in the Smsl clade, as detailed in following sections.
Figure S4 shows the non-collapsed version of the species-tree
displayed in Figure 5.

No genome sequences, nor MLSA data are available for the
recently described S. tumulicola (Handa et al., 2016).

Pan-Genome Phylogenies for the Genus
Stenotrophomonas Recover the Same
Species Clades as the Core-Genome
Phylogeny
A limitation of core-genome phylogenies is that they are
estimated from the small fraction of single-copy genes shared
by all organisms under study. Genes encoding adaptive traits
relevant for niche-differentiation and subsequent speciation
events typically display a lineage-specific distribution. Hence,
phylogenetic analysis of pan-genomes, based on their differential
gene-composition profiles, provide a complementary, more
resolved and often illuminating perspective on the evolutionary
relationships between species.

A consensus PGM containing 29,623 clusters was
computed from the intersection of those generated by
the COG-triangles and OMCL algorithms (Figure 6).
This PGM was subjected to ML tree searching using the
binary and morphological models implemented in IQT for
phylogenetic analysis of discrete characters with the aid of
the estimate_pangenome_phylogenies.sh script bundled with
GET_PHYLOMARKERS (Figure 1). As shown in the tabular
inset of Figure 6, the binary GTR2+FO+R4 model was by large
the best-fitting one (with the smallest AIC and BIC values).
Twenty five independent IQT searches were performed on the
consensus PGM with the best-fitting model. The best tree found
is presented in Figure 6, rooted with the Xanthomonas spp.
outgroup sequences. It depicts the evolutionary relationships
of the 119 genomes based on their gene content (presence-
absence) profiles. The numbers on the nodes indicate the
approximate Bayesian posterior probabilities (aBypp)/UFBoot2
support values (see methods). The same tree, but without
collapsing clades, is presented in the Figure S5. This phylogeny
resolves exactly the same species-like clades highlighted on
the core-genome phylogeny presented in Figure 5, which
are also grouped in the two major clades I and II. These are
labeled with the same names and color-codes, for easy cross-
comparison. However, there are some notorious differences in
the phylogenetic relationships between species on both trees,
like the placement of S. panacihumi outside of the Xanthomonas
clade, and the sister relation of genospecies 3 (Sgnp3) to the
S. maltophilia sensu lato clade. These same relationships were
found in a multi-state (Wagner) parsimony phylogeny of
the PGM shown in Figure S6. In summary, all core-genome
and pan-genome analyses presented consistently support our
previous claim that the five genospecies defined in our MLSA
study represent distinct species and support the existence of
multiple cryptic species within the Smsl clade, as defined in
Figure 5.

