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results over the infrared aspects of field theory, although the technical details are different.
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1 Introduction

Recently there is a growing perception of the importance of the infrared frontier in quantum

field theory (for a texbook introduction see Weinberg or Nair [1, 2]), especially because of

its deep connections with both gravity and information theory. For a recent review see for

example [3] and its references. In particular, the cloud of infrared photon quantum states

created from the vacuum by a uniformly moving charged particle belongs to a different

superselection sector which is parametrized by the linear momentum of the particle. These

different ground states can be distinguished by the action of a formally unitary operator

related to coherent states. While the interest of original literature [4–10] was mostly in the

S-matrix of quantum electrodynamics, recently the interest has shifted to the gravitational

sector [11, 12], and in particular to the issue of the infrared gravitational memory and the in-

formation paradox [13–16]. In this paper we will consider the gauge theory framework, em-

phasizing some quantum aspects which have several analogies with the gravitational results.

In a previous paper [17], we related equations of motion and Gauss law constraints. In

particular we analyzed what happens in a limited region of spacetime, e.g a Rindler wedge,

as discussed in ref. [18]. In this paper we pursue this line of thought and argue that the

superselected ground state structure depends, unlike in classical electrodynamics, on the

full trajectory of the particles, including also the portions of it which are outside (but still

causally connected). In this respect we will see that a particle that leaves a region leaves

its “scent” in its infrared structure.

2 The ground states structure: infrared dressing

The main point of this section is to recall that the ground states of quantum electrody-

namics have a very rich structure: besides the Fock vacuum, there are an infinity of states

with energies close to zero obtained by a limiting process of a growing number of infrared
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photons, with extremely low energies.1 The ground states which emerge are different, and

a superselection rule separates them. This effect is of course not present in the quantum

mechanics of a finite number of particles. This phenomenon has been known for a long

time [4–8], for more recent discussion see also [19].

Dirac [20] (see also Roepstorff [21]) gave an elegant construction of the infrared dressed

charge. We will paraphrase the part of his work which concerns us as follows. Consider the

smearing of the electromagnetic gauge field Aµ by test differential forms ϕµ which we take

to be smooth and vanishing at infinity. The gauge condition is imposed on test differential

forms by requiring that the forms ϕ are co-closed: d∗ϕ = ∂µϕ
µ = 0. We can then define

A(ϕ) =

∫

d4xAµ(x)ϕ
µ(x), (2.1)

which is a gauge invariant observable. This enables the construction of a Weyl system W,

which provides an exponentiated form of the commutation relations. Given two co-closed

one-forms ϕ1 and ϕ2, we have

W(ϕ1)W(ϕ2) = W(ϕ1 + ϕ2)e
iσ(ϕ1,ϕ2), (2.2)

where the bilinear binary form is given by

σ(ϕ1, ϕ2) =
1

2

∫

d4x d4yϕ1(x)
µD(x− y)ϕ2(y)µ, (2.3)

D being the causal Pauli-Jordan propagator:

D(x− y) =

∫

dµ(k)[e−ik·(x−y) − eik·(x−y)]. (2.4)

The momentum space measure is as usual

dµ(k) =
d3k

(2π)32k0
, (2.5)

with k0 =
√
k2 = |k|. The causal function D satisfies the wave equation

�D(x) = 0. (2.6)

The two-form σ has a large kernel, it actually depends not on the one-forms ϕ’s, but

on their “curvature”, i.e. only on the quantities

ϕµν(x) =

∫

d4yD(x− y)(∂µϕν − ∂νϕν)(y) (2.7)

which are solutions of the wave equation.

1Although often in the literature these states are called vacua (without inverted commas), this is a

misnomer. There is a unique quantum electrodynamics vacuum, the state annihilated by all annihilation

operators. There can however be degenerate ground states in different superselection sectors. We are

concerned with these states in this paper, and from now on we will refer to them as ground states.
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A representation of the Weyl system is obtained by the map

W : ϕ −→ W(ϕ) = eiA(ϕ). (2.8)

with Aµ acting on a Fock space. But this is not the only representation.

