000070951 001__ 70951
000070951 005__ 20200113145618.0
000070951 0247_ $$2doi$$a10.1002/sctm.17-0157
000070951 0248_ $$2sideral$$a106546
000070951 037__ $$aART-2018-106546
000070951 041__ $$aeng
000070951 100__ $$aMokhtari, S.
000070951 245__ $$aEvaluating Interaction of Cord Blood Hematopoietic Stem/Progenitor Cells with Functionally Integrated Three-Dimensional Microenvironments
000070951 260__ $$c2018
000070951 5060_ $$aAccess copy available to the general public$$fUnrestricted
000070951 5203_ $$aDespite advances in ex vivo expansion of cord blood-derived hematopoietic stem/progenitor cells (CB-HSPC), challenges still remain regarding the ability to obtain, from a single unit, sufficient numbers of cells to treat an adolescent or adult patient. We and others have shown that CB-HSPC can be expanded ex vivo in two-dimensional (2D) cultures, but the absolute percentage of the more primitive stem cells decreases with time. During development, the fetal liver is the main site of HSPC expansion. Therefore, here we investigated, in vitro, the outcome of interactions of primitive HSPC with surrogate fetal liver environments. We compared bioengineered liver constructs made from a natural three-dimensional-liver-extracellular-matrix (3D-ECM) seeded with hepatoblasts, fetal liver-derived (LvSt), or bone marrow-derived stromal cells, to their respective 2D culture counterparts. We showed that the inclusion of cellular components within the 3D-ECM scaffolds was necessary for maintenance of HSPC viability in culture, and that irrespective of the microenvironment used, the 3D-ECM structures led to the maintenance of a more primitive subpopulation of HSPC, as determined by flow cytometry and colony forming assays. In addition, we showed that the timing and extent of expansion depends upon the biological component used, with LvSt providing the optimal balance between preservation of primitive CB HSPC and cellular differentiation. Stem Cells Translational Medicine 2018;7:271–282.
000070951 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000070951 590__ $$a5.962$$b2018
000070951 591__ $$aCELL & TISSUE ENGINEERING$$b3 / 26 = 0.115$$c2018$$dQ1$$eT1
000070951 592__ $$a2.145$$b2018
000070951 593__ $$aCell Biology$$c2018$$dQ1
000070951 593__ $$aMedicine (miscellaneous)$$c2018$$dQ1
000070951 593__ $$aDevelopmental Biology$$c2018$$dQ1
000070951 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000070951 700__ $$0(orcid)0000-0002-8969-7726$$aBaptista, P.M.
000070951 700__ $$aVyas, D.A.
000070951 700__ $$aFreeman, C.J.
000070951 700__ $$aMoran, E.
000070951 700__ $$aBrovold, M.
000070951 700__ $$aLlamazares, G.A.
000070951 700__ $$aLamar, Z.
000070951 700__ $$aPorada, C.D.
000070951 700__ $$aSoker, S.
000070951 700__ $$aAlmeida-Porada, G.
000070951 773__ $$g7, 3 (2018), 271-282$$pStem cells translational medicine$$tStem Cells Translational Medicine$$x2157-6564
000070951 8564_ $$s754846$$uhttps://zaguan.unizar.es/record/70951/files/texto_completo.pdf$$yVersión publicada
000070951 8564_ $$s119504$$uhttps://zaguan.unizar.es/record/70951/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000070951 909CO $$ooai:zaguan.unizar.es:70951$$particulos$$pdriver
000070951 951__ $$a2020-01-13-14:54:25
000070951 980__ $$aARTICLE