Application of a Non-supervised Learning
Approach to BLAST-Based Core-Genome
Average Nucleotide Distance (cgANDb)
Matrices to Identify Statistically-Consistent
Species-Like Clusters
The final goal of any geno-taxonomic study is to identify
species-like clusters. These should consist of monophyletic
groups identified on genome trees that display average genome
identity (gANI) values >94%, based on a widely accepted
cutoff-value (Rosselló-Móra and Amann, 2015). In this section
we searched for such species-clusters within the taxonomically
problematic Stenotrophomonas maltophilia complex (Smc).
Our core- and pan-genome phylogenies consistently identified
potential species-clades within the Smc that grouped exactly the
same strains (compare Figures 5, 6). We additionally performed
a cluster analysis of core-genome ANI values computed from the
pairwise BLASTN alignments (cgANIb) used to define OMCL
core-genome clusters for the 86 Smc genomes analyzed in this
study. The resulting cgANIb matrix was then converted to
a distance matrix (cgANDb = 100%–cgANIb) and clustered
with the aid of the plot_matrix_heatmap.sh script from the
GET_HOMOLOGUES suite. Figure 7 shows the resulting
cladogram, which resolves 16 clusters within the Smc at a
conservative cgANDb cutoff value of 5% (cgANIb = 95%).
At this distance level, the four genospecies labeled as Sgn1-
Sgn4 on Figure 5 are resolved as five clusters because the most
divergent Sgn1 genome (ESTM1D_MKCIP4_1) is split as a
separate lineage. This is the case also at cgANDb = 6 (Figure 7),
reason why this strain most likely represents a sixth genospecies.
All these genospecies are very distantly related to the large
S. maltophilia sensu lato cluster, which gets split into 11 sub-
clusters at the conservative cgANDb = 5% cutoff. Thirteen
clusters are resolved at the 4% threshold, and a minimum
of seven at the 6% level (cgANIb = 94%), as shown by the
dashed lines (Figure 7). These results strongly suggest that the
S. maltophilia sensu lato clade (Figure 5) actually comprises
multiple species. The challenging question is how many? In
an attempt to find a statistically-sound answer, we applied
an unsupervised learning approach based on the evaluation
of different goodness of clustering statistics to determine the
optimal number of clusters (k) for the cgANDb matrix. The
gap-statistic and a parametric, model-based cluster analysis,
yielded k-values ≥ 35 (data not shown). These values seem
too high for this dataset, as they correspond to a gANI
value > 98%. However, the more conservative average silhouette
width (ASW)method (Kaufman and Rousseeuw, 1990) identified
an optimal k = 19 (inset in Figure 7) for the complete set
of Smc genomes. This number of species-like clusters is much
more reasonable for this data set, as it translates to a range
of cgANDb between 4.5 and 4.7 (cgANIb range: 95.5–95.3%).
Close inspection of the ASW profile reveals that the first peak
is found at k = 13, which has an almost identical ASW as
that of the maximal value and maps to a cgANDg = 5.7
(cgANIb of 94.3%). In summary, the range of reasonable
numbers of clusters proposed by the ASW statistic (k = 13
to k = 19) corresponds to cgANDb values in the range of

Frontiers in Microbiology | www.frontiersin.org 13 May 2018 | Volume 9 | Article 771

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Vinuesa et al. Inferring Genome Phylogenies With GET_PHYLOMARKERS

FIGURE 6 | Maximum-likelihood pan-genome phylogeny estimated with IQ-TREE from the consensus pan-genome clusters displayed in the Venn diagram. Clades of

lineages belonging to the S. maltophilia complex are collapsed and are labeled as in Figure 5. Numbers on the internal nodes represent the approximate Bayesian

posterior probability/UFBoot2 bipartition support values (see methods). The tabular inset shows the results of fitting either the binary (GTR2) or morphological (MK)

models implemented in IQ-TREE, indicating that the former has an overwhelmingly better fit. The scale bar represents the number of expected substitutions per site

under the binary GTR2+F0+R4 substitution model.

5.7–4.5% (cgANIb range: 94.3–95.5%), which fits well with
the new gold-standard for species delimitation (gANI > 94%),
established in influential works (Konstantinidis and Tiedje, 2005;
Richter and Rosselló-Móra, 2009). We noted however, that at
a cgANDb = 4.1% (cgANIb = 95.9%) the strain composition
of the clusters was 100% concordant with the monophyletic
subclades shown in the core-genome (Figure 5) and pan-genome
(Figure 6) phylogenies. Importantly, at this cutoff, the length

of the branches subtending each cluster is maximal, both on
the core-genome phylogeny (Figure 5) and on the cgANDb
cladogram (Figure 7). Based on the combined and congruent
evidence provided by these complementary approaches, we can
safely conclude that: (i) the Smc genomes analyzed herein
may actually comprise up to 19 or 20 different species-like
lineages, and (ii) that only the strains grouped in the cluster
labeled as Sm6 in Figures 5–7 should be called S. maltophilia.
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FIGURE 7 | Application of an unsupervised learning approach to the cgANIb distance matrix to identify statistically-consistent species-like clusters. The cgANIb

matrix was converted to a distance matrix (cgANDb) and clustered using the Ward.D2 algorithm. The optimal number of clusters (k) was determined with the average

silhouette-width statistic. The inset shows the statistic’s profile, with k = 19 as the optimal number of clusters. This number corresponds to an cgANIb of 95.5% (gray

dashed line). At a cgANDb of 4.1% (cgANIb = 95.9%) the groups delimited by the clustering approach are perfectly consistent with those delimited by the core- and

pan-genome ML phylogenies displayed in Figures 5, 6, respectively.