Suppose that Φ is a real linear functional on the space of test forms:

Φ : ϕ −→ Φ(ϕ). (2.9)

Then the map

W ′ : ϕ −→ W ′(ϕ) = ei[A(ϕ)+Φ(ϕ)I] (2.10)

can equally well represent W.

Given the mode expansion of Aµ,

Aµ(x) =

∫

dµ(k)[aµ(k)e
−ik·x + aµ(k)

†eik·x], (2.11)

in terms of the usual creation and annihilation operators aµ(k) and aµ(k)
†, and that of

the test form ϕ,

ϕ̃µ(k) =

∫

d4xϕµ(x)e
ik·x, k0 = |k|, (2.12)

the gauge invariant observable (2.1) is given by

A(ϕ) =

∫

dµ(k) [ϕ̃µ(k)∗aµ(k) + ϕ̃µ(k)aµ(k)
†]. (2.13)

Let us define:

(η, ξ) =

∫

dµ(k) η̃∗µ(k) ξ̃
µ(k) (2.14)

and the photon coherent state2 [5–8, 22, 23]

|ξ〉 = e(a
†, ξ)−(a, ξ)|0〉 = eiA(ξ)|0〉. (2.15)

Then

〈ξ|eiA(ϕ)|ξ〉 = 〈0|ei[A(ϕ)+Φξ(ϕ)I]|0〉, (2.16)

where

Φξ(ϕ) = σ(ξ, ϕ). (2.17)

Thus (2.10) is a representation built on a generalized coherent state.

On the Fock space we can define the photon number N and electromagnetic Hamilto-

nian H operators as

N =

∫

dµ(k)a†(k)a(k) ; H =

∫

dµ(k)|k|
(

a†(k)a(k) +
1

2

)

. (2.18)

2We have slightly generalized the definition of the inner product (2.14) in a natural way to allow inner

products with creation and annihilation operators.
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If |ξ〉 ∈ H defines an ordinary coherent state, so that it has finite expectation values

for N and H, then the representation is equivalent to the one on Fock space. There are

however states which belong to the Fock space, and to the domain of H, but not to the

domain of N. One can construct sequences of states that have as extremely low energies

〈H〉 as required, but for which the mean value 〈N〉 of N diverges. Physically these states

correspond to infinities of soft photons. When two 〈N〉’s differ by infinity, the twisted Weyl

representations defined by those states are neither unitarily equivalent among themselves

nor equivalent to the original representation based on the Fock vacuum |0〉. They lead to

alternative ground states.

Let us consider the current

Jµ(x) = q

∫ ∞

−∞

dτδ4(x− x(τ))
dxµ

dτ
, (2.19)

where for x(τ) we take the trajectory of a uniform motion of the charge:

x(τ) =
p

m
τ, (2.20)

p being the four-momentum of the in state and q the total charge [21, 24, 25]. At time

t = 0, because of the presence of the charged particle, the system is in the in dressed state

|J〉 = exp i

(

q

∫ 0

−∞

dt
pµ

m
Aµ

( p

m
t
)

)

|0〉. (2.21)

The appearance of the extra phase factor is due to the change of the electromagnetic

ground state due to the presence of the charged particle. The Gauss law gets modified

in the presence of charged matter (3.9). Equation (2.21), as the solution of lowest energy

goes back at least to Dirac ([20], eq. (31)). A more recent reference, closer to the spirit

of this paper is ([21], eq. (4.6)). From the scattering theory viewpoint the fact that only

the retarded fields of the charged particle appear in the dressing factor (2.21) is due to the

fact that we are considering the “in” state in the S matrix formalism. Moreover, in the

semiclassical approximation to the S matrix of full quantum electrodynamics where the

electron becomes classical the same dressing factor reappears in the eikonal approximation

(see eq. (2.12) of ref. [10]). This argument provides another confirmation that (2.21) is the

right solution of of Gauss law which corresponds to the ground state of the electromagnetic

field in the background of a classical charged particle with unifrom motion.