The latter is the most densely sampled species-like cluster
(n = 19) and includes ATCC 13637T, the type strain of the
species.

On the Ecology and Other Biological
Attributes of the Species-Like Clusters in
the Stenotrophomonas maltophilia

Complex
In this final section we present a brief summary of the ecological
attributes reported for selected members of the species-like
clusters resolved within the Smc (Figures 5, 7). The four
unnamed genospecies (Sgn1-Sgn4) group mainly environmental
isolates. This is consistent with our previous evolutionary and
ecological analyses of a comprehensive multilocus dataset of the
genus (Ochoa-Sánchez and Vinuesa, 2017). In that study only
Mexican environmental isolates were found to be members of the

newly discovered genospecies Sgn1 and Sgn2 (named as Smc1
and Smc2, respectively). In this work we discovered that the
recently sequenced maize root isolate AA1 (Niu et al., 2017),
misclassified as S. maltophilia, clusters tightly with the Sgn1
strains (Figure 5). The S. maltophilia sensu lato clade is split into
12 or 13 groups based on cgANDb (Figure 7). Sm6 forms the
largest cluster, groupingmostly clinical isolates related to the type
strain S. maltophilia ATCC 13637T, like the model strain K279a
(Crossman et al., 2008), ISMMS4 (Pak et al., 2015), 862_SMAL,
1149_SMAL, and 1253_SMAL (Roach et al., 2015), as well as
EPM1 (Sassera et al., 2013), recovered from the human parasite
Giardia duodenalis. However, this group also comprises some
environmental isolates like BurE1, recovered from a bulk soil
sample (Youenou et al., 2015). In summary, cluster Sm6 holds the
bona fide S. maltophilia strains (sensu stricto), which may be well-
adapted to associate with different eukaryotic hosts and cause
opportunistic infections in humans. Cluster Sm4a contains the
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model strain D574 (Lira et al., 2012) along with four other clinical
isolates (Conchillo-Solé et al., 2015) and therefore may represent
a second clade enriched in strains with high potential to cause
opportunistic pathogenic infections in humans. Noteworthy, this
group is distantly related to Sm6 (Figures 5, 7). Cluster Sm4b is
closely related to Sm4a based on the pan-genome phylogeny and
the cgANDd cladogram (Figures 6, 7). It groups the Brazilian
rhizosphere-colonizing isolate JV3, the Chinese highly metal-
tolerant strain TD3 (Ge and Ge, 2016) and strain As1, isolated
from the Asian malaria vector Anopheles stephensi (Hughes
et al., 2016). The lineage Sm3 holds eight isolates of contrasting
origin, including the Chinese soil isolate DDT-1, capable of
using DDT as the sole source of carbon and energy (Pan
et al., 2016), as well as clinical isolates like 1162_SMAL (Roach
et al., 2015) and AU12-09, isolated from a vascular catheter
(Zhang et al., 2013), and environmental isolates like SmF22,
Sm32COP, and SmSOFb1, isolated from different manures in
France (Bodilis et al., 2016). Cluster Sm2 groups the S. pavanii
strains, including the type strain DSM_25135T, isolated from the
stems of sugar cane in Brazil (Ramos et al., 2011), together with
the clinical isolates ISMMS6 and ISMMS7, that carry mutations
conferring quinolone resistance and causing bacteremia (Pak
et al., 2015), and strain C11, recovered from pediatric cystic
fibrosis patients (Ormerod et al., 2015). Cluster Sm5 includes
two strains recovered from soils, ATCC 19867 which was first
classified as Pseudomonas hibiscicola, and later reclassified as S.
maltophilia based on MLSA studies (Vasileuskaya-Schulz et al.,
2011), and the African strain BurA1, isolated from bulk soil
samples collected in sorghum fields in Burkina Faso (Youenou
et al., 2015). Cluster Sm9 holds clinical isolates, like 131_SMAL,
424_SMAL, and 951_SMAL (Roach et al., 2015). Its sister group is
Sm10. It holds 9 strains of contrasting geographic and ecological
provenances, ranging from Chinese soil and plant-associated
bacteria like the rice-root endophyte RR10 (Zhu et al., 2012),
the grassland-soil tetracycline degrading isolate DT1 (Naas et al.,
2008), and strain B418, isolated from a barley rhizosphere
and displaying plant-growth promotion properties (Wu et al.,
2015), to clinical isolates (22_SMAL, 179_SMAL, 453_SMAL,
517_SMAL) collected and studied in the context of a large
genome sequencing project carried out at the University of
Washington Medical Center (Roach et al., 2015). Cluster Sm11
tightly groups the well-characterized poplar endophyte R551-3,
which is a model plant-growth-promoting bacterium (Ryan et al.,
2009; Taghavi et al., 2009; Alavi et al., 2014) and SBo1, cultured
from the gut of the olive fruit fly Bactrocera oleae (Blow et al.,
2016). Cluster Sm 12 contains the environmental strain SKA14
(Adamek et al., 2014), along with the clinical isolates ISMMS3
(Pak et al., 2015) and 860_SMAL (Roach et al., 2015). Sm1, Sm7,
and Sm8 each hold a single strain.

The following conclusions can be drawn from this analysis:
(i) the species-like clusters within the S. maltophilia sensu lato
(Smsl) clade (Figure 5) are enriched in opportunistic human
pathogens, when compared with the Smc clusters Sgn1-Sgn4;
(ii) most Smsl clusters also contain diverse non-clinical isolates
isolated from a wide range of habitats, demonstrating the great
ecological versatility found even within specific Smsl clusters like
Sm3 or Sm10; (iii) taken together, these observations strongly

suggest that the Smsl species-like clusters are all of environmental
origin, with the potential for the opportunistic colonization of
diverse human organs. This potential may be particularly high
in certain lineages, like in S. maltophilia sensu stricto (Sm6) or
Sm4a, both enriched in clinical isolates. However, a much denser
sampling of genomes and associated phenotypes is required for
all clusters to be able to identify statistically sound associations
between them.

DISCUSSION

In this study we developed and benchmarked
GET_PHYLOMARKERS, an open-source, comprehensive,
and easy-to-use software package for phylogenomics and
microbial genome taxonomy. Programs like amphora (Wu and
Eisen, 2008) or phylosift (Darling et al., 2014) allow users to
infer genome-phylogenies from huge genomic and metagenomic
datasets by scanning new sequences against a reference database
of conserved protein sequences to establish the phylogenetic
relationships between the query sequences and database hits.
The first program searches the input data for homologs to a set
of 31 highly conserved proteins used as phylogenetic markers.
Phylosift is more oriented toward the phylogenetic analysis
of metagenome community composition and structure. Other
approaches have been developed to study large populations of
a single species. These are based on the identification of SNPs
in sequence reads produced by high-throughput sequencers,
using either reference-based or reference-free approaches, and
subjecting them to phylogenetic analysis (Timme et al., 2013).
The GET_PHYLOMARKERS software suite was designed
with the aim of identifying orthologous clusters with optimal
attributes for phylogenomic analysis and accurate species-tree
inference. It also provides tools to infer phylogenies from
pan-genomes, as well as non-supervised learning approaches for
the analysis of overall genome relatedness indices (OGRIs) for
geno-taxonomic studies of multiple genomes. These attributes
make GET_PHYLOMARKERS unique in the field.