The state (2.21) is in fact a linear combination of multi-photon entangled states, in fact

|J〉 = |0〉+ i

(

q

∫ 0

−∞

dt
pµ

m
Aµ

( p

m
t
)

)

|0〉

+
i2

2

(

q

∫ 0

−∞

dt
pµ

m
Aµ

( p

m
t
)

)⊗2

|0〉+ . . . (2.22)

The 2-photon state is an entangled state because it is the sum over several 2-photon states

involved in the integral on t. The same happens for higher order terms: the photons

generated by the charged particle are highly entangled.
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It is known [21, 24, 25] that the expectation value of the photon number operator N

diverges for the coherent state (2.21), but the energy remains finite. Thus, |J〉 is not in the

domain D(N) of the number operator N. We conclude that the infrared-dressed in state

does also not belong to D(N), in spite of the fact that it has a finite energy 〈J |H|J〉 and
thus |J〉 ∈ D(H).

The fact that the state |J〉 is not in the domain of number operator means that even

if repeated measurements of N could give finite results, they do not converge to a mean.

All these ground states can be heuristically characterized by the presence of an infinity of

photons of very low energies. In this sense the infrared sector of the theory exhibits a very

rich structure.

The ground state is however a dynamical entity in the presence of the flying particle.

One can therefore generalize (2.21) to

|J〉t = exp i

(

q

∫ t

−∞

dτ
pµ

m
Aµ

( p

m
τ
)

)

|0〉, (2.23)

explicitly showing that the new ground state is time dependent.

A gauge invariant observable which is affected by this time variation due to the effect

of the moving charge is the energy density of the photon cloud. This is an ultraviolet

divergent quantity, like the vacuum energy, because all frequency modes of the cloud of

photons contribute to the energy in the same amount. However, in practice the sensitivity

of the photodetectors is limited to a range of frequencies k0 < |k| < k0+κ. The restriction

of the energy density of the cloud of photons to that range of frequencies is given by

Eκ
J (x, t)= t〈J |T κ

00(x)|J〉t−〈0|T00(x)|0〉=
q2

8π
κ(κ−2 k0)θ

( |p|
m

t−x · p
|p|

)

δ(2)
(

x−x · p
p2

p

)

,

(2.24)

where θ(s) is the Heaviside function which vanishes for negative values of s and is 1 for

positive values of s. The argument of the delta function is transverse to p, hence the 2-

dimensional delta-function. The non-trivial variation in time of E(x, t) is the smoking gun

of the presence of charged particle in the space. Notice that the energy density (2.24) does

not vanishe along the trajectory of the charge for any time after the passage of the particle,

unlike what happens in classical electrodynamics. Thus in the quantum case the memory

of the passage of a charged particle is preserved at any later time. Another characteristic

of the photon cloud is the white nature of its transverse energy spectrum, i.e. the energy

contributions of photons of the cloud propagating in transverse directions are independent

of their frequencies.

The evident analogy of this effect with the gravitational case might help in under-

standing the black hole information paradox [13–16, 26–28].

But we should still check that the theory preserves gauge invariance, namely that the

new ground state is still physically acceptable. The rest of the paper is devoted to this

verification.
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3 Equations of motion as constraints

In [17], we generalised the Gauss law for pure electromagnetic field to a covariant Gauss

law G(η), which depends on rapidly decreasing smearing space-time one-forms:3

G(η) =

∫

d4x ∂λ Fλµ(η)(x)A
µ(x), Fλµ(η) = ∂ληµ − ∂µηλ, ηµ ∈ C∞

0 (R4). (3.1)

The quantum vector states |ψ〉γ of the free electromagnetic field compatible with the

free field equations of motion are annihilated by the covariant Gauss law operator G(η):

G(η)|ψ〉γ = 0. (3.2)

The observables are generated by using the gauge invariant smeared fields A(ϕ) as

in (2.1). The constraints (3.2) are first class, i.e. [G(η), G(ξ)] = 0, as shown by using of the

causal propagator

[Aµ(x), Aν(y)] = ηµνD(x− y), (3.3)

and integration by parts.