It is well-established that the following factors strongly affect
the accuracy of genomic phylogenies: (i) correct orthology
inference; (ii) multiple sequence alignment quality; (iii) presence
of recombinant sequences; (iv) loci producing anomalous
phylogenies, which may result for example from horizontal
gene transfer, differential loss of paralogs between lineages, and
(v) amount of the phylogenetic signal. GET_PHYLOMARKERS
aims to minimize the negative impact of potentially problematic,
or poorly performing orthologous clusters, by explicitly
considering and evaluating these factors. Orthologous clusters
were identified with GET_HOMOLGOUES (Contreras-Moreira
and Vinuesa, 2013) because of its distinctive capacity to
compute high stringency clusters of single-copy orthologs.
In this study we used a combination of BLAST alignment
filtering, imposing a high (90%) query coverage threshold,
PFAM-domain composition scanning and calculation of a
consensus core-genome from the orthologous gene families
produced by three clustering algorithms (BDBH, COGtriangles
and OMCL) to minimize errors in orthology inference.
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Multiple sequence alignments were generated with CLUSTAL-
OMEGA (Sievers et al., 2012), a state-of-the-art software under
constant development, capable of rapidly aligning hundreds
of protein sequences with high accuracy, as reported in recent
benchmark studies (Le et al., 2017; Sievers and Higgins, 2018).
GET_PHYLOMARKERS generates protein alignments and
uses them to compute the corresponding DNA-alignments,
ensuring that the codon structure is always properly maintained.
Recombinant sequences have been known for a long time to
strongly distort phylogenies because they merge independent
evolutionary histories into a single lineage. Recombination
erodes the phylogenetic signal and misleads classic treeing
algorithms, which assume a single underlying history (Schierup
and Hein, 2000; Posada and Crandall, 2002; Martin, 2009;
Didelot and Maiden, 2010; Pease and Hahn, 2013; Turrientes
et al., 2014). Hence, the first filtering step in the pipeline is the
detection of putative recombinant sequences using the very fast,
sensitive and robust phi(w) statistic (Bruen et al., 2005). The
genus Stenotrophomonas has been previously reported to have
high recombination rates (Yu et al., 2016; Ochoa-Sánchez and
Vinuesa, 2017). It is therefore not surprising that the phi(w)
statistic detected significant evidence for recombination in
up to 47% of the orthologous clusters. The non-recombinant
sequences are subsequently subjected to maximum-likelihood
phylogenetic inference to identify anomalous gene trees using
the non-parametric kdetrees statistic (Weyenberg et al., 2014,
2017). The method estimates distributions of phylogenetic
trees over the “tree space” expected under the multispecies-
coalescent, identifying outlier trees based on their topologies
and branch lengths in the context of this distribution. Since
this test is applied downstream of the recombination analysis,
only a modest, although still significant proportion (14–
17%) of outlier trees were detected (Table 2). The next step
determines the phylogenetic signal content of each gene tree
(Vinuesa et al., 2008). It has been previously established that
highly informative trees are less prone to get stuck in local
optima (Money and Whelan, 2012). They are also required to
properly infer divergence at the deeper nodes of a phylogeny
(Salichos and Rokas, 2013), and to get reliable estimates of
tree congruence and branch support in large concatenated
datasets typically used in phylogenomics (Shen et al., 2017).
We found that IQT-based searches allowed a significantly more
efficient filtering of poorly resolved trees than FastTree. This
is likely due to the fact that the former fits more sophisticated
models (with more parameters) to better account for among-
site rate variation. Under-parameterized and poorly fitting
substitution models partly explain the apparent overestimation
of bipartition support values done by FastTree. This is also the
cause of the poorer performance of FastTree, which finds gene
trees that generally have lower lnL scores than those found
by IQT. A recent comparison of the performance of four fast
ML phylogenetic programs using large phylogenomic data
sets identified IQT (Nguyen et al., 2015) as the most accurate
algorithm. It consistently found the highest-scoring trees.
FastTree (Price et al., 2010) was, by large, the fastest program
evaluated, although at the price of being the less accurate one
(Zhou et al., 2017). This is in line with our findings. We could

show that the higher accuracy of IQT is particularly striking
when using large concatenated datasets. As stated above, this is
largely attributable to the richer choice of models implemented
in the former. ModelFinder (Kalyaanamoorthy et al., 2017)
selected GTR+ASC+F+R6 model for the concatenated
supermatrix, which is much richer in parameters than the
GTR+CAT+Gamma20 model fitted by FastTree. The +ASC is
an ascertainment bias correction parameter, which should be
applied to alignments without constant sites (Lewis, 2001), such
as the supermatrices generated by GET_PHYLOMARKERS (see
methods). The FreeRate model (+R) generalizes the +G model
(fitting a discrete Gamma distribution to model among-site rate
variation) by relaxing the assumption of Gamma-distributed
rates (Yang, 1995). The FreeRate model typically fits data better
than the+Gmodel and is recommended for the analysis of large
data sets (Soubrier et al., 2012).

The impact of substitution models in phylogenetics has been
extensively studied (Posada and Buckley, 2004). However, the
better models implemented in IQT are not the only reason for
its superior performance. A key aspect strongly impacting the
quality of phylogenomic inference with large datasets is tree-
searching. This has been largely neglected in most molecular
systematic and phylogenetic studies of prokaryotes (Vinuesa
et al., 2008; Vinuesa, 2010; Ochoa-Sánchez and Vinuesa, 2017).
Due to the factorial increase of the number of distinct bifurcating
topologies possible with every new sequence added to an
alignment (Felsenstein, 2004a), searching the tree-space for
large datasets is an NP-hard (non-deterministic polynomial-
time) problem that necessarily requires heuristic algorithms. This
implies that once an optimum is found, there is no way of telling
whether it is the global one. The strategy to gain quantitative
evidence about the quality of a certain tree is to compare its score
in the context of other trees found in searches initiated from a
pool of different seed trees. Due to the high dimensionality of the
likelihood space, and the strict “hill-climbing” nature of ML tree
search algorithms (Felsenstein, 1981), they generally get stuck in
local optima (Money and Whelan, 2012). The scores of the best
trees found in each search can then be compared in the form of an
“lnL score profile,” as performed in our study. Available software
implementations for fast ML tree searching use different branch-
swapping strategies to try to escape from early encountered
“local optima.” IQT implements a more efficient tree-searching
strategy than FastTree, based on a combination of hill-climbing
and stochastic nearest-neighbor interchange (NNI) operations,
always keeping a pool of seed trees, which help to escape local
optima (Nguyen et al., 2015). This was evident when the lnL
score profiles of both programs were compared. IQT found a
much better scoring species tree despite the much higher number
of independent searches performed with FastTree (50 vs. 1,001)
using its most intensive branch-swapping regime. An important
finding of our study is the demonstration that the lnL search
profile of IQT is much shallower than that of FastTree. This
suggests that the former finds trees much closer to the potential
optimum than the latter. It has been shown that the highest-
scoring (best) trees tend to have shorter branches, and overall
tree-length, than those stuck in worse local optima (Money
and Whelan, 2012). In agreement with this report, the best
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species-tree found by IQT has a notoriously shorter total length
and significantly shorter edges than those of the best species-tree
found by FastTree.

Our extensive benchmark analysis conclusively demonstrated
the superior performance of IQT. Based on this evidence,
it was chosen as the default search algorithm for
GET_PHYLOMARKERS. However, it should be noted that
topological differences between the best trees found by both
programs were minor, not affecting the composition of the major
clades in the corresponding species trees. It is therefore safe to
conclude that the reclassification of Stenotrophomonas genome
sequences proposed in Table 3 is robust. They are consistently
supported by the species-trees estimated with both programs.
This result underlines the utility of GET_PHYLOMARKERS to
identify misclassified genomes in public sequence repositories,
a problem found in many genera (Sangal et al., 2016; Gomila
et al., 2017). GET_PHYLOMARKERS is unique in its ability to
combine core-genome phylogenomics with ML and parsimony
phylogeny estimation from the PGM. In line with other recent
studies (Caputo et al., 2015; Tu and Lin, 2016), we demonstrate
that pan-genome analyses are valuable in the context of microbial
molecular systematics and taxonomy. All genomes found to
be misclassified based on the phylogenomic analysis of core-
genomes were corroborated by the ML and parsimony analyses
of the PGM. Furthermore, the combined evidence gained from
these independent approaches consistently revealed that the
Smc contains up to 20 monophyletic and strongly supported
species-like clusters. These are defined at the cgANIb 95.9%
threshold, and include the previously identified genospecies
Smc1-Smc4 (Ochoa-Sánchez and Vinuesa, 2017), and up to
13 genospecies within the S. maltophilia sensu lato clade. This
threshold fits well with the currently favored gANI > 94%
cutoff for species delimitation (Konstantinidis and Tiedje, 2005;
Richter and Rosselló-Móra, 2009). The consistency among
all the different approaches strongly supports the proposed
delimitations. We used an unsupervised learning procedure to
determine the optimal number of clusters (k) in the cgANDb
matrix computed from the 86 Smc genomes analyzed. The
ASW goodness of clustering statistic proposed an optimal
k = 19, which corresponds to a gANI = 95.5%. At this cutoff,
12 (instead of 13) species-like clusters are delimited within
the S. maltophilia sensu lato clade. This unsupervised learning
method therefore seems promising to define the optimal
number of clusters in ANI-like matrices using a statistical
procedure. However, it should be critically and extensively
evaluated in other geno-taxonomic studies to better understand
its properties and possible limitations, before being broadly
used.