The operators G(η) generate spacetime dependent gauge transformations. Using (2.5)

and partial integrations, we have:

[G(η), Aµ(x)]=

∫

d4y ∂λFλµ(η)(y)D(y − x)=−∂µ

∫

d4y (∂ληλ)(y)D(y − x) :=∂µΛ(x). (3.4)

which defines a gauge transformation with gauge function

Λ(x)=−
∫

d4y (∂ληλ)(y)D(y − x). (3.5)

In the presence of charged matter, the analysis of gauge invariance slightly changes.

In fact the classical equations of motion now read

∂νFνµ = Jµ. (3.6)

The dressing with smearing test forms η gives
∫

d4x ηµ∂νFνµ(x) =

∫

d4x ηµJµ(x) =
q

m
pµ

∫ ∞

−∞

dτ ηµ

( p

m
τ
)

(3.7)

with Jµ as in (2.19). Although gauge transformations only transform gauge fields and not

the matter currents, the dressed equations of motion acquire a non-trivial contribution

from the charged sector as in (3.7). It implies that in the presence of charged matter, the

generator of gauge transformations in the quantum Hilbert space is given by

GJ(η) = G(η)−
∫

d4x ηµJµ ηµ ∈ C∞
0 (R4) (3.8)

instead of equation of (3.1). The gauge condition on quantum states is

GJ(η)|ψ〉 = 0. (3.9)

The equation remains valid if we consider Jt defined in (2.23).

3The smearing functions are usually taken to be of compact support. In [17] we needed a different

behaviour for the Fourier transform of the functions. In this paper we will not discuss these technical issues

and assume that the proper limits have been taken. This issue, however, requires further scrutiny.
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4 Gauge invariance of the ground state of moving charges

We start with Minkowski space with the photon quantized in the twisted Fock represen-

tation induced by the charged particle. That twisted representation has a typical cyclic

vector, i.e. the representation is generated from the entangled dressed state

|Jt〉 = eiA(Jt)|0〉γ , (4.1)

with Jt given by (2.23) and |0〉γ being the photon ground state. There are many of such

representations as each different momentum of the charged particle p gives a different

domain of the Hilbert space. Each of these twisted ground states generates a different

representation of the algebra of local observables A(ϕ). The different representations

associated to different momenta define inequivalent superselection sectors of the algebra

of gauge invariant local observables. (2.1). This phenomenon has been known for a long

time [4–8]. One simple argument is the following: since ∂µϕ
µ = 0,

[G(η), A(φ)] = 0, ηµ ∈ C∞
0 (R4), (4.2)

which implies that the different superselection sectors generated by the dressed states are

characterized by the eigenvalues of G(η):

G(η)A(φ)|J0(p)〉 = A(φ)G(η)|J0(p)〉 =
q

m
pµ

∫ 0

−∞

dτ ηµ

( p

m
τ
)

A(φ)|J0(p)〉. (4.3)

But for any pair of momenta p, p′ of the charged particle, there always exists an η such

that the two eigenvalues

pµ
∫ 0

−∞

dτ ηµ

( p

m
τ
)

, p′µ
∫ 0

−∞

dτ ηµ

(

p′

m
τ

)

(4.4)

are different, which implies that the corresponding twisted sectors are orthogonal. Moreover,

〈J0(p′)|A(φ)|J0(p)〉 = 0, whenever p 6= p′, (4.5)

which proves the superselected character of the different sectors. (See [29] for an alternative

derivation.) We fix p and the associated twisted Fock representation.

This state is acted on by observables A(ϕ) on spacetime. We can ask the following

question: what happens when we restrict this state to observables which are defined only

in a limited causally connected portion of spacetime4 W and look at the expectation value

of GJ(ηW
) with η

W
being supported in W?