Current models of microbial speciation predict that bacterial
species-like lineages should be identifiable by significantly
reduced gene flow between them, even when recombination
levels are high within species (Cadillo-Quiroz et al., 2012;
Shapiro et al., 2012). Such lineages should also display
differentiated ecological niches and phenotypes (Koeppel et al.,
2008; Shapiro and Polz, 2015). In our previous comprehensive
multilocus sequence analysis of species borders in the genus
Stenotrophomonas (Ochoa-Sánchez and Vinuesa, 2017) we could

show that those models fitted our data well. We found
highly significant genetic differentiation and marginal gene-
flow across strains from sympatric Smc1 and Smc2 lineages,
as well as highly significant differences in the resistance
profiles of S. maltophilia sensu lato isolates vs. Smc1 and
Smc2 isolates. We could also show that all three lineages
have different habitat preferences (Ochoa-Sánchez and Vinuesa,
2017). The genomic analyses presented in this study for
five Smc1 and Smc2 strains, respectively, fully support their
separate species status from a geno-taxonomic perspective. Given
the recognized importance of gene gain and loss processes
in bacterial speciation and ecological specialization (Richards
et al., 2014; Caputo et al., 2015; Shapiro and Polz, 2015;
Jeukens et al., 2017), as reported also in plants (Gordon et al.,
2017), we think that the evidence gained from pan-genome
phylogenies is particularly informative for microbial geno-
taxonomic investigations. They should be used to validate the
groupings obtained by the classical gANI cutoff-based species
delimitation procedure (Konstantinidis and Tiedje, 2005; Goris
et al., 2007; Richter and Rosselló-Móra, 2009) that dominates
current geno-taxonomic research. It is well documented that
pan-genome-based groupings tend to better reflect ecologically
relevant phenotypic differences between groups (Lukjancenko
et al., 2010; Caputo et al., 2015; Jeukens et al., 2017). We
recommend that future geno-taxonomic studies search for a
consensus of the complementary views of genomic diversity
provided by OGRIs, core- and pan-genome phylogenies, as
performed herein. GET_PHYLOMARKERS is a useful and
versatile tool for this task.

In summary, in this study we developed a comprehensive
and powerful suite of open-source computational tools for
state-of-the art phylogenomic and pan-genomic analyses. Their
application to critically analyze the geno-taxonomic status of
the genus Stenotrophomonas provided compelling evidence that
the taxonomically ill-defined S. maltophilia complex holds many
cryptic species. However, we refrain at this point from making
formal taxonomic proposals for them because we have not
yet performed the above-mentioned population genetic analyses
to demonstrate the genetic cohesiveness of the individual
species and their differentiation from closely related ones. This
will be the topic of a follow-up work in preparation. We
think that comparative genomic analyses designed to identify
lineage-specific genetic differences that may underlie niche-
differentiation of species are also powerful and objective criteria
to delimit species in any taxonomic group (Vinuesa et al., 2005;
Ochoa-Sánchez and Vinuesa, 2017).
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