The calculation uses only the dressed Fock space nature of the photon state. Hence

consider the ground state expectation value 〈0|e−iA(Jt)GJt(ηW
) eiA(Jt)|0〉, suppressing the

charged particle state. We find

〈0|e−iA(Jt)GJt(ηW
) eiA(Jt)|0〉 = γ〈0|G(η

W
) |0〉γ −

q

m
pµη

µ
W

( p

m
t
)

− i

∫ t

−∞

dτ ∂τ

∫

d4y (∂ · η
W
)(y)D(y − x(τ)). (4.6)

4For definiteness one may think of a Rindler wedge W = {x ∈ R
4; |x| > |x0|}.
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The first term vanishes because of the Gauss law constraint for the photon ground

state (3.2). The second term also vanishes for points outside the support domain of ηW .

The third term can be explicitly calculated, the result is iΛ
(

p
m
t
)

, where Λ was defined

in (3.5). Thus,

〈0|e−iA(Jt)GJt(ηW ) eiA(Jt)|0〉 = iΛ
( p

m
t
)

. (4.7)

This relation can be proven noticing that

∫ t

−∞

dτ ∂τ

∫

d4y (∂ · η
W
)(y)D(y − x(τ)) (4.8)

=

∫

d4y (∂ · η
W
)(y)D

(

y − p

m
t
)

−
∫

d4y (∂ · η
W
)(y)D(y −∞)

= Λ(−∞)− Λ
( p

m
t
)

= −Λ
( p

m
t
)

(4.9)

Since the support of ηW is in W and (~x, t) ∈ W ′, Λ
(

p
m
t
)

also vanishes, which proves the

gauge invariance of the dressed state (4.1). The result is not surprising since one would

expect the vanishing because of the naked gauge condition

G(ηW ) e−iA(Jt)|Jt〉 = G(ηW )|0〉γ = 0 (4.10)

Moreover the equations of motion look all the way to ∂W ′ as claimed.

The particle has left the region W so that its support is now completely outside of it.

Still the ground state that it has left in its wake, for time going to infinity, is

|J∞〉 = lim
t→∞

e−iA(Jt)|0〉 (4.11)

This ground state is different from the one we started with. The information of the passing

particle is encoded in the new entangled state of photons. In this sense they feel the scent of

the particle even after it has left the region. This also happens in classical electrodynamics

where the effect of the particle is retarded. However, the essential difference in the quantum

case is that the ground state remains entangled for all times and does not depend on a simple

retarded time. Moreover, it does not restore the photon Fock vacuum at infinite time.

5 Discussion

We argued that the ground state structure of a limited region of spacetime changes with

the passage of a charged particle. Although our discussion was in quantum field theory,

and did not introduce gravity (not even as curved background), the photon entanglement

will be present also in curved spacetime, possibly with an even richer structure. The

mechanism might help in understanding the black hole information paradox. This connects

to “gravitational memory” [13–16], as we already commented in the introduction. The role

played by soft gravitons [26–28] is not different from the one played by photons here. This

means that if, for example, upon leaving the region W , the particle falls into a black hole,

the information is preserved in its scent, in an analogous way. This would involve precising

– 8 –
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the considerations of this paper to the interacting case. One would have to introduce a

gravitational background at least, and consider other effects, for example decoherence due

to bremsstrahlung [30, 31]. This we leave for another day. For the analogous gravitational

case there are some proposals for an indirect detection, related with black holes, for example

see [32, 33].

Another issue is whether we can gather the information about the particle that has

traversed the region W . Apart from the fact that it is of course unrealistic that just

one particle crosses a region, the drastic change of the way we describe the particle, from

a trajectory in phase space to a change in the entanglement of a very large number of

photons, render this basically impossible. It is like asking what happens to the information

contained in a book if you burn it in a fireplace. The answer to this apparent paradox

is that the smoke pattern of a printed book is different from the one of the same book

with blank pages, or a different text. This does not mean that you can read books sitting

outside your home watching the smoke! (In any case, burning books is never a good idea).

It is conceivable that in some controlled cases, with small regions and strong fields and

entanglement, a phenomenon of this kind can be verified. Likewise an analysis of this

kind in the presence of the horizon of a black hole can give a novel perspective for the

information paradox. But this would require further work.
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